WO2009004476A2 - Ensemble modulaire pour la production et l'accumulation d'énergie solaire - Google Patents

Ensemble modulaire pour la production et l'accumulation d'énergie solaire Download PDF

Info

Publication number
WO2009004476A2
WO2009004476A2 PCT/IB2008/001771 IB2008001771W WO2009004476A2 WO 2009004476 A2 WO2009004476 A2 WO 2009004476A2 IB 2008001771 W IB2008001771 W IB 2008001771W WO 2009004476 A2 WO2009004476 A2 WO 2009004476A2
Authority
WO
WIPO (PCT)
Prior art keywords
accumulation
tank
fused salts
collector
production
Prior art date
Application number
PCT/IB2008/001771
Other languages
English (en)
Other versions
WO2009004476A8 (fr
WO2009004476A3 (fr
Inventor
Corrado Femia
Alessandro Daneu
Original Assignee
Biosolar Flenco Group S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosolar Flenco Group S.R.L. filed Critical Biosolar Flenco Group S.R.L.
Priority to EP08788861A priority Critical patent/EP2176547A2/fr
Priority to CN200880103900A priority patent/CN101821501A/zh
Publication of WO2009004476A2 publication Critical patent/WO2009004476A2/fr
Publication of WO2009004476A8 publication Critical patent/WO2009004476A8/fr
Publication of WO2009004476A3 publication Critical patent/WO2009004476A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a modular assembly for the production and accumulation of solar energy.
  • the Archimedes' project itself which accumulates energy at 550 0 C with large volumes of fused salts and hence is able to produce with a certain constancy steam at 530-550 0 C that enters the turbine and is well suited to combination with traditional electric-power stations, has a capacity for accumulation of a few hours and encounters limits for delocalized plants, for low powers.
  • the aim of the present invention is to provide a modular assembly for the production and accumulation of solar energy that will enable the problems set forth above to be solved in a simple and economically advantageous way and, in particular, will prove simple and inexpensive to produce, of contained overall dimensions, of convenient transportability and adaptability to the various energy demands.
  • a modular assembly for the production and accumulation of solar energy is provided as specified in Claim 1.
  • Figure 1 is a perspective view of a modular plant for the production and accumulation of solar energy, provided with two or more modular assemblies made according to the dictates of the present invention
  • Figure 2 illustrates at an enlarged scale one of the modular assemblies of Figure 1 ;
  • Figure 3 is similar to Figure 2 and illustrates a variant of a detail of Figure 2 ;
  • Figures 4 to 7 illustrate a succession of steps of assembly of the modular assembly of Figure 1;
  • Figure 8 illustrates three different dimensioned views of the plant of Figure 1.
  • the reference number 1 designates, as a whole, a modular plant for the production and accumulation of solar energy .
  • the plant 1 comprises two or more modular assemblies 2 independent of one another and set alongside one another.
  • Each modular assembly 2 is able to produce and accumulate solar energy independently of the other assemblies, is housed within a container 3 of its own for its transport and support, which is partially illustrated in Figures 1 to 7 in an open condition, and comprises a supporting structure 5 of its own conveniently made of steel structural work with mechanical fast-coupling assembly systems.
  • the structure 5 supports a parabolic mirror body 6 made of glass material with the glass of the mirrored part of a thickness of 0.85 mm, and with an underlying part once again made of glass with a thickness of 4-6 mm, jointed to one another with commercial adhesives.
  • the underlying part can also be made of other plastic materials, resins, ferrous materials or aluminium or composite materials.
  • the mirrored part may also be of another nature, curved and mirrored glass or polished metal.
  • the parabolic body 6 envisages a development of the parabolic curve of 6400 mm in a plane with a total surface of projection of approximately 70 m 2 .
  • the parabolic body sends the solar rays onto a tubular collector 7 or conveying tube located, in a known way, in the focus of the parabolic body and traversed, in use, by a thermovector fluid.
  • the parabolic body 6 is mobile with respect to the structure 5 under the thrust of a motor reducer 8 controlled for tracking the solar source.
  • a motor reducer 8 controlled for tracking the solar source.
  • an electronic photocell system for seeking of the best condition of the solar source.
  • the motor reducer 8 governs rotation of the parabolic body/tubular collector ensemble, with respect to the cylindrical support of the structure 5 and about a longitudinal axis of the container 3 parallel to the tubular collector 7, as may be seen in Figures 1 and 2.
  • the tubular collector 7 is fixed on the structure 5, and the parabolic body 6 rotates about the focus, positioned fixed on which is the tubular collector 7.
  • each modular assembly 2 further comprises a tank 10 of its own for accumulation of the thermovector fluid.
  • the accumulation tank 10 is set inside the container 3 and in contact with a base 3a of the container 3 itself, as illustrated in Figures 1 to 7 , and is connected to an inlet of the tubular collector 7 via a first delivery branch 11 and to an outlet of the tubular collector 7 itself with a return branch 12.
  • the delivery branch 11 and return branch 12 define, together with the collector, an open circuit 13 for conveying the thermovector fluid.
  • the modular assembly 2 uses as thermovector fluid a mixture of fused salts that is heated up to 550°- 600 0 C.
  • Sodium and potassium nitrate salts for example: 60% NaNO 3 - 40% KNO 3 ) are conveniently used as mixture, enabling stability and high power of accumulation at a high temperature, with a low cost and much lower hazard level and lower environmental impact as compared to all the other thermovectors commonly used.
  • the accumulation tank 10 of each modular assembly 2 is sized for accumulating at least energy of 3 days of sunlight, which at 10 kWe represent 3 days of production with a 3-kWe turbine/alternator running for continuously 3 days.
  • the volume that is obtained is approximately 6 m 3 .
  • the 6 m 3 tank 10 is positioned at the centre of the container, and has a diameter of approximately 1200 mm and a length of 6 m, is supported inside the container 3 with insulating supports, and is all surrounded by insulating material of appropriate rock-wool and/or other adequate insulating material of average thickness greater than 300 mm.
  • the tank 10 can be equipped with one or more heat exchangers for the turbine, for a thermal grid, and auxiliary services.
  • the tank 10 made of stainless steel or of a material able to withstand the temperature and aggressiveness of the fused salts is not pressurized but has an external vent for start-up, and, in order to compensate for possible variations, is provided with an electrical or gas heating system.
  • the gas cylinders are also housed inside the container 3.
  • a system of gas burners set underneath the tank 10 for startup is simple and can be easily rendered autonomous with cylinders provided on board the container 3.
  • the assembly 2 described captures and accumulates solar energy to produce electrical energy and/or purified water and/or hot water and/or cooled water, produces and/or repeats remote radio signals, in general for an extremely wide range of uses also in isolated and remote situations without any need for supply of fuels even 24 hours a day all the year round.
  • the foregoing can be basically put down to the use of a compact system for receiving and accumulating solar heat at a high temperature, associated with the production of electrical energy by a turbine/alternator system actuated by a low- temperature Rankine cycle of a different type (for example, with inlet temperatures of between 180-300 0 C and outlet temperatures at the heat exchanger below 140 0 C) , which enables production of electrical energy in a constant way or when required.
  • turbines of different types for example, with inlet temperatures of between 180-300 0 C and outlet temperatures at the heat exchanger below 140 0 C
  • turbines of different types for example, with inlet temperatures of between 180-300 0 C and outlet temperatures at the heat exchanger below 140 0 C
  • turbines of different types axial ones, radial ones, Scroll ones, etc., which use organic liquids as expansion fluids.
  • the modular assembly 2 enables production of modular plants, in which each module is an element independent of the others, but which, according to the configurations, can be connected to other modules, enabling an infinite range of solutions, with electrical powers according to the turbine/alternator system installed, with multiples of 3 kW or 10 kW per module/container, or of 60 kW or 120 kW when a number of modular assemblies are grouped together.
  • the modularity and transportability enable having small local electrical networks, supplied by the Sun, which are suited to the loads used.
  • each modular assembly 2 is sized on the maximum thermal capacity installed on a standard container between two possible powers according to whether it is desired to obtain a continuous operation over 24 hours or whether a higher power is desired but over a shorter period (e.g., for one third of the day approximately) .
  • All the modular assemblies are built with standard criteria to enable a low cost for large-scale production using the systems for handling traditional containers already available on the market.
  • the parabolic body 6 has an aperture of approximately six metres and a length of twelve metres to optimize the modularity of the container and has hence a sun- capturing surface of approximately 70 m 2 .
  • the modules are possible according to the type of container used.
  • the Sun in optimal circumstances at our latitude enables a yield on the surface of the Earth of approximately 1000 cal/m 2 on average in sunlight hours.
  • Each modular assembly averages approximately 0.7 kwte/m 2 , i.e., approximately 50 kwte per module (-70 m 2 ) .
  • a modular assembly can produce 400- 500 kwte/day. This energy accumulated in ideal conditions of sunlight can make available throughout the day (24 hours) approximately 15-20 kwte/h. With a turbine/alternator system having an efficiency of 17% we shall have available over 24 hours a constant power with an electrical energy equal to -2.5 - 3.5 kWh, thence the minimum size envisaged for the module chosen at 3 kW. In less favourable conditions of sunlight and location, or in conditions of lower average energy demand, with a maximum of 3 kW it is necessary either to add at least one basic assembly (receiving/accumulation assembly) or to connect said assembly with the envisaged turbine/alternator assembly.
  • the modularity of the system enables an infinite range of solutions that are valid for different locations and uses. In fact, this modularity enables, according to the need, addition of modular assemblies up to satisfaction of the user demands.
  • the local electrical network thus provided can handle the electrical load by adapting, with intelligent turning-on and turning-off, to the load required maintaining a high efficiency, optimizing the accumulation and yields.
  • the movement tracking system of the parabolic body 6 is built using the structure of the container as base and support, obtaining a considerable saving in cost for metal structures, packaging, transport, local works of civil engineering, and assembly.
  • each modular assembly 2 can be inclined laterally by a variable angle not greater than 20° to improve efficiency in the months when there is less sunlight and facilitate emptying-out of the fused salts from the circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un ensemble modulaire pour la production et l'accumulation d'énergie solaire. Ledit ensemble comprend un réservoir pour l'accumulation de sels fondus, un corps réfléchissant pour la capture des rayons solaires, un collecteur tubulaire faisant face au corps parabolique et frappé, lors de l'utilisation, par les rayons solaires envoyés par le corps réfléchissant, un circuit d'alimentation et un circuit de retour, qui communiquent, d'un côté, avec le réservoir et, de l'autre, avec le collecteur afin d'acheminer les sels fondus dans le collecteur; le réservoir d'accumulation étant placé dans une position sous-jacente au collecteur, et les circuits d'alimentation et de retour étant placé de manière à permettre un déchargement par gravité des sels fondus dans le réservoir d'accumulation.
PCT/IB2008/001771 2007-07-04 2008-07-04 Ensemble modulaire pour la production et l'accumulation d'énergie solaire WO2009004476A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08788861A EP2176547A2 (fr) 2007-07-04 2008-07-04 Ensemble modulaire pour la production et l'accumulation d'énergie solaire
CN200880103900A CN101821501A (zh) 2007-07-04 2008-07-04 用于太阳能的生产和积聚的模块化组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITTO2007U000088 2007-07-04
IT000088U ITTO20070088U1 (it) 2007-07-04 2007-07-04 Progetto s.i.p.sistema solare di produzione

Publications (3)

Publication Number Publication Date
WO2009004476A2 true WO2009004476A2 (fr) 2009-01-08
WO2009004476A8 WO2009004476A8 (fr) 2009-06-04
WO2009004476A3 WO2009004476A3 (fr) 2009-11-26

Family

ID=40226594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2008/001771 WO2009004476A2 (fr) 2007-07-04 2008-07-04 Ensemble modulaire pour la production et l'accumulation d'énergie solaire

Country Status (4)

Country Link
EP (1) EP2176547A2 (fr)
CN (1) CN101821501A (fr)
IT (1) ITTO20070088U1 (fr)
WO (1) WO2009004476A2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103726A3 (fr) * 2008-02-21 2009-12-17 Heiner Gerbracht Conteneur et centrale solaire
WO2010142664A1 (fr) * 2009-06-08 2010-12-16 Siemens Concentrated Solar Power Ltd. Champ solaire et procédé d'assemblage du champ solaire
CN102483268A (zh) * 2009-08-28 2012-05-30 弗拉格赛欧股份有限公司 抛物面槽式集热器
CN103742373A (zh) * 2013-12-25 2014-04-23 青海中控太阳能发电有限公司 一种采用超临界水吸热器和熔盐蓄热的塔式太阳能热发电站
WO2014131419A1 (fr) * 2013-02-26 2014-09-04 Alpha-E Aps Ensemble unité solaire amélioré et procédé de construction d'un tel ensemble
ES2500865R1 (es) * 2011-10-20 2014-10-08 Abengoa Solar Llc Sistema de calentamiento de un fluido de transferencia de calor para un concentrador solar cilindro-parabólico
ES2557501A1 (es) * 2014-07-25 2016-01-26 Solatom Csp, S.L. Sistema solar fresnel lineal transportable en un contenedor de mercancías
BE1023143B1 (fr) * 2015-05-08 2016-11-29 Sunoptimo S.A. Procédé pour l'installation d'un système de production d'énergie solaire thermique
EP3221649A4 (fr) * 2014-11-23 2018-06-06 Richard Lee Johnson Collecteur d'énergie thermique solaire à semi-conducteurs
EP3306224A4 (fr) * 2015-05-27 2018-12-26 Chiyoda Corporation Dispositif de collecte de chaleur solaire et procédé de chauffage de tube de collecte de chaleur

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062480B (zh) * 2010-12-07 2012-09-05 吴艳频 一种利用太阳能给真空集热器加热的极轴式自动跟踪系统
CN104266395B (zh) * 2014-06-30 2016-07-06 赵小峰 一种框架以及具有该框架的太阳能集热装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091796A (en) * 1976-08-16 1978-05-30 Owens-Illinois, Inc. Solar energy collection apparatus
US4262658A (en) * 1978-06-26 1981-04-21 Owens-Illinois, Inc. Drainable solar collector apparatus
US4265223A (en) * 1978-09-18 1981-05-05 The Badger Company, Inc. Method and apparatus for utilizing solar energy
US4372651A (en) * 1979-10-19 1983-02-08 Solar Kinetics, Inc. Solar collector module
US4644934A (en) * 1985-05-03 1987-02-24 Kaus David P Solar energy heating system
WO1990012989A1 (fr) * 1988-01-22 1990-11-01 Goede Gabor Equipement utilisant l'energie solaire en particulier pour la production d'energie electrique
WO1995006846A2 (fr) * 1993-08-23 1995-03-09 Goede Gabor Centrale solaire produisant de l'electricite et/ou de l'hydrogene
WO2003008803A1 (fr) * 2001-07-17 2003-01-30 Ceap B.V. Centrale destinee a generer de l'energie eolienne et solaire
US20040086021A1 (en) * 2002-11-01 2004-05-06 Litwin Robert Zachary Infrared temperature sensors for solar panel
US20040099261A1 (en) * 2002-11-22 2004-05-27 Litwin Robert Zachary Expansion bellows for use in solar molten salt piping and valves
US20040118449A1 (en) * 2002-12-20 2004-06-24 Murphy Terrence H. Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
US20050126170A1 (en) * 2003-12-10 2005-06-16 The Boeing Company Solar power system and method for power generation
US20050126560A1 (en) * 2003-12-10 2005-06-16 The Boeing Company Solar collector and method
DE202005017853U1 (de) * 2005-11-14 2006-01-05 Poller, Matthias Rinnenkollektor
US20060013765A1 (en) * 2004-07-14 2006-01-19 The Boeing Company Method for producing hydrogen gas by steam methane reforming using solar energy

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091796A (en) * 1976-08-16 1978-05-30 Owens-Illinois, Inc. Solar energy collection apparatus
US4262658A (en) * 1978-06-26 1981-04-21 Owens-Illinois, Inc. Drainable solar collector apparatus
US4265223A (en) * 1978-09-18 1981-05-05 The Badger Company, Inc. Method and apparatus for utilizing solar energy
US4372651A (en) * 1979-10-19 1983-02-08 Solar Kinetics, Inc. Solar collector module
US4644934A (en) * 1985-05-03 1987-02-24 Kaus David P Solar energy heating system
WO1990012989A1 (fr) * 1988-01-22 1990-11-01 Goede Gabor Equipement utilisant l'energie solaire en particulier pour la production d'energie electrique
WO1995006846A2 (fr) * 1993-08-23 1995-03-09 Goede Gabor Centrale solaire produisant de l'electricite et/ou de l'hydrogene
WO2003008803A1 (fr) * 2001-07-17 2003-01-30 Ceap B.V. Centrale destinee a generer de l'energie eolienne et solaire
US20040086021A1 (en) * 2002-11-01 2004-05-06 Litwin Robert Zachary Infrared temperature sensors for solar panel
US20040099261A1 (en) * 2002-11-22 2004-05-27 Litwin Robert Zachary Expansion bellows for use in solar molten salt piping and valves
US20040118449A1 (en) * 2002-12-20 2004-06-24 Murphy Terrence H. Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
US20050126170A1 (en) * 2003-12-10 2005-06-16 The Boeing Company Solar power system and method for power generation
US20050126560A1 (en) * 2003-12-10 2005-06-16 The Boeing Company Solar collector and method
US20060013765A1 (en) * 2004-07-14 2006-01-19 The Boeing Company Method for producing hydrogen gas by steam methane reforming using solar energy
DE202005017853U1 (de) * 2005-11-14 2006-01-05 Poller, Matthias Rinnenkollektor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103726A3 (fr) * 2008-02-21 2009-12-17 Heiner Gerbracht Conteneur et centrale solaire
WO2010142664A1 (fr) * 2009-06-08 2010-12-16 Siemens Concentrated Solar Power Ltd. Champ solaire et procédé d'assemblage du champ solaire
CN102803862A (zh) * 2009-06-08 2012-11-28 西门子聚集太阳能有限公司 太阳能场和组装太阳能场的方法
CN102483268A (zh) * 2009-08-28 2012-05-30 弗拉格赛欧股份有限公司 抛物面槽式集热器
US9631839B2 (en) 2011-10-20 2017-04-25 Abengoa Solar Inc. Heat transfer fluid heating system and method for a parabolic trough solar concentrator
ES2500865R1 (es) * 2011-10-20 2014-10-08 Abengoa Solar Llc Sistema de calentamiento de un fluido de transferencia de calor para un concentrador solar cilindro-parabólico
WO2014131419A1 (fr) * 2013-02-26 2014-09-04 Alpha-E Aps Ensemble unité solaire amélioré et procédé de construction d'un tel ensemble
EA033093B1 (ru) * 2013-02-26 2019-08-30 Альфа-Э Апс Усовершенствованная сборка из солнечных блоков и способ ее изготовления
US10317108B2 (en) 2013-02-26 2019-06-11 Alpha-E Aps Solar unit assembly and a method for constructing such an assembly
CN103742373A (zh) * 2013-12-25 2014-04-23 青海中控太阳能发电有限公司 一种采用超临界水吸热器和熔盐蓄热的塔式太阳能热发电站
WO2016012650A1 (fr) * 2014-07-25 2016-01-28 Solatom Csp S.L. Système solaire de fresnel linéaire transportable dans un conteneur de marchandises
ES2557501A1 (es) * 2014-07-25 2016-01-26 Solatom Csp, S.L. Sistema solar fresnel lineal transportable en un contenedor de mercancías
US10976077B2 (en) 2014-07-25 2021-04-13 Solatom Csp S.L. Linear fresnel solar power system that can be transported in a goods container
EP3221649A4 (fr) * 2014-11-23 2018-06-06 Richard Lee Johnson Collecteur d'énergie thermique solaire à semi-conducteurs
US10203134B2 (en) 2014-11-23 2019-02-12 Richard Lee Johnson Solid state solar thermal energy collector
US11440814B2 (en) 2014-11-23 2022-09-13 Planet A Energy, Inc. Solid state solar thermal energy collector
BE1023143B1 (fr) * 2015-05-08 2016-11-29 Sunoptimo S.A. Procédé pour l'installation d'un système de production d'énergie solaire thermique
EP3306224A4 (fr) * 2015-05-27 2018-12-26 Chiyoda Corporation Dispositif de collecte de chaleur solaire et procédé de chauffage de tube de collecte de chaleur

Also Published As

Publication number Publication date
ITTO20070088U1 (it) 2009-01-05
WO2009004476A8 (fr) 2009-06-04
CN101821501A (zh) 2010-09-01
WO2009004476A3 (fr) 2009-11-26
EP2176547A2 (fr) 2010-04-21

Similar Documents

Publication Publication Date Title
EP2176547A2 (fr) Ensemble modulaire pour la production et l'accumulation d'énergie solaire
US7340899B1 (en) Solar power generation system
US6957536B2 (en) Systems and methods for generating electrical power from solar energy
US7051529B2 (en) Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
US6080927A (en) Solar concentrator for heat and electricity
US4276872A (en) Solar system employing ground level heliostats and solar collectors
CN201190639Y (zh) 大功率太阳能蓄能式蒸汽涡轮发电系统
Lovegrove et al. Solar thermal energy systems in Australia
JP2016503477A (ja) 監視、分析、制御用統合自動システムを用いて加熱、冷却、発電、エネルギー貯蔵を提供する冷却、熱、電力併給ハイブリッドトリジェネレーションシステムマイクログリッド
Psomopoulos Solar energy: Harvesting the sun’s energy for a sustainable future
Häberle et al. Concentrating solar technologies for industrial process heat
US20120138267A1 (en) Release Of Stored Heat Energy To Do Useful Work
WO2018173038A1 (fr) Système solaire pour la production d'énergie
CN102003359B (zh) 一种太阳能复合电站
Al-Sakaf Application possibilities of solar thermal power plants in Arab countries
US9350290B2 (en) Solar water-collecting, air-conditioning, light-transmitting and power generating house
US11952920B2 (en) Energy recovery system and methods of use
CN101000043A (zh) 太阳能热发电机组
CN208238278U (zh) 分布式太阳能蓄热装置
AU2013100968A4 (en) Hybridized-solar thermal power plant
CN106168199A (zh) 一种住宅氢能源系统和斯特林自体发电‑热泵联体机
KR101336602B1 (ko) 태양열을 이용한 고효율의 고온 열원장치
WO2008107875A2 (fr) Convertisseur d'énergie solaire
CN210921545U (zh) 一种带有双级蓄热的储热井供暖系统
CN212511858U (zh) 一种光伏光热一体化设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880103900.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008788861

Country of ref document: EP