WO2008149039A2 - Systeme de culture de cellules biologiques - Google Patents

Systeme de culture de cellules biologiques Download PDF

Info

Publication number
WO2008149039A2
WO2008149039A2 PCT/FR2008/050904 FR2008050904W WO2008149039A2 WO 2008149039 A2 WO2008149039 A2 WO 2008149039A2 FR 2008050904 W FR2008050904 W FR 2008050904W WO 2008149039 A2 WO2008149039 A2 WO 2008149039A2
Authority
WO
WIPO (PCT)
Prior art keywords
cavities
silicon
temperature control
layer
cells
Prior art date
Application number
PCT/FR2008/050904
Other languages
English (en)
Other versions
WO2008149039A3 (fr
Inventor
Gérard Gadot
Patrice Lancelot
Original Assignee
Mhs Industries Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mhs Industries Sas filed Critical Mhs Industries Sas
Publication of WO2008149039A2 publication Critical patent/WO2008149039A2/fr
Publication of WO2008149039A3 publication Critical patent/WO2008149039A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates

Definitions

  • the present invention relates to a system for culturing living biological cells, and also the transport of these cells under conditions allowing them to be kept alive.
  • Biological cells are very fragile organisms that require favorable environmental conditions to grow and be kept alive.
  • Petri dishes It is known for culturing biological cells to use laboratory equipment such as Petri dishes. These boxes are shallow cylindrical boxes, in which biological cells to be cultured on a nutritional gel, called agar, containing all the elements necessary for the development of these cells. These boxes are made of glass or plastic, and are therefore subject to all temperature variations of the environment in which they are located. Thus, to maintain these boxes at a certain temperature, it is necessary to place them in a refrigerator or in an oven, thus making their transport difficult.
  • An alternative to these petri dishes consists of plates having several cavities in which cells are deposited in a culture medium. These plates, for example used to perform immunological test series, have the same disadvantages as Petri dishes, namely that they must be placed in a constant temperature environment such as an oven.
  • blocks comprising locations for receiving the various elements to be heated. These blocks are installed in an electric heater, often called a thermoblock, allowing a user to regulate the temperature.
  • test tubes are relatively fragile objects, which may break during transport, and their use requires significant effort in terms of maintenance and maintenance.
  • the invention aims to overcome at least some of these disadvantages by providing a system, allowing the culture and transport of cells, which is economical in terms of space, and which is also easy to use.
  • the invention relates to a system for culturing biological cells, comprising one or more cavities, for receiving the biological cells, dug in a substrate plate.
  • This system is characterized in that it comprises an electronic device for controlling the temperature of the cavities, this device comprising:
  • the semiconductor material is a silicon layer.
  • the first condition namely maintaining a constant temperature, is met by using several electronic devices.
  • the first of these devices is a heating element, which makes it possible to supply heat energy to the cavity, in the form of an electric polarization.
  • this heating element is, for example, a resistor or a heating transistor.
  • the system also includes a device for regulating this temperature.
  • This regulating element is, for example, a diode whose electrical characteristic varies according to the temperature.
  • the temperature control device In order for the temperature control device to be effective it is useful, in one embodiment, for it to include electronic servocontrol between the heating element and the variable diode.
  • the temperature control device is powered via an external power supply.
  • the system comprises metal connections for connecting the elements of the control device to the external power supply.
  • This external power supply takes the form of, for example, a battery or one or more batteries.
  • the various components of the temperature control device are electronic components, and are therefore sensitive to the environmental conditions in which they are placed. In order to avoid any deterioration of these components, in particular during transport of the system, it is useful to provide, in one embodiment, a protective layer disposed on these various elements.
  • This protective layer of the electronic devices is, in one embodiment, a passivation layer, for example composed of oxide and nitride.
  • the second condition to be fulfilled in order to ensure that cells stored in the system are kept alive is that these cells are supplied with oxygen.
  • the cavities for receiving the cells are in contact with the outside air. The contacting is performed either by a full opening of the cavities, or by orifices made in a protective layer placed on the cavities.
  • the first embodiment is to dig the cavities in the semiconductor material supporting the elements of the temperature control device. However, the cavities are hollowed out on another surface of the material than that supporting these elements, typically on the nonactive rear face.
  • This first embodiment has the advantage of not requiring the use of materials other than the semiconductor present in the system. As a result, complete cavity etching can be performed in one and the same semiconductor electronic component manufacturing equipment.
  • the cavities are directly deepened in one face of the semiconductor material, for example silicon.
  • active are the elements forming the temperature control device. It is therefore useful to provide means to ensure that the etching for creating the cavities does not reach the elements located on the other side of the silicon layer.
  • the layer of semiconductor material comprises an etch stop layer, the etching being performed electrochemically.
  • the layer of semiconductor material comprises a "silicon on insulator" type insulating layer.
  • a second embodiment is to dig the cavities in a polymer substrate. Indeed, a polymer substrate is less expensive than silicon or other semiconductor, and its use thus allows for deeper cavities, since they can be hollowed out in a thicker layer than when they are dug in the silicon .
  • the polymer substrate used is, for example, poly (dimethylsiloxane), called PDMS, that is to say a polymer whose molecular skeleton comprises a silicon-oxygen chain, as well as two methyl groups carried by the tetravalent silicon.
  • PDMS poly (dimethylsiloxane)
  • This polymer substrate is deposited on the active side of the semiconductor material, silicon. This silicon then serves as a mechanical support for the cavities, since it forms the bottom of the cavities, and it also allows temperature control.
  • a third embodiment finally, consists in digging the cavities on the inactive face of the silicon, as in the first mode described, and in increasing the depth by adding, on this inactive face, a polymer substrate, similar to that used in the second embodiment.
  • a glass plate is used instead of the polymer substrate.
  • the polymer substrate and / or the glass plate are perforated at the cavities dug in the silicon, thus forming walls for increasing the depth of the cavities.
  • FIGS. 1 and 2 These various embodiments will now be detailed with reference to FIGS. 1 and 2, the descriptions being made in a non-limiting manner.
  • Figure 1 shows an implementation of the first embodiment.
  • the biological cell culture system is made from a monocrystalline silicon substrate 1.
  • a heating element 2 is produced in the form of a resistor or a transistor, and a control element and / or temperature control, in the form of a variable diode 3.
  • zones are defined on the silicon surface intended to be active, and zones intended to be zones of isolation between the components,
  • metal connections 5 are made to allow the supply of components via the use of an external power supply, and
  • a protective layer 7 is deposited to isolate the electronic components from the outside.
  • the metal connections have, for example, a height of the order of two micrometers. In a variant, these metal connections can reach a thickness of less than one micrometer.
  • the cavities 4 are hollowed out on the rear surface of the monocrystalline silicon layer 1.
  • a specific mask applied on the back face of silicon is used, this mask being perforated at the level of the zones to be dug for the formation of cavities.
  • Such a mask in the form of a matrix, makes it possible to produce several cavities inside the silicon. The depth of the cavities thus excavated generally varies between 250 and 600 micrometers.
  • the undeleted thickness of the substrate ie the layer lying between the bottom of the cavities and the active surface of the silicon, is for example of the order of ten micrometers.
  • the digging of the cavities is, for example, carried out by electrochemical etching.
  • an electrochemical etching stop layer 6 is located inside the silicon substrate so as to fix the bottom of the hollow cavities.
  • an insulating oxide layer is used, which then forms a silicon-on-insulator assembly with the silicon substrate.
  • Such an oxide layer in a silicon-on-insulator structure, separates the passive silicon, used for the mechanical strength of the assembly, from the active silicon at the surface of the substrate.
  • the chemical attack is naturally stopped at this layer.
  • the system for cell culture is thus created directly from a substrate plate having a Silicon on Insulator structure.
  • the system thus created thus comprises a plate 1 of silicon, possibly containing an insulating layer, plate in which cavities 4, or wells are hollowed out.
  • the system also includes a heating and temperature control device installed at the bottom of the wells for receiving the cells to be cultivated.
  • the manufacturing method of a system according to this first embodiment is relatively simple, since the entire system is made in a single substrate, and therefore does not require assembly for the realization of the cavities.
  • FIG. 2 represents an advantageous implementation of the second embodiment described in the present application.
  • a substrate is always used
  • this second embodiment is to provide a culture system with cavities deeper than those described above. Indeed, it has been mentioned that in the context of the first embodiment, the depth of the cavities was of the order of 250 to 600 micrometers, which may prove to be insufficient for transport and the culture of certain cells requiring the presence of nutrient liquid.
  • This second embodiment can thus be envisaged when it is desired to obtain a system with cavities having a depth of the order of one millimeter. Indeed, in the embodiment previously described, it is difficult to achieve such dimensions since the depth of the cavity may be limited by the thickness of the deposited passivation layer, for example a layer of oxide and nitride .
  • the idea of digging the cavities not directly in the silicon substrate, but in a layer of another material deposited on this substrate was considered.
  • the material used is, for example, polymer or glass.
  • the polymer material used is poly (dimethylsilane), called PDMS, or a polyimide.
  • the realization of the system involves digging a PDMS film so as to create a matrix of cavities and then depositing this film on the silicon substrate 1.
  • the PDMS film is deposited on the active surface of the silicon, so that the bottoms of the cavities are relatively close to the heating elements 2 and temperature control 3.
  • the silicon substrate of a thickness of the order of a few hundred micrometers, achieves a certain thermal insulation that would not allow a good heating cavities if the latter were located on the surface of the back of the silicon.
  • this protective layer 7 also forms the bottom of the cavities, since the PDMS film is entirely perforated at the level of these cavities.
  • the silicon substrate is, in this case, used only as a mechanical support of the cavities, as well as as a basis for the heating and temperature control system.
  • a compromise is used between the two embodiments described above.
  • the cavities are hollowed out on the rear face of the silicon, and their depth is increased using a polymeric material such as PDMS, or a polyimide, deposited on the underneath areas of the face. back of the silicon layer, or a glass plate glued to the silicon, perforated at the cavities.
  • a polymeric material such as PDMS, or a polyimide
  • This third embodiment finds a particularly advantageous application in the case where it is desired to observe the biological cells contained in the system, for example using a transmission microscope.
  • the thickness of the bottom of the cavities is small, for example less than about ten micrometers, in order to allow the passage of part of the light spectrum through silicon.
  • it is particularly useful to have deep cavities, but having a thin bottom.
  • a solution for obtaining such a system thus consists first of all in digging the cavities in the silicon to reduce the thickness of remaining silicon, and to increase the depth of these cavities by adding, on the surface of the silicon, a polymer layer or of another material such as glass.
  • the cavities are closed by a film of polymeric material such as PDMS, which makes it possible to protect the cells while being permeable to oxygen.
  • a support having a dimension of 76 millimeters by 25 millimeters may comprise between 700 and 1400 microcavities, having a volume of 0.15 to 0.5 microliters, and also a heating and cooling system. temperature control.
  • the invention makes it possible to provide a system which makes it possible, in relation to existing systems, to increase the number of different crops per unit area, to save space and thus to facilitate transport, and to reduce the volumes of biological solution. put in play.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention se rapporte à un système pour la culture de cellules biologiques, comprenant une ou plusieurs cavités (4), destinées à recevoir les cellules biologiques, creusées dans une plaque de substrat (1), et caractérisé en ce qu'il comprend un dispositif électronique de contrôle de la température des cavités, ce dispositif comprenant: un élément chauffant (2), et un élément de régulation de température (3), ces deux éléments étant réalisés sur une surface active d'une couche de silicium, à proximité des cavités.

Description

SYSTEME DE CULTURE DE CELLULES BIOLOGIQUES
La présente invention concerne un système permettant la culture de cellules biologiques vivantes, et également le transport de ces cellules dans des conditions permettant leur maintien en vie.
Les cellules biologiques sont des organismes très fragiles, qui nécessitent des conditions environnementales favorables pour pouvoir se développer et être maintenues en vie.
Ces conditions s'expriment, par exemple, en termes de température, d'éclairement, de salinité du milieu, ou encore de quantité d'oxygène fournie aux cellules.
Il est connu, pour la culture de cellules biologiques, d'utiliser du matériel de laboratoire tel que des boîtes de Pétri. Ces boites sont des boîtes cylindriques peu profondes, dans lesquelles on dépose des cellules biologiques à cultiver sur un gel nutritionnel, appelé gélose, comprenant tous les éléments nécessaires au développement de ces cellules. Ces boîtes sont réalisées en verre ou en plastique, et elles sont donc soumises à toutes les variations de température de l'environnement dans lequel elles sont situées. Ainsi, pour maintenir ces boîtes à une certaine température, il est nécessaire de les placer dans un réfrigérateur ou dans une étuve, rendant ainsi leur transport difficile. Une alternative à ces boîtes de Pétri consiste en des plaques comportant plusieurs cavités dans lesquelles on dépose des cellules dans un milieu de culture. Ces plaques, par exemple utilisées pour réaliser des séries de test immunologiques, présentent les mêmes inconvénients que les boîtes de Pétri, à savoir qu'elles doivent être placées dans un environnement à température constante tel qu'une étuve.
On connaît également, pour le chauffage de tubes à essais ou de micro-tubes, des blocs comprenant des emplacements permettant de recevoir les différents éléments à chauffer. Ces blocs sont installés dans un appareil de chauffage électrique, souvent appelé thermobloc, permettant à un utilisateur de réguler la température.
Ces dispositifs présentent toutefois plusieurs inconvénients pour la culture et le transport des cellules. En effet, ce sont des dispositifs de taille relativement grande, ce qui peut les rendre difficiles à transporter. En outre, ils nécessitent l'utilisation de tubes à essais, puisqu'il n'est pas possible de placer directement les cellules biologiques dans les cavités des blocs. Or, les tubes à essais sont des objets relativement fragiles, qui risquent donc de se casser pendant le transport, et leur utilisation nécessite des efforts importants en termes d'entretien et de maintenance.
L'invention vise à remédier à au moins une partie de ces inconvénients en proposant un système, permettant la culture et le transport de cellules, qui soit économe en termes de place, et qui soit également facile à utiliser.
Ainsi, l'invention concerne un système pour la culture de cellules biologiques, comprenant une ou plusieurs cavités, destinées à recevoir les cellules biologiques, creusées dans une plaque de substrat. Ce système est caractérisé en ce qu'il comprend un dispositif électronique de contrôle de la température des cavités, ce dispositif comprenant :
- un élément chauffant, et
- un élément de régulation de température, ces deux éléments étant réalisés sur une surface active d'un matériau semi- conducteur, à proximité des cavités. De manière préférentielle, dans l'ensemble des réalisations de l'invention, le matériau à semi-conducteur est une couche de silicium.
Afin de maintenir une cellule en vie, il est nécessaire, à la fois, de la maintenir à une température constante, par exemple 37°C, et également de lui apporter de l'oxygène.
La première condition, à savoir le maintien à une température constante, est remplie en utilisant plusieurs dispositifs électroniques.
Le premier de ces dispositifs est un élément chauffant, qui permet d'apporter de l'énergie calorifique à la cavité, sous forme d'une polarisation électrique. Selon les réalisations cet élément chauffant est, par exemple, une résistance ou un transistor de chauffe.
Le système comprend également un dispositif permettant de réguler cette température. Cet élément de régulation est, par exemple, une diode dont la caractéristique électrique varie en fonction de la température.
Afin que le dispositif de contrôle de température soit efficace il est utile, dans une réalisation, qu'il comprenne un asservissement électronique entre l'élément chauffant et la diode variable.
Le dispositif de contrôle de température est alimenté via une alimentation électrique extérieure. A cet effet, dans une réalisation, le système comprend des connexions métalliques permettant de relier les éléments du dispositif de contrôle à l'alimentation extérieure. Cette alimentation extérieure prend la forme, par exemple, d'une batterie ou d'une ou plusieurs piles. Les différents éléments composant le dispositif de contrôle de température sont des composants électroniques, et ils sont donc sensibles aux conditions environnementales dans lesquelles ils sont placés. Afin d'éviter toute détérioration de ces composants, notamment au cours d'un transport du système, il est utile de prévoir, dans une réalisation, une couche protectrice disposée sur ces différents éléments.
Cette couche de protection des dispositifs électroniques est, dans un mode de réalisation, une couche de passivation, par exemple composée d'oxyde et de nitrure. La seconde condition à remplir pour assurer un maintien en vie des cellules conservées dans le système est que ces cellules soient alimentées en oxygène. A cet effet, dans une réalisation, les cavités destinées à recevoir les cellules sont en contact avec l'air extérieur. La mise en contact est effectuée soit par une ouverture complète des cavités, soit par des orifices pratiqués dans une couche de protection placée sur les cavités.
En ce qui concerne le positionnement des cavités dans le système, plusieurs modes de réalisation sont envisagés, indépendants les uns des autres. Ces différents modes, présentés ci-après, seront ultérieurement détaillés à l'aide de figures.
Le premier mode de réalisation consiste à creuser les cavités dans le matériau semi-conducteur supportant les éléments du dispositif de contrôle de température. Toutefois, les cavités sont creusées sur une autre surface du matériau que celle supportant ces éléments, typiquement sur la face arrière non active.
Ce premier mode de réalisation présente l'avantage de ne pas requérir l'emploi de matériaux autres que le semi-conducteur présent dans le système. En conséquence, la gravure complète des cavités peut être effectuée dans un seul et même équipement de fabrication de composants électroniques à semi-conducteurs.
Dans ce mode de réalisation, les cavités sont directement creusées en profondeur d'une face du matériau semi-conducteur, par exemple du silicium. Or, sur l'autre face, active, se trouvent les éléments formant le dispositif de contrôle de température. Il est donc utile de prévoir des moyens pour garantir que la gravure permettant la création des cavités n'atteigne pas les éléments situés sur l'autre face de la couche de silicium. A cet effet, dans une réalisation, la couche de matériau semi-conducteur comprend une couche d'arrêt de gravure, la gravure étant effectuée par voie électrochimique. En variante, la couche de matériau semi-conducteur comprend une couche isolante de type « silicium sur isolant ». Un deuxième mode de réalisation consiste à creuser les cavités dans un substrat polymère. En effet, un substrat polymère est moins coûteux que du silicium ou autre semi-conducteur, et son utilisation permet ainsi de réaliser des cavités plus profondes, puisqu'elles peuvent être creusées dans une couche plus épaisse que lorsqu'elles sont creusées dans le silicium.
Le substrat polymère utilisé est, par exemple, du poly(diméthylsiloxane), dit PDMS, c'est à dire un polymère dont le squelette moléculaire comporte un enchaînement silicium-oxygène, ainsi que deux groupements méthyle portés par le silicium tétravalent.
Ce substrat polymère est déposé sur la face active du matériau semi-conducteur, le silicium. Ce silicium sert alors de support mécanique aux cavités, puisqu'il forme le fond des cavités, et il permet également le contrôle en température.
Un troisième mode de réalisation, enfin, consiste à creuser les cavités sur la face inactive du silicium, comme dans le premier mode décrit, et à en augmenter la profondeur en ajoutant, sur cette face inactive, un substrat polymère, similaire à celui utilisé dans le deuxième mode de réalisation.
En variante de ce troisième mode de réalisation, on utilise, à la place du substrat polymère, une plaque de verre.
Le substrat polymère et/ou la plaque de verre sont ajourés au niveau des cavités creusées dans le silicium, formant ainsi des parois permettant d'augmenter la profondeur des cavités.
Ces différents modes de réalisation vont maintenant être détaillés à l'aide des figures 1 et 2, les descriptions étant effectuées à titre non limitatif.
La figure 1 représente une mise en œuvre du premier mode de réalisation. Dans cet exemple, le système de culture de cellules biologiques est réalisé à partir d'un substrat 1 en silicium monocristallin.
Sur une face active de la couche 1 de silicium, on réalise un élément chauffant 2, sous forme d'une résistance ou d'un transistor, ainsi qu'un élément de régulation et/ou contrôle de la température, sous forme d'une diode variable 3. Ces composants électroniques sont réalisés de la façon suivante :
- tout d'abord, on définit sur la surface de silicium des zones destinées à être actives, et des zones destinées à être des zones d'isolation entre les composants,
- ensuite on procède au dopage des zones actives, et à l'activation des dopants,
- puis on réalise des connexions métalliques 5, destinées à permettre l'alimentation des composants via l'utilisation d'une alimentation électrique extérieure, et
- enfin, on dépose une couche de protection 7, pour isoler les composants électroniques de l'extérieur.
Les connexions métalliques ont, par exemple, une hauteur de l'ordre de deux micromètres. Dans une variante, ces connexions métalliques peuvent atteindre une épaisseur inférieure à un micromètre.
Dans cette réalisation, ainsi que mentionnée précédemment, les cavités 4 sont creusées sur la surface arrière de la couche 1 de silicium monocristallin.
A cet effet, on utilise un masque spécifique appliqué sur la face arrière de silicium, ce masque étant ajouré au niveau des zones devant être creusées pour la formation de cavités. Un tel masque, sous forme d'une matrice, permet de réaliser plusieurs cavités à l'intérieur du silicium. La profondeur des cavités ainsi creusées varie généralement entre 250 et 600 micromètres.
L'épaisseur non creusée du substrat, c'est à dire la couche se situant entre le fond des cavités et la surface active du silicium, est par exemple de l'ordre d'une dizaine de micromètres. Le creusement des cavités est, par exemple, effectué par gravure électrochimique. Dans certaines réalisations, une couche d'arrêt 6 de gravure électrochimique est située à l'intérieur du substrat de silicium de manière à fixer le fond des cavités creusées. On utilise, par exemple, une couche d'oxyde isolante, formant alors, avec le substrat de silicium, un assemblage de type silicium sur isolant.
Une telle couche d'oxyde, dans une structure silicium sur isolant, sépare le silicium passif, utilisé pour la tenue mécanique de l'ensemble, du silicium actif en surface du substrat. Ainsi, au cours d'un procédé de gravure du silicium sur la face arrière, ou inactive, du substrat, l'attaque chimique est naturellement stoppée au niveau de cette couche.
Dans le cadre de ce mode de réalisation, le système pour la culture de cellule est donc créé directement à partir d'une plaque de substrat présentant une structure Silicium sur Isolant.
Le système ainsi créé comprend donc une plaque 1 de silicium, contenant éventuellement une couche isolante, plaque dans laquelle sont creusées des cavités 4, ou puits. Le système comprend également un dispositif de chauffe et de régulation de température installé au fond des puits destinés à recevoir les cellules à cultiver.
Le procédé de fabrication d'un système selon ce premier mode de réalisation est relativement simple, puisque l'ensemble du système est réalisé dans un seul substrat, et ne nécessite donc pas d'assemblage pour la réalisation des cavités.
La figure 2 représente une mise en œuvre avantageuse du deuxième mode de réalisation décrit dans la présente demande. Dans cette deuxième solution, on utilise toujours un substrat
1 de silicium, sur la face active duquel sont implantés un dispositif de chauffage 2 ainsi qu'un dispositif de régulation de température 3. Les caractéristiques et la réalisation de ces éléments sont identiques à celles du premier mode de réalisation, ainsi que décrit à l'aide de la figure 1.
L'objectif de ce deuxième mode de réalisation est de fournir un système de culture disposant de cavités plus profondes que celles décrites précédemment. En effet, il a été mentionné que dans le cadre du premier mode de réalisation, la profondeur des cavités était de l'ordre de 250 à 600 micromètres, ce qui peut s'avérer insuffisant pour le transport et la culture de certaines cellules nécessitant la présence de liquide nutritif. Ce deuxième mode de réalisation peut ainsi être envisagé lorsque l'on souhaite obtenir un système avec des cavités présentant une profondeur de l'ordre du millimètre. En effet, dans le mode de réalisation précédemment décrit, il est difficile d'atteindre de telles dimensions puisque la profondeur de la cavité peut être limitée par l'épaisseur de la couche de passivation déposée, par exemple une couche d'oxyde et de nitrure.
Ainsi, dans ce deuxième mode de réalisation, on a envisagé l'idée de creuser les cavités non pas directement dans le substrat de silicium, mais dans une couche d'un autre matériau déposée sur ce substrat. Le matériau employé est, par exemple, du polymère ou du verre.
Ces matériaux présentent, en outre, l'avantage d'être moins coûteux et plus faciles à creuser que le silicium, facilitant ainsi la réalisation des cavités d'une profondeur de quelques millimètres.
Dans l'exemple décrit ici, le matériau polymère utilisé est du poly (dimethylsilane), dit PDMS, ou un polyimide.
La réalisation du système consiste, dans ce cas, à creuser un film de PDMS de façon à créer une matrice de cavités, puis à déposer ce film sur le substrat de silicium 1.
Dans ce mode de réalisation, le film de PDMS est déposé sur la surface active du silicium, de façon à ce que les fonds des cavités soient relativement proches des éléments de chauffage 2 et de régulation de température 3. En effet, le substrat de silicium, d'une épaisseur de l'ordre de quelques centaines de micromètres, réalise une certaine isolation thermique qui ne permettrait pas un bon chauffage des cavités si ces dernières étaient situées en surface de la face arrière du silicium.
Ainsi que décrit précédemment, il est utile que les composants électroniques de chauffage et de régulation soient isolés de l'extérieur par une couche protectrice 7. Dans le cas présent, cette couche protectrice 7 forme également le fond des cavités, puisque le film de PDMS est entièrement ajouré au niveau de ces cavités.
Ainsi, le substrat de silicium est, dans ce cas, utilisé uniquement en tant que support mécanique des cavités, ainsi qu'en tant que base du système de chauffage et régulation de la température. Dans un troisième mode de réalisation, non montré sur les figures, on utilise un compromis entre les deux modes de réalisation précédemment décrits.
En effet, dans cette solution, les cavités sont creusées sur la face arrière du silicium, et leur profondeur est augmentée à l'aide d'un matériau polymère tel que le PDMS, ou un polyimide, déposé sur les zones non creusées de la face arrière de la couche de silicium, ou encore une plaque de verre collée sur le silicium, ajourée au niveau des cavités.
Ce troisième mode de réalisation trouve une application particulièrement avantageuse dans le cas où l'on souhaite observer les cellules biologiques contenues dans le système, par exemple en utilisant un microscope en transmission.
Pour que les observations effectuées par ce microscope soient correctes et exploitables, il est utile que l'épaisseur du fond des cavités soit faible, par exemple inférieure à une dizaine de micromètres, afin de permettre le passage d'une partie du spectre lumineux à travers le silicium. Ainsi, il est particulièrement utile de pouvoir disposer de cavités profondes, mais ayant un fond de faible épaisseur.
Une solution pour obtenir un tel système consiste donc d'une part à creuser les cavités dans le silicium pour diminuer l'épaisseur de silicium restant, et à augmenter la profondeur de ces cavités en ajoutant, en surface du silicium, une couche de polymère ou d'un autre matériau tel que du verre.
Par ailleurs, il est indispensable, pour la culture des cellules, qu'elles puissent être oxygénées. Cet apport en oxygène est rendu possible grâce au fait que les cavités sont ouvertes vers l'extérieur.
En outre, dans une réalisation avantageuse, afin d'éviter l'évaporation des micro liquides, les cavités sont fermées par un film en matériau polymère tel que du PDMS, qui permet de protéger les cellules tout en étant perméable à l'oxygène.
L'utilisation de silicium dans l'invention permet d'allier des éléments de microtechnologie et de microélectronique sur un même support. Ainsi, il est possible de réduire considérablement les volumes de culture mis en jeu en réduisant la taille des cavités.
Ainsi, par exemple, dans un système selon l'invention, un supporte d'une dimension de 76 millimètres sur 25 millimètres peut comporter entre 700 et 1400 microcavités, ayant un volume de 0.15 à 0.5 microlitres, et également un système de chauffe et de contrôle de température.
Ainsi, l'invention permet de fournir un système permettant, par rapport aux systèmes existants, d'augmenter le nombre de cultures différentes par unité de surface, de gagner en encombrement et donc en facilité de transport, et de diminuer les volumes de solution biologique mis en jeu.

Claims

REVENDICATIONS
1. Système pour la culture de cellules biologiques, comprenant une ou plusieurs cavités (4), destinées à recevoir les cellules biologiques, creusées dans une plaque de substrat (1), et caractérisé en ce qu'il comprend un dispositif électronique de contrôle de la température des cavités, ce dispositif comprenant :
- un élément chauffant (2) et
- un élément de régulation de température (3), ces deux éléments étant réalisés sur une surface active d'une couche de silicium, à proximité des cavités (4).
2. Système selon la revendication 1, caractérisé en ce que l'élément chauffant (2) est une résistance et/ou un transistor.
3. Système selon la revendication 1 ou 2, caractérisé en ce que l'élément de régulation (3) de température est une diode variable.
4. Système selon l'une des revendications précédentes, caractérisé en ce que le dispositif de contrôle de température comprend en outre un asservissement entre l'élément de chauffage (2) et l'élément de régulation de température (3).
5. Système selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre des connexions métalliques
(5) permettant de relier les éléments du dispositif de contrôle de température à une alimentation électrique extérieure.
6. Système selon l'une des revendications précédentes, caractérisé en ce qu'il comprend, en outre, une couche protectrice (7) déposée sur les éléments du dispositif de contrôle de température.
7. Système selon l'une des revendications précédentes, caractérisé en ce que les cavités (4) destinées à recevoir les cellules biologiques sont en contact avec l'air extérieur, pour permettre un apport en oxygène aux cellules.
8. Système selon l'une des revendications précédentes, caractérisé en ce que les cavités sont creusées sur une surface de la couche de silicium autre que celle supportant les éléments du dispositif de contrôle de température.
9. Système selon la revendication 8, caractérisé en ce qu'il comprend, à l'intérieur de la couche de silicium, une couche d'arrêt de gravure (6), par exemple une couche isolante.
10. Système selon l'une des revendications 1 à 7, caractérisé en ce que les cavités sont creusés dans un substrat polymère.
11. Système selon la revendication 10, caractérisé en ce que le substrat polymère est déposé sur la surface active de la couche de silicium.
12. Système selon la revendication 10, caractérisé en ce que le substrat polymère est déposé sur une surface de la couche de silicium ne comportant pas le dispositif de contrôle de la température.
PCT/FR2008/050904 2007-05-25 2008-05-26 Systeme de culture de cellules biologiques WO2008149039A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0755278A FR2916451A1 (fr) 2007-05-25 2007-05-25 Systeme de culture de cellules biologiques
FR0755278 2007-05-25

Publications (2)

Publication Number Publication Date
WO2008149039A2 true WO2008149039A2 (fr) 2008-12-11
WO2008149039A3 WO2008149039A3 (fr) 2009-04-02

Family

ID=38826416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050904 WO2008149039A2 (fr) 2007-05-25 2008-05-26 Systeme de culture de cellules biologiques

Country Status (2)

Country Link
FR (1) FR2916451A1 (fr)
WO (1) WO2008149039A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11661574B2 (en) * 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11667874B2 (en) 2014-10-29 2023-06-06 Corning Incorporated Perfusion bioreactor platform
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11970682B2 (en) 2017-07-14 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3941168A1 (de) * 1988-12-13 1990-06-21 Interconnection B V Geheizte mikrotiterplatte
US20020070208A1 (en) * 2000-12-12 2002-06-13 3-Dimensional Pharmaceuticals, Inc. Microtiter plate with integral heater
US20050176155A1 (en) * 2004-02-11 2005-08-11 Gener8, Inc. Well plate reactor
WO2005097325A1 (fr) * 2004-03-16 2005-10-20 Aic Dispositif autonome a regulation thermique active

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3941168A1 (de) * 1988-12-13 1990-06-21 Interconnection B V Geheizte mikrotiterplatte
US20020070208A1 (en) * 2000-12-12 2002-06-13 3-Dimensional Pharmaceuticals, Inc. Microtiter plate with integral heater
US20050176155A1 (en) * 2004-02-11 2005-08-11 Gener8, Inc. Well plate reactor
WO2005097325A1 (fr) * 2004-03-16 2005-10-20 Aic Dispositif autonome a regulation thermique active

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US11667874B2 (en) 2014-10-29 2023-06-06 Corning Incorporated Perfusion bioreactor platform
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11970682B2 (en) 2017-07-14 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11661574B2 (en) * 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface

Also Published As

Publication number Publication date
FR2916451A1 (fr) 2008-11-28
WO2008149039A3 (fr) 2009-04-02

Similar Documents

Publication Publication Date Title
WO2008149039A2 (fr) Systeme de culture de cellules biologiques
US8405047B2 (en) Specimen box for electron microscope
EP1860722B1 (fr) Micro-composant integre associant les fonctions de recuperation et de stockage de l'energie
FR2893750A1 (fr) Procede de fabrication d'un dispositif electronique flexible du type ecran comportant une pluralite de composants en couches minces.
Rowland et al. Exciton fate in semiconductor nanocrystals at elevated temperatures: hole trapping outcompetes exciton deactivation
JP2002100789A (ja) 太陽電池の製造方法
Yu et al. Waterproof cesium lead bromide perovskite lasers and their applications in solution
FR2953328B1 (fr) Heterostructure pour composants electroniques de puissance, composants optoelectroniques ou photovoltaiques
EP0994503A1 (fr) Structure comportant une couche mince de matériau composée de zones conductrices et de zones isolantes et procédé de fabrication d'une telle structure
EP2926388B1 (fr) Dispositif organique électronique ou optoélectronique laminé
EP3668963A1 (fr) Reacteur a dispositif d'eclairage et de chauffage integre
EP1238435A1 (fr) Support intermediaire aspirant et son utilisation pour realiser une structure en couche mince
EP3120171A1 (fr) Dispositif optique a membrane deformable a temps de reponse reduit
EP3029513B1 (fr) Procede de fabrication d'un guide d'onde incluant une jonction semiconductrice
EP1220346A1 (fr) Element de base composite et son joint pour pile à combustible et procédé de fabrication de l'ensemble
EP3260511A1 (fr) Procede de collage reversible entre deux elements
EP2063986A1 (fr) Composants fluidiques double-face
FR3024591A1 (fr) Procede de fabrication d’un panneau photovoltaique
EP3587343A1 (fr) Procede de realisation d'un dispositif au moins partiellement transparent integrant une structure de type condensateur
Wang et al. Ultrahigh-Quality Ge-on-Glass with a 3.7% Uniaxial Tensile Strain
FR3119706A1 (fr) Capteur de données physiques
Garcia et al. OLED luminaires: device arrays with 99.6% geometric fill factor structured by femtosecond laser ablation
EP2165381A1 (fr) Substrat poreux etanche pour piles a combustible planaires et packaging integre
EP3922709A1 (fr) Boîte de culture
FR3065073A1 (fr) Calorimetre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805848

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08805848

Country of ref document: EP

Kind code of ref document: A2