WO2009000391A1 - Élément mécanique présentant un revêtement et procédé de mesure de grandeurs d'état sur des éléments mécaniques - Google Patents

Élément mécanique présentant un revêtement et procédé de mesure de grandeurs d'état sur des éléments mécaniques Download PDF

Info

Publication number
WO2009000391A1
WO2009000391A1 PCT/EP2008/004477 EP2008004477W WO2009000391A1 WO 2009000391 A1 WO2009000391 A1 WO 2009000391A1 EP 2008004477 W EP2008004477 W EP 2008004477W WO 2009000391 A1 WO2009000391 A1 WO 2009000391A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
mechanical component
component according
determining
state variable
Prior art date
Application number
PCT/EP2008/004477
Other languages
German (de)
English (en)
Inventor
Ralf Bandorf
Original Assignee
Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung_E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung_E.V. filed Critical Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung_E.V.
Publication of WO2009000391A1 publication Critical patent/WO2009000391A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means

Definitions

  • the invention relates to a mechanical component with a coating, which is embodied at least as a partial coating and which contains at least one compound of the empirical formula M n A 1 X 111 , wherein the parameter n is selected between 2 and 4, the element M is selected from Sc or Ti or V or Cr or Zr or Nb or Mo or Hf or Ta, the element A is selected from Al or Si or P or S or Ga or Ge or As or Cd or In or Sn and the element X is selected from C or N.
  • Resistance of the amorphous carbon layer Information about the force acting on the mechanical component.
  • the object of the present invention is therefore to provide a coating which can be used as a sensor layer for determining the state of a mechanical component, has a low coefficient of friction under frictional stress and, as a ductile layer, follows the movements without deformation when the mechanical component is deformed. Furthermore, the object of the invention is to provide a sensor layer which can be used at temperatures above 500 ° C., preferably above 1000 ° C.
  • a mechanical component with a coating which is embodied at least as a partial coating and which contains at least one compound of the empirical formula M n A 1 X 111 , wherein the parameter n is selected between 2 and 4, the element M is selected is selected from Sc or Ti or V or Cr or Zr or Nb or Mo or Hf or Ta, the element A is selected from Al or Si or P or S or Ga or Ge or As or Cd or In or Sn and the element X is selected is from C or N wherein at least a partial surface of the coating is used as a sensor element for determining a state variable of the mechanical component.
  • the solution of the object in a method for measuring state quantities of mechanical components in which a layer is used as sensor, which contains at least one compound of the empirical formula M n A 1 X n-1 , wherein the parameter n is between 2 and 4 is selected, the element M is selected from Sc or Ti or V or Cr or Zr or Nb or Mo or Hf or Ta, the element A is selected from Al or Si or P or S or Ga or Ge or As or Cd or In or Sn and the element X is selected from C or N.
  • a mechanical component in the sense of the present invention comprises, for example, a bearing with or without introduced rolling elements, a clamping system, a piston-cylinder system, but also forming tools, casting molds or cutting tools.
  • a coating is applied at least in the measuring range. In some cases, however, the entire mechanical component can be provided over a large area with the coating.
  • the state variable to be measured is, for example, a change in length, a force, a distance between two components or a temperature.
  • several state variables can be determined independently or a combination of state variables with the sensor layer according to the invention.
  • the coating material of the molecular formula M n A 1 X n-1 used according to the invention is characterized in that the bonds within the microstructure have partially metallic, partially ionic and partially covalent character. As a result of this, partially metallic and partly ceramic properties are obtained for the layers.
  • the layers are electrically conductive, have the characteristic of metals high thermal conductivity ability and are ductile.
  • the layers used according to the invention exhibit a lower density, a greater hardness and a high resistance to oxidation, which is why the layers according to the invention are thermally stable and remain usable even at high temperatures.
  • the layers are self-lubricating to a certain extent, so that at low requirements an additional lubricant additions can be omitted. At higher requirements, at least still runflat properties, which prevent the immediate destruction of the sensor layer. Furthermore, the sensor layer can thereby perform a dual function and improve both the mechanical properties of the mechanical component and at the same time serve for condition monitoring.
  • the layer material of the empirical formula M n A 1 X n-1 can be present in a crystalline phase.
  • the use as nanocomposite is particularly preferred.
  • the above-mentioned properties are essentially preserved.
  • the deposition is possible at considerably lower temperatures, for example at 100 0 C - 150 0 C. This extends the scope of application, since high alloyed steels change their properties greatly when heated too much.
  • the microstructure of nanocomposite layers consists of individual crystalline particles embedded in a crystalline or amorphous matrix.
  • the crystalline particles have mean particle sizes of about 10 "10 m to about 10 " 6 m.
  • that partial area of the coating which is provided for determining a state variable is electrically insulated from the mechanical component by an insulating layer.
  • Insulating layer for example, layers of Al 2 O 3 , AlN, SiO x , BN or amorphous carbon (aC) in question.
  • aC amorphous carbon
  • the partial surface of the coating which is intended to determine a state variable, may have a lateral structuring.
  • lines for contacting the sensor surface can be monolithically integrated into the mechanical component.
  • the lateral structuring can serve to define two or more measuring ranges which determine different state variables or record the same state variable at different locations.
  • increased accuracy of measurement can also be achieved on a case-by-case basis.
  • the partial surface of the coating which is provided for determining a state variable, is advantageously designed such that it forms an electrode of a plate capacitor.
  • This electrode can then face a further component which either also has a coating according to the invention or not.
  • the electric capacitance between the two plates of the plate capacitor thus formed is inversely proportional to their pitch. So if a constant voltage is applied, a current proportional to the distance change will flow in the supply lines. This allows changes in the distance between mechanical Components, such as the bearing air of a ball bearing, are detected without contact. If it comes to placing a component on the other component, the advantageous properties of the sensor layer immediate destruction, as would occur in metallic layers avoided.
  • the sensor layer is connected to an electrical measuring device for determining the electrical resistance of the layer.
  • the electrical resistance can change either by a change in length of the layer material, so that it can be concluded about the resistance measurement on a change in shape of the mechanical component.
  • the resistance change can also be caused by a temperature change of the
  • Sensor material can be effected.
  • the sensor can be used as a temperature sensor.
  • Another possibility is the direct change in resistance due to an impressed force due to piezoresistive properties.
  • the coating according to the invention directly the acting force can be determined without having to take the detour via a deformation of a component.
  • the layer is provided with either two or more contacts, so that the layer area provided for the measurement flows through a surface-parallel current and the voltage drop across the layer is determined.
  • the coating has a thickness of about 0.1 .mu.m to about 10 .mu.m. Such a thin coating keeps the mechanical component dimensionally stable. As a result, the coating can also be carried out over a large area without restricting the further usability of the component or requiring subsequent mechanical reworking.
  • a first partial area for determining a first state variable and a second partial area for determining a second state variable can be provided. This makes it possible, for example, to apply a force to a partial surface so that the electrical resistance of the coating changes depending on the temperature of the mechanical component and the applied force. A second, adjacent or recessed arranged portion which is not acted upon by a force, however, measures only the temperature. Thus, both parameters can be determined separately. In a similar way, current values can also be compared with reference values from measured variables.
  • the coating is deposited on the mechanical component by physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • Such a coating has a particularly high adhesive strength on the mechanical component and can be used together with further layers for insulation and for Wear protection in a single pass in a vacuum.
  • the layer according to the invention preferably has one
  • the electrical conductivity of the sensor layer used is preferably more than 30 ⁇ cm. This greatly facilitates manufacturing in a PVD process with applied bias voltage. When using the mechanical component, the conductivity value allows a simple electrical contacting of the active sensor layer.
  • Layer provided with at least one further element, in particular gold (Au) and / or silver (Ag) and / or copper (Cu).
  • Au gold
  • Ag silver
  • Cu copper
  • Resistance change can be adjusted so as to facilitate the distinction of the force or strain-induced resistance change of the temperature-induced resistance change u.
  • preferred compounds of the sensor layer according to the invention have a hardness of more than 5 GPa. This reduces the abrasive wear and the life of the mechanical component is increased as desired compared to the prior art.
  • the sensor layer according to the invention can also be combined with a further functional layer.
  • This functional layer can either comprise another sensor layer, which supplies a reference signal and thus increases the accuracy of the measurement, or a further tribological layer, so that a multilayer construction results, which further improves wear protection.

Abstract

La présente invention concerne des éléments mécaniques et un procédé pour les utiliser, les éléments mécaniques présentant un revêtement qui est réalisé au moins en tant que revêtement partiel et qui contient au moins un composé de formule empirique MnA1Xn-1 dans laquelle le paramètre n est compris entre 2 et 4, l'élément M est choisi entre Sc, Ti, V, Cr, Zr, Nb, Mo, Hf et Ta, l'élément A est choisi entre Al, Si, P, S, Ga, Ge, As, Cd, In et Sn et l'élément X est choisi entre C et N, au moins une surface partielle du revêtement pouvant servir d'élément de détection pour déterminer une grandeur d'état de l'élément mécanique.
PCT/EP2008/004477 2007-06-27 2008-06-05 Élément mécanique présentant un revêtement et procédé de mesure de grandeurs d'état sur des éléments mécaniques WO2009000391A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007029683.7 2007-06-27
DE200710029683 DE102007029683B4 (de) 2007-06-27 2007-06-27 Verfahren zur Messung von Zustandsgrößen an mechanischen Komponenten

Publications (1)

Publication Number Publication Date
WO2009000391A1 true WO2009000391A1 (fr) 2008-12-31

Family

ID=39829098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/004477 WO2009000391A1 (fr) 2007-06-27 2008-06-05 Élément mécanique présentant un revêtement et procédé de mesure de grandeurs d'état sur des éléments mécaniques

Country Status (2)

Country Link
DE (1) DE102007029683B4 (fr)
WO (1) WO2009000391A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008062062A1 (de) * 2008-12-12 2010-06-17 Mahle International Gmbh Gleitschicht und Gleitelement
DE102010017191B4 (de) * 2010-06-01 2014-07-24 CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH Differenzdrucksensor mit Absolutdruckermittlung
DE102015111425B4 (de) * 2014-07-18 2016-06-30 Klaus Kürschner Verfahren und Einrichtung zur elektrischen Kraftmessung mittels Isolationsdünnschicht

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954164A1 (de) * 1999-11-10 2001-06-13 Fraunhofer Ges Forschung Sensor zur Zustandsbestimmung von Kenngrößen an mechanischen Komponenten unter Verwendung von amorphen Kohlenstoffschichten mit piezoresistiven Eigenschaften
US20020068488A1 (en) * 2000-08-28 2002-06-06 Boston Microsystems, Inc. Stable electrical contact for silicon carbide devices
US20040265405A1 (en) * 2003-06-30 2004-12-30 Devrim Akyuz Hot press tool
US20050076825A1 (en) * 2001-11-30 2005-04-14 Aab Ab Method of synthesizing a compound of the formula mn+1axn5 film of the compound and its use
WO2006115451A1 (fr) * 2005-04-25 2006-11-02 Impact Coatings Ab Carte a puce intelligente et lecteur de carte a puce intelligente
US20070111031A1 (en) * 2003-10-16 2007-05-17 Abb Research Ltd. Coating of mn+1axn material for electrical contact elements

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10253178B4 (de) 2002-09-10 2004-08-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung einer Schicht aus diamantartigem Kohlenstoff
US7572313B2 (en) * 2004-05-26 2009-08-11 Drexel University Ternary carbide and nitride composites having tribological applications and methods of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19954164A1 (de) * 1999-11-10 2001-06-13 Fraunhofer Ges Forschung Sensor zur Zustandsbestimmung von Kenngrößen an mechanischen Komponenten unter Verwendung von amorphen Kohlenstoffschichten mit piezoresistiven Eigenschaften
US20020068488A1 (en) * 2000-08-28 2002-06-06 Boston Microsystems, Inc. Stable electrical contact for silicon carbide devices
US20050076825A1 (en) * 2001-11-30 2005-04-14 Aab Ab Method of synthesizing a compound of the formula mn+1axn5 film of the compound and its use
US20040265405A1 (en) * 2003-06-30 2004-12-30 Devrim Akyuz Hot press tool
US20070111031A1 (en) * 2003-10-16 2007-05-17 Abb Research Ltd. Coating of mn+1axn material for electrical contact elements
WO2006115451A1 (fr) * 2005-04-25 2006-11-02 Impact Coatings Ab Carte a puce intelligente et lecteur de carte a puce intelligente

Also Published As

Publication number Publication date
DE102007029683A1 (de) 2009-01-02
DE102007029683B4 (de) 2011-07-14

Similar Documents

Publication Publication Date Title
DE19954164B4 (de) Sensor zur Zustandsbestimmung von Kenngrößen an mechanischen Komponenten unter Verwendung von amorphen Kohlenstoffschichten mit piezoresistiven Eigenschaften
EP1436515B1 (fr) Element detecteur servant a la detection d'une grandeur physique a mesurer entre des corps soumis a une contrainte tribologiquement elevee
DE102014011552A1 (de) Sensoren sowie Verfahren zur Herstellung von Sensoren
DE102006019942A1 (de) Kraftmessvorrichtung zur Messung der Kraft bei Festkörperaktoren, Verfahren zur Messung einer Kraft sowie Verwendung der Kraftmessvorrichtung
EP1686356A2 (fr) Protection contre l'humidité pour un transducteur électromécanique
EP3844411B1 (fr) Élément de palier lisse
EP1427946B1 (fr) Element detecteur servant a la detection d'une grandeur physique a mesurer entre des corps soumis a une contrainte tribologiquement elevee
DE102007029683B4 (de) Verfahren zur Messung von Zustandsgrößen an mechanischen Komponenten
DE102017222624A1 (de) Beschichtete Lagerkomponente und Lager mit einer solchen Komponente
EP0017982B1 (fr) Jauge de contrainte et sa fabrication
DE102012211490B4 (de) Piezoresistive dotierte DLC-Sensorschicht, Verfahren zu deren Herstellung, Kraftsensor, Verfahren zu dessen Herstellung und dessen Verwendung
DE3219168C2 (de) Meßwiderstand für Rauschthermometer
EP1354155B1 (fr) Joint plat metallique et son procede de production
EP2183561B1 (fr) Dispositif destiné à la détermination et/ou au contrôle d'une grandeur de processus
DE102010054970B4 (de) Vorrichtung zum Wandeln einer Dehnung und/oder Stauchung in ein elektrisches Signal, insbesondere Dehnungsmessfolie
EP1354181B1 (fr) Capteur pour detecter l'etat de parametres de composants mecaniques par utilisation de couches de carbone amorphes ayant des proprietes piezoresistives
DE102012214922A1 (de) Sensor und Verfahren zum Bestimmen einer Temperatur
EP3613065B1 (fr) Résistance en couche et capteur à film mince
EP1801548A2 (fr) Dispositif destiné à la détermination d'un paramètre de processus et procédé destiné à la production d'une unité de détection correspondante
WO2022122886A1 (fr) Élément et son procédé de production
DE102013007644B4 (de) Anordnung zur Messung einer Dehnung, eines Druckes oder einer Kraft mit einer Widerstandsschicht
DE10156160B4 (de) Mechanisch-elektrischer Wandler
DE102020120113A1 (de) Präzisionsbauteil und Verfahren zur Aufbringung eines Sensorelements auf ein Präzisionsbauteil
WO2007048613A1 (fr) Capteur avec couche résistante
EP1014080A1 (fr) Capteur de gaz et son méthode de production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08801448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08801448

Country of ref document: EP

Kind code of ref document: A1