ES2310484B1 - ORGANIC-INORGANIC HYBRID MEMBER OF ION EXCHANGE, ITS PREPARATION AND USE IN ELECTROCHEMICAL DEVICES. - Google Patents

ORGANIC-INORGANIC HYBRID MEMBER OF ION EXCHANGE, ITS PREPARATION AND USE IN ELECTROCHEMICAL DEVICES. Download PDF

Info

Publication number
ES2310484B1
ES2310484B1 ES200701781A ES200701781A ES2310484B1 ES 2310484 B1 ES2310484 B1 ES 2310484B1 ES 200701781 A ES200701781 A ES 200701781A ES 200701781 A ES200701781 A ES 200701781A ES 2310484 B1 ES2310484 B1 ES 2310484B1
Authority
ES
Spain
Prior art keywords
inorganic
membranes
latex
ion exchange
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
ES200701781A
Other languages
Spanish (es)
Other versions
ES2310484A1 (en
Inventor
Jose Ramon Fco. Jurado Egea
Angel Adolfo Del Campo Garcia
Eva Chinarro Martin
Berta Moreno Burriel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to ES200701781A priority Critical patent/ES2310484B1/en
Priority to PCT/ES2008/070127 priority patent/WO2009000963A1/en
Publication of ES2310484A1 publication Critical patent/ES2310484A1/en
Application granted granted Critical
Publication of ES2310484B1 publication Critical patent/ES2310484B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • C08K3/0033
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • H01M2/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • C08J2307/02Latex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Membrana híbrida orgánico-inorgánico de intercambio iónico, su preparación y utilización en dispositivos electroquímicos.Hybrid membrane organic-inorganic ion exchange, its Preparation and use in electrochemical devices.

Membrana híbrida orgánico-inorgánico compuesta por
una matriz polimérica preparada a partir de látex prevulcanizado de caucho natural y una carga inorgánica con propiedades de conductor protónico que puede actuar como separador y electrolito sólido en dispositivos electroquímicos tales como, sensores y separadores de gases, baterías o pilas de combustible. Esto les confiere unas excelentes propiedades mecánicas, sobretodo en alargamiento a la rotura, una flexibilidad muy superior a la de sus competidoras, y una inmejorable elasticidad.
Organic-inorganic hybrid membrane composed of
a polymer matrix prepared from natural rubber pre-vulcanized latex and an inorganic filler with protonic conductor properties that can act as a separator and solid electrolyte in electrochemical devices such as sensors and gas separators, batteries or fuel cells. This gives them excellent mechanical properties, especially in elongation at break, a flexibility far superior to that of their competitors, and an excellent elasticity.

El proceso de producción es rápido y sencillo, no necesita ni temperaturas ni presiones elevadas, por lo que no supone un gran gasto energético. Por otra parte, no requiere el uso de ningún disolvente, por lo que no es contaminante y además es mucho mas barato.The production process is fast and simple, it doesn't need high temperatures or pressures, so it doesn't It is a great energy expenditure. Moreover, it does not require the use of any solvent, so it is not polluting and is also cheaper.

Description

Membrana híbrida orgánico-inorgánico de intercambio iónico, su preparación y utilización en dispositivos electroquímicos.Hybrid membrane organic-inorganic ion exchange, its Preparation and use in electrochemical devices.

Membrana híbrida orgánico-inorgánico compuesta por una matriz polimérica preparada a partir de látex prevulcanizado de caucho natural y una carga inorgánica con propiedades de conductor protónico que puede actuar como separador y electrolito sólido en dispositivos electroquímicos tales como, sensores y separadores de gases, baterías o pilas de combustible. Esto les confiere unas excelentes propiedades mecánicas, sobretodo en alargamiento a la rotura, una flexibilidad muy superior a la de sus competidoras, y una inmejorable elasticidad.Hybrid membrane organic-inorganic composed of a matrix polymer prepared from rubber pre-machined latex natural and an inorganic load with conductor properties proton that can act as a separator and solid electrolyte in electrochemical devices such as sensors and separators gases, batteries or fuel cells. This gives them some excellent mechanical properties, especially in elongation at breakage, flexibility far superior to that of its competitors, and An excellent elasticity.

El proceso de producción es rápido y sencillo, no necesita ni temperaturas ni presiones elevadas, por lo que no supone un gran gasto energético. Por otra parte, no requiere el uso de ningún disolvente, por lo que no es contaminante y además es mucho mas barato.The production process is fast and simple, it doesn't need high temperatures or pressures, so it doesn't It is a great energy expenditure. Moreover, it does not require the use of any solvent, so it is not polluting and is also cheaper.

Sector de la técnicaTechnical sector

La presente invención forma parte del área de la química y en particular se encuadra en el sector de las membranas de intercambio iónico que puede actuar como separador y electrolito sólido en dispositivos electroquímicos tales como, sensores y separadores de gases, baterías o pilas de combustible.The present invention is part of the area of chemistry and in particular falls within the membrane sector ion exchange that can act as a separator and electrolyte solid in electrochemical devices such as sensors and gas separators, batteries or fuel cells.

Estado de la técnicaState of the art

Las celdas de combustible con electrolito de intercambio de protones (PEMFC) han generado gran interés debido a las ventajas que ofrecen en aplicaciones en automóviles y en equipos electrónicos, como consecuencia de su funcionamiento a bajas temperaturas (60-80ºC). Con ellas es posible obtener buenas densidades de corriente (\sim 500 mA/cm^{2}) y si se pudiera reducir la cantidad de platino, que debe ser empleado como catalizador, sus costes también se reducirían rápidamente. Además, la densidad energética adquirida con ellas, es la mayor dentro de los diferentes tipos de pilas de combustible.Fuel cells with electrolyte Proton exchange (PEMFC) have generated great interest due to the advantages they offer in automotive applications and in electronic equipment, as a result of its operation to low temperatures (60-80ºC). With them it is possible obtain good current densities (~ 500 mA / cm2) and If the amount of platinum could be reduced, it should be used as a catalyst, its costs would also be reduced quickly. In addition, the energy density acquired with them is the highest within the different types of fuel cells.

En general, para que una membrana de intercambio iónico se pudiese utilizar en todas esas aplicaciones debería presentar una selectividad iónica alta, buena conductividad iónica, baja permeabilidad a la difusión libre de electrolitos, así como buena estabilidad química, alta resistencia mecánica, alta flexibilidad y buena estabilidad dimensional. Además, en el caso de que se usase en pilas de combustible, debería ser impermeable a gases como el hidrógeno y el oxígeno. Otras dos características fundamentales serían que tuviese un bajo coste y que fuese fácil de reciclar para evitar daños al medio ambiente.In general, so that an exchange membrane ionic could be used in all those applications should have a high ionic selectivity, good ionic conductivity, low permeability to electrolyte-free diffusion, as well as Good chemical stability, high mechanical strength, high flexibility and good dimensional stability. In addition, in the case of used in fuel cells, it should be impermeable to gases such as hydrogen and oxygen. Two other features fundamental would be that it had a low cost and that it was easy to Recycle to avoid damage to the environment.

Actualmente existen en el mercado varias membranas de intercambio iónico basadas en polímeros perfluorosulfonados, Aciplex (de Asahi Chemical), Dow (de Dow Chemical) o el más usado de todos, el Nafion, fabricado por DuPont, que ha dado buenos resultados en pilas de combustible debido a su alta conductividad iónica a temperaturas menores de 80ºC, y buena resistencia química. Sin embargo, los polímeros perfluorosulfonados tienen un elevado precio y un efecto negativo sobre el medio ambiente, ya que son difíciles de reciclar. Además, no son efectivos a temperaturas superiores a 80ºC debido a que sufren una notable deshidratación (Kundu P.P. Reviews in Chemical Engineering 2006 Vol. 22, No. 3 pp. 125).There are currently several ion exchange membranes on the market based on perfluorosulfonated polymers, Aciplex (from Asahi Chemical), Dow (from Dow Chemical) or the most used of all, Nafion, manufactured by DuPont, which has produced good results in batteries of fuel due to its high ionic conductivity at temperatures below 80ºC, and good chemical resistance. However, perfluorosulfonated polymers have a high price and a negative effect on the environment, since they are difficult to recycle. In addition, they are not effective at temperatures above 80 ° C because they suffer from remarkable dehydration (Kundu PP Reviews in Chemical Engineering 2006 Vol. 22, No. 3 pp. 125).

En los últimos años ha surgido una nueva generación de membranas de intercambio iónico no-fluoradas basadas en polímeros con alta estabilidad térmica y mecánica. Generalmente son de naturaleza poliaromática o poliheterocíclica: polisulfonas (PSU), poli(éter-sulfona) (PSE), poli(éter-cetona) (PEK), poli(éter-éter-cetona) (PEEK), polibenzoimidazoles (PBI) o poliimidas (PI). Sin embargo, estos polímeros, por si solos, son aislantes, por lo que deben ser modificadas de alguna manera. Por lo general esta modificación suele ser de tipo químico y existen varias posibilidades: dopado con ácidos y bases, sulfonación directa de la cadena polimérica, injerto de grupos funcionales sulfonados o fosforados, injerto de cadenas poliméricas laterales y posterior sulfonación de las mismas, etc. Una vez modificadas, estas membranas poliméricas no-fluoradas pueden llegar a tener conductividades fónicas similares a las de los polímeros perfluorosulfonados, incluso a temperaturas entre 80º y 135ºC, donde estas últimas fallaban (Roziere J. Jones, D.J. Annual Review of Materials Research, 2003 Vol. 33 pp 503). Sin embargo, su precio es similar o superior, ya que a su síntesis, que es costosa, se une el segundo paso de modificación, que aumenta necesariamente su precio. Por otra parte, aunque estos polímeros presentan buenas propiedades mecánicas, carecen de flexibilidad. Además, la modificación, que por lo general consiste en una reacción de sulfonación, suele reducir notablemente las propiedades mecánicas de dichas membranas. Desde el punto de vista ecológico hay que decir que tanto la síntesis como las reacciones de modificación de todos estos polímeros requieren el uso de grandes cantidades de disolventes, en su mayoría organoclorados, lo que implica un cierto riesgo tanto para la naturaleza como para la salud.In recent years, a new generation of non-fluorinated ion exchange membranes based on polymers with high thermal and mechanical stability has emerged. They are generally polyaromatic or polyheterocyclic in nature: polysulfones (PSU), poly (ether-sulfone) (PSE), poly (ether-ketone) (PEK), poly (ether-ether-ketone) (PEEK), polybenzoimidazoles (PBI) or polyimides (PI). However, these polymers, by themselves, are insulators, so they must be modified in some way. Usually this modification is usually of the chemical type and there are several possibilities: doped with acids and bases, direct sulfonation of the polymer chain, graft of sulphonated or phosphorus functional groups, graft of side polymer chains and subsequent sulfonation of the same, etc. Once modified, these non-fluorinated polymeric membranes can have phonic conductivities similar to those of perfluorosulfonated polymers, even at temperatures between 80º and 135ºC, where the latter failed (Roziere J. Jones, DJ Annual Review of Materials Research , 2003 Vol. 33 pp 503) . However, its price is similar or higher, since its synthesis, which is expensive, joins the second step of modification, which necessarily increases its price. On the other hand, although these polymers have good mechanical properties, they lack flexibility. In addition, the modification, which usually consists of a sulfonation reaction, usually significantly reduces the mechanical properties of said membranes. From the ecological point of view it must be said that both the synthesis and the modification reactions of all these polymers require the use of large amounts of solvents, mostly organochlorine, which implies a certain risk for both nature and health. .

Durante la última década se vienen desarrollando membranas híbridas orgánico-inorgánicas compuestas por una matriz ionomérica de carácter polimérico y una carga inorgánica con moderada o alta conductividad protónica del tipo: sílice, heteropoliácidos, fosfatos metálicos laminares o fosfacenos (Albertini, G., Casciola, M., Annual Review of Materials Research, 2003 Vol. 33 pp 129). Este tipo de cargas inorgánicas se han incorporado tanto a los polímeros perfluorosulfonados tradicionales, tipo Nafion, como a las más recientemente desarrolladas membranas poliaromáticas o poliheterociclicas sulfonadas.During the last decade, organic-inorganic hybrid membranes have been developed, composed of a polymeric ionomeric matrix and an inorganic charge with moderate or high proton conductivity of the type: silica, heteropolyacids, lamellar metal phosphates or phosphates (Albertini, G., Casciola, M., Annual Review of Materials Research , 2003 Vol. 33 pp 129 ). This type of inorganic fillers have been incorporated into both traditional perfluorosulfonated polymers, Nafion type, as well as the more recently developed sulfonated polyaromatic or polyheterocyclic membranes.

Se han patentado y aplicado diversas membranas elastoméricas preparadas a partir de mezclas en estado sólido de EPDM y HSBS (copolímero de bloque de estireno-butadieno hidrogenado) sulfonado (Escribano, P.G.; Del Rio, C. J. of Applied Polymer Science 2006, 102, y Bashir, H.; Acosta, J.L. J. of Membrana Science 2005, 253, 33), así como de este último con diversos termoplásticos (Escribano, P.G.; Acosta, J.L. J. of Applied Polymer Science 2004, 93, 2394). Sin embargo, solo se ha encontrado una cita en la que se incorporase caucho natural a estas membranas elastoméricas sulfonadas (Nacher, A. Tesis Doctoral, Universidad Complutense de Madrid, 2006). También han aparecido diversos artículos sobre el uso de látex sintéticos de copolímeros de acrilato de butilo (BA) y metilmetacrilato (MMA) con estireno sulfonado (NaSS) (Gao, J.; Lee, D.; Frisken, B.J. Macromolecules 2005, 38, 5854 y Gao, J.; Lee, D.; Frisken, B.J. Macromolecules 2006, 39, 8060), pero no hemos encontrado ningún trabajo en el que se preparen membranas para pilas de PEMFC y DMFC partiendo de látex de caucho natural. En cuanto a las cargas usadas en esta invención, hay que decir que existen muchos trabajos en los que se incorpora sílice sintetizada por el método sol-gel en membranas de intercambio protónico preparadas a partir tanto de Nafion (Sahu A.K.; Selvarini G. J. of Electrochemical Society 2007, 154, B123 y Miyake, N.; Savinell, R.F. J. of Electrochemical Society 2001, 148, A898) como de otros polímeros (Shahi, V.K. Solid State Ionics 2007, 177, 3395 y Lee, C.H.; Hwang, S.Y. J. of Power Sources 2006, 163, 339). Sin embargo, en el caso de los fluoroácidos no existe aplicación alguna en el campo de las pilas de combustible.Various elastomeric membranes prepared from solid-state mixtures of EPDM and HSBS (hydrogenated styrene-butadiene block copolymer) sulfonated (Escribano, PG; Del Rio, C. J. of Applied Polymer Science 2006 , 102 have been patented and applied , and Bashir, H .; Acosta, JL J. of Membrana Science 2005 , 253 , 33), as well as the latter with various thermoplastics (Escribano, PG; Acosta, JL J. of Applied Polymer Science 2004 , 93 , 2394) . However, only one appointment was found in which natural rubber was incorporated into these sulfonated elastomeric membranes (Nacher, A. Doctoral Thesis , Complutense University of Madrid, 2006 ). Various articles have also appeared on the use of synthetic latex copolymers of butyl acrylate (BA) and methyl methacrylate (MMA) with sulfonated styrene (NaSS) (Gao, J .; Lee, D .; Frisken, BJ Macromolecules 2005 , 38 , 5854 and Gao, J .; Lee, D .; Frisken, BJ Macromolecules 2006 , 39 , 8060), but we have not found any work in which membranes for PEMFC and DMFC stacks are prepared from natural rubber latex. As for the charges used in this invention, it must be said that there are many works in which silica synthesized by the sol-gel method is incorporated into proton exchange membranes prepared from both Nafion (Sahu AK; Selvarini G. J. of Electrochemical Society 2007 , 154 , B123 and Miyake, N .; Savinell, RF J. of Electrochemical Society 2001 , 148 , A898) and other polymers (Shahi, VK Solid State Ionics 2007 , 177 , 3395 and Lee, CH; Hwang , SY J. of Power Sources 2006 , 163 , 339). However, in the case of fluoro acids there is no application in the field of fuel cells.

Descripción de la invenciónDescription of the invention Breve descripción de la invenciónBrief Description of the Invention

Los principales obstáculos para una mayor comercialización de las pilas de combustible de electrolito polimérico son el alto coste de las membranas conocidas hasta el momento, su reciclado, su baja conductividad a humedades relativamente bajas, la alta permeabilidad al metanol y las pobres propiedades mecánicas a temperaturas por encima de 130ºC.The main obstacles to greater commercialization of electrolyte fuel cells polymeric are the high cost of the membranes known to the moment, its recycling, its low humidity conductivity relatively low, high permeability to methanol and the poor mechanical properties at temperatures above 130 ° C.

El objeto de esta invención es la preparación y desarrollo industrial de un nuevo tipo de membrana de intercambio fónico que puede actuar como separador y electrolito sólido en dispositivos electroquímicos tales como, sensores y separadores de gases, baterías o pilas de combustible. Se trata de una membrana híbrida orgánico-inorgánico compuesta por una matriz polimérica preparada a partir de látex prevulcanizado de caucho natural y una carga inorgánica con propiedades de conductor protónico.The object of this invention is the preparation and industrial development of a new type of exchange membrane phonic that can act as a separator and solid electrolyte in electrochemical devices such as sensors and separators gases, batteries or fuel cells. It is a membrane organic-inorganic hybrid composed of a polymer matrix prepared from pre-machined latex of natural rubber and an inorganic filler with conductor properties protonic.

Nuestras membranas presentan una conductividad protónica similar a la del Nafion (la mejor conocida hasta el momento), con buena estabilidad térmica y química. Se trata de membranas de carácter híbrido orgánico-inorgánico en las que la matriz polimérica es un látex de caucho natural entrecruzado. Esto les confiere unas excelentes propiedades mecánicas, sobretodo en alargamiento a la rotura, una flexibilidad muy superior a la de todas sus competidoras, y una inmejorable elasticidad, por lo que podrían actuar a la vez como membrana y como sello, necesario en el ensamblaje de la pila, disminuyendo el peso, el volumen, y finalmente el costo de la misma. Además, su precio sería muy inferior al del resto de las membranas comerciales, ya que, al ser el látex de caucho natural un producto de origen vegetal absolutamente reciclable, y de consumo masivo, su precio es varias veces menor que el de los polímeros sintéticos derivados del petróleo usados en el resto de membranas. El proceso de producción es rápido y sencillo, no necesita ni temperaturas ni presiones elevadas, por lo que no supone un gran gasto energético. Por otra parte, no requiere el uso de ningún disolvente, ya que todas la dispersiones son en fase acuosa, por lo que no es contaminante y además es mucho mas barato.Our membranes have a conductivity proton similar to that of Nafion (the best known until moment), with good thermal and chemical stability. Is about organic-inorganic hybrid membranes in which the polymer matrix is a natural rubber latex crisscrossed This gives them excellent properties. mechanical, especially in elongation at break, flexibility far superior to that of all its competitors, and an unbeatable elasticity, so they could act both as a membrane and as a seal, necessary in the assembly of the battery, reducing the weight, volume, and finally the cost of it. Besides, his price would be much lower than the rest of the membranes commercial, since, being natural rubber latex a product of absolutely recyclable plant origin, and mass consumption, its price is several times lower than that of synthetic polymers petroleum derivatives used in other membranes. The process Production is fast and simple, it does not need temperatures or high pressures, so it does not involve a large energy expenditure. On the other hand, it does not require the use of any solvent, since all dispersions are in the aqueous phase, so it is not pollutant and is also much cheaper.

Descripción detallada de la invenciónDetailed description of the invention

El proceso de fabricación de nuestras membranas consta de varios pasos. En primer lugar se prevulcaniza el látex, después se mezcla el látex ya prevulcanizado con una dispersión acuosa de la carga inorgánica y finalmente se deposita la mezcla en forma de película delgada. De esta manera se han conseguido excelentes propiedades mecánicas, especialmente el alargamiento a la rotura, una flexibilidad muy superior a la de todas sus competidoras, y una inmejorable elasticidad. Su precio sería muy inferior al del resto de las membranas comerciales, ya que las materias primas son muy baratas y el proceso de producción es rápido y sencillo y no supone un gran gasto energético. Por otra parte, su reciclado no es problemático, y en la fabricación no se usan disolventes, por lo es mas barata y ecológica.The manufacturing process of our membranes It consists of several steps. First, the latex is pre-vulcanized, then the pre-machined latex is mixed with a dispersion aqueous of the inorganic filler and finally the mixture is deposited in thin film form. In this way they have been achieved excellent mechanical properties, especially elongation at the breakage, a flexibility far superior to that of all its competitors, and an excellent elasticity. Its price would be very lower than the rest of the commercial membranes, since the Raw materials are very cheap and the production process is Fast and simple and does not involve a large energy expenditure. For other part, its recycling is not problematic, and in manufacturing it is not They use solvents, so it is cheaper and ecological.

Como carga inorgánica, se puede incorporar cualquier conductor protónico, tanto los conocidos actualmente, sílice, heteropoliácidos, fosfatos metálico laminares o fofacenos, como los desarrollados en un futuro. En este sentido, el otro logro de esta invención ha consistido en desarrollar, por primera vez, un método para preparar conductores protónicos a partir de dispersiones de hexafluorosilicatos, hexafluorotitanatos, hexafluorozirconatos y tetrafluoroboratos que se incorporan en una matriz de látex.As an inorganic filler, it can be incorporated any protonic conductor, both known today, silica, heteropolyacids, laminar metallic phosphates or phofacenes, as developed in the future. In this sense, the other achievement of this invention has consisted in developing, for the first time, a method to prepare protonic conductors from hexafluorosilicate dispersions, hexafluorotitanatos, hexafluorozirconates and tetrafluoroborates that are incorporated into a latex matrix

Se han preparado membranas elastoméricas a partir de látex de caucho natural prevulcanizado con espesores entre 30 y 300 \mum y con contenidos de carga inorgánica entre el 0,1 y el 50% en peso. Se han incorporado tanto cargas inorgánicas con conductividades protónicas bajas, como óxidos metálicos preparados por el método sol-gel: SiO_{2}, TiO_{2}, ZrO_{2}, como con conductividades altas, como fluorosilicatos de: litio (Li_{2}SiF_{6}), sodio, potasio, rubidio, cesio, amonio, magnesio, calcio, bario, cobre (II) y manganeso (II); fluoroboratos como el de sodio (NaBF_{4}), fluorotitanatos, como por ejemplo el Na_{2}TiF_{6} o fluorozirconatos como el Na_{2}ZrF_{6}.Elastomeric membranes have been prepared to from pre-machined natural rubber latex with thicknesses between 30 and 300 µm and with inorganic filler contents between the 0.1 and 50% by weight. Both inorganic fillers have been incorporated with low proton conductivities, such as metal oxides prepared by the sol-gel method: SiO2, TiO2, ZrO2, as with high conductivities, such as fluorosilicates of: lithium (Li2 SiF6), sodium, potassium, rubidium, cesium, ammonium, magnesium, calcium, barium, copper (II) and manganese (II); Fluoroborates such as sodium (NaBF4), fluorotitates, such as Na 2 TiF 6 or fluorozirconates such as Na 2 ZrF 6.

       \newpage\ newpage
    

El proceso de preparación de las membranas se puede dividir en cuatro etapas:The process of preparing the membranes is You can divide into four stages:

\ding{51}\ ding {51}
Prevulcanización del látex Prevulcanization of latex

\ding{51}\ ding {51}
Preparación de la dispersión de la carga inorgánica Dispersion Preparation of the inorganic load

\ding{51}\ ding {51}
Mezcla de la carga inorgánica con el látex Inorganic Charge Mix with latex

\ding{51}\ ding {51}
Conformado de las membranas. Conformed of membranes
Prevulcanización del látexPrevulcanization of latex

En primer lugar hay que hacer una dispersión de todos los reactivos necesarios para el entrecruzamiento del látex: azufre o donadores de azufre, acelerantes, antioxidantes y los correspondientes tensoactivos y dispersantes que ayudarán a la formación y estabilidad de dicha dispersión. Para ello se introducen todos los ingredientes mezclados con agua en una proporción menor al 50% en peso en un molino de bolas y se agita durante el tiempo necesario para obtener un tamaño de partícula óptimo. A continuación se procede a la prevulcanización del látex, para lo cual se añade la dispersión de los agentes del sistema de vulcanización y se calienta entre 30 y 70ºC durante 2-15 horas necesarios para alcanzar el grado de entrecruzamiento deseado del látex. Una vez hecho esto, el látex prevulcanizado se estabiliza convenientemente con los tensoactivos más adecuados para poder garantizar su estabilidad durante el tiempo de almacenamiento previsto.First of all you have to make a dispersion of All reagents necessary for crosslinking of latex: sulfur or sulfur donors, accelerators, antioxidants and corresponding surfactants and dispersants that will help the formation and stability of said dispersion. To do this introduce all the ingredients mixed with water in a proportion less than 50% by weight in a ball mill and stirred for the time necessary to obtain a particle size optimum. Then the pre-vulcanization of the latex is carried out, for which the dispersion of the agents of the system is added vulcanization and heated between 30 and 70 ° C for 2-15 hours needed to reach the degree of desired crosslinking of the latex. Once this is done, the latex Pre-machining is conveniently stabilized with surfactants more suitable to guarantee its stability during expected storage time.

Preparación de la dispersión de la carga inorgánicaPreparation of dispersion of inorganic filler

La forma de preparar la dispersión depende del tipo de carga inorgánica. En el caso de las sales de los fluoroácidos la dispersión se prepara con una concentración entre el 20 y el 50 g en peso moliendo dicha carga en un molino de bolas con la cantidad de agua y tensoactivos necesarios. Las dispersiones de los óxidos obtenidos por el método sol-gel se preparan hidrolizando una disolución de un alcóxido del metal de partida en una mezcla etanol-agua.The way to prepare the dispersion depends on the type of inorganic filler In the case of salts of fluoroacids the dispersion is prepared with a concentration between 20 and 50 g by weight by grinding said load in a ball mill with the amount of water and surfactants needed. Dispersions of the oxides obtained by the sol-gel method, prepared by hydrolyzing a solution of an alkoxide of the metal of Split in an ethanol-water mixture.

Mezcla de la carga inorgánica con el látexMixing inorganic filler with latex

El látex prevulcanizado se coloca en un recipiente provisto de agitación mecánica y se va añadiendo poco a poco la dispersión de la carga inorgánica. Mientras tanto, se controlan parámetros de la mezcla como la viscosidad, la tensión superficial o el pH para evitar su coagulación, para lo cual se deben ir añadiendo diferentes aditivos a la mezcla como tensoactivos iónicos y no iónicos o ácidos y bases.The pre-machined latex is placed in a container with mechanical agitation and little is added to little dispersion of the inorganic charge. Meanwhile, it control mixing parameters such as viscosity, tension surface or pH to prevent coagulation, for which it they must be adding different additives to the mixture as ionic and non-ionic surfactants or acids and bases.

Conformado de las membranasConformed membranes

Una vez preparada la mezcla látex-carga inorgánica el paso siguiente es preparar la membrana. En este punto es fundamental que la viscosidad y la tensión superficial de la mezcla sean las adecuadas, y que estén controladas en todo momento. Se extiende una película de la mezcla sobre un molde de vidrio y se deja secar a una temperatura entre 50 y 80ºC durante un tiempo inferior a 60 minutos, adecuados para cada mezcla. Para desmoldear las membranas se sumerge el molde en un baño de agua y se desmoldea la membrana manteniéndola siempre sumergida y lo mas extendida posible. Una vez desmoldeada se extrae del agua y se extiende sobre una superficie no adherente para dejarla secar.Once the mixture is prepared inorganic latex-loading the next step is Prepare the membrane. At this point it is essential that the viscosity and surface tension of the mixture are the adequate, and that they are controlled at all times. Extends a film the mixture on a glass mold and let it dry a temperature between 50 and 80 ° C for a time less than 60 minutes, suitable for each mixture. To unmold the membranes the mold is immersed in a water bath and the membrane is demoulded keeping it always submerged and as extended as possible. One time unmoulded is extracted from water and spread over a surface not adherent to let it dry.

Propiedades Properties

En cuanto a las propiedades mecánicas, independientemente del tipo de carga utilizada los módulos al 100% de deformación son inferiores a 1,6 MPa, mientras que al 900% superan en la mayoría de los casos los 20 MPa, lo cual quiere decir que las películas son bastante elásticos a pesar de haber incorporado una carga inorgánica. Todos las películas presentan un comportamiento a rotura con buenas prestaciones, ya que la carga a la rotura varía entre los 15 y 30 MPa con deformaciones máximas superiores al 700%, muy adecuado para el ensamblaje bajo altas presiones de MEA's.As for the mechanical properties, regardless of the type of load used the modules 100% deformation are less than 1.6 MPa, while 900% they exceed 20 MPa in most cases, which means that the films are quite elastic despite having Built-in inorganic charge. All the films present a breakage behavior with good performance, since the load at the break varies between 15 and 30 MPa with maximum deformations over 700%, very suitable for assembly under high MEA's pressures.

Para calcular la capacidad de absorción de agua de las membranas, estas se han sumergido en agua destilada durante 24 horas y se han pesado antes y después de secarlas a vacío. La cantidad de agua absorbida aumentó en función del contenido de carga entre el 5 y el 25% en peso.To calculate water absorption capacity of the membranes, these have been submerged in distilled water during 24 hours and have been weighed before and after drying under vacuum. The amount of water absorbed increased depending on the content of load between 5 and 25% by weight.

Por lo que se refiere a la resistencia térmica, en ninguna de las membranas ensayadas por análisis termogravimétrico se ha observado pérdida de peso por debajo de la temperatura de descomposición térmica del propio látex, que se produce alrededor de los 380ºC, y en todos los casos superior a 330ºC.As regards thermal resistance, in none of the membranes tested by analysis thermogravimetric weight loss has been observed below the thermal decomposition temperature of the latex itself, which produces around 380ºC, and in all cases exceeds 330 ° C

Se han hecho medidas de conductividad al 81% de humedad relativa entre 30 y 80ºC encontrándose que la conductividad es función del contenido y tipo de carga inorgánica, llegándose a conseguir conductividades de 4x10^{-2} S/cm a 80ºC. Midiendo en idénticas condiciones un filme de Nafion de 100 \mum se observó una conductividad de 6,2x10^{-2} S/cm. Además, se ha comprobado que la conductividad de las películas no varía después de tres meses de almacenamiento.Conductivity measurements have been made at 81% of relative humidity between 30 and 80ºC finding that the conductivity is a function of the content and type of inorganic filler, reaching conductivities of 4x10 -2 S / cm at 80 ° C. Measuring under identical conditions a 100 \ mum Nafion film a conductivity of 6.2x10 -2 S / cm was observed. In addition, it has proven that the conductivity of the films does not change after of three months of storage.

Ejemplo 1Example 1 Preparación de una membrana con un 25% en peso de K_{2}TiF_{6}Preparation of a membrane with 25% by weight of K 2 TiF 6

En primer lugar se prepara una dispersión con los ingredientes necesarios para prevulcanizar el látex. Para ello se introducen en un molino de bolas 100 gr de azufre, 50 gr de dietilditiocarbamato de zinc, 20 gr de oxido de zinc, 20 gr de antioxidante, 2 gr de caprilato potásico, 2 gr de caseína y 200 gr de agua, y se agita durante dos horas. Para prevulcanizar el látex se añaden a un tanque provisto de un sistema de agitación mecánica 500 gr de látex concentrado (55% en peso de goma) y la cantidad de la dispersión, preparada como se comentó anteriormente, necesaria para que por cada 100 partes de goma haya 2 partes de azufre. Para estabilizar la mezcla se añaden 10 gr de disolución acuosa de caprilato potásico al los y 10 gramos de Emulvin (un tensoactivo no iónico). La mezcla se agita a 200 rpm y se calienta durante 6 horas a 60ºC.First a dispersion is prepared with the necessary ingredients to preulcanize the latex. For it 100 gr of sulfur, 50 gr of zinc diethyldithiocarbamate, 20 gr of zinc oxide, 20 gr of antioxidant, 2 gr of potassium caprylate, 2 gr of casein and 200 gr of water, and stir for two hours. To preulcanize latex they are added to a tank equipped with a mechanical agitation system 500 gr of concentrated latex (55% by weight of rubber) and the amount of the dispersion, prepared as previously mentioned, necessary so that for every 100 parts of rubber there are 2 parts of sulfur. For stabilize the mixture add 10 g of aqueous solution of potassium caprilat and 10 grams of Emulvin (a non-surfactant  ionic). The mixture is stirred at 200 rpm and heated for 6 hours at 60 ° C.

Para preparar la dispersión de la carga inorgánica se añaden a un molino de bolas 100 gr de K_{2}TiF_{6} 400 gr de agua y unas gotas del tensoactivo Dolapix y se agita durante 40 minutos.To prepare the dispersion of the load inorganic are added to a ball mill 100 gr of K 2 TiF 6 400 gr of water and a few drops of the surfactant Dolapix and stir for 40 minutes.

El último paso es la preparación de la mezcla, para lo cual se añaden en un vaso provisto de agitación mecánica (200 rpm) 200 gr de látex prevulcanizado, 185 gr de la dispersión de K_{2}TiF_{6}, 1 ml de disolución KOH al 10% y 1 ml de disolución de Caprilato potásico al 10%. Se agita durante 3 horas a temperatura ambiente. Transcurrido ese tiempo se toman con una pipeta 3 ml de la mezcla, se extienden sobre un vidrio nivelado hasta conseguir el espesor adecuado y se secan en una estufa a 70ºC durante 60 minutos. A continuación se sumerge el molde en un baño de agua y se desmoldea la membrana manteniéndola siempre sumergida y lo mas extendida posible. Una vez desmoldeada se extrae del agua y se extiende sobre una superficie no adherente para dejarla secar.The last step is the preparation of the mixture, for which they are added in a glass equipped with mechanical agitation (200 rpm) 200 gr of pre-machined latex, 185 gr of the dispersion of K 2 TiF 6, 1 ml of 10% KOH solution and 1 ml of 10% potassium Caprylate solution. Stir for 3 hours at room temperature. After that time they are taken with a Pipette 3 ml of the mixture, spread on a level glass until the proper thickness is achieved and dried in an oven at 70 ° C for 60 minutes Then the mold is immersed in a bath of water and the membrane is demoulded keeping it always submerged and as widespread as possible. Once unmolded it is extracted from the water and extends over a non-adherent surface to leave it dry off.

De esta manera se han preparado membranas de 150 \mum de espesor con una conductividad de 2x10^{-3} S/cm a 60ºC y 81% de humedad relativa. En cuanto a las propiedades mecánicas, estas membranas eran muy elásticas, con un módulo al 100% de deformación muy bajo, 1,03 MPa, y un módulo al 500% de 6,15 MPa. Sin embargo, también son muy resistentes ya que alargan el 770% antes de romperse con una carga a la rotura de 21,1 MPa. Además, tienen una gran resistencia térmica, ya que su temperatura de descomposición, calculada por termogravimetria es de 365ºC. En cuanto a la absorción de agua, después de 24 horas de inmersión en agua destilada habían absorbido un 10% en peso.In this way 150 membranes have been prepared um thick with a conductivity of 2x10 -3 S / cm at 60 ° C and 81% relative humidity. As for the mechanical properties, these membranes were very elastic, with a 100% module of Very low deformation, 1.03 MPa, and a 500% module of 6.15 MPa. However, they are also very resistant since they extend 770% before breaking with a breaking load of 21.1 MPa. Further, they have a great thermal resistance, since their temperature of decomposition, calculated by thermogravimetry is 365ºC. In as for water absorption, after 24 hours of immersion in Distilled water had absorbed 10% by weight.

Claims (9)

1. Membranas híbridas orgánico-inorgánico de intercambio iónico caracterizadas por contener una matriz preparada a partir de látex de caucho natural y una carga inorgánica con conductividades protónicas bajas o altas y por tanto propiedades de conductor protónico regulables.1. Organic-inorganic hybrid ion exchange membranes characterized by containing a matrix prepared from natural rubber latex and an inorganic filler with low or high proton conductivities and therefore adjustable proton conductor properties. 2. Método de preparación de membranas híbridas orgánico-inorgánico de intercambio iónico de acuerdo con la reivindicación 1 caracterizado porque comprende las etapas:2. Method of preparing organic-inorganic ion exchange hybrid membranes according to claim 1 characterized in that it comprises the steps:
--
prevulcanización del látexlatex pre-machining
--
preparación de la dispersión de la carga inorgánicaload dispersion preparation inorganic
--
mezcla de la carga inorgánica con el látexmixture of inorganic filler with latex
--
conformado de las membranas.Conformed membranes.
3. Método de preparación de membranas híbridas orgánico-inorgánico de intercambio iónico de acuerdo con la reivindicación 2 caracterizado porque la prevulcanización del látex se produce por un sistema de entrecruzamiento basado en azufre, acelerantes y antioxidantes, entre 30 y 70ºC durante 2-15 horas.3. Method of preparing organic-inorganic ion exchange hybrid membranes according to claim 2 characterized in that the pre-vulcanization of the latex is produced by a cross-linking system based on sulfur, accelerators and antioxidants, between 30 and 70 ° C for 2-15 hours . 4. Método de preparación de membranas híbridas orgánico-inorgánico de intercambio fónico de acuerdo con la reivindicación 2 y 3 caracterizado porque las cargas inorgánicas usadas son SiO_{2}, TiO_{2} y ZrO_{2} obtenidos por sol-gel.4. Method of preparing organic-inorganic phonic exchange hybrid membranes according to claim 2 and 3 characterized in that the inorganic fillers used are SiO2, TiO2 and ZrO2 obtained by sol-gel. 5. Método de preparación de membranas híbridas orgánico-inorgánico de intercambio fónico de acuerdo con la reivindicación 2 a 4 caracterizado porque las cargas inorgánicas usadas son fluorosilicatos de litio (Li_{2}SiF_{6}), sodio, potasio, rubidio, cesio, amonio, magnesio, calcio, bario, cobre (II) y manganeso (II); fluoroboratos como el de sodio (NaBF_{4}), fluorotitanatos, como el Na_{2}TiF_{6} o fluorozirconatos como el Na_{2}ZrF_{6}.5. Method of preparing organic-inorganic phonic exchange hybrid membranes according to claim 2 to 4, characterized in that the inorganic fillers used are lithium fluorosilicates (Li 2 SiF 6), sodium, potassium, rubidium, cesium , ammonium, magnesium, calcium, barium, copper (II) and manganese (II); Fluoroborates such as sodium (NaBF4), fluorotitates, such as Na2 TiF6 or fluorozirconates such as Na2ZrF6. 6. Método de preparación de membranas híbridas orgánico-inorgánico de intercambio fónico de acuerdo con la reivindicación 2 a 5 caracterizado porque el contenido de cargas inorgánicas usadas esta comprendido entre el 0,1 y el 50% en peso.6. Method of preparing organic-inorganic hybrid phonic exchange membranes according to claim 2 to 5, characterized in that the content of inorganic fillers used is between 0.1 and 50% by weight. 7. Método de preparación de membranas híbridas orgánico-inorgánico de intercambio iónico de acuerdo con la reivindicación 2 a 6 caracterizado porque el conformado se realiza a una temperatura entre 50 y 80ºC durante un tiempo inferior a 60 minutos, desmoldeandolas por inmersión en un baño de agua.7. Method of preparing organic-inorganic ion exchange hybrid membranes according to claim 2 to 6, characterized in that the forming is carried out at a temperature between 50 and 80 ° C for a time of less than 60 minutes, by demolding them by immersion in a bath of Water. 8. Uso de las membranas definidas en las reivindicaciones anteriores como separador y electrolito sólido en dispositivos electroquímicos tales como, sensores y separadores de gases, etc.8. Use of the membranes defined in the previous claims as separator and solid electrolyte in electrochemical devices such as sensors and separators gases, etc. 9. Uso de las membranas definidas en las reivindicaciones anteriores como membranas de intercambio protónico en pilas de combustible.9. Use of the membranes defined in the previous claims as proton exchange membranes in fuel cells.
ES200701781A 2007-06-26 2007-06-26 ORGANIC-INORGANIC HYBRID MEMBER OF ION EXCHANGE, ITS PREPARATION AND USE IN ELECTROCHEMICAL DEVICES. Expired - Fee Related ES2310484B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES200701781A ES2310484B1 (en) 2007-06-26 2007-06-26 ORGANIC-INORGANIC HYBRID MEMBER OF ION EXCHANGE, ITS PREPARATION AND USE IN ELECTROCHEMICAL DEVICES.
PCT/ES2008/070127 WO2009000963A1 (en) 2007-06-26 2008-06-26 Inorganic-organic hybrid membrane for ionic interchange, preparation thereof and use in electrochemical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES200701781A ES2310484B1 (en) 2007-06-26 2007-06-26 ORGANIC-INORGANIC HYBRID MEMBER OF ION EXCHANGE, ITS PREPARATION AND USE IN ELECTROCHEMICAL DEVICES.

Publications (2)

Publication Number Publication Date
ES2310484A1 ES2310484A1 (en) 2009-01-01
ES2310484B1 true ES2310484B1 (en) 2010-01-08

Family

ID=40130668

Family Applications (1)

Application Number Title Priority Date Filing Date
ES200701781A Expired - Fee Related ES2310484B1 (en) 2007-06-26 2007-06-26 ORGANIC-INORGANIC HYBRID MEMBER OF ION EXCHANGE, ITS PREPARATION AND USE IN ELECTROCHEMICAL DEVICES.

Country Status (2)

Country Link
ES (1) ES2310484B1 (en)
WO (1) WO2009000963A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746087A (en) * 2014-01-03 2014-04-23 东莞市卓高电子科技有限公司 Method for manufacturing lithium-ion battery separators and lithium battery
CN112870924B (en) * 2021-01-22 2022-10-25 广州市朔康医疗科技有限公司 Organic gas membrane separation equipment for laboratory

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059943A (en) * 1997-07-30 2000-05-09 Lynntech, Inc. Composite membrane suitable for use in electrochemical devices
US6458491B1 (en) * 2000-09-15 2002-10-01 Microporous Products, Lp Separator for energy storage cells
WO2002095856A2 (en) * 2001-05-18 2002-11-28 Intech Thüringen Gmbh Fuel cell
GB0418561D0 (en) * 2004-08-19 2004-09-22 Ssl Int Plc Rubber latex films having improved tear resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLASSE, M.D. et al. Polymer electrolytes based on modified natural rubber. Solid State Ionics, Abril 2002, Vol. 147, páginas 289-294. ISSN 0167-2738. Ver Introducción y parte experimental. *

Also Published As

Publication number Publication date
WO2009000963A1 (en) 2008-12-31
ES2310484A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
Lu et al. A Self-Anchored Phosphotungstic Acid Hybrid Proton Exchange Membrane Achieved via One-Step Synthesis.
Devi et al. Fabrication and electrochemical properties of SPVdF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells
Lee et al. Preparation and evaluation of sulfonated-fluorinated poly (arylene ether) s membranes for a proton exchange membrane fuel cell (PEMFC)
CN104659395B (en) Organic-inorganic composite proton exchange membrane for proton exchange membrane fuel cell and preparation method thereof
Aili et al. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells
Zhang et al. Quaternized poly (ether ether ketone) s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells
US20100104918A1 (en) Improved fuel cell proton exchange membranes
CN111704731B (en) Method for producing ionomer nanoparticle dispersion liquid
EP3229302B1 (en) Polymer electrolyte membrane
Chen et al. 4, 4′-Oxydianiline (ODA) containing sulfonated polyimide/protic ionic liquid composite membranes for anhydrous proton conduction
CN1871736A (en) Composite electrolyte with crosslinking agents
Abu-Thabit et al. Novel sulfonated poly (ether ether ketone)/phosphonated polysulfone polymer blends for proton conducting membranes
Ko et al. Eco-friendly cellulose based solid electrolyte with high performance and enhanced low humidity performance by hybridizing with aluminum fumarate MOF
KR101146191B1 (en) Method of manufacturing nanocomposite electrolyte, nanocomposite electrolyte manufactured thereby and membrane-electrode assembly
KR20150070577A (en) Crosslinked hydrocarbon polymer electrolyte membranes with diols by radiation and manufacturing method thereof
Zhang et al. Fabrication of a polymer electrolyte membrane with uneven side chains for enhancing proton conductivity
Chikumba et al. The development of sulfonated polyether ether ketone (sPEEK) and titanium silicon oxide (TiSiO4) composite membranes for DMFC applications
ES2310484B1 (en) ORGANIC-INORGANIC HYBRID MEMBER OF ION EXCHANGE, ITS PREPARATION AND USE IN ELECTROCHEMICAL DEVICES.
Yasuda et al. Hydrophobic protic ionic liquid for nonhumidified intermediate-temperature fuel cells
KR20160128140A (en) Preparation Method of Ionomernano particles Dispersion
Li et al. A novel cross-linked anion exchange membrane with conjugated and non-conjugated pyridine groups
US7597981B2 (en) Composite electrolyte membrane with nanoscopic dendrimers and method of preparing same
TWI439473B (en) Maleimide derivatives, maleimide-derived copolymers and compositions, films and cells comprising the derivatives or copolymers
ES2625078T3 (en) Method of preparing a composite material comprising a polymer matrix and a filler consisting of inorganic ion exchange particles
KR20150019051A (en) Proton Exchange Membrane for Fuel Cells And Manufacturing Method Thereof

Legal Events

Date Code Title Description
EC2A Search report published

Date of ref document: 20090101

Kind code of ref document: A1

FD2A Announcement of lapse in spain

Effective date: 20180912