WO2008156157A1 - Torque control system for internal combustion engine - Google Patents

Torque control system for internal combustion engine Download PDF

Info

Publication number
WO2008156157A1
WO2008156157A1 PCT/JP2008/061288 JP2008061288W WO2008156157A1 WO 2008156157 A1 WO2008156157 A1 WO 2008156157A1 JP 2008061288 W JP2008061288 W JP 2008061288W WO 2008156157 A1 WO2008156157 A1 WO 2008156157A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
pressure
internal combustion
combustion engine
amount
Prior art date
Application number
PCT/JP2008/061288
Other languages
French (fr)
Japanese (ja)
Inventor
Daichi Imai
Takeshi Hashizume
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008156157A1 publication Critical patent/WO2008156157A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a technique for controlling the torque of an internal combustion engine, and more particularly to a technique for suppressing a decrease in torque under low atmospheric pressure.
  • Japanese Patent Application Laid-Open No. 2006-29279 discloses a technique for suppressing a decrease in the output of an internal combustion engine by adjusting a target supercharging pressure based on an actual air density.
  • Japanese Patent Application Laid-Open No. 8-303290 discloses a technique for performing sub fuel injection after main fuel injection (first half of the expansion stroke) when the exhaust gas temperature is lower than a predetermined temperature.
  • Japanese Patent Laid-Open No. 2004-28030 when the sub fuel injection is performed after the main fuel injection (the period from the expansion stroke to the exhaust stroke), the amount of the sub injection is determined based on the measured value of the exhaust temperature sensor.
  • Japanese Laid-Open Patent Publication No. 2004-162675 which discloses a technique for feedback control of timing, discloses a technique for increasing the amount of EGR gas and performing sub fuel injection after main fuel injection when the exhaust gas temperature is low. It is disclosed.
  • Japanese Patent Laid-Open No. 2005-54607 discloses that when the exhaust gas temperature is lower than a predetermined temperature, the valve opening timing of the exhaust valve is advanced, and after the main fuel injection and before the valve opening timing of the exhaust valve. A technique for performing sub fuel injection is disclosed.
  • Japanese Patent Laid-Open No. 2005-291 1 75 discloses that when the sub fuel injection is performed after the main fuel injection, the capacity of the variable displacement turbocharger is increased and / or the opening of the waste gate valve is increased. Technology is disclosed. Disclosure of the invention
  • the exhaust energy decreases as the atmospheric pressure decreases.
  • the output of the centrifugal supercharger may decrease.
  • the boost pressure may not increase to the target boost pressure.
  • the internal combustion engine cannot generate the required torque.
  • a method of increasing exhaust energy by retarding the fuel injection timing is also conceivable.
  • the increase in exhaust energy due to the retarded fuel injection timing is slight.
  • the torque generated by the internal combustion engine may decrease due to the retarded fuel injection timing.
  • An object of the present invention is to provide a technology capable of suppressing a torque decrease due to a decrease in atmospheric pressure as much as possible in a torque control system for an internal combustion engine equipped with a centrifugal supercharger (turbocharger).
  • the present invention performs after injection from a fuel injection valve when a compression ignition type internal combustion engine equipped with a centrifugal supercharger is operated under low atmospheric pressure.
  • the exhaust energy is increased without causing a decrease in torque of the internal combustion engine.
  • the present invention relates to a torque control system for a compression ignition type internal combustion engine equipped with a centrifugal supercharger, an acquisition means for acquiring atmospheric pressure, and an atmospheric pressure acquired by the acquisition means is a standard atmospheric pressure ( And a control means for performing after-injection from the fuel injection valve when the pressure is lower than 1 atm).
  • the amount of increase in exhaust energy due to after injection greatly exceeds the amount of increase in exhaust energy due to retardation of the main injection timing. For this reason, if after-injection is performed when the internal combustion engine is operated under a low atmospheric pressure such as a high altitude, a decrease in the output of the centrifugal supercharger can be suppressed.
  • the actual supercharging pressure cannot be separated from the target supercharging pressure.
  • the after injection amount and / or the after injection timing may be determined according to the atmospheric pressure acquired by the acquisition means. Exhaust energy decreases with decreasing atmospheric pressure. On the other hand, the exhaust energy increases as the after injection amount and the retard amount of the after injection timing increase. Therefore, as the atmospheric pressure acquired by the acquisition means becomes lower, the after injection amount and / or the retard amount of the after injection timing may be increased.
  • the torque control system for an internal combustion engine may further comprise first detection means for detecting the pressure of the intake air supercharged by the centrifugal supercharger.
  • the control means may increase the after-injection amount and / or retard the after-injection timing as the pressure detected by the first detecting means becomes lower than the target boost pressure.
  • the exhaust energy of the internal combustion engine increases as the after injection amount increases and / or as the after injection timing is retarded. For this reason, if the after injection amount and the retard amount of the after injection timing increase as the actual boost pressure becomes lower than the target boost pressure, the actual boost pressure approximates the target boost pressure. It is possible to let Become.
  • the control means when the actual boost pressure is lower than the target boost pressure, the control means first delays the after injection timing while keeping the after injection quantity constant. If the actual boost pressure does not increase to the target boost pressure even if the retard amount of the after injection timing reaches the limit, the control means may increase the after injection amount.
  • the control means may increase the exhaust energy by retarding the after injection timing.
  • the control means is based on the increase in the after injection amount (or the increase in the after injection amount and the delay in the after injection timing). You can try to increase the exhaust energy.
  • the delay of the after injection timing is prioritized over the increase in the after injection amount, the increase in fuel consumption can be minimized as much as possible.
  • the internal combustion engine torque control system may further include second detection means for detecting the temperature of the atmosphere.
  • the control means may decrease the retard amount of the after injection timing as the temperature detected by the second detection means becomes lower.
  • after-injected fuel When the atmospheric temperature is low, after-injected fuel (hereinafter referred to as “after-injected fuel”) tends to misfire. This phenomenon becomes more prominent as the after injection timing is retarded. Therefore, if the after injection timing is significantly retarded when the atmospheric temperature is low, the amount of unburned fuel discharged from the internal combustion engine increases. On the other hand, if the retard amount of the after injection timing is limited to a lower level as the atmospheric temperature becomes lower, misfire of the after-injected fuel can be prevented.
  • FIG. 1 is a diagram showing a schematic configuration of a torque control system for an internal combustion engine.
  • Figure 2 shows the correlation between atmospheric pressure and supercharging pressure.
  • FIG. 3 is a diagram showing the correlation between the main injection timing and the exhaust temperature.
  • Fig. 4 shows the correlation between after injection timing and exhaust temperature.
  • FIG. 5 is a flowchart showing a torque control routine in the first embodiment.
  • FIG. 6 is a diagram showing a map for determining the basic after injection timing.
  • FIG. 7 is a flowchart showing the feedback control routine in the first embodiment. Yat.
  • FIG. 8 is a diagram showing a map for determining the feedback correction coefficient in the first embodiment.
  • FIG. 9 is a diagram showing a map for determining the retard angle limit value of the after injection timing.
  • FIG. 10 is a graph showing the correlation between the after injection amount and the exhaust temperature.
  • FIG. 11 is a flowchart showing a torque control routine in the second embodiment.
  • FIG. 12 is a diagram showing a map for determining the basic after-injection amount.
  • FIG. 13 is a flowchart showing a feedback control routine in the second embodiment.
  • FIG. 14 is a diagram showing a map for determining the feedback correction coefficient in the second embodiment.
  • Fig. 15 is a diagram showing a map for determining the upper limit amount of the after-injection amount
  • FIG. 1 is a diagram showing a schematic configuration of a torque control system for an internal combustion engine according to the present invention.
  • An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) having a plurality of cylinders.
  • Each cylinder 2 of the internal combustion engine 1 is provided with a fuel injection valve 3 that can inject fuel directly into each cylinder 2.
  • the fuel injection valve 3 injects fuel boosted in the common rail 30 into the cylinder 2.
  • An intake passage 4 communicates with each cylinder 2.
  • a compressor housing 50 and an intercooler 6 of a centrifugal supercharger (turbocharger) 5 are arranged.
  • An intake throttle valve 7 is provided in the intake passage 4 downstream of the intercooler 6.
  • an exhaust passage 8 communicates with each cylinder 2.
  • a turbine housing 5 1 of the turbocharger 5 and an exhaust purification device 9 are arranged.
  • Air (intake air) drawn into the intake passage 4 is compressed by the compressor housing 50.
  • the intake air compressed by the compressor housing 50 is cooled by the intercooler 6 and then introduced into each cylinder 2.
  • the intake air introduced into each cylinder 2 is ignited and burned in the cylinder 2 together with the fuel injected from the fuel injection valve 3.
  • the gas burned in the cylinder 2 (burned gas) is discharged to the exhaust passage 8.
  • the exhaust discharged into the exhaust passage 8 is discharged into the atmosphere via the turbine housing 51 and the exhaust purification device 9.
  • the internal combustion engine 1 has an EGR (Exhaust Gas Recirculation) mechanism.
  • the EGR mechanism changes the cross-sectional area of the EGR passage 10 and EGR passage 10 that guide part of the exhaust from the exhaust passage 8 upstream from the turbine housing 51 to the intake passage 4 downstream from the intercooler 6.
  • EG R EGR cooler 12 that cools the exhaust gas (high pressure EGR gas) flowing through valve 11 and EGR passage 10 is provided.
  • the internal combustion engine 1 configured as described above is provided with an ECU 13.
  • the ECU 13 is an electronic control unit composed of a CPU, ROM, RAM, knock-up RAM, and the like.
  • Various sensors such as an air flow meter 14, an intake air temperature sensor 15, an intake air pressure sensor 16, a crank position sensor 17 and an atmospheric pressure sensor 18 are electrically connected to the ECU 13.
  • the air flow meter 14 is disposed in the intake passage 4 upstream from the compressor housing 50 and measures the amount of air flowing into the intake passage 4 from the atmosphere.
  • the intake air temperature sensor 15 is disposed in the intake passage 4 near the air flow meter 14 and measures the temperature of the air flowing into the intake passage 4 from the atmosphere.
  • the intake pressure sensor 16 is disposed in the intake passage 4 downstream of the intake throttle valve 7 and measures the pressure in the intake passage 4 (internal pressure).
  • the crank position sensor 17 measures the rotational position of the crankshaft of the internal combustion engine 1.
  • the atmospheric pressure sensor 18 measures atmospheric pressure.
  • the atmospheric pressure sensor 18 is an embodiment of the acquisition means according to the present invention.
  • the intake pressure sensor 16 is an embodiment of the first detection means according to the present invention.
  • the intake air temperature sensor 15 is an embodiment of the second detection means according to the present invention.
  • the ECU 17 performs known fuel injection control and EGR control based on the measured values of the various sensors described above, and performs torque control that is the gist of the present invention.
  • torque control in this embodiment will be described.
  • the generated torque of the internal combustion engine 1 may be lower than the required torque. This is thought to be due to the fact that the intake supercharging pressure falls below the target intake pressure due to a decrease in atmospheric pressure.
  • Figure 2 shows the relationship between atmospheric pressure and supercharging pressure.
  • the supercharging pressure shown in Fig. 2 was measured under conditions where conditions other than atmospheric pressure were equivalent.
  • the supercharging pressure decreases as the atmospheric pressure decreases. Therefore, when the internal combustion engine 1 is operated under an atmospheric pressure lower than the standard atmospheric pressure, the generated torque of the internal combustion engine 1 decreases due to a decrease in the supercharging pressure.
  • a method of retarding the main injection timing of the fuel injection valve 3 can be considered.
  • the amount of increase in exhaust temperature due to the delay of the main injection timing is small.
  • the main injection timing is significantly retarded, fuel can misfire. If the fuel is misfired, the exhaust temperature and the torque generated by the internal combustion engine 1 decrease. Further, the amount of unburned fuel discharged from the internal combustion engine 1 may increase. Therefore, in the torque control of this embodiment, the ECU 13 performs after injection without retarding the main injection timing when the internal combustion engine 1 is operated under low atmospheric pressure.
  • FIG. 4 is a graph showing the relationship between the after injection timing and the exhaust temperature when the after injection amount is constant.
  • Point X in FIG. 4 indicates the exhaust temperature when the after injection is not performed (hereinafter referred to as “base exhaust temperature”).
  • the ECU 13 delays the after injection timing as the measured value (atmospheric pressure) of the atmospheric pressure sensor 18 becomes lower.
  • the after injection timing is determined in this way, the decrease in supercharging pressure due to the decrease in atmospheric pressure is suppressed.
  • the generated torque of the internal combustion engine 1 does not significantly decrease under low atmospheric pressure.
  • E C U 13 may perform feedback control of the after injection timing based on the actual supercharging pressure (measured value of the intake pressure sensor 16) after execution of the after injection.
  • the ECU 1 3 corrects the after injection timing so that the actual boost pressure after the after injection is executed (hereinafter referred to as “actual boost pressure”) matches the target boost pressure. Good.
  • E C U 13 increases and corrects the retard amount of the after injection timing when the actual boost pressure after execution of the after injection is lower than the target boost pressure.
  • E C U 13 may correct the amount of retard of the after injection timing by decreasing. The correction amount at that time is preferably determined according to the difference between the actual boost pressure and the target boost pressure.
  • the after-injection timing is feedback controlled in accordance with the difference between the actual supercharging pressure and the target supercharging pressure
  • the difference between the actual supercharging pressure and the target supercharging pressure becomes as small as possible.
  • the difference between the generated torque of the internal combustion engine 1 and the required torque becomes as small as possible.
  • FIG. 5 is a flowchart showing a torque control routine.
  • the torque control routine is stored in advance in the ROM of the ECU 13 and is periodically executed by the ECU 13.
  • the ECU 13 first executes the process of S101.
  • the ECU 13 reads the measured value (atmospheric pressure) AP of the atmospheric pressure sensor 18.
  • the ECU 13 determines the basic after-injection timing T ain j b (CAATDC) using the atmospheric pressure AP read in S101 as a parameter. At that time, the ECU 13 may determine the basic after-injection period Tai j b based on a map as shown in FIG. The map shown in Fig. 6 shows that when the atmospheric pressure AP is the standard atmospheric pressure SAP, after-injection is not performed, and when the atmospheric pressure AP is lower than the standard atmospheric pressure SAP, the lower the atmospheric pressure AP, the lower the basic after-injection timing Tainjb. Is set to be retarded.
  • the ECU 13 calculates a feedback correction coefficient ⁇ ⁇ . Specifically, ECU 1 3 calculates the feedback correction coefficient delta alpha based on the feedback control routine as shown in FIG.
  • the ECU 13 first executes the process of S201.
  • S201 the ECU 13 determines whether or not the after injection is being executed. If a positive determination is made in S201, the ECU 13 proceeds to S202.
  • E C U 1 3 reads the measured value (actual boost pressure) C P of the intake pressure sensor 16.
  • the ECU 13 determines whether or not the actual boost pressure CP read in S202 is lower than the target boost pressure CPrtg. If an affirmative determination is made in S203 (CP ⁇ CPtrg), the ECU 13 proceeds to S204.
  • the ECU 13 sets the feedback correction coefficient ⁇ to “0” in S205.
  • the ECU 13 corrects the basic after-injection timing Tainjb in S105 by the feedback correction coefficient ⁇ «calculated in S104. Specifically, the ECU 13 adds the feedback correction coefficient to the basic after injection timing Tainjb.
  • the ECU 1 3 detects the measured value of the intake air temperature sensor 15 (atmospheric temperature) Tm pa 3 ⁇ 4rgjc: ⁇ 3 ⁇ 4_ ⁇ 0
  • the ECU 13 obtains a retard limit value (upper limit value of the retard amount) Tma X (CAA TDC) of the after injection timing based on the atmospheric temperature Tm pa read in S106.
  • the ECU 13 may determine the retardation limit value Tma X based on a map as shown in FIG.
  • the map shown in Fig. 9 is set so that the retard angle limit value Tmax becomes smaller (the retard amount decreases) as the atmospheric temperature Tmp a becomes lower. It is preferable that the relationship between the retardation limit value Tma X and the atmospheric temperature Tmp a is experimentally obtained in advance.
  • E C U 13 compares the basic after-injection period T a iin j b obtained in S 105 with the retardation limit value Tma x obtained in S 107. That is, the ECU 13 determines whether or not the basic after injection timing T ainjb is less than or equal to the retard limit value Tma X (in other words, the basic after injection timing Tainjb is before the retard limit value Tma X). Whether or not).
  • ECU 13 proceeds to S 109.
  • E C U 13 determines the basic after-injection time Tainjb obtained in S105 as the after-injection time Tainj.
  • E C U 13 proceeds to S 1 10.
  • E C U 13 determines the retard angle limit value Tmax obtained in S 107 as the after injection timing T a i n j.
  • the control means according to the present invention is realized by the ECU 13 executing the routines of FIGS. Therefore, according to the present embodiment, when the internal combustion engine 1 is operated under a low atmospheric pressure such as a high altitude, it is suppressed that the boost pressure of the intake air is significantly reduced from the target boost pressure. As a result, the generated torque of the internal combustion engine 1 does not drop significantly from the required torque. Further, since the retard amount of the after injection timing is limited according to the atmospheric temperature Tmp a, it is possible to prevent the deterioration of exhaust emission due to the decrease in the atmospheric temperature Tmp a.
  • FIG. 10 is a graph showing the relationship between the after-injection amount and the exhaust temperature when the after-injection timing is constant. Point Y in Fig. 10 indicates the exhaust temperature (base exhaust temperature) when after-injection is not performed.
  • the amount of increase in the exhaust gas temperature due to after-injection increases as the after-injection amount increases. Therefore, when the after-injection amount increases as the measured value (atmospheric pressure) of the atmospheric pressure sensor 18 decreases, the decrease in the supercharging pressure due to the decrease in atmospheric pressure is suppressed. As a result, the generated torque of the internal combustion engine 1 does not drop significantly at low atmospheric pressure.
  • E C U 13 may perform feedback control of the after injection amount based on the actual supercharging pressure after the execution of after injection. That is, E C U 13 may correct the after-injection amount so that the actual boost pressure after the after injection is executed matches the target boost pressure.
  • E C U 13 may correct the increase in the after injection amount when the actual boost pressure after the after injection is performed is lower than the target boost pressure.
  • E C U 13 may correct the after injection amount to decrease. The amount of correction at that time is preferably increased as the difference between the actual boost pressure and the target boost pressure increases.
  • the difference between the actual boost pressure and the target boost pressure becomes as small as possible.
  • the difference between the generated Tonlek and the required Tonlek of the internal combustion engine 1 becomes as small as possible.
  • the after-injection amount can be minimized.
  • the after-injection amount is significantly increased when the intake air temperature (atmospheric temperature) is low, the after-injected fuel cannot be burned and is easily discharged from the internal combustion engine 1 without being burned. As a result, the exhaust emission of the internal combustion engine 1 may increase. For this reason, it is preferable that the after-injection amount is limited by the upper limit amount corresponding to the measured value (atmospheric temperature) of the intake air temperature sensor 15. If the after-injection amount is limited in this way, it is possible to increase exhaust energy as much as possible while avoiding deterioration of exhaust emission.
  • FIG. 11 is a flowchart showing a torque control routine.
  • the same reference numerals are assigned to the same processes as those in the torque control routine (see FIG. 5) of the first embodiment described above.
  • the ECU 13 proceeds to S301 when an affirmative determination is made in S102.
  • the ECU 13 calculates the basic after-injection amount Q ainjb using the atmospheric pressure AP read in S 101 as a parameter.
  • the ECU 13 may determine the basic after-injection amount Qa injb based on a map as shown in FIG. The map shown in Fig.
  • the ECU 13 proceeds to S302 after executing S301.
  • the ECU 13 calculates a feedback correction coefficient ⁇ ] 3. Specifically, the ECU 13 calculates a feedback correction coefficient ⁇ ] 3 based on a feedback control routine as shown in FIG. In FIG. 13, the same processes as those in the feedback control routine (see FIG. 7) of the first embodiment described above are denoted by the same reference numerals.
  • the ECU 13 proceeds to S 401 when an affirmative determination is made in S 203.
  • the ECU 13 may obtain the feedback correction coefficient ⁇ ] 3 based on a map as shown in FIG.
  • the ECU 13 proceeds to S402. In S 402, the ECU 13 sets the feedback correction coefficient ⁇ ] 3 to “0”.
  • the ECU 13 corrects the basic after-injection amount Q a i n j b in S 303 by the feedback correction coefficient ⁇ ] 3 calculated in S 302. Specifically, the ECU 13 adds a feedback correction coefficient ⁇ ; 3 to the basic after-injection amount Q a i n j b.
  • the ECU 13 obtains the upper limit amount Q a ma X of the after injection amount based on the atmospheric temperature Tm pa read in S 106. At that time, the ECU 13 may determine the upper limit amount Q a max based on a map as shown in FIG. The map shown in Fig. 15 is set so that the upper limit amount Q a ma X decreases as the atmospheric temperature Tmp a decreases. It should be noted that the relationship between the upper limit amount Q a ma X and the atmospheric temperature Tmp a is preferably obtained experimentally in advance.
  • the ECU 13 When the ECU 13 finishes executing the process of S304, the ECU 13 proceeds to S305.
  • the ECU 13 compares the basic after-injection amount Q ainjb obtained in S 303 with the upper limit amount Q am ax obtained in S 304. That is, ECU 13 determines whether or not the basic after-injection amount Q ainjb is less than or equal to the upper limit amount Q amax.
  • the ECU 13 determines the basic after-injection amount Q a i n j b obtained in S 303 as the after-injection amount Q a i n j.
  • E C U 13 determines the upper limit amount Q a max obtained in S 30 4 as the after injection amount Q a i n j.
  • the first and second embodiments described above can be combined as much as possible. At this time, it is preferable that the ECU 13 increases the supercharging pressure only by retarding the after injection timing as much as possible.
  • the ECU 13 when the actual boost pressure is lower than the target boost pressure stage, the ECU 13 first retards the after injection timing while keeping the after injection quantity constant. If the actual boost pressure does not increase to the target boost pressure even when the after injection timing reaches the retard limit value, the ECU 13 may increase the after injection amount.
  • the ECU 13 increases the actual boost pressure only by retarding the after injection timing.
  • the actual supercharging pressure may be increased by increasing the after injection amount.
  • the ECU 19 may delay the main injection timing when the decrease in torque cannot be compensated for by the delay of the after injection timing and the increase in the after injection amount.

Abstract

When a compression ignition type internal combustion with a centrifugal supercharger is operated under low atmospheric pressure, a decrease in torque produced by the engine is minimized as much as possible. To achieve this, when the engine is operated under low atmospheric pressure, a fuel injection valve performs after-injection to minimize a decrease in supercharge pressure. In this process, the timing of the after-injection and/or the amount of the after-injection can be feedback-controlled based on a difference between an actual supercharge pressure and a target supercharge pressure.

Description

内燃機関のトルク制御システム 技術分野  Technical field of torque control system for internal combustion engine
本発明は、 内燃機関のトルクを制御する技術に関し、 特に低気圧下におけるト ルクの低下を抑制する技術に関する。 背景技術  The present invention relates to a technique for controlling the torque of an internal combustion engine, and more particularly to a technique for suppressing a decrease in torque under low atmospheric pressure. Background art
 Light
遠心過給機 (ターボチャージャ) を備えた内燃機関が低大気圧下 (高地など) で運転される場合は、 過給圧が目標過給圧に達し難くなる。 このため、 内燃機関 の発生トルクが要求トルクに達しない可能性書がある。  When an internal combustion engine equipped with a centrifugal supercharger (turbocharger) is operated under low atmospheric pressure (eg, high altitude), the supercharging pressure is difficult to reach the target supercharging pressure. For this reason, there is a possibility that the torque generated by the internal combustion engine will not reach the required torque.
これに対し、 特開 2006— 29279号公報には、 実際の空気密度に基づい て目標過給圧を調整することにより内燃機関の出力低下を抑制しようとする技術 が開示されている。  On the other hand, Japanese Patent Application Laid-Open No. 2006-29279 discloses a technique for suppressing a decrease in the output of an internal combustion engine by adjusting a target supercharging pressure based on an actual air density.
特開平 8— 303290号公報には、 排気温度が所定温度より低い場合に、 メ インの燃料噴射の後 (膨張行程の前半) にサブの燃料噴射を行う技術が開示され ている。  Japanese Patent Application Laid-Open No. 8-303290 discloses a technique for performing sub fuel injection after main fuel injection (first half of the expansion stroke) when the exhaust gas temperature is lower than a predetermined temperature.
特開 2004— 28030号公報には、 メィンの燃料噴射の後 (膨張行程から 排気行程までの時期) にサブの燃料噴射を行う場合に、 排気温度センサの測定値 に基づいてサブ噴射の量や時期をフィードバック制御する技術が開示されている 特開 2004— 162675号公報には、 排気温度が低い場合に、 EGRガス 量を増加させるとともに、 メインの燃料噴射の後にサブの燃料噴射を行う技術が 開示されている。  In Japanese Patent Laid-Open No. 2004-28030, when the sub fuel injection is performed after the main fuel injection (the period from the expansion stroke to the exhaust stroke), the amount of the sub injection is determined based on the measured value of the exhaust temperature sensor. Japanese Laid-Open Patent Publication No. 2004-162675, which discloses a technique for feedback control of timing, discloses a technique for increasing the amount of EGR gas and performing sub fuel injection after main fuel injection when the exhaust gas temperature is low. It is disclosed.
特開 2005— 54607号公報には、 排気温度が所定温度より低い場合に、 排気弁の開弁時期を進角させるとともに、 メインの燃料噴射より後であって排気 弁の開弁時期より前にサブの燃料噴射を行う技術が開示されている。  Japanese Patent Laid-Open No. 2005-54607 discloses that when the exhaust gas temperature is lower than a predetermined temperature, the valve opening timing of the exhaust valve is advanced, and after the main fuel injection and before the valve opening timing of the exhaust valve. A technique for performing sub fuel injection is disclosed.
特開 2005— 291 1 75号公報には、 メィンの燃料噴射の後にサブの燃料 噴射を行った場合に、 可変容量型ターボチャージャの容量を増加させ、 および またはウェストゲートバルブの開度を増加させる技術が開示されている。 発明の開示  Japanese Patent Laid-Open No. 2005-291 1 75 discloses that when the sub fuel injection is performed after the main fuel injection, the capacity of the variable displacement turbocharger is increased and / or the opening of the waste gate valve is increased. Technology is disclosed. Disclosure of the invention
ところで、 大気圧が低下すると排気エネルギが小さくなる。 このため、 特開 2 006-29279号公報の開示技術を利用しても、 遠心過給機の出力が低下す る可能性がある。 その結果、 過給圧が目標過給圧まで上昇しない場合がある。 そ のような場合は、 内燃機関が要求トルクを発生することができなくなる。 これに 対し、 燃料噴射時期の遅角によって排気エネルギを増大させる方法も考えられる しかしながら、 燃料噴射時期の遅角による排気エネルギの増加は僅かである。 また、 燃料噴射時期の遅角により内燃機関の発生トルクが却って低下することも 懸念される。 By the way, the exhaust energy decreases as the atmospheric pressure decreases. For this reason, even if the technique disclosed in Japanese Patent Laid-Open No. 2006-29279 is used, the output of the centrifugal supercharger may decrease. As a result, the boost pressure may not increase to the target boost pressure. In such a case, the internal combustion engine cannot generate the required torque. On the other hand, a method of increasing exhaust energy by retarding the fuel injection timing is also conceivable. However, the increase in exhaust energy due to the retarded fuel injection timing is slight. There is also a concern that the torque generated by the internal combustion engine may decrease due to the retarded fuel injection timing.
本発明の目的は、 遠心過給機 (ターボチャージャ) を備えた内燃機関のトルク 制御システムにおいて、 大気圧の低下に起因したトルク低下を可及的に抑制可能 な技術の提供にある。  An object of the present invention is to provide a technology capable of suppressing a torque decrease due to a decrease in atmospheric pressure as much as possible in a torque control system for an internal combustion engine equipped with a centrifugal supercharger (turbocharger).
本発明は、 上記した課題を解決するために、 遠心過給機を備えた圧縮着火式内 燃機関が低大気圧下で運転される場合に、 燃料噴射弁からアフター噴射を行うこ とにより、 内燃機関のトルク低下を招くことなく排気エネルギを増大させるよう にした。  In order to solve the above-mentioned problems, the present invention performs after injection from a fuel injection valve when a compression ignition type internal combustion engine equipped with a centrifugal supercharger is operated under low atmospheric pressure. The exhaust energy is increased without causing a decrease in torque of the internal combustion engine.
詳細には、 本発明は、 遠心過給機を備えた圧縮着火式内燃機関のトルク制御シ ステムにおいて、 大気圧を取得する取得手段と、 前記取得手段により取得された 大気圧が標準大気圧 (1気圧) より低い時に燃料噴射弁からアフター噴射を行わ せる制御手段と、 を備えるようにした。  Specifically, the present invention relates to a torque control system for a compression ignition type internal combustion engine equipped with a centrifugal supercharger, an acquisition means for acquiring atmospheric pressure, and an atmospheric pressure acquired by the acquisition means is a standard atmospheric pressure ( And a control means for performing after-injection from the fuel injection valve when the pressure is lower than 1 atm).
本願発明者の知見によれば、 アフター噴射による排気エネルギの増加量は、 メ イン噴射時期の遅角による排気エネルギの増加量を大きく上回る。 このため、 内 燃機関が高地などの低大気圧下で運転される場合にアフター噴射が行われると、 遠心過給機の出力低下を抑制することができる。  According to the knowledge of the present inventor, the amount of increase in exhaust energy due to after injection greatly exceeds the amount of increase in exhaust energy due to retardation of the main injection timing. For this reason, if after-injection is performed when the internal combustion engine is operated under a low atmospheric pressure such as a high altitude, a decrease in the output of the centrifugal supercharger can be suppressed.
よって、 実際の過給圧が目標過給圧から懸け離れなくなる。 その結果、 内燃機 関の発生トルクが要求トルクに対して過剰に低くなることも防止される。 すなわ ち、 内燃機関が低大気圧下で運転される場合に、 該内燃機関の発生トルクの低下 を可及的に抑制することができる。  Therefore, the actual supercharging pressure cannot be separated from the target supercharging pressure. As a result, it is possible to prevent the generated torque of the internal combustion engine from becoming excessively lower than the required torque. That is, when the internal combustion engine is operated under a low atmospheric pressure, it is possible to suppress as much as possible a decrease in torque generated by the internal combustion engine.
尚、 アフター噴射量および またはアフター噴射時期は、 取得手段が取得した 大気圧に応じて決定されてもよい。 排気エネルギは、 大気圧が低くなるほど少な くなる。 一方、 アフター噴射量およびノまたはアフター噴射時期の遅角量が多く なるほど排気エネルギが増加する。 よって、 取得手段により取得された大気圧が 低くなるほど、 アフター噴射量および/"またはアフター噴射時期の遅角量が増加 されてもよレ、。  The after injection amount and / or the after injection timing may be determined according to the atmospheric pressure acquired by the acquisition means. Exhaust energy decreases with decreasing atmospheric pressure. On the other hand, the exhaust energy increases as the after injection amount and the retard amount of the after injection timing increase. Therefore, as the atmospheric pressure acquired by the acquisition means becomes lower, the after injection amount and / or the retard amount of the after injection timing may be increased.
本発明にかかる内燃機関のトルク制御システムは、 遠心過給機により過給され た吸気の圧力を検出する第 1検出手段を更に備えるようにしてもよい。 この場合 、 制御手段は、 第 1検出手段により検出された圧力が目標過給圧に対して低くな るほど、 ァフタ一噴射量を増加および またはァフタ一噴射時期を遅角させるよ うにしてもよレ、。  The torque control system for an internal combustion engine according to the present invention may further comprise first detection means for detecting the pressure of the intake air supercharged by the centrifugal supercharger. In this case, the control means may increase the after-injection amount and / or retard the after-injection timing as the pressure detected by the first detecting means becomes lower than the target boost pressure. Yo!
内燃機関の排気エネルギは、 アフター噴射量が増加されるほど、 および また はアフター噴射時期が遅角されるほど増加する。 このため、 実際の過給圧が目標 過給圧に対して低くなるほど、 アフター噴射量およびノまたはアフター噴射時期 の遅角量が増加されると、 実際の過給圧を目標過給圧に近似させることが可能と なる。 The exhaust energy of the internal combustion engine increases as the after injection amount increases and / or as the after injection timing is retarded. For this reason, if the after injection amount and the retard amount of the after injection timing increase as the actual boost pressure becomes lower than the target boost pressure, the actual boost pressure approximates the target boost pressure. It is possible to let Become.
尚、 ァフタ一噴射量の変更とァフタ一噴射時期の変更とを組み合わせる場合は 、 ァフタ一噴射量の増量に対してァフタ一噴射時期の遅角を優先させることが好 ましい。 これは、 アフター噴射量の増加は燃費の悪化を招くからである。  In addition, when combining the change of the after-injection amount and the change of the after-injection time, it is preferable to give priority to the retard of the after-injection timing over the increase in the after-injection amount. This is because an increase in after-injection amount causes a deterioration in fuel consumption.
例えば、 実際の過給圧が目標過給圧より低い場合に、 制御手段は、 先ずァフタ 一噴射量を一定量に保ちつつアフター噴射時期の遅角を行う。 アフター噴射時期 の遅角量が限界に達しても実際の過給圧が目標過給圧まで上昇しない場合に、 制 御手段はアフター噴射量の増量を行えばよい。  For example, when the actual boost pressure is lower than the target boost pressure, the control means first delays the after injection timing while keeping the after injection quantity constant. If the actual boost pressure does not increase to the target boost pressure even if the retard amount of the after injection timing reaches the limit, the control means may increase the after injection amount.
また、 制御手段は、 実際の過給圧と目標過給圧との差が所定値以下である場合 は、 アフター噴射時期の遅角により排気エネルギの増加を図るようにしてもよい 。 一方、 実際の過給圧と目標過給圧との差が所定値を超えた場合は、 制御手段は 、 アフター噴射量の増量 (又は、 アフター噴射量の増量とアフター噴射時期の遅 角) により排気エネルギの増加を図るようにしてもよレ、。  Further, when the difference between the actual boost pressure and the target boost pressure is not more than a predetermined value, the control means may increase the exhaust energy by retarding the after injection timing. On the other hand, when the difference between the actual supercharging pressure and the target supercharging pressure exceeds a predetermined value, the control means is based on the increase in the after injection amount (or the increase in the after injection amount and the delay in the after injection timing). You can try to increase the exhaust energy.
このようにアフター噴射量の増加に対してアフター噴射時期の遅角が優先され ると、 燃料消費量の増加を可及的に少なくすることができる。  In this way, if the delay of the after injection timing is prioritized over the increase in the after injection amount, the increase in fuel consumption can be minimized as much as possible.
次に、 本発明にかかる内燃機関のトルク制御システムは、 大気の温度を検出す る第 2検出手段を更に備えるようにしてもよい。 この場合、 制御手段は、 第 2検 出手段により検出された温度が低くなるほど、 アフター噴射時期の遅角量を減少 させるようにしてもよレ、。  Next, the internal combustion engine torque control system according to the present invention may further include second detection means for detecting the temperature of the atmosphere. In this case, the control means may decrease the retard amount of the after injection timing as the temperature detected by the second detection means becomes lower.
大気温度が低い場合は、 アフター噴射された燃料 (以下、 「アフター噴射燃料 」 と称する) が失火し易くなる。 この現象は、 アフター噴射時期が遅角されるほ ど顕著となる。 よって、 大気温度が低い場合にアフター噴射時期が大幅に遅角さ れると、 内燃機関から排出される未燃燃料が増加する。 これに対し、 大気温度が 低くなるほどアフター噴射時期の遅角量が少なく制限されると、 ァフタ一噴射燃 料の失火を防止することができる。  When the atmospheric temperature is low, after-injected fuel (hereinafter referred to as “after-injected fuel”) tends to misfire. This phenomenon becomes more prominent as the after injection timing is retarded. Therefore, if the after injection timing is significantly retarded when the atmospheric temperature is low, the amount of unburned fuel discharged from the internal combustion engine increases. On the other hand, if the retard amount of the after injection timing is limited to a lower level as the atmospheric temperature becomes lower, misfire of the after-injected fuel can be prevented.
また、 大気温度が低い場合に、 アフター噴射量が多くされると、 未燃のまま排 気系へ排出される燃料が増加する。 よって、 大気温度が低い場合は、 アフター噴 射量の増加量も少なく制限されることが好ましい。 図面の簡単な説明  Also, if the after-injection amount is increased when the ambient temperature is low, the amount of fuel discharged into the exhaust system will remain unburned. Therefore, when the atmospheric temperature is low, it is preferable that the increase amount of the after-injection amount is limited to be small. Brief Description of Drawings
図 1は、 内燃機関のトルク制御システムの概略構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of a torque control system for an internal combustion engine.
図 2は、 大気圧と過給圧との相関を示す図である。  Figure 2 shows the correlation between atmospheric pressure and supercharging pressure.
図 3は、 メイン噴射時期と排気温度との相関を示す図である。  FIG. 3 is a diagram showing the correlation between the main injection timing and the exhaust temperature.
図 4は、 ァフタ一噴射時期と排気温度との相関を示す図である。  Fig. 4 shows the correlation between after injection timing and exhaust temperature.
図 5は、 第 1の実施例におけるトルク制御ルーチンを示すフローチャートで ある。  FIG. 5 is a flowchart showing a torque control routine in the first embodiment.
図 6は、 基本アフター噴射時期を決定するためのマップを示す図である。 図 7は、 第 1の実施例におけるフィードバック制御ルーチンを示すフローチ ヤートである。 FIG. 6 is a diagram showing a map for determining the basic after injection timing. FIG. 7 is a flowchart showing the feedback control routine in the first embodiment. Yat.
図 8は、 第 1の実施例におけるフィードバック補正係数を決定するためのマ ップを示す図である。  FIG. 8 is a diagram showing a map for determining the feedback correction coefficient in the first embodiment.
図 9は、 アフター噴射時期の遅角限界値を決定するためのマップを示す図で ある。  FIG. 9 is a diagram showing a map for determining the retard angle limit value of the after injection timing.
図 1 0は、 アフター噴射量と排気温度との相関を示す図である。  FIG. 10 is a graph showing the correlation between the after injection amount and the exhaust temperature.
図 1 1は、 第 2の実施例におけるトルク制御ルーチンを示すフローチャート である。  FIG. 11 is a flowchart showing a torque control routine in the second embodiment.
図 1 2は、 基本アフター噴射量を決定するためのマップを示す図である。 図 1 3は、 第 2の実施例におけるフィードバック制御ルーチンを示すフロー チャートである。  FIG. 12 is a diagram showing a map for determining the basic after-injection amount. FIG. 13 is a flowchart showing a feedback control routine in the second embodiment.
図 1 4は、 第 2の実施例におけるフィードバック補正係数を決定するための マップを示す図である。  FIG. 14 is a diagram showing a map for determining the feedback correction coefficient in the second embodiment.
図 1 5は、 アフター噴射量の上限量を決定するためのマップを示す図である  Fig. 15 is a diagram showing a map for determining the upper limit amount of the after-injection amount
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の具体的な実施形態について図面に基づいて説明する。  Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
<実施例 1 > <Example 1>
先ず、 本発明の第 1の実施例について図 1〜図 9に基づいて説明する。 図 1は 、 本発明にかかる内燃機関のトルク制御システムの概略構成を示す図である。 図 1に示す内燃機関 1は、 複数の気筒を有する圧縮着火式の内燃機関 (ディ一 ゼルエンジン) である。 内燃機関 1の各気筒 2には、 各気筒 2内へ直接燃料を噴 射可能な燃料噴射弁 3が取り付けられている。 燃料噴射弁 3は、 コモンレール 3 0において昇圧された燃料を気筒 2内へ噴射する。  First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of a torque control system for an internal combustion engine according to the present invention. An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) having a plurality of cylinders. Each cylinder 2 of the internal combustion engine 1 is provided with a fuel injection valve 3 that can inject fuel directly into each cylinder 2. The fuel injection valve 3 injects fuel boosted in the common rail 30 into the cylinder 2.
各気筒 2には、 吸気通路 4が連通している。 吸気通路 4の途中には、 遠心過給 機 (ターボチヤ一ジャ) 5のコンプレッサハウジング 5 0とインタークーラ 6が 配置されている。 インタークーラ 6より下流の吸気通路 4には、 吸気絞り弁 7が 設けられる。 また、 各気筒 2には、 排気通路 8が連通している。 排気通路 8の途 中には、 ターボチャージャ 5のタービンハウジング 5 1と排気浄化装置 9が配置 されている。  An intake passage 4 communicates with each cylinder 2. In the middle of the intake passage 4, a compressor housing 50 and an intercooler 6 of a centrifugal supercharger (turbocharger) 5 are arranged. An intake throttle valve 7 is provided in the intake passage 4 downstream of the intercooler 6. In addition, an exhaust passage 8 communicates with each cylinder 2. In the middle of the exhaust passage 8, a turbine housing 5 1 of the turbocharger 5 and an exhaust purification device 9 are arranged.
吸気通路 4へ吸入された空気 (吸気) は、 コンプレッサハウジング 5 0により 圧縮される。 コンプレッサハウジング 5 0により圧縮された吸気は、 インターク ーラ 6で冷却された後に各気筒 2内へ導入される。 各気筒 2内へ導かれた吸気は 、 燃料噴射弁 3から噴射された燃料とともに気筒 2内で着火及び燃焼される。 気 筒 2内で燃焼されたガス (既燃ガス) は、 排気通路 8へ排出される。 排気通路 8 へ排出された排気は、 タービンハウジング 5 1と排気浄化装置 9を経由して大気 中へ排出される。 また、 内燃機関 1は EG R (Exhaust Gas Recirculation) 機構を備えている 。 EGR機構は、 タービンハウジング 51より上流の排気通路 8からインターク ーラ 6より下流の吸気通路 4へ排気の一部を導く EGR通路 10、 EGR通路 1 0の流路断面積を変更する EG R弁 1 1、 及び EG R通路 10を流れる排気 (高 圧 EGRガス) を冷却する EGRクーラ 12を具備している。 Air (intake air) drawn into the intake passage 4 is compressed by the compressor housing 50. The intake air compressed by the compressor housing 50 is cooled by the intercooler 6 and then introduced into each cylinder 2. The intake air introduced into each cylinder 2 is ignited and burned in the cylinder 2 together with the fuel injected from the fuel injection valve 3. The gas burned in the cylinder 2 (burned gas) is discharged to the exhaust passage 8. The exhaust discharged into the exhaust passage 8 is discharged into the atmosphere via the turbine housing 51 and the exhaust purification device 9. The internal combustion engine 1 has an EGR (Exhaust Gas Recirculation) mechanism. The EGR mechanism changes the cross-sectional area of the EGR passage 10 and EGR passage 10 that guide part of the exhaust from the exhaust passage 8 upstream from the turbine housing 51 to the intake passage 4 downstream from the intercooler 6. EG R EGR cooler 12 that cools the exhaust gas (high pressure EGR gas) flowing through valve 11 and EGR passage 10 is provided.
このように構成された内燃機関 1には、 ECU 1 3が併設されている。 ECU 13は、 CPU, ROM, RAM, ノ ックアップ R AM等からなる電子制御ュニ ットである。 この ECU 1 3には、 エアフローメータ 14、 吸気温度センサ 15 、 吸気圧センサ 16、 クランクポジションセンサ 1 7、 大気圧センサ 18等の各 種センサが電気的に接続されている。  The internal combustion engine 1 configured as described above is provided with an ECU 13. The ECU 13 is an electronic control unit composed of a CPU, ROM, RAM, knock-up RAM, and the like. Various sensors such as an air flow meter 14, an intake air temperature sensor 15, an intake air pressure sensor 16, a crank position sensor 17 and an atmospheric pressure sensor 18 are electrically connected to the ECU 13.
エアフローメータ 14は、 コンプレッサハウジング 50より上流の吸気通路 4 に配置され、 大気中から吸気通路 4へ流入する空気量を測定する。 吸気温度セン サ 15は、 エアフローメータ 14近傍の吸気通路 4に配置され、 大気中から吸気 通路 4へ流入する空気の温度を測定する。 吸気圧センサ 16は、 吸気絞り弁 7よ り下流の吸気通路 4に配置され、 吸気通路 4内の圧力 (インマ二圧力) を測定す る。 クランクポジションセンサ 1 7は、 内燃機関 1のクランクシャフトの回転位 置を測定する。 大気圧センサ 18は、 大気圧を測定する。  The air flow meter 14 is disposed in the intake passage 4 upstream from the compressor housing 50 and measures the amount of air flowing into the intake passage 4 from the atmosphere. The intake air temperature sensor 15 is disposed in the intake passage 4 near the air flow meter 14 and measures the temperature of the air flowing into the intake passage 4 from the atmosphere. The intake pressure sensor 16 is disposed in the intake passage 4 downstream of the intake throttle valve 7 and measures the pressure in the intake passage 4 (internal pressure). The crank position sensor 17 measures the rotational position of the crankshaft of the internal combustion engine 1. The atmospheric pressure sensor 18 measures atmospheric pressure.
大気圧センサ 18は、 本発明に係る取得手段の一実施態様である。 吸気圧セン サ 16は、 本発明に係る第 1検出手段の一実施態様である。 吸気温度センサ 1 5 は、 本発明に係る第 2検出手段の一実施態様である。  The atmospheric pressure sensor 18 is an embodiment of the acquisition means according to the present invention. The intake pressure sensor 16 is an embodiment of the first detection means according to the present invention. The intake air temperature sensor 15 is an embodiment of the second detection means according to the present invention.
ECU1 7は、 上記した各種センサの測定値に基づいて既知の燃料噴射制御や EGR制御を行うとともに、 本発明の要旨となるトルク制御を行う。 以下、 本実 施例におけるトルク制御について説明する。  The ECU 17 performs known fuel injection control and EGR control based on the measured values of the various sensors described above, and performs torque control that is the gist of the present invention. Hereinafter, torque control in this embodiment will be described.
内燃機関 1が高地等の低大気圧下で運転されると、 内燃機関 1の発生トルクが 要求トルクを下回る可能性がある。 これは、 大気圧の低下により吸気の過給圧が 目標吸気圧を下回ることに因ると考えられる。  When the internal combustion engine 1 is operated under a low atmospheric pressure such as a high altitude, the generated torque of the internal combustion engine 1 may be lower than the required torque. This is thought to be due to the fact that the intake supercharging pressure falls below the target intake pressure due to a decrease in atmospheric pressure.
図 2は、 大気圧と過給圧との関係を示す図である。 図 2に示す過給圧は、 大気 圧以外の条件が同等となる状況下で測定されたものである。 図 2において、 過給 圧は、 大気圧が低くなるほど低下する。 よって、 内燃機関 1が標準大気圧より低 い大気圧下で運転される場合は、 過給圧の低下によって内燃機関 1の発生トルク が低下する。  Figure 2 shows the relationship between atmospheric pressure and supercharging pressure. The supercharging pressure shown in Fig. 2 was measured under conditions where conditions other than atmospheric pressure were equivalent. In Fig. 2, the supercharging pressure decreases as the atmospheric pressure decreases. Therefore, when the internal combustion engine 1 is operated under an atmospheric pressure lower than the standard atmospheric pressure, the generated torque of the internal combustion engine 1 decreases due to a decrease in the supercharging pressure.
これに対し、 本実施例のトルク制御では、 大気圧センサ 18の測定値が標準大 気圧より低くなった場合に、 内燃機関 1の排気エネルギを増加させることにより 、 過給圧の低下を抑制する。  On the other hand, in the torque control of this embodiment, when the measured value of the atmospheric pressure sensor 18 is lower than the standard atmospheric pressure, the exhaust energy of the internal combustion engine 1 is increased to suppress the decrease in the supercharging pressure. .
内燃機関 1の排気エネルギを増加させる方法として、 燃料噴射弁 3のメイン噴 射時期を遅角させる方法が考えられる。 ところで、 図 3に示すように、 メイン噴 射時期の遅角による排気温度の上昇量は少ない。 このため、 排気温度の大幅な上 昇を図るためには、 メイン噴射時期の大幅な遅角が必要となる。 しかしながら、 メイン噴射時期が大幅に遅角されると、 燃料が失火する可能性 がある。 燃料が失火すると、 排気温度や内燃機関 1の発生トルクが却って低下す る。 さらに、 内燃機関 1から排出される未燃燃料量が増加する可能性もある。 そこで、 本実施例のトルク制御では、 E C U 1 3は、 内燃機関 1が低大気圧下 で運転される時に、 メイン噴射時期を遅角させずにアフター噴射を行うようにし た。 As a method of increasing the exhaust energy of the internal combustion engine 1, a method of retarding the main injection timing of the fuel injection valve 3 can be considered. By the way, as shown in Fig. 3, the amount of increase in exhaust temperature due to the delay of the main injection timing is small. For this reason, in order to increase the exhaust temperature significantly, it is necessary to significantly retard the main injection timing. However, if the main injection timing is significantly retarded, fuel can misfire. If the fuel is misfired, the exhaust temperature and the torque generated by the internal combustion engine 1 decrease. Further, the amount of unburned fuel discharged from the internal combustion engine 1 may increase. Therefore, in the torque control of this embodiment, the ECU 13 performs after injection without retarding the main injection timing when the internal combustion engine 1 is operated under low atmospheric pressure.
図 4は、 ァフタ一噴射量が一定である時のァフタ一噴射時期と排気温度との関 係を示す図である。 図 4中の点 Xは、 アフター噴射が行われない場合の排気温度 (以下、 「ベース排気温度」 と称する) を示している。  FIG. 4 is a graph showing the relationship between the after injection timing and the exhaust temperature when the after injection amount is constant. Point X in FIG. 4 indicates the exhaust temperature when the after injection is not performed (hereinafter referred to as “base exhaust temperature”).
図 4に示すように、 燃料噴射弁 3がメイン噴射の後にアフター噴射を行った場 合は、 アフター噴射燃料とともにメイン噴射燃料の燃え残りが燃焼する。 このた め、 排気温度がベース排気温度よりも大幅に上昇する。 その際の排気温度の上昇 量は、 アフター噴射時期が遅角されるほど多くなる。  As shown in FIG. 4, when the fuel injection valve 3 performs the after injection after the main injection, the unburned residue of the main injected fuel burns together with the after injected fuel. As a result, the exhaust temperature rises significantly above the base exhaust temperature. The amount of increase in exhaust temperature at that time increases as the after injection timing is retarded.
よって、 E C U 1 3は、 大気圧センサ 1 8の測定値 (大気圧) が低くなるほど アフター噴射時期を遅角させることが望ましい。 このようにアフター噴射時期が 決定されると、 大気圧の低下に起因した過給圧の低下が抑制される。 その結果、 低大気圧下において内燃機関 1の発生トルクが大幅に低下しなくなる。  Therefore, it is desirable that the ECU 13 delays the after injection timing as the measured value (atmospheric pressure) of the atmospheric pressure sensor 18 becomes lower. When the after injection timing is determined in this way, the decrease in supercharging pressure due to the decrease in atmospheric pressure is suppressed. As a result, the generated torque of the internal combustion engine 1 does not significantly decrease under low atmospheric pressure.
また、 E C U 1 3は、 アフター噴射実行後の実際の過給圧 (吸気圧センサ 1 6 の測定値) に基づいてアフター噴射時期をフィードバック制御してもよい。 すな わち、 E C U 1 3は、 アフター噴射実行後における実際の過給圧 (以下、 「実過 給圧」 と証する) が目標過給圧と一致するようにアフター噴射時期を補正しても よい。  Further, E C U 13 may perform feedback control of the after injection timing based on the actual supercharging pressure (measured value of the intake pressure sensor 16) after execution of the after injection. In other words, the ECU 1 3 corrects the after injection timing so that the actual boost pressure after the after injection is executed (hereinafter referred to as “actual boost pressure”) matches the target boost pressure. Good.
具体的には、 E C U 1 3は、 アフター噴射実行後の実過給圧が目標過給圧より 低い場合はアフター噴射時期の遅角量を増量補正する。 一方、 アフター噴射実行 後の実過給圧が目標過給圧より高い場合は、 E C U 1 3は、 アフター噴射時期の 遅角量を減量補正してもよい。 その際の補正量は、 実過給圧と目標過給圧との差 に応じて決定されることが好ましい。  Specifically, E C U 13 increases and corrects the retard amount of the after injection timing when the actual boost pressure after execution of the after injection is lower than the target boost pressure. On the other hand, if the actual supercharging pressure after execution of after injection is higher than the target supercharging pressure, E C U 13 may correct the amount of retard of the after injection timing by decreasing. The correction amount at that time is preferably determined according to the difference between the actual boost pressure and the target boost pressure.
このように実過給圧と目標過給圧との差に応じてァフタ一噴射時期がフィード バック制御されると、 実過給圧と目標過給圧との差が可及的に小さくなる。 その 結果、 内燃機関 1の発生トルクと要求トルクとの差も可及的に小さくなる。 ところで、 吸気温度 (大気温度) が低い時にアフター噴射時期が大幅に遅角さ れると、 アフター噴射燃料が失火する可能性がある。 アフター噴射燃料が失火す ると、 内燃機関 1から排出される未燃燃料量が増加する。 その結果、 排気エミッ シヨンが増加する可能性がある。  As described above, when the after-injection timing is feedback controlled in accordance with the difference between the actual supercharging pressure and the target supercharging pressure, the difference between the actual supercharging pressure and the target supercharging pressure becomes as small as possible. As a result, the difference between the generated torque of the internal combustion engine 1 and the required torque becomes as small as possible. By the way, if the after-injection timing is significantly retarded when the intake air temperature (atmospheric temperature) is low, the after-injected fuel may misfire. If the after-injected fuel misfires, the amount of unburned fuel emitted from the internal combustion engine 1 increases. As a result, exhaust emissions may increase.
よって、 アフター噴射時期の遅角量は、 吸気温度センサ 1 5の測定値 (大気温 度) に応じた遅角限界値 (ガード値) により制限されることが好ましい。 このよ うにアフター噴射時期の遅角量が制限されると、 排気ェミッションの悪化を回避 しつつ排気エネルギを可及的に増加させることが可能となる。 以下、 本実施例におけるトルク制御の実行手順について図 5に沿って説明する 。 図 5は、 トルク制御ルーチンを示すフローチャートである。 トルク制御ルーチ ンは、 予め ECU 1 3の ROMに記憶されており、 ECU 1 3によって周期的に 実行される。 Therefore, it is preferable that the retard amount of the after injection timing is limited by a retard angle limit value (guard value) corresponding to a measured value (atmospheric temperature) of the intake air temperature sensor 15. If the retard amount of the after injection timing is limited in this way, it becomes possible to increase exhaust energy as much as possible while avoiding deterioration of exhaust emission. Hereinafter, the execution procedure of torque control in the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing a torque control routine. The torque control routine is stored in advance in the ROM of the ECU 13 and is periodically executed by the ECU 13.
図 5のトルク制御ルーチンでは、 ECU 13は、 先ず S 101の処理を実行す る。 S 101では、 ECU 13は、 大気圧センサ 18の測定値 (大気圧) APを 読み込む。  In the torque control routine of FIG. 5, the ECU 13 first executes the process of S101. In S 101, the ECU 13 reads the measured value (atmospheric pressure) AP of the atmospheric pressure sensor 18.
S 102では、 ECU13は、 前記 S 101で読み込まれた大気圧 A Pが標準 大気圧 SAPより低いか否かを判別する。 S 102において否定判定された場合 (AP = SAP) は、 ECU 13は本ルーチンの実行を終了する。 一方、 S 10 2において肯定判定された場合 (AP<SAP) は、 S 103へ進む。  In S102, the ECU 13 determines whether or not the atmospheric pressure AP read in S101 is lower than the standard atmospheric pressure SAP. If a negative determination is made in S102 (AP = SAP), the ECU 13 ends the execution of this routine. On the other hand, if an affirmative determination is made in S102 (AP <SAP), the process proceeds to S103.
S 103では、 ECU 13は、 前記 S 101で読み込まれた大気圧 A Pをパラ メータとして基本アフター噴射時期 T a i n j b (CAATDC) を決定する。 その際、 ECU 13は、 図 6に示すようなマップに基づいて基本アフター噴射時 期 Ta i n j bを決定してもよい。 図 6に示すマップは、 大気圧 A Pが標準大気 圧 S A Pである場合はァフタ一噴射が行われず、 大気圧 A Pが標準大気圧 SAP より低い場合は大気圧 A Pが低くなるほど基本アフター噴射時期 T a i n j bが 遅角されるように定められている。  In S103, the ECU 13 determines the basic after-injection timing T ain j b (CAATDC) using the atmospheric pressure AP read in S101 as a parameter. At that time, the ECU 13 may determine the basic after-injection period Tai j b based on a map as shown in FIG. The map shown in Fig. 6 shows that when the atmospheric pressure AP is the standard atmospheric pressure SAP, after-injection is not performed, and when the atmospheric pressure AP is lower than the standard atmospheric pressure SAP, the lower the atmospheric pressure AP, the lower the basic after-injection timing Tainjb. Is set to be retarded.
S 104では、 ECU13は、 フィードバック補正係数△ひを演算する。 具体 的には、 ECU1 3は、 図 7に示すようなフィードバック制御ルーチンに基づい てフィードバック補正係数 Δαを演算する。 In S104, the ECU 13 calculates a feedback correction coefficient Δ ひ. Specifically, ECU 1 3 calculates the feedback correction coefficient delta alpha based on the feedback control routine as shown in FIG.
フィードバック制御ルーチンでは、 ECU 13は、 先ず S 201の処理を実行 する。 S 201において、 ECU 13は、 アフター噴射実行中であるか否かを判 別する。 S 201において肯定判定された場合は、 ECU1 3は、 S 202へ進 む。  In the feedback control routine, the ECU 13 first executes the process of S201. In S201, the ECU 13 determines whether or not the after injection is being executed. If a positive determination is made in S201, the ECU 13 proceeds to S202.
S 202では、 E C U 1 3は、 吸気圧センサ 1 6の測定値 (実過給圧) C Pを 読み込む。  In S 202, E C U 1 3 reads the measured value (actual boost pressure) C P of the intake pressure sensor 16.
S 203では、 ECU 13は、 前記 S 202で読み込まれた実過給圧 C Pが目 標過給圧 C P t r gより低いか否かを判別する。 S 203において肯定判定され た場合 (CPく CP t r g) は、 ECU13は S 204へ進む。  In S203, the ECU 13 determines whether or not the actual boost pressure CP read in S202 is lower than the target boost pressure CPrtg. If an affirmative determination is made in S203 (CP <CPtrg), the ECU 13 proceeds to S204.
S 204では、 ECU 1 3は、 目標過給圧 CP t r gと実過給圧 CPとの差 ( =CP t r g-CP) に基づいてフィードバック補正係数 Δαを演算する。 例え ば、 ECU 1 3は、 図 8に示すようなマップに基づいてフィードバック補正係数 △ αを求めてもよい。 図 8に示すマップは、 目標過給圧 CP t r gと実過給圧 C Pとの差 (=CP t r g_CP) が大きくなるほどフィードバック補正係数△ α が大きな値となるように定められる。  In S204, the ECU 13 calculates the feedback correction coefficient Δα based on the difference between the target boost pressure CP tr rg and the actual boost pressure CP (= CP tr rg−CP). For example, the ECU 13 may obtain the feedback correction coefficient Δα based on a map as shown in FIG. The map shown in FIG. 8 is determined such that the feedback correction coefficient Δα becomes larger as the difference between the target boost pressure CP tr g and the actual boost pressure CP (= CP tr g_CP) increases.
尚、 前記 S 201又は前記 S 203で否定判定された場合は、 ECU 13は、 S 205において、 フィードバック補正係数 Δαを "0" に設定する。 ここで図 5のトルク制御ルーチンに戻り、 ECU 13は、 S 105において基 本アフター噴射時期 T a i n j bを前記 S 104で算出されたフィードバック補 正係数△«により補正する。 具体的には、 ECU13は、 基本アフター噴射時期 T a i n j bにフィードバック補正係数 を加算する。 If a negative determination is made in S201 or S203, the ECU 13 sets the feedback correction coefficient Δα to “0” in S205. Returning to the torque control routine of FIG. 5, the ECU 13 corrects the basic after-injection timing Tainjb in S105 by the feedback correction coefficient Δ «calculated in S104. Specifically, the ECU 13 adds the feedback correction coefficient to the basic after injection timing Tainjb.
S 106では、 ECU 1 3は、 吸気温度センサ 15の測定値 (大気温度) Tm p a ¾rgjcみ: Ι ¾_Ρ0 In S106, the ECU 1 3 detects the measured value of the intake air temperature sensor 15 (atmospheric temperature) Tm pa ¾rgjc: Ι ¾_Ρ 0
S 107では、 ECU1 3は、 前記 S 106で読み込まれた大気温度 Tm p a に基づいてアフター噴射時期の遅角限界値 (遅角量の上限値) Tma X (CAA TDC) を求める。 その際、 ECU13は、 図 9に示すようなマップに基づいて 遅角限界値 Tma Xを決定するようにしてもよい。 図 9に示すマップは、 大気温 度 Tmp aが低くなるほど遅角限界値 Tma xが小さくなる (遅角量が少なくな る) ように定められている。 尚、 遅角限界値 Tma Xと大気温度 Tmp aとの関 係は、 予め実験的に求めておくことが好適である。  In S107, the ECU 13 obtains a retard limit value (upper limit value of the retard amount) Tma X (CAA TDC) of the after injection timing based on the atmospheric temperature Tm pa read in S106. At that time, the ECU 13 may determine the retardation limit value Tma X based on a map as shown in FIG. The map shown in Fig. 9 is set so that the retard angle limit value Tmax becomes smaller (the retard amount decreases) as the atmospheric temperature Tmp a becomes lower. It is preferable that the relationship between the retardation limit value Tma X and the atmospheric temperature Tmp a is experimentally obtained in advance.
S 108では、 E C U 1 3は、 前記 S 105で求められた基本ァフタ一噴射時 期 T a i n j bと前記 S 107で求められた遅角限界値 Tm a xを比較する。 す なわち、 ECU 1 3は、 前記基本アフター噴射時期 T a i n j bが前記遅角限界 値 Tma X以下であるか否か (言い換えれば、 基本アフター噴射時期 T a i n j bが遅角限界値 Tma X以前であるか否か) を判別する。  In S 108, E C U 13 compares the basic after-injection period T a iin j b obtained in S 105 with the retardation limit value Tma x obtained in S 107. That is, the ECU 13 determines whether or not the basic after injection timing T ainjb is less than or equal to the retard limit value Tma X (in other words, the basic after injection timing Tainjb is before the retard limit value Tma X). Whether or not).
前記 S 108において肯定判定された場合 (T a i n j b≤Tma X ) は、 E CU13は S 109へ進む。 S 109では、 E C U 1 3は、 前記 S 105で求め られた基本アフター噴射時期 T a i n j bをアフター噴射時期 T a i n jに定め る。  If an affirmative determination is made in S 108 (T a i n j b ≤ Tma X), the ECU 13 proceeds to S 109. In S 109, E C U 13 determines the basic after-injection time Tainjb obtained in S105 as the after-injection time Tainj.
一方、 前記 S 108において否定判定された場合 (T a i n j b >Tma x) は、 E C U 13は S 1 10へ進む。 S 1 10では、 E C U 1 3は、 前記 S 107 で求められた遅角限界値 Tma xをアフター噴射時期 T a i n jに定める。 このように ECU1 3が図 5及び図 7のルーチンを実行することにより、 本発 明にかかる制御手段が実現される。 従って、 本実施例によれば、 内燃機関 1が高 地等の低大気圧下で運転される時に、 吸気の過給圧が目標過給圧から大幅に低減 することが抑制される。 その結果、 内燃機関 1の発生トルクは要求トルクから大 幅に低下しなくなる。 また、 大気温度 Tmp aに応じてアフター噴射時期の遅角 量が制限されるため、 大気温度 Tmp aの低下に起因する排気ェミッションの悪 化も防止することが可能となる。  On the other hand, when a negative determination is made in S 108 (T a i n j b> Tmax), E C U 13 proceeds to S 1 10. In S 110, E C U 13 determines the retard angle limit value Tmax obtained in S 107 as the after injection timing T a i n j. Thus, the control means according to the present invention is realized by the ECU 13 executing the routines of FIGS. Therefore, according to the present embodiment, when the internal combustion engine 1 is operated under a low atmospheric pressure such as a high altitude, it is suppressed that the boost pressure of the intake air is significantly reduced from the target boost pressure. As a result, the generated torque of the internal combustion engine 1 does not drop significantly from the required torque. Further, since the retard amount of the after injection timing is limited according to the atmospheric temperature Tmp a, it is possible to prevent the deterioration of exhaust emission due to the decrease in the atmospheric temperature Tmp a.
尚、 本実施例では、 内燃機関 1が低大気圧下で運転される時に、 メイン噴射時 期を遅角させずにアフター噴射を行う例について述べたが、 ァフタ一噴射時期の 遅角によってトルクの低下を補償しきれなレ、場合にはメイン噴射時期の遅角が併 用されてもよレ、。  In this embodiment, when the internal combustion engine 1 is operated under a low atmospheric pressure, an example in which after-injection is performed without delaying the main injection period has been described. However, torque is increased by delaying the after-injection timing. If it is not possible to compensate for this drop, the delay of the main injection timing may be used together.
ぐ実施例 2 > Example 2>
次に、 本発明の第 2の実施例について図 10〜図 15に基づいて説明する。 こ こでは、 前述した第 1の実施例と異なる構成について説明し、 同様の構成につい ては説明を省略する。 Next, a second embodiment of the present invention will be described with reference to FIGS. This Here, a configuration different from that of the first embodiment will be described, and description of the same configuration will be omitted.
前述した第 1の実施例では、 大気圧に応じてアフター噴射時期を変更すること により、 実過給圧を目標過給圧に近づける例について述べた。 これに対し、 本実 施例では、 大気圧に応じてアフター噴射量を変更することにより、 実過給圧を目 標過給圧に近づける例について述べる。  In the first embodiment described above, an example in which the actual boost pressure is brought close to the target boost pressure by changing the after injection timing according to the atmospheric pressure has been described. In contrast, in this example, an example in which the actual boost pressure is brought close to the target boost pressure by changing the after-injection amount according to the atmospheric pressure will be described.
図 1 0は、 アフター噴射時期が一定である時のアフター噴射量と排気温度との 関係を示す図である。 図 1 0中の点 Yは、 アフター噴射が行われない場合の排気 温度 (ベース排気温度) を示している。  FIG. 10 is a graph showing the relationship between the after-injection amount and the exhaust temperature when the after-injection timing is constant. Point Y in Fig. 10 indicates the exhaust temperature (base exhaust temperature) when after-injection is not performed.
図 1 0に示すように、 アフター噴射による排気温度の上昇量は、 アフター噴射 量が多くなるほど多くなる。 よって、 大気圧センサ 1 8の測定値 (大気圧) が低 くなるほどアフター噴射量が増加されると、 大気圧の低下に起因した過給圧の低 下が抑制される。 その結果、 低大気圧下において内燃機関 1の発生トルクが大幅 に低下しなくなる。  As shown in FIG. 10, the amount of increase in the exhaust gas temperature due to after-injection increases as the after-injection amount increases. Therefore, when the after-injection amount increases as the measured value (atmospheric pressure) of the atmospheric pressure sensor 18 decreases, the decrease in the supercharging pressure due to the decrease in atmospheric pressure is suppressed. As a result, the generated torque of the internal combustion engine 1 does not drop significantly at low atmospheric pressure.
また、 E C U 1 3は、 アフター噴射実行後の実過給圧に基づいてアフター噴射 量をフィードバック制御してもよい。 すなわち、 E C U 1 3は、 アフター噴射実 行後における実過給圧が目標過給圧と一致するようにァフタ一噴射量を補正して もよい。  Further, E C U 13 may perform feedback control of the after injection amount based on the actual supercharging pressure after the execution of after injection. That is, E C U 13 may correct the after-injection amount so that the actual boost pressure after the after injection is executed matches the target boost pressure.
具体的には、 E C U 1 3は、 アフター噴射実行後の実過給圧が目標過給圧より 低い場合は、 アフター噴射量を増量補正してもよい。 一方、 アフター噴射実行後 の実過給圧が目標過給圧より高い場合は、 E C U 1 3は、 アフター噴射量を減量 補正してもよい。 その際の補正量は、 実過給圧と目標過給圧との差が大きくなる ほど多くされることが好ましい。  Specifically, E C U 13 may correct the increase in the after injection amount when the actual boost pressure after the after injection is performed is lower than the target boost pressure. On the other hand, if the actual supercharging pressure after execution of after injection is higher than the target supercharging pressure, E C U 13 may correct the after injection amount to decrease. The amount of correction at that time is preferably increased as the difference between the actual boost pressure and the target boost pressure increases.
このように実過給圧と目標過給圧との差に応じてアフター噴射量がフィードバ ック制御されると、 実過給圧と目標過給圧との差が可及的に小さくなる。 その結 果、 内燃機関 1の発生トノレクと要求トノレクとの差が可及的に小さくなるとともに Thus, when the after-injection amount is feedback controlled according to the difference between the actual boost pressure and the target boost pressure, the difference between the actual boost pressure and the target boost pressure becomes as small as possible. As a result, the difference between the generated Tonlek and the required Tonlek of the internal combustion engine 1 becomes as small as possible.
、 アフター噴射量が必要最小限に抑えられる。 The after-injection amount can be minimized.
ところで、 吸気温度 (大気温度) が低い時にアフター噴射量が大幅に増量され ると、 ァフタ一噴射燃料が燃焼しきれずに未燃のまま内燃機関 1から排出され易 くなる。 その結果、 内燃機関 1の排気ェミッションが増加する可能性がある。 このため、 アフター噴射量は、 吸気温度センサ 1 5の測定値 (大気温度) に応 じた上限量によって制限されることが好ましい。 このようにァフタ一噴射量が制 限されると、 排気エミッションの悪化を回避しつつ排気エネルギを可及的に増加 させることが可能となる。  By the way, if the after-injection amount is significantly increased when the intake air temperature (atmospheric temperature) is low, the after-injected fuel cannot be burned and is easily discharged from the internal combustion engine 1 without being burned. As a result, the exhaust emission of the internal combustion engine 1 may increase. For this reason, it is preferable that the after-injection amount is limited by the upper limit amount corresponding to the measured value (atmospheric temperature) of the intake air temperature sensor 15. If the after-injection amount is limited in this way, it is possible to increase exhaust energy as much as possible while avoiding deterioration of exhaust emission.
以下、 本実施例におけるトルク制御の実行手順について図 1 1に沿って説明す る。 図 1 1は、 トルク制御ルーチンを示すフローチャートである。 尚、 図 1 1に おいて前述した第 1の実施例のトルク制御ルーチン (図 5を参照) と同様の処理 については同一の符号が付されている。 図 1 1のトルク制御ルーチンにおいて、 ECU 1 3は、 S 102において肯定 判定した時に S 301へ進む。 S 301では、 ECU 1 3は、 S 1 01で読み込 まれた大気圧 APをパラメータとして基本アフター噴射量 Q a i n j bを演算す る。 その際、 ECU1 3は、 図 12に示すようなマップに基づいて基本アフター 噴射量 Qa i n j bを決定してもよい。 図 12に示すマップは、 大気圧 A Pが標 準大気圧 S A Pである場合はァフタ一噴射が行われず、 大気圧 A Pが標準大気圧 SAPより低い場合は大気圧 A Pが低くなるほど基本アフター噴射量 Q a i n j bが多くなるように定められている。 Hereinafter, the execution procedure of torque control in the present embodiment will be described with reference to FIG. FIG. 11 is a flowchart showing a torque control routine. In FIG. 11, the same reference numerals are assigned to the same processes as those in the torque control routine (see FIG. 5) of the first embodiment described above. In the torque control routine of FIG. 11, the ECU 13 proceeds to S301 when an affirmative determination is made in S102. In S 301, the ECU 13 calculates the basic after-injection amount Q ainjb using the atmospheric pressure AP read in S 101 as a parameter. At that time, the ECU 13 may determine the basic after-injection amount Qa injb based on a map as shown in FIG. The map shown in Fig. 12 shows that when the atmospheric pressure AP is the standard atmospheric pressure SAP, after-injection is not performed. When the atmospheric pressure AP is lower than the standard atmospheric pressure SAP, the lower the atmospheric pressure AP, the lower the basic after-injection amount Q. It is determined that ainjb increases.
ECU 13は、 S 301の実行後に S 302へ進む。 S 302では、 ECU1 3は、 フィードバック補正係数△ ]3を演算する。 具体的には、 ECU13は、 図 13に示すようなフィードバック制御ルーチンに基づいてフィードバック補正係 数 Δ]3を演算する。 図 1 3において、 前述した第 1の実施例のフィードバック制 御ルーチン (図 7を参照) と同様の処理については同一の符号が付されている。 フィードパック制御ルーチンにおいて、 ECU1 3は、 S 203で肯定判定さ れた場合に S 401へ進む。 S 401では、 E CU 13は、 目標過給圧 C P t r gと実過給圧 CPとの差 (=CP t r g_CP) に基づいてフィードバック補正 係数 を演算する。 例えば、 ECU13は、 図 14に示すようなマップに基づ いてフィードバック補正係数△ ]3を求めてもよい。 図 14に示すマップは、 目標 過給圧 CP t r gと実過給圧 CPとの差 (=CP t r g-CP) が大きくなるほ どフィードバック補正係数△ ]3が大きな値となるように定められる。  The ECU 13 proceeds to S302 after executing S301. In S302, the ECU 13 calculates a feedback correction coefficient Δ] 3. Specifically, the ECU 13 calculates a feedback correction coefficient Δ] 3 based on a feedback control routine as shown in FIG. In FIG. 13, the same processes as those in the feedback control routine (see FIG. 7) of the first embodiment described above are denoted by the same reference numerals. In the feed pack control routine, the ECU 13 proceeds to S 401 when an affirmative determination is made in S 203. In S 401, the ECU 13 calculates a feedback correction coefficient based on the difference between the target boost pressure CPrtg and the actual boost pressure CP (= CPtrg_CP). For example, the ECU 13 may obtain the feedback correction coefficient Δ] 3 based on a map as shown in FIG. The map shown in FIG. 14 is determined such that the feedback correction coefficient Δ] 3 becomes larger as the difference between the target boost pressure CP trg and the actual boost pressure CP (= CP tr g-CP) increases. .
また、 E CU 1 3は、 前記 S 201又は前記 S 203で否定判定された場合は S 402へ進む。 S 402では、 ECU 13は、 フィードバック補正係数△ ]3を "0" に設定する。  Further, if the negative determination is made in S201 or S203, the ECU 13 proceeds to S402. In S 402, the ECU 13 sets the feedback correction coefficient Δ] 3 to “0”.
ここで図 1 1のトルク制御ルーチンに戻り、 ECU 1 3は、 S 303において 基本アフター噴射量 Q a i n j bを前記 S 302で算出されたフィードバック補 正係数△ ]3により補正する。 具体的には、 ECU1 3は、 基本アフター噴射量 Q a i n j bにフィードバック捕正係数△ ;3を加算する。  Returning to the torque control routine of FIG. 11, the ECU 13 corrects the basic after-injection amount Q a i n j b in S 303 by the feedback correction coefficient Δ] 3 calculated in S 302. Specifically, the ECU 13 adds a feedback correction coefficient Δ; 3 to the basic after-injection amount Q a i n j b.
ECU 13は、 S 303の処理を実行すると、 S 106へ進む。 次いで、 EC U13は、 S 106の処理を実行した後に S 304へ進む。  When the ECU 13 executes the process of S303, the ECU 13 proceeds to S106. Next, the EC U13 proceeds to S304 after executing the process of S106.
S 304では、 ECU 13は、 S 106で読み込まれた大気温度 Tm p aに基 づいてアフター噴射量の上限量 Q a ma Xを求める。 その際、 ECU 1 3は、 図 15に示すようなマップに基づいて上限量 Q a ma xを決定するようにしてもよ レ、。 図 15に示すマップは、 大気温度 Tmp aが低くなるほど上限量 Q a ma X が少なくなるように定められている。 尚、 上限量 Q a ma Xと大気温度 Tmp a との関係は、 予め実験的に求めておくことが好適である。  In S 304, the ECU 13 obtains the upper limit amount Q a ma X of the after injection amount based on the atmospheric temperature Tm pa read in S 106. At that time, the ECU 13 may determine the upper limit amount Q a max based on a map as shown in FIG. The map shown in Fig. 15 is set so that the upper limit amount Q a ma X decreases as the atmospheric temperature Tmp a decreases. It should be noted that the relationship between the upper limit amount Q a ma X and the atmospheric temperature Tmp a is preferably obtained experimentally in advance.
ECU 13は、 S 304の処理を実行し終えると、 S 305へ進む。 S 305 では、 ECU 1 3は、 前記 S 303で求められた基本アフター噴射量 Q a i n j bと前記 S 304で求められた上限量 Q am a xを比較する。 すなわち、 ECU 13は、 前記基本アフター噴射量 Q a i n j bが前記上限量 Q a m a x以下であ るか否かを判別する。 ' When the ECU 13 finishes executing the process of S304, the ECU 13 proceeds to S305. In S 305, the ECU 13 compares the basic after-injection amount Q ainjb obtained in S 303 with the upper limit amount Q am ax obtained in S 304. That is, ECU 13 determines whether or not the basic after-injection amount Q ainjb is less than or equal to the upper limit amount Q amax. '
前記 S 305において肯定判定された場合 (Q a i n j b≤Q a ma X ) は、 ECU 13は、 S 306へ進む。 S 306では、 ECU 1 3は、 前記 S 303で 求められた基本アフター噴射量 Q a i n j bをアフター噴射量 Q a i n jに定め る。  When an affirmative determination is made in S 305 (Q a i n j b ≤ Q a ma X), the ECU 13 proceeds to S 306. In S 306, the ECU 13 determines the basic after-injection amount Q a i n j b obtained in S 303 as the after-injection amount Q a i n j.
一方、 前記 S 305において否定判定された場合 (Qa i n j b〉Qama x ) は、 E C U 13は S 307へ進む。 S 307では、 E C U 1 3は、 前記 S 30 4で求められた上限量 Q a ma xをアフター噴射量 Q a i n jに定める。  On the other hand, if a negative determination is made in S 305 (Qa i n j b> Qama x), E C U 13 proceeds to S 307. In S 307, E C U 13 determines the upper limit amount Q a max obtained in S 30 4 as the after injection amount Q a i n j.
. このように ECU13が図 1 1及び図 13のルーチンを実行すると、 内燃機関 1が高地等の低大気圧下で運転される時に、 吸気の過給圧が目標過給圧から大幅 に低減しなくなる。 その結果、 内燃機関 1の発生トルクは要求トルクから大幅に 低下しなくなる。 また、 大気温度 Tmp aに応じてアフター噴射量が制限される ため、 排気ェミッションの悪化も防止することが可能となる。 When the ECU 13 executes the routines of FIGS. 11 and 13 in this way, when the internal combustion engine 1 is operated under a low atmospheric pressure such as a high altitude, the intake supercharging pressure is significantly reduced from the target supercharging pressure. Disappear. As a result, the generated torque of the internal combustion engine 1 does not drop significantly from the required torque. In addition, since the after-injection amount is limited according to the atmospheric temperature Tmp a, it is possible to prevent the exhaust emission from deteriorating.
以上述べた第 1及び第 2の実施例は可能な限り組み合わせることができる。 そ の際、 ECU1 3は、 可能な限りアフター噴射時期の遅角のみで過給圧の上昇を 図ることが好ましい。  The first and second embodiments described above can be combined as much as possible. At this time, it is preferable that the ECU 13 increases the supercharging pressure only by retarding the after injection timing as much as possible.
例えば、 ECU13は、 実過給圧が目標過給圧段より低い場合に、 先ずァフタ 一噴射量を一定量に保ちつつアフター噴射時期の遅角を行う。 そして、 アフター 噴射時期が遅角限界値に達しても実過給圧が目標過給圧まで上昇しなければ、 E CU 13はアフター噴射量の増量を行うようにしてもよい。  For example, when the actual boost pressure is lower than the target boost pressure stage, the ECU 13 first retards the after injection timing while keeping the after injection quantity constant. If the actual boost pressure does not increase to the target boost pressure even when the after injection timing reaches the retard limit value, the ECU 13 may increase the after injection amount.
また、 ECU13は、 実過給圧と目標過給圧との差が所定値以下である場合は アフター噴射時期の遅角のみにより実過給圧の上昇を図り、 実過給圧と目標過給 圧との差が所定値を超えた場合はァフタ一噴射量の増量により実過給圧の上昇を 図るようにしてもよい。  In addition, when the difference between the actual boost pressure and the target boost pressure is less than the predetermined value, the ECU 13 increases the actual boost pressure only by retarding the after injection timing. When the difference from the pressure exceeds a predetermined value, the actual supercharging pressure may be increased by increasing the after injection amount.
このようにァフタ一噴射量の増加に対してァフタ一噴射時期の遅角が優先され ると、 ァフタ一噴射の実施に起因した燃費の悪化を可及的に抑制することができ る。  In this way, when the retard of the after-injection timing is prioritized over the increase in after-injection amount, it is possible to suppress as much as possible the deterioration of fuel consumption due to the execution of after-injection.
尚、 ECU19は、 アフター噴射時期の遅角及びアフター噴射量の増量によつ てトルクの低下を補償できない場合は、 メイン噴射時期の遅角を行うようにして もよい。  Note that the ECU 19 may delay the main injection timing when the decrease in torque cannot be compensated for by the delay of the after injection timing and the increase in the after injection amount.

Claims

請 求 の 範 囲 The scope of the claims
1 . 遠心過給機を備えた圧縮着火式内燃機関のトルク制御システムにおいて、 大気圧を取得する取得手段と、 1. In a torque control system of a compression ignition internal combustion engine equipped with a centrifugal supercharger, an acquisition means for acquiring atmospheric pressure;
前記取得手段により取得された大気圧が標準大気圧より低い時に、 燃料噴射弁 からアフター噴射を行わせる制御手段と、  Control means for performing after injection from the fuel injection valve when the atmospheric pressure acquired by the acquisition means is lower than the standard atmospheric pressure;
を備えることを特徴とする内燃機関のトルク制御システム。 A torque control system for an internal combustion engine, comprising:
2 . 請求項 1において、 前記制御手段は、 前記取得手段により取得された大気 圧が標準大気圧に比して低くなるほど、 アフター噴射量を増加および/またはァ フタ一噴射時期を遅角させることを特徴とする内燃機関のトルク制御システム。 2. The control unit according to claim 1, wherein the control unit increases the after-injection amount and / or retards the after-injection timing as the atmospheric pressure acquired by the acquiring unit becomes lower than the standard atmospheric pressure. A torque control system for an internal combustion engine.
3 . 請求項 1又は 2において、 遠心過給機により圧縮された吸気の圧力を検出す る第 1検出手段を更に備え、 3. In claim 1 or 2, further comprising first detection means for detecting the pressure of the intake air compressed by the centrifugal supercharger,
前記制御手段は、 前記第 1検出手段により検出された圧力が目標過給圧に対し て低くなるほど、 アフター噴射量を増加させることを特徴とする内燃機関のトル ク制御システム。  The torque control system for an internal combustion engine, wherein the control means increases the after-injection amount as the pressure detected by the first detection means becomes lower than a target boost pressure.
4 . 請求項 1又は 2において、 遠心過給機により圧縮された吸気の圧力を検出 する第 1検出手段を更に備え、 4. In claim 1 or 2, further comprising first detection means for detecting the pressure of the intake air compressed by the centrifugal supercharger,
前記第 1検出手段により検出された圧力が目標過給圧に対して低くなるほど、 ァフタ一噴射時期を遅角させることを特徴とする内燃機関のトルク制御システム  The torque control system for an internal combustion engine, wherein the after-injection timing is retarded as the pressure detected by the first detection means becomes lower than the target boost pressure.
5 . 請求項 1又は 2において、 遠心過給機により圧縮された吸気の圧力を検出 する第 1検出手段を更に備え、 5. In claim 1 or 2, further comprising first detection means for detecting the pressure of the intake air compressed by the centrifugal supercharger,
前記制御手段は、 前記第 1検出手段により検出された圧力が目標過給圧に対し て低くなるほど、 ァフタ一噴射量を増加させるとともにァフタ一噴射時期の遅角 量を増加させることを特徴とする内燃機関のトルク制御システム。  The control means increases the after-injection amount and increases the retard amount of the after-injection timing as the pressure detected by the first detecting means becomes lower than the target boost pressure. Torque control system for internal combustion engines.
6 . 請求項 2 , 4 , 5の何れか 1項において、 大気の温度を検出する第 2検出 手段を更に備え、 6. In any one of claims 2, 4, and 5, further comprising second detection means for detecting the temperature of the atmosphere,
前記制御手段は、 前記第 2検出手段により検出された温度が低くなるほど、 ァ フタ一噴射時期の遅角量を減少させることを特徴とする内燃機関のトルク制御シ ステム。  The torque control system for an internal combustion engine, wherein the control means decreases the retard amount of the after-injection timing as the temperature detected by the second detection means becomes lower.
7 . 請求項 2 , 3 , 5の何れか 1項において、 大気の温度を検出する第 2検出 手段を更に備え、 前記制御手段は、 前記第 2検出手段により検出された温度が低くなるほど、 ァ フタ一噴射量の増加量を減少させることを特徴とする内燃機関のトルク制御シス テム。 7. In any one of claims 2, 3, and 5, further comprising a second detection means for detecting the temperature of the atmosphere, The internal combustion engine torque control system characterized in that the control means decreases the increase amount of the after-injection amount as the temperature detected by the second detection means becomes lower.
PCT/JP2008/061288 2007-06-21 2008-06-13 Torque control system for internal combustion engine WO2008156157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007163920A JP2009002232A (en) 2007-06-21 2007-06-21 Torque control system for internal combustion engine
JP2007-163920 2007-06-21

Publications (1)

Publication Number Publication Date
WO2008156157A1 true WO2008156157A1 (en) 2008-12-24

Family

ID=40156315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061288 WO2008156157A1 (en) 2007-06-21 2008-06-13 Torque control system for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2009002232A (en)
WO (1) WO2008156157A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414975A (en) * 2014-05-27 2017-02-15 日产自动车株式会社 Diesel engine control device and control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287983B2 (en) * 2015-07-15 2018-03-07 マツダ株式会社 Multi-fuel engine control system
JP7408964B2 (en) 2019-09-10 2024-01-09 マツダ株式会社 Diesel engine control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291175A (en) * 2004-04-05 2005-10-20 Toyota Motor Corp Exhaust emission control device for engine
JP2006029279A (en) * 2004-07-21 2006-02-02 Denso Corp Control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291175A (en) * 2004-04-05 2005-10-20 Toyota Motor Corp Exhaust emission control device for engine
JP2006029279A (en) * 2004-07-21 2006-02-02 Denso Corp Control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414975A (en) * 2014-05-27 2017-02-15 日产自动车株式会社 Diesel engine control device and control method
US10288004B2 (en) 2014-05-27 2019-05-14 Nissan Motor Co., Ltd. Diesel engine control device and control method
CN106414975B (en) * 2014-05-27 2020-04-21 日产自动车株式会社 Control device and control method for diesel engine

Also Published As

Publication number Publication date
JP2009002232A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP5773059B2 (en) Control device for internal combustion engine
US8156923B2 (en) Method and system for pre-ignition control
US20150192087A1 (en) Fuel injection control device of diesel engine
US10400697B2 (en) Control apparatus of engine
JP4412275B2 (en) Control device for compression ignition type multi-cylinder internal combustion engine
US9115673B2 (en) Control device for internal combustion engine
CN109973279B (en) Control device for internal combustion engine
US10012164B2 (en) Control apparatus of engine
JP6175773B2 (en) Combustion control device
JP4735497B2 (en) Fuel cetane number discrimination system for compression ignition type internal combustion engine
WO2008156157A1 (en) Torque control system for internal combustion engine
JP5158245B1 (en) Combustion control device
EP2584178B1 (en) Control device for an internal combustion engine
US9803570B2 (en) System and method for controlling engine air flow
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
JP6054766B2 (en) Control device for internal combustion engine
JP2007303305A (en) Fuel injection control system for internal combustion engine
JP2009250191A (en) Control device of internal combustion engine with supercharger
JP6283959B2 (en) Engine control device
JP2014074338A (en) Control device of internal combustion engine
JP2004316608A (en) Fuel injection control device of internal combustion engine
JP2006348791A (en) Multiple cylinder diesel engine
JP5637098B2 (en) Control device for internal combustion engine
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP4479340B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08777432

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08777432

Country of ref document: EP

Kind code of ref document: A1