WO2008141687A2 - Lagenverbund zur verwendung in einem luftfilter - Google Patents

Lagenverbund zur verwendung in einem luftfilter Download PDF

Info

Publication number
WO2008141687A2
WO2008141687A2 PCT/EP2008/002005 EP2008002005W WO2008141687A2 WO 2008141687 A2 WO2008141687 A2 WO 2008141687A2 EP 2008002005 W EP2008002005 W EP 2008002005W WO 2008141687 A2 WO2008141687 A2 WO 2008141687A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
anströmlage
layer composite
composite according
continuous filaments
Prior art date
Application number
PCT/EP2008/002005
Other languages
English (en)
French (fr)
Other versions
WO2008141687A3 (de
Inventor
Heiko Manstein
Robert Groten
Anthony Hollingsworth
Ingrid Ewald
Joachim Hendler
Klaus Veeser
Original Assignee
Carl Freudenberg Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg Kg filed Critical Carl Freudenberg Kg
Priority to CN200880016801XA priority Critical patent/CN101678254B/zh
Priority to US12/598,088 priority patent/US9180394B2/en
Publication of WO2008141687A2 publication Critical patent/WO2008141687A2/de
Publication of WO2008141687A3 publication Critical patent/WO2008141687A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/11Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0663The layers being joined by hydro-entangling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/10Multiple layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249922Embodying intertwined or helical component[s]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • Y10T442/611Cross-sectional configuration of strand or fiber material is other than circular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/66Additional nonwoven fabric is a spun-bonded fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/66Additional nonwoven fabric is a spun-bonded fabric
    • Y10T442/663Hydroentangled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/689Hydroentangled nonwoven fabric

Definitions

  • the invention relates to a layer composite for use in an air filter, comprising at least one Anströmlage and associated with this support layer, wherein the Anströmlage is made of nonwoven fabric and has a finer porosity than the support layer.
  • Bag filter systems are used. Bag filter systems are often used to clean dusty gases in power plants.
  • a bag filter system several filter bags are arranged.
  • the filter bags are mounted on a support body, which is located on the clean gas side. When flowing through the filter bags from the raw gas side to the clean gas side, dust is retained on the raw gas side of the filter bag. The cleaned gas passes through the filter hose to the clean gas side.
  • Nonwovens made of staple fibers are known as fibrous webs.
  • a staple fiber nonwoven fabric is often thermally bonded to the support layer and made into a laminate. This measure is necessary in order to give the layer composite a sufficient pressure shocks against stability. It should be prevented that the Anströmlage detached from the support layer.
  • the resulting layer composite is on the one hand brittle and not very flexible due to the thermal consolidation and on the other hand only in a complex manner to manufacture.
  • layer composites which consist of one support layer and two
  • Staple fiber nonwovens exist. In these staple fiber nonwovens are connected to the support layer and each other by mechanical needling.
  • the composite layer has production-related penetration points that increase the permeability to dust particles. It is also disadvantageous that only relatively coarse fibers with a fineness which permits carding of the fibers can be used to produce such a layer composite. Presentation of the invention
  • the invention is therefore based on the object, a composite layer for use in an air filter, in particular in a filter hose of the type mentioned in such a way and further, that a stable connection of Anströmlage with the support layer at low cost production can be realized.
  • a layer composite for use in an air filter in particular in a filter hose of the type mentioned, characterized in that the Anströmlage is configured as a spunbonded fabric whose Endlosfilêt are at least partially entwined or interwoven with the support layer.
  • a flow-through layer of spun-bonded nonwoven fabric can be produced in a continuous extrusion process.
  • continuous filaments are produced which can be at least partially entangled or interwoven with a support layer by introducing the continuous filaments into the support layer with water jets.
  • the design of the Anströmlage as spunbonded fabric allows a continuous production of the layer composite.
  • endless filaments allow a particularly strong composite of Anströmlage with the support layer.
  • any woven fabric, knitted fabric or any textile lattice structure whose porosity is greater than the porosity of the inflow layer can be used as the support layer.
  • the design of the Anströmlage spunbonded fabric allows adjustment of the Porosity of the Anströmlage depending on the requirements.
  • the porosity of the Anströmlage can be adjusted so that as many small pores are present, the distribution curve of the pore diameter is extremely narrow. Consequently, the object mentioned above is achieved.
  • fine porosity means a pore structure which is characterized by very small pore diameters, where as many pores as possible have similar pore diameters and thus show a narrow distribution curve.
  • a Anströmlage shows a finer porosity than a support layer when the average pore diameter of the Anströmlage is less than the average pore diameter of the support layer.
  • the distribution curve of the pore diameter of the Anströmlage is very narrow compared to that of the support layer.
  • the average pore diameter of the support layer is at least twice as large as the average pore diameter of the Anströmlage.
  • the support layer could be configured as a spunbonded fabric whose
  • Endlosfilrait have average diameter, which are greater than the average diameter of the Anströmlage.
  • a particularly strong composite of the Anströmlage can be realized with the support layer, since endless filaments can easily devour each other.
  • both the support layer and the Anströmlage be continuously manufactured in an extrusion spinning process and devoured by water jets together. Due to the waterjet treatment, particularly fine continuous filaments can be homogeneously interwoven with the supporting layer without creating channels, as they occur in a mechanical needle technology.
  • the Anströmlage could endless filaments with an average diameter of 0.3 to 10 microns, preferably ⁇ 7 microns, include.
  • the selection of filaments from the range 0.3 to 10 microns has proved to be particularly advantageous to impart a fine porosity to the Anströmlage.
  • an effective dust separation is realized.
  • a particularly good particulate matter separation can be achieved if the average diameter of the continuous filaments of the Anströmlage is less than 7 microns.
  • the layer composite could have a basis weight of at most 500 g / m 2 , preferably at most 300 g / m 2 .
  • a basis weight has proven to be advantageous in order to prevent mechanical clogging of the layer composite by embedded dust.
  • the amount of raw materials needed for the production of a composite layer can be reduced.
  • the Anströmlage has a basis weight of 20 to 100 g / m 2 .
  • a composite layer can be produced with very low raw material use, which shows a high separation efficiency.
  • the support layer could comprise continuous filaments with a linear density greater than 3 dtex, preferably greater than 5 dtex.
  • a sufficiently coarse-pored support layer is created, which allows non-separated particles to pass through the Anströmlage without clogging.
  • endless filaments of this titer a sufficiently stable support layer can be built up, which is a Anströmlage safely support particularly low basis weight and low stability and can bind even at higher pressure surges.
  • the endless filaments of the Anströmlage could split fibers, namely as at least partially isolated from each other of components of
  • endless filaments are formed as components of bicomponent endless filaments which are at least partially isolated from one another.
  • Bicomponent endless filaments are readily available commercially. Concretely, it is conceivable against this background that the bicomponent endless filaments are designed as pie-continuous filaments or island-in-the-sea continuous filaments. Bikomponentenendlosfilêt of the type mentioned are easily split by water jets. As a result, a plurality of very thin continuous filaments can be produced from originally relatively thick filaments.
  • the continuous filaments are produced by mechanical, thermal or chemical treatment
  • the continuous filaments could be formed from the multicomponent continuous filaments by a water jet treatment.
  • a water jet treatment originally relatively thick continuous filaments gently and almost non-destructively split into very fine continuous filaments.
  • the water jet treatment also advantageously realizes that no channels are formed through which dust particles can pass.
  • the filaments could have a triangular cross-section.
  • Such continuous filaments could be split by water jet treatment from a pie endless filament.
  • Endless filaments of triangular cross-section show a 1.75 times larger surface area than a round filament continuous filament. In this way, a Anströmlage can be made, which forms a very large surface and thus a large adhesion surface.
  • the continuous filaments could form a surface formed by mechanical or thermal bonding of at least a portion of the continuous filaments.
  • a surface can be created that is smooth and resistant to abrasion. Such a surface further exhibits anti-adhesive properties and facilitates the detachment of a dust cake from a filter bag made from a laminate of the type described herein.
  • the support layer binding fibers could be present in addition to the structure-forming continuous filaments, which have a lower melting point than the continuous filaments of the support layer.
  • the structure-forming endless filaments of the support layer give them their structure and porosity.
  • the binder fibers could preferably be formed as core-sheath fibers or side-by-side fibers that form a bond with the continuous filaments under the action of heat.
  • a stable support layer can be made.
  • the entire support layer consists exclusively of bicomponent endless filaments, the low-melting Component that makes the bond between the continuous filaments.
  • no bond fiber-free regions are formed, so that a particularly stable support layer of uniform construction can be realized.
  • the choice of basis weight of the support layer is made according to the mechanical requirements of the layer composite. The arrangement coarser
  • Endless filaments to a relatively open-pored nonwoven fabric structure prevents fine dust from settling in the support layer and clogging the support layer. This would involve a high increase in the pressure difference between the raw gas side and the clean gas side.
  • the layer composite could have a three-layer structure, wherein the third layer is formed analogously to the Anströmlage.
  • the support layer is made of Scrim. Scrim is characterized by great stability and can be easily swallowed up with endless filaments by water jets.
  • nanofibers are understood as meaning fibers having an average diameter of 50 to 300 nm.
  • Microfibers are fibers whose titer is ⁇ 1 dtex. Due to this specific embodiment, the filter efficiency can be further increased with insignificant increase in the pressure difference between the raw gas side and clean gas side. A poorly stable nano or microfiber layer could be protected by a coarse fiber cover layer.
  • the layer of nano- or microfibers of the support layer is connected downstream.
  • the support layer is sandwiched between the third layer of nano- or microfibers and the Anströmlage positioned.
  • the spunbonded nonwovens from the polymers polyester, polyamide, polyamide 6, polyamide 6.6, polyethylene syndiotactic polystyrene and / or mixtures of these polymers.
  • the layer composites described here can meet the mechanical and filter technology requirements in an air filter system or a filter hose with a basis weight of ⁇ 300 g / m 2 .
  • the standard needled nonwovens weights > 500 g / m 2 and must be reinforced to improve their mechanical stability with woven or knitted fabrics.
  • in a one-step process from a Polymer Granules Continuous filaments spun and deposited into a nonwoven fabric and solidified.
  • the layer composites described here or processes for producing the layer composites are particularly suitable for producing thin, stiff and thus plissiable filter media which have a low basis weight, a small thickness, and a higher stiffness than needle nonwoven fabrics.
  • Fig. 1 is a scanning electron microscope (SEM) recording a layer composite, in which both the Anströmlage and the
  • Support layer are made of a spunbonded fabric
  • Fig. 2 is a SEM image of a three-layer composite layer of a
  • Anströmlage a support layer and a third layer, which is made analogous to Anströmlage, and
  • Fig. 3 is a SEM image of a three-layer composite layer of a Anströmlage, a support layer of scrim and a third layer, which is made analogously to Anströmlage.
  • the Anströmlage 1 shows a scanning electron micrograph of a layer composite for use in an air filter, in particular in a filter tube, with a flow-on layer 1 of nonwoven fabric.
  • the Anströmlage 1 has a finer porosity than the support layer 2.
  • the Anströmlage 1 is designed as a spunbonded fabric whose Endlosfilêt 3 are at least partially entwined or interwoven with the support layer 2.
  • the support layer 2 is designed as a spunbonded non-woven fabric whose endless filaments 4 have average diameters which are larger than the average diameter of the endless filaments 3 of FIG Anströmlage 1.
  • the continuous filaments 3 of the Anströmlage 1 are entwined with the support layer 2 by a water jet treatment.
  • Both the Anströmlage 1 and the support layer 2 are made of a spunbonded nonwoven, which was prepared in an extrusion spinning process.
  • the Anströmlage 1 has endless filaments 3 with an average diameter of 0.3 to 10 microns.
  • the layer composite according to FIG. 1 shows a basis weight of 272 g / m 2 . Furthermore, it shows a maximum tensile force in the longitudinal direction of 936 N / 50mm.
  • the layer composite shows a maximum tensile force in the transverse direction of 754 N / 50mm.
  • the layer composite according to FIG. 1 is 1, 06 mm thick and shows at 200 Pa an air permeability of 292 m 3 / m 2 h.
  • the stated values were determined according to the DIN standards (test specifications) according to the table and can be taken from them.
  • the layer composite according to FIG. 1 is designated in the table as a two-layered Evolon medium.
  • the support layer 2 has endless filaments 4 with a titer greater than 3 dtex.
  • the filaments 3 are formed as at least partially isolated from each other components of bicomponent filaments.
  • the endless filaments 3 are formed by a water jet treatment of the bicomponent endless filaments. Pieced endless filaments were used as bicomponent endless filaments.
  • the Anströmlage 1 has a finer porosity than the support layer 2.
  • the Anströmlage 1 is designed as a spunbonded fabric whose Endlosfilêt 3 are at least partially entwined or interwoven with the support layer 2.
  • the support layer 2 is designed as a spunbonded fabric whose endless filaments 4 have average diameters which are larger than the average diameters
  • the continuous filaments 3 of the Anströmlage 1 and the layer 1a are entwined with the support layer 2 by a water jet treatment.
  • the Anströmlage 1, the layer 1a and the support layer 2 are made of a spunbonded nonwoven, which was prepared in an extrusion spinning process.
  • the table shows the thickness, grammage and air permeability of the three-ply laminate.
  • the layer composite according to FIG. 2 is designated in the table as a three-layered Evolon medium.
  • the layer composite according to FIG. 2 has a basis weight of 269 g / m 2 .
  • the basis weight was measured according to DIN EN 29073-01.
  • This layer composite furthermore has an air permeability at 200 Pa of 353 m 3 / m 2 h. This air permeability was measured according to DIN EN ISO 9237.
  • the thickness of the layer composite according to FIG. 2 is 1.03 mm.
  • the layer composite according to FIG. 2 shows a maximum tensile force in the longitudinal direction of 796 N / 50 mm. It shows a maximum tensile force in the transverse direction of 622 N / 50mm. The maximum tensile forces were determined in accordance with DIN EN 29073-3.
  • Fig. 3 shows a composite layer of a Anströmlage 1 and a support layer 2, which is designed as a scrim.
  • the support layer 2 is followed by another layer 1a, which is made analogously to the Anströmlage 1.
  • the Anströmlage 1 according to FIG. 3 corresponds in its construction to the Anströmlagen 1 described in Fig. 1 and Fig. 2.
  • the table also shows the data of a needle felt.
  • This has a basis weight of 500 g / m 2 and consists of two fiber layers, which include a multifilament grid of a basis weight of 100 g / m 2 .
  • the multifilament lattice has a porosity of 80% in accordance with DIN 53855.
  • the fibers of the two fiber layers have a titer of 1, 5 to 3 dtex.
  • the test dust microcalcilin was used to measure residual pressure losses (static pressure losses according to the table) and dust concentrations on the clean gas side. The values of the residual pressure losses and dust concentrations in the clean gas were measured after 30 filtration cycles, which are shown in the table.
  • a cycle time corresponds to the time it takes to add a layer composite with dust in such a way that a static final pressure drop of 1000 Pa is achieved.
  • the three-layered Evolon medium requires 729 seconds to go from a residual pressure drop of 153 Pa to the final static pressure drop of 1000 Pa.
  • Layer composites cause significantly lower dust concentrations in the clean gas than the composite layer, which was pulled up for comparison.
  • the layer composites according to the invention are far below the detection limit with respect to the dust concentration in the clean gas.
  • the layer composites according to the invention with an insignificantly lower maximum tensile force in the longitudinal direction and in the transverse direction, produce a significantly lower dust concentration in the clean gas than the composite layer which was used for comparison.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)

Abstract

Ein Lagenverbund zur Verwendung in einem Luftfilter, umfassend zumindest eine Anströmlage (1) und r eine mit dieser verbundene Stützlage (2), wobei die Anströmlage (1) aus Vliesstoff gefertigt ist und eine feinere Porosität aufweist als die Stützlage (2), ist im Hinblick auf die Aufgabe, einen Lagenverbund zur Verwendung in einem Luftfilter, insbesondere in einem Filterschlauch, derart auszugestalten und weiterzubilden, dass eine stabile Verbindung der Anströmlage mit der Stützlage bei kostengünstiger Herstellung realisierbar ist, dadurch gekennzeichnet, dass die Anströmlage (1) als Spinnvliesstoff ausgestaltet ist, dessen Endlosfilamente (3) mit der Stützlage (2) zumindest teilweise verschlungen oder verwoben sind.

Description

Anmelderin: Carl Freudenberg KG, 69469 Weinheim
Lagenverbund zur Verwendung in einem Luftfilter
Beschreibung
Technisches Gebiet
Die Erfindung betrifft einen Lagenverbund zur Verwendung in einem Luftfilter, umfassend zumindest eine Anströmlage und eine mit dieser verbundene Stützlage, wobei die Anströmlage aus Vliesstoff gefertigt ist und eine feinere Porosität aufweist als die Stützlage.
Stand der Technik
Derartige Lagenverbünde kommen in Filterschläuchen und
Schlauchfilteranlagen zum Einsatz. Schlauchfilteranlagen werden häufig zur Reinigung von staubhaltigen Gasen in Kraftwerken eingesetzt. In einer Schlauchfilteranlage sind mehrere Filterschläuche angeordnet. Dabei sind die Filterschläuche auf einen Stützkörper aufgespannt, der sich auf der Reingasseite befindet. Beim Durchströmen der Filterschläuche von der Rohgasseite zur Reingasseite wird Staub auf der Rohgasseite des Filterschlauchs zurückgehalten. Das gereinigte Gas gelangt durch den Filterschlauch auf die Reingasseite.
BESTATIGUNGSKOPIE Derartige Filterschläuche sind nach einer gewissen Betriebsdauer durch einen Staubkuchen zugesetzt. Der Staubkuchen befindet sich auf der der Rohgasseite des Filterschlauchs zugewandten Seite. Die Filterschläuche können dann durch Druckstöße aus der Reingasseite abgereinigt werden. Durch diese Druckstöße löst sich der an den Filterschläuchen anhaftende Filterkuchen und fällt in einen Staubsammelbehälter auf der Rohgasseite.
Es ist bekannt, auf einer Stützlage einen Faserflor als Anströmlage abzulegen. Als Faserflore sind Vliesstoffe aus Stapelfasern bekannt. Ein Vliesstoff aus Stapelfasern wird häufig mit der Stützlage thermisch verbunden und zu einem Laminat verarbeitet. Diese Maßnahme ist notwendig, um dem Lagenverbund eine gegen Druckstöße hinreichende Stabilität zu verleihen. Es soll verhindert werden, dass sich die Anströmlage von der Stützlage ablöst.
Dabei ist nachteilig, dass der entstehende Lagenverbund durch die thermische Verfestigung einerseits spröde und wenig beweglich und andererseits nur in aufwändiger Weise zu fertigen ist.
Zur Fertigung von Filterschläuchen werden des Weiteren häufig Lagenverbünde gewählt, die aus einer Stützlage und zwei
Stapelfaservliesstoffen bestehen. Bei diesen sind die Stapelfaservliesstoffe mit der Stützlage und untereinander durch mechanisches Vernadeln verbunden.
Dabei ist nachteilig, dass der Lagenverbund herstellungsbedingt Penetrationsstellen aufweist, die die Durchlässigkeit für Staubpartikel erhöhen. Nachteilig ist auch, dass zur Fertigung eines solchen Lagenverbunds nur relativ grobe Fasern mit einer Feinheit verwendet werden können, die eine Kardierung der Fasern zulässt. Darstellung der Erfindung
Der Erfindung liegt daher die Aufgabe zugrunde, einen Lagenverbund zur Verwendung in einem Luftfilter, insbesondere in einem Filterschlauch, der eingangs genannten Art derart auszugestalten und weiterzubilden, dass eine stabile Verbindung der Anströmlage mit der Stützlage bei kostengünstiger Herstellung realisierbar ist.
Erfindungsgemäß wird die voranstehende Aufgabe mit den Merkmalen des Patentanspruchs 1 gelöst.
Danach ist ein Lagenverbund zur Verwendung in einem Luftfilter, insbesondere in einem Filterschlauch, der eingangs genannten Art, dadurch gekennzeichnet, dass die Anströmlage als Spinnvliesstoff ausgestaltet ist, dessen Endlosfilamente mit der Stützlage zumindest teilweise verschlungen oder verwoben sind.
Erfindungsgemäß ist erkannt worden, dass eine Anströmlage aus Spinnvliesstoff in einem kontinuierlichen Extrusionsverfahren herstellbar ist. Bei diesem Extrusionsverfahren entstehen Endlosfilamente, die mit einer Stützlage zumindest teilweise verschlungen oder verwoben werden können, indem die Endlosfilamente mit Wasserstrahlen in die Stützlage eingebracht werden. Erfindungsgemäß ist insbesondere erkannt worden, dass die Ausgestaltung der Anströmlage als Spinnvliesstoff eine kontinuierliche Fertigung des Lagenverbunds erlaubt. Des Weiteren ist erkannt worden, dass insbesondere Endlosfilamente einen besonders festen Verbund der Anströmlage mit der Stützlage ermöglichen. Schließlich ist erkannt worden, dass als Stützlage jegliches Gewebe, Gewirk oder jegliche textile Gitterstruktur verwendet werden kann, deren Porosität größer ist als die Porosität der Anströmlage. Die Ausgestaltung der Anströmlage aus Spinnvliesstoff erlaubt eine Einstellung der Porosität der Anströmlage je nach Anforderungsprofil. Dabei kann die Porosität der Anströmlage derart eingestellt werden, dass möglichst viele kleine Poren vorliegen, wobei die Verteilungskurve der Porendurchmesser äußerst eng ist. Folglich ist die eingangs genannte Aufgabe gelöst.
Unter feiner Porosität im Sinne dieser Anmeldung wird eine Porenstruktur verstanden, die durch sehr geringe Porendurchmesser gekennzeichnet ist, wobei möglichst viele Poren ähnliche Porendurchmesser aufweisen und dadurch eine enge Verteilungskurve zeigen. Dabei zeigt eine Anströmlage dann eine feinere Porosität als eine Stützlage, wenn der mittlere Porendurchmesser der Anströmlage geringer ist als der mittlere Porendurchmesser der Stützlage. Bevorzugt ist die Verteilungskurve der Porendurchmesser der Anströmlage sehr eng im Vergleich zu der der Stützlage. Bevorzugt ist der mittlere Porendurchmesser der Stützlage mindestens doppelt so groß wie der mittlere Porendurchmesser der Anströmlage. Durch einen solchen Lagenverbund kann eine effektive Staubabscheidung realisiert werden, ohne dass die Stützlage durch Partikel zugesetzt wird, die nicht an der Anströmlage abgeschieden wurden.
Die Stützlage könnte als Spinnvliesstoff ausgestaltet sein, dessen
Endlosfilamente mittlere Durchmesser aufweisen, die größer sind als die mittleren Durchmesser der Anströmlage. Durch diese konkrete Ausgestaltung kann ein besonders fester Verbund der Anströmlage mit der Stützlage realisiert werden, da sich Endlosfilamente problemlos untereinander verschlingen lassen. Vor diesem Hintergrund ist konkret denkbar, dass sowohl die Stützlage als auch die Anströmlage in einem Extrusionsspinnverfahren kontinuierlich gefertigt und durch Wasserstrahlen miteinander verschlungen werden. Durch die Wasserstrahlbehandlung können besonders feine Endlosfilamente homogen mit der Stützlage verwoben werden, ohne dass Kanäle entstehen, wie sie bei einer mechanischen Nadeltechnik auftreten. Die Anströmlage könnte Endlosfilamente mit einem mittleren Durchmesser von 0,3 bis 10 μm, vorzugsweise < 7 μm, umfassen. Die Auswahl der Endlosfilamente aus dem Bereich 0,3 bis 10 μm hat sich als besonders vorteilhaft erwiesen, um der Anströmlage eine feine Porosität zu verleihen. Durch die Auswahl der Endlosfilamente aus diesem Durchmesserbereich wird eine effektive Staubabscheidung realisiert. Insbesondere ist erkannt worden, dass eine besonders gute Feinstaubabscheidung erzielt werden kann, wenn der mittlere Durchmesser der Endlosfilamente der Anströmlage kleiner als 7 μm ist.
Der Lagenverbund könnte ein Flächengewicht von höchstens 500 g/m2, bevorzugt höchstens 300 g/m2 aufweisen. Ein solches Flächengewicht hat sich als vorteilhaft erwiesen, um ein mechanisches Verstopfen des Lagenverbunds durch eingelagerten Staub zu verhindern. Des Weiteren kann durch ein solches Flächengewicht die Menge der Rohstoffe reduziert werden, die für die Fertigung eines Lagenverbunds nötig ist.
Vor diesem Hintergrund ist denkbar, dass die Anströmlage ein Flächengewicht von 20 bis 100 g/m2 aufweist. Durch diese konkrete Ausgestaltung kann ein Lagenverbund mit besonders geringem Rohstoffeinsatz produziert werden, der eine hohe Abscheideleistung zeigt.
Die Stützlage könnte Endlosfilamente mit einem Titer größer 3 dtex, bevorzugt größer 5 dtex, umfassen. Durch die Auswahl des Titers der Endlosfilamente aus diesem Bereich wird eine hinreichend grobporige Stützlage geschaffen, die von der Anströmlage nicht abgeschiedene Partikel hindurch lässt, ohne zu verstopfen. Des Weiteren kann mit Endlosfilamenten dieses Titers eine hinreichend stabile Stützlage aufgebaut werden, welche eine Anströmlage besonders geringen Flächengewichts und geringer Stabilität sicher abstützen und auch bei höheren Druckstößen an sich binden kann.
Die Endlosfilamente der Anströmlage könnten als Splitfasern, nämlich als zumindest teilweise isoliert voneinander vorliegende Bestandteile von
Mehrkomponentenendlosfilamenten ausgebildet sein. Durch diese konkrete
Ausgestaltung ist es möglich, durch Wasserstrahlvernadelung bzw.
Wasserstrahlbehandlung Endlosfilamente der Anströmlage aufzusplitten bzw. aufzuspalten und deren Durchmesser zu verringern. In einem Schritt können einerseits die Endlosfilamente der Anströmlage aufgespalten und zugleich mit der Stützlage verwoben werden.
Vor diesem Hintergrund ist denkbar, dass die Endlosfilamente als zumindest teilweise isoliert voneinander vorliegende Bestandteile von Bikomponentenendlosfilamenten ausgebildet sind.
Bikomponentenendlosfilamente sind kommerziell leicht verfügbar. Ganz konkret ist vor diesem Hintergrund denkbar, dass die Bikomponentenendlosfilamente als Pie-Endlosfilamente oder Island-in-the-sea-Endlosfilamente ausgebildet sind. Bikomponentenendlosfilamente der genannten Art sind durch Wasserstrahlen problemlos aufsplittbar. Hierdurch kann aus ursprünglich relativ dicken Endlosfilamenten eine Vielzahl von sehr dünnen Endlosfilamenten gefertigt werden.
Vor diesem Hintergrund ist denkbar, dass die Endlosfilamente durch mechanische, thermische oder chemische Behandlung aus
Mehrkomponentenendlosfilamenten herausgebildet oder herausgeteilt sind.
Die Endlosfilamente könnten durch eine Wasserstrahlbehandlung aus den Mehrkomponentenendlosfilamenten herausgebildet sein. Durch die Wasserstrahlbehandlung können ursprünglich relativ dicke Endlosfilamente schonend und nahezu zerstörungsfrei in sehr feine Endlosfilamente aufgespalten werden. Hierdurch kann ein Spinnvliesstoff sehr feiner Porosität gefertigt werden. Die Wasserstrahlbehandlung realisiert des Weiteren vorteilhaft, dass keine Kanäle entstehen, durch die Staubpartikel hindurchtreten können.
Die Endlosfilamente könnten einen dreieckigen Querschnitt aufweisen. Derartige Endlosfilamente könnten durch Wasserstrahlbehandlung aus einem Pie-Endlosfilament aufgesplittet sein. Endlosfilamente eines dreieckigen Querschnitts zeigen eine 1 ,75 mal größere Oberfläche als ein Endlosfilament mit rundem Querschnitt. Hierdurch kann eine Anströmlage gefertigt werden, die eine sehr große Oberfläche und damit eine große Adhäsionsfläche ausbildet.
Die Endlosfilamente könnten eine Oberfläche ausbilden, die durch mechanische oder thermische Verbindung zumindest eines Teils der Endlosfilamente entsteht. Durch diese konkrete Ausgestaltung kann eine Oberfläche geschaffen werden, die glatt und abriebbeständig ist. Eine solche Oberfläche zeigt des Weiteren anti-adhäsive Eigenschaften und erleichtert das Ablösen eines Staubkuchens von einem Filterschlauch, der aus einem Lagenverbund der hier beschriebenen Art gefertigt ist.
In der Stützlage könnten neben den strukturbildenden Endlosfilamenten Bindefasern vorliegen, die einen geringeren Schmelzpunkt aufweisen als die Endlosfilamente der Stützlage. Die strukturbildenden Endlosfilamente der Stützlage geben dieser ihre Struktur und Porosität. Die Bindefasern könnten vorzugsweise als Kern-Mantel-Fasern oder Side-by-side-Fasem ausgebildet sein, die unter Einwirkung von Hitze mit den Endlosfilamenten eine Verbindung eingehen. Durch diese konkrete Ausgestaltung kann eine stabile Stützlage gefertigt werden. Denkbar ist auch, dass die gesamte Stützlage ausschließlich aus Bikomponentenendlosfilamenten besteht, wobei die niedrigschmelzendere Komponente die Bindung zwischen den Endlosfilamenten herstellt. Vorteilhaft entstehen hierbei keine bindefaserfreien Bereiche, so dass eine besonders stabile Stützlage einheitlichen Aufbaus realisierbar ist. Die Wahl des Flächengewichts der Stützlage erfolgt gemäß den mechanischen Anforderungen an den Lagenverbund. Die Anordnung gröberer
Endlosfilamente zu einer relativ offenporigen Vliesstoffstruktur verhindert, dass sich in der Stützlage feiner Staub ablagert und die Stützlage verstopft. Hiermit wäre ein hoher Anstieg der Druckdifferenz zwischen Rohgasseite und Reingasseite verbunden.
Der Lagenverbund könnte einen dreilagigen Aufbau aufweisen, wobei die dritte Lage analog zur Anströmlage ausgebildet ist. Hierdurch kann eine besonders hohe Filtereffizienz erzielt werden. Vor diesem Hintergrund ist denkbar, dass die Stützlage aus Scrim gefertigt ist. Scrim zeichnet sich durch eine große Stabilität aus und kann problemlos mit Endlosfilamenten durch Wasserstrahlen verschlungen werden.
Eine dritte Lage aus Nano- oder Mikrofasern könnte auf der Anströmlage positioniert sein. Im Sinne dieser Anmeldung werden unter Nanofasern Fasern mit einem mittleren Durchmesser von 50 bis 300 nm verstanden. Unter
Mikrofasern werden Fasern verstanden, deren Titer < 1 dtex ist. Durch diese konkrete Ausgestaltung kann die Filtereffizienz bei unerheblichem Anstieg der Druckdifferenz zwischen Rohgasseite und Reingasseite weiter gesteigert werden. Eine wenig stabile Nano- oder Mikrofaserlage könnte durch eine grobfasrige Abdecklage geschützt werden.
Vor diesem Hintergrund ist auch denkbar, dass die Lage aus Nano- oder Mikrofasern der Stützlage nachgeschaltet ist. In diesem konkreten Fall ist die Stützlage sandwichartig zwischen der dritten Lage aus Nano- oder Mikrofasern und der Anströmlage positioniert. Es ist denkbar, auf einer Spinnvliesstoffanlage mit mehreren Düsenreihen aus einem Teil der Düsenreihen grobe Bikomponentenendlosfilamente des Kern- Manteltyps zu spinnen, die im fertigen Lagenverbund als Stützlage fungieren. Mit den restlichen Düsenreihen können Pie-Endlosfilamente hergestellt werden, wobei die Anströmlage und Stützlage durch Wasserstrahlen miteinander verbunden werden. Des Weiteren werden durch das Wasserstrahlvernadeln die Pie-Endlosfilamente der Anströmlage in einzelne Endlosfilamente aufgesplittet bzw. aufgespalten.
Für die Herstellung der Pie-Endlosfilamente bzw. Orange-Endlosfilamente oder Island-in-the-sea-Endlosfilamente der Anströmlage werden Polymere verwendet, die ein leichtes Aufspalten der genannten Endlosfilamente ermöglichen. Für die Fertigung der Endlosfilamente der Stützlage werden vorzugsweise Polymere verwendet, die eine gute Bindung der Endlosfilamente untereinander bewirken. Des Weiteren soll die Stützlage eine hohe Porosität mit relativ groben Poren zeigen. Vorzugsweise werden hierfür Kern-Mantel- Endlosfilamente verwendet.
Vor diesem Hintergrund ist konkret denkbar, die Spinnvliesstoffe aus den Polymeren Polyester, Polyamid, Polyamid 6, Polyamid 6.6, Polyethylen syndiotaktisches Polystyrol und/oder Mischungen aus diesen Polymeren zu fertigen.
Die hier beschriebenen Lagenverbünde können die mechanischen und filtertechnischen Anforderungen in einer Luftfilteranlage bzw. einem Filterschlauch mit einem Flächengewicht von < 300 g/m2 erfüllen. Dagegen weisen die Standard-Nadelvliesstoffe Gewichte > 500 g/m2 auf und müssen zur Verbesserung ihrer mechanischen Stabilität mit Geweben oder Gewirken verstärkt werden. Vorteilhaft können in einem einstufigen Prozess aus einem Polymergranulat Endlosfilamente gesponnen und zu einem Vliesstoff abgelegt sowie verfestigt werden.
Vor diesem Hintergrund ist denkbar, den Lagenverbund oleophob auszurüsten. Hierbei ist keine nachträgliche Imprägnierung notwendig, da Additive zur Oleophobisierung bereits bei der Endlosfilamenterzeugung in einen Extruder eingegeben werden können. Das Gleiche gilt für eine hydrophobe Ausrüstung. Auch bei einer Färbung ist keine nachträgliche Färbung nötig, da Pigmente bereits bei der Endlosfilamenterzeugung in einen Extruder eingebracht werden können.
Konkret ist auch denkbar, einen zweilagigen Lagenverbund in einem einstufigen Prozess mit progressivem Aufbau sowohl in der Anströmlage als auch in der Stützlage herzustellen. Dabei wird unter progressivem Aufbau die Ausbildung eines Gradienten in Bezug auf Endlosfilamentdicke, Dichte oder Porosität verstanden.
Die hier beschriebenen Lagenverbünde bzw. Verfahren zur Herstellung der Lagenverbünde sind besonders geeignet, um dünne, steife und damit plissierfähige Filtermedien herzustellen, die ein geringes Flächengewicht, eine geringe Dicke, höhere Steifigkeit als Nadelvliesstoffe zeigen.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung auf vorteilhafte Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die nachgeordneten Ansprüche, andererseits auf die nachfolgende Erläuterung bevorzugter Ausführungsbeispiele der Erfindung anhand der Zeichnung sowie der Tabelle zu verweisen. In Verbindung mit der Erläuterung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Zeichnung und der Tabelle werden auch im Allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert.
Kurzbeschreibung der Zeichnung
In der Zeichnung zeigen
Fig. 1 eine Rasterelektronenmikroskop(REM)-Aufnahme eines Lagenverbunds, bei dem sowohl die Anströmlage als auch die
Stützlage aus einem Spinnvliesstoff gefertigt sind,
Fig. 2 eine REM-Aufnahme eines dreilagigen Lagenverbunds aus einer
Anströmlage, einer Stützlage und einer dritten Lage, die analog zur Anströmlage gefertigt ist, und
Fig. 3 eine REM-Aufnahme eines dreilagigen Lagenverbundes aus einer Anströmlage, einer Stützlage aus Scrim und einer dritten Lage, die analog zur Anströmlage gefertigt ist.
Ausführung der Erfindung
Fig. 1 zeigt eine Rasterelektronenmikroskop-Aufnahme eines Lagenverbunds zur Verwendung in einem Luftfilter, insbesondere in einem Filterschlauch, mit einer Anströmlage 1 aus Vliesstoff. Die Anströmlage 1 weist eine feinere Porosität auf als die Stützlage 2. Die Anströmlage 1 ist als Spinnvliesstoff ausgestaltet, dessen Endlosfilamente 3 mit der Stützlage 2 zumindest teilweise verschlungen oder verwoben sind. Die Stützlage 2 ist als Spinnvliesstoff ausgestaltet, dessen Endlosfilamente 4 mittlere Durchmesser aufweisen, die größer sind als die mittleren Durchmesser der Endlosfilamente 3 der Anströmlage 1. Die Endlosfilamente 3 der Anströmlage 1 sind mit der Stützlage 2 durch eine Wasserstrahlbehandlung verschlungen. Sowohl die Anströmlage 1 als auch die Stützlage 2 sind aus einem Spinnvliesstoff gefertigt, der in einem Extrusionsspinnverfahren hergestellt wurde.
Die Anströmlage 1 weist Endlosfilamente 3 mit einem mittleren Durchmesser von 0,3 bis 10 μm auf. Der Lagenverbund gemäß Fig. 1 zeigt ein Flächengewicht von 272 g/m2. Des Weiteren zeigt er eine Höchstzugkraft in Längsrichtung von 936 N/50mm. Der Lagenverbund zeigt eine Höchstzugkraft in Querrichtung von 754 N/50mm. Der Lagenverbund gemäß Fig. 1 ist 1 ,06 mm dick und zeigt bei 200 Pa eine Luftdurchlässigkeit von 292 m3/m2h. Die genannten Werte wurden nach den DIN - Normen (Prüfvorschriften) gemäß der Tabelle bestimmt und können dieser entnommen werden. Der Lagenverbund gemäß Fig. 1 ist in der Tabelle als zweilagiges Evolon Medium bezeichnet.
Die Stützlage 2 weist Endlosfilamente 4 mit einem Titer größer 3 dtex auf. Die Endlosfilamente 3 sind als zumindest teilweise isoliert voneinander vorliegende Bestandteile von Bikomponentenendlosfilamenten ausgebildet. Die Endlosfilamente 3 sind durch eine Wasserstrahlbehandlung aus den Bikomponentenendlosfilamenten herausgebildet. Als Bikomponentenendlosfilamente wurden Pie-Endlosfilamente verwendet.
Fig. 2 zeigt einen Lagenverbund mit einer Anströmlage 1 , einer Stützlage 2 und einer weiteren Lage 1a, welche analog zur Anströmlage 1 gefertigt ist. Die Anströmlage 1 weist eine feinere Porosität auf als die Stützlage 2. Die Anströmlage 1 ist als Spinnvliesstoff ausgestaltet, dessen Endlosfilamente 3 mit der Stützlage 2 zumindest teilweise verschlungen oder verwoben sind. Die Stützlage 2 ist als Spinnvliesstoff ausgestaltet, dessen Endlosfilamente 4 mittlere Durchmesser aufweisen, die größer sind als die mittleren Durchmesser der Endlosfilamente 3 der Anströmlage 1. Die Endlosfilamente 3 der Anströmlage 1 und der Lage 1a sind mit der Stützlage 2 durch eine Wasserstrahlbehandlung verschlungen. Die Anströmlage 1 , die Lage 1a und die Stützlage 2 sind aus einem Spinnvliesstoff gefertigt, der in einem Extrusionsspinnverfahren hergestellt wurde. Der Tabelle können die Dicke, das Flächengewicht und die Luftdurchlässigkeit des dreilagigen Lagenverbunds entnommen werden. Der Lagenverbund gemäß Fig. 2 ist in der Tabelle als dreilagiges Evolon Medium bezeichnet.
Der Lagenverbund gemäß Fig. 2 weist ein Flächengewicht von 269 g/m2 auf. Das Flächengewicht wurde nach DIN EN 29073-01 gemessen. Dieser Lagenverbund weist des Weiteren eine Luftdurchlässigkeit bei 200 Pa von 353 m3/m2h auf. Diese Luftdurchlässigkeit wurde nach DIN EN ISO 9237 gemessen. Die Dicke des Lagenverbunds gemäß Fig. 2 beträgt 1 ,03 mm. Der Lagenverbund gemäß Fig. 2 zeigt eine Höchstzugkraft in Längsrichtung von 796 N/50mm. Er zeigt eine Höchstzugkraft in Querrichtung von 622 N/50mm. Die Höchstzugkräfte wurden nach DIN EN 29073-3 ermittelt.
Fig. 3 zeigt einen Lagenverbund aus einer Anströmlage 1 und einer Stützlage 2, die als Scrim ausgestaltet ist. An die Stützlage 2 schließt sich eine weitere Lage 1a an, die analog zur Anströmlage 1 gefertigt ist. Die Anströmlage 1 gemäß Fig. 3 entspricht in ihrem Aufbau den in Fig. 1 und Fig. 2 beschriebenen Anströmlagen 1.
Die Tabelle zeigt des Weiteren die Daten eines Nadelfilzes. Dieser weist ein Flächengewicht von 500 g/m2 auf und besteht aus zwei Faserschichten, die ein Multifilamentgitter eines Flächengewichtes von 100 g/m2 einschließen. Das Multifilamentgitter weist eine Porosität von 80 % auf gemäß DIN 53855. Die Fasern der zwei Faserschichten weisen einen Titer von 1 ,5 bis 3 dtex auf. In Anlehnung an die Norm VDI 3926, Ausgabe Oktober 2004, wurden mit dem Teststaub Mikrocalcilin Restdruckverluste (statische Druckverluste gemäß Tabelle) und Staubkonzentrationen auf der Reingasseite gemessen. Dabei wurden die Werte der Restdruckverluste und Staubkonzentrationen im Reingas nach 30 Filtrationszyklen gemessen, die in der Tabelle dargestellt sind.
Es wurden zwei Versuchsreihen gefahren, nämlich vor und nach Alterung der Lagenverbünde. Dabei entspricht eine Zykluszeit der Zeit, die benötigt wird, um einen Lagenverbund derart mit Staub zuzusetzen, dass ein statischer Enddruckverlust von 1000 Pa erreicht wird. Gemäß der Tabelle benötigt beispielsweise das dreilagige Evolon Medium 729 s, um von einem Restdruckverlust von 153 Pa zum statischen Enddruckverlust von 1000 Pa zu gelangen.
Der Tabelle kann man entnehmen, dass die erfindungsgemäßen
Lagenverbünde deutlich geringere Staubkonzentrationen im Reingas bewirken als der Lagenverbund, der zum Vergleich heran gezogen wurde. Insbesondere nach Alterung der Lagenverbünde liegen die erfindungsgemäßen Lagenverbünde weit unter der Nachweisgrenze in Bezug auf die Staubkonzentration im Reingas. Im Ergebnis kann der Tabelle entnommen werden, dass die erfindungsgemäßen Lagenverbünde bei einer unwesentlich geringeren Höchstzugkraft in Längsrichtung und in Querrichtung eine bedeutend niedrigere Staubkonzentration im Reingas bewirken als der Lagenverbund, der zum Vergleich herangezogen wurde. Diese nachgewiesene Stabilität der erfindungsgemäßen Lagenverbünde bei effizienter Filterleistung und kontinuierlicher Herstellbarkeit dokumentiert ihre Eignung als Filtermedium für Luftfilteranwendungen, insbesondere für Filterschläuche. Hinsichtlich weiterer vorteilhafter Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Lehre wird einerseits auf den allgemeinen Teil der Beschreibung und andererseits auf die Patentansprüche verwiesen.
Abschließend sei ganz besonders hervorgehoben, dass die zuvor rein willkürlich gewählten Ausführungsbeispiele lediglich zur Erörterung der erfindungsgemäßen Lehre dienen, diese jedoch nicht auf diese Ausführungsbeispiele einschränken.
Allgemeine Angaben vor Versuch
Prüfvorschrift DIN EN DIN EN ISO DIN EN ISO DIN EN DIN EN Prüfung: in Anlehnung an VDi 3926, Ausgabe Oktober 2004, mit Teststaub Mikrocaldlin 29073-01 9237 9073-2 29073/3 29073/3
Vor Alterung Nach Alterung'
Resultate nach 30 Filtrationszyklen Resultate nach 30 Filtrationszyklen
Gewicht LuftdurchDicke HöchstHöchstZykluszeit Statischer StaubkonZykluszeit Statischer Staubkonlässigkeit zugkraft, längs zugkraft, quer Druckverlust zentration im Druckveriust zentration im [200Pa] Reingas Reingas
Filtermedium g/m2 mVh mm N/50mm N/50mm S Pa mg/m3 S Pa mg/m3
500 g/m2 Nadelfilz (10Og Gelege) 484 383 1,80 1000 800 499 71 0,583 391 233 0,011 Wagiges Evolon Medium 269 353 1,03 796 622 729 153 0,089 607 361 0,000* 2-lagigesEvolon Medium 272 292 1,06 936 754 567 194 0,030 406 492 0,000*
'unter Nachweisgrenze
Tabelle

Claims

Patentansprüche
1. Lagenverbund zur Verwendung in einem Luftfilter, umfassend zumindest eine Anströmlage (1) und eine mit dieser verbundene Stützlage (2), wobei die Anströmlage (1) aus Vliesstoff gefertigt ist und eine feinere
Porosität aufweist als die Stützlage (2), dadurch gekennzeichnet, dass die Anströmlage (1) als Spinnvliesstoff ausgestaltet ist, dessen Endlosfilamente (3) mit der Stützlage (2) zumindest teilweise verschlungen oder verwoben sind.
2. Lagenverbund nach Anspruch 1 , dadurch gekennzeichnet, dass die Stützlage (2) als Spinnvliesstoff ausgestaltet ist, dessen Endlosfilamente (4) mittlere Durchmesser aufweisen, die größer sind als die mittleren Durchmesser der Endlosfilamente (3) der Anströmlage (1).
3. Lagenverbund nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Endlosfilamente (3) der Anströmlage (1) mit der Stützlage (2) durch eine Wasserstrahlbehandlung verschlungen sind.
4. Lagenverbund nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Anströmlage (1) Endlosfilamente (3) mit einem mittleren Durchmesser von 0,3 bis 10 μm, vorzugsweise kleiner 7 μm aufweist.
5. Lagenverbund nach einem der Ansprüche 1 bis 4, gekennzeichnet, durch ein Flächengewicht von höchstens 500 g/m2, bevorzugt höchstens 300 g/m2.
6. Lagenverbund nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Anströmlage (1) ein Flächengewicht von 20 bis 100 g/m2 aufweist.
7. Lagenverbund nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Stützlage (2) Endlosfilamente (4) mit einem Titer größer 3 dtex, bevorzugt größer 5 dtex aufweist.
8. Lagenverbund nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Endlosfilamente (3) als Splitfasern, nämlich als zumindest teilweise isoliert voneinander vorliegende Bestandteile von Mehrkomponentenendlosfilamenten ausgebildet sind.
9. Lagenverbund nach Anspruch 8, dadurch gekennzeichnet, dass die Endlosfilamente (3) als zumindest teilweise isoliert voneinander vorliegende Bestandteile von Bikomponentenendlosfilamenten ausgebildet sind.
10. Lagenverbund nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Endlosfilamente (3) durch mechanische, thermische oder chemische
Behandlung aus Mehrkomponentenendlosfilamenten herausgebildet oder herausgeteilt sind.
11. Lagenverbund nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Endlosfilamente (3) durch eine
Wasserstrahlbehandlung aus den Mehrkomponentenendlosfilamenten herausgebildet sind.
12. Lagenverbund nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Endlosfilamente (3) einen dreieckigen Querschnitt aufweisen.
13. Lagenverbund nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Endlosfilamente (3) eine Oberfläche ausbilden, die durch mechanische oder thermische Verbindung zumindest eines Teils der Endlosfilamente (3) entsteht.
14. Lagenverbund nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass in der Stützlage (2) neben den Endlosfilamenten (4) Bindefasern vorliegen, die einen geringeren Schmelzpunkt aufweisen als die Endlosfilamente (4) der Stützlage (2).
15. Lagenverbund nach einem der Ansprüche 1 bis 14, gekennzeichnet durch einen dreilagigen Aufbau, wobei die dritte Lage (1a) analog zur Anströmlage (1) ausgebildet ist.
16. Lagenverbund nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass eine dritte Lage aus Nano- oder Mikrofasern auf der Anströmlage (1) positioniert ist.
PCT/EP2008/002005 2007-05-21 2008-03-13 Lagenverbund zur verwendung in einem luftfilter WO2008141687A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200880016801XA CN101678254B (zh) 2007-05-21 2008-03-13 在空气过滤器中应用的多层复合物
US12/598,088 US9180394B2 (en) 2007-05-21 2008-03-13 Multi-layer composite for use in an air filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710023806 DE102007023806A1 (de) 2007-05-21 2007-05-21 Lagenverbund zur Verwendung in einem Luftfilter
DE102007023806.3 2007-05-21

Publications (2)

Publication Number Publication Date
WO2008141687A2 true WO2008141687A2 (de) 2008-11-27
WO2008141687A3 WO2008141687A3 (de) 2009-05-14

Family

ID=39877027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/002005 WO2008141687A2 (de) 2007-05-21 2008-03-13 Lagenverbund zur verwendung in einem luftfilter

Country Status (4)

Country Link
US (1) US9180394B2 (de)
CN (1) CN101678254B (de)
DE (1) DE102007023806A1 (de)
WO (1) WO2008141687A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20100068A1 (it) * 2010-01-21 2011-07-22 Marco Maranghi Processo per preparare un tessuto non-tessuto avente una superficie rivestita con microfibra e tessuto ottenibile con detto processo
WO2015124335A1 (de) * 2014-02-21 2015-08-27 Carl Freudenberg Kg Reinigungstuch
WO2015124334A1 (de) * 2014-02-21 2015-08-27 Carl Freudenberg Kg Mikrofaser-verbundvliesstoff
US11346499B1 (en) 2021-06-01 2022-05-31 Helicoid Industries Inc. Containers and methods for protecting pressure vessels
US11376812B2 (en) 2020-02-11 2022-07-05 Helicoid Industries Inc. Shock and impact resistant structures
US11852297B2 (en) 2021-06-01 2023-12-26 Helicoid Industries Inc. Containers and methods for protecting pressure vessels
US11952103B2 (en) 2022-06-27 2024-04-09 Helicoid Industries Inc. High impact-resistant, reinforced fiber for leading edge protection of aerodynamic structures

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005026156A1 (de) * 2005-06-06 2006-12-28 Carl Freudenberg Kg Filterschlauch
DE102006014236A1 (de) 2006-03-28 2007-10-04 Irema-Filter Gmbh Plissierbares Vliesmaterial und Verfahren und Vorrichtung zur Herstellung derselben
DE102009032778B4 (de) * 2009-07-10 2019-03-28 Carl Freudenberg Kg Verwendung einer Filterpatrone mit einem Filtermedium aus gesplitteten Fasern
DE102010052155A1 (de) * 2010-11-22 2012-05-24 Irema-Filter Gmbh Luftfiltermedium mit zwei Wirkmechanismen
CA2817897C (en) 2010-12-08 2019-04-02 E. I. Du Pont De Nemours And Company Improved media for hot gas filtration
CN103046231A (zh) * 2012-06-22 2013-04-17 浙江朝晖过滤技术股份有限公司 熔纺非织造材料及其生产方法及其应用
DE102012215877B4 (de) 2012-09-07 2022-01-13 Mahle International Gmbh Filterelement
DE102013003755A1 (de) * 2013-03-06 2014-09-11 Carl Freudenberg Kg Belüftungseinsatz
DE102013008402A1 (de) 2013-05-16 2014-11-20 Irema-Filter Gmbh Faservlies und Verfahren zur Herstellung desselben
ES2609483T3 (es) * 2013-08-09 2017-04-20 Eurofilters N.V. Bolsa de filtro para una aspiradora, así como procedimiento para la determinación de una superficie de una bolsa de filtro de aspiradora en la que incide directamente el flujo de aire
CN103768861A (zh) * 2014-01-26 2014-05-07 苏州新区枫桥净化设备厂 一种合成纸滤棉
US10300420B2 (en) * 2014-12-19 2019-05-28 The Procter & Gamble Company Method of filtering particulates from the air using a composite filter substrate comprising a mixture of fibers
US20160175751A1 (en) * 2014-12-19 2016-06-23 The Procter & Gamble Company Composite filter substrate comprising a mixture of fibers
DE102015002672A1 (de) * 2015-03-03 2016-09-08 Mann + Hummel Gmbh Filtermedium und Filterelement mit einem Filtermedium
DE102015010966A1 (de) * 2015-08-26 2017-03-02 Carl Freudenberg Kg Reinigungstextil
KR102618766B1 (ko) * 2016-05-13 2023-12-28 도날드슨 컴파니, 인코포레이티드 필터 매체, 요소, 및 방법
EP3601656B1 (de) 2017-03-28 2023-06-28 MANN+HUMMEL GmbH Spinnvliesmaterial, gegenstand umfassend ein spinnvliesmaterial, filtermedium, filterelement und deren verwendung
DE102017002957A1 (de) 2017-03-28 2018-10-04 Mann+Hummel Gmbh Spinnvliesstoff, Filtermedium, Filterelement und deren Verwendung und Filteranordnung
CN108749219A (zh) * 2018-08-02 2018-11-06 江苏金由新材料有限公司 一种用于空气过滤器上的多层复合滤材
DE102022116641A1 (de) 2022-07-04 2024-01-04 Hochschule Niederrhein, Körperschaft des öffentlichen Rechts Verfahren zur oberflächenkatalytischen Ausrüstung von Polymerfasern und/oder Polymerflächengebilden sowie die Verwendung solcher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333228A2 (de) * 1988-03-18 1989-09-20 Kimberly-Clark Corporation Nichtgewebtes, faseriges, nichtelastisches Material und Verfahren zu dessen Herstellung
DE19843000A1 (de) * 1998-09-21 2000-04-06 Freudenberg Carl Fa Luftfilter
WO2001049914A1 (en) * 2000-01-06 2001-07-12 Ahlstrom Dexter Llc Composite nonwoven fabric and process for its manufacture
US6903034B1 (en) * 1999-04-07 2005-06-07 Polymer Group, Inc. Hydroentanglement of continuous polymer filaments

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523995A (en) * 1981-10-19 1985-06-18 Pall Corporation Charge-modified microfiber filter sheets
US4714647A (en) * 1986-05-02 1987-12-22 Kimberly-Clark Corporation Melt-blown material with depth fiber size gradient
DE3812849C3 (de) * 1988-04-18 1996-03-21 Gessner & Co Gmbh Staubfilterbeutel, dessen Herstellung und Verwendung
DE3940264A1 (de) * 1989-12-06 1991-06-13 Hoechst Ag Zwei- oder mehrschichtiges vliesstoffmaterial, insbesondere mit langzeitfiltereigenschaften, sowie verfahren zu seiner herstellung
JPH07144109A (ja) * 1993-11-25 1995-06-06 Tonen Chem Corp フィルター用不織布及びその製造方法
DE4410110C2 (de) * 1994-03-24 1998-12-24 Inst Luft & Kaeltetechnik Ggmbh Verfahren zur Herstellung eines Filtermaterials
US5609947A (en) * 1995-09-27 1997-03-11 Tonen Chemical Corporation Laminated non-woven fabric filtering medium and method for producing same
US6171684B1 (en) * 1995-11-17 2001-01-09 Donaldson Company, Inc. Filter material construction and method
US5721180A (en) * 1995-12-22 1998-02-24 Pike; Richard Daniel Laminate filter media
US6183670B1 (en) * 1997-09-23 2001-02-06 Leonard Torobin Method and apparatus for producing high efficiency fibrous media incorporating discontinuous sub-micron diameter fibers, and web media formed thereby
DE19919809C2 (de) * 1999-04-30 2003-02-06 Fibermark Gessner Gmbh & Co Staubfilterbeutel, enthaltend Nanofaservlies
JP3774114B2 (ja) * 1999-11-02 2006-05-10 大和紡績株式会社 分割型複合繊維、その製造方法およびそれを用いた極細繊維不織布
AU2003297599A1 (en) * 2002-12-02 2004-06-23 Reemay, Inc. Multilayer nonwovens incorporating differential cross-sections
US7008465B2 (en) * 2003-06-19 2006-03-07 Donaldson Company, Inc. Cleanable high efficiency filter media structure and applications for use
DE20321162U1 (de) * 2003-10-23 2006-05-11 Bwf Tec Gmbh & Co. Kg Filtermaterial
DE102004036099B4 (de) * 2004-07-24 2008-03-27 Carl Freudenberg Kg Mehrkomponenten-Spinnvliesstoff, Verfahren zu seiner Herstellung sowie Verwendung der Mehrkomponenten-Spinnvliesstoffe
US7883772B2 (en) * 2005-06-24 2011-02-08 North Carolina State University High strength, durable fabrics produced by fibrillating multilobal fibers
US7757811B2 (en) * 2005-10-19 2010-07-20 3M Innovative Properties Company Multilayer articles having acoustical absorbance properties and methods of making and using the same
DE202005019004U1 (de) 2005-12-06 2007-04-19 Melitta Haushaltsprodukte Gmbh & Co. Kg Filtermaterial und Staubsaugerbeutel
US20070207317A1 (en) * 2006-03-01 2007-09-06 Fiber Innovation Technology, Inc. Splittable multicomponent fiber with high temperature, corrosion resistant polymer
US7902096B2 (en) * 2006-07-31 2011-03-08 3M Innovative Properties Company Monocomponent monolayer meltblown web and meltblowing apparatus
US8343250B2 (en) * 2007-05-02 2013-01-01 E I Du Pont De Nemours And Company Bag house filters and media

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0333228A2 (de) * 1988-03-18 1989-09-20 Kimberly-Clark Corporation Nichtgewebtes, faseriges, nichtelastisches Material und Verfahren zu dessen Herstellung
DE19843000A1 (de) * 1998-09-21 2000-04-06 Freudenberg Carl Fa Luftfilter
US6903034B1 (en) * 1999-04-07 2005-06-07 Polymer Group, Inc. Hydroentanglement of continuous polymer filaments
WO2001049914A1 (en) * 2000-01-06 2001-07-12 Ahlstrom Dexter Llc Composite nonwoven fabric and process for its manufacture

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20100068A1 (it) * 2010-01-21 2011-07-22 Marco Maranghi Processo per preparare un tessuto non-tessuto avente una superficie rivestita con microfibra e tessuto ottenibile con detto processo
EP2348146A1 (de) * 2010-01-21 2011-07-27 Marco Maranghi Verfahren zur Herstellung eines Mikrofasern enthaltenden Vliesstoffes
US8584328B2 (en) 2010-01-21 2013-11-19 Marco Maranghi Process for preparing a non-woven fabric having a surface covered with microfiber and fabric obtainable with said process
WO2015124335A1 (de) * 2014-02-21 2015-08-27 Carl Freudenberg Kg Reinigungstuch
WO2015124334A1 (de) * 2014-02-21 2015-08-27 Carl Freudenberg Kg Mikrofaser-verbundvliesstoff
EP3425098A1 (de) * 2014-02-21 2019-01-09 Carl Freudenberg KG Mikrofaser-verbundvliesstoff
US10406565B2 (en) 2014-02-21 2019-09-10 Carl Freudenberg Kg Cleaning cloth
US11376812B2 (en) 2020-02-11 2022-07-05 Helicoid Industries Inc. Shock and impact resistant structures
US11346499B1 (en) 2021-06-01 2022-05-31 Helicoid Industries Inc. Containers and methods for protecting pressure vessels
US11852297B2 (en) 2021-06-01 2023-12-26 Helicoid Industries Inc. Containers and methods for protecting pressure vessels
US11952103B2 (en) 2022-06-27 2024-04-09 Helicoid Industries Inc. High impact-resistant, reinforced fiber for leading edge protection of aerodynamic structures

Also Published As

Publication number Publication date
US9180394B2 (en) 2015-11-10
WO2008141687A3 (de) 2009-05-14
US20100119794A1 (en) 2010-05-13
DE102007023806A1 (de) 2008-11-27
CN101678254A (zh) 2010-03-24
CN101678254B (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
WO2008141687A2 (de) Lagenverbund zur verwendung in einem luftfilter
EP2011556B1 (de) Staubsaugerfilterbeutel
EP2004303B1 (de) Filterbeutel für einen staubsauger
DE102005059214B4 (de) Filterbeutel für einen Staubsauger
EP2340098B1 (de) Filtermedium zur partikelfiltration
EP2011555B2 (de) Staubsaugerfilterbeutel
EP1791617B1 (de) Verfahren zum herstellen einer filterlage sowie filterlage insbesondere für einen staubfilterbeutel eines staubsaugers
EP1362627A1 (de) Mehrlagiger Filteraufbau und Verwendung eines mehrlagigen Filteraufbaus
EP2060311B1 (de) Luftfiltermedium
EP1790406B1 (de) Filterelement und Verfahren zu seiner Herstellung
DE102012010307B4 (de) Mehrlagiges Filtermaterial zur Flüssigkeitsfiltration sowie daraus hergestelltes Filterelement
DE102009050447A1 (de) Filtermaterial
DE102011111738A1 (de) Mehrlagiges Filtermaterial und daraus hergestelltes Filterelement
EP3424700B1 (de) Mikrofaser-verbundvliesstoff
EP2214800A1 (de) Filtermedium
DE10332439B3 (de) Zweilagen-Synthetik Filterelement
DE102008035934A1 (de) Filtermedium
DE102015015777A1 (de) Filtermedium und Filterelement mit einem Filtermedium
DE69927888T2 (de) Filtermedium mit veränderter Filtrations- und Festigkeitscharakteristik
EP1099787B1 (de) Fasermatte
DE102008005794A1 (de) Vorrichtung zum Filtern eines Stoffes und Filtermedium
DE102008014452C5 (de) Filtermedium
EP2006007B1 (de) Luftfilter mit mehrschichtigem Aufbau
EP1179626B1 (de) Filtermedium
DE102020127821A1 (de) Luftfilter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880016801.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12598088

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08716502

Country of ref document: EP

Kind code of ref document: A2