WO2008156154A1 - Control system for internal combustion engine - Google Patents

Control system for internal combustion engine Download PDF

Info

Publication number
WO2008156154A1
WO2008156154A1 PCT/JP2008/061275 JP2008061275W WO2008156154A1 WO 2008156154 A1 WO2008156154 A1 WO 2008156154A1 JP 2008061275 W JP2008061275 W JP 2008061275W WO 2008156154 A1 WO2008156154 A1 WO 2008156154A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
detection means
control system
glow plug
Prior art date
Application number
PCT/JP2008/061275
Other languages
French (fr)
Japanese (ja)
Inventor
Daichi Imai
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008156154A1 publication Critical patent/WO2008156154A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0634Determining a density, viscosity, composition or concentration
    • F02D19/0636Determining a density, viscosity, composition or concentration by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/026Glow plug actuation during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control technique for an internal combustion engine provided with a glow plug.
  • Japanese Laid-Open Patent Publication No. 6-10 8 9 60 discloses a technique for controlling the energization amount of the glove lug in accordance with the temperature of the internal combustion engine, the engine speed, and the like.
  • Japanese Patent Application Laid-Open No. 6-10 8 9 59 discloses a technique for controlling the energization amount of the glow plug in accordance with the intake air amount of the internal combustion engine. Disclosure of the invention
  • the present invention provides a control system for an internal combustion engine equipped with a glow plug, and provides a technique for controlling the glow plug in accordance with the use conditions of the internal combustion engine, thereby making it possible to improve fuel combustion and discharge white smoke. It aims to reduce it automatically.
  • the present invention provides a control system for a compression ignition type internal combustion engine equipped with a glow plug, which is caused by the altitude of the place where the internal combustion engine is used and the cetane number of the fuel used by the internal combustion engine.
  • a compression ignition type internal combustion engine equipped with a glow plug which is caused by the altitude of the place where the internal combustion engine is used and the cetane number of the fuel used by the internal combustion engine.
  • the present invention provides a control system for an internal combustion engine having a glow plug, wherein the first detection means for detecting an altitude at which the internal combustion engine is used and the Z or the internal combustion engine are provided. Second detection means for detecting the cetane number of the fuel to be used; and control means for operating the glow plug when the detection values of the first detection means and Z or the second detection means belong to a predetermined combustion deterioration range. I prepared.
  • the glow plug is operated when the altitude and / or the fuel cetane number falls within the combustion deterioration range, the fuel combustion deterioration is suppressed. As a result, the emission of white smoke due to worsening combustion is also reduced. That is, according to the control system for an internal combustion engine of the present invention, the deterioration of fuel combustion and the emission of white smoke can be reduced as much as possible.
  • examples of the combustion deterioration range include a range where the altitude is higher than a predetermined altitude, and / or a range where the fuel cetane number is lower than a predetermined cetane number.
  • the unburned fuel is reduced by operating the glow plug. be able to.
  • the pressure of the intake air compressed by the supercharger (supercharging pressure) does not reach the target supercharging pressure, the compression end temperature decreases and the in-cylinder oxygen amount Decrease.
  • control system for an internal combustion engine further includes third detection means for detecting the supercharging pressure of the intake air compressed by the supercharger, and the detection value of the third detection means is less than the target supercharging pressure.
  • the glow plug may be operated.
  • FIG. 1 is a diagram showing a schematic configuration of a control system for an internal combustion engine.
  • Fig. 2 is a diagram showing the combustion deterioration range.
  • FIG. 3 is a diagram showing a combustion deterioration range when the glow plug is operated.
  • FIG. 4 is a flowchart showing a combustion deterioration suppression control routine.
  • FIG. 1 is a diagram showing a schematic configuration of a control system for an internal combustion engine according to the present invention.
  • An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) having a plurality of cylinders 2.
  • a piston 3 is slidably inserted into each cylinder 2 of the internal combustion engine 1.
  • the internal combustion engine 1 includes a fuel injection valve 4 that injects fuel into each cylinder 2 and a glow plug 5 that heats gas in each cylinder 2 (combustion chamber).
  • each cylinder 2 communicates with the intake passage 7 via the intake port 6.
  • Air intake A compressor housing 80 of a centrifugal supercharger (turbocharger) 8 is arranged in the middle of the path 7.
  • An intake cooler 9 for cooling the intake air compressed in the compressor housing 80 is disposed in the intake passage 7 downstream of the compressor housing 80.
  • An intake throttle valve 10 for changing the cross-sectional area of the intake passage 7 is disposed in the intake passage 7 downstream of the intercooler 9.
  • each cylinder 2 communicates with the exhaust passage 12 via the exhaust port 11.
  • a turbine housing 81 of the turbocharger 8 is disposed in the middle of the exhaust passage 12.
  • An exhaust purification device 13 is disposed in the exhaust passage 12 downstream of the turbine housing 81.
  • the exhaust gas purification device 13 includes a catalyst for purifying exhaust gas (for example, an NOx storage reduction catalyst, an oxidation catalyst, a three-way catalyst, etc.) and / or particulates (PM:
  • a catalyst for purifying exhaust gas for example, an NOx storage reduction catalyst, an oxidation catalyst, a three-way catalyst, etc.
  • PM particulates
  • An exhaust gas recirculation (EGR) passage 14 is connected to the exhaust passage 12 upstream of the turbine housing 81.
  • the EGR passage 14 is a passage that guides part of the exhaust gas flowing through the exhaust passage 12 to the intake passage 7 downstream of the intake throttle valve 10.
  • An EGR valve 15 and an EGR cooler 16 are disposed in the middle of the EGR passage 14.
  • the internal combustion engine 1 configured in this way is provided with an ECU 17.
  • the ECU 17 is an electronic control unit composed of a CPU, ROM, RAM, backup RAM, and the like.
  • the ECU 17 is electrically connected to various sensors such as an air flow overnight 18, an intake air temperature sensor 19, an intake air pressure sensor 20, an atmospheric pressure sensor 21, and a crank position sensor 22.
  • the air flow meter 18 is disposed in the intake passage 7 upstream of the compressor housing 80 and measures the amount of air sucked into the intake passage 7 from the atmosphere.
  • Intake air temperature The sensor 19 is arranged in the intake passage 7 near the air flow 18 and measures the temperature of the air taken into the intake passage 7 from the atmosphere (atmospheric temperature).
  • the intake pressure sensor 20 is disposed in the intake passage 7 downstream from the intake throttle valve 10 and the pressure of the intake air flowing through the intake passage 7 (in other words, the pressure of the intake air compressed by the compressor housing 80 (supercharging) Measure the pressure)).
  • the atmospheric pressure sensor 21 measures the atmospheric pressure.
  • the crank position sensor 22 measures the rotational position (rotation angle) of an engine output shaft (crankshaft) (not shown).
  • the E C U 17 electrically controls the fuel injection valve 4, the glow plug 5, the intake throttle valve 10, and the EGR valve 15 described above based on the measured values of the various sensors described above.
  • E C U 17 performs combustion deterioration reduction control that is the gist of the present invention, in addition to known fuel injection control and E G R control.
  • FIG. 1 shows the correlation between altitude, fuel cetane number, and white smoke limit value.
  • the white smoke limit value corresponds to an allowable limit amount of white smoke discharged from the internal combustion engine 1.
  • the ECU 17 is determined from the altitude of the place where the internal combustion engine 1 is used and the set value of the fuel used by the internal combustion engine 1 (hereinafter referred to as “ When the value belongs to the combustion deterioration range in FIG. 2 (that is, when the white smoke limit value is exceeded), the glow plug 5 is operated. When the glow plug 5 is actuated, the atmospheric temperature in the cylinder 2 increases, so that atomization and vaporization of the fuel injected from the fuel injection valve 4 is promoted and the compression end temperature rises. As a result, the amount of unburned fuel is reduced and the amount of white smoke emitted from the internal combustion engine 1 is also reduced.
  • FIG. 3 is a diagram showing the correlation between the altitude, the fuel cetane number, and the white smoke limit value when the glow plug 5 is operating.
  • the white smoke limit value when the glow plug 5 is activated is the white smoke limit value when the glow plug 5 is not activated (see the broken line in Fig. 3).
  • the altitude at which the amount of white smoke discharged from the internal combustion engine 1 exceeds the white smoke limit value is higher than when the glow plug 5 is inactive, and when the glow plug 5 is activated.
  • the fuel cetane number at which the white smoke emission of the internal combustion engine 1 exceeds the white smoke limit is lower than when the glow plug 5 is not in operation.
  • the glove lag 5 is activated when the characteristic value determined from the altitude and the fuel sedan number falls within the combustion deterioration range, the fuel combustion deterioration can be suppressed and the white smoke emission of the internal combustion engine 1 can be suppressed. Can be reduced below the white smoke limit.
  • the combustion deterioration suppression control routine is a routine stored in advance in the ROM of E C U 17, and is periodically executed by E C U 17.
  • the ECU 17 In the combustion deterioration suppression control routine of FIG. 4, the ECU 17 first performs the process of S 1 0 1. Execute. In SI 01, the ECU 17 determines the fuel cetane number used by the internal combustion engine 1. As this discrimination method, various known methods can be used. For example, a method of detecting the fuel ignition timing from the in-cylinder pressure or the angular acceleration of the crankshaft and determining the fuel cetane number based on the detected ignition timing can be exemplified. By the ECU 17 discriminating the fuel set value by such a method, the second detection means according to the present invention is realized.
  • the ECU 17 determines the altitude of the place where the internal combustion engine 1 is used. Since the altitude correlates with the atmospheric pressure, the ECU 17 may determine the altitude based on the measured value of the atmospheric pressure sensor 21. In that case, the atmospheric pressure sensor 21 corresponds to the first detection means according to the present invention.
  • S 103 it is determined whether or not the characteristic value determined from the fuel sedan number determined in S 101 and the altitude determined in S 102 belongs to the above-described combustion deterioration range of FIG. If an affirmative determination is made in S103, the ECU 17 proceeds to S104.
  • the ECU 17 activates the glow plug 5.
  • the glow plug 5 when the glow plug 5 is operated, if the energization is continuously performed on the glow plug 5, there is a possibility that the power consumption is increased or the glow plug 5 is deteriorated. For this reason, it is preferable that the ECU 17 intermittently energizes the glow plug 5 and changes the ratio of the energization time and the non-energization time at that time according to the engine operating state.
  • the ECU 17 is energized when the internal combustion engine 1 is in a low rotation / low load operation state, and the energization time is longer than the non-energization time, and is energized when the internal combustion engine 1 is in a high rotation / high load operation state.
  • the power supply to the glow plug 5 may be controlled so that the time is shorter than the non-energization time.
  • control means according to the present invention is realized by the ECU 17 executing S103 to S105. Therefore, according to the control system for an internal combustion engine according to the present embodiment, it is possible to suppress the deterioration of fuel combustion when the deterioration condition of combustion due to the altitude or the fuel sedan number is satisfied. As a result, the amount of white smoke emitted from the internal combustion engine 1 can be kept below the white smoke limit value.
  • the glow plug 5 is operated when the combustion deterioration condition due to the altitude and the fuel sedan number is satisfied is described.
  • the pressure of the intake air compressed by the turbocharger 8 (excessive pressure)
  • the smoke emission of the internal combustion engine 1 also increases when the (supply pressure) becomes lower than the target boost pressure. This is because when the boost pressure of the intake air becomes lower than the target boost pressure, the compression end temperature decreases and the amount of oxygen in the cylinder 2 becomes too small, resulting in an increase in the amount of unburned fuel.
  • the ECU 17 determines whether the boost pressure (measured value of the intake pressure sensor 20) is lower than the target boost pressure in addition to the case where the characteristic value determined from the altitude and the fuel cetane number belongs to the combustion deterioration range. Plug 5 may be actuated.
  • the ECU 17 determines whether or not the measured value of the intake pressure sensor 20 is lower than the target boost pressure when a negative determination is made in S 103 of the above-described combustion deterioration suppression control routine (see FIG. 4). To do. If it is determined that the measured value of the intake pressure sensor 20 is lower than the target boost pressure, the ECU 17 may operate the glow plug 5.
  • the altitude of the place where the internal combustion engine 1 is used and the internal combustion engine 1 In the above example, both of the fuel selenic value and the fuel sedan number are detected, but only one of them may be detected. In that case, the ECU 17 may operate the glow plug 5 on condition that the detected value belongs to the combustion deterioration range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Intended is to make the combustion deterioration of a fuel, as might otherwise be caused by the using environment of an internal combustion engine, as little as possible. For this intention, a control system for an internal combustion engine of a compression ignition type having a glow plug is activated when the altitude or the fuel cetane value belongs to a predetermined combustion deteriorating range.

Description

明 細 書 内燃機関の制御システム 技術分野  Description Internal combustion engine control system Technical field
本発明は、 グロ一プラグを備えた内燃機関の制御技術に関する。 背景技術  The present invention relates to a control technique for an internal combustion engine provided with a glow plug. Background art
圧縮着火式の内燃機関として、 燃焼室内の温度を高めるグロ一プラグを備えた 内燃機関が知られている。  As a compression ignition type internal combustion engine, an internal combustion engine having a glow plug for increasing the temperature in the combustion chamber is known.
特開平 6— 1 0 8 9 6 0号公報には、 内燃機関の温度や機関回転数などに応じ てグローブラグの通電量を制御する技術が開示されている。  Japanese Laid-Open Patent Publication No. 6-10 8 9 60 discloses a technique for controlling the energization amount of the glove lug in accordance with the temperature of the internal combustion engine, the engine speed, and the like.
特開平 6— 1 0 8 9 5 9号公報には、 内燃機関の吸入空気量に応じてグロ一プ ラグの通電量を制御する技術が開示されている。 発明の開示  Japanese Patent Application Laid-Open No. 6-10 8 9 59 discloses a technique for controlling the energization amount of the glow plug in accordance with the intake air amount of the internal combustion engine. Disclosure of the invention
本発明は、 グロ一プラグを備えた内燃機関の制御システムにおいて、 内燃機関 の使用条件に応じてグロ一プラグを制御する技術を提供することにより、 燃料の 燃焼悪化や白煙の排出を可及的に低減することを目的とする。  The present invention provides a control system for an internal combustion engine equipped with a glow plug, and provides a technique for controlling the glow plug in accordance with the use conditions of the internal combustion engine, thereby making it possible to improve fuel combustion and discharge white smoke. It aims to reduce it automatically.
本発明は、 上記した目的を達成するために、 グロ一プラグを備えた圧縮着火式 内燃機関の制御システムにおいて、 内燃機関が使用される場所の標高や内燃機関 が使用する燃料のセタン価に起因した燃焼悪化条件が成立した場合に、 グローブ ラグを作動させて燃^ fの燃焼状態を改善するようにした。  In order to achieve the above object, the present invention provides a control system for a compression ignition type internal combustion engine equipped with a glow plug, which is caused by the altitude of the place where the internal combustion engine is used and the cetane number of the fuel used by the internal combustion engine. When the above-mentioned combustion deterioration condition is satisfied, the combustion state of the fuel f is improved by operating the glove lug.
詳細には、 本発明は、 グロ一プラグを備えた内燃機関の制御システムにおいて 、 内燃機関が使用される標高を検出する第 1検出手段および Zまたは内燃機関が 使用する燃料のセタン価を検出する第 2検出手段と、 第 1検出手段および Zまた は第 2検出手段の検出値が所定の燃焼悪化範囲に属する時にグロ一プラグを作動 させる制御手段と、 を備えるようにした。 Specifically, the present invention provides a control system for an internal combustion engine having a glow plug, wherein the first detection means for detecting an altitude at which the internal combustion engine is used and the Z or the internal combustion engine are provided. Second detection means for detecting the cetane number of the fuel to be used; and control means for operating the glow plug when the detection values of the first detection means and Z or the second detection means belong to a predetermined combustion deterioration range. I prepared.
かかる発明によれば、 標高および または燃料セタン価が燃焼悪化範囲に属す る時にグロ一プラグが作動されるため、 燃料の燃焼悪化が抑制される。 その結果 、 燃焼悪化に起因した白煙の排出も低減される。 すなわち、 本発明の内燃機関の 制御システムによれば、 燃料の燃焼悪化や白煙の排出を可及的に低減することが できる。  According to this invention, since the glow plug is operated when the altitude and / or the fuel cetane number falls within the combustion deterioration range, the fuel combustion deterioration is suppressed. As a result, the emission of white smoke due to worsening combustion is also reduced. That is, according to the control system for an internal combustion engine of the present invention, the deterioration of fuel combustion and the emission of white smoke can be reduced as much as possible.
本発明において、 燃焼悪化範囲としては、 標高が所定高度以上となる範囲、 お よび または燃料セタン価が所定セタン価以下となる範囲を例示することができ る。  In the present invention, examples of the combustion deterioration range include a range where the altitude is higher than a predetermined altitude, and / or a range where the fuel cetane number is lower than a predetermined cetane number.
内燃機関が使用される標高が高くなると、 内燃機関に吸入される空気の密度が 低下する。 この場合、 圧縮端温度 (圧縮上死点における気筒内の温度) の低下及 び筒内酸素量の減少により燃料の燃焼状態が悪化する。 その結果、 燃え残りの燃 料が白煙となって内燃機関から排出され易い。  As the altitude at which the internal combustion engine is used increases, the density of air drawn into the internal combustion engine decreases. In this case, the combustion state of the fuel deteriorates due to a decrease in the compression end temperature (temperature in the cylinder at the compression top dead center) and a decrease in the in-cylinder oxygen amount. As a result, unburned fuel becomes white smoke and is easily discharged from the internal combustion engine.
また、 内燃機関が使用する燃料のセタン価が低下すると、 燃料が霧化及び気化 し難くなるとともに燃料の着火温度が高くなる。 このため、 燃料のセタン価が低 下すると、 気筒内で燃焼しきれない燃料が増加する。 その結果、 内燃機関から排 出される白煙が増加し易い。  Moreover, when the cetane number of the fuel used by the internal combustion engine decreases, the fuel becomes difficult to atomize and vaporize and the ignition temperature of the fuel increases. For this reason, when the cetane number of the fuel decreases, the amount of fuel that cannot be combusted in the cylinder increases. As a result, white smoke discharged from the internal combustion engine tends to increase.
従って、 標高が所定高度以上となり、 および/または燃料セタン価が所定セ夕 ン価以下となる範囲を燃焼悪化範囲として定めれば、 グロ一プラグの作動によつ て燃料の燃え残りを少なくすることができる。 尚、 過給機を備えた内燃機関においては、 過給機により圧縮された吸気の圧力 (過給圧) が目標過給圧に達しない場合にも、 圧縮端温度の低下及び筒内酸素量 の減少が生じる。 Therefore, if the range where the altitude is higher than the specified altitude and / or the fuel cetane number is lower than the predetermined cetane number is defined as the burn-up deterioration range, the unburned fuel is reduced by operating the glow plug. be able to. In an internal combustion engine equipped with a supercharger, even if the pressure of the intake air compressed by the supercharger (supercharging pressure) does not reach the target supercharging pressure, the compression end temperature decreases and the in-cylinder oxygen amount Decrease.
そこで、 本発明に係る内燃機関の制御システムは、 過給機により圧縮された吸 気の過給圧を検出する第 3検出手段を更に備え、 第 3検出手段の検出値が目標過 給圧未満となる場合にもグロ一プラグが作動されるようにしてもよい。  Therefore, the control system for an internal combustion engine according to the present invention further includes third detection means for detecting the supercharging pressure of the intake air compressed by the supercharger, and the detection value of the third detection means is less than the target supercharging pressure. In this case, the glow plug may be operated.
この場合、 標高の上昇や燃料セタン価の低下に加え、 過給圧の低下による燃焼 悪化も抑制される。 その結果、 過給圧の低下に起因した白煙の排出も抑制される  In this case, in addition to an increase in altitude and a decrease in fuel cetane number, deterioration of combustion due to a decrease in supercharging pressure is also suppressed. As a result, the emission of white smoke due to a decrease in supercharging pressure is also suppressed.
図面の簡単な説明 Brief Description of Drawings
図 1は、 内燃機関の制御システムの概略構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of a control system for an internal combustion engine.
図 2は、 燃焼悪化範囲を示す図である。  Fig. 2 is a diagram showing the combustion deterioration range.
図 3は、 グロ一プラグ作動時における燃焼悪化範囲を示す図である。  FIG. 3 is a diagram showing a combustion deterioration range when the glow plug is operated.
図 4は、 燃焼悪化抑制制御ルーチンを示すフローチャートである。 発明を実施するための最良の形態  FIG. 4 is a flowchart showing a combustion deterioration suppression control routine. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の具体的な実施形態について図面に基づいて説明する。  Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明に係る内燃機関の制御システムの概略構成を示す図である。 図 1に示す内燃機関 1は、 複数の気筒 2を有する圧縮着火式の内燃機関 (ディーゼ ルエンジン) である。  FIG. 1 is a diagram showing a schematic configuration of a control system for an internal combustion engine according to the present invention. An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) having a plurality of cylinders 2.
内燃機関 1の各気筒 2には、 ピストン 3が摺動自在に嵌挿されている。 内燃機 関 1は、 各気筒 2内へ燃料を噴射する燃料噴射弁 4と、 各気筒 2内 (燃焼室内) のガスを加熱するグロ一プラグ 5とを備えている。  A piston 3 is slidably inserted into each cylinder 2 of the internal combustion engine 1. The internal combustion engine 1 includes a fuel injection valve 4 that injects fuel into each cylinder 2 and a glow plug 5 that heats gas in each cylinder 2 (combustion chamber).
各気筒 2の内部は、 吸気ポート 6を介して吸気通路 7と連通している。 吸気通 路 7の途中には、 遠心過給機 (ターボチヤ一ジャ) 8のコンプレッサハウジング 80が配置されている。 The inside of each cylinder 2 communicates with the intake passage 7 via the intake port 6. Air intake A compressor housing 80 of a centrifugal supercharger (turbocharger) 8 is arranged in the middle of the path 7.
コンプレッサハウジング 80より下流の吸気通路 7には、 コンプレッサハウジ ング 80において圧縮された吸気を冷却するィンタークーラ 9が配置されている 。 インタ一クーラ 9より下流の吸気通路 7には、 該吸気通路 7の流路断面積を変 更する吸気絞り弁 10が配置されている。  An intake cooler 9 for cooling the intake air compressed in the compressor housing 80 is disposed in the intake passage 7 downstream of the compressor housing 80. An intake throttle valve 10 for changing the cross-sectional area of the intake passage 7 is disposed in the intake passage 7 downstream of the intercooler 9.
各気筒 2の内部は、 排気ポート 1 1を介して排気通路 12と連通している。 排 気通路 12の途中には、 ターボチャージャ 8のタービンハウジング 81が配置さ れている。 タービンハウジング 81より下流の排気通路 12には、 排気浄化装置 13が配置されている。  The interior of each cylinder 2 communicates with the exhaust passage 12 via the exhaust port 11. In the middle of the exhaust passage 12, a turbine housing 81 of the turbocharger 8 is disposed. An exhaust purification device 13 is disposed in the exhaust passage 12 downstream of the turbine housing 81.
排気浄化装置 13は、 排気を浄化するための触媒 (例えば、 吸蔵還元型 NO X 触媒、 酸化触媒、 三元触媒等) 、 および/または排気中の微粒子 (PM :  The exhaust gas purification device 13 includes a catalyst for purifying exhaust gas (for example, an NOx storage reduction catalyst, an oxidation catalyst, a three-way catalyst, etc.) and / or particulates (PM:
Particulate Matter) を捕集するためのパティキュレートフィル夕を含んでいる。 タービンハウジング 81より上流の排気通路 12には、 EGR (Exhaust Gas Recirculation) 通路 14が接続されている。 EGR通路 14は、 排気通路 12を 流れる排気の一部を、 吸気絞り弁 10より下流の吸気通路 7へ導く通路である。 EGR通路 14の途中には、 EGR弁 15と EGRクーラ 16が配置されている このように構成された内燃機関 1には、 ECU 17が併設されている。 ECU 17は、 CPU、 ROM, RAM, バックアップ RAM等から構成される電子制 御ユニットである。 ECU 17には、 エアフローメ一夕 18、 吸気温度センサ 1 9、 吸気圧センサ 20、 大気圧センサ 21、 クランクポジションセンサ 22等の 各種センサが電気的に接続されている。 Particulate Matter) is included to collect Particulate Matter). An exhaust gas recirculation (EGR) passage 14 is connected to the exhaust passage 12 upstream of the turbine housing 81. The EGR passage 14 is a passage that guides part of the exhaust gas flowing through the exhaust passage 12 to the intake passage 7 downstream of the intake throttle valve 10. An EGR valve 15 and an EGR cooler 16 are disposed in the middle of the EGR passage 14. The internal combustion engine 1 configured in this way is provided with an ECU 17. The ECU 17 is an electronic control unit composed of a CPU, ROM, RAM, backup RAM, and the like. The ECU 17 is electrically connected to various sensors such as an air flow overnight 18, an intake air temperature sensor 19, an intake air pressure sensor 20, an atmospheric pressure sensor 21, and a crank position sensor 22.
ェアフロ一メータ 18は、 コンプレッサハウジング 80より上流の吸気通路 7 に配置され、 大気中から吸気通路 7へ吸入された空気量を測定する。 吸気温度セ ンサ 1 9は、 ェアフロ一メ一夕 1 8近傍の吸気通路 7に配置され、 大気中から吸 気通路 7へ吸入された空気の温度 (大気温度) を測定する。 吸気圧センサ 2 0は 、 吸気絞り弁 1 0より下流の吸気通路 7に配置され、 該吸気通路 7を流れる吸気 の圧力 (言い換えれば、 コンプレッサハウジング 8 0により圧縮された吸気の圧 力 (過給圧) ) を測定する。 大気圧センサ 2 1は、 大気圧を測定する。 クランク ポジションセンサ 2 2は、 図示しない機関出力軸 (クランクシャフト) の回転位 置 (回転角度) を測定する。 The air flow meter 18 is disposed in the intake passage 7 upstream of the compressor housing 80 and measures the amount of air sucked into the intake passage 7 from the atmosphere. Intake air temperature The sensor 19 is arranged in the intake passage 7 near the air flow 18 and measures the temperature of the air taken into the intake passage 7 from the atmosphere (atmospheric temperature). The intake pressure sensor 20 is disposed in the intake passage 7 downstream from the intake throttle valve 10 and the pressure of the intake air flowing through the intake passage 7 (in other words, the pressure of the intake air compressed by the compressor housing 80 (supercharging) Measure the pressure)). The atmospheric pressure sensor 21 measures the atmospheric pressure. The crank position sensor 22 measures the rotational position (rotation angle) of an engine output shaft (crankshaft) (not shown).
E C U 1 7は、 上記した各種センサの測定値に基づいて、 前述した燃料噴射弁 4、 グロ一プラグ 5、 吸気絞り弁 1 0、 及び E G R弁 1 5を電気的に制御する。 例えば、 E C U 1 7は、 既知の燃料噴射制御や E G R制御に加え、 本発明の要旨 となる燃焼悪化低減制御を行う。  The E C U 17 electrically controls the fuel injection valve 4, the glow plug 5, the intake throttle valve 10, and the EGR valve 15 described above based on the measured values of the various sensors described above. For example, E C U 17 performs combustion deterioration reduction control that is the gist of the present invention, in addition to known fuel injection control and E G R control.
以下、 本実施例における燃焼悪化抑制制御について説明する。  Hereinafter, the combustion deterioration suppression control in this embodiment will be described.
内燃機関 1が使用される場所の標高が高くなると、 内燃機関 1に吸入される空 気の密度が低下する。 この場合、 圧縮端温度が低下するとともに気筒 2内に導入 される酸素量が減少する。 このため、 燃料の燃焼状態が悪化する。 その結果、 燃 え残りの燃料が白煙となって内燃機関 1から排出される。  When the altitude of the place where the internal combustion engine 1 is used increases, the density of air sucked into the internal combustion engine 1 decreases. In this case, the compression end temperature decreases and the amount of oxygen introduced into the cylinder 2 decreases. For this reason, the combustion state of fuel deteriorates. As a result, the unburned fuel becomes white smoke and is discharged from the internal combustion engine 1.
また、 内燃機関 1が使用する燃料のセタン価が低下すると、 燃料噴射弁 4から 噴射された燃料が霧化及び気化し難くなるとともに燃料の着火温度が高くなる。 このため、 燃料セタン価が低下すると、 気筒 2内で燃焼しきれない燃料が増加す る。 その結果、 内燃機関から排出される白煙が増加する。  Further, when the cetane number of the fuel used by the internal combustion engine 1 decreases, the fuel injected from the fuel injection valve 4 becomes difficult to atomize and vaporize, and the ignition temperature of the fuel increases. For this reason, when the fuel cetane number decreases, the amount of fuel that cannot be combusted in cylinder 2 increases. As a result, white smoke emitted from the internal combustion engine increases.
図 2は、 標高と燃料セタン価と白煙限界値との相関を示す図である。 白煙限界 値は、 内燃機関 1から排出される白煙の許容限界量に相当する。  Figure 2 shows the correlation between altitude, fuel cetane number, and white smoke limit value. The white smoke limit value corresponds to an allowable limit amount of white smoke discharged from the internal combustion engine 1.
図 2において、 標高 E L 1以下の環境下 (例えば、 海抜 1 0 0 0 m以下) では 、 燃料セタン価が低下しても内燃機関 1の白煙排出量が白煙限界値を超えること はない。 一方、 標高 E L 1を超える環境下で燃料セ夕ン価が低くなると、 内燃機 関 1の白煙排出量が白煙限界値を超えて燃焼悪化範囲に属する。 In Fig. 2, in an environment where the altitude is less than EL 1 (for example, less than 100 m above sea level), the white smoke emission of the internal combustion engine 1 will not exceed the white smoke limit even if the fuel cetane number decreases. . On the other hand, if the fuel sedan number decreases in an environment where the altitude exceeds EL 1, The white smoke emission of Seki 1 exceeds the white smoke limit value and belongs to the combustion deterioration range.
これに対し、 本実施例の燃焼悪化抑制制御では、 E C U 1 7は、 内燃機関 1が 使用される場所の標高と内燃機関 1が使用する燃料のセ夕ン価とから定まる点 ( 以下、 「特性値」 と称する) 値が図 2中の燃焼悪化範囲に属する場合 (すなわち 、 白煙限界値を超える場合) には、 グロ一プラグ 5を作動させるようにした。 グロ一プラグ 5が作動されると、 気筒 2内の雰囲気温度が高まるため、 燃料噴 射弁 4から噴射された燃料の霧化及び気化が促進されるとともに圧縮端温度が上 昇する。 その結果、 燃料の燃え残りが少なくなり、 内燃機関 1の白煙排出量も少 なくなる。  On the other hand, in the combustion deterioration suppression control of the present embodiment, the ECU 17 is determined from the altitude of the place where the internal combustion engine 1 is used and the set value of the fuel used by the internal combustion engine 1 (hereinafter referred to as “ When the value belongs to the combustion deterioration range in FIG. 2 (that is, when the white smoke limit value is exceeded), the glow plug 5 is operated. When the glow plug 5 is actuated, the atmospheric temperature in the cylinder 2 increases, so that atomization and vaporization of the fuel injected from the fuel injection valve 4 is promoted and the compression end temperature rises. As a result, the amount of unburned fuel is reduced and the amount of white smoke emitted from the internal combustion engine 1 is also reduced.
図 3は、 グロ一プラグ 5が作動している時の標高と燃料セタン価と白煙限界値 との相関を示す図である。  FIG. 3 is a diagram showing the correlation between the altitude, the fuel cetane number, and the white smoke limit value when the glow plug 5 is operating.
図 3において、 グロ一プラグ 5の作動時における白煙限界値 (図 3中の実線を 参照) は、 グロ一プラグ 5の非作動時における白煙限界値 (図 3中の破線を参照 In Fig. 3, the white smoke limit value when the glow plug 5 is activated (see the solid line in Fig. 3) is the white smoke limit value when the glow plug 5 is not activated (see the broken line in Fig. 3).
) に比して高くなる。 すなわち、 グロ一プラグ 5の作動時に内燃機関 1の白煙排 出量が白煙限界値以上となる標高はグロ一プラグ 5の非作動時より高くなるとと もに、 グロ一プラグ 5の作動時に内燃機関 1の白煙排出量が白煙限界値以上とな る燃料セタン価はグロ一プラグ 5の非作動時より低くなる。 ) Higher than In other words, when the glow plug 5 is activated, the altitude at which the amount of white smoke discharged from the internal combustion engine 1 exceeds the white smoke limit value is higher than when the glow plug 5 is inactive, and when the glow plug 5 is activated. The fuel cetane number at which the white smoke emission of the internal combustion engine 1 exceeds the white smoke limit is lower than when the glow plug 5 is not in operation.
従って、 標高及び燃料セ夕ン価から定まる特性値が燃焼悪化範囲に属する時に グローブラグ 5が作動されると、 燃料の燃焼悪化を抑制することができるととも に内燃機関 1の白煙排出量を白煙限界値以下に減らすことができる。  Therefore, if the glove lag 5 is activated when the characteristic value determined from the altitude and the fuel sedan number falls within the combustion deterioration range, the fuel combustion deterioration can be suppressed and the white smoke emission of the internal combustion engine 1 can be suppressed. Can be reduced below the white smoke limit.
ここで燃焼悪化抑制制御の実行手順について図 4に沿って説明する。 図 4は、 燃焼悪化抑制制御ルーチンを示すフローチヤ一トである。 燃焼悪化抑制制御ルー チンは、 予め E C U 1 7の R OMに記憶されているルーチンであり、 E C U 1 7 によって周期的に実行される。  Here, the execution procedure of the combustion deterioration suppression control will be described with reference to FIG. Figure 4 is a flowchart showing the combustion deterioration suppression control routine. The combustion deterioration suppression control routine is a routine stored in advance in the ROM of E C U 17, and is periodically executed by E C U 17.
図 4の燃焼悪化抑制制御ルーチンでは、 E C U 1 7は、 先ず S 1 0 1の処理を 実行する。 S I 01では、 ECU17は、 内燃機関 1が使用する燃料セタン価を 判別する。 この判別方法としては、 公知の種々の方法を用いることができる。 例 えば、 筒内圧やクランクシャフトの角加速度などから燃料の着火時期を検出し、 検出された着火時期に基づいて燃料セタン価を判別する方法を例示することがで きる。 このような方法により ECU17が燃料セ夕ン価を判別することにより、 本発明に係る第 2検出手段が実現される。 In the combustion deterioration suppression control routine of FIG. 4, the ECU 17 first performs the process of S 1 0 1. Execute. In SI 01, the ECU 17 determines the fuel cetane number used by the internal combustion engine 1. As this discrimination method, various known methods can be used. For example, a method of detecting the fuel ignition timing from the in-cylinder pressure or the angular acceleration of the crankshaft and determining the fuel cetane number based on the detected ignition timing can be exemplified. By the ECU 17 discriminating the fuel set value by such a method, the second detection means according to the present invention is realized.
S 102では、 ECU17は、 内燃機関 1が使用される場所の標高を判別する 。 標高は大気圧と相関するため、 ECU 17は大気圧センサ 21の測定値に基づ いて標高を判別してもよい。 その場合、 大気圧センサ 21は、 本発明に係る第 1 検出手段に相当する。  In S102, the ECU 17 determines the altitude of the place where the internal combustion engine 1 is used. Since the altitude correlates with the atmospheric pressure, the ECU 17 may determine the altitude based on the measured value of the atmospheric pressure sensor 21. In that case, the atmospheric pressure sensor 21 corresponds to the first detection means according to the present invention.
S 103では、 前記 S 101で判別された燃料セ夕ン価及び前記 S 102で判 別された標高から定まる特性値が前述した図 2の燃焼悪化範囲に属するか否かを 判別する。 S 103において肯定判定された場合は、 ECU17は S 104へ進 む。  In S 103, it is determined whether or not the characteristic value determined from the fuel sedan number determined in S 101 and the altitude determined in S 102 belongs to the above-described combustion deterioration range of FIG. If an affirmative determination is made in S103, the ECU 17 proceeds to S104.
S 104では、 ECU 17はグロ一プラグ 5を作動させる。 尚、 グロ一プラグ 5が作動される場合に該グロ一プラグ 5に対して連続的な通電が行われると、 消 費電力の増加やグロ一プラグ 5の劣化等を招く可能性がある。 このため、 ECU 17は、 グロ一プラグ 5に対して断続的な通電を行うとともに、 その際の通電時 間と非通電時間の割合を機関運転状態に応じて変更することが好ましい。  In S 104, the ECU 17 activates the glow plug 5. In addition, when the glow plug 5 is operated, if the energization is continuously performed on the glow plug 5, there is a possibility that the power consumption is increased or the glow plug 5 is deteriorated. For this reason, it is preferable that the ECU 17 intermittently energizes the glow plug 5 and changes the ratio of the energization time and the non-energization time at that time according to the engine operating state.
具体的には、 ECU 17は、 内燃機関 1が低回転 ·低負荷運転状態にある時は 通電時間が非通電時間より長くなり、 内燃機関 1が高回転 ·高負荷運転状態にあ る時には通電時間が非通電時間より短くなるように、 グロ一プラグ 5に対する通 電を制御してもよい。  Specifically, the ECU 17 is energized when the internal combustion engine 1 is in a low rotation / low load operation state, and the energization time is longer than the non-energization time, and is energized when the internal combustion engine 1 is in a high rotation / high load operation state. The power supply to the glow plug 5 may be controlled so that the time is shorter than the non-energization time.
このようにグロ一プラグ 5の通電制御が行われると、 燃焼悪化抑制制御に起因 したグロ一プラグ 5の消費電力増加や劣化を最小限に抑えることができる。 また、 前記 S 103において否定判定された場合は、 ECU17は S 105へ 進み、 グロ一プラグ 5を作動させずに、 本ルーチンの実行を終了する。 When the energization control of the glow plug 5 is performed in this manner, the increase in power consumption and degradation of the glow plug 5 due to the combustion deterioration suppression control can be minimized. If a negative determination is made in S 103, the ECU 17 proceeds to S 105, and the execution of this routine is terminated without operating the glow plug 5.
このように ECU 17が前記 S 103〜S 105を実行することにより本発明 に係る制御手段が実現される。 よって、 本実施例に係る内燃機関の制御システム によれば、 標高や燃料セ夕ン価に起因した燃焼悪化条件が成立した時に燃料の燃 焼悪化を抑制することが可能となる。 その結果、 内燃機関 1の白煙排出量が白煙 限界値以下に抑えられる。  In this way, the control means according to the present invention is realized by the ECU 17 executing S103 to S105. Therefore, according to the control system for an internal combustion engine according to the present embodiment, it is possible to suppress the deterioration of fuel combustion when the deterioration condition of combustion due to the altitude or the fuel sedan number is satisfied. As a result, the amount of white smoke emitted from the internal combustion engine 1 can be kept below the white smoke limit value.
尚、 本実施例では、 標高と燃料セ夕ン価に起因した燃焼悪化条件が成立した時 にグロ一プラグ 5を作動させる例について述べたが、 ターボチャージャ 8により 圧縮された吸気の圧力 (過給圧) が目標過給圧より低くなる時も内燃機関 1の白 煙排出量が増加する。 これは、 吸気の過給圧が目標過給圧より低くなると、 圧縮 端温度が低下するとともに気筒 2内の酸素量が過少となって燃料の燃え残りが増 加するためである。  In the present embodiment, an example in which the glow plug 5 is operated when the combustion deterioration condition due to the altitude and the fuel sedan number is satisfied is described. However, the pressure of the intake air compressed by the turbocharger 8 (excessive pressure) The smoke emission of the internal combustion engine 1 also increases when the (supply pressure) becomes lower than the target boost pressure. This is because when the boost pressure of the intake air becomes lower than the target boost pressure, the compression end temperature decreases and the amount of oxygen in the cylinder 2 becomes too small, resulting in an increase in the amount of unburned fuel.
そこで、 ECU17は、 標高と燃料セタン価から定まる特性値が燃焼悪化範囲 に属する場合に加え、 過給圧 (吸気圧センサ 20の測定値) が目標過給圧より低 くなる場合も、 グロ一プラグ 5を作動させるようにしてもよい。  Therefore, the ECU 17 determines whether the boost pressure (measured value of the intake pressure sensor 20) is lower than the target boost pressure in addition to the case where the characteristic value determined from the altitude and the fuel cetane number belongs to the combustion deterioration range. Plug 5 may be actuated.
具体的には、 ECU17は、 前記した燃焼悪化抑制制御ルーチン (図 4を参照 ) の S 103において否定判定された時に、 吸気圧センサ 20の測定値が目標過 給圧より低いか否かを判定する。 吸気圧センサ 20の測定値が目標過給圧より低 いと判定された場合は、 ECU17は、 グロ一プラグ 5を作動させるようにして もよい。  Specifically, the ECU 17 determines whether or not the measured value of the intake pressure sensor 20 is lower than the target boost pressure when a negative determination is made in S 103 of the above-described combustion deterioration suppression control routine (see FIG. 4). To do. If it is determined that the measured value of the intake pressure sensor 20 is lower than the target boost pressure, the ECU 17 may operate the glow plug 5.
このようにグロ一プラグ 5が作動させられると、 標高の上昇や燃料セタン価の 低下に加え、 過給圧の低下による燃焼悪化も抑制される。 その結果、 過給圧の低 下に起因した白煙の排出も抑制される。  When the glow plug 5 is operated in this way, in addition to an increase in altitude and a decrease in fuel cetane number, combustion deterioration due to a decrease in supercharging pressure is also suppressed. As a result, the emission of white smoke due to the lower supercharging pressure is also suppressed.
尚、 本実施例では、 内燃機関 1が使用される場所の標高と内燃機関 1が使用す る燃料のセ夕ン価との双方が検出される例にっレて述べたが、 何れか一方のみが 検出されるようにしてもよい。 その場合は、 ECU17は、 検出された値が燃焼 悪化範囲に属していることを条件にグロ一プラグ 5を作動させればよい。 In this embodiment, the altitude of the place where the internal combustion engine 1 is used and the internal combustion engine 1 In the above example, both of the fuel selenic value and the fuel sedan number are detected, but only one of them may be detected. In that case, the ECU 17 may operate the glow plug 5 on condition that the detected value belongs to the combustion deterioration range.

Claims

請 求 の 範 囲 The scope of the claims
1 . グロ一プラグを備えた内燃機関の制御システムにおいて、 1. In an internal combustion engine control system with a glow plug,
前記内燃機関が使用される標高を検出する第 1検出手段と、  First detection means for detecting an altitude at which the internal combustion engine is used;
前記第 1検出手段の検出値が所定の燃焼悪化範囲に属する時にグロ一プラグを 作動させる制御手段と、  Control means for operating the glow plug when the detection value of the first detection means belongs to a predetermined combustion deterioration range;
を備えることを特徴とする内燃機関の制御システム。 An internal combustion engine control system comprising:
2 . グロ一プラグを備えた内燃機関の制御システムにおいて、 2. In an internal combustion engine control system with a glow plug,
前記内燃機関が使用する燃料のセタン価を検出する第 2検出手段と、 前記第 2検出手段の検出値が所定の燃焼悪化範囲に属する時にグロ一プラグを 作動させる制御手段と、  Second detection means for detecting a cetane number of fuel used by the internal combustion engine; control means for operating a glow plug when a detection value of the second detection means belongs to a predetermined combustion deterioration range;
を備えることを特徴とする内燃機関の制御システム。 An internal combustion engine control system comprising:
3 . グロ一プラグを備えた内燃機関の制御システムにおいて、 3. In an internal combustion engine control system with a glow plug,
前記内燃機関が使用される標高を検出する第 1検出手段と、  First detection means for detecting an altitude at which the internal combustion engine is used;
前記内燃機関が使用する燃料のセ夕ン価を検出する第 2検出手段と、 前記第 1検出手段および Zまたは前記第 2検出手段の検出値が所定の燃焼悪化 範囲に属する時にグロ一プラグを作動させる制御手段と、  A second detecting means for detecting a fuel titration value used by the internal combustion engine; and a glow plug when the detected value of the first detecting means and Z or the second detecting means falls within a predetermined combustion deterioration range. Control means to be activated;
を備えることを特徴とする内燃機関の制御システム。 An internal combustion engine control system comprising:
4. 請求項 1又は 3において、 前記燃焼悪化範囲は、 前記第 1検出手段の検出 値が所定高度以上となる範囲であることを特徵とする内燃機関の制御システム。 4. The control system for an internal combustion engine according to claim 1 or 3, wherein the combustion deterioration range is a range in which a detection value of the first detection means is not less than a predetermined altitude.
5 . 請求項 2又は 3において、 前記燃焼悪化範囲は、 前記第 2検出手段の検出 値が所定セ夕ン価以下となる範囲であることを特徴とする内燃機関の制御システ ム。 5. The combustion deterioration range according to claim 2 or 3, wherein the combustion deterioration range is detected by the second detection means. A control system for an internal combustion engine, characterized in that the value falls within a predetermined sein value.
6 . 請求項 3において、 前記燃焼悪化範囲は、 前記第 1検出手段の検出値が所 定高度以上となる範囲、 および または前記第 2検出手段の検出値が所定セ夕ン 価以下となる範囲であることを特徴とする内燃機関の制御システム。 6. The combustion deterioration range according to claim 3, wherein the range in which the detection value of the first detection means is equal to or higher than a predetermined altitude, and / or the range in which the detection value of the second detection means is equal to or lower than a predetermined set value. An internal combustion engine control system.
7 . 請求項 1 , 3, 4の何れか一項において、 前記内燃機関の吸気を圧縮する 過給機と、 7. The supercharger for compressing intake air of the internal combustion engine according to any one of claims 1, 3, and 4,
前記過給機により圧縮された吸気の過給圧を検出する第 3検出手段と、 を更に備え、  A third detecting means for detecting a supercharging pressure of the intake air compressed by the supercharger;
前記燃焼悪化範囲は、 前記第 3検出手段の検出値が目標過給圧未満となる範囲 を更に含み、  The combustion deterioration range further includes a range in which the detection value of the third detection means is less than a target boost pressure,
前記制御手段は、 前記第 1検出手段の検出値と前記第 3検出手段の検出値との 何れか一方又は双方が燃焼悪化範囲に属する時にグロ一プラグを作動させること を特徴とする内燃機関の制御システム。  The control means operates a glow plug when either one or both of the detection value of the first detection means and the detection value of the third detection means belong to the combustion deterioration range. Control system.
8 . 請求項 2, 3 , 5の何れか一項において、 前記内燃機関の吸気を圧縮する 過給機と、 8. The supercharger for compressing intake air of the internal combustion engine according to any one of claims 2, 3, and 5,
前記過給機により圧縮された吸気の過給圧を検出する第 3検出手段と、 を更に備え、  A third detecting means for detecting a supercharging pressure of the intake air compressed by the supercharger;
前記燃焼悪化範囲は、 前記第 3検出手段の検出値が目標過給圧未満となる範囲 を更に含み、  The combustion deterioration range further includes a range in which the detection value of the third detection means is less than a target boost pressure,
前記制御手段は、 前記第 2検出手段の検出値と前記第 3検出手段の検出値との 何れか一方又は双方が燃焼悪化範囲に属する時にグロ一プラグを作動させること を特徴とする内燃機関の制御システム The control means operates the glow plug when one or both of the detection value of the second detection means and the detection value of the third detection means belong to the combustion deterioration range. Control system for internal combustion engine characterized by
9 . 請求項 3又は 6において、 前記内燃機関の吸気を圧縮する過給機と、 前記過給機により圧縮された吸気の過給圧を検出する第 3検出手段と、 を更に備え、 9. The turbocharger according to claim 3 or 6, further comprising: a supercharger that compresses the intake air of the internal combustion engine; and third detection means that detects a supercharging pressure of the intake air compressed by the supercharger,
前記燃焼悪化範囲は、 前記第 3検出手段の検出値が目標過給圧未満となる範囲 を更に含み、  The combustion deterioration range further includes a range in which the detection value of the third detection means is less than a target boost pressure,
前記制御手段は、 前記第 1検出手段の検出値と前記第 2検出手段の検出値と前 記第 3検出手段の検出値との何れか 1つ又は複数が燃焼悪化範囲に属する時にグ ロープラグを作動させることを特徴とする内燃機関の制御システム。  The control means includes a glow plug when one or more of the detection value of the first detection means, the detection value of the second detection means, and the detection value of the third detection means belongs to the combustion deterioration range. An internal combustion engine control system which is operated.
PCT/JP2008/061275 2007-06-21 2008-06-13 Control system for internal combustion engine WO2008156154A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-163955 2007-06-21
JP2007163955A JP2009002234A (en) 2007-06-21 2007-06-21 Control system for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2008156154A1 true WO2008156154A1 (en) 2008-12-24

Family

ID=40156312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061275 WO2008156154A1 (en) 2007-06-21 2008-06-13 Control system for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2009002234A (en)
WO (1) WO2008156154A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102257264A (en) * 2008-12-18 2011-11-23 通用汽车环球科技运作有限责任公司 A method for controlling glow plugs in a diesel engine, particularly for motor-vehicles
CN112855359A (en) * 2021-01-13 2021-05-28 浙江吉利控股集团有限公司 Engine control method and device, vehicle and computer storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014789A1 (en) 2011-07-28 2013-01-31 トヨタ自動車株式会社 Internal combustion engine control apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943983A (en) * 1982-09-06 1984-03-12 Toyota Motor Corp Control method of electric current conduction in glow plug of diesel engine
JPS60127480U (en) * 1984-02-06 1985-08-27 日産自動車株式会社 Diesel engine glow control device
JPH0573268U (en) * 1992-03-04 1993-10-08 日産ディーゼル工業株式会社 Ignition system for direct injection low cetane fuel engine
JP2001336446A (en) * 2000-05-25 2001-12-07 Nissan Motor Co Ltd Knocking controller of internal combustion engine
JP2004340026A (en) * 2003-05-15 2004-12-02 Yanmar Co Ltd Control method for diesel engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943983A (en) * 1982-09-06 1984-03-12 Toyota Motor Corp Control method of electric current conduction in glow plug of diesel engine
JPS60127480U (en) * 1984-02-06 1985-08-27 日産自動車株式会社 Diesel engine glow control device
JPH0573268U (en) * 1992-03-04 1993-10-08 日産ディーゼル工業株式会社 Ignition system for direct injection low cetane fuel engine
JP2001336446A (en) * 2000-05-25 2001-12-07 Nissan Motor Co Ltd Knocking controller of internal combustion engine
JP2004340026A (en) * 2003-05-15 2004-12-02 Yanmar Co Ltd Control method for diesel engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102257264A (en) * 2008-12-18 2011-11-23 通用汽车环球科技运作有限责任公司 A method for controlling glow plugs in a diesel engine, particularly for motor-vehicles
CN112855359A (en) * 2021-01-13 2021-05-28 浙江吉利控股集团有限公司 Engine control method and device, vehicle and computer storage medium

Also Published As

Publication number Publication date
JP2009002234A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
US9163590B2 (en) Vaporized-fuel processing system
US8958971B2 (en) System and method to control an electronically-controlled turbocharger
US8919107B2 (en) Control device of diesel engine with turbocharger
US9103247B2 (en) Exhaust system and method for mitigating degradation of components of a turbocharged engine with exhaust gas recirculation
WO2011033686A1 (en) Control valve abnormality determination device for internal combustion engine
JP2009281144A (en) Control device for internal combustion engine with turbocharger
JP2008163794A (en) Exhaust gas recirculation device for internal combustion engine
JP2014034959A (en) Exhaust gas recirculation device of engine with supercharger
EP2816208B1 (en) Control device for internal combustion engine
JP2005325812A (en) Failure determining device for filter
JP2009203918A (en) Operation control method of gasoline engine
WO2008156154A1 (en) Control system for internal combustion engine
EP2527628B1 (en) Control device of an internal combustion engine
JP4736969B2 (en) Diesel engine control device
US9574483B2 (en) System and method for controlling exhaust gas temperature during particulate matter filter regeneration
JP5832156B2 (en) Control device for internal combustion engine
EP2644871B1 (en) Control device for internal combustion engine
JP2012225215A (en) Method for controlling ignition timing of internal combustion engine
KR102452681B1 (en) Method for reducing exhaust gas of engine in case of controlling scavenging
JP2008133785A (en) Control device for internal combustion engine
JP2004316558A (en) Control device of supercharger with electric motor
JP4710729B2 (en) Control device for internal combustion engine
JP2013238147A (en) Exhaust gas temperature estimation device and failure diagnostic device
CN112105804A (en) Temperature control method for exhaust gas purification device of internal combustion engine, and control device for internal combustion engine
KR20020055738A (en) EGR system for diesel engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08825962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08825962

Country of ref document: EP

Kind code of ref document: A1