WO2009003413A1 - Control method and system for uplink and downlink power - Google Patents
Control method and system for uplink and downlink power Download PDFInfo
- Publication number
- WO2009003413A1 WO2009003413A1 PCT/CN2008/071517 CN2008071517W WO2009003413A1 WO 2009003413 A1 WO2009003413 A1 WO 2009003413A1 CN 2008071517 W CN2008071517 W CN 2008071517W WO 2009003413 A1 WO2009003413 A1 WO 2009003413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- terminal
- power control
- downlink
- uplink
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/12—Outer and inner loops
Definitions
- Embodiments of the present invention relate to the field of wireless communications, and in particular, to uplink and downlink power control methods and systems. Background technique
- CDMA Code Division Multiple Access
- 3 G The Third Generation
- 3 G The Third Generation
- power control is critical because all users share the same frequency and the interference problems between them are outstanding. Whether it is uplink or downlink, it is necessary to maintain the transmit power at the minimum power level that meets the communication quality requirements. This is because the power is too small, causing the user to be dissatisfied with the communication quality, and the power is too low to reduce the communication system. Operational efficiency.
- the prior art generally has two power control methods: open loop power control and closed loop power control.
- the open loop power control is mainly used to determine the initial transmit power of the user, or the transmit power adjustment when the user receives a signal code power mutation.
- the actual interference and power control effects of the system are determined by closed-loop power control, which in turn includes outer loop power control and inner loop power control.
- the power control mechanism specified by 3GPP is shown in Figure 1, including outer loop power control and inner loop power control.
- Outer loop power control the goal is to adjust the SIR (Signal to Interference Ratio) in time according to business needs, so that various services can have a smaller BLER when they reach the target SIR. Error Rate, the quality of the service is guaranteed.
- the goal of the "inner loop power control” is to adjust the power in time according to the adjusted target SIR value, so that the signal-to-noise ratio is basically constant.
- the inner loop power control includes uplink power control and downlink power control.
- the base station detects the uplink SIR between the base station and the terminal, and obtains an SIR measurement.
- Cl, C2, C3, .. respectively represent the power control commands corresponding to a wireless connection between the terminal and the base station
- the final power control command is a function of receiving a command for each link.
- the terminal measures the SIR of the downlink, and reports the SIR measurement value.
- the base station performs power control according to the target SIR from the RNC and the SIR measurement value reported by the terminal, and instructs the base station to increase or decrease the downlink transmit power.
- the principle of specific judgment and indication is similar to the uplink power control.
- the effect that the power control can achieve is: Under the various service conditions, the uplink SIR detected by the base station and the downlink SIR reported by the terminal converge to the corresponding target SIR.
- the change in transmit power during the above power control process is shown in Figure 2.
- Pmax represents the maximum power allowed by the cell
- Pmin represents the minimum power allowed by the cell
- Pic represents the convergence value of the transmit power of the terminal at the cell edge
- P2c represents the convergence value of the transmit power of the terminal close to the base station
- T, c represents the terminal close to the base station.
- the power convergence time, T, and c represents the power convergence time of the terminal at the cell edge.
- the final transmit power of the terminal at the edge of the cell and the terminal near the base station can be controlled within the allowed power range of the cell.
- the allowed power range of the cell Pmax-Pmin, the value does not change with the location of the terminal. , is determined in advance by parameters.
- the values of power convergence between different terminals are greatly different, and the terminals that are at the edge of the cell or in areas with poor coverage are converged after power control.
- the power is usually large, as shown in Figure 2; Pic; the terminal in the coverage center of the base station or the area with good coverage conditions, the transmission power that converges after the power control is usually small, as shown in P2c in Figure 2. Since both Pic and P2c are within the power range allowed by the cell, they are not limited in power control.
- the cell edge portion is adjacent to the outdoor cell, and in this adjacent area, If the transmit power of the terminal is too high, it will cause interference to the outdoor cell. Especially in the case of a high-rise building, the interference to the outdoor network will be larger, which may cause the outdoor service cell to shrink.
- test cases include indoor pilot power constant, increase of 3dB, and decrease of 3dB.
- the outdoor cells are tested separately, and the statistical results of the outdoor road test data are obtained. Analysis shows:
- the indoor cell pilot power changes by 3dB
- the outdoor cell's Ec received energy per chip
- Ec/Io the ratio of the received energy per chip to the noise power spectral density
- the average pilot power Ec of the outdoor community is lower than the indoor leakage output.
- the pilot power is 5dB higher, and the soft-switching ratio that can be controlled is about 30%. It can be seen that the indoor cell has a large influence on the outdoor cell.
- the indoor cell pilot power is 10dB higher than the outdoor pilot that penetrates into the room, and the soft switching ratio can be controlled at about 30%.
- Embodiments of the present invention provide an uplink and downlink power control method and system to reduce interference of indoor communication to the outside.
- an embodiment of the present invention provides a downlink power control method, including the following steps:
- the power control judgment of the downlink transmission power of the terminal in the indoor cell is determined. If the downlink transmission power of the terminal is greater than the downlink interference control threshold after the power control is determined according to the result of the power control decision, the pair will be The downlink transmit power of the terminal is adjusted to the downlink interference control threshold.
- the embodiment of the present invention further provides an uplink power control method, including the following steps: calculating an uplink interference control threshold corresponding to the indoor cell according to the uplink signal sample data of the indoor cell;
- the embodiment of the present invention further provides a downlink power control system, including: a calculating unit, configured to calculate, according to downlink signal data of a neighboring cell of the indoor cell, a downlink interference control threshold corresponding to the indoor cell;
- the power control unit is configured to perform power control decision and power adjustment on the downlink transmit power of the terminal in the indoor cell according to the power control related measurement value;
- the determining unit is configured to determine, according to the power control decision result of the power control unit, the power control unit of the network after the power control adjusts the downlink transmit power of the terminal to the downlink interference control threshold.
- the embodiment of the present invention further provides an uplink power control system, including: a calculating unit, configured to calculate an uplink interference control threshold corresponding to the indoor cell according to the uplink signal sample data of the indoor cell;
- a power receiving unit configured to receive a real line transmission power of the terminal reported by the terminal in the cell
- the power control unit is configured to perform power control decision and power adjustment on the uplink transmit power of the terminal in the cell according to the power control related measurement value;
- a judging unit configured to determine, according to the judgment result of the power control unit and the actual line transmit power of the terminal received by the power receiving unit, whether the actual line transmit power of the terminal after the power control is greater than the uplink interference control threshold, and if yes, indicating the power control
- the unit adjusts the actual line transmit power of the terminal to the upper interference control threshold.
- the embodiment of the present invention mainly has the following advantages: In the case that there is an outdoor neighboring area around the indoor cell, the downlink power received by the terminal in the indoor cell and the uplink transmit power of the terminal can be controlled at In a more appropriate range, the interference of indoor communication to the outside is reduced.
- the thresholds corresponding to each indoor cell may be different according to specific environments, so that the power control can fully integrate with the environment, so as to improve the power control effect. To the best.
- FIG. 1 is a schematic diagram of power control in the prior art
- FIG. 3 is a schematic diagram of interference of an indoor cell signal to an outdoor cell signal in the prior art
- FIG. 4 is a schematic diagram of a principle of a downlink power control method according to Embodiment 1 of the present invention
- FIG. 5 is a flowchart of a downlink power control method according to Embodiment 1 of the present invention
- FIG. 6 is a schematic diagram showing relationship between indoor and outdoor attenuation and distance in a downlink power control method according to Embodiment 1 of the present invention.
- FIG. 7 is a schematic diagram of an uplink power control method according to Embodiment 2 of the present invention
- FIG. 8 is a flowchart of an uplink power control method according to Embodiment 2 of the present invention.
- FIG. 9 is a structural diagram of a downlink power control system according to Embodiment 3 of the present invention.
- FIG. 10 is a structural diagram of an uplink power control system according to Embodiment 4 of the present invention. detailed description
- Embodiment 1 of the present invention relates to a downlink power control method, which is applicable to the power control of an indoor cell. As shown in Figure 4, the following steps are specifically included:
- Step S401 The detecting terminal performs data sampling on the downlink signal of the neighboring cell in the indoor cell, and sends the sample data to the base station of the indoor cell.
- Step S402 the base station calculates a downlink interference control threshold corresponding to the cell according to the downlink signal sample data of the neighboring cell of the indoor cell.
- Step S403 performing a power control decision on the downlink transmit power of the terminal in the indoor cell. If the downlink transmit power of the base station after the power control is determined according to the result of the power control decision is greater than the downlink interference control threshold, the terminal will be The downlink transmit power is adjusted to the downlink interference control threshold.
- the downlink power received by the terminal in the indoor cell is controlled within a more suitable range, and the interference of the indoor communication to the outdoor is reduced.
- the base station of the indoor cell may also be a distributed antenna system control device, a small base station, a repeater, or an AP.
- the above power control decisions include, but are not limited to, an existing open loop power control decision, a closed loop power control decision, The judgment of the inner loop power and the judgment of the outer loop power.
- step S401 and step S402 are collectively referred to as a training downlink interference control threshold.
- the training of the downlink interference control threshold is usually performed before the system starts to provide normal services, for example, when the base station is powered on and then debugged. In addition, it can be at the RNC A switch is set for this part to control the function of the part. When the switch is turned on, the training of the downlink interference control threshold is started. If the switch is turned off, the downlink interference control threshold training function does not work.
- the detecting terminal performs data sampling on the downlink signal of the neighboring cell in the indoor cell, and transmits the sample data to the base station of the indoor cell.
- the detecting terminal can perform data sampling near a window, a door, or other location that is greatly interfered by the outdoor cell.
- the data included includes the received signal code power (PRSCP) of the neighboring cell, and may also include the Ec/Io of the cell and the adjacent cell.
- PRSCP received signal code power
- the data of the detecting terminal is: the indoor cell: (PRSCP) local , (Ec/l0)i 0ca i ,
- Adjacent cell 1 (PRSCP)I , (EC/IO)!
- Adjacent Cell 2 (P RSCP ) 2 , (Ec/Io) 2
- Adjacent Cell n (PRSCP) n, (Ec/Io) n
- the detecting terminal transmits the sample data to the base station of the indoor cell. It should be noted that, in this step, the amount of the sample data can be selected according to the actual situation, and the sample can be sampled as much as possible, or can be appropriately reduced.
- the base station calculates the downlink interference control threshold according to the sample data reported by the detection terminal. Specifically, the base station first calculates an average received signal code power according to the received signal code power of each neighboring cell, that is, (P RSCP ) Ave
- the average received signal code n power is added with an offset value to obtain a downlink interference control threshold P Thr corresponding to the cell — DL .
- the formula has two meanings, and the average received signal code power is greater than the indoor cell connection.
- the threshold corresponding to each indoor cell may be different according to the specific environment, so that the power control can fully integrate the environment, so as to improve the power control effect to the best.
- the downlink power control is performed on the terminal residing in the indoor cell according to the threshold. As shown in FIG. 5, the method includes the following steps:
- Step S501 Perform, according to the prior art, a power control decision of the downlink transmit power of the terminal camping in the indoor cell according to the power control related measurement value (such as SIR, the received power of the terminal, etc.), including the existing open loop and the closed loop. Any of the decisions of power control, inner loop power, and outer loop power.
- the power control related measurement value such as SIR, the received power of the terminal, etc.
- Step S502 Determine the current power control decision result. If the current power control decision result is to adjust the downlink transmit power of the base station to the terminal, and the uplink transmit power after the uplink control is greater than the downlink interference control threshold, proceed to step S503; If the current power control decision is to lower the downlink transmit power of the base station to the terminal, or the power control decision result is to adjust the downlink transmit power of the base station to the terminal, but the uplink transmit power after the uplink adjustment is less than or equal to the downlink interference control threshold. Then, the process proceeds to step S504.
- Step S503 Adjust, by the base station, the downlink transmit power of the terminal to the downlink interference control threshold.
- Step S504 Adjust, according to the power control decision result, a downlink transmit power of the base station to the terminal. Since the downlink interference control threshold is 6 dB of the average received signal code power, the maximum downlink transmit power of the base station to the indoor cell terminal may be only higher than the average received downlink transmit power of the terminal in the outdoor cell (ie, the average received signal code power). Large 6dB, according to the simulation results, in this case, the indoor terminal can complete the communication, and the interference to the outdoor cell will be within 1 meter from the indoor, thereby minimizing the interference of the indoor cell communication to the outdoor cell.
- the base station pairs The downlink transmit power of the indoor terminal is 6 dB higher than the average downlink transmit power received by the outdoor terminal. At this time, it can be ensured that for the terminal in the indoor, the indoor cell is the dominant cell, and the communication is not affected, and the difference of 6 dB can be Ensure that the signal leaking from the indoor to the outside is a weak interference signal and will not affect the outdoor cell.
- the downlink maximum transmit power of the base station to the indoor terminal is 6 dB higher than the average downlink power received by the outdoor terminal, so While ensuring the performance of the indoor cell user, the signal leaking to the outdoor is limited. According to the simulation, the influence of the interference can be controlled within 1 meter from the indoor cell, and the apparent service range of the outdoor cell will not be caused.
- the terminal performing communication is in a good coverage area of the indoor cell, the downlink transmission power is naturally small, and the indoor cell can directly control according to the existing power control algorithm (ie, the result of the power control decision), Formed interference to the outdoor network.
- the existing power control algorithm ie, the result of the power control decision
- the present embodiment can ensure that the interference of the indoor communication to the outdoor cell is minimized in various scenarios.
- the foregoing 6 dB is only a specific example.
- the 6 dB can be adjusted, for example, it can be adjusted to 5 dB. Or 7dB and so on.
- Scenario 1 In the case where there is a communication signal in the outdoor network, the interference of the indoor communication to the outdoor network is calculated, that is, the interference signal that is leaked out is estimated.
- the downlink signal leaked by the indoor cell is subtracted from the wall penetration loss, and the loss of the transmission law of the indoor and outdoor signals is the interference signal leaked out.
- the transmission law of indoor and outdoor signals that is, the relationship between indoor and outdoor attenuation and distance, as shown in Figure 6.
- the specific numerical values of Fig. 6 correspond to Table 1.
- Interference signals generated by indoor cell leakage can be described by the following formula:
- the interference of the communication in the indoor cell to the outdoor cell at 1 m (m) of the indoor cell is calculated.
- the terminal communicating in the indoor cell is 2m away from the indoor antenna (in the boundary area connected with the outdoor).
- the outdoor distance from the external wall lm the attenuation of the wave propagation law reaches 44.2dB
- the indoor distance At 2m indoor antenna the attenuation of the wave propagation law reaches 46 dB
- the wall loss is 10 dB.
- the downlink interference control threshold of the indoor cell calculated according to the present embodiment is generally 15 dBm, and then the antenna radiation efficiency is removed, and the communication in the indoor cell is performed.
- the indoor cell communication signal has little influence on the outdoor network.
- Scenario 2 In the case where there is no signal in the outdoor network, the interference of the indoor communication to the outdoor network is calculated, that is, the interference signal that is leaked out is estimated.
- Downlink interference signal P Thr - DL - L penetration - L space.
- P Th r is the maximum transmit power of the base station to the indoor terminal, which is equal to the downlink interference control threshold in this embodiment, P Th r — DL
- the wall loss is also 10dB; at 1 meter away from the indoor cell, according to Table 1, the loss on the outdoor wave propagation law is 44.2dB; 4.
- the terminal in the indoor cell for communication is located 2 meters away from the indoor antenna (in the According to Table 1, the loss in the indoor wave propagation law is 46 dB.
- the interference signal of the leakage output is - 94.2dBm. Since the interference signal is small, there is no signal coverage in the outdoor, and the influence on the outdoor can be neglected. It can be seen that this embodiment can control the interference to the outdoor cell within a range of 1 meter from the indoor.
- the indoor base station interferes with the outdoor cell, and the outdoor base station also has interference to the indoor cell.
- this embodiment can Ensure that the indoor cell is the dominant cell, so the impact can be omitted.
- the second embodiment of the present invention relates to an uplink power control method. As shown in FIG. 7, in the embodiment, the data is sampled, the uplink interference control threshold is calculated, and the uplink power control is performed according to the calculated threshold.
- the first and second parts are also collectively referred to as a training uplink interference control threshold.
- the training of the uplink interference control threshold is usually performed before the system starts to provide normal services, for example, when the base station is powered on and then debugged. Can be part of this part in the RNC Set a switch to control this part of the function. Turn on the switch when necessary to start the training of the uplink interference control threshold. If the switch is off, the uplink interference control threshold training function does not work.
- the detection terminal performs uplink signal data in the indoor cell and transmits the sample data to the base station of the indoor cell.
- the detecting terminal can perform data sampling near a window, a door, or other location that is greatly interfered by the outdoor cell.
- the data thus included includes the actual line transmit power of the terminal at different locations in the indoor cell.
- the detection terminal has sampled n actual line transmit power values at m positions:
- PTX_UE (1. 1), PTX_UE (1. 2) PTX_UE (1. n)
- TX_UE (m, l), ?TX_UE (m, 2) . . . . . P TX _UE (m, n )
- the detection terminal transmits these sample data to the base station of the indoor cell.
- the base station calculates the uplink interference control threshold based on the received sample data. Specifically, the base station calculates the average uplink transmit power of the terminal according to the at least two actual transmit powers of the at least two locations reported by the detecting terminal, and uses the average uplink transmit power as the uplink interference control threshold corresponding to the cell, that is,
- the maximum uplink transmit power of the indoor terminal is the indoor average uplink transmit power, since the average uplink transmit power of the terminal of the indoor cell is capable of The normal communication with the base station is maintained, and the interference to the outdoor cell is small at this time, so that the interference of the indoor cell to the outdoor cell is negligible while ensuring the normal communication of the terminal in the indoor cell.
- the calculated uplink interference control threshold is independent for one indoor small According to the specific environment, the thresholds corresponding to each indoor cell may be different, so that the power control can be fully integrated with the environment, so as to improve the power control effect to the best.
- the third part is entered into the third part, and the uplink power control is performed on the terminal residing in the indoor cell according to the threshold, as shown in FIG. 8.
- Step S801 according to the prior art, according to the power control related measurement value (such as SIR, the received power of the terminal, etc.), the power control judgment of the uplink transmit power of the terminal residing in the indoor cell, including the existing open loop and the closed loop Any of the decisions of power control, inner loop power, and outer loop power.
- the power control related measurement value such as SIR, the received power of the terminal, etc.
- Step S802 determining the current power control decision result. If the current power control decision result is that the uplink transmit power of the terminal is raised, and the uplink transmit power after the uplink control is greater than the uplink interference control threshold, proceed to step S803; The current power control decision result is that the uplink transmit power of the terminal is lowered, or the power control decision result is that the uplink transmit power of the terminal is up-regulated, but the uplink transmit power after the uplink is less than or equal to the uplink interference control threshold, and then the process proceeds to step S804.
- Step S803 instructing the terminal to adjust its uplink transmit power to the uplink interference control threshold. Therefore, when there is an influence of the outdoor cell around the indoor cell, the communication power of the terminal in the indoor cell can be controlled within a more appropriate range, and the interference of the indoor communication to the outdoor can be reduced. Moreover, since the terminal of the indoor cell uses the average uplink transmit power to maintain normal communication with the base station, the interference to the outdoor cell is reduced without affecting the terminal communication in the cell.
- Step S804, 4 according to the result of the power control decision, instructing the terminal to adjust its uplink transmit power.
- the signal that the indoor uplink leaks to the outside is caused by the actual transmit power of the terminal, that is, the uplink transmit signal of the terminal in the indoor cell minus the coupling loss is the uplink interference signal leaked out.
- the maximum transmission signal of the terminal is PThr-UL.
- PThr-UL is usually equal to 7 dB, and in general, the position coupling loss of the outdoor cell to the indoor coverage system is 133 dB, thereby uplink interference signal.
- the uplink communication signal of the indoor cell has little influence on the outdoor network, and can be ignored.
- a third embodiment of the present invention relates to a downlink power control system, as shown in FIG. 9, comprising: a calculating unit, configured to calculate a downlink interference control threshold corresponding to the indoor cell according to downlink signal data of a neighboring cell of the indoor cell a power control unit, configured to perform power control decision and power adjustment of downlink transmit power of the terminal in the indoor cell; and a determining unit, configured to determine, according to the power control decision result of the power control unit, the network side after the power control Whether the downlink transmit power of the terminal is greater than the downlink interference control threshold, and if yes, instructing the power control unit to adjust the downlink transmit power of the terminal to the downlink interference control threshold.
- the downlink power received by the terminal in the indoor cell is controlled within a more suitable range, and the interference of the indoor communication to the outdoor is reduced.
- the threshold corresponding to each indoor cell may be different according to the specific environment, so that the power control can fully integrate the environment, so as to improve the power control effect to the maximum. it is good.
- the determining unit is further configured to: after determining, according to the power control decision result of the power control unit, that the downlink transmit power of the terminal on the network side is less than or equal to the downlink interference control threshold, indicating that the power control unit is The downlink transmission power of the terminal to the terminal is adjusted according to the result of the power control decision.
- the data is obtained at a position overlapping the adjacent cells in the indoor cell (that is, a position in the indoor cell that is greatly affected by the outdoor neighboring area), and the data includes at least the neighboring cells.
- Receive signal code power the calculation unit includes the following subunits: an averaging subunit, configured to calculate an average received signal code power according to at least one received signal code power of at least one neighboring cell; an interference control threshold calculation subunit, configured to The average received signal code power plus the offset value is used to obtain a downlink interference control threshold corresponding to the indoor cell.
- the offset value ranges from 5 dB to 6 dB.
- the downlink power transmitted by the base station to the terminal in the indoor cell may exceed the offset value of the average received signal code power of the outdoor, even if the outdoor adjacent cell signal is strong, the interference to the indoor cell is large, and the user is in the indoor cell. When interfering with more severe areas, it can also ensure that indoor communication can be normal.
- the downlink power transmitted by the base station to the user in the indoor cell may only exceed the outdoor power by an offset value (for example, 5 dB or 6 dB), so that the indoor cell can be
- the downlink power received by the terminal is controlled within a more suitable range, so that the interference of the indoor communication to the outdoor is within a range close to the indoor (such as 1 meter), and the interference of the indoor cell communication to the outdoor cell is minimized.
- the fourth embodiment of the present invention relates to an uplink power control system, as shown in FIG. 10, including: a calculating unit, configured to calculate an uplink interference control threshold corresponding to the indoor cell according to the uplink signal sample data of the indoor cell; And for receiving the actual line transmission power of the terminal on the terminal in the indoor cell; the power control unit is configured to perform power control determination and power adjustment on the uplink transmit power of the terminal in the indoor cell; And determining, according to the judgment result of the power control unit and the actual transmit power of the terminal received by the power receiving unit, whether the actual transmit power of the terminal after the power control is greater than the uplink interference control threshold, and if greater than, indicating the power control The unit adjusts the actual row transmit power of the terminal to the upper interference control threshold.
- the uplink transmit power of the terminal in the indoor cell can be controlled to a more appropriate range. Reduce the interference of indoor communication to the outside.
- the uplink interference control threshold is independent for one indoor cell.
- the threshold corresponding to each indoor cell may be different according to the specific environment, so that the power control can be fully integrated with the environment, so as to improve the power control effect to the best.
- the sample data is obtained at a position overlapping the adjacent cells in the indoor cell (that is, a position in the indoor cell that is greatly affected by the outdoor neighboring area), and the sample data includes at least the terminal in the above area.
- Calculating, by the calculating unit, the uplink interference control threshold by: calculating, by the calculation unit, the uplink interference control threshold according to the at least two actual line transmission powers of the at least two locations
- the uplink interference control threshold corresponding to the indoor cell is equal to the average uplink transmit power. Since the terminal of the indoor cell uses the average uplink transmit power to maintain normal communication with the base station, and the interference to the outdoor cell is small at this time, the indoor cell interferes with the outdoor cell while ensuring normal communication of the indoor cell terminal. Can be ignored.
- the downlink signal control threshold corresponding to the indoor cell is calculated, and the power control judgment of the downlink transmission power is performed on the terminal in the indoor cell, and if the power control is determined according to the power control decision result, the network side downlinks to the terminal If the transmit power is greater than the downlink interference control threshold, the power adjustment is not performed according to the decision result, and the downlink transmit power of the terminal is adjusted to the downlink interference control threshold. Therefore, when there is an outdoor neighboring area around the indoor cell, the downlink power received by the terminal in the indoor cell can be controlled within a more appropriate range, and the interference of the indoor communication to the outdoor is reduced.
- the threshold corresponding to each indoor cell may be different according to the specific environment, so that the power control can fully integrate the environment, so as to improve the power control effect to the maximum. it is good.
- the threshold corresponding to each indoor cell may be different according to the specific environment, so that the power control can be fully integrated with the environment, so as to improve the power control effect to the maximum. it is good.
- the signal data can be sampled in the indoor cell by the location where the outdoor signal interference is strong, so as to ensure the calculated uplink and/or downlink interference control threshold, which can be applied to the terminal in the signal good area of the indoor cell and in the signal interference. Terminals in large areas.
- the downlink interference control threshold is equal to: an average received signal code power of at least one received signal code power of each neighboring cell plus an offset value, which may be obtained empirically or according to an anti-true result, and may be 6 dB. Since the downlink power transmitted by the base station to the terminal in the indoor cell can exceed the offset value of the outdoor average received signal code power, even if it is outdoor When the signal of the neighboring cell is strong and the interference to the indoor cell is large, and the user is in the area where the interference is serious in the indoor cell, the indoor communication can be ensured normally.
- the downlink power transmitted by the base station to the user in the indoor cell may only exceed the outdoor power by an offset value (for example, 5 dB or 6 dB), so that the terminal in the indoor cell can be received.
- the downlink power control to be in a more suitable range can be determined according to experience or simulation.
- the indoor communication interference to the outdoor is within a range close to the indoor (such as 1 meter), so that the indoor cell communication is to the outdoor cell. Interference is minimized.
- the uplink interference control threshold is equal to the average uplink transmit power of each sample location, that is, the maximum uplink transmit power of the indoor terminal is the indoor average uplink transmit power, and the average uplink transmit power of the terminal in the indoor cell is capable of maintaining normal communication with the base station, and At this time, the interference to the outdoor cell is small, so that the effect of the indoor cell on the outdoor cell is negligible while ensuring the normal communication of the terminal in the indoor cell.
- the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
- the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
上、 下行功率控制方法及系统 技术领域
本发明实施例涉及无线通信领域, 特别涉及上、 下行功率控制方 法及系统。 背景技术
CDMA ( Code Division Multiple Access, 码分多址)通信系统在 移动通信中占有举足轻重的地位, 特别在 3 G ( The Third Generation , 第三代移动通信) 中, 较为成熟的三大标准都属于 CDMA的范畴。 在 CDMA系统中, 由于所有用户都共有相同的频率, 相互之间的干 扰问题突出,因此功率控制非常关键。无论是上行链路还是下行链路, 将发射功率保持在能满足通信质量要求的最小功率水平是非常必要 的, 这是因为功率过小会导致用户对通信质量不满, 而功率过大会降 低通信系统的运营效率。
现有技术一般有两种功率控制方法:开环功率控制和闭环功率控 制。
其中, 开环功率控制主要用于确定用户的初始发射功率, 或用户 接收信号码功率发生突变时的发射功率调节。系统实际的干扰和功率 控制的效果决定于闭环功率控制,闭环功率控制又包括外环功率控制 和内环功率控制。
3GPP规定的功控机制如图 1所示, 包括外环功率控制和内环功 率控制。 "外环功控,,的目标是根据业务需要,及时调整 SIR ( Signal to Interference Ratio, 目标信噪比值 )使得各种业务在达到该目标 SIR 的情况下, 能够有较小的 BLER ( Block Error Rate, 误块率), 保证业 务质量。 "内环功控"的目标是根据调整后的目标 SIR值, 及时调整功 率, 使得信噪比基本恒定。
内环功率控制又包括上行功率控制和下行功率控制。对于上行功 率控制, 基站检测本基站与终端之间的上行链路的 SIR, 得到 SIR测
量值, 基站根据来自 RNC ( Radio Network Controller, 无线网络控制 器)的目标 SIR和本地的 SIR测量值进行功率控制, 向终端发送内环 功控命令 TPC— CMD, TPC— CMD = f{Cl,C2,C3,..,Cm}。其中 Cl、 C2、 C3、 ..分别表示终端与基站间的一条无线连接对应的功控命令, 最终 的功控命令是每条链路收到命令的函数。 每条功控命令产生的机制 疋:
当测量到的 SIR小于目标 SIR时,发送内环控制命令指示终端将 上行发射功率提升一个步长,即在 SIR测量 < SIR目标目标时, Ci=+1。
当测量到的 SIR大于目标 SIR时,发送内环控制命令指示终端将 上行发射功率降低一个步长, 即在 SIR测量 > SIR目标时, Ci=-1。
对于下行功率控制, 由终端对下行链路的 SIR进行测量, 并上报 SIR测量值, 基站根据来自 RNC的目标 SIR和终端上报的 SIR测量 值进行功率控制, 指示本基站提升或降低下行发射功率, 具体的判断 和指示的原理与上行功率控制相类似。
功控可以达到的效果是: 在各种业务条件下,基站检测到的上行 SIR和终端上报的下行 SIR均收敛到对应的目标 SIR。
在上述功控过程中发射功率的变化如图 2所示。 其中 Pmax表示 小区允许的最大功率, Pmin表示小区允许的最小功率, Pic表示处于 小区边缘的终端的发射功率收敛值, P2c表示靠近基站的终端的发射 功率收敛值, T,c表示靠近基站的终端的功率收敛时间, T,,c表示处 于小区边缘的终端的功率收敛时间。
可见,处于小区边缘的终端和基站附近的终端最终的发射功率均 能控制在小区允许的功率范围内, 图 2 中, 小区允许的功率范围 = Pmax-Pmin, 该值并不随终端的位置发生变化, 是预先通过参数确定 的。
在实现本发明的过程中, 发明人发现现有技术至少存在以下问 题:
现有的功控算法虽然能够适用于 3G的一般网络情况, 但是, 在 一些特别场景, 如已经安装了室内覆盖系统的大楼,存在室内小区对
室外小区干扰过大的问题, 如图 3所示。
具体地说, 由于功率在传输过程中必然存在的衰弱,使得不同终 端之间功率收敛的值存在较大区别,处于小区边缘或在覆盖不好的区 域的终端, 经过功控后收敛到的发射功率通常较大, 如图 2中 Pic; 处于基站覆盖中心或覆盖条件较好的区域的终端,经过功控后收敛到 的发射功率通常较小, 如图 2中的 P2c。 由于 Pic和 P2c均在小区允 许的功率范围内, 因此在功率控制中不会对其进行限制。 然而, 对于 在大楼内部设置的小基站、 分布式天线系统或 AP ( Access Point, 无 线接入点)的室内小区, 其小区边缘部分为与室外小区相邻, 在这部 分相邻的区域中,如果终端的发射功率过高,会对室外小区产生干扰, 尤其是高楼情况下,对室外网络的干扰将更大, 可能造成室外服务小 区的^:缩。
下面根据实际 WCDMA ( Wideband Code Division Multiple Access, 宽带码分多址) 网络测试经验, 选择一个室外场景测试室内 覆盖信号外泄对室外信号覆盖的干扰影响。在该试验中室内分布系统 安装在 8层楼机房。
测试用例中包括室内导频功率不变、增加 3dB、减小 3dB等情况 分别对室外小区进行测试,得到室外马路上测试数据统计结果。 分析 表明:
1、 室内小区导频功率变化 3dB, 室外小区的 Ec (每码片的接收 能量) 变化 1.2到 1.7dB, Ec/Io (每码片的接收能量与噪声功率谱密 度的比值)变化 0.3到 0.5dB。也就是说, 室内小区导频功率增加 3dB 时, 室外小区的 Ec将降低 1.2到 1.7dB, Ec/Io将降低 0.3到 0.5dB。
2、 改变 (增加和减小) 室内覆盖小区导频功率 3dB时, 软切换 比例变化明显, 室内环境软切换比例平均变化 89.2%, 室外环境软切 换比例平均变化 45%。可见室内小区导频功率的增加会导致室内小区 和室外小区软切换的大量增加, 占用大量小区资源, 且软切换的过程 中容易产生掉话等影响用户体现的现象。
3、在室外 5米处, 室外小区导频功率 Ec均值比室内泄漏输出的
导频功率高 5dB , 可以控制的软切换比例在 30%左右; 可见, 室内小 区对室外小区的影响范围较大。
4、 室内小区导频功率比穿透入内的室外导频高 10dB, 可以控制 软切换比例在 30%左右。
从该测试用例可以看出, 安装室内分布系统的楼房越高、 大楼越 密集, 室内对室外的干扰将越大。 发明内容
本发明实施例提供一种上、 下行功率控制方法及系统, 以减少室 内通信对室外的干扰。
为解决上述技术问题,本发明实施例提供了一种下行功率控制方 法, 包括以下步骤:
根据室内小区的相邻小区的下行信号釆样数据,计算该室内小区 对应的下行干扰控制门限;
根据功控相关测量值对室内小区内的终端进行下行发射功率的 功控判决,如果根据功控判决结果确定功控后网络侧对该终端的下行 发射功率将大于下行干扰控制门限,则将对该终端的下行发射功率调 整到该下行干扰控制门限。
本发明实施例还提供了一种上行功率控制方法, 包括以下步骤: 根据室内小区的上行信号釆样数据,计算该室内小区对应的上行 干扰控制门限;
接收室内小区内终端上报的该终端的实际上行发射功率; 根据功控相关测量值对室内小区内的终端进行上行发射功率的 功控判决,如果根据功控判决结果确定功控后终端的实际上行发射功 率大于上行干扰控制门限,则将该终端的实际上行发射功率调整到该 上干扰控制门限。
本发明实施例还提供了一种下行功率控制系统, 包括: 计算单元, 用于根据室内小区的相邻小区的下行信号釆样数据, 计算该室内小区对应的下行干扰控制门限;
功控单元,用于根据功控相关测量值对室内小区内的终端进行下 行发射功率的功控判决和功率调整;
判断单元, 用于根据功控单元的功控判决结果, 判断功控后网络 示功控单元将对该终端的下行发射功率调整到该下行干扰控制门限。
本发明实施例还提供了一种上行功率控制系统, 包括: 计算单元, 用于根据室内小区的上行信号釆样数据, 计算该室内 小区对应的上行干扰控制门限;
功率接收单元,用于接收小区内终端上报的该终端的实际上行发 射功率;
功控单元,用于根据功控相关测量值对小区内的终端进行上行发 射功率的功控判决和功率调整;
判断单元,用于根据功控单元的判决结果和功率接收单元收到的 终端的实际上行发射功率,判断功控后终端的实际上行发射功率是否 将大于上行干扰控制门限,如果大于则指示功控单元将该终端的实际 上行发射功率调整到该上干扰控制门限。
与现有技术相比, 本发明实施例主要有以下优点: 在室内小区周 围存在室外邻区的情况下, 能够将该室内小区内终端收到的下行功 率、 以及该终端的上行发射功率控制在一个更合适的范围内, 减小室 内通信对室外的干扰。 另外, 由于计算得到的上、 下行干扰控制门限 是独立针对一个室内小区的,根据具体环境的不同每个室内小区对应 的门限可能不同,使得功率控制能够完全结合环境, 以便将功率控制 的效果提升到最好。 附图说明
图 1是现有技术中的功率控制示意图;
图 2是现有技术中的功率控制下的信号变化示意图;
图 3是现有技术中室内小区信号对室外小区信号的干扰示意图; 图 4是本发明实施例一的下行功率控制方法原理示意图;
图 5是本发明实施例一的下行功率控制方法流程图;
图 6是本发明实施例一的下行功率控制方法中室内、室外衰耗与 距离的变化关系示意图;
图 7是本发明实施例二的上行功率控制方法原理示意图; 图 8是本发明实施例二的上行功率控制方法流程图;
图 9是本发明实施例三的下行功率控制系统结构图;
图 10是本发明实施例四的上行功率控制系统结构图。 具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚, 下面将 结合附图对本发明的实施方式作进一步地详细描述。
本发明实施一涉及一种下行功率控制方法,适用于室内小区的功 控。 如图 4所示, 具体包括以下几个步骤:
步骤 S401 , 由检测终端在该室内小区对相邻小区下行信号进行 数据釆样, 并将釆样数据发送给室内小区的基站。
步骤 S402, 基站根据室内小区的相邻小区的下行信号釆样数据, 计算该小区对应的下行干扰控制门限;
步骤 S403 , 对该室内小区内的终端进行下行发射功率的功控判 决,如果根据功控判决结果确定功控后基站对该终端的下行发射功率 将大于下行干扰控制门限,则将对该终端的下行发射功率调整到该下 行干扰控制门限。
从而在室内小区周围存在室外小区的情况下,将该室内小区内终 端收到的下行功率控制在一个更合适的范围内,减小室内通信对室外 的干扰。 上述室内小区的基站也可以是分布天线系统控制设备、 小基 站、 直放站或 AP等设备, 上述的功控判决包括但不限于现有的开环 功控的判决、 闭环功控的判决、 内环功率的判决、 外环功率的判决。
在本实施中将步骤 S401和步骤 S402二部分统称为训练下行干扰 控制门限。下行干扰控制门限的训练通常在系统开始提供正常业务之 前, 如可以在基站上电开通后, 进行调试时实行。 另外, 可以在 RNC
中为该部分设置一个开关,对该部分功能进行控制, 在需要时打开该 开关, 开始进行对下行干扰控制门限的训练, 若开关关闭, 则下行干 扰控制门限训练功能不起作用。
下面首先对步骤 S401--数据釆样进行说明。 在该部分中, 由检测 终端在该室内小区对相邻小区下行信号进行数据釆样,并将釆样数据 发送给室内小区的基站。 具体地说, 检测终端可以在靠近窗口、 门、 或其它受室外小区干扰较大的位置进行数据釆样。所釆样的数据包括 相邻小区的接收信号码功率 (PRSCP ), 还可以包括本小区及相邻小 区的 Ec/Io。
假设该室内小区有 n个相邻小区, 则检测终端所釆样的数据为: 该室内小区: (PRSCP) local , (Ec/l0)i0cai ,
相邻小区 1 : (PRSCP)I , (EC/IO)!
相邻小区 2: (PRSCP) 2, (Ec/Io)2 相邻小区 n: (PRSCP) n, (Ec/Io)n
检测终端将这些釆样数据发送给室内小区的基站。 需要说明的 是, 在本步骤中, 釆样数据的多少, 可以根据实际情况选择, 可以尽 可能多地进行釆样, 也可以适当减少。
在获得釆样数据后,进入步骤 S402--基站根据检测终端上报的釆 样数据计算下行干扰控制门限。 具体地说,基站首先根据各相邻小区 的接收信号码功率计算平均接收信号码功率, 即(PRSCP)Ave
= -{( rscp)l + ( rscp)2 + ... + ( rscp)«} ; 接着, 将该平均接收信号码 n 功率加上偏置值, 得到该小区对应的下行干扰控制门限 PThr— DL。 这里 的偏置值通常在 5dB至 6dB的范围内。 假设在本实施方式中取 6dB , 则 PThr— DL = (PRSCp)AVG+6dB。
该公式存在两种含义,在平均接收信号码功率大于本室内小区接
收信号码功率时,即 (PRSCP)AVG >(PRSCp)local时,上述公式相当于 PThr— DI = (PRSCp)local + I (PRSCp)local- (PRSCP)AVG I +6dB , 也就是说, 先对本小区接 收信号码功率进行补足, 在补足至平均接收信号码功率的情况下, 再 增加 6dB ,从而使得基站对室内终端的发射功率比室外小区的平均接 收信号码功率高 6dB, 此时, 室内对室外的干扰较小。 在平均接收信 号码功率小于本小区接收信号码功率时,即 (PRSCP)AVG < (PRSCP) local时, PThr_DL= (PRSCP) AVG+6dB ,也就是说, 直接将基站对本室内小区终端的 下行发射功率控制在室外小区平均接收信号码功率加 6dB的范围内, 使得室内对室外的干扰较小。
由于计算得到的下行干扰控制门限是独立针对一个室内小区的, 根据具体环境的不同每个室内小区对应的门限可能不同,使得功率控 制能够完全结合环境, 以便将功率控制的效果提升到最好。
在计算得到下行干扰控制门限后,进入步骤 S403--根据该门限对 驻留在该室内小区的终端进行下行功率控制, 具体如图 5所示, 包括 以下步骤:
步骤 S501 , 按照现有技术, 根据功控相关测量值(如 SIR、 终端 的接收功率等)对驻留在该室内小区的终端进行下行发射功率的功控 判决, 包括现有的开环、 闭环功控、 内环功率、 外环功率的判决中的 任意一种。
步骤 S502 , 对当前的功控判决结果进行判断, 如果当前的功控 判决结果为上调基站对该终端的下行发射功率,且上调后的下行发射 功率大于下行干扰控制门限, 则进入步骤 S503 ; 反之, 如果当前的 功控判决结果为下调基站对该终端的下行发射功率, 或者, 功控判决 结果为上调基站对该终端的下行发射功率,但上调后的下行发射功率 小于或等于下行干扰控制门限, 则进入步骤 S504。
步骤 S503 , 将基站对该终端的下行发射功率调整到该下行干扰 控制门限。
步骤 S504 , 根据该功控判决结果调整基站对该终端的下行发射 功率。
由于该下行干扰控制门限为平均接收信号码功率加上 6dB,从而 基站对室内小区终端的下行发射功率最大值仅可能比室外小区中终 端平均接收到的下行发射功率(即平均接收信号码功率)大 6dB, 根 据仿真结果可以得知, 在此情况下室内终端能够完成通信, 且对室外 小区的干扰将在距室内 1米的范围内,从而将室内小区通信对室外小 区的干扰减到最小。
具体地说, 包括以下几种情况:
1、 在进行通信的终端处于室内小区覆盖范围内靠近室外的区域 (如窗、 门、 阳台等处), 且室外信号较好的情况下 (即室外小区同 样有终端在进行通信), 基站对室内终端的下行发射功率比室外终端 平均收到的下行发射功率高 6dB,此时可以保证对于处于室内的终端 而言, 室内小区为主导小区, 不会影响其通信, 而 6dB 的差值又能 够确保从室内泄漏到室外的信号为弱干扰信号,不会对室外小区产生 影响。
2、在进行通信的终端处于室内小区覆盖范围内靠近室外的区域, 且室外信号很弱的情况下,基站对室内终端的下行最大发射功率比室 外终端平均收到的下行功率高 6dB, 因此在保证室内小区用户的性能 的同时, 泄漏到室外的信号是有限的, 根据仿真得知可以将干扰的影 响控制在距室内小区 1米的范围内,不会造成室外小区服务范围的明 显收缩。
3、 在进行通信的终端处于室内小区良好覆盖区域的情况下, 其 下行发射功率自然较小, 室内小区可以直接根据现有的功控算法(即 功控判决结果)对其进行控制, 不会形成对室外网络产生干扰。
可见本实施方式在各种场景下,均能确保室内通信对室外小区的 干扰达到最小。
需要说明的是, 上述的 6dB 只是一个具体的例子, 在具体的应 用中, 由于不同的场景所允许的室内小区对室外产生干扰的范围不 同, 还可以对该 6dB进行调整, 如可以调整为 5dB或 7dB等。
下面以两个场景对本实施方式的效果进行险证。
场景一: 在室外网络存在通信信号的情况下, 计算室内通信对室 外网络的干扰, 即对下行泄漏出去的干扰信号进行估计。
根据本实施例的功控算法,室内小区泄漏出的下行信号减去墙体 穿透损耗, 以及室内外信号的传波规律上的损耗, 就是泄漏出去的干 扰信号。 室内、 室外信号的传波规律, 即室内、 室外衰耗与距离的变 化关系, 如图 6所示。 图 6的具体数值对应表 1。
表 1
室内小区泄漏产生的干扰信号可以用以下公式来描述:
下行干扰信号 = PThr_DL — L 穿透 — L 空间 = PThr_DL— 10— L 空间,其中, PThr_DL为基站对室内终端的最大下行发射功率, 即下行干扰控制门 限; 10dB为普遍的墙体穿透损耗; L 空间为信号在室内和室外传波 规律上的损耗。
下面根据上述公式, 计算室内小区中的通信对距离该室内小区 1 米(m )处的室外小区的干扰。 假设该室内小区中进行通信的终端距 室内天线 2m处 (处于与室外相连边界区域), 从表 1 可以看出, 室 外距离外墙 lm处, 传波规律上的衰耗达到 44.2dB, 室内距离室内 天线 2m处, 传波规律上的衰耗达到 46 dB, 墙体损耗为 10dB, 根据 本实施方式计算得到的室内小区下行干扰控制门限一般为 15dBm, 再去除天线辐射效率, 室内小区中的通信对距离该室内小区 lm处的 室外小区的干扰信号 = 15dB - 29dB (天线辐射效率) - 46dB (室内 衰耗) - 44.2dB (室外衰耗) - 10dB (墙体损耗) = - 114.2dB, 可
见, 使用本实施方式, 在室外网络存在通信信号的情况下, 室内小区 通信信号对室外网络影响较小。
场景二: 在室外网络不存在信号的情况下, 计算室内通信对室外 网络的干扰, 即对下行泄漏出去的干扰信号进行估计。
同样釆用上述公式对距离室内小区 1 米处室内小区中的通信对 对室外小区的干扰进行计算: 下行干扰信号 = PThr— DL - L 穿透 - L 空间。 其中, PThr— 为基站对室内终端的最大发射功率, 即等于本实施例中 的下行干扰控制门限, PThr— DL
墙体损耗同样为 10dB; 在距室内小区 1米处, 根据表 1 , 室外传波规律上的损耗为 44.2dB; 4叚设室内小区中进行通信的终端处于距室内天线 2米处(处于与室外 相连边界区域), 根据表 1 , 室内传波规律上的损耗为 46dB。 从而可 以得到:
下行干扰信号 = (PRSCP) AVG +6dB - 46dB (室内衰耗) - 44.2dB (室 外衰耗) - 10dB (墙体损耗 ) = (PRSCP) AVG - 94.2 dB。
由于此时室外不存在信号覆盖,从而相邻小区的平均接收信号码 功率为 0 , 即 (PRSCP)AVG = 0。
可见, 在室外 1M处, 泄漏输出的干扰信号为- 94.2dBm, 由于 干扰信号较小, 室外本身没有信号覆盖, 对室外的影响可以忽略。 可 见, 本实施例能够将对室外小区的干扰控制在距室内 1米的范围内。
由于衰耗是互异的, 室内基站对室外小区存在干扰的同时, 室外 基站对室内小区同样存在干扰,但由于一般情况下, 室外基站与室内 小区之间的距离大于 10米,本实施例能够保证室内小区是主导小区, 因此影响可以略去。
本发明实施例二涉及一种上行功率控制方法, 如图 7所示, 在本 实施例中, 同样包括数据釆样、计算上行干扰控制门限和根据计算得 到的门限进行上行功率控制三个部分。
在本实施例中同样将第一、第二部分统称为训练上行干扰控制门 限。 上行干扰控制门限的训练通常在系统开始提供正常业务之前, 如 可以在基站上电开通后, 进行调试时进行。 可以在 RNC中为该部分
设置一个开关, 对该部分功能进行控制, 在需要时打开该开关, 开始 进行上行干扰控制门限的训练, 若开关关闭, 则上行干扰控制门限训 练功能不起作用。
下面首先对第一部分——数据釆样进行说明。 在该部分中, 由检 测终端在该室内小区进行上行信号数据釆样,并将釆样数据发送给室 内小区的基站。 具体地说, 检测终端可以在靠近窗口、 门、 或其它受 室外小区干扰较大的位置进行数据釆样。所釆样的数据包括检测终端 在室内小区的不同位置上的实际上行发射功率。
殳设该检测终端在 m个位置分别釆样了 n个实际上行发射功率 值:
PTX_UE (1. 1), PTX_UE (1. 2) PTX_UE (1. n)
?TX_UE (2. 1), ?TX_UE (2. 2) ?TX_UE (2. n)
?TX_UE (m,l) , ?TX_UE (m, 2) . . . . . . PTX_UE (m, n)检测终端将这些釆样数据 发送给室内小区的基站。
在获得釆样数据后,进入第二部分——基站根据收到的釆样数据 计算上行干扰控制门限。 具体地说,基站根据检测终端上报的至少两 个位置上的至少两个实际上行发射功率计算终端的平均上行发射功 率, 将该平均上行发射功率作为该小区对应的上行干扰控制门限, 即
PThr_UL= ^ TX_UE= A /f 1 M ∑∑(PTX u n 。 也就是说, 室内终端的 最大上行发射功率为室内平均上行发射功率,由于室内小区的终端使 用平均上行发射功率是能够与基站保持正常通信的,且此时对室外小 区的干扰较小, 从而在确保室内小区中终端正常通信的同时, 使得室 内小区对室外小区的干扰可以忽略不计。
另夕卜,由于计算得到的上行干扰控制门限是独立针对一个室内小
区的, 根据具体环境的不同, 每个室内小区对应的门限可能不同, 使 得功率控制能够完全结合环境, 以便将功率控制的效果提升到最好。
在计算得到上行干扰控制门限后 ,进入第三部分一一根据该门限 对驻留在该室内小区的终端进行上行功率控制, 具体如图 8所示。
步骤 S801 , 按照现有技术, 根据功控相关测量值(如 SIR、 终端 的接收功率等)对驻留在该室内小区的终端进行上行发射功率的功控 判决, 包括现有的开环、 闭环功控、 内环功率、 外环功率的判决中的 任意一种。
步骤 S802 , 对当前的功控判决结果进行判断, 如果当前的功控 判决结果为上调该终端的上行发射功率,且上调后的上行发射功率大 于上行干扰控制门限, 则进入步骤 S803; 反之, 如果当前的功控判 决结果为下调该终端的上行发射功率, 或者, 功控判决结果为上调该 终端的上行发射功率,但上调后的上行发射功率小于或等于上行干扰 控制门限, 则进入步骤 S804。
步骤 S803 , 指示该终端将其上行发射功率调整到该上行干扰控 制门限。从而在室内小区的周围有室外小区有影响的情况下, 能够将 该室内小区内终端的通信功率控制在一个更合适的范围内,减小室内 通信对室外的干扰。 并且, 由于室内小区的终端使用平均上行发射功 率是能够与基站保持正常通信的,从而在不影响小区内终端通信的情 况下减小对室外小区的干扰。
步骤 S804 , 4艮据该功控判决结果指示该终端调整其上行发射功 率。
下面以一个实例对本实施例的效果进行验证。
由于室内上行泄漏到室外的信号是终端的实际上行发射功率造 成的, 也就是说, 室内小区中终端的上行发射信号减去耦合损耗, 就 是泄漏出去的上行干扰信号。根据本实施例的功控算法, 终端的最大 发射信号是 PThr— UL, 根据经验 PThr— UL通常等于 7dB, 而一般情 况下, 室外小区到室内覆盖系统的位置耦合损耗是 133dB, 从而上行 干扰信号的估算如下:
上行干扰信号 = 7dB - 133dB= -126dBm;
可见, 使用本实施例进行上行功率控制, 室内小区上行通信信号 对室外网络影响较小, 可以忽略不计。
本发明实施例三涉及一种下行功率控制系统,如图 9所示,包括: 计算单元, 用于根据室内小区的相邻小区的下行信号釆样数据, 计算 该室内小区对应的下行干扰控制门限; 功控单元, 用于对该室内小区 内的终端进行下行发射功率的功控判决和功率调整; 判断单元, 用于 根据该功控单元的功控判决结果,判断功控后网络侧对该终端的下行 发射功率是否将大于该下行干扰控制门限, 如果是, 则指示该功控单 元将对该终端的下行发射功率调整到该下行干扰控制门限。从而将该 室内小区中终端收到的下行功率控制在一个更合适的范围内,减小室 内通信对室外的干扰。 另外, 由于计算得到的下行干扰控制门限是独 立针对一个室内小区的,根据具体环境的不同每个室内小区对应的门 限可能不同,使得功率控制能够完全结合环境, 以便将功率控制的效 果提升到最好。
该判断单元还用于, 在根据该功控单元的功控判决结果, 确定功 控后该网络侧对该终端的下行发射功率将小于或等于该下行干扰控 制门限时 ,指示该功控单元才艮据该功控判决结果调整该网络侧对该终 端的下行发射功率。
其中, 釆样数据是在该室内小区中与相邻小区交叠的位置上(即 室内小区中受室外邻区影响较大的位置上)釆样得到的, 釆样数据至 少包括相邻小区的接收信号码功率, 该计算单元包括以下子单元: 求平均子单元,用于根据至少一个相邻小区的至少一个接收信号 码功率计算平均接收信号码功率; 干扰控制门限计算子单元, 用于将 该平均接收信号码功率加上偏置值,得到该室内小区对应的下行干扰 控制门限。该偏置值的范围为 5dB至 6dB。 由于室内小区中基站向终 端发射的下行功率可以比室外的平均接收信号码功率超出偏置值,因 此即使室外相邻小区信号较强,对室内小区的干扰较大, 且用户处于 室内小区中受干扰较严重的区域时,同样可以确保室内通信能够正常
进行; 另外, 无论室外信号是否较强, 由于室内小区中用户通信时基 站向其发射的下行功率最大只可能比室外的功率超出偏置值(如 5dB 或 6dB ), 从而可以将该室内小区内终端收到的下行功率控制在一个 更合适的范围内,使得室内通信对室外的干扰在距室内较近(如 1米) 的范围内, 将室内小区通信对室外小区的干扰减到最小。
本发明实施例四涉及一种上行功率控制系统, 如图 10所示, 包 括: 计算单元, 用于根据室内小区的上行信号釆样数据, 计算该室内 小区对应的上行干扰控制门限; 功率接收单元, 用于接收该室内小区 内终端上"¾的该终端的实际上行发射功率; 功控单元, 用于对该室内 小区内的终端进行上行发射功率的功控判决和功率调整; 判断单元, 用于根据功控单元的判决结果和功率接收单元收到的该终端的实际 上行发射功率,判断功控后该终端的实际上行发射功率是否大于该上 行干扰控制门限, 如果大于, 则指示该功控单元将该终端的实际上行 发射功率调整到该上干扰控制门限。从而在室内小区周围存在室外邻 区的情况下,能够将该室内小区内终端的上行发射功率控制在一个更 合适的范围内, 减小室内通信对室外的干扰。 另外, 由于计算得到的 上行干扰控制门限是独立针对一个室内小区的,根据具体环境的不同 每个室内小区对应的门限可能不同, 使得功率控制能够完全结合环 境, 以便将功率控制的效果提升到最好。
该釆样数据是在该室内小区中与相邻小区交叠的位置上(即室内 小区中受室外邻区影响较大的位置上)釆样得到的, 该釆样数据至少 包括终端在上述区域中至少两个不同位置上的至少两个实际上行发 射功率, 该计算单元计算上行干扰控制门限的方式为: 根据该至少两 个位置上的至少两个实际上行发射功率计算终端的平均上行发射功 率, 该室内小区对应的上行干扰控制门限等于该平均上行发射功率。 由于室内小区的终端使用平均上行发射功率是能够与基站保持正常 通信的, 且此时对室外小区的干扰较小,从而在确保室内小区终端的 正常通信的同时, 使得室内小区对室外小区的干扰可以忽略不计。
综上所述, 在本发明的实施例中, 根据室内小区的相邻小区的下
行信号釆样数据, 计算该室内小区对应的下行干扰控制门限; 对该室 内小区内的终端进行下行发射功率的功控判决,如果根据功控判决结 果确定功控后网络侧对该终端的下行发射功率大于该下行干扰控制 门限, 则不根据判决结果进行功率调整, 而将对该终端的下行发射功 率调整到该下行干扰控制门限。从而在室内小区周围存在室外邻区的 情况下,能够将该室内小区内终端收到的下行功率控制在一个更合适 的范围内, 减小室内通信对室外的干扰。 另外, 由于计算得到的下行 干扰控制门限是独立针对一个室内小区的,根据具体环境的不同每个 室内小区对应的门限可能不同,使得功率控制能够完全结合环境, 以 便将功率控制的效果提升到最好。
根据室内小区的上行信号釆样数据,计算该室内小区对应的上行 干扰控制门限; 由室内小区内终端上报其实际上行发射功率, 在对室 内小区内的终端进行上行发射功率的功控判决后 ,如果根据功控判决 结果确定功控后该终端的实际上行发射功率大于该上行干扰控制门 限, 则不根据判决结果进行功率调整, 而将该终端的实际上行发射功 率调整到该上干扰控制门限。从而在室内小区周围存在室外邻区的情 况下,能够将该室内小区内终端的上行发射功率控制在一个更合适的 范围内, 减小室内通信对室外的干扰。 另外, 由于计算得到的上行干 扰控制门限是独立针对一个室内小区的,根据具体环境的不同每个室 内小区对应的门限可能不同, 使得功率控制能够完全结合环境, 以便 将功率控制的效果提升到最好。
可以在室内小区中受到室外信号干扰较强的位置进行信号数据 釆样, 以确保计算得到的上行和 /或下行干扰控制门限, 可以同时适 用于处于室内小区中信号良好区域的终端和处于信号干扰大区域的 终端。
下行干扰控制门限等于:各相邻小区的至少一个接收信号码功率 的平均接收信号码功率加上偏置值,该偏置值可以根据经验得到或根 据防真结果得到, 可以是 6dB。 由于室内小区中基站向终端发射的下 行功率可以比室外的平均接收信号码功率超出偏置值,因此即使室外
相邻小区信号较强,对室内小区的干扰较大, 且用户处于室内小区中 受干扰较严重的区域时,同样可以确保室内通信能够正常进行。另外, 无论室外信号是否较强,由于室内小区中用户通信时基站向其发射的 下行功率最大只可能比室外的功率超出偏置值(如 5dB或 6dB ), 从 而可以将该室内小区内终端收到的下行功率控制在一个更合适的范 围内, 根据经验或仿真可以确定, 此时室内通信对室外的干扰在距室 内较近(如 1米)的范围内, 使得室内小区通信对室外小区的干扰减 到最小。
上行干扰控制门限等于各釆样位置的平均上行发射功率,即室内 终端的最大上行发射功率为室内平均上行发射功率,由于室内小区的 终端使用平均上行发射功率是能够与基站保持正常通信的,且此时对 室外小区的干扰较小, 从而在确保室内小区中终端的正常通信的同 时, 使得室内小区对室外小区的影响可以忽略不计。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可 以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施例所述的方法。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种下行功率控制方法, 其特征在于, 包括以下步骤: 根据室内小区的相邻小区的下行信号釆样数据,计算该室内小区 对应的下行干扰控制门限;
根据功控相关测量值对所述室内小区内的终端进行下行发射功 率的功控判决,如果 4艮据功控判决结果确定功控后网络侧对该终端的 下行发射功率将大于所述下行干扰控制门限,则将对该终端的下行发 射功率调整到该下行干扰控制门限。
2、 根据权利要求 1所述的下行功率控制方法, 其特征在于, 如 果根据所述功控判决结果确定功控后所述网络侧对所述终端的下行 发射功率将小于或等于所述下行干扰控制门限,则根据该功控判决结 果调整所述网络侧对该终端的下行发射功率。
3、 根据权利要求 1所述的下行功率控制方法, 其特征在于, 所 述釆样数据是在所述室内小区中与所述相邻小区交叠或相邻的位置 上釆样得到的;
所述位置至少包括以下之一: 室内小区门口预定范围内、 室内小 区窗口预定范围内。
4、 根据权利要求 3所述的下行功率控制方法, 其特征在于, 所 述釆样数据至少包括所述相邻小区的接收信号码功率。
5、 根据权利要求 4所述的下行功率控制方法, 其特征在于, 所 述根据釆样数据计算所述室内小区对应的下行干扰控制门限的步骤 包括以下子步骤:
根据至少一个所述相邻小区的至少一个接收信号码功率计算平 均接收信号的码功率;
将所述平均接收信号码功率加上偏置值,得到所述室内小区对应 的下行干扰控制门限。
6、 根据权利要求 5所述的下行功率控制方法, 其特征在于, 所 述偏置值的范围为 5dB至 6dB。
7、 一种上行功率控制方法, 其特征在于, 包括以下步骤: 根据室内小区的上行信号釆样数据,计算该室内小区对应的上行 干扰控制门限;
接收所述室内小区内终端上报的该终端的实际上行发射功率; 根据功控相关测量值对所述室内小区内的终端进行上行发射功 率的功控判决,如果 4艮据功控判决结果确定功控后所述终端的实际上 行发射功率将大于所述上行干扰控制门限,则将该终端的实际上行发 射功率调整到该上干扰控制门限。
8、 根据权利要求 7所述的上行功率控制方法, 其特征在于, 如 果根据所述功控判决结果确定功控后所述终端的实际上行发射功率 将小于或等于所述上行干扰控制门限,则根据该功控判决结果调整该 终端的上行发射功率。
9、 根据权利要求 7所述的上行功率控制方法, 其特征在于, 所 述釆样数据是在所述室内小区中与相邻小区交叠或相邻的位置上釆 样得到的;
所述位置至少包括以下之一: 室内小区门口预定范围内、 室内小 区窗口预定范围内。
10、 根据权利要求 9所述的上行功率控制方法, 其特征在于, 所 述釆样数据至少包括终端在所述室内小区中与相邻小区交叠的至少 两个不同位置上的至少两个实际上行发射功率。
11、 根据权利要求 10所述的上行功率控制方法, 其特征在于, 所述根据釆样数据计算所述室内小区对应的上行干扰控制门限的步 骤包括以下子步骤:
才艮据所述至少两个位置上的至少两个实际上行发射功率,计算终 端的平均上行发射功率,将该平均上行发射功率作为该室内小区对应 的上行干扰控制门限。
12、 一种下行功率控制系统, 其特征在于, 包括:
计算单元, 用于根据室内小区的相邻小区的下行信号釆样数据, 计算该室内小区对应的下行干扰控制门限;
功控单元,用于才艮据功控相关测量值对所述室内小区内的终端进 行下行发射功率的功控判决和功率调整;
判断单元, 用于根据所述功控单元的功控判决结果, 判断功控后 限, 如果是, 则指示所述功控单元将对该终端的下行发射功率调整到 该下行干扰控制门限。
13、 根据权利要求 12所述的下行功率控制系统, 其特征在于, 所述判断单元还用于, 在根据所述功控单元的功控判决结果, 确定功 控后所述网络侧对所述终端的下行发射功率将小于或等于所述下行 干扰控制门限时,指示所述功控单元根据该功控判决结果调整所述网 络侧对该终端的下行发射功率。
14、 根据权利要求 12所述的下行功率控制系统, 其特征在于, 所述釆样数据是在所述室内小区中与所述相邻小区交叠的位置上釆 样得到的, 所述釆样数据至少包括所述相邻小区的接收信号码功率, 所述计算单元包括以下子单元:
求平均子单元,用于根据至少一个所述相邻小区的至少一个接收 信号码功率计算平均接收信号码功率;
干扰控制门限计算子单元,用于将所述平均接收信号码功率加上 偏置值, 得到所述室内小区对应的下行干扰控制门限。
15、 根据权利要求 14所述的下行功率控制系统, 其特征在于, 所述偏置值的范围为 5dB至 6dB。
16、 一种上行功率控制系统, 其特征在于, 包括:
计算单元, 用于根据室内小区的上行信号釆样数据, 计算该室内 小区对应的上行干扰控制门限;
功率接收单元,用于接收所述小区内终端上报的该终端的实际上 行发射功率;
功控单元,用于根据功控相关测量值对所述小区内的终端进行上 行发射功率的功控判决和功率调整;
判断单元,用于根据所述功控单元的判决结果和所述功率接收单
元收到的所述终端的实际上行发射功率,判断功控后所述终端的实际 上行发射功率是否将大于所述上行干扰控制门限, 如果大于, 则指示 所述功控单元将该终端的实际上行发射功率调整到该上干扰控制门 限。
17、 根据权利要求 16所述的上行功率控制系统, 其特征在于, 所述釆样数据是在所述室内小区中与相邻小区交叠的位置上釆样得 到的,所述釆样数据至少包括终端在所述室内小区中与相邻小区交叠 的至少两个不同位置上的至少两个实际上行发射功率,所述计算单元 计算上行干扰控制门限的方式为:
才艮据所述至少两个位置上的至少两个实际上行发射功率,计算终 端的平均上行发射功率,所述室内小区对应的上行干扰控制门限等于 该平均上行发射功率。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08773078.4A EP2114020B1 (en) | 2007-07-04 | 2008-07-01 | Control method and system for uplink and downlink power |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710043419.5 | 2007-07-04 | ||
CNA2007100434195A CN101079659A (zh) | 2007-07-04 | 2007-07-04 | 上、下行功率控制方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009003413A1 true WO2009003413A1 (en) | 2009-01-08 |
Family
ID=38906917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/071517 WO2009003413A1 (en) | 2007-07-04 | 2008-07-01 | Control method and system for uplink and downlink power |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2114020B1 (zh) |
CN (1) | CN101079659A (zh) |
WO (1) | WO2009003413A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103052104A (zh) * | 2011-10-11 | 2013-04-17 | 华为技术有限公司 | 一种室分信号泄露检查方法及装置 |
WO2020042734A1 (zh) * | 2018-08-31 | 2020-03-05 | 海信集团有限公司 | 一种干扰协调的方法和设备 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101079659A (zh) * | 2007-07-04 | 2007-11-28 | 上海华为技术有限公司 | 上、下行功率控制方法及系统 |
CN102196457B (zh) * | 2010-03-12 | 2013-11-06 | 中国移动通信集团公司 | 室内外联合覆盖的方法和装置 |
WO2011126417A1 (en) * | 2010-04-09 | 2011-10-13 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement in a wireless network for determining an uplink received power target value |
CN102572860A (zh) * | 2010-12-31 | 2012-07-11 | 中国移动通信集团河北有限公司 | 室内分布系统的实现方法、室内分布系统及相应设备 |
CN102137499B (zh) * | 2011-04-14 | 2014-08-06 | 电信科学技术研究院 | 一种进行干扰协调的方法、系统和设备 |
CN102158910B (zh) * | 2011-04-14 | 2013-11-20 | 电信科学技术研究院 | 一种进行干扰协调的方法、系统和设备 |
CN102781084B (zh) * | 2011-05-13 | 2017-04-19 | 北京邮电大学 | 一种半静态上行功率控制方法 |
CN102651872B (zh) * | 2012-05-08 | 2014-12-03 | 中国联合网络通信集团有限公司 | 干扰无线信号的预测方法及装置 |
US9608894B2 (en) * | 2015-06-04 | 2017-03-28 | Litepoint Corporation | Method for testing radio frequency (RF) data packet signal transceivers in a wireless signal environment |
CN109362098B (zh) * | 2018-11-23 | 2022-06-14 | 赛尔通信服务技术股份有限公司 | 一种识别4g移动通信干扰信号的方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0682418A2 (en) | 1994-05-12 | 1995-11-15 | Ntt Mobile Communications Network Inc. | Transmission power control for mobile radio |
EP0893890A2 (en) * | 1997-07-22 | 1999-01-27 | Nec Corporation | CDMA Transceiver and transmission power control in mobile communication systems |
CN1466819A (zh) * | 2001-08-01 | 2004-01-07 | ������������ʽ���� | 便携式无线电话机 |
WO2006010958A2 (en) | 2004-07-30 | 2006-02-02 | Andrew Richardson | Power control in a local network node (lnn) |
CN101079659A (zh) * | 2007-07-04 | 2007-11-28 | 上海华为技术有限公司 | 上、下行功率控制方法及系统 |
WO2008093100A2 (en) | 2007-02-02 | 2008-08-07 | Ubiquisys Limited | A method and base station to control access point transmit power |
-
2007
- 2007-07-04 CN CNA2007100434195A patent/CN101079659A/zh active Pending
-
2008
- 2008-07-01 WO PCT/CN2008/071517 patent/WO2009003413A1/zh active Application Filing
- 2008-07-01 EP EP08773078.4A patent/EP2114020B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0682418A2 (en) | 1994-05-12 | 1995-11-15 | Ntt Mobile Communications Network Inc. | Transmission power control for mobile radio |
CN1126930A (zh) * | 1994-05-12 | 1996-07-17 | Ntt移动通信网株式会社 | 发射功率控制方法和采用该方法的通信系统 |
EP0893890A2 (en) * | 1997-07-22 | 1999-01-27 | Nec Corporation | CDMA Transceiver and transmission power control in mobile communication systems |
CN1466819A (zh) * | 2001-08-01 | 2004-01-07 | ������������ʽ���� | 便携式无线电话机 |
WO2006010958A2 (en) | 2004-07-30 | 2006-02-02 | Andrew Richardson | Power control in a local network node (lnn) |
WO2008093100A2 (en) | 2007-02-02 | 2008-08-07 | Ubiquisys Limited | A method and base station to control access point transmit power |
CN101079659A (zh) * | 2007-07-04 | 2007-11-28 | 上海华为技术有限公司 | 上、下行功率控制方法及系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2114020A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103052104A (zh) * | 2011-10-11 | 2013-04-17 | 华为技术有限公司 | 一种室分信号泄露检查方法及装置 |
WO2013053247A1 (zh) * | 2011-10-11 | 2013-04-18 | 华为技术有限公司 | 一种室分信号泄露检查方法及装置 |
CN103052104B (zh) * | 2011-10-11 | 2015-05-06 | 华为技术有限公司 | 一种室分信号泄露检查方法及装置 |
WO2020042734A1 (zh) * | 2018-08-31 | 2020-03-05 | 海信集团有限公司 | 一种干扰协调的方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
CN101079659A (zh) | 2007-11-28 |
EP2114020A1 (en) | 2009-11-04 |
EP2114020A4 (en) | 2012-06-20 |
EP2114020B1 (en) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009003413A1 (en) | Control method and system for uplink and downlink power | |
US8032142B2 (en) | Access point power control | |
US8554262B2 (en) | Radio station apparatus, radio resource control method, recording medium storing radio station control program, and radio communication system | |
US8326342B2 (en) | Information sharing in a private access point network | |
US8538342B2 (en) | Radio station apparatus, radio resource control method, recording medium storing radio station control program, and radio communication system | |
JP4955770B2 (ja) | パイロットチャネル送信電力を調整するための方法および装置 | |
US8811891B2 (en) | Apparatus and method for setting transmit power of a compact base station in a wireless communication system | |
EP2564642B1 (en) | Methods for management of macro network key performance indicators impacts for a mass deployment of femtocells | |
WO2010078713A1 (zh) | 一种家庭基站及其发射功率设置方法 | |
WO2005011143A1 (fr) | Procede et appareil de commande de puissance pour systeme d'acces multiple par code de repartition, en duplex a repartition dans le temps | |
GB2481331A (en) | Adapting a maximum total transmit power of a base station based on measurements made by user equipment of signals from other basestations | |
GB2481545A (en) | Adapting a maximum value for total transmit power of a base station or mobile devices based on historical signal strength measurements | |
CN113543296B (zh) | 一种干扰抑制方法及装置 | |
CN101895899B (zh) | 上行功率控制方法及系统 | |
GB2481544A (en) | Adapting a maximum total transmit power of one or more mobile devices based on interference with a macrolayer base station | |
KR101687501B1 (ko) | 무선 기지국 장치 및 통신 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08773078 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008773078 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |