WO2009003362A1 - Machine hydraulique de type pour véhicule à pales tournantes - Google Patents

Machine hydraulique de type pour véhicule à pales tournantes Download PDF

Info

Publication number
WO2009003362A1
WO2009003362A1 PCT/CN2008/001223 CN2008001223W WO2009003362A1 WO 2009003362 A1 WO2009003362 A1 WO 2009003362A1 CN 2008001223 W CN2008001223 W CN 2008001223W WO 2009003362 A1 WO2009003362 A1 WO 2009003362A1
Authority
WO
WIPO (PCT)
Prior art keywords
chain
fluid
blade
track
rotating
Prior art date
Application number
PCT/CN2008/001223
Other languages
English (en)
French (fr)
Inventor
Yin Chen
Original Assignee
Yin Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yin Chen filed Critical Yin Chen
Publication of WO2009003362A1 publication Critical patent/WO2009003362A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/065Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having a cyclic movement relative to the rotor during its rotation
    • F03B17/067Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having a cyclic movement relative to the rotor during its rotation the cyclic relative movement being positively coupled to the movement of rotation
    • F03B17/068Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having a cyclic movement relative to the rotor during its rotation the cyclic relative movement being positively coupled to the movement of rotation and a rotor of the endless-chain type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/02Other wind motors the wind-engaging parts being attached to endless chains or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/04Other wind motors the wind-engaging parts being attached to carriages running on tracks or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the rotary vane fluid machine is a fluid machine used for the extraction of wind energy and hydrodynamic energy (rivers, rivers, tides, ocean currents). Background technique:
  • the sea surface potential difference of the rising tide is used to promote the conversion of the low-head inertia turbine into mechanical energy.
  • the limited gulf can only be a small part of the tidal energy in the wide sea area.
  • the inertia turbine generator is bulky under water, and the construction, installation, and maintenance costs are high.
  • Fluid machines for tidal currents and currents in wide seas are currently mainly flat-flow fans for inertial turbines and propeller turbines, and are not marketed. Summary of the invention:
  • the rotary vane fluid machine of the present invention is available.
  • the fluid machine is equipped with a power train and a generator to form a power station.
  • the fluid machine is composed of a three-leaf wheel that can rotate the blade at a certain angle and a car carrying the rotating blade (hereinafter referred to as a turning car), a circulating track, and a transmission chain.
  • the rotating leaves are evenly distributed along the circulating track, and the rotating vans of each track are connected by a chain; the circulating track is composed of two straight linear tracks and two semi-circular arc tracks.
  • the rotating blade In the straight line segment of the rotor, the rotating blade is perpendicular to the fluid flow direction under the action of the fluid, that is, the rotating blade and the rotating blade are in a vertical state, and on the circular arc orbit before and after the straight segment, the rotating blade
  • the vertical position of the rotating vane is kept unchanged, and the thrust of the fluid on the rotating vane is large; the turning van is in the other straight section and the other two arcuate orbits, and the vane is parallel to the fluid flow direction under the action of the fluid.
  • the rotating blade In the state, the rotating blade is subjected to a small thrust of the fluid; at least one of the three rotating blades is in a track section which is subjected to a large fluid thrust, and the three rotating blades drive the rotating van and the chain to move in one direction under the action of the fluid.
  • the three vanes sequentially cycle to capture fluid kinetic energy onto the chain and transfer the energy through the drive train to the generator for conversion to electrical energy.
  • the drive train has hydraulic drive and mechanical drive.
  • the hydraulic transmission is mainly composed of a chain pump, a pipeline, an accumulator, a water turbine, and a control system.
  • the mechanical transmission has a chain direct drive sprocket and chain drive.
  • the chain pump is composed of a chain, a oscillating blade, a return groove with a straight section, a two-cycle track with a straight section, a check valve, a filter, and a hydraulic circuit for controlling the oscillating blade.
  • the bottom of the chain link is a flat surface with rollers on both sides.
  • the links are sealed and hinged.
  • One chain has a scraper in the chain.
  • the two sides of the chain and the two sides of the scraper are respectively on two planes.
  • the blade is in a straight section of the return groove, and the check valve is on one side of the oscillating blade. As the chain moves, the rollers on both sides roll in the two return rails.
  • the squeegee is sealed on both sides and the bottom surface of the squeegee, respectively, on both sides and the bottom surface of the ejector groove;
  • the two sides of the return groove are sealed, and the end surface of the oscillating blade is kept sealed with the bottom plane of the chain, and the oscillating blade controls the oscillating blade to rotate to the original position after passing the squeegee before colliding with the squeegee.
  • the chain, the return groove, and the oscillating blade form two cavityes when the oscillating blade is in contact with the bottom surface of the chain.
  • Wind turbine features for extracting wind energy from fluid machines ⁇ ⁇ 1.
  • the wind turbine is a resistance type, with a wide range of wind speeds and high efficiency;
  • the wind turbine can be installed in multiple layers from the ground to the high altitude, and the wind energy space is large;
  • the fixed wind turbine on the ground needs a steering device.
  • the hydraulic machine features that the fluid machine uses to extract water flow energy:
  • the hydraulic machine is a resistance type, and the working water flow speed range is wide and the efficiency is high;
  • the hydraulic machine has a simple structure and is directly installed in the water flow field, which has little impact on the ecology;
  • the installation base of the hydraulic machine can be fixed or floating platform, and the floating platform can move to avoid the influence of bad weather;
  • the hydraulic machine can be installed under water, and the water extracted from the underwater water can be converted into a hydroelectric generating unit that can be transported to the water surface or land by water pressure;
  • the underwater hydraulic machine can run in both directions, suitable for the extraction of reciprocating flow energy
  • the structure is simple, the construction period is short, and the development cost of tidal energy is much lower than that of the dam-type tidal power station;
  • Figure 1 Explosion diagram of the underwater hydraulic machine. Many parts are left and right symmetrical parts, and only half of the explosion symmetry pieces in the explosion diagram are zero.
  • Figure 2 Partially enlarged view of B in the explosion diagram.
  • Figure 3 Top view of the underwater hydraulic machine.
  • Figure 4 A-A cross-sectional view of the underwater hydraulic machine.
  • Figure 5 A underwater hydraulic machine - A partial view of C in a cross-sectional view.
  • Figure 6 Front view of the hidden part of the underwater hydraulic machine.
  • Figure 7 A partial enlarged view of D in the front view of a part of the part.
  • Figure 8 Schematic diagram of the hydraulic drive system of the power station.
  • M and G are hydroelectric generating sets.
  • Figure 9 Working principle diagram of underwater hydraulic machine and wind turbine.
  • FIG. 10 Figure 10: Working principle diagram of the underwater hydraulic machine.
  • Figure 12 Structure and working principle of the water surface hydraulic machine.
  • the cross-sectional view of the figure is an enlarged cross-sectional view of the chain and chain roller guide.
  • FIG. 13 Chain drive shaft drawing.
  • the straight arrow is the moving direction of the long pitch straight roller chain
  • the curved arrow is the moving direction of the short chain pitch chain with the tooth.
  • Figure 14 Axonometric view of a cantilevered van.
  • valve leaf 14 wide seat 15, swinging blade
  • Method 1 A power station consisting of an underwater hydraulic machine, a chain pump, a pipeline, an accumulator, a filter, and a hydroelectric generating unit.
  • Figure 1-7 Fix the left and right symmetrical frame (1) on the underwater foundation.
  • the underwater foundation is fixed to the bottom of the water or anchored to the water.
  • the left and right symmetrical frame has a turner A track (8) and a turner B track (30), and the turner A track (8) consists of two equal length straight segments and two equal length arc segments of equal length
  • the length of the straight section of the turntable A track (8) is between 3/2 ⁇ R and 2 n R (R is the radius of the circular arc segment), and the straight line segment of the track is parallel to the fluid direction in the fluid field in which it is located.
  • the rotary vane consists of a rotary vane frame (22), a vane B roller (19), a vane A roller (20), and a vane shaft (28).
  • the vane shaft (28) is fixed to the vane frame. (22) On.
  • the vane shafts (28) of the six vane vehicles (5) symmetrically on both sides are sleeved with the vane bearings (29) and the vane (2), and the axial widths of the vanes on both sides of the vane (2) shaft are the same.
  • the radial widths are not equal and the radial widths differ greatly.
  • the three vans on each side are connected to the chain (4) via the vane frame (22), slider (23), drive pin (26), belt drive pin chain link.
  • Each vane frame has a vane limiter A (21), and each side of the vane (2) has two vane limit pairs B (32), so that the vane is driven from the vane two A-rollers (20)
  • the maximum angle of the axis plane rotating around the axis is 90 degrees.
  • the vane limit pair A (21) on the two sides of the rotor vane and the vane limit pair B (32) on both sides of the vane (2) are bilaterally symmetric. of.
  • the roller B roller (19) on the vane on both sides rolls on the B-track (30) of the van to play a guiding role for the van and the vane.
  • the bottom surface of the chain (4) is a flat surface.
  • the two sides of the chain link are flat.
  • the chain has a chain with a scraper. 27) , the hinges between the links are hinged, and all the links in the chain are hinged
  • the two sides and the two sides of the squeegee are respectively on two planes, and the two planes are hereinafter referred to as the side of the chain.
  • the frame (1) and the cover plate (3) and the auxiliary cover (6) fixed to the frame have a chain roller track (11), a chain roller track (11) and a turntable A track (8). It is a conjugate relationship.
  • the frame (1) has a scraper path which forms a chain pump groove with the cover plate (3) and the auxiliary cover plate (6). (9), the bottom surface of the chain pump groove and the bottom surface of the scraper plate are kept sliding and sealed, and the chain pump groove Both sides of the chain maintain a sliding seal with both sides of the chain. As shown in Fig.
  • the chain pumping groove has a oscillating blade (15) on the straight line section, and the oscillating blade has two blades, one blade is in the chain pumping groove and is slidably sealed with the side of the chain pumping groove and the bottom surface of the chain; the other blade Forming three cavities (34), (35), (36) with the frame (1) and the fixed auxiliary cover plate (6), and the curved surfaces of the two ends of the other blade are respectively kept with the two curved faces on the frame Sliding seal, the two sides of the other blade are respectively slidably sealed with the frame (1) and the auxiliary cover (6); the shaft of the oscillating blade (15) is seated on the frame and the auxiliary cover (6); (34)
  • the hole (39) is opposite to the pipe (10), and the cavity (35) communicates with the pipe (10) through the two-position three-way valve (18) or communicates with the cavity (36);
  • the blade limiting block (33) allows the oscillating blade (15) to swing only to the position of the broken line shown in Fig.
  • the oscillating blade does not collide when the squeegee passes there); the chain (4), the cover plate (3) , auxiliary cover plate (6), scraper track (9), scraper, oscillating blade (15) form a cavity (37), (38); cavity (36), (37) through the filter (7) and Communicate with the outside world;
  • the cavity (38) is connected to the pipe (10) via the check valve (31); the one-way wide (31) is composed of the valve seat (14), the dam (13), the valve pin (12);
  • the numerical cavity (35) of the torque generated by the water in the cavity to the oscillating blade (15) is larger than the cavity (34) is larger than the cavity (38), and
  • the phase difference is large for the moment of inertia of the oscillating blade so that the oscillating blade obtains a sufficiently large oscillating speed that it does not collide when the squeegee passes.
  • a two-position three-way valve drive cam (16) is fixed to the vane frame with the scraper and the drive pin hole link (27), and the cam (16) passes through the jack attached to the auxiliary cover (6) (17)
  • the rear three-position three-way valve (18) is reset (the three-position three-way valve drive cam can also be mounted on the chain).
  • the above is a one-side chain pump, and the structure of the chain pump on the other side is bilaterally symmetrical.
  • the above fluid machine and chain pump and pipeline, accumulator, filter, and hydroelectric generating set can realize the extraction of underwater water flow energy and convert it into electric energy.
  • the working principle is as follows: , Figure 9: When there is no water flow in the rotating leaves, the center of gravity (40) of the rotating leaves is on the long half leaves, and the floating center is also nearby. The gravity is greater than the buoyancy, and the long side of the rotating leaves is drooping. The long side of the ice flow leaf is on the inside of the track.
  • the solid line straight arrow is the flow direction of the water flow, and the six rotor vans (5) and the three vanes on both sides are arranged in three groups on the track to show the solid line position.
  • the axial width of the blades on both sides of the rotating blade (2) axis is the same, the radial width is not equal, and the radial width is different, the effect of the rotating blade on the water flow
  • the generated torque causes the rotor blade to turn to the vertical position of the rotor blade limiter A (21), the blade limiter B (32), and the rotor blade (2) and the rotor frame (22).
  • the turning wheel (5) has the largest thrust on the rotating blade (2) in the upper straight section of the figure; the turning wheel (5) in the lower half of the figure, the rotating blade (2) is turned by the action of the water flow At a position parallel to the direction of the water flow, the water flow has a small thrust against the rotating blade (2).
  • the three sets of rotating leaves (2) and the turning wheel (5) are uniformly distributed on the track, and there is always a set of straight segments in the upper half of the figure or two sets of upper arc segments on the upper part of the figure.
  • the flow of water to the upper half of the illustrated vane is greater than the thrust of the lower half of the vane, so that the van and the chain connecting them move along the vane A track (8) in the direction of the dotted line arrow.
  • the three sets of rotor blades and vanes are sequentially moved from the dotted line position (43) to the dotted line position (41) to the dotted line position (42) to the dotted line position (43), and the continuous extraction of the water flow can be converted into a chain.
  • the sequence is changed from the dashed line position (44) to the dashed line position (45) to the dotted line position (46).
  • the process of moving to the dotted line position (44) is cyclically moved, and the extracted water flow can be converted into the mechanical energy of the chain movement.
  • the energy transfer process of the rotor blade (2) and the chain (4) is: when the rotor blade (2) moves in a straight track segment in the same direction of movement as the water flow and a curved track in the front and rear, the rotor blade (2) extracts the fluid The energy is transmitted to the chain (4) through the rotor frame (22), the slider (23), the drive pin (26), and the belt drive pin chain link; when the rotor blade (2) moves on other segments of the track, the chain is reversed. Come over and transfer energy to the rotor blade (2) to overcome the resistance of the water flow back.
  • the chain acquires energy and the chain is part of the chain pump.
  • the front chain moves in the direction of the smaller volume (38).
  • the cam (16) is driven by the ram (17) to drive the two-position three-way valve (18) to be displaced, under the pressure of the accumulator (10)
  • the high pressure water enters the cavity (35), and the high pressure water of the cavity (34) (35), (38) generates a moment for the oscillating blade (15) to oscillate the oscillating blade (15) to the position of the dotted line of Fig.
  • the hydro-generator unit connected to the pipe (10) converts the high-pressure water generated by the hydraulic machine and the chain pump into electric energy.
  • a power station is formed.
  • the hydraulic drive system of the power station is shown in Figure 8.
  • the water of the chain pump pumping chamber (38) is sent to the hydro-generator unit through the one-way valve through the flow regulation, and the other chamber is controlled by the two-way three-way valve (35) to swing the swinging blade.
  • the accumulator maintains the pressure in the pipeline.
  • the above power stations are suitable for reciprocating currents, ocean currents and rivers.
  • the hydraulic machine and the chain pump can be multiple units, which are connected to the accumulator by pipes.
  • the accumulator is connected to multiple hydro-generator units, and single or multiple hydro-generator units can be selected according to working conditions to improve operation efficiency and reliability. Sex.
  • a pipe can be added to the pipeline to separate the pipes of each equipment for easy maintenance.
  • Method 2 As a surface hydraulic machine
  • the structure of the surface hydraulic machine is basically the same as that of the underwater hydraulic machine. As shown in Fig. 12 and Fig. 13, the shape of the rotor blade is crescent-shaped and there is only one vane limit pair B (32). The track structure of the vane and the vane is the same.
  • the drive train is driven by a chain.
  • the chain connecting the vane is changed to a growth pitch straight roller chain (47), which is a conventional conveyor chain, which has a long pitch chain link (57) and a long pitch chain link (57).
  • the frame is fixed on a fixed foundation or on a floating body.
  • the frame of the surface hydraulic machine has a plurality of equally spaced rollers (62) under the linear track of the turning wheel in the water surface portion, and the spacing of the rollers is smaller than the length of the rotating blade.
  • the length of the edge, the height of the track car track in the water is less than the height of the water surface, the length of the rotor leaf should be ⁇ 3 ⁇ 4 : / 4 semi-circular chord length makes the rotor car move to (63) of Figure 12. Before and after the line position, when the water enters the short side of the rotor, it rests on the roller (62).
  • the chain drive train is shown in Figure 13: Length:: Pitch straight roller chain (47) and short toothed chain (48) are supported by the support block (55) and the pressure roller (53): , The length of the press together is greater than the pitch of the long pitch chain, the pinch shaft (54) is fixed; the distance between the teeth (49) of the short chain link (48) with the tooth is equal to the long section when the chain is straightened From the pitch of the straight roller chain (47), the chain short chain pitch chain (48) is connected to the driven sprocket (50) and the tensioning pulley (52).
  • the chain drive system is two sets of left and right symmetry, and the driven sprocket shafts are connected together, so that the two-side vane and the rotating leaf can move synchronously, and the structure does not need the guiding vane in the mode 1 B roller (19) and rotor car B track (30).
  • the water flow flows toward the solid line straight arrow, pushing the underwater rotating blade (2) to the position where the rotating blade limiter A (21) and the rotating blade limiting pair B (32) are in contact with each other, and makes the turn
  • the leaf car moves in the direction of the dotted line arrow.
  • the vane on the water surface is moved to the position of the dotted line at (63), the water flow and gravity are combined to turn to (64).
  • the kinetic energy of the three sets of rotary vans and the rotating leaves continuously circulated into the water effluent extraction water flow is transmitted to the long pitch straight roller chain (47), and is transmitted to the driven sprocket (52) through the chain chain, and the driven chain
  • the axle (51) outputs torque.
  • the driven sprocket shaft (51) is connected to the generator to convert mechanical energy into electrical energy.
  • the floating body When the surface hydraulic machine is used to extract the river water energy, in order to maintain the relative position of the frame and the water surface, for the water depth river, the floating body can be used to support the frame, and the floating system can be placed on both sides; in the shallow water area, the floating body and the balance weight can be used to hold the machine.
  • the ready-to-use rope is tied to the floating body and the balance weight is hung around the other end of the pulley block; so that the relative position of the frame and the water surface can be maintained as long as the floating body does not touch the bottom of the water.
  • the frame When applied to the extraction of sea surface tidal energy, the frame is mounted on the floating body, and the floating body is anchored in the sea at a single point, which can automatically adjust the direction as the current changes.
  • the rotor blades are all bridge arms.
  • the rotor blade can also be used in a cantilever structure.
  • the rotor frame (22) is changed to the structure shown in Fig. 14.
  • the frame (1) has two rotors C-track (66) and a rotor-car A track (8).
  • the leaf frame (22) has four turner C rollers and two turner A rollers ( 20 ).
  • the two-turner C-track (66) and the four-turner C-roller (67) balance the moments generated by gravity and fluid on the van.
  • the frame (1) has two sets of the above-mentioned part structures symmetrically on both sides.
  • the cantilevered vanes extend from the sides of the frame (1), allowing the frame to be balanced in the fluid.
  • the wind energy extraction of the large-scale wind turbine adopts the bridge arm rotary vane, the rotary vane structure or the mode 3, the cantilever rotary vane and the rotary vane structure in the mode 1, and the transmission system adopts the chain drive mechanism in the mode 2, and is matched with the wind adjustment
  • the device becomes a wind turbine.
  • the adjusting device is: one end of the frame (1) is mounted on a rotating pair fixed on the ground, the other end of the frame (1) is mounted on a traveling vehicle, and the traveling vehicle travels around the rotating auxiliary axis, the control system According to the signal of the wind direction meter and the position signal of the frame, the traveling vehicle is controlled to travel around the rotation auxiliary axis, so that the rotary van is in the position of the facing wind.
  • the cantilever rotary blade structure in the small wind smashing mode 3 the front end of the frame is sleeved on a fixed shaft, the frame can be freely rotated, the chain connecting the rotator is changed to a short pitch chain, and the chain directly drives the sprocket, and the machine is driven.
  • the two sides of the frame are connected by the sprocket shaft and the vane is mounted in a symmetrical position. The frame and the symmetrical cantilever vane can be automatically adjusted to the wind under the action of the wind.
  • the automatic wind process is such that the direction of the force generated by the wind on the frame and the cantilevered vane passes through the rotating shaft (referred to as a stable position), otherwise a torque is generated to cause the rack to be turned to a stable position.
  • the frame itself acts as a rudder, and the rotating blade is symmetrical. In the stable position, the rotating blade axis also acts as a rudder perpendicular to the wind direction.
  • the wind turbine can automatically wind up.
  • the three sets of rotating leaves (2) and the turning wheel (22) are uniformly distributed on the track, and there is always a set of straight segments in the upper half of the figure or two sets of arc segments on the upper half of the upper figure.
  • the thrust of the wind on the upper half of the rotor blade (2) is greater than the thrust of the lower half rotor blade (2), so that the rotor vane (5) and the chain connecting them follow the direction of the dotted line arrow along the rotating blade Car A track (8) moves.
  • the three sets of rotor blades (2) and the vane (5) are sequentially rotated by the process of changing the dotted line position (43) to the dotted line position (41) to the dotted line position (42) and then to the dotted line position (43).
  • the mechanical energy of the chain movement is transmitted to the driven sprocket directly or through the chain drive, and the driven sprocket shaft drives the generator to convert into electric energy.

Description

转叶车式流体机
技术领域:
转叶车式流体机属于流体机械, 用于风能、 水动能 (江河流、 潮汐、 洋流) 的提取。 背景技术:
地球上^]风与水流蕴涵着大量能量。风能的利用目前主要是水平轴螺旋 式风机,其叶 片只能够利用流体动能中由升力作用而产生的机械能,一次截能有限。江河中的水能, 现在 是建坝截流利用水的势能推动水轮机转换成机械能, 江河建坝的周期长, 工程浩大, 需要进 行广泛地地质与生态的考察研究,会影响周围的生态环境;在农业中有用水车将水的动能提 取转换成水的势能用于农业的灌溉。潮汐能的开发目前是在海湾建坝,利用涨落潮的海面势 差推动低水头的惯流式水轮机转换成机械能,能建坝的海湾有限对于宽广海域的潮汐能仅是 很小的一部分, 而且惯流式水轮机发电机是在水下体积庞大, 建造、 安装、 维护成本高。 宽 广海域中的潮流与海流的流体机械目前主要为惯流式水轮机与螺旋桨式水轮机平轴风机,且 未市场化。 发明内容:
为了能够以较低的成本有效地提取风能与水能就有了本发明转叶车式流体机。流体机配 合传动系、发电机构成发电站。流体机由三叶可以在一定角度转动叶片及载转叶的车(以下 称转叶车)、 循环轨道、 传动链条组成。 转叶沿循环轨道上均布, 由链条将每条轨道的转叶 车连在一起;循环轨道由两段直线轨道与两段半圆弧轨道两两头尾相连组成。转叶车在轨道 的一直线段在流体的作用下转叶与流体流动方向成垂直状态, 即转叶与转叶车成垂直状态, 并在此直线段的前后一段圆弧形轨道上,转叶与转叶车就保持垂直相对位置不变,流体对转 叶的推力大;转叶车在另一直线段及另两段圆弧形轨道上,在流体的作用下转叶与流体流动 方向成平行状态,转叶受到流体的推力小;三片转叶至少有一片处于受流体推力大的轨道段, 三片转叶在流体的作用下带动转叶车及链条朝一个方向循环移动。这样三片转叶顺序循环截 取流体动能到链条上并通过传动系将能量传递给发电机转化成电能。
传动系有液力传动与机械传动。 液力传动是主要由链条泵、 管路、 蓄能器、 水轮机、 控制系统组成。 机械传动有链条直接驱动链轮与链链传动两种方式。
链条泵是由链条、 摆动叶片、 有直线段的回形槽、 有直线段的两循环轨道、 单向阀、 滤器、控制摆动叶片的液压回路组成。链条链节的底部是一平面, 两侧有滚子, 链节之间是 密封铰接, 链条中有一链节有刮板,链条的两侧与刮板的两侧分别在两个平面上, 摆动叶片 在回形槽的直线段,单向阀在摆动叶片的一侧。随着链条移动两侧滚子在两条回形轨道内滚 动, 刮板除了在摆动叶片段, 刮板的两侧面、 底面分别与回形槽的两侧面、 底面保持密封; 摆动叶片两侧面与回形槽的两侧面密封,摆动叶片末端面与链的底部平面保持密封,摆动叶 片在与刮板相碰之前液压回路控制摆动叶片让过刮板后回转到原来位置。在摆动叶片与链条 底面接触时链条、回形槽、摆动叶片形成两容腔。当链条的移动到液压回路控制摆动叶片让 过刮板后回转到原来位置后摆动叶片带单向阀侧的容腔变小,容腔内的流体被压从单向阀排 出; 摆动叶片的另一侧容腔变大, 流体从摆动叶片的另一侧的进口被吸入, 当链条继续移动 到摆动叶片将与刮板再次相碰时,完成一次吸入与排出流体循环。随着链条不断地循环移动, 流体就不断的被吸入与排出。
流体机用于提取风能的风力机特点: 浼认本 1、 风力机是阻力型, 工作的风速范围宽, 效率高;
2、 '结构上使得其能够超越水平螺旋浆风力机的单机功率极限,实现超大功率的风力机;
3、 风力机可以从地面到高空多台叠加安装, 提取风能空间大;
4、 可以安装在飞艇上, 实现高空风力发电; ―
5、 地面固定的风力机需要调向装置。
流体机用于提取水流能的水力机特点:
1、 水力机是阻力型, 工作的水流速度范围宽, 效率高;
2、 水力机结构简单, 直接安装在水流场中, 对生态影响小; .
3、 水力机的安装基础可以为固定的,也可为浮动的平台,浮动平台可以移动避开恶劣 天气的影响;
4、 水力机可以安装在水下,提取水下的水能转换成水压力能输送到水面或陆地上的水 轮发电机组发电;
5、 水下水力机可以双向运行, 适合往复流动潮流能的提取;
6、 结构简单, 建造周期短, 在潮汐能的开发成本大大低于建坝式潮汐电站;
7、 可以广阔的海域及深度建造, 在海上可建造的空间大。 附图说明
图 1:水下水力机的爆炸图。许多零件是左右对称件,爆炸图中只爆炸对称件的一半零 图 2: 爆炸图中 B局部放大图。
图 3: 水下水力机的俯视图。
图 4: 水下水力机 A- A剖视图。
图 5: A水下水力机- A剖视图中 C局部放大图。
图 6: 水下水力机的隐去部分零件的主视图。
隐去爆炸图中对称件的左边零件及右边零件(2)、 (3)、 (6)、 (7)。 图 7: 隐去部分零件的主视图中 D局部放大图。
图 8: 发电站的水压传动系统原理图。
图中 M与 G为水轮发电机组。
图 9: 水下水力机与风力机的工作原理图。
图 10、 图 11 : 水下水力机的工作原理图。
图 12: 水面水力机的结构及工作原理图。
图中剖视部分为链条及链条滚子导轨的截面放大图。
图 13: 链链传动轴测图。
直线箭头为长节距直板滚子链的移动方向, 曲线箭头为带拨齿短链节距链的移动 方向。
图 14: 悬臂式转叶车的轴测图。 一
图 1-14中的标号意义如下:
1、 机架 .. 2、_转叶 3、 主盖板 4、 链条 5、 转叶车 6、 辅盖板
7、 滤网 8、 转叶车 A'轨道 9、 刮板道
10、 管道 11、 链条滚子轨道 12、 阀销
13、 阀叶 14、 阔座 15、 摆动叶片
16、 两位三通阀驱动凸轮 17、 顶杆 18、 两位三通阀
19、 转叶车 B滚轮 20、 转叶车 A滚轮 21、 转叶限位副 A
22、 转叶车架 23、 滑块 24、 链销
25、链滚子 26、传动销 27、带刮板及传动销孔链节
28、 转叶轴 29、 转叶轴承 30、 转叶车 B轨道
31、 单向阀 32、 转叶限位副 B 33、 摆动叶片限位块
34-38、 容腔 39、 管道 40、 转叶重心
41-46转叶车在轨道上的- -位置 47、 长节距直板滚子链
48、 带拨齿短链节距链 49、 拨齿 50、 受动链轮
51、 受动链轮轴 52、 张紧轮 53、 压轮
54、 压轮轴 55、 支撑块 56、 加长传动链销
57、 长节距链外链板 58、 长节距链内链板 59、 长节距链滚子
60、 长节距链导轨 61、 长节距链链销 62、 滚轴
63、 64、 转叶车在轨道上的一位置 65、 半轴套
66、 转叶车 C轨道 67、 转叶车 C滚轮 实施方式:
方式 1: 由水下水力机、 链条泵、 管道、 蓄能器、 滤器、 水轮发电机组组成的发电站。
1、 水力机
如图 1-7: 将左右对称的机架 (1 ) 固定在水下基础上, 水下基础固定于水底面或锚系 于水中。 左右对称的机架上有转叶车 A轨道(8)与转叶车 B轨道(30), 转叶车 A轨道(8) 由两等长直线段与两半等长等半径的圆弧段组成,转叶车 A轨道 (8)的直线段长度在 3/2 π R 到 2 n R之间 (R为圆弧段的半径), 轨道的直线段与其所处流体场中的流体方向平行。 一侧 有三辆转叶车 (5)均在轨道上。 转叶车由转叶车架 (22)、 转叶车 B滚轮 (19)、 转叶车 A 滚轮 (20)、 转叶轴 (28)组成, 转叶轴 (28 ) 固定在转叶车架 (22 ) 上。 两侧对称的六辆 转叶车(5) 的转叶轴(28)两两套着转叶轴承(29) 与转叶(2), 转叶(2 )轴两侧叶片的 轴向宽度一样而径向宽度不等且径向宽度相差较大。每侧的三辆转叶车通过转叶车架(22)、 滑块(23)、 传动销 (26)、 带传动销孔链节与链条 (4) 连接。 每辆转叶车架上有转叶限位 副 A (21 )、 转叶 (2 ) 的每侧面有两转叶限位副 B ( 32 ) 使得转叶从转叶车两 A滚轮 (20 ) 轴线平面绕轴左右旋转最大角度为 90度, 两侧转叶车架上的转叶限位副 A (21 )与转叶(2 ) 两侧面的转叶限位副 B ( 32 )是左右对称的。 两侧的转叶车上的转叶车 B滚轮(19)在转叶 车 B轨道 (30 ) 上滚动起到对转叶车与转叶的导向作用。
2、 链条泵
如图 1-7: 链条(4) 的链节底面是一平面, 链节的两侧有链滚子 (25 ), 链节的两侧面 是平面, 链条中有一带刮板的链 ϋ 27), 链节之间是密封铰接, 铰接后链条中的所有链节 两侧面与刮板的两侧面分别在两平面上, 以下称这两平面为链条侧面。 机架(1 )上与固定 在机架上的盖板(3)、 辅盖板(6)有链条滚子轨道(11 ), 链条滚子轨道(11 )与转叶车 A 轨道(8)是共轭关系。机架(1 )上有与盖板(3)、辅盖板(6)形成链条泵槽的刮板道.(9), 链条泵槽的底面与刮板的底面保持滑动密封,链条泵槽的两侧面与链条的两侧面保持滑动密 封。 如图 7所示, 链条泵槽的一直线段上有摆动叶片 (15), 摆动叶片有两叶片, 一叶片在 链条泵槽内并与链条泵槽的侧面、链条底面保持滑动密封; 另一叶片与机架(1 )、 固定的辅 盖板(6)形成三个容腔(34)、 (35)、 (36), 另一叶片两末端弧形面分别与机架上两弧形面 保持滑动密封, 另一叶片的两侧面分别与机架 (1)、 辅盖板 (6) 保持滑动密封; 摆动叶片 ( 15) 的轴座落在机架与辅盖板(6) 上; 容腔(34)有孔 (39) 与管道(10)相逋, 容腔 (35)通过两位三通阀(18)与管道(10)相通或与容腔(36)相通; 机架上的摆动叶片限 位块(33)使得摆动叶片(15)只能摆动到图 7所示的虚线位置(摆动叶片在此位置刮板经 过时不会相碰); 链条 (4)、 盖板(3)、 辅盖板(6)、 刮板道 (9)、 刮板、 摆动叶片 (15) 形成容腔(37)、 (38); 容腔(36)、 (37)通过滤网 (7)与外界相通; 容腔(38)经单向阀 (31 )通到管道(10); 单向阔 (31 ) 由阀座 (14)、 闽叶 (13)、 阀销 .(12) 组成; 当容腔 (34)、(35)、 (38)的压力相等时,容腔内的水对摆动叶片(15)产生的力矩的数值容腔 (35) 大于容腔 (34) 大于容腔(38), 且相差值对摆动叶片的惯性矩来说较大使得摆动叶片获得 足够大的摆动速度, 能够在刮板经过时不相碰。有两位三通阀驱动凸轮(16)固定在与带刮 板及传动销孔链节 (27) 的转叶车架上, 凸轮 (16) 经过安在辅盖板 (6)上的顶杆(17) 时, 驱动两位三通阀(18)换位, 过后两位三通阀(18)复位(两位三通阀驱动凸轮也可安 装在链条上)。 以上是一侧链条泵, 另一侧的链条泵的结构是与之左右对称的。
以上的流体机与链条泵与管道、 蓄能器、 滤器、 水轮发电机组可实现提取水下水流能, 转换成电能。 其工 原理如下: , 如图 9: 转叶在没有水流时, 转叶的重心(40)在长半叶上, 浮心也在附近, 重力大于 浮力, 转叶的长边就下垂, 当有氷流转叶的长边就在轨道的内侧。实线直线箭头为水流的流 动方向, 两侧的六辆转叶车 (5)与三片转叶组成三组均布在轨道上图示实线位置。 转叶车 (5)在图示上半部时, 由于转叶(2)轴两侧的叶片的轴向宽度一样而径向宽度不等且径向 宽度相差较大, 转叶在水流的作用下产生的扭矩使得转叶转到图示转叶限位副 A (21 )、 转 叶限位副 B (32)相触位置即转叶(2)与转叶车架 (22)垂直位置, 转叶车(5)在图示上 部直线段时水流对转叶 (2)推力最大; 转叶车 (5) 在图示下半部时, 转叶 (2)在水流的 的作用下转到与水流方向平行的位置, 水流对转叶(2)的推力小。这样无轮三组转叶(2)、 转叶车 (5) 怎样在轨道上均布, 总有一组位于图示上半部直线段或两组位于上图示上半部 圆弧段上,水流对图示上半部转叶的推力大大于下半部转叶的推力,使得转叶车及连接它们 的链条按图示点划线箭头方向沿转叶车 A轨道(8)移动。 当转叶车(5)移动到(41 )虚线 位置后,转叶(2)在水流的作用按弧线箭头方向转动到转叶长半叶在流体的下流方向如 (42) 虚线位置所示。 当转叶车移动到(43)虚线位置时, 转叶限位副 A (21 )、转叶限位副 B (32 ) 相触, 随后在水流的作用下保持转叶与转叶车的相对位置到(41 )虚线位置。之后三组转叶 与转叶车就顺序按虚线位置 (43) 到虚线位置 (41 ) 到虚线位置 (42 ) 再到虚线位置 (43) 的过程循环移动了, 不断地提取水流能转换成链条移动的机械能。。
当水流方向相反时。如图 10所示: 在重力作用下下垂转叶在水流的作用下, 转叶限位 副 A (21 )、转叶限位副 B (32)相触且转叶的长半叶在轨道的外侧, 转叶与转叶车在水流的 作用下按图示点划线箭头方向移动。 如图 11所示: 在第一循环内当转叶车移动到 (44)虚 线位置时, 转叶限位副 A (21 )、 转 £["限位副 B (32 )相触且转叶的长半叶在轨道的内侧, 随: 后在水流的作用下保持转叶与转 1¾的相对位置到(45)虚线位置, 这过程转叶的长半叶在; 轨道的内侧,之后转叶按图示弧线箭头方向转到转叶长半叶在水流的下流方向如(46)虚线 位置所示, 接着转叶保持与水流方向平行移动到(44)虚线位置, 以后三组转叶与转叶车就. 顺序按转虚线位置(44)到虚线位置(45)到虚线位置(46)再到虚线位置(44) 的过程循 环移动了, ^^断地提取水流能转换成链条移动的机械能。
转叶 (2) 与链条 (4) 的能量传递过程是: 当转叶 (2) 在移动方向与水流同向的直线 轨道段及前后一段弧形轨道上移动时, 转叶(2)提取流体的能量通过转叶车架(22)、 滑块 (23)、 传动销 (26)、 带传动销孔链节传递给链条(4); 转叶 (2) 在其它段轨道上移动时 链条反过来将能量传递给转叶(2)克服水流的阻力返回。 由于转叶(2)顺流方向从水流截 取的能量大大于转叶(2)逆流方向消耗的能量, 这样随着转叶(2) 的循环移动, 不断地提 取水流能转换成链条移动的机械能。
链条获取了能量, 而链条又是链条泵的一部分。 以下讲述链条泵的工作原理: 前面链条是朝着容腔(38)变小的方向移动。当刮板将要与摆动叶片(15)产生干涉时, 凸轮 (16)通过顶杆 (17) 驱动两位三通阀 (18) 换位, 在蓄能器的压力作用下管道 (10) 中的高压水进入容腔(35), 容腔(34) (35)、 (38) 的高压水对摆动叶片(15)产生一个使 得摆动叶片 (15) 向图 7虚线位置摆动的力矩, 即刻容腔(37)、 (38)相通、 单向阀 (31) 关闭, 容腔(34) (35) 的高压水继续使摆动叶片 (15)摆动直到到达图 7虚线位置; 链条 移动到刮板过了摆动叶片(15)后, 凸轮(16)让顶杆(17)返回, 两位三通阀(18):复位, 容腔(35)、 (36)相通, 容腔(34)对摆动叶片(15)产生一个返回的力矩使摆动叶片(15) 摆回到原来的位置, 摆动叶片 (15) 在链条泵槽内的叶片末端与链条底面密封, 容腔. (38) 形成, 链条继续移动到容腔(38)的压力升高可以打开单向阔时, 容腔(34)、 (38)对摆动 叶片(15)的合力矩仍使得摆动叶片在链条泵槽内的叶片末端与链条底面保持密封。链条继 续移动, 容腔(38) 的水顶开单向阀(31 )排入管道(10)到蓄能器; 容腔 (37) 的容积变 大, 水经过滤网 (7) 吸入; 当带刮板的链节 (27) 再次移动到将与摆动叶片相干涉时, 链 条泵就完成一次工作循环。随着链条的不断移动与摆动叶片的定时摆动,链条泵就不断地吸 入水同时泵出高压水由管道输送到蓄能器。
连接在管道(10)上的水轮发电机组将水力机与链条泵产生的高压水转换成电能。这样 一个发电站就形成了。发电站的水压传动系统如图 8所示。链条泵泵泵送容腔(38)的水经 过单向阀一路经流量调节阔送到水轮发电机组, 另一路经两位三通阀到的容腔 (35)控制摆 动叶片摆动, 管道上的蓄能器维持管道的压力。
以上的发电站适用于往复潮流、洋流、江河流。水力机与链条泵可以是多台, 由管道连 接到蓄能器,蓄能器连接着多台水轮发电机组,根据工况选择单台或多台水轮发电机组运行, 提高运行效率与可靠性。 管道上可加截止阀隔开各设备的管道, 方便检修。
方式 2: 作为水面水力机
水面水力机的结构与水下水力机基本相同。 如图 12、 图 13所示: 转叶的形状为月牙形 且只有一个转叶限位副 B (32 ), 转叶车及转叶车的轨道结构一样。 传动系采用链链传动。 连接转叶车的链条改成长节距直板滚子链 (47), 它是种常规的输送链, 其链节由长节距链 外链板(57)、 长节距链内链板(58)、 长节距链滚子(59)长节距链链销 (61 )组成; 长节 距链的滚子在固定的轨道(60)上滚动, 轨道(60)在两半圆弧段及其末端切线方向延伸一 小直线段有; 转叶车与长节距直板滚子链(47) 的连接采用加长传动链销(56)连接。机架 是固定在固定的基础上或浮体上,水面水力机的机架在水面的部分的转叶车直线轨道下方有 多根等间距的滚轴 (62 ), 滚轴的间距小于转叶长边的长度, 转叶车轨道的在水中的高度要 小于水面上的高度, 转叶的长度要 ^ ¾: /4半圆弧弦长使得转叶车移动到图 12的 (63) .虚. 线位置前后, 在转叶短边入水时而 ¾§¾靠在滚轴 (62 )上。:链链传动系如图 13所示: 长:: 节距直板滚子链(47) 与带拨齿短 距链 (48) 被支撑块(55) 与压轮 (53) 压在一起,:, 压在一起的长度大于长节距链的节距, 压轮轴(54)是固定的; 带拨齿短链节链(48)的拨 齿(49)间的距离在链拉直时等于长节距直板滚子链 (47)的节距, 带拨齿短链节距链(48) 连着受动链轮(50) 与张紧轮 (52)。 链链传动系是左右对称的两套, 受动链轮轴是连接在 一起的,这样两侧转叶车与转叶就能同步移动,结构中就不用方式 1中的起导向作用的转叶 车 B滚轮 (19) 与转叶车 B轨道 (30)。
工作原理:
如图 12所示水流朝实线直线箭头流动,推动在水下转叶(2)转动到转叶限位副 A (21 ) 与转叶限位副 B (32)相触位置, 并使得转叶车按点划线箭头方向移动。 当水面上的转叶车 栘动到 (63)虚线位置时在水流与重力的共同作用下转到(64) .虚线位置, 这时转叶限位副 A (21) 与转叶限位副 B (32) 相触, 随后该转叶车转叶的长边的远端先入水, 保持转叶限 位副 A (21) 与转叶限位副 B (32)相触到转叶 (2) 出水。 出水后转叶轴移过滚轴 (62), 滚轴(62)托起转叶的长边, 使得转叶受到风的阻力小, 并留出 ^分的水面空间。这样三组 转叶车与转叶不断地顺序循环入水出水提取水流的动能传给长节距直板滚子链 (47), 在通 过链链传动到受动链轮 (52 ), 由受动链轮轴 (51) 输出扭矩。 受动链轮轴 (51) 连接到发 电机将机械能转换成电能。
该水面水力机应用于提取河流水能时,为保持机架与水面的相对位置,对于水深的河流 可用浮体托着机架,将浮体系在两岸;浅水区可用浮体与平衡重物托着机架即用绳系着浮体 的绕过滑轮组另一端挂着平衡重物;这样只要浮体没有接触到水底就能保持机架与水面的相 对位置不变。应用于海面潮流能的提取时, 机架装在浮体上, 浮体单点锚系于海中, 能够随 海流的变化而自动调整方向。
方式 3:
以上两种实施方式中, 转叶都是桥臂结构。 转叶也可用悬臂结构, .转叶车架(22 )改成 如图 14的结构, 机架(1)上有两转叶车 C轨道(66)与转叶车 A轨道(8), 转叶车架(22) 上有四个转叶车 C滚轮 与两个转叶车 A滚轮 (20)。 两转叶车 C轨道(66) 与四个转 叶车 C滚轮(67) 平衡着重力与流体对转叶车产生的力矩。 采用图 14所示转叶轴 (28) 与 两半轴套(65)结构使得两半轴套(65)只能绕转叶轴(28)转动, 两半轴套(65)不产生 轴向移动, 两半轴套(65) 连接着转叶。 总结构上机架 (1 ) 两侧含两组左右对称的上述零 件结构。 机架 (1 ) 两侧伸出悬臂转叶, 使得机架在流体中能受力平衡。
方式 4: 作为风力机
大型风力机的风能提取采用方式 1中的桥臂转叶、转叶车结构或方式 3中悬臂转叶、转 叶车结构,传动系采用方式 2中的链链传动机构, 配上对风调向装置就成为一风力机。调向 装置为: 将机架(1 )的一端安装在固定在地面上的旋转副上, 将机架(1 ) 的另一端安装在 一行走车上, 行走车绕旋转副轴线行走, 控制系统根据风向仪的信号与机架的位置信号, 控 制行走车绕旋转副轴线行走, 使得转叶车处于正对风位置。
小型风力釆用方式 3中的悬臂转叶结构,机架前端套在固定的轴上,机架可以自由转动, 连接转叶车的链条改用短节距链条,链条直接驱动链轮,将机架两侧受动链轮轴连接且将转 叶车, 安装在对称位置, 机架与对称的悬臂转叶在风力的作用下就能够自动调向对风。 自动 对风过程是这样的, 风对机架与悬臂转叶产生的力的方向要穿过转轴 (称此位置为稳定位 置), 不然就会产生一扭距使得机架转到稳定位置, 机架本身起舵的作用, 而转叶是对称的 在稳定位置转叶轴与风向垂直也起舵的作用, 当风向转变了, 风力机就能自动对风了。
^作_原理:
Ϊ 所示: 风力中的调向装置 ¼转叶(2)在图示上半部轨道直线段时是正迎风 接下的过程同方式 1工作原理对图 9的叙述, 只是流体由水改成了空气。 即转叶 (2)在风 的作用下产生的扭矩使得转叶 (2)转到图示转叶限位副 A (21 )、 转叶限位副 B (32)相触 位置即转叶(2)与转叶车架(22)垂直位置,转叶车(5)在图示上部直线段时风对转叶(2) - - 推力最大;转叶车(5)在图示下半部时,转叶(2)在风的作用下转到与风方向平行的位置, 风对转叶 (2) 的推力小。 这样无轮三组转叶 (2)、 转叶车 (22) 怎样在轨道上均布, 总有 一组位于图示上半部直线段或两组位于上图示上半部圆弧段上, 风对图示上半部转叶 (2) 的推力大大于下半部转叶(2)的推力, 使得转叶车(5)及连接它们的链条按图示点划线箭 头方向沿转叶车 A轨道(8) 移动。 当转叶车 (5)移动到 (41 ) 虚线位置后, 转叶 (2) 在 风的作用按弧线箭头方向转动到转叶长半叶在风的下风方向如(42)虚线位置所示。 当转叶 车移动到(43)虚线位置时, 转叶限位副 A (21 )、 转叶限位副 B (32 )相触, 随后在风的作 用下保持转叶与转叶车的相对位置到(41 )虚线位置。 之后三组转叶(2)与转叶车(5)就 顺序按转虚线位置(43)到虚线位置(41 )到虚线位置(42)再到虚线位置 (43 ) 的过程循 环移动了,不断地提取风能转换成链条移动的机械能。链条移动的机械能直接或通过链链传 动给传给受动链轮, 受动链轮轴驱动发电机转换成电能。

Claims

权 利 要 求 书 、 一种流体机, 包括:
a) . 含两平行直线段的循环轨道 (8);
b)、 在循环轨道 (8) 上运行的车;
c)、 在车上转动、 转轴与轨道面垂直、 两侧叶片不等长、 被限制转动角度的 转叶 (2);
d)、 连接三辆在同一循环轨道上运行的车的链条。
、 一种容积泵, 包括:
a)、 链条 (4), 其特征为: 两侧带滚子、 一个链节含 (27) 含刮板、 多个链 节含驱动销孔、 除含刮板链节外其它链节的底面为平面、 链节之间是密封铰 接的、 链节及刮板的两侧面是在两平面上;
b)、 链条滚子滚动的两条含直线段的循环导轨 (11 );
c)、 含直线段两侧面与链条两侧面滑动密封的槽;
d)、 摆动叶片(15), 其特征为: 摆动叶片的一侧的叶片末端面与链条底面滑 动密封, 另一侧的叶片有两个半径不等的圆弧末端面;
e)、 与摆动叶片形成空间 (34)、 (35)、 (36) 的机架;
f)、 使得摆动叶片 (15) 与刮板^^涉时让过刮板后复位的液压系统。
、 如权利 1 所述的闭合轨道由两等长直线段与两半径相等半圆弧首尾相接组 成, 直线段的长度在 3/2 n R到 2 ir R之间 (R为圆弧半径)。
、 如权利 1所述限制转叶 (2) 转动角度的装置为固定在循环轨道 (8) 上运行 的车架的转叶限位副 A (21 ) 与在转叶 (2) 上的转叶限位副 B (32)。
、 由如权利 1所述的流体是水的流体机、 如权利 2所述的容积泵、 管道、 蓄能 器、 水轮发电机组组成的水能电站。
、 由如权利 1所述的流体是水的流体机、链-链传动机构 发电机组成的水能电 站。
、 由如权利 1所述的流体是气体的流体机、链-链传动机构、发电机组成的风力 电站。
PCT/CN2008/001223 2007-06-29 2008-06-25 Machine hydraulique de type pour véhicule à pales tournantes WO2009003362A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710129544.8 2007-06-29
CNA2007101295448A CN101100974A (zh) 2007-06-29 2007-06-29 转叶车式流体机

Publications (1)

Publication Number Publication Date
WO2009003362A1 true WO2009003362A1 (fr) 2009-01-08

Family

ID=39035399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001223 WO2009003362A1 (fr) 2007-06-29 2008-06-25 Machine hydraulique de type pour véhicule à pales tournantes

Country Status (2)

Country Link
CN (1) CN101100974A (zh)
WO (1) WO2009003362A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003326A (zh) * 2010-11-18 2011-04-06 哈尔滨工程大学 一种垂直轴菱形流体动能发电转换装置
JP5652929B1 (ja) * 2014-07-09 2015-01-14 良輔 三澤 風力発電装置
US11493022B2 (en) 2019-05-10 2022-11-08 Guang Rong Liu Vertical axis wind-powered generator using guided carts

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101457745A (zh) * 2008-12-14 2009-06-17 周文珺 回转扑翼变径器
NO329353B1 (no) * 2009-07-31 2010-10-04 Aqua Energy Solutions As Vannstromkraftverk
JP5207412B2 (ja) * 2010-05-31 2013-06-12 良輔 三澤 風力発電装置
CN102410143B (zh) * 2011-12-16 2013-06-12 彭再军 轨道风帆发电装置
CN102650267B (zh) * 2012-04-16 2013-12-18 燕山大学 一种环形可倾风帆式风力发电机
CN104564486B (zh) * 2013-10-13 2016-08-31 雷升庆 一种用链条来同步垂直水车叶片的水车发电装置
US8950710B1 (en) * 2014-01-31 2015-02-10 Kitefarms LLC Apparatus for extracting power from fluid flow
CN103790775B (zh) * 2014-02-24 2016-05-18 严强 回旋体风力发电系统及其发电方法
WO2016130438A1 (en) * 2015-02-10 2016-08-18 Kitefarms LLC Apparatus for extracting power from fluid flow
ES2629761B1 (es) * 2016-02-11 2018-05-30 Smalle Technologies, S.L. Dispositivo para transformar energía del oleaje en energía eléctrica
CN107687396B (zh) * 2017-08-17 2019-10-18 刘海龙 轨道承载复叶片往复运行多机组发电风车及调向方法
CN109404218B (zh) * 2018-11-26 2021-01-12 江苏国泉泵业制造有限公司 一种地铁隧道顶部用风力发电装置
CN112709663B (zh) * 2021-01-26 2022-07-22 焦未来 一种利用水的压力转换机械能发电方法及其发电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730643A (en) * 1971-04-09 1973-05-01 F Davison Wind power machine
US4859146A (en) * 1984-07-19 1989-08-22 Labrador Gaudencio A United sail windmill
CN2069931U (zh) * 1989-12-31 1991-01-23 刘兴和 链式水力发动机
JP2003013834A (ja) * 2001-06-26 2003-01-15 Zenzo Ichihara 水中多軸水車動力変換機
CN2670234Y (zh) * 2003-11-29 2005-01-12 吴拥军 一种升力推进器
CN1898470A (zh) * 2003-12-27 2007-01-17 张桔熏 风轮机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730643A (en) * 1971-04-09 1973-05-01 F Davison Wind power machine
US4859146A (en) * 1984-07-19 1989-08-22 Labrador Gaudencio A United sail windmill
CN2069931U (zh) * 1989-12-31 1991-01-23 刘兴和 链式水力发动机
JP2003013834A (ja) * 2001-06-26 2003-01-15 Zenzo Ichihara 水中多軸水車動力変換機
CN2670234Y (zh) * 2003-11-29 2005-01-12 吴拥军 一种升力推进器
CN1898470A (zh) * 2003-12-27 2007-01-17 张桔熏 风轮机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003326A (zh) * 2010-11-18 2011-04-06 哈尔滨工程大学 一种垂直轴菱形流体动能发电转换装置
JP5652929B1 (ja) * 2014-07-09 2015-01-14 良輔 三澤 風力発電装置
US11493022B2 (en) 2019-05-10 2022-11-08 Guang Rong Liu Vertical axis wind-powered generator using guided carts

Also Published As

Publication number Publication date
CN101100974A (zh) 2008-01-09

Similar Documents

Publication Publication Date Title
WO2009003362A1 (fr) Machine hydraulique de type pour véhicule à pales tournantes
US7989973B2 (en) Fluid-responsive oscillation power generation method and apparatus
US8076791B2 (en) Wind and water turbine
US4270056A (en) Undershot current motor
CA2779820C (en) Hydrokinetic energy conversion system
GB2486912A (en) Generating energy from the flow of water; controlling water level at a barrage
AU2009100211A4 (en) System for generating power by river flow
CN105840410A (zh) 摆翼式海流能发电装置
CN100462553C (zh) 可调双叶片斗传动链式水轮机
CN103321825A (zh) 一种叶片姿势可变的潮流能获能水轮机
CN102996318A (zh) 一种漂浮共轭双轮水流挡聚装置
CN205663565U (zh) 摆翼式海流能发电装置
CN203412692U (zh) 一种叶片姿势可变的潮流能获能水轮机
TWI697615B (zh) 往復式水力發電機構
KR20060022623A (ko) 수직축 캠구동 가변날개형 풍력발생기
CN200961558Y (zh) 流水发电器
CN107939701A (zh) 滚转式流体驱动装置
TWI744633B (zh) 具舉升功能之往復式水力發電機構
CN207033634U (zh) 低成本高效环保分流水能发电装置
CN101776034A (zh) 无坝水、风共用辊筒式发电装置
CN111395280A (zh) 无坝式水电站
CN206860355U (zh) 一种新型浮船桨板发电装置
CN203906165U (zh) 流水发电装置
CN202194770U (zh) 直翼水流发电装置
TWI728934B (zh) 具舉升葉片擺動式水力發電機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08772979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08772979

Country of ref document: EP

Kind code of ref document: A1