WO2009000963A1 - Inorganic-organic hybrid membrane for ionic interchange, preparation thereof and use in electrochemical devices - Google Patents

Inorganic-organic hybrid membrane for ionic interchange, preparation thereof and use in electrochemical devices Download PDF

Info

Publication number
WO2009000963A1
WO2009000963A1 PCT/ES2008/070127 ES2008070127W WO2009000963A1 WO 2009000963 A1 WO2009000963 A1 WO 2009000963A1 ES 2008070127 W ES2008070127 W ES 2008070127W WO 2009000963 A1 WO2009000963 A1 WO 2009000963A1
Authority
WO
WIPO (PCT)
Prior art keywords
membranes
preparation
hybrid
latex
protonic
Prior art date
Application number
PCT/ES2008/070127
Other languages
Spanish (es)
French (fr)
Inventor
Jose Ramon Francisco Jurado Egea
Angel Adolfo Del Campo
Eva Chinarro Martin
Berta Moreno Burriel
María CANILLAS PEREZ
Justo Brasero Espada
Original Assignee
Consejo Superior De Investigaciones Cientificas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2009000963A1 publication Critical patent/WO2009000963A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. in situ polymerisation or in situ crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • C08J2307/02Latex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is part of the area of chemistry and in particular falls within the sector of ion exchange membranes that can act as a separator and solid electrolyte in electrochemical devices such as sensors and gas separators, batteries or fuel cells.
  • Fuel cells with proton exchange electrolyte (PEMFC) have generated great interest due to the advantages they offer in applications in cars and electronic equipment, as a result of their operation at low temperatures (60-80 0 C). With them it is possible to obtain good current densities ( ⁇ 500 mA / cm 2 ) and if the amount of platinum could be reduced, which should be used as a catalyst, its costs would also be reduced rapidly. In addition, the energy density acquired with them is the highest within the different types of fuel cells.
  • an ion exchange membrane In general, for an ion exchange membrane to be used in all these applications it should have a high ionic selectivity, good ionic conductivity, low permeability to electrolyte-free diffusion, as well as good chemical stability, high mechanical resistance, high flexibility and Good dimensional stability In addition, if used in fuel cells, it should be impermeable to gases such as hydrogen and oxygen. Two other fundamental characteristics would be that It had a low cost and was easy to recycle to avoid damage to the environment.
  • perfluorosulfonated polymers Aciplex (from Asahi Chemical), Dow (from Dow Chemical) or the most used of all, Nafion, manufactured by DuPont, which has produced good results in batteries of fuel due to its high ionic conductivity at temperatures below 8O 0 C, and good chemical resistance.
  • perfluorosulfonated polymers have a high price and a negative effect on the environment, since they are difficult to recycle. In addition, they are not effective at temperatures above 8O 0 C because they suffer from remarkable dehydration (Kundu PP Reviews in Chemical Engineering 2006 VoI. 22, No. 3 pp. 125).
  • non-fluorinated ion exchange membranes based on polymers with high thermal and mechanical stability
  • They are generally polyaromatic or polyheterocyclic in nature: polysulfones (PSU), poly (ether-sulfone) (PSE), poly (ether ketone) (PEK), poly (ether-ether-ketone) (PEEK), polybenzoimidazoles (PBI) or polyimides (Pl).
  • PSU polysulfones
  • PSE poly (ether-sulfone)
  • PEK poly (ether ketone)
  • PEEK poly (ether-ether-ketone)
  • PBI polybenzoimidazoles
  • Pl polyimides
  • this modification is usually of the chemical type and there are several possibilities: doped with acids and bases, direct sulfonation of the polymer chain, grafting of sulphonated or phosphorus functional groups, grafting of lateral polymer chains and subsequent sulfonation of the same, etc.
  • these non-fluorinated polymeric membranes can have ionic conductivities similar to those of perfluorosulfonated polymers, even at temperatures between 80 ° and 135 0 C, where the latter failed (Roziere J. Jones, DJ. Annual Review of Materials Research, 2003 VoI. 33 pp 503).
  • its price is similar or higher, since to its synthesis, which is expensive, joins the second modification step, which increases necessarily its price.
  • organic-inorganic hybrid membranes composed of a polymeric ionomeric matrix and a protonic conductor with moderate or high conductivity of the type: silica, heteropoly acids, lamellar metal phosphates or phosphates (Albertini, G., Casciola, M ., Annual Review of Materials Research, 2003 VoI. 33 pp 129).
  • This type of proton conductors has been incorporated into both traditional perfluorosulfonated polymers, Nafion type, and the more recently developed sulfonated polyaromatic or polyheterocyclic membranes.
  • the main obstacles to greater commercialization of polymeric electrolyte fuel cells are the high cost of the membranes known so far, their recycling, their low conductivity at relatively low humidity, the high permeability to methanol and the poor mechanical properties at temperatures above 13O 0 C.
  • the object of this invention is the preparation and industrial development of a new type of ion exchange membrane that can act as a separator and solid electrolyte in electrochemical devices such as sensors and gas separators, batteries or fuel cells.
  • It is an organic-inorganic hybrid membrane composed of a polymer matrix prepared from natural rubber pre-vulcanized latex and an inorganic proton conductor.
  • Our membranes have a proton conductivity similar to that of Nafion (the best known so far), with good thermal and chemical stability.
  • These are organic-inorganic hybrid membranes in which the polymer matrix is a crosslinked natural rubber latex.
  • the present invention describes organic-inorganic ion-exchange hybrid membranes comprising a matrix prepared from natural rubber latex and a proton conductor.
  • natural rubber latex in this type of membranes is a totally new aspect and gives these membranes excellent mechanical properties, especially in elongation at breakage, a flexibility far superior to the commercial membranes that exist in the market, and an excellent elasticity.
  • the method of preparing these membranes is simpler and cheaper than the conventional methods of membranes that currently exist in the market. In fact, use as matter premium a natural product of mass consumption, such as natural rubber latex.
  • An aspect of the present invention is the organic-inorganic hybrid ion exchange membrane, hereinafter hybrid membrane of the invention, comprising a matrix prepared from natural rubber latex and a proton conductor.
  • a proton conductor is understood as that material that allows the passage of protons through it.
  • a preferred aspect of the present invention is the hybrid membrane of the invention in which the natural rubber latex has been crosslinked by a pre-vulcanization reaction.
  • crosslinking by pre-vulcanization reaction the process by which the linear polyisoprene molecules that make up the latex particles are chemically crosslinked when the latex is in the form of an aqueous dispersion, before forming the membrane.
  • This reaction can be carried out in different ways: a) either with sulfur and accelerators, b) either with an organic peroxide and an initiator, c) with a diazide, or d) with ⁇ -radiations.
  • a more preferred aspect of the present invention is the hybrid membrane of the invention in which the natural rubber latex has been crosslinked with sulfur and accelerators.
  • Another more preferred aspect of the present invention is the hybrid membrane of the invention in which the natural rubber latex has been crosslinked with organic peroxides.
  • Another preferred aspect of the present invention is the hybrid membrane of the invention in which the protonic conductor is a fluoro acid. This is the first time that fluoro acids are used as protonic conductors in proton exchange membranes.
  • Another more preferred aspect of the present invention is the hybrid membrane of the invention in which the fluoroacid of the protonic conductor is a fluorosilicate and / or a fluorotitanate.
  • a particular embodiment of the present invention is the hybrid membrane of the invention in which the fluoroacid of the protonic conductor is potassium fluorotitanate.
  • Another particular embodiment of the present invention is the hybrid membrane of the invention in which the fluoroacid of the protonic conductor is potassium fluorosilicate.
  • Another preferred aspect of the present invention is the hybrid membrane of the invention in which the protonic conductor is S ⁇ O2, T ⁇ O2 and / or ZrO 2 .
  • Another more preferred aspect of the present invention is the hybrid membrane of the invention in which the protonic conductor of SiO 2 , TiO 2 and / or ZrO 2 has been previously prepared by the sol-gel method.
  • Another aspect of the present invention is the process of preparing the hybrid membranes of the invention comprising the steps: - pre-vulcanization of the latex
  • Another preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the pre-machining of the latex is carried out by means of a cross-linking system based on: a) sulfur and accelerators, b) or organic peroxides .
  • aqueous dispersion of all the necessary reagents a) either sulfur and accelerators, b) either an organic peroxide and an initiator, and the corresponding surfactants and dispersants that will help the formation and stability of said dispersion , in addition to antioxidants.
  • all the ingredients mixed with water are introduced in a proportion less than 50% by weight in a ball mill and stirred for the time necessary to obtain an optimum particle size.
  • the pre-vulcanization of the latex is carried out, for which the dispersion of the vulcanization system agents is added and heated between 30 and 7O 0 C for 2-15 hours, until reaching the necessary cross-linking degree.
  • the pre-vulcanized latex is conveniently stabilized with the most suitable surfactants in order to guarantee its stability during the expected storage time.
  • Another preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the protonic conductors used are S ⁇ O2, T ⁇ O2 and Zr ⁇ 2 obtained by sol-gel.
  • the dispersions of the oxides obtained by the sol-gel method are prepared by hydrolyzing a solution of an alkoxide of the starting metal in an ethanol-water mixture.
  • Another preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the protonic conductor used is a fluoro acid.
  • the protonic conductor used is a fluoro acid.
  • a dispersion of the fluoro acids with a concentration between 20 and 50% by weight is prepared by grinding them in a ball mill with the amount of water and surfactants needed.
  • Another more preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the fluoroacid used as a protonic conductor is a fluorosilicate and / or fluorotitanate.
  • Another particular embodiment of the present invention is the process for preparing the hybrid membranes of the invention in which the fluoroacid used as a protonic conductor is potassium fluorosilicate or potassium fluorotitanate.
  • Another preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the content of the protonic conductor used is comprised between 0.1 and 50% by weight.
  • the pre-machined latex is placed in a container provided with mechanical agitation and the dispersion of the proton conductor is gradually added. Meanwhile, parameters of the mixture such as viscosity, surface tension or pH are controlled to prevent coagulation, for which different additives must be added to the mixture as ionic and non-ionic surfactants or acids and bases.
  • the next step is to prepare the membrane. At this point it is essential that the viscosity and surface tension of the mixture are adequate, and that they are controlled at all times.
  • a film of the mixture is spread on a glass mold and allowed to dry at a temperature between 50 and 8O 0 C for a time of less than 60 minutes, suitable for each mixture.
  • the mold is immersed in a water bath and the membrane is demoulded, keeping it always submerged and as extended as possible. Once demoulded, it is extracted from the water and spread on a non-stick surface to let it dry.
  • Another preferred aspect of the present invention is the process of preparing the hybrid membranes of the invention in which the forming is carried out at a temperature between 50 and 8O 0 C for a time of less than 60 minutes, by demolding them by immersion in a bath of Water.
  • Another aspect of the present invention is the use of the hybrid membranes of the invention as separators.
  • Another preferred aspect of the present invention is the use of the hybrid membranes of the invention as a selective heavy metal separator.
  • Another preferred aspect of the present invention is the use of the hybrid membranes of the invention as gas separators and sensors.
  • Another aspect of the present invention is the use of the hybrid membranes of the invention as solid electrolytes in electrochemical devices
  • Another preferred aspect of the present invention is the use of the hybrid membranes of the invention as proton exchange membranes in fuel cells.
  • the hybrid membranes of the invention have 100% deformation modules of less than 1.6 MPa, while 900% in most cases exceed 20 MPa, which means that they are quite elastic despite having incorporated the protonic conductor All have a breakage behavior with good performance, since the load at breakage varies between 15 and 30 MPa with maximum deformations greater than 700%, very suitable for assembly under high MEA pressures in PEMFC batteries.
  • the water absorption capacity of the hybrid membranes of the invention calculated by immersing them in distilled water for 24 hours and weighing them before and after drying them under vacuum, increases between 5 and 25% by weight with the proton conductor content.
  • thermogravimetric analysis The thermal resistance of the hybrid membranes of the invention, tested by thermogravimetric analysis, is remarkable, since no weight loss has been observed below the thermal decomposition temperature of the latex itself, which occurs around 38O 0 C, and in all cases higher than 33O 0 C.
  • EXAMPLE 1 Preparation of a membrane pre-vulcanized with sulfur, with 25% by weight of K 2 TiF 6
  • a dispersion is prepared with the necessary ingredients to pre-vulcanize the latex.
  • 100 g of sulfur, 50 g of zinc diethyldithiocarbamate, 20 g of zinc oxide, 20 g of antioxidant, 2 g of potassium caprylate, 2 g of casein and 200 g of water are introduced into a ball mill, and Stir for two hours.
  • 300 g of concentrated latex (65% by weight of rubber) 15.4 g of the dispersion prepared as mentioned above, and 39.5 g of water are added to a tank equipped with a mechanical stirring system.
  • 10 g of 10% aqueous potassium caprilate solution and 10 g of Emulvin (a non-ionic surfactant) are added. The mixture is stirred at 200 rpm and heated for 6 hours at 60 or V "and.
  • the last step is the preparation of the mixture, for which 200 grams of pre-machined latex, 185 grams of the dispersion of K 2 TiF 6 , 1 ml of KOH solution at 10 are added in a vessel equipped with mechanical agitation (200 rpm). % and 1 ml of 10% potassium Caprilate solution. It is stirred for 3 hours at room temperature. After that time taken Pipette 3 ml of the mixture was spread over a glass level to the required thickness and dried in an oven at 7O 0 C for 60 minutes. The mold is then immersed in a water bath and the membrane is demoulded, keeping it always submerged and more extended possible. Once demoulded, it is extracted from the water and spread on a non-stick surface to let it dry.
  • 150 ⁇ m thick membranes have been prepared with a conductivity of 2x10 "3 S / cm at 6O 0 C and 81% relative humidity.
  • these membranes are very elastic, with a modulus at 100% very low deformation, 1, 03 MPa, and a 500% module of 6.15 MPa.
  • they are also very resistant since they extend 770% before breaking with a breaking load of 21, 1 MPa.
  • they have a high thermal resistance, since their decomposition temperature, calculated by thermogravimetry is 365 0 C.
  • water absorption after 24 hours of immersion in distilled water they absorbed 10% by weight.
  • EXAMPLE 2 Preparation of a peroxide pre-lean membrane, with 33% by weight of K 2 SiF 6
  • the pre-vulcanization of the latex is carried out as described in example 1.
  • SIO 2 was prepared by sol-gel from tetraethyl orthosilicate (TEOS), with which a mixture of TEOS / water was prepared in an 80/1 ratio.
  • TEOS tetraethyl orthosilicate
  • nitric acid 10 ⁇ 3 M was added, to carry out the acid hydrolysis, to a pH ⁇ 3, and it was allowed to stir for 12-15 hours at room temperature. After the hydrolysis a transparent sun is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Organic-inorganic hybrid membrane characterized in that it comprises a polymer matrix prepared from natural rubber prevulcanized latex and several inorganic proton conductors, which can act as a separator and solid electrolyte in electrochemical devices such as, sensors and separators of gases, batteries or fuel cells. All this gives them excellent mechanical properties, in particular in stretching to breaking point, flexibility which is much superior to that of its competitors, and unsurpassable elasticity. The production process is rapid and simple; it does not require high temperatures or pressures, so that it does not involve high energy costs. In addition, no solvents are required, meaning that it is not pollutant and also it is much more economical.

Description

MEMBRANA HÍBRIDA ORGÁNICO-INORGÁNICA DE INTERCAMBIO IÓNICO, SU PREPARACIÓN Y UTILIZACIÓN EN DISPOSITIVOS ELECTROQUÍMICOS ORGANIC-INORGANIC HYBRID MEMBRANE OF ION EXCHANGE, ITS PREPARATION AND USE IN ELECTROCHEMICAL DEVICES
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
La presente invención forma parte del área de Ia química y en particular se encuadra en el sector de las membranas de intercambio iónico que puede actuar como separador y electrolito sólido en dispositivos electroquímicos tales como, sensores y separadores de gases, baterías o pilas de combustible.The present invention is part of the area of chemistry and in particular falls within the sector of ion exchange membranes that can act as a separator and solid electrolyte in electrochemical devices such as sensors and gas separators, batteries or fuel cells.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
Las celdas de combustible con electrolito de intercambio de protones (PEMFC) han generado gran interés debido a las ventajas que ofrecen en aplicaciones en automóviles y en equipos electrónicos, como consecuencia de su funcionamiento a bajas temperaturas (60-800C). Con ellas es posible obtener buenas densidades de corriente (~ 500 mA/cm2) y si se pudiera reducir Ia cantidad de platino, que debe ser empleado como catalizador, sus costes también se reducirían rápidamente. Además, Ia densidad energética adquirida con ellas, es Ia mayor dentro de los diferentes tipos de pilas de combustible.Fuel cells with proton exchange electrolyte (PEMFC) have generated great interest due to the advantages they offer in applications in cars and electronic equipment, as a result of their operation at low temperatures (60-80 0 C). With them it is possible to obtain good current densities (~ 500 mA / cm 2 ) and if the amount of platinum could be reduced, which should be used as a catalyst, its costs would also be reduced rapidly. In addition, the energy density acquired with them is the highest within the different types of fuel cells.
En general, para que una membrana de intercambio iónico se pudiese utilizar en todas esas aplicaciones debería presentar una selectividad iónica alta, buena conductividad iónica, baja permeabilidad a Ia difusión libre de electrolitos, así como buena estabilidad química, alta resistencia mecánica, alta flexibilidad y buena estabilidad dimensional. Además, en el caso de que se usase en pilas de combustible, debería ser impermeable a gases como el hidrógeno y el oxígeno. Otras dos características fundamentales serían que tuviese un bajo coste y que fuese fácil de reciclar para evitar daños al medio ambiente.In general, for an ion exchange membrane to be used in all these applications it should have a high ionic selectivity, good ionic conductivity, low permeability to electrolyte-free diffusion, as well as good chemical stability, high mechanical resistance, high flexibility and Good dimensional stability In addition, if used in fuel cells, it should be impermeable to gases such as hydrogen and oxygen. Two other fundamental characteristics would be that It had a low cost and was easy to recycle to avoid damage to the environment.
Actualmente existen en el mercado varias membranas de intercambio iónico basadas en polímeros perfluorosulfonados, Aciplex (de Asahi Chemical), Dow (de Dow Chemical) o el más usado de todos, el Nafion, fabricado por DuPont, que ha dado buenos resultados en pilas de combustible debido a su alta conductividad iónica a temperaturas menores de 8O0C, y buena resistencia química. Sin embargo, los polímeros perfluorosulfonados tienen un elevado precio y un efecto negativo sobre el medio ambiente, ya que son difíciles de reciclar. Además, no son efectivos a temperaturas superiores a 8O0C debido a que sufren una notable deshidratación (Kundu P.P. Reviews in Chemical Engineering 2006 VoI. 22, No. 3 pp. 125).There are currently several ion exchange membranes on the market based on perfluorosulfonated polymers, Aciplex (from Asahi Chemical), Dow (from Dow Chemical) or the most used of all, Nafion, manufactured by DuPont, which has produced good results in batteries of fuel due to its high ionic conductivity at temperatures below 8O 0 C, and good chemical resistance. However, perfluorosulfonated polymers have a high price and a negative effect on the environment, since they are difficult to recycle. In addition, they are not effective at temperatures above 8O 0 C because they suffer from remarkable dehydration (Kundu PP Reviews in Chemical Engineering 2006 VoI. 22, No. 3 pp. 125).
En los últimos años ha surgido una nueva generación de membranas de intercambio iónico no-fluoradas basadas en polímeros con alta estabilidad térmica y mecánica. Generalmente son de naturaleza poliaromática o poliheterocíclica: polisulfonas (PSU), poli(éter-sulfona) (PSE), poli(éter- cetona) (PEK), poli(éter-éter-cetona) (PEEK), polibenzoimidazoles (PBI) o poliimidas (Pl). Sin embargo, estos polímeros, por si solos, son aislantes, por Io que deben ser modificadas de alguna manera. Por Io general esta modificación suele ser de tipo químico y existen varias posibilidades: dopado con ácidos y bases, sulfonación directa de Ia cadena polimérica, injerto de grupos funcionales sulfonados o fosforados, injerto de cadenas poliméricas laterales y posterior sulfonación de las mismas, etc. Una vez modificadas, estas membranas poliméricas no-fluoradas pueden llegar a tener conductividades iónicas similares a las de los polímeros perfluorosulfonados, incluso a temperaturas entre 80° y 1350C, donde éstas últimas fallaban (Roziere J. Jones, DJ. Annual Review of Materials Research, 2003 VoI. 33 pp 503). Sin embargo, su precio es similar o superior, ya que a su síntesis, que es costosa, se une el segundo paso de modificación, que aumenta necesariamente su precio. Por otra parte, aunque estos polímeros presentan buenas propiedades mecánicas, carecen de flexibilidad. Además, Ia modificación, que por Io general consiste en una reacción de sulfonación, suele reducir notablemente las propiedades mecánicas de dichas membranas. Desde el punto de vista ecológico hay que decir que tanto Ia síntesis como las reacciones de modificación de todos estos polímeros requieren el uso de grandes cantidades de disolventes, en su mayoría organoclorados, Io que implica un cierto riesgo tanto para Ia naturaleza como para Ia salud.In recent years, a new generation of non-fluorinated ion exchange membranes based on polymers with high thermal and mechanical stability has emerged. They are generally polyaromatic or polyheterocyclic in nature: polysulfones (PSU), poly (ether-sulfone) (PSE), poly (ether ketone) (PEK), poly (ether-ether-ketone) (PEEK), polybenzoimidazoles (PBI) or polyimides (Pl). However, these polymers, by themselves, are insulators, so they must be modified in some way. In general, this modification is usually of the chemical type and there are several possibilities: doped with acids and bases, direct sulfonation of the polymer chain, grafting of sulphonated or phosphorus functional groups, grafting of lateral polymer chains and subsequent sulfonation of the same, etc. Once modified, these non-fluorinated polymeric membranes can have ionic conductivities similar to those of perfluorosulfonated polymers, even at temperatures between 80 ° and 135 0 C, where the latter failed (Roziere J. Jones, DJ. Annual Review of Materials Research, 2003 VoI. 33 pp 503). However, its price is similar or higher, since to its synthesis, which is expensive, joins the second modification step, which increases necessarily its price. On the other hand, although these polymers have good mechanical properties, they lack flexibility. In addition, the modification, which generally consists of a sulfonation reaction, usually significantly reduces the mechanical properties of said membranes. From the ecological point of view it must be said that both the synthesis and the modification reactions of all these polymers require the use of large amounts of solvents, mostly organochlorine, which implies a certain risk for both nature and health. .
Durante Ia última década se vienen desarrollando membranas híbridas orgánico-inorgánicas compuestas por una matriz ionomérica de carácter polimérico y un conductor protónico con moderada o alta conductividad del tipo: sílice, heteropoliácidos, fosfatos metálicos laminares o fosfacenos (Albertini, G., Casciola, M., Annual Review of Materials Research, 2003 VoI. 33 pp 129). Este tipo de conductores protónicos se han incorporado tanto a los polímeros perfluorosulfonados tradicionales, tipo Nafion, como a las más recientemente desarrolladas membranas poliaromáticas o poliheterocíclicas sulfonadas.During the last decade, organic-inorganic hybrid membranes have been developed, composed of a polymeric ionomeric matrix and a protonic conductor with moderate or high conductivity of the type: silica, heteropoly acids, lamellar metal phosphates or phosphates (Albertini, G., Casciola, M ., Annual Review of Materials Research, 2003 VoI. 33 pp 129). This type of proton conductors has been incorporated into both traditional perfluorosulfonated polymers, Nafion type, and the more recently developed sulfonated polyaromatic or polyheterocyclic membranes.
Se han patentado y aplicado diversas membranas elastoméricas preparadas a partir de mezclas en estado sólido de EPDM y HSBS (copolímero de bloque de estireno-butadieno hidrogenado) sulfonado (Escribano, P. G.; Del Rio, C. J. of Applied Polymer Science 2006, 102, y Bashir, H.; Acosta, J. L. J. of Membrana Science 2005, 253, 33), así como de este último con diversos termoplásticos (Escribano, P. G.; Acosta, J. L. J. of Applied Polymer Science 2004, 93, 2394). Sin embargo, sólo se ha encontrado una cita en Ia que se incorporase caucho natural a estas membranas elastoméricas sulfonadas (Nacher, A. Tesis Doctoral, Universidad Complutense de Madrid, 2006). También han aparecido diversos artículos sobre el uso de látex sintéticos de copolímeros de acrilato de butilo (BA) y metilmetacrilato (MMA) con estireno sulfonado (NaSS) (Gao, J.; Lee, D.; Frisken, BJ. Macromolecules 2005, 38, 5854 y Gao, J.; Lee, D.; Frisken, BJ. Macromolecules 2006, 39, 8060), pero no hemos encontrado ningún trabajo en el que se preparen membranas para pilas de PEMFC y DMFC partiendo de látex de caucho natural. En cuanto a los conductores protónicos usados en esta invención, hay que decir que existen muchos trabajos en los que se incorpora sílice sintetizada por el método sol-gel en membranas de intercambio protónico preparadas a partir tanto de Nafion (Sahu A. K.; Selvarini G. J. of Electrochemical Society 2007, 154, B123 y Miyake, N.; Savinell, R.F. J. of Electrochemical Society 2001 , 148, A898) como de otros polímeros (Shahi, V.K. Solid State lonics 2007, 177, 3395 y Lee, C. H.; Hwang, S.Y. J. o f Power Sources 2006, 163, 339). Sin embargo, en el caso de los fluoroácidos no existe aplicación alguna en el campo de las pilas de combustible.Various elastomeric membranes prepared from solid-state blends of EPDM and HSBS (hydrogenated styrene-butadiene block copolymer) sulfonated (Escribano, PG; Del Rio, CJ of Applied Polymer Science 2006, 102, and Bashir have been patented and applied , H .; Acosta, JLJ of Membrana Science 2005, 253, 33), as well as the latter with various thermoplastics (Escribano, PG; Acosta, JLJ of Applied Polymer Science 2004, 93, 2394). However, only one appointment has been found in which natural rubber was incorporated into these sulfonated elastomeric membranes (Nacher, A. Doctoral Thesis, Complutense University of Madrid, 2006). Various articles have also appeared on the use of synthetic latex copolymers of butyl acrylate (BA) and methyl methacrylate (MMA) with styrene sulfonated (NaSS) (Gao, J .; Lee, D .; Frisken, BJ. Macromolecules 2005, 38, 5854 and Gao, J .; Lee, D .; Frisken, BJ. Macromolecules 2006, 39, 8060), but not We have found no work in which membranes for PEMFC and DMFC batteries are prepared starting from natural rubber latex. As for the proton conductors used in this invention, it must be said that there are many works in which silica synthesized by the sol-gel method is incorporated into proton exchange membranes prepared from both Nafion (Sahu AK; Selvarini GJ of Electrochemical Society 2007, 154, B123 and Miyake, N .; Savinell, RFJ of Electrochemical Society 2001, 148, A898) and other polymers (Shahi, VK Solid State lonics 2007, 177, 3395 and Lee, CH; Hwang, SYJ of Power Sources 2006, 163, 339). However, in the case of fluoro acids there is no application in the field of fuel cells.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
Breve descripción de Ia invenciónBrief description of the invention
Los principales obstáculos para una mayor comercialización de las pilas de combustible de electrolito polimérico son el alto coste de las membranas conocidas hasta el momento, su reciclado, su baja conductividad a humedades relativamente bajas, Ia alta permeabilidad al metanol y las pobres propiedades mecánicas a temperaturas por encima de 13O0C.The main obstacles to greater commercialization of polymeric electrolyte fuel cells are the high cost of the membranes known so far, their recycling, their low conductivity at relatively low humidity, the high permeability to methanol and the poor mechanical properties at temperatures above 13O 0 C.
El objeto de esta invención es Ia preparación y desarrollo industrial de un nuevo tipo de membrana de intercambio iónico que puede actuar como separador y electrolito sólido en dispositivos electroquímicos tales como, sensores y separadores de gases, baterías o pilas de combustible. Se trata de una membrana híbrida orgánico-inorgánica compuesta por una matriz polimérica preparada a partir de látex prevulcanizado de caucho natural y un conductor protónico inorgánico. Nuestras membranas presentan una conductividad protónica similar a Ia del Nafion (Ia mejor conocida hasta el momento), con buena estabilidad térmica y química. Se trata de membranas de carácter híbrido orgánico-inorgánico en las que Ia matriz polimérica es un látex de caucho natural entrecruzado. Esto les confiere unas excelentes propiedades mecánicas, sobretodo en alargamiento a Ia rotura, una flexibilidad muy superior a Ia de todas sus competidoras, y una inmejorable elasticidad, por Io que podrían actuar a Ia vez como membrana y como sello, necesario en el ensamblaje de Ia pila, disminuyendo el peso, el volumen, y finalmente el costo de Ia misma. Además, su precio sería muy inferior al del resto de las membranas comerciales, ya que, al ser el látex de caucho natural un producto de origen vegetal absolutamente reciclable, y de consumo masivo, su precio es varias veces menor que el de los polímeros sintéticos derivados del petróleo usados en el resto de membranas. El proceso de producción es rápido y sencillo, no necesita ni temperaturas ni presiones elevadas, por Io que no supone un gran gasto energético. Por otra parte, no requiere el uso de ningún disolvente, ya que todas Ia dispersiones son en fase acuosa, por Io que no es contaminante y además es mucho mas barato.The object of this invention is the preparation and industrial development of a new type of ion exchange membrane that can act as a separator and solid electrolyte in electrochemical devices such as sensors and gas separators, batteries or fuel cells. It is an organic-inorganic hybrid membrane composed of a polymer matrix prepared from natural rubber pre-vulcanized latex and an inorganic proton conductor. Our membranes have a proton conductivity similar to that of Nafion (the best known so far), with good thermal and chemical stability. These are organic-inorganic hybrid membranes in which the polymer matrix is a crosslinked natural rubber latex. This gives them excellent mechanical properties, especially in elongation at breakage, a flexibility far superior to that of all their competitors, and an excellent elasticity, so they could act both as a membrane and as a seal, necessary in the assembly of The stack, decreasing the weight, volume, and finally the cost thereof. In addition, its price would be much lower than the rest of the commercial membranes, since, since natural rubber latex is a product of absolutely recyclable vegetable origin, and of mass consumption, its price is several times lower than that of synthetic polymers petroleum derivatives used in other membranes. The production process is fast and simple, it does not need high temperatures or pressures, so it does not involve a large energy expenditure. On the other hand, it does not require the use of any solvent, since all the dispersions are in the aqueous phase, so it is not polluting and is also much cheaper.
Descripción detallada de Ia invenciónDetailed description of the invention
La presente invención describe unas membranas híbridas orgánico- inorgánicas de intercambio iónico que comprenden una matriz preparada a partir de látex de caucho natural y un conductor protónico. La utilización de látex de caucho natural en este tipo de membranas es un aspecto totalmente novedoso y confiere, a estas membranas, unas excelentes propiedades mecánicas, sobretodo en alargamiento a Ia rotura, una flexibilidad muy superior a las membranas comerciales que existen en el mercado, y una inmejorable elasticidad. El método de preparación de estas membranas es más sencillo y barato que los métodos convencionales de las membranas que existen actualmente en el mercado. De hecho, utiliza como materia prima un producto natural de consumo masivo, como es el látex de caucho natural.The present invention describes organic-inorganic ion-exchange hybrid membranes comprising a matrix prepared from natural rubber latex and a proton conductor. The use of natural rubber latex in this type of membranes is a totally new aspect and gives these membranes excellent mechanical properties, especially in elongation at breakage, a flexibility far superior to the commercial membranes that exist in the market, and an excellent elasticity. The method of preparing these membranes is simpler and cheaper than the conventional methods of membranes that currently exist in the market. In fact, use as matter premium a natural product of mass consumption, such as natural rubber latex.
Un aspecto de Ia presente invención es Ia membrana híbrida orgánico-inorgánica de intercambio iónico, en adelante membrana híbrida de Ia invención, que comprende una matriz preparada a partir de látex de caucho natural y un conductor protónico.An aspect of the present invention is the organic-inorganic hybrid ion exchange membrane, hereinafter hybrid membrane of the invention, comprising a matrix prepared from natural rubber latex and a proton conductor.
En Ia presente invención se entiende por conductor protónico a aquel material que permite el paso de protones a través del mismo.In the present invention, a proton conductor is understood as that material that allows the passage of protons through it.
Un aspecto preferente de Ia presente invención es Ia membrana híbrida de Ia invención en Ia que el látex de caucho natural se ha entrecruzado por una reacción de prevulcanización.A preferred aspect of the present invention is the hybrid membrane of the invention in which the natural rubber latex has been crosslinked by a pre-vulcanization reaction.
En Ia presente invención se entiende por entrecruzamiento por reacción de prevulcanización el proceso por el cual las moléculas lineales de poliisopreno que componen las partículas de látex se entrecruzan químicamente cuando el látex está en forma de dispersión acuosa, antes de conformar Ia membrana. Esta reacción se puede llegar a cabo de diferentes maneras: a) bien con azufre y acelerantes, b) bien con un peróxido orgánico y un iniciador, c) con una diazida, o d) con radiaciones-γ.In the present invention it is understood by crosslinking by pre-vulcanization reaction the process by which the linear polyisoprene molecules that make up the latex particles are chemically crosslinked when the latex is in the form of an aqueous dispersion, before forming the membrane. This reaction can be carried out in different ways: a) either with sulfur and accelerators, b) either with an organic peroxide and an initiator, c) with a diazide, or d) with γ-radiations.
Un aspecto más preferente de Ia presente invención es Ia membrana híbrida de Ia invención en Ia que el látex de caucho natural se ha entrecruzado con azufre y acelerantes.A more preferred aspect of the present invention is the hybrid membrane of the invention in which the natural rubber latex has been crosslinked with sulfur and accelerators.
Otro aspecto más preferente de Ia presente invención es Ia membrana híbrida de Ia invención en Ia que el látex de caucho natural se ha entrecruzado con peróxidos orgánicos. Otro aspecto preferente de Ia presente invención es Ia membrana híbrida de Ia invención en Ia que el conductor protónico es un fluoroácido. Esta es Ia primera vez que se utilizan fluoroácidos como conductores protónicos en membranas de intercambio protónico.Another more preferred aspect of the present invention is the hybrid membrane of the invention in which the natural rubber latex has been crosslinked with organic peroxides. Another preferred aspect of the present invention is the hybrid membrane of the invention in which the protonic conductor is a fluoro acid. This is the first time that fluoro acids are used as protonic conductors in proton exchange membranes.
Otro aspecto más preferente de Ia presente invención es Ia membrana híbrida de Ia invención en Ia que el fluoroácido del conductor protónico es un fluorosilicato y/o un fluorotitanato.Another more preferred aspect of the present invention is the hybrid membrane of the invention in which the fluoroacid of the protonic conductor is a fluorosilicate and / or a fluorotitanate.
Una realización particular de Ia presente invención es Ia membrana híbrida de Ia invención en Ia que el fluoroácido del conductor protónico es fluorotitanato potásico.A particular embodiment of the present invention is the hybrid membrane of the invention in which the fluoroacid of the protonic conductor is potassium fluorotitanate.
Otra realización particular de Ia presente invención es Ia membrana híbrida de Ia invención en Ia que el fluoroácido del conductor protónico es fluorosilicato potásico.Another particular embodiment of the present invention is the hybrid membrane of the invention in which the fluoroacid of the protonic conductor is potassium fluorosilicate.
Otro aspecto preferente de Ia presente invención es Ia membrana híbrida de Ia invención en Ia que el conductor protónico es SÍO2, TΪO2 y/o ZrO2.Another preferred aspect of the present invention is the hybrid membrane of the invention in which the protonic conductor is SÍO2, TΪO2 and / or ZrO 2 .
Otro aspecto más preferente de Ia presente invención es Ia membrana híbrida de Ia invención en Ia que el conductor protónico de SiO2, TiO2 y/o ZrO2 ha sido preparado previamente por el método sol-gel.Another more preferred aspect of the present invention is the hybrid membrane of the invention in which the protonic conductor of SiO 2 , TiO 2 and / or ZrO 2 has been previously prepared by the sol-gel method.
El proceso de preparación de estas membranas es rápido y sencillo, no necesita ni temperaturas ni presiones elevadas, por Io que no supone un gasto energético apreciable. Por otra parte, no requiere el uso de ningún disolvente, por Io que es inocuo desde el punto de vista medioambiental y además más barato que los procedimientos convencionales de preparación de membranas. Otro aspecto de Ia presente invención es el procedimiento de preparación de las membranas híbridas de Ia invención que comprende las etapas: - prevulcanización del látexThe process of preparing these membranes is fast and simple, it does not need high temperatures or pressures, so it does not mean an appreciable energy expenditure. On the other hand, it does not require the use of any solvent, so it is environmentally safe and also cheaper than conventional membrane preparation procedures. Another aspect of the present invention is the process of preparing the hybrid membranes of the invention comprising the steps: - pre-vulcanization of the latex
- preparación de Ia dispersión del conductor protónico- preparation of the proton conductor dispersion
- mezcla del conductor protónico con el látex- mixing of the protonic conductor with the latex
- conformado de las membranas- membrane shaping
Otro aspecto preferente de Ia presente invención es el procedimiento de preparación de las membranas híbridas de Ia invención en el que Ia prevulcanización del látex se lleva a cabo mediante un sistema de entrecruzamiento basado en: a) azufre y acelerantes, b) o en peróxidos orgánicos.Another preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the pre-machining of the latex is carried out by means of a cross-linking system based on: a) sulfur and accelerators, b) or organic peroxides .
Para prevulcanizar el látex primero hay que hacer una dispersión acuosa de todos los reactivos necesarios: a) bien azufre y acelerantes, b) bien un peróxido orgánico y un iniciador, y los correspondientes tensoactivos y dispersantes que ayudarán a Ia formación y estabilidad de dicha dispersión, además de antioxidantes. Para ello se introducen todos los ingredientes mezclados con agua en una proporción menor al 50% en peso en un molino de bolas y se agita durante el tiempo necesario para obtener un tamaño de partícula óptimo. A continuación se procede a Ia prevulcanización del látex, para Io cual se añade Ia dispersión de los agentes del sistema de vulcanización y se calienta entre 30 y 7O0C durante 2-15 horas, hasta alcanzar el grado de entrecruzamiento necesario. Una vez hecho esto, el látex prevulcanizado se estabiliza convenientemente con los tensoactivos más adecuados para poder garantizar su estabilidad durante el tiempo de almacenamiento previsto. Otro aspecto preferente de Ia presente invención es el procedimiento de preparación de las membranas híbridas de Ia invención en el que los conductores protónicos usados son SÍO2, TΪO2 y Zrθ2 obtenidos por sol-gel. Las dispersiones de los óxidos obtenidos por el método sol-gel se preparan hidrolizando una disolución de un alcóxido del metal de partida en una mezcla etanol-agua.To pre-vulcanize the latex, it is first necessary to make an aqueous dispersion of all the necessary reagents: a) either sulfur and accelerators, b) either an organic peroxide and an initiator, and the corresponding surfactants and dispersants that will help the formation and stability of said dispersion , in addition to antioxidants. To this end, all the ingredients mixed with water are introduced in a proportion less than 50% by weight in a ball mill and stirred for the time necessary to obtain an optimum particle size. Next, the pre-vulcanization of the latex is carried out, for which the dispersion of the vulcanization system agents is added and heated between 30 and 7O 0 C for 2-15 hours, until reaching the necessary cross-linking degree. Once this is done, the pre-vulcanized latex is conveniently stabilized with the most suitable surfactants in order to guarantee its stability during the expected storage time. Another preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the protonic conductors used are SÍO2, TΪO2 and Zrθ2 obtained by sol-gel. The dispersions of the oxides obtained by the sol-gel method are prepared by hydrolyzing a solution of an alkoxide of the starting metal in an ethanol-water mixture.
Otro aspecto preferente de Ia presente invención es el procedimiento de preparación de las membranas híbridas de Ia invención en el que el conductor protónico usado es un fluoroácido. Para ello se prepara una dispersión de los fluoroácidos con una concentración entre el 20 y el 50% en peso moliéndolos en un molino de bolas con Ia cantidad de agua y tensoactivos necesarios.Another preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the protonic conductor used is a fluoro acid. For this, a dispersion of the fluoro acids with a concentration between 20 and 50% by weight is prepared by grinding them in a ball mill with the amount of water and surfactants needed.
Otro aspecto más preferente de Ia presente invención es el procedimiento de preparación de las membranas híbridas de Ia invención en el que el fluoroácido usado como conductor protónico es un fluorosilicato y/o fluorotitanato.Another more preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the fluoroacid used as a protonic conductor is a fluorosilicate and / or fluorotitanate.
Otra realización particular de Ia presente invención es el procedimiento de preparación de las membranas híbridas de Ia invención en el que el fluoroácido usado como conductor protónico es el fluorosilicato potásico o bien el fluorotitanato potásico.Another particular embodiment of the present invention is the process for preparing the hybrid membranes of the invention in which the fluoroacid used as a protonic conductor is potassium fluorosilicate or potassium fluorotitanate.
Otro aspecto preferente de Ia presente invención es el procedimiento de preparación de las membranas híbridas de Ia invención en el que el contenido del conductor protónico utilizado esta comprendido entre el 0,1 y el 50% en peso. El látex prevulcanizado se coloca en un recipiente provisto de agitación mecánica y se va añadiendo poco a poco Ia dispersión del conductor protónico. Mientras tanto, se controlan parámetros de Ia mezcla como Ia viscosidad, Ia tensión superficial o el pH para evitar su coagulación, para lo cual se deben ir añadiendo diferentes aditivos a Ia mezcla como tensoactivos iónicos y no iónicos o ácidos y bases.Another preferred aspect of the present invention is the process for preparing the hybrid membranes of the invention in which the content of the protonic conductor used is comprised between 0.1 and 50% by weight. The pre-machined latex is placed in a container provided with mechanical agitation and the dispersion of the proton conductor is gradually added. Meanwhile, parameters of the mixture such as viscosity, surface tension or pH are controlled to prevent coagulation, for which different additives must be added to the mixture as ionic and non-ionic surfactants or acids and bases.
Una vez preparada Ia mezcla látex-conductor protónico el paso siguiente es preparar Ia membrana. En este punto es fundamental que Ia viscosidad y Ia tensión superficial de Ia mezcla sean las adecuadas, y que estén controladas en todo momento. Se extiende una película de Ia mezcla sobre un molde de vidrio y se deja secar a una temperatura entre 50 y 8O0C durante un tiempo inferior a 60 minutos, adecuados para cada mezcla. Para desmoldear las membranas se sumerge el molde en un baño de agua y se desmoldea Ia membrana manteniéndola siempre sumergida y Io mas extendida posible. Una vez desmoldeada se extrae del agua y se extiende sobre una superficie no adherente para dejarla secar.Once the proton latex-conductive mixture is prepared, the next step is to prepare the membrane. At this point it is essential that the viscosity and surface tension of the mixture are adequate, and that they are controlled at all times. A film of the mixture is spread on a glass mold and allowed to dry at a temperature between 50 and 8O 0 C for a time of less than 60 minutes, suitable for each mixture. To unmold the membranes, the mold is immersed in a water bath and the membrane is demoulded, keeping it always submerged and as extended as possible. Once demoulded, it is extracted from the water and spread on a non-stick surface to let it dry.
Otro aspecto preferente de Ia presente invención es el procedimiento de preparación de las membranas híbridas de Ia invención en el que el conformado se realiza a una temperatura entre 50 y 8O0C durante un tiempo inferior a 60 minutos, desmoldeándolas por inmersión en un baño de agua.Another preferred aspect of the present invention is the process of preparing the hybrid membranes of the invention in which the forming is carried out at a temperature between 50 and 8O 0 C for a time of less than 60 minutes, by demolding them by immersion in a bath of Water.
Otro aspecto de Ia presente invención es el uso de las membranas híbridas de Ia invención como separadores.Another aspect of the present invention is the use of the hybrid membranes of the invention as separators.
Otro aspecto preferente de Ia presente invención es el uso de las membranas híbridas de Ia invención como separador selectivo de metales pesados.Another preferred aspect of the present invention is the use of the hybrid membranes of the invention as a selective heavy metal separator.
Otro aspecto preferente de Ia presente invención es el uso de las membranas híbridas de Ia invención como separadores y sensores de gases. Otro aspecto de Ia presente invención es el uso de las membranas híbridas de Ia invención como electrolitos sólidos en dispositivos electroquímicosAnother preferred aspect of the present invention is the use of the hybrid membranes of the invention as gas separators and sensors. Another aspect of the present invention is the use of the hybrid membranes of the invention as solid electrolytes in electrochemical devices
Otro aspecto preferente de Ia presente invención es el uso de las membranas híbridas de Ia invención como membranas de intercambio protónico en pilas de combustible.Another preferred aspect of the present invention is the use of the hybrid membranes of the invention as proton exchange membranes in fuel cells.
Las membranas híbridas de Ia invención presentan módulos al 100% de deformación inferiores a 1 ,6 MPa, mientras que al 900% superan en Ia mayoría de los casos los 20 MPa, Io cual quiere decir que son bastante elásticas a pesar de haber incorporado el conductor protónico. Todas presentan un comportamiento a rotura con buenas prestaciones, ya que Ia carga a Ia rotura varía entre los 15 y 30 MPa con deformaciones máximas superiores al 700%, muy adecuado para el ensamblaje bajo altas presiones de MEA's en pilas PEMFC. La capacidad de absorción de agua de las membranas híbridas de Ia invención, calculada sumergiéndolas en agua destilada durante 24 horas y pesándolas antes y después de secarlas a vacío, aumenta entre el 5 y el 25% en peso con el contenido de conductor protónico. La resistencia térmica de las membranas híbridas de Ia invención, ensayada por análisis termogravimétrico, es notable, ya que no se ha observado pérdida de peso por debajo de Ia temperatura de descomposición térmica del propio látex, que se produce alrededor de los 38O0C, y en todos los casos superior a 33O0C.The hybrid membranes of the invention have 100% deformation modules of less than 1.6 MPa, while 900% in most cases exceed 20 MPa, which means that they are quite elastic despite having incorporated the protonic conductor All have a breakage behavior with good performance, since the load at breakage varies between 15 and 30 MPa with maximum deformations greater than 700%, very suitable for assembly under high MEA pressures in PEMFC batteries. The water absorption capacity of the hybrid membranes of the invention, calculated by immersing them in distilled water for 24 hours and weighing them before and after drying them under vacuum, increases between 5 and 25% by weight with the proton conductor content. The thermal resistance of the hybrid membranes of the invention, tested by thermogravimetric analysis, is remarkable, since no weight loss has been observed below the thermal decomposition temperature of the latex itself, which occurs around 38O 0 C, and in all cases higher than 33O 0 C.
Se han llevado a cabo medidas de conductividad al 81% de humedad relativa entre 30 y 8O0C de las membranas híbridas de Ia invención, encontrándose que Ia conductividad es función del contenido y tipo de conductor protónico, llegándose a conseguir conductividades de 4x10"2 S/cm a 8O0C. Midiendo en idénticas condiciones un filme de Nafion de 100 μm se observó una conductividad de 6,2x10"2 S/cm. Además, se ha comprobado que la conductividad de las membranas híbridas de Ia invención no varía después de tres meses de almacenamiento.Conductivity measurements have been carried out at 81% relative humidity between 30 and 8O 0 C of the hybrid membranes of the invention, finding that the conductivity is a function of the content and type of protonic conductor, achieving conductivities of 4x10 "2 S / cm at 8O 0 C. By measuring under identical conditions a 100 μm Nafion film a conductivity of 6.2x10 "2 S / cm was observed. In addition, it has been verified that the conductivity of the hybrid membranes of the invention does not vary after three months of storage.
EJEMPLO 1 : Preparación de una membrana prevulcanizada con azufre, con un 25% en peso de K2TiF6 EXAMPLE 1: Preparation of a membrane pre-vulcanized with sulfur, with 25% by weight of K 2 TiF 6
En primer lugar se prepara una dispersión con los ingredientes necesarios para prevulcanizar el látex. Para ello se introducen en un molino de bolas 100 gr de azufre, 50 gr de dietilditiocarbamato de zinc, 20 gr de oxido de zinc, 20 gr de antioxidante, 2 gr de caprilato potásico, 2 gr de caseína y 200 gr de agua, y se agita durante dos horas. Para prevulcanizar el látex se añaden a un tanque provisto de un sistema de agitación mecánica 300 gr de látex concentrado (65% en peso de goma) 15,4 gr de Ia dispersión preparada como se comentó anteriormente, y 39,5 gr de agua. Para estabilizar Ia mezcla se añaden 10 gr de disolución acuosa de caprilato potásico al 10% y 10 gr de Emulvin (un tensoactivo no iónico). La mezcla se agita a 200 rpm y se calienta durante 6 horas a 60or V"y .First, a dispersion is prepared with the necessary ingredients to pre-vulcanize the latex. For this purpose, 100 g of sulfur, 50 g of zinc diethyldithiocarbamate, 20 g of zinc oxide, 20 g of antioxidant, 2 g of potassium caprylate, 2 g of casein and 200 g of water are introduced into a ball mill, and Stir for two hours. To pre-vulcanize the latex, 300 g of concentrated latex (65% by weight of rubber) 15.4 g of the dispersion prepared as mentioned above, and 39.5 g of water are added to a tank equipped with a mechanical stirring system. To stabilize the mixture, 10 g of 10% aqueous potassium caprilate solution and 10 g of Emulvin (a non-ionic surfactant) are added. The mixture is stirred at 200 rpm and heated for 6 hours at 60 or V "and.
Para preparar Ia dispersión del conductor protónico se añaden a un molino de bolas 100 gr de K2TiF6 400 gr de agua y unas gotas del tensoactivo Dolapix y se agita durante 40 minutos.To prepare the dispersion of the protonic conductor, 100 gr of K 2 TiF 6 400 gr of water and a few drops of the Dolapix surfactant are added to a ball mill and stirred for 40 minutes.
El último paso es Ia preparación de Ia mezcla, para Io cual se añaden en un vaso provisto de agitación mecánica (200 rpm) 200 gr de látex prevulcanizado, 185 gr de Ia dispersión de K2TiF6, 1 mi de disolución KOH al 10% y 1 mi de disolución de Caprilato potásico al 10%. Se agita durante 3 horas a temperatura ambiente. Transcurrido ese tiempo se toman con una pipeta 3 mi de Ia mezcla, se extienden sobre un vidrio nivelado hasta conseguir el espesor adecuado y se secan en una estufa a 7O0C durante 60 minutos. A continuación se sumerge el molde en un baño de agua y se desmoldea Ia membrana manteniéndola siempre sumergida y Io mas extendida posible. Una vez desmoldeada se extrae del agua y se extiende sobre una superficie no adherente para dejarla secar.The last step is the preparation of the mixture, for which 200 grams of pre-machined latex, 185 grams of the dispersion of K 2 TiF 6 , 1 ml of KOH solution at 10 are added in a vessel equipped with mechanical agitation (200 rpm). % and 1 ml of 10% potassium Caprilate solution. It is stirred for 3 hours at room temperature. After that time taken Pipette 3 ml of the mixture was spread over a glass level to the required thickness and dried in an oven at 7O 0 C for 60 minutes. The mold is then immersed in a water bath and the membrane is demoulded, keeping it always submerged and more extended possible. Once demoulded, it is extracted from the water and spread on a non-stick surface to let it dry.
De esta manera se han preparado membranas de 150 μm de espesor con una conductividad de 2x10"3 S/cm a 6O0C y 81 % de humedad relativa. En cuanto a las propiedades mecánicas, estas membranas son muy elásticas, con un módulo al 100% de deformación muy bajo, 1 ,03 MPa, y un módulo al 500% de 6,15 MPa. Sin embargo, también son muy resistentes ya que alargan el 770% antes de romperse con una carga a Ia rotura de 21 ,1 MPa. Además, tienen una gran resistencia térmica, ya que su temperatura de descomposición, calculada por termogravimetría es de 3650C. En cuanto a Ia absorción de agua, después de 24 horas de inmersión en agua destilada absorbieron un 10% en peso.In this way, 150 μm thick membranes have been prepared with a conductivity of 2x10 "3 S / cm at 6O 0 C and 81% relative humidity. As for the mechanical properties, these membranes are very elastic, with a modulus at 100% very low deformation, 1, 03 MPa, and a 500% module of 6.15 MPa. However, they are also very resistant since they extend 770% before breaking with a breaking load of 21, 1 MPa. In addition, they have a high thermal resistance, since their decomposition temperature, calculated by thermogravimetry is 365 0 C. As for water absorption, after 24 hours of immersion in distilled water they absorbed 10% by weight.
EJEMPLO 2: Preparación de una membrana prevu lean izada con peróxido, con un 33% en peso de K2SiF6 EXAMPLE 2: Preparation of a peroxide pre-lean membrane, with 33% by weight of K 2 SiF 6
Para prevulcanizar el látex se añaden a un tanque provisto de un sistema de agitación mecánica 300 gr de látex concentrado (65% en peso de goma), 2,5 gr de disolución acuosa de ter-butilhidroperóxido al 68% en peso, 17 gr de disolución acuosa de D-fructosa al 25% en peso y 50 gr de agua. Para estabilizar Ia mezcla se añaden 10 gr de disolución acuosa de caprilato potásico al 10% y 10 gr de Emulvin (un tensoactivo no iónico). La mezcla se agita a 200 rpm y se calienta durante 6 horas a 6O0C.To pre-vulcanize the latex, 300 g of concentrated latex (65% by weight of rubber), 2.5 g of 68% by weight aqueous solution of tert-butylhydroperoxide, 17 g of are added to a tank 25% by weight aqueous solution of D-fructose and 50 g of water. To stabilize the mixture, 10 g of 10% aqueous potassium caprilate solution and 10 g of Emulvin (a non-ionic surfactant) are added. The mixture is stirred at 200 rpm and heated for 6 hours at 6O 0 C.
Para preparar Ia dispersión del conductor protónico se añaden a un molino de bolas 100 gr de K2SiF6 400 gr de agua y unas gotas del tensoactivo Dolapix y se agita durante 40 minutos. Para preparar Ia mezcla y las correspondientes membranas se procede igual que se ha descrito en el ejemplo 1 , variando únicamente las cantidades necesarias de látex prevulcanizado, 200gr, y de dispersión de K2SiF6, 236 gr. De esta manera se han preparado membranas de 120 μm de espesor con una conductividad de 1x10"3 S/cm a 6O0C y 81 % de humedad relativa. Estas membranas también son muy elásticas, con 1 ,26 MPa de módulo al 100% de deformación, 7,4 MPa de módulo al 500% y alargan el 850% antes de romperse con una carga a Ia rotura de 20,87 MPa. Además, tienen una gran resistencia térmica, ya que su temperatura de descomposición, calculada por termogravimetría, es de 3650C. En cuanto a Ia absorción de agua, después de 24 horas de inmersión en agua destilada habían absorbido un 15% en peso.To prepare the dispersion of the protonic conductor, 100 gr of K 2 SiF 6 400 gr of water and a few drops of the Dolapix surfactant are added to a ball mill and stirred for 40 minutes. To prepare the mixture and the corresponding membranes, proceed as described in example 1, varying only the necessary amounts of pre-machined latex, 200gr, and dispersion of K 2 SiF 6 , 236 gr. In this way, 120 μm thick membranes with a conductivity of 1x10 "3 S / cm at 6O 0 C and 81% relative humidity have been prepared. These membranes are also very elastic, with 1, 26 MPa of 100% module of deformation, 7.4 MPa of module at 500% and lengthen 850% before breaking with a breaking load of 20.87 MPa. In addition, they have a great thermal resistance, since their decomposition temperature, calculated by thermogravimetry , is 365 0 C. Regarding water absorption, after 24 hours of immersion in distilled water they had absorbed 15% by weight.
EJEMPLO 3: Preparación de una membrana prevulcanizada con azufre, con un 11% en peso de SiO2 EXAMPLE 3: Preparation of a membrane pre-vulcanized with sulfur, with 11% by weight of SiO 2
La prevulcanización del látex se lleva a cabo tal y como se describe en el ejemplo 1.The pre-vulcanization of the latex is carried out as described in example 1.
El SÍO2 se preparó mediante sol-gel a partir de tetraetil-ortosilicato (TEOS), con el que se preparó una mezcla de TEOS/agua en una proporción 80/1. Al TEOS se Ie añadió ácido nítrico (10~3 M), para llevar a cabo Ia hidrólisis acida, hasta un pH~3, y se dejó agitando de 12-15 horas a temperatura ambiente. Después de Ia hidrólisis se obtiene un sol transparente.SIO 2 was prepared by sol-gel from tetraethyl orthosilicate (TEOS), with which a mixture of TEOS / water was prepared in an 80/1 ratio. To the TEOS, nitric acid (10 ~ 3 M) was added, to carry out the acid hydrolysis, to a pH ~ 3, and it was allowed to stir for 12-15 hours at room temperature. After the hydrolysis a transparent sun is obtained.
Para preparar Ia mezcla y las correspondientes membranas se procede igual que se ha descrito en el ejemplo 1 , variando únicamente las cantidades necesarias de látex prevulcanizado, y de sol de SÍO2.To prepare the mixture and the corresponding membranes, proceed as described in example 1, varying only the necessary amounts of pre-vulcanized latex, and SOS 2 sol.
De esta manera se han preparado membranas de 130 μm de espesor con una conductividad de 9x10"4 S/cm a 6O0C y 81 % de humedad relativa. Estas membranas también son muy elásticas, con 1 ,51 MPa de módulo al 100% de deformación, 8,84 MPa de módulo al 500% y alargan el 700% antes de romperse con una carga a Ia rotura de 18,89 MPa. Además, tienen una gran resistencia térmica, ya que su temperatura de descomposición, calculada por termogravimetría es de 3650C. En cuanto a Ia absorción de agua, después de 24 horas de inmersión en agua destilada habían absorbido un 7,5% en peso. In this way, 130 μm thick membranes with a conductivity of 9x10 "4 S / cm at 6O 0 C and 81% relative humidity have been prepared. These membranes are also very elastic, with 1.51 MPa of 100% module deformation, 8.84 MPa of 500% module and lengthen 700% before break with a breaking load of 18.89 MPa. In addition, they have a high thermal resistance, since their decomposition temperature, calculated by thermogravimetry is 365 0 C. In terms of water absorption, after 24 hours of immersion in distilled water they had absorbed 7.5% by weight .

Claims

REIVINDICACIONES
1. Membranas híbridas orgánico-inorgánicas de intercambio iónico caracterizadas por comprender una matriz preparada a partir de látex de caucho natural y un conductor protónico.1. Organic-inorganic hybrid ion exchange membranes characterized by comprising a matrix prepared from natural rubber latex and a proton conductor.
2. Membranas híbridas según reivindicación 1 caracterizadas por que el látex de caucho natural se ha entrecruzado con una reacción de prevulcanización.2. Hybrid membranes according to claim 1 characterized in that the natural rubber latex has been crosslinked with a pre-vulcanization reaction.
3. Membranas híbridas según reivindicación 2 caracterizadas por que el látex de caucho natural se ha entrecruzado con azufre y acelerantes.3. Hybrid membranes according to claim 2 characterized in that the natural rubber latex has been crosslinked with sulfur and accelerators.
4. Membranas híbridas según reivindicación 2 caracterizadas por que el látex de caucho natural se ha entrecruzado con peróxidos orgánicos.4. Hybrid membranes according to claim 2 characterized in that the natural rubber latex has been crosslinked with organic peroxides.
5. Membranas híbridas según reivindicación 1 caracterizadas por que el conductor protónico es un fluoroácido.5. Hybrid membranes according to claim 1 characterized in that the protonic conductor is a fluoro acid.
6. Membranas híbridas según reivindicación 5 caracterizadas por que el fluoroácido del conductor protónico es un fluorosilicato y/o un fluorotitanato.6. Hybrid membranes according to claim 5 characterized in that the fluoroacid of the protonic conductor is a fluorosilicate and / or a fluorotitanate.
7. Membranas híbridas según reivindicación 6 caracterizadas por que el fluoroácido del conductor protónico es fluorotitanato potásico.7. Hybrid membranes according to claim 6 characterized in that the fluoroacid of the protonic conductor is potassium fluorotitanate.
8. Membranas híbridas según reivindicación 6 caracterizadas por que el fluoroácido del conductor protónico es fluorosilicato potásico.8. Hybrid membranes according to claim 6 characterized in that the fluoroacid of the protonic conductor is potassium fluorosilicate.
9. Membranas híbridas según reivindicación 1 caracterizadas por que el conductor protónico es SiO2, TiO2 y/o ZrO2. 9. Hybrid membranes according to claim 1 characterized in that the protonic conductor is SiO 2 , TiO 2 and / or ZrO 2 .
10. Membrana híbridas según reivindicación 9 caracterizadas por que el conductor protónico de SÍO2, TÍO2 y/o ZrÜ2 ha sido preparado previamente por el método sol-gel.10. Hybrid membrane according to claim 9 characterized in that the protonic conductor of SÍO2, TÍO2 and / or ZrÜ2 has been previously prepared by the sol-gel method.
11. Método de preparación de membranas híbridas orgánico-inorgánicas de intercambio iónico de acuerdo con Ia reivindicación 1 caracterizado porque comprende las etapas:11. Method of preparing organic-inorganic hybrid membranes of ion exchange according to claim 1 characterized in that it comprises the steps:
- prevulcanización del látex- latex pre-machining
- preparación de Ia dispersión del conductor protónico - mezcla del conductor protónico con el látex- preparation of the dispersion of the protonic conductor - mixing of the protonic conductor with the latex
- conformado de las membranas- membrane shaping
12. Método de preparación según reivindicación 11 caracterizado porque Ia prevulcanización del látex se lleva a cabo mediante un sistema de entrecruzamiento basado en: a) azufre y acelerantes, b) o en peróxidos orgánicos.12. Preparation method according to claim 11 characterized in that the pre-vulcanization of the latex is carried out by means of a cross-linking system based on: a) sulfur and accelerators, b) or organic peroxides.
13 Método de preparación según reivindicación 11 caracterizado porque los conductores protónicos usados son SÍO2, TÍO2 y ZrÜ2 obtenidos por sol- gel.13 Preparation method according to claim 11, characterized in that the protonic conductors used are SIO2, TIO2 and ZrÜ2 obtained by sol- gel.
14 Método de preparación según reivindicación 11 caracterizado porque el conductor protónico usado es un fluoroácido.14 Preparation method according to claim 11 characterized in that the protonic conductor used is a fluoro acid.
15. Método de preparación según reivindicación 14 caracterizado porque el fluoroácido es un fluorosilicato y/o fluorotitanato.15. Preparation method according to claim 14 characterized in that the fluoro acid is a fluorosilicate and / or fluorotitanate.
16. Método de preparación según reivindicación 15 caracterizado porque el fluoroácido es el fluorosilicato potasio o bien el fluorotitanato potásico. 16. Preparation method according to claim 15 characterized in that the fluoro acid is potassium fluorosilicate or potassium fluorotitanate.
17 Método de preparación según reivindicaciones 11-16 caracterizado porque el contenido del conductor protónico utilizado esta comprendido entre el 0,1 y el 50% en peso.17 Preparation method according to claims 11-16, characterized in that the content of the protonic conductor used is between 0.1 and 50% by weight.
18. Método de preparación según reivindicaciones 11-17 caracterizado porque el conformado se realiza a una temperatura entre 50 y 8O0C durante un tiempo inferior a 60 minutos, y el desmoldeo por inmersión en un baño de agua.18. Method of preparation according to claims 11-17 characterized in that the forming is carried out at a temperature between 50 and 8O 0 C for a time of less than 60 minutes, and immersion by immersion in a water bath.
19. Uso de las membranas definidas en las reivindicaciones 1-10 como separadores.19. Use of the membranes defined in claims 1-10 as separators.
20. Uso según reivindicación 19 como separador selectivo de metales pesados.20. Use according to claim 19 as a selective heavy metal separator.
21. Uso según reivindicación 19 como separadores y sensores de gases.21. Use according to claim 19 as gas separators and sensors.
22. Uso de las membranas definidas en las reivindicaciones 1-10 como electrolitos sólidos en dispositivos electroquímicos.22. Use of the membranes defined in claims 1-10 as solid electrolytes in electrochemical devices.
23. Uso según reivindicación 22 como membranas de intercambio protónico en pilas de combustible. 23. Use according to claim 22 as proton exchange membranes in fuel cells.
PCT/ES2008/070127 2007-06-26 2008-06-26 Inorganic-organic hybrid membrane for ionic interchange, preparation thereof and use in electrochemical devices WO2009000963A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200701781A ES2310484B1 (en) 2007-06-26 2007-06-26 ORGANIC-INORGANIC HYBRID MEMBER OF ION EXCHANGE, ITS PREPARATION AND USE IN ELECTROCHEMICAL DEVICES.
ESP200701781 2007-06-26

Publications (1)

Publication Number Publication Date
WO2009000963A1 true WO2009000963A1 (en) 2008-12-31

Family

ID=40130668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070127 WO2009000963A1 (en) 2007-06-26 2008-06-26 Inorganic-organic hybrid membrane for ionic interchange, preparation thereof and use in electrochemical devices

Country Status (2)

Country Link
ES (1) ES2310484B1 (en)
WO (1) WO2009000963A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746087A (en) * 2014-01-03 2014-04-23 东莞市卓高电子科技有限公司 Method for manufacturing lithium-ion battery separators and lithium battery
CN112870924A (en) * 2021-01-22 2021-06-01 丁雅蓉 Organic gas membrane separation equipment for laboratory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
US6458491B1 (en) * 2000-09-15 2002-10-01 Microporous Products, Lp Separator for energy storage cells
US20040137296A1 (en) * 2001-05-18 2004-07-15 Werner Schunk Fuel cell
WO2006018646A1 (en) * 2004-08-19 2006-02-23 Lrc Products Limited Rubber latex films having improved tear resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
US6458491B1 (en) * 2000-09-15 2002-10-01 Microporous Products, Lp Separator for energy storage cells
US20040137296A1 (en) * 2001-05-18 2004-07-15 Werner Schunk Fuel cell
WO2006018646A1 (en) * 2004-08-19 2006-02-23 Lrc Products Limited Rubber latex films having improved tear resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLASSE M.D. ET AL.: "Polymer electrolytes based on modified natural rubber", SOLID STATE IONICS, vol. 147, April 2002 (2002-04-01), pages 289 - 294, XP004347361 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746087A (en) * 2014-01-03 2014-04-23 东莞市卓高电子科技有限公司 Method for manufacturing lithium-ion battery separators and lithium battery
CN112870924A (en) * 2021-01-22 2021-06-01 丁雅蓉 Organic gas membrane separation equipment for laboratory
CN112870924B (en) * 2021-01-22 2022-10-25 广州市朔康医疗科技有限公司 Organic gas membrane separation equipment for laboratory

Also Published As

Publication number Publication date
ES2310484A1 (en) 2009-01-01
ES2310484B1 (en) 2010-01-08

Similar Documents

Publication Publication Date Title
Devi et al. Fabrication and electrochemical properties of SPVdF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells
Hasani-Sadrabadi et al. Electrochemical investigation of sulfonated poly (ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications
Aili et al. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells
Martina et al. Nanosulfonated silica incorporated SPEEK/SPVdF-HFP polymer blend membrane for PEM fuel cell application
Wang et al. Novel sulfonated poly (ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications
CN104659395B (en) Organic-inorganic composite proton exchange membrane for proton exchange membrane fuel cell and preparation method thereof
Hasani-Sadrabadi et al. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)
CN107820502B (en) Perfluoroionomer nanoparticle dispersion liquid and method for producing same
US10483576B2 (en) Polymer electrolyte membrane
Abu-Thabit et al. Novel sulfonated poly (ether ether ketone)/phosphonated polysulfone polymer blends for proton conducting membranes
KR101569719B1 (en) Crosslinked hydrocarbon polymer electrolyte membranes with diols by radiation and manufacturing method thereof
CN1871736A (en) Composite electrolyte with crosslinking agents
Chikumba et al. The development of sulfonated polyether ether ketone (sPEEK) and titanium silicon oxide (TiSiO4) composite membranes for DMFC applications
KR101146191B1 (en) Method of manufacturing nanocomposite electrolyte, nanocomposite electrolyte manufactured thereby and membrane-electrode assembly
Bhavani et al. Preparation and characterization of proton exchange membrane based on SPSEBS/PSU blends for fuel cell applications
Kim et al. High proton conductivity and low fuel crossover of polyvinylidene fluoride–hexafluoro propylene–silica sulfuric acid composite membranes for direct methanol fuel cells
KR101762307B1 (en) Preparation Method of Ionomernano particles Dispersion
WO2009000963A1 (en) Inorganic-organic hybrid membrane for ionic interchange, preparation thereof and use in electrochemical devices
Ahn et al. Low methanol permeable crosslinked sulfonated poly (phenylene oxide) membranes with hollow glass microspheres for direct methanol fuel cells
Hattori et al. Proton-conductive inorganic–organic hybrid membranes synthesized from a trimethoxysilylmethylstyrene–fluorophenylvinyl acid copolymer
Zhang et al. Novel proton exchange membranes based on sulfonated poly (ether-ether-ketone)/phosphonic acid-functionalized siloxane
KR101340600B1 (en) Proton exchange membrane for fuel cell having poly(ethylene-ran-propylene)/styrene block copolymer and preparation method of the same
KR101688625B1 (en) Ionomer Nanoparticles Dispersion
Langsung et al. Membrane for Direct Methanol Fuel Cell
Liu et al. Proton conductivity of aromatic polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08787661

Country of ref document: EP

Kind code of ref document: A1