WO2008139574A1 - Crystalline form of lactam compound and process for producing the same - Google Patents

Crystalline form of lactam compound and process for producing the same Download PDF

Info

Publication number
WO2008139574A1
WO2008139574A1 PCT/JP2007/059540 JP2007059540W WO2008139574A1 WO 2008139574 A1 WO2008139574 A1 WO 2008139574A1 JP 2007059540 W JP2007059540 W JP 2007059540W WO 2008139574 A1 WO2008139574 A1 WO 2008139574A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
formula
crystals
powder
crystal according
Prior art date
Application number
PCT/JP2007/059540
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichiro Takahashi
Yukako Sakio
Keiko Hamajima
Tatsuya Ishikawa
Junko Koizumi
Kouji Haga
Haruya Sato
Yuuji Ikegaya
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to PCT/JP2007/059540 priority Critical patent/WO2008139574A1/en
Priority to PCT/JP2008/058038 priority patent/WO2008136394A1/en
Priority to PCT/JP2008/058037 priority patent/WO2008136393A1/en
Priority to PCT/JP2008/058036 priority patent/WO2008136392A1/en
Publication of WO2008139574A1 publication Critical patent/WO2008139574A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the present invention relates to a crystal of a ratata compound excellent in storage stability and the like, a medicament containing the crystal, a method for producing the crystal, and the like.
  • the compound represented by the formula (I) is useful as a pharmaceutical agent such as a therapeutic agent for diabetes.
  • the crystal form of the compound is often preferable to amorphous in terms of characteristics such as storage stability.
  • compounds that are active pharmaceutical ingredients have important properties that are further desired in addition to biological activity, and stable crystal forms can meet these requirements.
  • Important properties include, for example, purity, storage stability (eg to avoid the production of pharmaceutical formulations containing degradation products), stability during the manufacturing process of the pharmaceutical formulation (eg grinding process), final formulation Stability (for example, is important because it affects the shelf life), and low hygroscopicity (for example, high hygroscopicity causes fluctuations in the content of active ingredients per weight).
  • purity e.g to avoid the production of pharmaceutical formulations containing degradation products
  • stability during the manufacturing process of the pharmaceutical formulation eg grinding process
  • final formulation Stability for example, is important because it affects the shelf life
  • low hygroscopicity for example, high hygroscopicity causes fluctuations in the content of active ingredients per weight.
  • purification can be facilitated by recrystallization. Disclosure of the invention
  • the present inventors have succeeded in obtaining a crystal containing a compound represented by the formula (I). Furthermore, the inventors have found that the obtained crystal is excellent in storage stability, and have completed the present invention.
  • the present invention provides crystals of a compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof, a medicament containing the same, a method for producing the same, and the like.
  • the present invention is as follows.
  • a medicament comprising the crystal according to any one of (1) to (1 3) above.
  • a crystal of a compound represented by '1/2 C 6 H 5 OCH 3 A crystal of a compound represented by '1/2 C 6 H 5 OCH 3 .
  • crystallization in any one of said (7)-(13) including the process of adding a poor solvent to the solution containing the compound represented by these.
  • the method for producing a crystal according to any one of the above (7) to (13), the crystal of the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof has high storage stability. Therefore, a drug containing the compound represented by the above formula (I) excellent in stability or a drug substance or standard substance for manufacturing a drug excellent in stability is provided.
  • the type I crystal (described later) of the present invention is an anhydrous crystal, it is very easy to handle, for example, when used as a drug substance or a standard substance for pharmaceutical production.
  • the type I crystal (described later) of the present invention has little change in water content within a certain range of water content, it is very easy to handle, for example, when used as a drug substance in pharmaceutical production.
  • the I-type crystal of the present invention does not change its crystal form even when water is added, it is possible to provide a drug substance suitable for a preparation using water in the production process.
  • FIG. 1 is a diagram showing a powder X-ray diffraction spectrum of an ethyl acetate hydrate crystal obtained in Example 2 and a crystal after desolvating it (measured by apparatus B (described later)).
  • FIG. 2 is a graph showing a powder X-ray diffraction spectrum of the anisosolvate crystal obtained in Example 3 and the crystal after desolvation of the crystal (measured by apparatus B).
  • FIG. 3 is a diagram showing a powder X-ray diffraction spectrum of the benzonitrile hydrate crystal obtained in Example 4 after removing the solvent (measured by apparatus B).
  • FIG. 4 is a diagram showing a powder X-ray diffraction spectrum of the tetrahydrofuran solvate crystal obtained in Example 20 (measured with apparatus A (described later)).
  • FIG. 5 is a diagram showing a powder X-ray diffraction spectrum of the toluene solvate crystal obtained in Example 21 (measured by apparatus A).
  • FIG. 6 shows a powder X-ray spectrum of the type I crystal (measured by apparatus A).
  • FIG. 7 is a diagram showing a differential scanning calorimetry (DSC) chart of the I-type crystal.
  • FIG. 8 is a diagram showing the results of water vapor adsorption / desorption measurement of the type I crystal.
  • FIG. 9 is a diagram showing a powder X-ray diffraction spectrum of a type II crystal (measured by apparatus B).
  • FIG. 10 is a diagram showing a differential scanning calorimetry (DSC) chart of a type II crystal.
  • Fig. 11 shows the powder X-ray diffraction spectrum of I-type crystals measured under vacuum (measured with apparatus B).
  • FIG. 12 is a diagram showing the results of water vapor adsorption / desorption measurement of II type crystals.
  • FIG. 13 is a diagram showing the change over time in the water content of the I-type crystal.
  • the present invention relates to a crystal of a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, a pharmaceutical containing the same, a production method thereof, and the like.
  • a crystal of a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof a pharmaceutical containing the same, a production method thereof, and the like.
  • the first aspect of the present invention relates to a crystal of the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof (sometimes referred to as “the crystal of the present invention”).
  • the present invention also relates to a method for producing the crystal of the present invention.
  • the crystal of the present invention introduces a solution containing a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof (sometimes referred to as “compound of the present invention”) to a supersaturated state, It can be manufactured by analyzing.
  • the compound of the present invention, the crystal of the present invention, and the production method thereof will be described in detail.
  • Formula (I) Is a compound disclosed in US Patent Application Publication No. 2 0 0 4/0 0 4 8 8 4 7, and has excellent sputum transport enhancing action, clot lowering action and the like.
  • the compound represented by the formula (I) may be a pharmaceutically acceptable salt.
  • the pharmaceutically acceptable salt means a salt that can be used as a medicine. However, those which do not take the salt form are preferred.
  • Examples of the salt of the compound represented by the formula (I) include acid addition salts such as inorganic acid salts, organic acid salts, and sulfonic acid salts; Al force metal salts, Al force earth metal salts, metal salts, ammonia salts And base addition salts.
  • Examples of inorganic acid salts include hydrochloride, hydrobromide, sulfate, phosphate, and the like.
  • Examples of the organic acid salt include carbonate, acetate, benzoate, oxalate, maleate, fumarate, tartrate, kenate, and the like.
  • Examples of the sulfonate include methanesulfonate, benzenesulfonate, p-toluenesulfonate, and the like.
  • Examples of alkali metal salts include sodium salts, potassium salts, and lithium salts.
  • Examples of alkaline earth metal salts include calcium salts and magnesium salts.
  • Examples of the metal salt include an aluminum salt.
  • the compound represented by the formula ( ⁇ ) can be produced according to the method disclosed in US Patent Application Publication No. 2 0 0 4/0 0 4 8 8 4 7 or a method analogous thereto. More specifically, it can be produced, for example, according to the method disclosed in Reference Example 1 described later or a method analogous thereto. .
  • the crystal of the compound represented by or a pharmaceutically acceptable salt thereof is a hydrate or a solution. It may be a solvate. Such a hydrate or solvate is also included in the “crystal of the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof”. Examples of the hydrate include a compound represented by the formula (1-2).
  • solvate examples include an ethyl acetate solvate, a carsol solvate, a benzo-tolyl solvate, a tetrahydrofuran solvate, a toluene solvate, and the like, and a compound represented by the formula (I-13) Ethyl acetate solvate), compound represented by formula (I 1-4) (anisolate solvate), compound represented by formula (I 1-5) (benzonitrile solvate), formula (I 1-6) A compound represented by the formula (tetrahydrofuran solvate) and a compound represented by the formula (1-7) (toluene solvate) are preferred.
  • the crystal of the present invention which is a hydrate crystal not only contains moisture as water of crystallization, but can also contain moisture as adhering water due to moisture absorption, for example. Such a water-containing crystal is also included in the crystal of the present invention.
  • the crystal of the present invention which is not a hydrate crystal is, for example, an anhydrous crystal, it can be converted to a water-containing crystal containing water as adhering water due to moisture absorption.
  • a water-containing crystal is also included in the crystal of the present invention.
  • the water content of the crystal of the present invention is not necessarily constant depending on drying conditions, storage conditions, and the like. However, regardless of the water content, all are included in the crystal of the present invention.
  • the water content can be measured in accordance with a known method such as a forceful Fischer method.
  • the crystal of the present invention can be produced, for example, by a method including the following steps.
  • a compound represented by formula (I) or a pharmaceutically acceptable salt thereof is used as an appropriate solvent.
  • the method leads to a supersaturated state and precipitates crystals.
  • the crystals precipitated in step 2 are isolated and dried.
  • Anhydrous crystals can also be produced by desolvating solvate crystals.
  • Solvent removal can be performed by heating, reduced pressure, or the like, but is preferably by heating.
  • the good solvent for the compound represented by the formula (I) or a salt thereof means a solvent that dissolves the compound of the present invention well within the range of room temperature to boiling point.
  • the good solvent preferably includes a solvent having a saturated solubility at room temperature of about 0.1 mg / m or more, and more preferably a solvent of about l mg Zm 1 or more.
  • examples of such a good solvent include methanol, ethanol, propanol, butanol, octanol and the like having 1 to 8 carbon atoms.
  • dimethylenolesulphoxide dimethylenolenolemamide, formamide, benzonitrile, acetonitrile, ethyl acetate, acetone, 2-butanone, tetrahydrofuran, diisopropylamine, dichloromethane, etc., preferably ethanolol, Propanol, butanol, dimethinolesnoreoxide, dimethenolenole amide, formamide or benzonitrile.
  • the poor solvent of the compound represented by the formula (I) or a salt thereof is defined in relation to the good solvent used and can be miscible with the good solvent, but the compound of the present invention is dissolved in comparison with the good solvent. It means a solvent that is difficult to understand.
  • the poor solvent include a solvent in which the saturation solubility of the target compound at room temperature is 1/10 or less of the good solvent, and a solvent in which 1100 or less is more preferable.
  • examples of such a poor solvent include water, ether, isoptinole acetate, butinoreamine, toluene, Examples include anisol, black mouth form, mouth hexane, hexane and the like.
  • the supersaturated state is obtained by, for example, dissolving a compound represented by the formula (I) in a solvent heated (for example, 60 to 90 ° C.) and concentrating as necessary to obtain a saturated solution. This can be achieved by gradually cooling the liquid (eg, from 0 to 30 ° C.).
  • a solvent heated for example, 60 to 90 ° C.
  • concentration may be any concentration that can be brought to a supersaturated state by cooling even if it does not reach a saturated state, but is preferably a saturated state.
  • the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is dissolved in a good solvent to obtain a saturated solution, and the resulting saturated solution is gradually added with a poor solvent to be supersaturated. It can also be in a state.
  • the crystal of the compound represented by formula (I) is an anhydrous crystal of the compound represented by the formula (I).
  • the crystal has an endothermic signal in the range of about 210 to 250 ° C. in the differential scanning calorimetry (DSC), and the endothermic peak temperature is about 228 to 234 ° C.
  • DSC differential scanning calorimetry
  • Such a crystal of a compound represented by the formula (I 1 1) may be referred to as “type I crystal”.
  • Type I crystals are anhydrous crystals, but may contain water as adhering water depending on storage conditions.
  • the amount of water is not always constant depending on drying conditions and storage conditions.
  • the water content of type I crystals is usually in the range of about 0-2.5% at room temperature.
  • Such I-type crystals are included in the crystal represented by the formula (I-1) of the present invention regardless of the amount of water.
  • Type I crystals are, for example, heated compounds represented by formula (I) (for example, about 60 ° C) Dissolved in dichloromethane to obtain a saturated solution, and the obtained saturated solution was gradually cooled.
  • formula (I) for example, about 60 ° C
  • the type I crystal is produced, for example, by removing the solvate crystal of the compound represented by the formula (I) by a method such as heating (for example, 1550-220 ° C). It can also be done.
  • a method such as heating (for example, 1550-220 ° C).
  • the solvate crystal for example, an ethyl acetate solvate crystal, an anisol solvate crystal, a benzo-tolyl solvate crystal and the like can be suitably used.
  • a crystal, a crystal of a compound represented by the formula (1-4), or a crystal of a compound represented by the formula (1-5) is preferable.
  • Solvate crystals can be produced according to the method described below. Examples of the solvent removal method include methods such as heating and reduced pressure, and a method using heating is preferred.
  • the heating temperature is usually about 1550 to 2200 ° C, preferably about 1600 to 1700 ° C.
  • the degree of crystallinity can be increased by a method such as heating (for example, about 2 10 ° C).
  • the type I crystal is obtained by, for example, adding a poor solvent (for example, heptane) to a solution obtained by dissolving the compound represented by the formula (I) in ethanol (preferably a saturated solution) at 30 ° C. or less. It can also be produced by adding crystallization.
  • type I crystals have high storage stability, they can be suitably used, for example, as drugs (for example, sugar transport enhancing agents, hypoglycemic agents, antidiabetic agents, etc.), drug substances, and the like.
  • drugs for example, sugar transport enhancing agents, hypoglycemic agents, antidiabetic agents, etc.
  • drug substances for example, sugar transport enhancing agents, hypoglycemic agents, antidiabetic agents, etc.
  • drug substances for example, sugar transport enhancing agents, hypoglycemic agents, antidiabetic agents, etc.
  • drug substances for example, sugar transport enhancing agents, hypoglycemic agents, antidiabetic agents, etc.
  • the type I crystal can be rapidly transferred to the type I I crystal by adding water, it can also be used for the production of the type I I crystal.
  • the crystal of the compound represented by formula (I) is a hydrate crystal of the compound represented by the formula (I).
  • Diffraction angle (2 0) 1 3.6, 1 6. 1 to 1 6. 2 and 2 7.4 have characteristic peaks (measured using device ⁇ ⁇ described later, hereinafter simply “device ⁇ ” May be indicated).
  • DSC differential scanning calorimetry
  • it has an endothermic signal in the range of about 190 to 240 ° C, and the endothermic peak temperature is about 204 to 210 ° C.
  • Such a crystal of the compound represented by the formula (1-2) may be referred to as “II type crystal”.
  • type I crystals are hydrate crystals, the crystal water is relatively easy to enter and exit, and the value of X in formula (1-2) is not necessarily constant depending on the drying conditions and storage conditions.
  • X is preferably 0.6-1 and more preferably 0.7-0.9.
  • Such a water-containing crystal of type I I crystal is also included in the type I I crystal of the present invention.
  • the water content of type I crystals is usually about 0% to 12%, more preferably about 0 to 7%, and particularly preferably about 3 to 5%.
  • I Type I crystals stabilize at room temperature at a relative humidity of about 40-80% and a moisture content of about 3-5% (ie, X is about 0.6-1).
  • the moisture content of the compound represented by the formula (I 1 2) changes, the relative intensity of the peak in powder X-ray diffraction, the diffraction angle (2 ⁇ ), etc. change continuously. Is reversible. The extent of this change The crystal structure is stable to changes in the amount of water, even though they all show almost the same pattern.
  • the diffraction angle (26) 9.8,13.6, 16.
  • the diffraction angle (2 ⁇ ) 9.7, 1 3. 6, 14. ⁇ , 16. 2, 19. 4, 19. 9, 20. 9. 2
  • Such II type crystals are included in the crystal of the compound represented by the formula (I-2) of the present invention regardless of the amount of water.
  • Type II crystals can be obtained by, for example, heating a compound represented by the formula (I) (eg, about 70 to 80 ° C.) or alcohol having 1 to 8 carbon atoms (eg, ethanol, absolute ethanol, butanol). ) To obtain a saturated solution, and the resulting saturated solution is gradually cooled (for example, to 0 to 30 ° C.) and allowed to stand in the cooled state (for example, 1 to 60 days). it can. After cooling the solution containing the compound represented by the formula (I), a poor solvent may be added.
  • a compound represented by the formula (I) eg, about 70 to 80 ° C.
  • alcohol having 1 to 8 carbon atoms eg, ethanol, absolute ethanol, butanol
  • the I-type crystal can be produced, for example, by dissolving the compound represented by the formula (I) in a good solvent to obtain a saturated solution, and gradually adding a poor solvent to the obtained saturated solution.
  • the solution may be cooled (for example, 0 to 10 ° C.), and is preferably cooled.
  • the good solvent used methanol, ethanol, propanol, dimethyl sulfoxide, dimethylformamide, formamide, or the like is preferable.
  • the poor solvent water, ether, isobutyl acetate and the like are preferable.
  • the type II crystal can also be produced, for example, by adding water to the type I crystal to form a slurry to be transferred to the type II crystal.
  • the type II crystal can also be produced, for example, by adding water to a toluene solvate crystal of the compound represented by the formula (I) to form a slurry and transferring it to a type II crystal.
  • the type II crystal is obtained by, for example, adding a poor solvent (eg, heptane) at 60 ° C. to a solution (preferably a saturated solution) obtained by dissolving the compound represented by the formula (I) in ethanol. It can also be produced by adding crystallization and cooling crystallization to 10 ° C.
  • a poor solvent eg, heptane
  • a solution preferably a saturated solution
  • the I type I crystal can also be produced, for example, by removing a suitable solvate crystal of the compound represented by the formula (I) by a method such as heating. Furthermore, a type II crystal having a preferred moisture content is obtained by allowing a type II crystal from which water has been removed by, for example, heat drying to store and absorb moisture under normal conditions, preferably under humidified conditions. Therefore, it can be suitably manufactured.
  • a type II crystal having a preferred moisture content can be suitably obtained by storing and releasing moisture of a type II crystal having a higher moisture content under normal conditions, preferably under low humidity conditions. Can be manufactured.
  • a type I I crystal having a preferred water content can be suitably produced by heating and drying a type I I crystal having a higher water content to an appropriate level.
  • type I crystals have high storage stability, they can be suitably used, for example, as pharmaceuticals (for example, sugar transport enhancing agents, hypoglycemic agents, antidiabetic agents, etc.), active pharmaceutical ingredients, and the like.
  • pharmaceuticals for example, sugar transport enhancing agents, hypoglycemic agents, antidiabetic agents, etc.
  • active pharmaceutical ingredients for example, active pharmaceutical ingredients, and the like.
  • type II crystals have a particularly favorable water content.
  • Type II crystals have little change in water content under normal conditions (for example, in the environment during pharmaceutical production).
  • Agents, antihyperglycemic agents, antidiabetic agents, etc.), and active pharmaceutical ingredients are particularly favorable.
  • the water content of the crystal of the compound represented by the formula (I-13) is not necessarily constant depending on the drying conditions and storage conditions.
  • the crystal of the compound represented by the formula (I 1 3) is obtained by, for example, dissolving a compound represented by the formula (I) in ethyl acetate heated (for example, about 50 to 80 ° C.) to obtain a saturated solution.
  • the obtained saturated solution is gradually cooled (for example, to 0 to 30 ° C.) and allowed to stand in the cooled state (for example, 1 to 7 days).
  • the crystal of the compound represented by the formula (I-13) is desolvated by heating (for example, about 160 ° C.) and transitions to the I-type crystal. Therefore, it can be used for the production of the I-type crystal. .
  • the crystal of the compound represented by formula (I) is a solvate crystal of the compound represented by formula (I).
  • the water content of the crystal of the compound represented by the formula (I-14) is not necessarily constant depending on the drying conditions and storage conditions.
  • the crystal of the compound represented by formula (I-14) is prepared by, for example, dissolving the compound represented by formula (I) in a good solvent to form a saturated solution, and gradually adding anisol to the obtained saturated solution.
  • a good solvent for example, 0 to 10 ° C. for 1 to 60 days.
  • the good solvent used is preferably dimethylformamide.
  • the crystal of the compound represented by the formula (1-3) is desolvated by heating (for example, about 170 ° C.) and transitions to the I-type crystal. Therefore, it can be used for the production of the I-type crystal. it can.
  • the water content of the crystal of the compound represented by the formula (I 1-5) is not necessarily constant depending on the drying conditions and storage conditions.
  • the crystal of the compound represented by the formula (I 1-5) is, for example, dissolved in benzonitrile obtained by heating (for example, about 70 to 90 ° C.) the compound represented by the formula (I) to form a saturated solution,
  • the obtained saturated solution can be gradually cooled (for example, to 0 to 10 ° C.) and allowed to stand in the cooled state (for example, for 1 to 30 days).
  • the crystal of the compound represented by the formula (1-5) is desolvated by heating (for example, about 170 ° C.) and transitions to the type I crystal. Therefore, it can be used for the production of the type I crystal. it can.
  • the crystal of the compound represented by formula (I) is a tetrahydrofuran hydrate crystal of the compound represented by formula (I).
  • Diffraction angle (2 ⁇ ) 7.1, 14.4, 19.9, 21.3, 22.5 and 23.7 have characteristic peaks (apparatus ⁇ ).
  • the amount of water in the crystal of the compound represented by formula (1-6) is not necessarily constant depending on the drying conditions and storage conditions.
  • the crystal of the compound represented by the formula (1-6) is, for example, dissolved in benzonitrile obtained by heating the compound represented by the formula (I) (for example, about 55 to 75 ° C) to form a saturated solution.
  • the obtained saturated solution can be gradually cooled (for example, to 0 to 30 ° C.) and allowed to stand in the cooled state (for example, for 1 to 30 days).
  • the moisture content of the crystal of the compound represented by the formula (I-7) is not necessarily constant depending on the drying conditions and storage conditions.
  • Crystals of the compound represented by the formula (I-7) are obtained by adding toluene to a solution (preferably a saturated solution) obtained by dissolving the compound represented by the formula (I) in ethanol. Then, it can be produced by cooling crystallization (for example, up to 10 ° C.).
  • the crystal of the compound represented by the formula (I 17) can be transferred to the II type crystal by adding water, it can be used for the production of the II type crystal.
  • the peak value and the relative intensity value of the diffraction angle. (2 ⁇ ) of the powder X-ray diffraction pattern can allow an experimental error. More specifically, the 20 values described in the present invention are accurate in the range of 0.2 under the same measurement conditions. That is, when determining whether or not a crystal is a crystal according to the present invention, the range of ⁇ 0.2 of the 26 values of the characteristic peak of 2 ⁇ 1S crystal of the present invention obtained experimentally for the crystal. If it is within the range, it is recognized as the same peak.
  • the crystal of the present invention has a sugar transport enhancing action.
  • Agent; hypoglycemic agent; diabetes, diabetic peripheral neuropathy, diabetic nephropathy, diabetes It is useful as a medicine for the prevention and / or treatment of pathologic retinopathy, diabetic macroangiopathy, impaired glucose tolerance, or obesity.
  • compositions for oral administration include tablets (including sugar-coated tablets, coated tablets, dry-coated tablets, sublingual tablets, intraoral patches, orally disintegrating tablets), pills, capsules (hard capsules, soft capsules) , Capsules, microcapsules), powders, granules, fine granules, troches, liquids (including syrups, emulsions and suspensions).
  • Examples of the pharmaceutical composition for parenteral administration include injections, creams, ointments, suppositories and the like.
  • Such a pharmaceutical composition can be produced, for example, by mixing with a pharmaceutically acceptable excipient, carrier, etc. according to a conventional method.
  • excipients and carriers examples include, for example, excipients in solid preparations, binders, disintegrating agents, lubricants; solvents in liquid preparations, solubilizers, suspending agents. , Buffers, thickeners, emulsifiers, etc.
  • formulation additives such as coloring agents, seasonings, and antioxidants can be used as necessary.
  • excipients include lactose, sucrose, D-mannitol, D-sorbitol, starch, arsenic starch, dextrin, crystalline cellulose (for example, microcrystalline cellulose), low-substituted hydroxypropylcellulose, carboxy
  • excipients include lactose, sucrose, D-mannitol, D-sorbitol, starch, arsenic starch, dextrin, crystalline cellulose (for example, microcrystalline cellulose), low-substituted hydroxypropylcellulose, carboxy
  • examples include methylcellulose sodium, gum arabic, dextrin, pullulan, light anhydrous carboxylic acid, synthetic aluminum silicate and magnesium aluminate metasilicate.
  • binders include pregelatinized starch, sucrose, gelatin, macrogol, gum arabic, methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, crystalline cellulose, sucrose, D-mannitol, trehalose, dextrin, pullulan, hydrange Droxypropylcellulose (HPC), Hydroxypropylmethylcellulose (HP MC), Polyvinylpyrrolidone ( ⁇
  • Disintegrants include, for example, lactose, sucrose, starch, carboxymethyl cellulose, canolepoxymethinorescenellose calcium, cross-linked polyvinylino pyrrolidone, force norellose sodium, croscarmellose sodium, canoleboxoxymethinorester These include sodium sodium, light anhydrous caustic acid, low-substituted hydroxypropyl cellulose, cation exchange resin, partially pregelatinized starch, and corn starch.
  • lubricant examples include stearic acid, magnesium stearate, calcium stearate, tanolec, waxes, colloidal silica, DL-leucine, sodium lauryl sulfate, magnesium lauryl sulfate, macrogol, and aerosil.
  • Solvents include, for example, water for injection, physiological saline, Ringer's solution, alcohol, propylene glycol, polyethylene glycol, medium chain fatty acid triglyceride (MCT), vegetable oil (eg safflower oil, sesame oil, corn oil, olive oil) Cottonseed oil, soy lecithin, etc.).
  • physiological saline Ringer's solution
  • alcohol propylene glycol
  • polyethylene glycol polyethylene glycol
  • MCT medium chain fatty acid triglyceride
  • vegetable oil eg safflower oil, sesame oil, corn oil, olive oil
  • Cottonseed oil soy lecithin, etc.
  • solubilizers include polyethylene glycol, propylene glycol, D-mannitol, trenosylose, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium tamate, sodium salicylate, Examples thereof include sodium acetate.
  • suspending agent examples include surfactants such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, and glyceryl monostearate; Hydrophilic polymers such as Polyvinylenopyrrolidone, Canoleboxymethinoresenorelose sodium, Metinorece / Rerose, Hydroxymethy / Recenorelose, Hydroxy Shetinorecellulose, Hydroxypropyl Cellulose; Polysorbates And polyoxyethylene hydrogenated castor oil.
  • surfactants such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, and glyceryl monostearate
  • Hydrophilic polymers such as Polyvinylenopyrrolidone, Canoleboxymet
  • buffer solutions such as phosphate, acetate, carbonate, citrate, and the like.
  • Examples of the thickener include natural gums and cellulose derivatives.
  • Examples of the emulsifier include fatty acid esters (for example, sucrose fatty acid ester, glycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, etc.), wax (for example, beeswax, rapeseed hydrogenated oil, safra-hydrogenated oil, palm Hydrogenated oil, sitosterol, stigmasterol, force mpesterol, brush casterol, cacao butter powder, carnauba wax, rice wax, molasses, paraffin, etc.), lecithin (eg egg yolk lecithin, large Bean lecithin).
  • fatty acid esters for example, sucrose fatty acid ester, glycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, etc.
  • wax for example, beeswax, rapeseed hydrogen
  • colorants examples include water-soluble edible tar dyes (eg, edible red No. 2 oppi 3, edible yellow No. 4 and 5, edible blue No. 1 oppi No. 2, etc., water insoluble Lake pigments (eg, aluminum salts of the above-mentioned water-soluble edible tar pigments), natural pigments (eg, J3—power rotin, chlorophyll, bengara, etc.).
  • water-soluble edible tar dyes eg, edible red No. 2 oppi 3, edible yellow No. 4 and 5, edible blue No. 1 oppi No. 2, etc.
  • water insoluble Lake pigments eg, aluminum salts of the above-mentioned water-soluble edible tar pigments
  • natural pigments eg, J3—power rotin, chlorophyll, bengara, etc.
  • sweetening agent examples include sucrose, lactose, sodium saccharin, dipotassium glycyrrhizinate, aspartame, stevia and the like.
  • antioxidant examples include sulfite, ascorbic acid and alkali metal salts thereof, alkaline earth metal salts, and the like.
  • Tablets, granules, fine granules, etc. can be coated by a known method using a coating substrate for the purpose of masking taste, improving light stability, improving appearance or enteric properties, etc. Good.
  • the coating base include a sugar coating base, a water-soluble film coating base, and an enteric film coating base.
  • sugar coating base examples include sucrose, and one or more kinds selected from talc, precipitated calcium carbonate, gelatin, gum arabic, pullulan, carnauba wax and the like may be used in combination.
  • water-soluble film coating bases examples include celluloses such as hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), ethinore senorelose, hydroxenochinoselenose, and methino lech dorochichinenoselenose.
  • Polymers Polyvinylacetal Jetylaminoacetate, Aminoalkyl methacrylate copolymer E (Eudragit E (registered trademark)) Synthetic polymers such as polyvinylpyrrolidone; Polysaccharides such as pullulan I can get lost.
  • enteric film coating bases include cellulosic polymers such as hydroxypropylmethylenorerose phthalate, hydroxypropinoremethylolosenolose acetate succinate, carboxymethylethyl cellulose, and cellulose acetate phthalate; Methacrylic acid copolymer L (Eudragit L (registered trademark)), Methacrylic acid copolymer LD (Eudragit L 1 3 0 D 5 5 (registered trademark)) Methacrylic acid copolymer S (Eudragit S (registered trademark)), etc. Talaric acid polymers; natural products such as shellac.
  • These coating bases may be coated singly or as a mixture of two or more kinds in an appropriate ratio, or two or more kinds may be sequentially coated.
  • the content of the crystal of the present invention in the medicament of the present invention is usually 0.01 to 100% by weight, preferably 1 to 99% by weight.
  • the proportion of the compound of the present invention that takes the form of crystals is preferably 50% or more, more preferably 95% or more. Particularly preferably, it is 98% or more.
  • the dose of the crystal of the present invention may be within the range of the effective amount of the crystal of the present invention, such as a sugar transport enhancing action and a hypoglycemic action, and also varies depending on the target disease, administration subject, administration method, symptoms, etc. However, it is usually from about 0.001 to about 100 Omg per day per kilogram of body weight.
  • the crystals of the present invention when administered orally to a diabetic patient for the purpose of treating diabetes, about 0.01 to 100 mg of crystals of the present invention per day per kg of body weight, Preferably, 0.05 to 50 mg, more preferably 0.:! To 10 mg is applied.
  • the crystals of the present invention are about 0.001 to 5 Omg, preferably 0.005 to 2 Omg, more preferably 0.01 to 1 Omg. Administer. Example.
  • Humidity controller Shinei Co., Ltd. SRH-1R
  • Drying conditions measured while drying the sample under reduced pressure
  • Humidity conditions Measure humidity by placing saturated salt solution
  • the filtrate was concentrated under reduced pressure until the liquid volume reached 27.3 L, 22.5 L of methanol was added, and the filtrate was concentrated under reduced pressure until the liquid volume reached 13.5 L. Further, 22.5 L of methanol was added, and after concentration under reduced pressure until the liquid volume became 15 L, 31.06 L of methanol was added. To this solution was added 5.48 L (26.98 mol) of a 28% sodium methoxide / methanol solution at 60 ° C, and the mixture was washed with 10.62 L of methanol. After stirring at 64 ° C for 5 hours, the mixture was cooled to 30 ° C and 15.96 L (31. 89 mol) of 2M hydrochloric acid was added.
  • Step 2 4-[(1 R, 2 R) 1 -2-aminocyclohexylamino] 1-3-ringoline 1-one hydrochloride synthesis
  • the procedure of adding 260 mL of 2-propanol and concentrating under reduced pressure was performed in three steps, and then the liquid volume was adjusted to about llOmL.
  • the obtained liquid was kept at 50 ° C for 1 hour, cooled to 10 ° C over about 4 hours, and further kept at 10 ° C for about 10 hours.
  • the precipitated solid was filtered and washed with 84.9 mL of 2-propanol cooled to 10 ° C.
  • the obtained wet solid was dried under reduced pressure at 60 ° C. to obtain 21.40 g (content 88.3%) of the title compound.
  • Acetonitrile was distilled off under reduced pressure, followed by extraction with ethyl acetate, and the organic layer was washed with an aqueous sodium bicarbonate solution (6.9 wt%) and concentrated under reduced pressure. Ethyl acetate was added to the concentrated solution and concentrated under reduced pressure twice, and then ethyl acetate was added so that the liquid volume became about llOmL. After raising the temperature to 55 ° C, add 18 mg of seed crystals of the title compound (for example, obtained in the same manner as this method without using seed crystals), hold for 1 hour at 55 ° C, and then add heptane (5% 2-propanol Contained) 123 mL was added dropwise over 1 hour.
  • heptane 5% 2-propanol Contained
  • a powder X-ray diffraction spectrum (FIG. 1) and 1 H-NMR spectrum of the obtained crystals were measured and confirmed to be about 0.5 ethyl acetate.
  • Step 2 Desolvation of ethyl acetate solvate crystals
  • the ethyl acetate hydrate crystals obtained in Step 1 were heated to about 160 ° C. to remove the solvent. As a result of measuring the powder X-ray diffraction spectrum of the obtained crystal, it was confirmed to be a type I crystal (Fig. 1).
  • Step 1 Manufacture of a solvate crystal.
  • Step 2 Desolvation of solvate crystals
  • the solvate crystals obtained in Step 1 were heated to about 170 ° C to remove the solvent, and the powder X-ray diffraction spectrum of the obtained crystals was measured. It was confirmed to be a type I crystal (Fig. 2).
  • the benzonitrile solvate crystal obtained in Step 1 was heated to about 170 ° C to remove the solvent, and as a result of measuring powder X-ray diffraction, it was confirmed to be a type I crystal (Fig. 3).
  • the obtained crystals were measured by powder X-ray diffraction spectrum (FIG. 4) and 1 H-NMR spectrum, and confirmed to be a tetrahydrofuran solvate.
  • the powder X-ray diffraction spectrum was measured, the dried crystals remained as the Tolen hydrate. 1370 mL of water was added to the dried crystals, and the mixture was stirred in a slurry state at 25 ° C. for 1.5 hours, and then separated by a centrifugal filter.
  • the powder X-ray diffraction spectrum of the crystal obtained by vacuum drying at 60 ° C overnight was measured, and it was confirmed that it was converted to II type crystal. [Example 23].
  • type II with a water content of about 0% was obtained in the same manner as above. Crystals could also be obtained.
  • Fig. 6 shows the powder X-ray diffraction spectrum of the type I crystal
  • Fig. 7 shows the differential scanning calorimetry (DSC) chart.
  • Fig. 9 shows a powder X-ray crystal diffraction spectrum of a type II crystal (water content of about 3-5%), and differential scanning calorimetry (DS C) of the type II crystal obtained by the method described in Example 5
  • Figure 10 shows these charts.
  • a broad endothermic peak with a peak near 90 degrees is considered to correspond to the disappearance of water, and supports the fact that this crystal is a hydrated substance.
  • Fig. 11 shows the results of powder X-ray diffraction measurements after standing for 60 minutes under vacuum.
  • specimen 2 The specimen that was vacuum-dried at 60 ° C for 2 hours was designated as specimen 2, and the water content was measured and confirmed to be 0.2%. After that, it was stored in an open system at about 60% RH (in a constant temperature and humidity chamber of 25 ° C 60% RH) and 84% RH (under a saturated solution of potassium chloride). The water content of each specimen was measured after 1, 6 and 26 hours of storage.
  • the Karl Fischer measurement device (Mitsubishi Chemical Corporation CA-06) was used for the measurement of water content.
  • the specimen with the initial moisture content of 4.4% (Sample 1) is 3-5 ° / at any relative humidity. It was confirmed that the crystal was easy to handle, having a moisture content within a certain range, having little fluctuation in moisture content, and being hardly affected by humidity during weighing. In addition, it was confirmed that the dried crystals became water-containing crystals having a water content in the above range under normal or humid conditions.
  • Type I crystals were stored in a thermostatic chamber at 25 ° C 60% RH and 40 ° C 75% RH. 2 Storage at 5 ° C6 0% RH was performed for up to 12 months.
  • Type II crystals open in a constant temperature and humidity chamber at 80 ° C / 90% RH, 25 ° C / 40% RH, 60 ° C / 90% RH, or 60 ° CZ Saved with. Storage was performed for up to 3 months. As a result, no significant increase or decrease in impurities was observed after storage under any of the conditions.
  • type II crystals (containing about 3-5% water) have high storage stability, and have a wide range of temperatures as described above. And does not produce impurities under humidity. Although it shows slight changes under high temperature and low humidity conditions, it is basically a stable crystal that does not change its water content or powder X-ray pattern, and is extremely useful for pharmaceutical production.
  • crystal of the compound represented by the formula (I) or the pharmaceutically acceptable salt thereof of the present invention has high storage stability, production of a medicament containing the compound represented by the formula (I), etc. Useful for.
  • crystals of the compound represented by the formula (1-1) of the present invention are anhydrous crystals, they are useful as drug substances and standard substances in pharmaceutical production.
  • the crystal represented by the formula (1-2) of the present invention is extremely useful for pharmaceutical production and the like because the change in water content is small.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Child & Adolescent Psychology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

It is intended to provide a crystal of a lactam compound having storage stability, good handleability or the like which is suitable as a pharmaceutical such as an excellent sugar transport enhancer or a hypoglycemic agent. A crystal of a compound represented by the formula (I) of the invention or a pharmaceutically acceptable salt thereof is useful as a pharmaceutical such as a sugar transport enhancer or a hypoglycemic agent.

Description

明細書  Specification
ラクタム化合物の結晶形およびその製造方法 技術分野  Crystal form of lactam compound and method for producing the same
本発明は、 保存安定性などに優れた、 ラタタム化合物の結晶、 該結晶を含有す る医薬、 およぴ該結晶の製造方法などに関する。 背景技術  The present invention relates to a crystal of a ratata compound excellent in storage stability and the like, a medicament containing the crystal, a method for producing the crystal, and the like. Background art
式 ( I )  Formula (I)
Figure imgf000002_0001
Figure imgf000002_0001
で表されるラクタム化合物は公知化合物であり、 優れた糖輸送増強作用、 血糖降 下作用を有することが報告されている (例えば、 米国特許出願公開第 2 0 0 4 Z 0 0 4 8 8 4 7号明細書参照) 。 前記式 ( I ) で表される化合物は、 糖尿病治療 剤などの医薬として有用である。 Is a known compound and has been reported to have an excellent sugar transport enhancing action and blood glucose lowering action (for example, US Patent Application Publication No. 2 0 0 4 Z 0 0 4 8 8 4 (See specification 7). The compound represented by the formula (I) is useful as a pharmaceutical agent such as a therapeutic agent for diabetes.
—方、 化合物の結晶形は、 保存安定性等の特性において、 アモルファスに比較 して好ましい場合が多い。  -On the other hand, the crystal form of the compound is often preferable to amorphous in terms of characteristics such as storage stability.
特に、 医薬の有効成分である化合物には、 生物活性に加えて更に望まれる重要 な性質があり、 安定な結晶形はそれらの要求を満たしうる。 重要な性質とは、 例 えば、 純度、 保存安定性 (例えば、 分解産物を含むような医薬製剤の製造を避け るため) 、 医薬製剤の製造過程 (例えば、 粉砕工程) における安定性、 最終製剤 中での安定性 (例えば、 貯蔵期限に影響し重要である) 、 低吸湿性 (例えば、 吸 湿性が高いと重量あたりの活性成分の含量の変動を招き問題となる) などである。 なお、 純度に関して、 化合物についてその結晶形が利用できる場合、 再結晶によ り精製を容易にすることができうる。 発明の開示 In particular, compounds that are active pharmaceutical ingredients have important properties that are further desired in addition to biological activity, and stable crystal forms can meet these requirements. Important properties include, for example, purity, storage stability (eg to avoid the production of pharmaceutical formulations containing degradation products), stability during the manufacturing process of the pharmaceutical formulation (eg grinding process), final formulation Stability (for example, is important because it affects the shelf life), and low hygroscopicity (for example, high hygroscopicity causes fluctuations in the content of active ingredients per weight). In terms of purity, if the crystal form of a compound is available, purification can be facilitated by recrystallization. Disclosure of the invention
し力 し、 式 (I) で表されるラクタム化合物の結晶については、 これまでに報 告されていない。  However, the lactam compound crystals represented by formula (I) have not been reported so far.
本発明者らは、 上記の課題を解決するために鋭意研究を重ねた結果、 式 (I) で表される化合物を含有する結晶を得ることに成功した。 さらに、 得られた結晶 が保存安定性に優れていることなどを見出し、 本発明を完成するに至った。  As a result of intensive studies to solve the above problems, the present inventors have succeeded in obtaining a crystal containing a compound represented by the formula (I). Furthermore, the inventors have found that the obtained crystal is excellent in storage stability, and have completed the present invention.
すなわち、 本発明は、 下記の式 (I) で表される化合物またはその製薬学的に 許容される塩の結晶、 それを含有する医薬、 その製造方法などを提供する。  That is, the present invention provides crystals of a compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof, a medicament containing the same, a method for producing the same, and the like.
すなわち、 本発明は以下の通りである。  That is, the present invention is as follows.
(1) 式 (I)  (1) Formula (I)
Figure imgf000003_0001
Figure imgf000003_0001
(I)  (I)
で表される化合物またはその製薬学的に許容される塩の結晶。 Or a pharmaceutically acceptable salt thereof.
(2) 無水物結晶である、 上記 (1) 記載の結晶。  (2) The crystal according to (1) above, which is an anhydrous crystal.
(3) 式 (1— 1)  (3) Formula (1— 1)
Figure imgf000003_0002
ひ'1)
Figure imgf000003_0002
Hi ' 1 )
で表される化合物の結晶。 A compound crystal represented by:
(4) 粉末 X線回折において、 回折角度 (20) =1 2. 4、 21. 8および 26. 3に特徴的なピークを有する上記 (1) または (3) 記載の結晶。  (4) The crystal according to (1) or (3) above, having a characteristic peak at diffraction angles (20) = 12.4, 21.8 and 26.3 in powder X-ray diffraction.
(5) 粉末 X線回折において、 回折角度 (26) =1 1. 4、 12. 4、 15. 3、 19. 1、 20. 2、 20. 8、 21. 8、 23. 6および 26. 3に特徴 的なピークを有する上記 (1) 、 (3) または (4) 記載の結晶。 (5) In powder X-ray diffraction, diffraction angle (26) = 1.1.4, 12.4, 15.3, 19.1, 20.2, 20.8, 21.8, 23.6 and 26. Features 3 The crystal according to the above (1), (3) or (4) having a typical peak.
(6) 示差走査熱量測定において、 228〜234°Cの範囲に吸熱ピークを有 する上記 (1) 、 (3) 、 (4) または (5) 記載の結晶。  (6) The crystal according to the above (1), (3), (4) or (5) having an endothermic peak in the range of 228 to 234 ° C. in differential scanning calorimetry.
(7) 水和物結晶である、 上記 (1) 記載の結晶。  (7) The crystal according to (1) above, which is a hydrate crystal.
(8) 式 ( I一 2)  (8) Formula (I 1 2)
Figure imgf000004_0001
Figure imgf000004_0001
'xHク 0  'xH 0
(1-2)  (1-2)
(式中、 Xは 0〜:!の数である。 ) (In the formula, X is a number from 0 to :!)
で表される化合物の結晶。 A compound crystal represented by:
(9) X力 0. 6〜: Iである、 上記 (8) 記載の結晶。  (9) The crystal according to (8) above, wherein X force is 0.6 to I.
(10) 粉末 X線回折において、 回折角度 (20) =1 3. 6、 1 6. :!〜 1 6. 2および 2 7. 4に特徴的なピークを有する上記 (1) 、 (8) または (9) 記載の結晶。  (10) In powder X-ray diffraction, diffraction angles (20) = 1.3.6, 1 6.:! To 1 6. 2 and 2 7.4 with the characteristic peaks (1), (8) Or (9) The crystal described.
(1 1) 粉末 X線回折において、 回折角度 (20) =9. 7〜9. 8、 13· 6、 16. 1〜16. 2、 1 9. 4〜1 9. 6.、 20. 8〜20. 9、 22. 5 〜22. 6および 2 7. 4に特徴的なピークを有する上記 (1) 、 (8) 、 (9) または (10) 記載の結晶。  (1 1) In powder X-ray diffraction, diffraction angle (20) = 9.7 to 9.8, 13 · 6, 16. 1 to 16.2, 1, 9.4 to 1 9. 6., 20. 8 The crystal according to the above (1), (8), (9) or (10) having a peak characteristic to ˜20.9, 22.5 to 22.6 and 27.4.
(12) 粉末 X線回折において、 回折角度 (20) =9. 8、 13. 6、 16. 1、 19. 6、 20. 8、 22. 6および.27. 4に特徴的なピークを有する上 記 (1) 、 (8) 、 (9) 、 (10) または (11) 記載の結晶。  (12) X-ray powder diffraction has characteristic peaks at diffraction angles (20) = 9.8, 13.6, 16.1, 19.6, 20.8, 22.6 and .27.4 The crystal according to the above (1), (8), (9), (10) or (11).
(13) 示差走査熱量測定において、 204〜210 °Cの範囲に吸熱ピークを 有する上記.(1) 、 (8) 、 (9) 、 (10) 、 (1 1) または (12) 記載の 'fe晶。  (13) In differential scanning calorimetry, it has an endothermic peak in the range of 204-210 ° C. (1), (8), (9), (10), (11) or (12) fe crystal.
(14) 上記 (1) 〜 (1 3) のいずれかに記載の結晶を含有する医薬。  (14) A medicament comprising the crystal according to any one of (1) to (1 3) above.
(15) 糖輸送増強作用剤である、 上記 (14) 記載の医薬。 (1 6) 血糖降下剤である、 上記 (1 4) 記載の医薬。 (15) The medicament according to (14) above, which is a sugar transport enhancing agent. (1 6) The medicament according to (1 4) above, which is a hypoglycemic agent.
(1 7) 糖尿病、 糖尿病性末梢神経障害、 糖尿病性腎症、 糖尿病性網膜症、 糖 尿病性大血管症、 耐糖能異常、 もしくは肥満症の予防および/または治療薬であ る、 上記 (1 4) 〜 (1 6) のいずれかに記載の医薬。  (1 7) Prophylaxis and / or treatment of diabetes, diabetic peripheral neuropathy, diabetic nephropathy, diabetic retinopathy, diuretic macroangiopathy, impaired glucose tolerance, or obesity 1 4) The pharmaceutical according to any one of (1 6).
(1 8) 溶媒和物結晶である、 上記 (1) 記載の結晶。  (18) The crystal according to (1) above, which is a solvate crystal.
(1 9) 酢酸ェチル和物結晶である、 上記 (1 8) 記載の結晶。  (1 9) The crystal according to (1 8) above, which is an ethyl acetate solvate crystal.
一 3)  1)
Figure imgf000005_0001
Figure imgf000005_0001
•1/2 CH3COOC2H5 • 1/2 CH 3 COOC 2 H 5
(1-3)  (1-3)
で表される化合物の結晶。 A compound crystal represented by:
(2 1) 粉末 X線回折において、 回折角度 (2 Θ ) =5. 8、 1 1. 6、 1 8. 4、 1 9. 5、 20. 5、 2 1. 0、 2 1 - 9および 22. 8に特徴的なピーク を有する上記 (1) または (20) 記載の結晶。  (2 1) In powder X-ray diffraction, diffraction angle (2 Θ) = 5.8, 1 1. 6, 1 8. 4, 1 9. 5, 20. 5, 2 1. 0, 2 1-9 and 22. The crystal according to (1) or (20) above, which has a characteristic peak at 8.
(2 2) ァニソ一ル和物結晶である、 上記 (1 8) 記載の結晶。  (2 2) The crystal according to the above (1 8), which is an anisosolvate crystal.
一 4)  1)
Figure imgf000005_0002
Figure imgf000005_0002
'1/2 C6H5OCH3 で表される化合物の結晶。 A crystal of a compound represented by '1/2 C 6 H 5 OCH 3 .
(24) 粉末 X線回折において、 回折角度 (2 0) = 5. 8、 1 1. 6、 1 8. 4、 1 9. 3、 20. 4、 2 1. 0、 2 1. 8および 22. 8に特徴的なピーク を有する上記 (1) または (23) 記載の結晶。  (24) In powder X-ray diffraction, diffraction angle (2 0) = 5. 8, 1 1. 6, 1 8. 4, 1 9. 3, 20. 4, 2 1. 0, 2 1. 8 and 22 The crystal according to (1) or (23), which has a peak characteristic to 8.
(2 5) ベンゾニトリル和物結晶である、 上記 (1 8) 記載の結晶。 —5) (2 5) The crystal according to (18), which is a benzonitrile solvate crystal. -Five)
Figure imgf000006_0001
Figure imgf000006_0001
■1/2 C6H5CN ■ 1/2 C 6 H 5 CN
(1-5)  (1-5)
で表される化合物の結晶。 A compound crystal represented by:
(27) 粉末 X線回折において、 回折角度 (2 Θ) =6. 2、 12. 4、 17. 6、 18. 2、 20. 2、 20. 4、 20. 8、 21· 3および 24. 2に特徴 的なピークを有する上記 (1) または (26) 記載の結晶。  (27) In powder X-ray diffraction, diffraction angle (2 Θ) = 6.2, 12. 4, 17.6, 18. 2, 20. 2, 20. 4, 20. 8, 21 · 3 and 24. 2. The crystal according to (1) or (26) above, which has a characteristic peak in 2.
(28) テトラヒドロフラン和物結晶である、 上記 (18) 記載の結晶。  (28) The crystal according to (18), which is a tetrahydrofuran solvate crystal.
一 6)  1)
Figure imgf000006_0002
で表される化合物の結晶。
Figure imgf000006_0002
A compound crystal represented by:
(30) 粉末 X線回折において、 回折角度 (20) =7. 1、 14. 4、 19. (30) In powder X-ray diffraction, diffraction angle (20) = 7.1, 14. 4, 19.
9、 21. 3、 22. 5および 23. 7に特徴的なピークを有する上記 (1) ま たは (29) 記載の結晶。 The crystal according to (1) or (29) above, which has characteristic peaks at 9, 21.3, 22.5 and 23.7.
(31) トルエン和物である、 上記 (18) 記載の結晶。  (31) The crystal according to (18), which is a toluene hydrate.
(32) 式 ( I一 7)
Figure imgf000007_0001
(32) Equation (I 1 7)
Figure imgf000007_0001
■C6H5CH3  ■ C6H5CH3
(1-7)  (1-7)
で表される化合物の結晶。 A compound crystal represented by:
(33) 粉末 X線回折において、 回折角度 (2 Θ) =5. 9、 8. 3、 1 1. 8、 14. 5、 18. 5、 21. 3, 22. 9 および 29. 6に特徴的なピー クを有する上記 (1) または (32) 記載の結晶。  (33) Powder X-ray diffraction, characterized by diffraction angle (2 Θ) = 5.9, 8. 3, 1 1. 8, 14.5, 18.5, 21.3, 22.9 and 29.6 The crystal according to (1) or (32), which has a typical peak.
(34) 式 ( I )  (34) Formula (I)
Figure imgf000007_0002
Figure imgf000007_0002
(I) (I)
で表される化合物を含有する溶液を冷却する工程を含む、 上記 (2) A step of cooling a solution containing the compound represented by the above (2)
いずれかに記載の結晶の製造方法。 The manufacturing method of the crystal | crystallization in any one.
( 35 ) 式 ( I )  (35) Formula (I)
Figure imgf000007_0003
Figure imgf000007_0003
(I) (I)
で表される化合物を含有する溶液に貧溶媒を添加する工程を含む、 上記 (2) 〜 (6) のいずれかに記載の結晶の製造方法。 The manufacturing method of the crystal | crystallization in any one of said (2)-(6) including the process of adding a poor solvent to the solution containing the compound represented by these.
(36) 式 (I)
Figure imgf000008_0001
(36) Formula (I)
Figure imgf000008_0001
(I)  (I)
で表される化合物の溶媒和物結晶を脱溶媒する工程を含む、 上記 (2) 〜 (6) のいずれかに記載の結晶の製造方法。 The manufacturing method of the crystal | crystallization in any one of said (2)-(6) including the process of desolvating the solvate crystal | crystallization of the compound represented by these.
(37) 式 (I)  (37) Formula (I)
Figure imgf000008_0002
Figure imgf000008_0002
(I)  (I)
で表される化合物を含有する溶液を冷却する工程を含む、 上記 (7) A step of cooling a solution containing the compound represented by the above (7)
のいずれかに記載の結晶の製造方法。 The manufacturing method of the crystal | crystallization in any one of.
(38) 式 (I)  (38) Formula (I)
Figure imgf000008_0003
Figure imgf000008_0003
(I)  (I)
で表される化合物を含有する溶液に貧溶媒を添加する工程を含む、 上記 (7) 〜 (13) のいずれかに記載の結晶の製造方法。 The manufacturing method of the crystal | crystallization in any one of said (7)-(13) including the process of adding a poor solvent to the solution containing the compound represented by these.
(39) 上記 (2) 〜 (6) のいずれかに記載の結晶に水を添加する工程を含 む、 上記 (7) 〜 (1 3) のいずれかに記載の結晶の製造方法。  (39) The method for producing a crystal according to any one of (7) to (13) above, comprising a step of adding water to the crystal according to any one of (2) to (6) above.
(40) .  (40).
上記 (31) 〜 (33) のいずれかに記載の結晶に水を添加する工程を含む、 上記 (7 ) 〜 (1 3 ) のいずれかに記載の結晶の製造方法, 本発明の式 (I ) で表される化合物またはその製薬学的に許容される塩の結晶 は、 高い保存安定性を有するので、 安定性に優れた前記式 (I ) で表される化合 物を含む医薬または安定性に優れた医薬品製造用の原薬、 標準物質などが提供さ れる。 Including a step of adding water to the crystal according to any one of (31) to (33) above. The method for producing a crystal according to any one of the above (7) to (13), the crystal of the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof has high storage stability. Therefore, a drug containing the compound represented by the above formula (I) excellent in stability or a drug substance or standard substance for manufacturing a drug excellent in stability is provided.
本発明の I型結晶 (後述) などは、 無水結晶なので例えば、 原薬または標準物 質として医薬品製造に用いる場合、 取扱いが非常に容易である。  Since the type I crystal (described later) of the present invention is an anhydrous crystal, it is very easy to handle, for example, when used as a drug substance or a standard substance for pharmaceutical production.
本発明の I I型結晶 (後述) などは、 一定の範囲の水分量下で水分量の変化が 少ないので、 例えば、 原薬などとして医薬品製造に用いる場合、 取扱いが非常に 容易である。 また、 本発明の I I型結晶などは、 水を加えても結晶形が転移しな いので、 製造工程において水を使用する製剤に適した原薬を提供することができ る。 図面の簡単な説明  Since the type I crystal (described later) of the present invention has little change in water content within a certain range of water content, it is very easy to handle, for example, when used as a drug substance in pharmaceutical production. In addition, since the I-type crystal of the present invention does not change its crystal form even when water is added, it is possible to provide a drug substance suitable for a preparation using water in the production process. Brief Description of Drawings
図 1は、 実施例 2で得られた酢酸ェチル和物結晶およびそれを脱溶媒した後の 結晶の粉末 X線回折スペク トルを示す図である (装置 B (後述) により測定) 。 図 2は、 実施例 3で得られたァニソ一ル和物結晶およびそれを脱溶媒した後の 結晶の粉末 X線回折スペク トルを示す図である (装置 Bにより測定) 。  FIG. 1 is a diagram showing a powder X-ray diffraction spectrum of an ethyl acetate hydrate crystal obtained in Example 2 and a crystal after desolvating it (measured by apparatus B (described later)). FIG. 2 is a graph showing a powder X-ray diffraction spectrum of the anisosolvate crystal obtained in Example 3 and the crystal after desolvation of the crystal (measured by apparatus B).
図 3は、 実施例 4で得られたベンゾニトリル和物結晶おょぴそれを脱溶媒した 後の結晶の粉末 X線回折スペクトルを示す図である (装置 Bにより測定) 。  FIG. 3 is a diagram showing a powder X-ray diffraction spectrum of the benzonitrile hydrate crystal obtained in Example 4 after removing the solvent (measured by apparatus B).
図 4は、 実施例 2 0で得られたテトラヒドロフラン和物結晶の粉末 X線回折ス ベク トルを示す図である (装置 A (後述) により測定) 。  FIG. 4 is a diagram showing a powder X-ray diffraction spectrum of the tetrahydrofuran solvate crystal obtained in Example 20 (measured with apparatus A (described later)).
図 5は、 実施例 2 1で得られたトルエン和物結晶の粉末 X線回折スぺク トルを 示す図である (装置 Aにより測定) 。  FIG. 5 is a diagram showing a powder X-ray diffraction spectrum of the toluene solvate crystal obtained in Example 21 (measured by apparatus A).
図 6は、 I型結晶の粉末 X線スペク トルを示す図である (装置 Aにより測定) 。 図 7は、 I型結晶の示差走査熱量測定 (D S C) のチャートを示す図である。 図 8.は、 I型結晶の水蒸気吸脱着測定の結果を示す図である。  FIG. 6 shows a powder X-ray spectrum of the type I crystal (measured by apparatus A). FIG. 7 is a diagram showing a differential scanning calorimetry (DSC) chart of the I-type crystal. FIG. 8 is a diagram showing the results of water vapor adsorption / desorption measurement of the type I crystal.
図 9は、 I I型結晶の粉末 X線回折スペク トルを示す図である (装置 Bにより 測定) 。 図 1 0は、 I I型結晶の示差走查熱量測定 (D S C) のチヤ一トを示す図であ る。 FIG. 9 is a diagram showing a powder X-ray diffraction spectrum of a type II crystal (measured by apparatus B). FIG. 10 is a diagram showing a differential scanning calorimetry (DSC) chart of a type II crystal.
図 1 1は、 真空下で測定した、 I I型結晶の粉末 X線回折スぺクトルを示す図 である (装置 Bにより測定) 。  Fig. 11 shows the powder X-ray diffraction spectrum of I-type crystals measured under vacuum (measured with apparatus B).
図 1 2は、 I I型結晶の水蒸気吸脱着測定の結果を示す図である。  FIG. 12 is a diagram showing the results of water vapor adsorption / desorption measurement of II type crystals.
図 1 3は、 I I型結晶の水分量の経時変化を示す図である。 発明を実施するための最良の形態  FIG. 13 is a diagram showing the change over time in the water content of the I-type crystal. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 式 (I ) で表される化合物またはその製薬学的に許容される塩の結 晶、 それを含有する医薬、 その製造方法などに関する。 以下、 本発明の態様につ いて詳細に説明する。  The present invention relates to a crystal of a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, a pharmaceutical containing the same, a production method thereof, and the like. Hereinafter, embodiments of the present invention will be described in detail.
1 . 式 (I ) で表される化合物またはその製薬学的に許容される塩の結晶およ びその製造方法 1. Crystal of compound represented by formula (I) or pharmaceutically acceptable salt thereof and process for producing the same
本発明の第 1の態様は、 式 (I ) で表される化合物またはその製薬学的に許容 される塩の結晶 ( r本発明の結晶」 と称することもある) に関する。 また、 本発 明は、 本発明の結晶の製造方法にも関する。 本発明の結晶は、 式 (I ) で表され る化合物またはその製薬学的に許容される塩 ( 「本発明の化合物」 と称すること もある) を含有する溶液を、 過飽和状態に導き、 晶析させることによって製造す ることができる。 以下、 本発明の化合物、 本発明の結晶、 およびそれらの製造方 法などについて詳細に説明する。  The first aspect of the present invention relates to a crystal of the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof (sometimes referred to as “the crystal of the present invention”). The present invention also relates to a method for producing the crystal of the present invention. The crystal of the present invention introduces a solution containing a compound represented by the formula (I) or a pharmaceutically acceptable salt thereof (sometimes referred to as “compound of the present invention”) to a supersaturated state, It can be manufactured by analyzing. Hereinafter, the compound of the present invention, the crystal of the present invention, and the production method thereof will be described in detail.
(本発明の化合物およびその製造方法) (Compound of the present invention and production method thereof)
式 (I )
Figure imgf000010_0001
で表される化合物は、 米国特許出願公開第 2 0 0 4 / 0 0 4 8 8 4 7号明細書に 開示された化合物であり、 優れた糠輸送増強作用、 血糠降下作用などを有する。 式 (I ) で表される化合物は製薬学的に許容される塩であってもよい。 製薬学 的に許容される塩とは、 医薬として使用されうる塩を意味する。 ただし、 塩の形 態をとらないものが好ましい。
Formula (I)
Figure imgf000010_0001
Is a compound disclosed in US Patent Application Publication No. 2 0 0 4/0 0 4 8 8 4 7, and has excellent sputum transport enhancing action, clot lowering action and the like. The compound represented by the formula (I) may be a pharmaceutically acceptable salt. The pharmaceutically acceptable salt means a salt that can be used as a medicine. However, those which do not take the salt form are preferred.
式 (I ) で表される化合物の塩としては、 無機酸塩、 有機酸塩、 スルホン酸塩 などの酸付加塩;アル力リ金属塩、 アル力リ土類金属塩、 金属塩、 アンモェゥム 塩などの塩基付加塩が挙げられる。 無機酸塩としては、 例えば、 塩酸塩、 臭化水 素酸塩、 硫酸塩、 リン酸塩などが挙げられる。 有機酸塩としては、 例えば、 炭酸 塩、 酢酸塩、 安息香酸塩、 シユウ酸塩、 マレイン酸塩、 フマル酸塩、 酒石酸塩、 クェン酸塩などが挙げられる。 スルホン酸塩としては、 例えば、 メタンスルホン 酸塩、 ベンゼンスルホン酸塩、 p—トルエンスルホン酸塩などが挙げられる。 ァ ルカリ金属塩としては、 例えば、 ナトリウム塩、 カリウム塩、 リチウム塩などが 挙げられる。 アルカリ土類金属塩としては、 例えば、 カルシウム塩、 マグネシゥ ム塩などが挙げられる。 金属塩としては、 例えば、 アルミニウム塩などが挙げら れる。  Examples of the salt of the compound represented by the formula (I) include acid addition salts such as inorganic acid salts, organic acid salts, and sulfonic acid salts; Al force metal salts, Al force earth metal salts, metal salts, ammonia salts And base addition salts. Examples of inorganic acid salts include hydrochloride, hydrobromide, sulfate, phosphate, and the like. Examples of the organic acid salt include carbonate, acetate, benzoate, oxalate, maleate, fumarate, tartrate, kenate, and the like. Examples of the sulfonate include methanesulfonate, benzenesulfonate, p-toluenesulfonate, and the like. Examples of alkali metal salts include sodium salts, potassium salts, and lithium salts. Examples of alkaline earth metal salts include calcium salts and magnesium salts. Examples of the metal salt include an aluminum salt.
式 (Γ) で表される化合物は、 米国特許出願公開第 2 0 0 4 / 0 0 4 8 8 4 7 号明細書に開示された方法又はそれに準じる方法に従って製造することができる。 より具体的には、 例えば、 後述の参考例 1に開示された方法、 又はそれに準じ る方法に従って製造することができる。 .  The compound represented by the formula (Γ) can be produced according to the method disclosed in US Patent Application Publication No. 2 0 0 4/0 0 4 8 8 4 7 or a method analogous thereto. More specifically, it can be produced, for example, according to the method disclosed in Reference Example 1 described later or a method analogous thereto. .
(本発明の結晶およびその製造方法) (Crystal of the present invention and production method thereof)
式 (I )  Formula (I)
Figure imgf000011_0001
Figure imgf000011_0001
( I )  (I)
で表される化合物またはその製薬学的に許容される塩の結晶は、 水和物または溶 媒和物であってもよい。 そのような水和物または溶媒和物も、 「本発明の式 (I) で表される化合物またはその製薬学的に許容される塩の結晶」 に含まれる。 水和物としては、 例えば、 式 (1 -2) で表される化合物が挙げられる。 The crystal of the compound represented by or a pharmaceutically acceptable salt thereof is a hydrate or a solution. It may be a solvate. Such a hydrate or solvate is also included in the “crystal of the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof”. Examples of the hydrate include a compound represented by the formula (1-2).
溶媒和物としては、 例えば、 酢酸ェチル和物、 ァ-ソール和物、 ベンゾ-トリ ル和物、 テトラヒドロフラン和物、 トルエン和物などが挙げられ、 式 (I一 3) で表される化合物 (酢酸ェチル和物) 、 式 (I一 4) で表される化合物 (ァニソ ール和物) 、 式 ( I一 5) で表される化合物 (ベンゾニトリル和物) 、 式 ( I一 6) で表される化合物 (テトラヒ ドロフラン和物) 、 式 ( 1 -7) で表される化 合物 (トルエン和物) が好ましい。  Examples of the solvate include an ethyl acetate solvate, a carsol solvate, a benzo-tolyl solvate, a tetrahydrofuran solvate, a toluene solvate, and the like, and a compound represented by the formula (I-13) Ethyl acetate solvate), compound represented by formula (I 1-4) (anisolate solvate), compound represented by formula (I 1-5) (benzonitrile solvate), formula (I 1-6) A compound represented by the formula (tetrahydrofuran solvate) and a compound represented by the formula (1-7) (toluene solvate) are preferred.
水和物結晶である本発明の結晶は、 その結晶水としての水分を含有するのみな らず、 それに加えて例えば吸湿による付着水としても水分を含有しうる。 そのよ うな含水結晶も本発明の結晶に含まれる。  The crystal of the present invention which is a hydrate crystal not only contains moisture as water of crystallization, but can also contain moisture as adhering water due to moisture absorption, for example. Such a water-containing crystal is also included in the crystal of the present invention.
又、 水和物結晶でない本発明の結晶も、 例えば無水物結晶であっても、 例えば 吸湿による付着水として水分を含み含水結晶となりうる。 そのような含水結晶も 本発明の結晶に含まれる。  Moreover, even if the crystal of the present invention which is not a hydrate crystal is, for example, an anhydrous crystal, it can be converted to a water-containing crystal containing water as adhering water due to moisture absorption. Such a water-containing crystal is also included in the crystal of the present invention.
本発明の結晶の水分含有量は、 乾燥条件、 保存条件などにより必ずしも一定で はない。 しかし、 その水分含有量にかかわらず、 いずれも本発明の結晶に含まれ る。 水分含有量は、 力一ルフィッシャ一法など公知の方法に従って測定すること ができる。  The water content of the crystal of the present invention is not necessarily constant depending on drying conditions, storage conditions, and the like. However, regardless of the water content, all are included in the crystal of the present invention. The water content can be measured in accordance with a known method such as a forceful Fischer method.
本発明の結晶は、 例えば、 下記の工程を含む方法によって製造することができ る。  The crystal of the present invention can be produced, for example, by a method including the following steps.
(工程 1)  (Process 1)
式 (I) で表される化合物またはその製薬学的に許容される塩を適当な溶媒 A compound represented by formula (I) or a pharmaceutically acceptable salt thereof is used as an appropriate solvent.
(良溶媒) に溶解し、 必要に応じて濃縮する。 Dissolve in (good solvent) and concentrate if necessary.
(工程 2)  (Process 2)
工程 1で得られた式 (I) で表される化合物またはその製薬学的に許容される 塩を含有する溶液を、 例えば、 (1) 貧溶媒を加える、 または (2) 冷却する、 などの方法により過飽和状態に導き、 結晶を析出させる。  A solution containing the compound represented by the formula (I) obtained in step 1 or a pharmaceutically acceptable salt thereof, for example, (1) adding a poor solvent, or (2) cooling, etc. The method leads to a supersaturated state and precipitates crystals.
(工程 3)  (Process 3)
工程 2で析出した結晶を単離し、 乾燥させる。 また、 無水物結晶は、 溶媒和物結晶を脱溶媒させることによって製造すること もできる。 脱溶媒は、 加熱、 減圧などによって行うことができるが、 加熱による のが好ましい。 The crystals precipitated in step 2 are isolated and dried. Anhydrous crystals can also be produced by desolvating solvate crystals. Solvent removal can be performed by heating, reduced pressure, or the like, but is preferably by heating.
式 (I ) で表される化合物またはその製薬学的に許容される塩を含有する溶液 を濃縮する方法としては、 例えば、 ロータリーエバポレーターなどを用いて、 常 圧もしくは減圧下で、 加温しながら溶媒を蒸発させて濃縮する方法などが挙げら れる。  As a method for concentrating the solution containing the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof, for example, using a rotary evaporator or the like while heating at normal pressure or reduced pressure. Examples include a method of evaporating the solvent and concentrating.
式 (I ) で表される化合物またはその塩の良溶媒とは、 室温から沸点の範囲内 で本発明の化合物を良く溶解する溶媒を意味する。 良溶媒としては、 好ましくは、 室温での飽和溶解度が約 0 . l m g /以上である溶媒、 さらに好ましくは約 l m g Zm 1以上である溶媒などが挙げられる。 塩の形態をとらない式 (I ) で表さ れる化合物にとって、 このような良溶媒としては、 例えば、 メタノール、 ェタノ ール、 プロパノール、 ブタノ一ル、 ォクタノールなどの炭素数 1〜 8のァノレコ一 ル類、 ジメチノレスルホキシド、 ジメチノレホノレムアミ ド、 ホルムアミ ド、 ベンゾニ トリル、 ァセトニトリル、 酢酸ェチル、 ァセトン、 2—ブタノン、 テトラヒ ドロ フラン、 ジイソプロピルァミン、 ジクロロメタンなどが挙げられ、 好ましくは、 エタノーノレ、 プロパノール、 ブタノーノレ、 ジメチノレスノレホキシド、 ジメチノレホノレ ムアミ ド、 ホルムアミドまたはべンゾニトリルである。  The good solvent for the compound represented by the formula (I) or a salt thereof means a solvent that dissolves the compound of the present invention well within the range of room temperature to boiling point. The good solvent preferably includes a solvent having a saturated solubility at room temperature of about 0.1 mg / m or more, and more preferably a solvent of about l mg Zm 1 or more. For the compound represented by the formula (I) that does not take the form of a salt, examples of such a good solvent include methanol, ethanol, propanol, butanol, octanol and the like having 1 to 8 carbon atoms. And dimethylenolesulphoxide, dimethylenolenolemamide, formamide, benzonitrile, acetonitrile, ethyl acetate, acetone, 2-butanone, tetrahydrofuran, diisopropylamine, dichloromethane, etc., preferably ethanolol, Propanol, butanol, dimethinolesnoreoxide, dimethenolenole amide, formamide or benzonitrile.
式 (I ) で表される化合物またはその塩の貧溶媒とは、 用いられる良溶媒との 関係で規定され、 良溶媒と混和しうるが、.良溶媒と比較して本発明の化合物を溶 解し難い溶媒を意味する。 貧溶媒としては、 好ましくは室温での目的化合物の飽 和溶解度が良溶媒の 1 / 1 0以下である溶媒、 さらに好ましくは 1 1 0 0以下 である溶媒などが挙げられる。 塩の形態をとらない式 (I ) で表される化合物に おいて、 上記良溶媒を用いた場合、 このような貧溶媒としては、 例えば、 水、 ェ 一テル、 酢酸ィソプチノレ、 ブチノレアミン、 トルエン、 ァニソ一ル、 クロ口ホルム、 シク口へキサン、 へキサンなどが挙げられる。  The poor solvent of the compound represented by the formula (I) or a salt thereof is defined in relation to the good solvent used and can be miscible with the good solvent, but the compound of the present invention is dissolved in comparison with the good solvent. It means a solvent that is difficult to understand. Examples of the poor solvent include a solvent in which the saturation solubility of the target compound at room temperature is 1/10 or less of the good solvent, and a solvent in which 1100 or less is more preferable. When the above-mentioned good solvent is used in the compound represented by the formula (I) that does not take the form of a salt, examples of such a poor solvent include water, ether, isoptinole acetate, butinoreamine, toluene, Examples include anisol, black mouth form, mouth hexane, hexane and the like.
過飽和状態は、 例えば、 式 (I ) で表される化合物を加熱 (例えば、 6 0〜9 0 °C) した溶媒に溶解し、 必要に応じて濃縮して飽和溶液とし、 得られた飽和溶 液を徐々に冷却 (例えば、 0〜3 0 °Cまで) することによって達成することがで きる。 冷却前の式 (I ) で表される化合物またはその製薬学的に許容される塩の 濃度は、 飽和状態に達していなくても、 冷却によって過飽和状態とすることがで きる濃度であればよいが、.飽和状態であるのが好ましい。 The supersaturated state is obtained by, for example, dissolving a compound represented by the formula (I) in a solvent heated (for example, 60 to 90 ° C.) and concentrating as necessary to obtain a saturated solution. This can be achieved by gradually cooling the liquid (eg, from 0 to 30 ° C.). Of the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof before cooling The concentration may be any concentration that can be brought to a supersaturated state by cooling even if it does not reach a saturated state, but is preferably a saturated state.
また、 式 (I) で表される化合物またはその製薬学的に許容される塩を良溶媒 に溶解して飽和溶液とし、 得られた飽和溶液に貧溶媒を徐々に加えることによつ て過飽和状態とすることもできる。  In addition, the compound represented by the formula (I) or a pharmaceutically acceptable salt thereof is dissolved in a good solvent to obtain a saturated solution, and the resulting saturated solution is gradually added with a poor solvent to be supersaturated. It can also be in a state.
以下に、 本発明の結晶およびその製造方法について、 より具体的に説明する。  Hereinafter, the crystal of the present invention and the production method thereof will be described more specifically.
(式 (I一 1) で表される化合物の結晶) (Crystal of the compound represented by the formula (I-1))
式 (1 -1)  Formula (1 -1)
Figure imgf000014_0001
d-D
Figure imgf000014_0001
dD
で表される化合物の結晶は、 式 (I) で表される化合物の無水物結晶であり、 銅 の Κα線 (波長 λ = 54オングストローム) の照射で得られる粉末 X線回折 において、 回折角度 (26) =12. 4、 21. 8および 26. 3に、 より具体 的には回折角度 (20) =1 1· 4、 1 2. 4、 1 5. 3、 1 9. 1、 20. 2、 20. 8、 21. 8、 23. 6および 26·. 3に特徴的なピークを有する (後述 の装置 Αを用いて測定、 以下単に、 「装置 A」 と示す場合もある) 。 また、 前記 の結晶は、 示差走査熱量測定 (DSC) において、 約 210〜250°Cの範囲に 吸熱シグナルを有し、 吸熱ピーク温度は約 228〜234°Cである。 このような、 式 (I一 1) で表される化合物の結晶を、 「I型結晶」 と称することがある。 The crystal of the compound represented by formula (I) is an anhydrous crystal of the compound represented by the formula (I). In the powder X-ray diffraction obtained by irradiation with copper Κα rays (wavelength λ = 54 Å), the diffraction angle ( 26) = 12.4, 21.8 and 26.3, and more specifically diffraction angle (20) = 1 · 4, 1 2. 4, 1 5. 3, 1 9. 1, 20. 2 , 20. 8, 21.8, 23.6 and 26..3 (measured using the device 後 述 described later, hereinafter simply referred to as “device A”). Further, the crystal has an endothermic signal in the range of about 210 to 250 ° C. in the differential scanning calorimetry (DSC), and the endothermic peak temperature is about 228 to 234 ° C. Such a crystal of a compound represented by the formula (I 1 1) may be referred to as “type I crystal”.
I型結晶は無水物結晶であるが、 保存条件等により付着水として水分を含有し うる。 その水分量は、 乾燥条件、 保存条件などにより必ずしも一定ではない。 I 型結晶の水分量は、 通常、 室温下、 約 0〜 2. 5 %の範囲である。 このような I 型結晶は、 水分量にかかわらず、 いずれも本発明の式 (I一 1) で表される結晶 に含まれる。  Type I crystals are anhydrous crystals, but may contain water as adhering water depending on storage conditions. The amount of water is not always constant depending on drying conditions and storage conditions. The water content of type I crystals is usually in the range of about 0-2.5% at room temperature. Such I-type crystals are included in the crystal represented by the formula (I-1) of the present invention regardless of the amount of water.
I型結晶は、 例えば、 式 (I) で表される化合物を加熱 (例えば、 約 60°C) したジクロロメタンに溶解して飽和溶液とし、 得られた飽和溶液を徐々に冷却Type I crystals are, for example, heated compounds represented by formula (I) (for example, about 60 ° C) Dissolved in dichloromethane to obtain a saturated solution, and the obtained saturated solution was gradually cooled.
(例えば、 0〜1 0 °Cまで) し、 冷却した状態で放置 (例えば、 1〜2 0日) す ることにより製造することができる。 (For example, up to 0 to 10 ° C.) and allowed to stand in a cooled state (for example, 1 to 20 days).
また、 I型結晶は、 例えば、 式 (I ) で表される化合物の溶媒和物結晶を加熱 (例えば、 1 5 0〜 2 2 0 °C) などの方法により脱溶媒することによつて製造す ることもできる。 溶媒和物結晶としては、 例えば、 酢酸ェチル和物結晶、 ァニソ 一ル和物結晶、 ベンゾ-トリル和物結晶などを好適に用いることができ、 特に式 ( 1 - 3 ) で表される化合物の結晶、 式 (1—4 ) で表される化合物の結晶、 式 ( 1 - 5 ) で表される化合物の結晶が好ましい。 溶媒和物結晶は、 後述する方法 に従って製造することができる。 脱溶媒方法としては、 例えば、 加熱、 減圧など の方法が挙げられ、 加熱による方法が好ましい。 加熱温度としては、 通常約 1 5 0〜 2 0 0 °C、 好ましくは約 1 6 0〜 1 7 0 °Cである。 結晶化度が低い場合は、 加熱 (例えば、 約 2 1 0 °C) などの方法により、 結晶化度を上げることができる。 さらに、 I型結晶は、 例えば、 式 (I ) で表される化合物をエタノールに溶解 して得られた溶液 (好ましくは飽和溶液) に貧溶媒 (例えば、 ヘプタンなど) を 3 0 °C以下で添加して起晶させ、 製造することもできる。  In addition, the type I crystal is produced, for example, by removing the solvate crystal of the compound represented by the formula (I) by a method such as heating (for example, 1550-220 ° C). It can also be done. As the solvate crystal, for example, an ethyl acetate solvate crystal, an anisol solvate crystal, a benzo-tolyl solvate crystal and the like can be suitably used. A crystal, a crystal of a compound represented by the formula (1-4), or a crystal of a compound represented by the formula (1-5) is preferable. Solvate crystals can be produced according to the method described below. Examples of the solvent removal method include methods such as heating and reduced pressure, and a method using heating is preferred. The heating temperature is usually about 1550 to 2200 ° C, preferably about 1600 to 1700 ° C. When the degree of crystallinity is low, the degree of crystallinity can be increased by a method such as heating (for example, about 2 10 ° C). Furthermore, the type I crystal is obtained by, for example, adding a poor solvent (for example, heptane) to a solution obtained by dissolving the compound represented by the formula (I) in ethanol (preferably a saturated solution) at 30 ° C. or less. It can also be produced by adding crystallization.
I型結晶は、 高い保存安定性を有するので、 例えば、 医薬 (例えば、 糖輸送増 強作用剤、 血糖降下剤、 糖尿病治療剤など) 、 医薬品原薬などとして好適に用い ることができる。 また、 吸湿性が低いので、 例えば、 医薬品製造などに用いられ る標準品などとして好適に用いることができる。 .  Since type I crystals have high storage stability, they can be suitably used, for example, as drugs (for example, sugar transport enhancing agents, hypoglycemic agents, antidiabetic agents, etc.), drug substances, and the like. In addition, since it has low hygroscopicity, it can be suitably used as a standard product used for pharmaceutical production, for example. .
また、 I型結晶は、 水を加えることにより速やかに I I型結晶に転移させるこ とができるので、 I I型結晶の製造に用いることもできる。  In addition, since the type I crystal can be rapidly transferred to the type I I crystal by adding water, it can also be used for the production of the type I I crystal.
(式 (I一 2 ) で表される化合物の結晶) (Crystal of the compound represented by the formula (I 1 2))
式 ( 1 - 2 )
Figure imgf000016_0001
Formula (1-2)
Figure imgf000016_0001
■xH20 XH 2 0
(1-2)  (1-2)
(式中、 Xは前記と同じ意味を表す。 ) (In the formula, X represents the same meaning as described above.)
で表される化合物の結晶は、 式 (I ) で表される化合物の水和物結晶であり、 銅 の Κα線 (波長; 1= 1. 54オングストローム) の照射で得られる粉末 X線回折 において、 回折角度 (2 0) = 1 3. 6、 1 6. 1〜1 6. 2および 2 7. 4に 特徴的なピークを有する (後述の装置 Βを用いて測定、 以下単に 「装置 Β」 と示 す場合もある) 。 また示差走査熱量測定 (D S C) において、 約 1 9 0〜24 0°Cの範囲に吸熱シグナルを有し、 吸熱ピーク温度は約 204〜2 1 0°Cである。 このような、 式 (1— 2) で表される化合物の結晶を、 「I I型結晶」 と称する ことがある。 The crystal of the compound represented by formula (I) is a hydrate crystal of the compound represented by the formula (I). In the powder X-ray diffraction obtained by irradiation with copper Κα rays (wavelength; 1 = 1.54 angstrom) , Diffraction angle (2 0) = 1 3.6, 1 6. 1 to 1 6. 2 and 2 7.4 have characteristic peaks (measured using device 後 述 described later, hereinafter simply “device Β” May be indicated). In differential scanning calorimetry (DSC), it has an endothermic signal in the range of about 190 to 240 ° C, and the endothermic peak temperature is about 204 to 210 ° C. Such a crystal of the compound represented by the formula (1-2) may be referred to as “II type crystal”.
I I型結晶は水和物結晶であるが、 比較的結晶水の出入りが容易であり、 式 ( 1 -2) の Xの値は、 乾燥条件、 保存条件などにより必ずしも一定ではない。 Xは、 好ましくは 0. 6〜1であり、 より好ましくは 0. 7〜0. 9である。 .さらに I I型結晶は、 .最大限の結晶水 (x=.l) を含有する I I型結晶となつ ても、 さらに付着水として水分を含有することができる。 このような I I型結晶 の含水結晶も本発明の I I型結晶に含まれる。  I Although type I crystals are hydrate crystals, the crystal water is relatively easy to enter and exit, and the value of X in formula (1-2) is not necessarily constant depending on the drying conditions and storage conditions. X is preferably 0.6-1 and more preferably 0.7-0.9. Furthermore, even if the type I I crystal is a type I I crystal containing the maximum amount of crystal water (x = .l), it can further contain water as adhering water. Such a water-containing crystal of type I I crystal is also included in the type I I crystal of the present invention.
I I型結晶の水分量は通常約 0 %〜 1 2 %であり、 より好ましくは約 0〜 7 % の範囲であり、 特に約 3〜 5%が好ましい。 I I型結晶は、 室温下、 相対湿度約 40〜80%において、 水分量が約 3〜 5% (すなわち Xが約 0. 6〜1) 付近 で安定化する。  The water content of type I crystals is usually about 0% to 12%, more preferably about 0 to 7%, and particularly preferably about 3 to 5%. I Type I crystals stabilize at room temperature at a relative humidity of about 40-80% and a moisture content of about 3-5% (ie, X is about 0.6-1).
銅の Κα線 (波長 λ = 54オングストローム) の照射で得られる粉末 X線 回折に関してより詳細に説明する。 式 (I一 2) で表される化合物の結晶は、 そ の水分量が変化すると、 粉末 X線回折におけるピークの相対強度、 回折角度 (2 Θ) などは連続的に変化するが、 この変化は可逆的である。 なおこの変化の程度 はわずかなものであり、 いずれもほぼ同じパターンを示しているといえ、 結晶構 造は水分量の変化に対し安定である。 The powder X-ray diffraction obtained by irradiation with copper Κα rays (wavelength λ = 54 Å) will be described in more detail. When the moisture content of the compound represented by the formula (I 1 2) changes, the relative intensity of the peak in powder X-ray diffraction, the diffraction angle (2Θ), etc. change continuously. Is reversible. The extent of this change The crystal structure is stable to changes in the amount of water, even though they all show almost the same pattern.
水分量を約 0〜5%にした場合に (すなわち Xが約 0〜1. 0である場合に) 、 I I型結晶は、 回折角度 (2 Θ) =9. 7〜9. 8、 13. 6、 16. 1-16. 2、 19. 4〜19. 6、 20. 8〜20. 9、 22. 5〜22. 6およぴ 27. 4に特徴的なピ一クを示す (装置 Β) 。  When the water content is about 0-5% (ie, when X is about 0-1.0), the type II crystal has a diffraction angle (2Θ) = 9.7-7.9.8, 13. 6, 16. 1-16. 2, 19. 4-19. 6, 20. 8-20. 9, 22.5-22. 6 and 27.4 show characteristic peaks (device Β)
より具体的には、 水分量を約 3〜 5%にした場合に (すなわち Xが約 0. 6〜 1. 0である場合に) 、 回折角度 (26) =9. 8、 13. 6、 16. 1、 1 9. 6、 20. 8、 22. 6および 27. 4に特徴的なピークを有する (装置 Β) 。 又、 例えば水分量が約 0%である場合には回折角度 (2 Θ) =9. 7、 1 3. 6、 14. ◦、 16. 2、 19. 4、 19. 9、 20. 9、 22. 5および 27. 4 に特徴的なピークを有する (装置 Β) 。  More specifically, when the water content is about 3 to 5% (ie, when X is about 0.6 to 1.0), the diffraction angle (26) = 9.8,13.6, 16. Has characteristic peaks at 1, 1 9. 6, 20. 8, 22. 6 and 27.4 (apparatus Β). For example, when the water content is about 0%, the diffraction angle (2 Θ) = 9.7, 1 3. 6, 14. ◦, 16. 2, 19. 4, 19. 9, 20. 9. 2) Has characteristic peaks at 5 and 27.4 (apparatus Β).
このような I I型結晶は、 水分量にかかわらず、 いずれも本発明の式 (I— 2) で表される化合物の結晶に含まれる。  Such II type crystals are included in the crystal of the compound represented by the formula (I-2) of the present invention regardless of the amount of water.
I I型結晶は、 例えば、 式 ( I ) で表される化合物を加熱 (例えば、 約 70〜 80°C) した水または炭素数 1〜 8のアルコ一ノレ類 (例えば、 ェタノール、 無水 エタノール、 ブタノール) に溶解して飽和溶液とし、 得られた飽和溶液を徐々に 冷却 (例えば、 0〜30°Cまで) し、 冷却した状態で放置 (例えば、 1〜60 日) することにより製造することができる。 式 (I) で表される化合物を含有す る溶液を冷却した後、 さらに貧溶媒を添カ卩してもよい。  Type II crystals can be obtained by, for example, heating a compound represented by the formula (I) (eg, about 70 to 80 ° C.) or alcohol having 1 to 8 carbon atoms (eg, ethanol, absolute ethanol, butanol). ) To obtain a saturated solution, and the resulting saturated solution is gradually cooled (for example, to 0 to 30 ° C.) and allowed to stand in the cooled state (for example, 1 to 60 days). it can. After cooling the solution containing the compound represented by the formula (I), a poor solvent may be added.
また、 I I型結晶は、 例えば、 式 (I) で表される化合物を良溶媒に溶解して 飽和溶液とし、 得られた飽和溶液に徐々に貧溶媒を添加することにより製造する こともできる。 式 (I) で表される化合物を含有する溶液に貧溶媒を添加した後、 溶液を冷却 (例えば、 0〜 10 °c) してもよく、 冷却するのが好ましい。 さらに、 冷却した溶液を冷蔵保存 (例えば、 0〜 1◦でで 1〜 60日) するのが好ましレ、。 用いられる良溶媒としては、 メタノール、 エタノール、 プロパノール、 ジメチル スルホキシド、 ジメチルホルムアミドまたはホルムアミドなどが好ましい。 貧溶 媒としては、 水、 エーテル、 酢酸イソブチルなどが好ましい。  In addition, the I-type crystal can be produced, for example, by dissolving the compound represented by the formula (I) in a good solvent to obtain a saturated solution, and gradually adding a poor solvent to the obtained saturated solution. After the poor solvent is added to the solution containing the compound represented by the formula (I), the solution may be cooled (for example, 0 to 10 ° C.), and is preferably cooled. Furthermore, it is preferable to store the cooled solution refrigerated (for example, 1 to 60 days at 0 to 1 °). As the good solvent used, methanol, ethanol, propanol, dimethyl sulfoxide, dimethylformamide, formamide, or the like is preferable. As the poor solvent, water, ether, isobutyl acetate and the like are preferable.
さらに、 I I型結晶は、 例えば、 I型結晶に水を加えてスラリーにして I I型 結晶に転移させることによつても製造することができる。 また、 I I型結晶は、 例えば、 式 (I ) で表される化合物のトルエン和物結晶 に水を加えてスラリーにして I I型結晶に転移させることによつても製造するこ とができる。 Furthermore, the type II crystal can also be produced, for example, by adding water to the type I crystal to form a slurry to be transferred to the type II crystal. The type II crystal can also be produced, for example, by adding water to a toluene solvate crystal of the compound represented by the formula (I) to form a slurry and transferring it to a type II crystal.
さらに、 I I型結晶は、 例えば、 式 (I ) で表される化合物をエタノールに溶 解して得られた溶液 (好ましくは飽和溶液) に貧溶媒 (例えば、 ヘプタンなど) を 6 0 °Cで添加して起晶させ、 1 0 °Cまで冷却晶析することによつても製造する ことができる。  Furthermore, the type II crystal is obtained by, for example, adding a poor solvent (eg, heptane) at 60 ° C. to a solution (preferably a saturated solution) obtained by dissolving the compound represented by the formula (I) in ethanol. It can also be produced by adding crystallization and cooling crystallization to 10 ° C.
また、 I I型結晶は、 例えば、 式 (I ) で表される化合物の適当な溶媒和物結 晶を加熱などの方法により脱溶媒することによつて製造することもできうる。 さらに、 好ましい含水率を有する I I型結晶は、 例えば、 加熱乾燥等により水 を除いた I I型結晶に、 通常の条件下で、 好ましくは加湿条件下で、 保存して吸 湿を行わせることによつても、 好適に製造することができる。  The I type I crystal can also be produced, for example, by removing a suitable solvate crystal of the compound represented by the formula (I) by a method such as heating. Furthermore, a type II crystal having a preferred moisture content is obtained by allowing a type II crystal from which water has been removed by, for example, heat drying to store and absorb moisture under normal conditions, preferably under humidified conditions. Therefore, it can be suitably manufactured.
あるいは、 好ましい含水率を有する I I型結晶は、 含水率のより高い I I型結 晶を通常の条件化で、 好ましくは低湿度条件下で、 保存して放湿をさせることに よっても、 好適に製造することができる。  Alternatively, a type II crystal having a preferred moisture content can be suitably obtained by storing and releasing moisture of a type II crystal having a higher moisture content under normal conditions, preferably under low humidity conditions. Can be manufactured.
あるいは、 好ましい含水率を有する I I型結晶は、 含水率のより高い I I型結 晶を適当な程度まで加熱乾燥することにより、 好適に製造することができる。  Alternatively, a type I I crystal having a preferred water content can be suitably produced by heating and drying a type I I crystal having a higher water content to an appropriate level.
I I型結晶は、 高い保存安定性を有するので、 例えば、 医薬 (例えば、 糖輸送 増強作用剤、 血糖降下剤、 糖尿病治療剤など) 、 医薬品原薬などとして好適に用 いることができる。  Since type I crystals have high storage stability, they can be suitably used, for example, as pharmaceuticals (for example, sugar transport enhancing agents, hypoglycemic agents, antidiabetic agents, etc.), active pharmaceutical ingredients, and the like.
また、 I I型結晶は、 特に好ましい含水率の I I型結晶は、 通常の条件下 (例 えば、 医薬品製造時の環境下など) において、 水分量の変化が少ないので、 医薬 (例えば、 糖輸送増強作用剤、 血糖降下剤、 糖尿病治療剤など) 、 医薬品原薬な どとして特に好適に用いることができる。  In addition, type II crystals have a particularly favorable water content. Type II crystals have little change in water content under normal conditions (for example, in the environment during pharmaceutical production). Agents, antihyperglycemic agents, antidiabetic agents, etc.), and active pharmaceutical ingredients.
(式 (I一 3 ) で表される化合物の結晶) (Crystal of compound represented by formula (I 1 3))
式 (I一 3 )
Figure imgf000019_0001
Formula (I 1 3)
Figure imgf000019_0001
■1/2 CH3COOC2H5  ■ 1/2 CH3COOC2H5
(1-3)  (1-3)
で表される化合物の結晶は、 式 (I) で表される化合物の酢酸ェチル和物結晶で あり、 銅の Κα線 (波長 λ= 1. 54オングストローム) の照射で得られる粉末 X線回折において、 回折角度 (2 Θ) = 5. 8、 1 1. 6、 1 8. 4、 1 9. 5、 20. 5、 21. 0、 21. 9および 22. 8に特徴的なピークを有する (装置The crystal of the compound represented by formula (I) is an ethyl acetate solvate crystal of the compound represented by the formula (I), which is obtained by irradiation with copper Κ α rays (wavelength λ = 1.54 angstroms). Diffraction peaks (2Θ) = 5.8, 1 1. 6, 1 8. 4, 1 9.5, 20. 5, 21.0, 21.9 and 22.8 (apparatus
Β) 。 Β)
式 (I一 3) で表される化合物の結晶の水分量は、 乾燥条件、 保存条件などに より必ずしも一定ではない。  The water content of the crystal of the compound represented by the formula (I-13) is not necessarily constant depending on the drying conditions and storage conditions.
式 (I一 3) で表される化合物の結晶は、 例えば、 式 (I) で表される化合物 を加熱 (例えば、 約 50〜80°C) した酢酸ヱチルに溶解して飽和溶液とし、 得 られた飽和溶液を徐々に冷却 (例えば、 0〜30°Cまで) し、 冷却した状態で放 置 (例えば、 1〜7日) することにより製造することができる。  The crystal of the compound represented by the formula (I 1 3) is obtained by, for example, dissolving a compound represented by the formula (I) in ethyl acetate heated (for example, about 50 to 80 ° C.) to obtain a saturated solution. The obtained saturated solution is gradually cooled (for example, to 0 to 30 ° C.) and allowed to stand in the cooled state (for example, 1 to 7 days).
式 (I一 3) で表される化合物の結晶は、 加熱 (例えば、 約 160°C) するこ とによって脱溶媒し、 I型結晶に転移するので、 I型結晶の製造に用いることも できる。  The crystal of the compound represented by the formula (I-13) is desolvated by heating (for example, about 160 ° C.) and transitions to the I-type crystal. Therefore, it can be used for the production of the I-type crystal. .
(式 (I一 4) で表される化合物の結晶)(Crystal of compound represented by formula (I 1-4))
—4)  -Four)
Figure imgf000019_0002
Figure imgf000019_0002
■1/2 C6H5OCH3 ■ 1/2 C 6 H 5 OCH 3
(1-4)  (1-4)
で表される化合物の結晶は、 式 (I) で表される化合物のァ-ソ一ル和物結晶で あり、 銅の Ko!線 (波長 = 1. 54オングストローム) の照射で得られる粉末 X線回折において、 回折角度 (2 Θ) = 5. 8、 1 1. 6、 1 8. 4、 1 9. 3、 20. 4、 2 1. 0、 2 1. 8および 2 2. 8に特徴的なピークを有する (装置The crystal of the compound represented by formula (I) is a solvate crystal of the compound represented by formula (I). Yes, in powder X-ray diffraction obtained by irradiation of copper Ko! Line (wavelength = 1.54 angstroms), diffraction angle (2 Θ) = 5.8, 1 1. 6, 1 8. 4, 1 9. 3, 20. 4, 2 1. 0, 2 1. 8 and 2 2. 8
Β) 。 Β)
式 (I一 4) で表される化合物の結晶の水分量は、 乾燥条件、 保存条件などに より必ずしも一定ではない。  The water content of the crystal of the compound represented by the formula (I-14) is not necessarily constant depending on the drying conditions and storage conditions.
式 (I一 4) で表される化合物の結晶は、 例えば、 式 (I ) で表される化合物 を良溶媒に溶解して飽和溶液とし、 得られた飽和溶液に徐々にァニソ一ルを添カロ し、 製造することができる。 また、 ァ-ソール添加後、 冷蔵保存 (例えば、 0〜 1 0°〇で1〜6 0日) することにより製造することもできる。 用いられる良溶媒 としてはジメチルホルムァミドが好ましい。  The crystal of the compound represented by formula (I-14) is prepared by, for example, dissolving the compound represented by formula (I) in a good solvent to form a saturated solution, and gradually adding anisol to the obtained saturated solution. Can be produced. It can also be produced by refrigerated storage (for example, 0 to 10 ° C. for 1 to 60 days) after adding the sole. The good solvent used is preferably dimethylformamide.
式 (1— 3) で表される化合物の結晶は、 加熱 (例えば、 約 1 70°C) するこ とによって脱溶媒し、 I型結晶に転移するので、 I型結晶の製造に用いることも できる。  The crystal of the compound represented by the formula (1-3) is desolvated by heating (for example, about 170 ° C.) and transitions to the I-type crystal. Therefore, it can be used for the production of the I-type crystal. it can.
(式 ( 1 — 5) で表される化合物の結晶) (Crystal of compound represented by formula (1-5))
一 5)  1)
Figure imgf000020_0001
Figure imgf000020_0001
■1/2 C6H5CN ■ 1/2 C 6 H 5 CN
(1-5)  (1-5)
で表される化合物の結晶は、 式 (I) で表される化合物のベンゾ-トリル和物結 晶であり、 銅の Κα線 (波長 λ = 54オングストローム) の照射で得られる 粉末 X線回折において、 回折角度 (2 0) =6. 2、 1 2. 4、 1 7. 6、 1 8.The crystal of the compound represented by formula (I) is a benzo-tolyl hydrate crystal of the compound represented by the formula (I), and is obtained by powder X-ray diffraction obtained by irradiation with copper Κα rays (wavelength λ = 54 Å). , Diffraction angle (2 0) = 6. 2, 1 2. 4, 1 7. 6, 1 8.
2、 20. 2、 20. 4、 20. 8、 2 1. 3および 24. 2に特徴的なピーク を有する (装置 Β) 。 Has characteristic peaks at 2, 20. 2, 20. 4, 20. 8, 2 1. 3 and 24.2 (device 装置).
式 (I一 5) で表される化合物の結晶の水分量は、 乾燥条件、 保存条件などに より必ずしも一定ではない。 式 (I一 5) で表される化合物の結晶は、 例えば、 式 (I ) で表される化合物 を加熱 (例えば、 約 70〜 9 0°C) したべンゾニトリルに溶解して飽和溶液とし、 得られた飽和溶液を徐々に冷却 (例えば、 0〜1 0°Cまで) し、 冷却した状態で 放置 (例えば、 1〜30日) することにより製造することができる。 The water content of the crystal of the compound represented by the formula (I 1-5) is not necessarily constant depending on the drying conditions and storage conditions. The crystal of the compound represented by the formula (I 1-5) is, for example, dissolved in benzonitrile obtained by heating (for example, about 70 to 90 ° C.) the compound represented by the formula (I) to form a saturated solution, The obtained saturated solution can be gradually cooled (for example, to 0 to 10 ° C.) and allowed to stand in the cooled state (for example, for 1 to 30 days).
式 (1— 5) で表される化合物の結晶は、 加熱 (例えば、 約 1 70°C) するこ とによって脱溶媒し、 I型結晶に転移するので、 I型結晶の製造に用いることも できる。  The crystal of the compound represented by the formula (1-5) is desolvated by heating (for example, about 170 ° C.) and transitions to the type I crystal. Therefore, it can be used for the production of the type I crystal. it can.
(式 (I一 6) で表される化合物の結 (Formula (I 1-6)
一 6)  1)
Figure imgf000021_0001
Figure imgf000021_0001
■C4H80 ■ C 4 H 8 0
(1-6)  (1-6)
で表される化合物の結晶は、 式 (I) で表される化合物のテトラヒドロフラン和 物結晶であり、 銅の Κα線 (波長え = 1. 54オングストローム) の照射で得ら れる粉末 X線回折において、 回折角度 (2 Θ) = 7. 1、 1 4. 4、 1 9. 9、 2 1. 3、 22. 5および 2 3. 7に特徴的なピークを有する (装置 Α) 。 The crystal of the compound represented by formula (I) is a tetrahydrofuran hydrate crystal of the compound represented by formula (I). In the powder X-ray diffraction obtained by irradiation with copper Κα rays (wavelength = 1.54 angstroms). Diffraction angle (2Θ) = 7.1, 14.4, 19.9, 21.3, 22.5 and 23.7 have characteristic peaks (apparatus Α).
式 (1—6) で表される化合物の結晶の水分量は、 乾燥条件、 保存条件などに より必ずしも一定ではない。  The amount of water in the crystal of the compound represented by formula (1-6) is not necessarily constant depending on the drying conditions and storage conditions.
式 (1—6) で表される化合物の結晶は、 例えば、 式 (I ) で表される化合物 を加熱 (例えば、 約 5 5〜 7 5°C) したべンゾニトリルに溶解して飽和溶液とし、 得られた飽和溶液を徐々に冷却 (例えば、 0〜 30 °Cまで) し、 冷却した状態で 放置 (例えば、 1〜30日) することにより製造することができる。  The crystal of the compound represented by the formula (1-6) is, for example, dissolved in benzonitrile obtained by heating the compound represented by the formula (I) (for example, about 55 to 75 ° C) to form a saturated solution. The obtained saturated solution can be gradually cooled (for example, to 0 to 30 ° C.) and allowed to stand in the cooled state (for example, for 1 to 30 days).
(式 (I一 7) で表される化合物の結晶) (Crystal of the compound represented by the formula (I-7))
式 (1— 7)
Figure imgf000022_0001
Formula (1-7)
Figure imgf000022_0001
" C6H5CH3  "C6H5CH3
(1-7)  (1-7)
で表される化合物の結晶は、 式 (I) で表される化合物のトルエン和物結晶であ り、 銅の Kひ線 (波長; 1=1. 54オングストローム) の照射で得られる粉末 X 線回折において、 回折角度 (2 Θ) =5. 9、 8. 3、 11. 8、 14. 5、 1 8. 5、 21. 3, 22. 9 および 29. 6に特徴的なピークを有する (装置 A) 。 The crystal of the compound represented by the formula is a toluene solvate crystal of the compound represented by the formula (I), and is obtained by powder X-rays obtained by irradiation with copper K-wire (wavelength; 1 = 1.54 angstrom). In diffraction, diffraction angles (2 Θ) = 5.9, 8. 3, 11. 8, 14.5, 1 8.5, 21. 3, 22. 9 and 29.6 have characteristic peaks ( Device A).
式 (I一 7) で表される化合物の結晶の水分量は、 乾燥条件、 保存条件などに より必ずしも一定ではない。  The moisture content of the crystal of the compound represented by the formula (I-7) is not necessarily constant depending on the drying conditions and storage conditions.
式 (I一 7) で表される化合物の結晶は、 例えば、 式 (I) で表される化合物 をエタノールに溶解して得られた溶液 (好ましくは飽和溶液) にトルエンを添加 して起晶させた後、 冷却晶析 (例えば、 1 0 °cまで) することにより製造するこ とができる。  Crystals of the compound represented by the formula (I-7) are obtained by adding toluene to a solution (preferably a saturated solution) obtained by dissolving the compound represented by the formula (I) in ethanol. Then, it can be produced by cooling crystallization (for example, up to 10 ° C.).
式 (I一 7) で表される化合物の結晶は、 水を加えることにより I I型結晶に 転移させることができるので、 I I型結晶の製造に用いることができる。  Since the crystal of the compound represented by the formula (I 17) can be transferred to the II type crystal by adding water, it can be used for the production of the II type crystal.
なお、 本発明において、 粉末 X線回折パターンの回折角 .(2 Θ) のピーク値お よび相対強度値は、 実験誤差を許容しうる。 より具体的には、 本発明に記載され る 20の値は同一測定条件下において士 0. 2の範囲で正確である。 すなわち、 ある結晶が本発明に係る結晶であるかどうかを認定する際に、 その結晶について 実験的に得られた 2 Θ 1S 本発明結晶の特徴的なピークの 26値の ± 0. 2の範 囲内にあれば、 同じピークと認められる。  In the present invention, the peak value and the relative intensity value of the diffraction angle. (2Θ) of the powder X-ray diffraction pattern can allow an experimental error. More specifically, the 20 values described in the present invention are accurate in the range of 0.2 under the same measurement conditions. That is, when determining whether or not a crystal is a crystal according to the present invention, the range of ± 0.2 of the 26 values of the characteristic peak of 2 Θ 1S crystal of the present invention obtained experimentally for the crystal. If it is within the range, it is recognized as the same peak.
2. 本発明の結晶を含有する医薬 2. A medicine containing the crystal of the present invention
本発明の式 (I) で表される化合物またはその製薬学的に許容される塩は、 優 れた糖輸送増強作用、 血糖降下作用などを有するので、 本発明の結晶は、 糖輸送 増強作用剤;血糖降下剤;糖尿病、 糖尿病性末梢神経障害、 糖尿病性腎症、 糖尿 病性網膜症、 糖尿病性大血管症、 耐糖能異常、 もしくは肥満症の予防および/ま たは治療薬などの医薬として有用である。 Since the compound represented by the formula (I) of the present invention or a pharmaceutically acceptable salt thereof has excellent sugar transport enhancing action, hypoglycemic action, etc., the crystal of the present invention has a sugar transport enhancing action. Agent; hypoglycemic agent; diabetes, diabetic peripheral neuropathy, diabetic nephropathy, diabetes It is useful as a medicine for the prevention and / or treatment of pathologic retinopathy, diabetic macroangiopathy, impaired glucose tolerance, or obesity.
本発明の結晶を医薬として使用する場合には、 それ自体または医薬組成物とし て、 例えば、 経口、 非経口、 静脈、 口内、 直腸、 膣、 経皮、 鼻腔経路経由または 吸入経由ですることができるが、 経口的に投与するのが好ましい。 経口投与のた めの医薬組成物としては、 錠剤 (糖衣錠、 コーティング錠、 有核錠、 舌下錠、 口 腔内貼付錠、 口腔内崩壊錠を含む) 、 丸剤、 カプセル剤 (ハードカプセル、 ソフ トカプセル、 マイクロカプセルを含む) 、 散剤、 顆粒剤、 細粒剤、 トローチ剤、 液剤 (シロップ剤、 乳剤、 懸濁剤を含む) などが挙げられる。 非経口投与のため の医薬組成物としては、 注射剤、 クリーム剤、 軟膏剤、 坐剤などが挙げられる。 このような医薬組成物は、 例えば、 製薬学的に許容される賦形剤、 担体などと混 合し、 常法に従って製造することができる。  When the crystal of the present invention is used as a medicine, it can be used as a pharmaceutical composition, for example, orally, parenterally, intravenously, buccally, rectally, vaginally, transdermally, via the nasal route or via inhalation. Although it can, it is preferably administered orally. Pharmaceutical compositions for oral administration include tablets (including sugar-coated tablets, coated tablets, dry-coated tablets, sublingual tablets, intraoral patches, orally disintegrating tablets), pills, capsules (hard capsules, soft capsules) , Capsules, microcapsules), powders, granules, fine granules, troches, liquids (including syrups, emulsions and suspensions). Examples of the pharmaceutical composition for parenteral administration include injections, creams, ointments, suppositories and the like. Such a pharmaceutical composition can be produced, for example, by mixing with a pharmaceutically acceptable excipient, carrier, etc. according to a conventional method.
製薬学的に許容される賦形剤、 担体などとしては、 例えば、 固形製剤における 賦形剤、 結合剤、 崩壌剤、 滑沢剤;液状製剤における溶剤、 溶解補助剤、 懸濁ィ匕 剤、 緩衝剤、 増粘剤、 乳化剤などがあげられる。 また、 必要に応じて、 着色剤、 せ味剤、 抗酸化剤などの製剤添加剤も用いることができる。  Examples of pharmaceutically acceptable excipients and carriers include, for example, excipients in solid preparations, binders, disintegrating agents, lubricants; solvents in liquid preparations, solubilizers, suspending agents. , Buffers, thickeners, emulsifiers, etc. In addition, formulation additives such as coloring agents, seasonings, and antioxidants can be used as necessary.
賦形剤としては、 例えば、 乳糖、 白糖、 D—マンニトール、 D—ソルビトール、 デンプン、 ひ化デンプン、 デキストリン、 結晶セルロース (例えば、 微結晶セル ロースなど) 、 低置換度ヒ ドロキシプロピルセルロース、 カルボキシメチルセル ロースナトリウム、 アラビアゴム、 デ.キストリン、 プルラン、. 軽質無水ケィ酸、 合成ケィ酸アルミニウム、 メタケイ酸アルミン酸マグネシウムなどが挙げられる。 結合剤としては、 例えば、 α化デンプン、 ショ糖、 ゼラチン、 マクロゴール、 アラビアゴム、 メチルセルロース、 カルボキシメチルセルロース、 カルボキシメ チルセルロースナトリウム、 結晶セルロース、 白糖、 D—マンニトール、 トレハ ロース、 デキストリン、 プルラン、 ヒ ドロキシプロピルセルロース (H P C ) 、 ヒ ドロキシプロピルメチルセルロース (H P MC) 、 ポリビニルピロリ ドン (Ρ Examples of excipients include lactose, sucrose, D-mannitol, D-sorbitol, starch, arsenic starch, dextrin, crystalline cellulose (for example, microcrystalline cellulose), low-substituted hydroxypropylcellulose, carboxy Examples include methylcellulose sodium, gum arabic, dextrin, pullulan, light anhydrous carboxylic acid, synthetic aluminum silicate and magnesium aluminate metasilicate. Examples of binders include pregelatinized starch, sucrose, gelatin, macrogol, gum arabic, methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, crystalline cellulose, sucrose, D-mannitol, trehalose, dextrin, pullulan, hydrange Droxypropylcellulose (HPC), Hydroxypropylmethylcellulose (HP MC), Polyvinylpyrrolidone (Ρ
V P ) などが挙げられる。 V P).
崩壊剤としては、 例えば、 乳糖、 白糖、 デンプン、 カルボキシメチルセルロー ス、 カノレポキシメチノレセノレロースカルシウム、 架橋ポリビニノレピロリ ドン、 力ノレ メロースナトリウム、 クロスカルメロースナトリウム、 カノレボキシメチノレスター チナトリウム、 軽質無水ケィ酸、 低置換度ヒドロキシプロピルセルロース、 陽ィ オン交換樹脂、 部分 α化でんぷん、 トウモロコシデンプンなどがあげられる。 滑沢剤としては、 例えば、 ステアリン酸、 ステアリン酸マグネシウム、 ステア リン酸カルシウム、 タノレク、 ワックス類、 コロイ ドシリカ、 D L—ロイシン、 ラ ゥリル硫酸ナトリウム、 ラウリル硫酸マグネシウム、 マクロゴール、 エアロジル などがあげられる。 Disintegrants include, for example, lactose, sucrose, starch, carboxymethyl cellulose, canolepoxymethinorescenellose calcium, cross-linked polyvinylino pyrrolidone, force norellose sodium, croscarmellose sodium, canoleboxoxymethinorester These include sodium sodium, light anhydrous caustic acid, low-substituted hydroxypropyl cellulose, cation exchange resin, partially pregelatinized starch, and corn starch. Examples of the lubricant include stearic acid, magnesium stearate, calcium stearate, tanolec, waxes, colloidal silica, DL-leucine, sodium lauryl sulfate, magnesium lauryl sulfate, macrogol, and aerosil.
溶剤としては、 例えば、 注射用水、 生理的食塩水、 リンゲル液、 アルコール、 プロピレングリコール、 ポリエチレングリコール、 中鎖脂肪酸トリグリセリ ド (MC T) 、 植物油 (例えば、 サフラワー油、 ゴマ油、 トウモロコシ油、 オリー ブ油、 綿実油、 大豆レシチンなど) などがあげられる。  Solvents include, for example, water for injection, physiological saline, Ringer's solution, alcohol, propylene glycol, polyethylene glycol, medium chain fatty acid triglyceride (MCT), vegetable oil (eg safflower oil, sesame oil, corn oil, olive oil) Cottonseed oil, soy lecithin, etc.).
溶解補助剤としては、 例えば、 ポリエチレングリコール、 プロピレングリコー ル、 D—マンニトール、 トレノヽロース、 安息香酸ベンジル、 エタノール、 トリス ァミノメタン、 コレステロール、 トリエタノールァミン、 炭酸ナトリウム、 タエ ン酸ナトリウム、 サリチル酸ナトリウム、 酢酸ナトリウムなどがあげられる。 懸濁化剤としては、 例えば、 ステアリルトリエタノールァミン、 ラウリル硫酸 ナトリウム、 ラウリルアミノプロピオン酸、 レシチン、 塩化ベンザルコニゥム、 塩化べンゼトニゥム、 モノステアリン酸グリセリンなどの界面活性剤;例えばポ リビニノレアノレコーノレ、 ポリビニノレピロリ ドン、 カノレボキシメチノレセノレロースナト リウム、 メチノレセ /レロース、 ヒ ドロキシメチ /レセノレロース、 ヒ ドロキシェチノレセ ルロース、 ヒ ドロキシプロピルセル口 スなどの親水性高分子.;ポリソルベート 類、 ポリオキシェチレン硬化ヒマシ油などがあげられる。  Examples of solubilizers include polyethylene glycol, propylene glycol, D-mannitol, trenosylose, benzyl benzoate, ethanol, trisaminomethane, cholesterol, triethanolamine, sodium carbonate, sodium tamate, sodium salicylate, Examples thereof include sodium acetate. Examples of the suspending agent include surfactants such as stearyltriethanolamine, sodium lauryl sulfate, laurylaminopropionic acid, lecithin, benzalkonium chloride, benzethonium chloride, and glyceryl monostearate; Hydrophilic polymers such as Polyvinylenopyrrolidone, Canoleboxymethinoresenorelose sodium, Metinorece / Rerose, Hydroxymethy / Recenorelose, Hydroxy Shetinorecellulose, Hydroxypropyl Cellulose; Polysorbates And polyoxyethylene hydrogenated castor oil.
緩衝剤としては、 例えば、 リン酸塩、 酢酸塩、 炭酸塩、 クェン酸塩などの緩衝 液などがあげられる。  Examples of the buffer include buffer solutions such as phosphate, acetate, carbonate, citrate, and the like.
増粘剤としては、 例えば、 天然ガム類、 セルロース誘導体などがあげられる。 乳化剤としては、 例えば、 脂肪酸エステル類 (例えば、 ショ糖脂肪酸エステル、 グリセリン脂肪酸エステル、 ソルビタン脂肪酸エステル、 プロピレングリコール 脂肪酸エステルなど) 、 ワックス (例えば、 ミツロウ、 菜種水素添加油、 サフラ ヮー水素添加油、 パーム水素添加油、 シトステロール、 スチグマステロール、 力 ンぺステロール、 ブラシカステロール、 カカオ脂粉末、 カルナゥバロウ、 ライス ワックス、 モクロウ、 パラフィンなど) 、 レシチン (例えば、 卵黄レシチン、 大 豆レシチンなど) などがあげられる。 Examples of the thickener include natural gums and cellulose derivatives. Examples of the emulsifier include fatty acid esters (for example, sucrose fatty acid ester, glycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, etc.), wax (for example, beeswax, rapeseed hydrogenated oil, safra-hydrogenated oil, palm Hydrogenated oil, sitosterol, stigmasterol, force mpesterol, brush casterol, cacao butter powder, carnauba wax, rice wax, molasses, paraffin, etc.), lecithin (eg egg yolk lecithin, large Bean lecithin).
着色剤としては、 例えば、 水溶性食用タール色素 (例、 食用赤色 2号おょぴ 3 号、 食用黄色 4号および 5号、 食用青色 1号おょぴ 2号などの食用色素、 水不溶 性レーキ色素 (例、 前記水溶性食用タール色素のアルミニウム塩など) 、 天然色 素 (例、 J3—力ロチン、 クロロフィル、 ベンガラなど) などがあげられる。  Examples of colorants include water-soluble edible tar dyes (eg, edible red No. 2 oppi 3, edible yellow No. 4 and 5, edible blue No. 1 oppi No. 2, etc., water insoluble Lake pigments (eg, aluminum salts of the above-mentioned water-soluble edible tar pigments), natural pigments (eg, J3—power rotin, chlorophyll, bengara, etc.).
甘味剤としては、 例えば、 ショ糖、 乳糖、 サッカリンナトリウム、 グリチルリ チン酸二カリウム、 アスパルテーム、 ステビアなどがあげられる。  Examples of the sweetening agent include sucrose, lactose, sodium saccharin, dipotassium glycyrrhizinate, aspartame, stevia and the like.
抗酸化剤としては、 例えば、 亜硫酸塩、 ァスコルビン酸及びそれらのアルカリ 金属塩、 アル力リ土類金属塩などがあげられる。  Examples of the antioxidant include sulfite, ascorbic acid and alkali metal salts thereof, alkaline earth metal salts, and the like.
錠剤、 顆粒剤、 細粒剤などに関しては、 味のマスキング、 光安定性の向上、 外 観の向上あるいは腸溶性などの目的のため、 コーティング基材を用いて自体公知 の方法でコーティングしてもよい。 そのコーティング基剤としては、 糖衣基剤、 水溶性フィルムコーティング基材、 腸溶性フィルムコーティング基材などがあげ られる。  Tablets, granules, fine granules, etc. can be coated by a known method using a coating substrate for the purpose of masking taste, improving light stability, improving appearance or enteric properties, etc. Good. Examples of the coating base include a sugar coating base, a water-soluble film coating base, and an enteric film coating base.
糖衣基剤としては、 例えば、 白糖があげられ、 さらにタルク、 沈降炭酸カルシ ゥム、 ゼラチン、 アラビアゴム、 プルラン、 カルナバロウなどから選ばれる 1種 または 2種以上を併用してもよい。  Examples of the sugar coating base include sucrose, and one or more kinds selected from talc, precipitated calcium carbonate, gelatin, gum arabic, pullulan, carnauba wax and the like may be used in combination.
水溶性フィルムコーティング基剤としては、 例えば、 ヒドロキシプロピルセル ロース (H P C ) 、 ヒ ドロキシプロピルメチルセルロース (H PMC ) 、 ェチノレ セノレロース、 ヒ ドロキシェチノレセノレロース、 メチノレヒ ドロキシェチノレセノレロース などのセルロース系高分子;ポリビエルァセタールジェチルァミノアセテート、 アミノアルキルメタァクリレートコポリマー E (オイ ドラギッ ト E (登録商 標) ) ポリビニルピロリ ドンなどの合成高分子;プルランなどの多糖類などがあ げられる。  Examples of water-soluble film coating bases include celluloses such as hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), ethinore senorelose, hydroxenochinoselenose, and methino lech dorochichinenoselenose. Polymers: Polyvinylacetal Jetylaminoacetate, Aminoalkyl methacrylate copolymer E (Eudragit E (registered trademark)) Synthetic polymers such as polyvinylpyrrolidone; Polysaccharides such as pullulan I can get lost.
腸溶性フィルムコーティング基剤としては、 例えば、 ヒドロキシプロピルメチ ノレセノレロースフタレート、 ヒドロキシプロピノレメチノレセノレロースァセテ一トサク シネート、 カルポキシメチルェチルセルロース、 酢酸フタル酸セルロースなどの セルロース系高分子;メタアクリル酸コポリマー L (オイドラギット L (登録商 標) ) 、 メタアクリル酸コポリマー L D (オイ ドラギット L一 3 0 D 5 5 (登録 商標) ) メタアクリル酸コポリマー S (オイドラギット S (登録商標) ) などの アタリル酸系高分子;セラックなどの天然物などがあげられる。 Examples of enteric film coating bases include cellulosic polymers such as hydroxypropylmethylenorerose phthalate, hydroxypropinoremethylolosenolose acetate succinate, carboxymethylethyl cellulose, and cellulose acetate phthalate; Methacrylic acid copolymer L (Eudragit L (registered trademark)), Methacrylic acid copolymer LD (Eudragit L 1 3 0 D 5 5 (registered trademark)) Methacrylic acid copolymer S (Eudragit S (registered trademark)), etc. Talaric acid polymers; natural products such as shellac.
これらのコーティング基剤は、 単独で、 または 2種以上を適宜の割合で混合し てコーティングしてもよく、 また 2種以上を順次コーティングしてもよい。 本発明の医薬における本発明の結晶の含有量は、 通常 0. 01重量%〜100 重量%、 好ましくは 1〜 99重量%である。  These coating bases may be coated singly or as a mixture of two or more kinds in an appropriate ratio, or two or more kinds may be sequentially coated. The content of the crystal of the present invention in the medicament of the present invention is usually 0.01 to 100% by weight, preferably 1 to 99% by weight.
また、 本発明の医薬に有効成分として含有される、 本発明の化合物において、 本発明の結晶の形態をとるものの割合は、 好ましくは 50 %以上であり、 より好 ましくは 95 %以上であり、 特に好ましくは 98 %以上である。  In the compound of the present invention contained as an active ingredient in the medicament of the present invention, the proportion of the compound of the present invention that takes the form of crystals is preferably 50% or more, more preferably 95% or more. Particularly preferably, it is 98% or more.
本発明の結晶の投与量は、 本発明の結晶の糖輸送増強作用、 血糖降下作用など の有効量の範囲内であればよく、 対象疾患、 投与対象、 投与方法、 症状などによ つても異なるが、 通常、 体重 l k g当たり、 1日につき、 約 0. 001〜約 10 0 Omgである。  The dose of the crystal of the present invention may be within the range of the effective amount of the crystal of the present invention, such as a sugar transport enhancing action and a hypoglycemic action, and also varies depending on the target disease, administration subject, administration method, symptoms, etc. However, it is usually from about 0.001 to about 100 Omg per day per kilogram of body weight.
より具体的には、 例えば、 糖尿病の治療の目的で、 糖尿病患者に、 経口的に投 与する場合、 体重 1 k g当たり、 1日につき、 本発明の結晶を約 0. 01〜10 0 m g、 好ましくは 0. 05〜50mg、 より好ましくは、 0. :!〜 10mg投 与する。 非経口的に投与する場合、 体重 l k g当たり、 1日につき、 本発明の結 晶を約 0. 001~5 Omg、 好ましくは 0. 005〜2 Omg、 より好ましく は、 0. 01〜: 1 Omg投与する。 実施例.  More specifically, for example, when administered orally to a diabetic patient for the purpose of treating diabetes, about 0.01 to 100 mg of crystals of the present invention per day per kg of body weight, Preferably, 0.05 to 50 mg, more preferably 0.:! To 10 mg is applied. When administered parenterally, per day per kilogram of body weight, the crystals of the present invention are about 0.001 to 5 Omg, preferably 0.005 to 2 Omg, more preferably 0.01 to 1 Omg. Administer. Example.
以下に実施例によって本発明をより具体的に説明するが、 本発明はこれらに限 定されるものではない。  The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[分析条件] [Analysis conditions]
以下の実施例おょぴ試験例における分析は、 下記の測定装置を用いて、 常法に 従って行った。  The analysis in the following examples and test examples was conducted according to a conventional method using the following measuring apparatus.
(1) 粉末 X線結晶回折  (1) Powder X-ray crystal diffraction
装置 A: Device A:
日本フィリップス株式会社 (現在、 スぺク トリス株式会社) X' PERT— M PD あるいは Nippon Philips Co., Ltd. (currently Spectris Co., Ltd.) X 'PERT— M PD Or
装置 B : Device B:
株式会社リガク R I NT 21 00 S (および同装置用の温湿度アタッチメン 卜) Rigaku Co., Ltd. R I NT 21 00 S
湿度コントローラー:神栄株式会社 SRH—1R  Humidity controller: Shinei Co., Ltd. SRH-1R
乾燥条件:試料を減圧乾燥しつつ測定  Drying conditions: measured while drying the sample under reduced pressure
湿気条件:飽和塩溶液を置き調湿し測定  Humidity conditions: Measure humidity by placing saturated salt solution
(2) 示差走査熱量測定  (2) Differential scanning calorimetry
装置:セィコーィンスツル株式会社 (S e i k o I n s t r ume n t s I n c. ) DSC6200 Equipment: Seiko Instruments Inc. (Seiko Instr ume n ts In c.) DSC6200
リファレンス :空のアルミパン  Reference: Empty aluminum pan
サンプリング時間: 0. 2秒 Sampling time: 0.2 seconds
昇温速度: 10°CZ分 Temperature increase rate: 10 ° CZ min
(3) 水蒸気吸脱着測定  (3) Water vapor adsorption / desorption measurement
装置: 日本ベル株式会社 BELSORP— 18 Equipment: Nippon Bell Co., Ltd. BELSORP— 18
(4) 一 NMRおよび13 C— NMR (4) One NMR and 13 C-NMR
装置: ブルカー (BRUKER) AVANCE 400 Equipment: Bruker AVANCE 400
パリアン (VAR I AN) MARCURY 300  PARIAN (VAR I AN) MARCURY 300
(5) E S I—MS  (5) E S I—MS
装置:サーモクエスト (Th e rmo Qu e s t) TSQ 700、 あるいは、 日本ウォーターズ Z Q 2000 Device: Thermo Quest TSQ 700 or Nihon Waters Z Q 2000
[参考例 1 ] [Reference Example 1]
(1R, 8R,皿) - 9 - (2-ヒドロキシァセチル) - 8-フエニル- 2, 5, 9-トリァザトリシク 口 [8.4.0.03'7]テトラデカ- 3 (7) -ニン- 6-オン (式 ( I ) で表される化合物) の 合成 (1R, 8R, dish)-9-(2-hydroxyacetyl)-8-phenyl-2,5,9-triazatrisic [8.4.0.0 3 ' 7 ] tetradeca-3 (7) -nin-6-one Synthesis of (compound represented by formula (I))
(工程 1) 4ーヒドロキシー 2—ォキソ一 2, 5—ジヒドロー 1 H—ピロール —3—力ルボン酸 メチルエステルの合成  (Step 1) Synthesis of 4-hydroxy-2-oxo-1, 2, 5-dihydro-1 H-pyrrole-3-strong rubonic acid methyl ester
攪拌機を備えた 150L反応槽に、 酢酸メチル 29.3L、 マロン酸モノェチルエス テルモノカリウム塩 4500g (26.44mol) 、 グリシンェチルエステル塩酸塩 3690g (26. 4½ol) を加えた。 洗い込みに酢酸メチル 2. 25L を使用した。 この混合物 を 32 °Cに昇温後ジシクロへキシルカルポジイミ ド 5490g (含量 99. 4%, 26. 45raol) を酢酸メチル 2. 51L に溶解させたものを 1時間 1 9分かけて加えた。 洗い込みに酢酸メチル 0. 90Lを使用した。 30°Cで 20時間攪拌後析出した固体を 遠心分離機で分離し、 30°Cの酢酸メチル 18Lで洗浄した。 In a 150 L reactor equipped with a stirrer, 29.3 L of methyl acetate, 4500 g (26.44 mol) of monoethyl ester monomalate malonate, 3690 g of glycine ethyl ester hydrochloride (26.4½ ol) was added. 2.25 L of methyl acetate was used for washing. The mixture was heated to 32 ° C, and 5490 g (99.4%, 26. 45 raol) of dicyclohexyl carpositimide dissolved in 2.51 L of methyl acetate was added over 1 hour and 19 minutes. . For washing, 0.90 L of methyl acetate was used. After stirring at 30 ° C for 20 hours, the precipitated solid was separated by a centrifuge and washed with 18 L of methyl acetate at 30 ° C.
ろ過液を液量が 27. 3Lになるまで減圧濃縮後メタノール 22. 5Lを加え、 液量が 13. 5Lになるまで減圧濃縮した。 さらにメタノール 22. 5Lを加え、 液量が 15Lに なるまで減圧濃縮後、 メタノール 31. 06Lを加えた。 この溶液に 60°Cで 28%ナト リ ウムメ トキシド /メタノール溶液 5. 48L (26. 98mol ) を加え、 メタノール 10. 62L で洗い込んだ。 64°Cで 5 時間攪拌後 30°Cに冷却、 2M 塩酸 15. 96L (31. 89mol) を添加した。 30°Cで 16 時間攪拌後析出した固体を遠心分離機で分 離し、 30°Cのメタノール水溶液(70%v/v) 21. 31Lで洗浄した。 得られた湿固体を 60°Cで 19時間減圧乾燥し、 表題化合物 3487gを得た。  The filtrate was concentrated under reduced pressure until the liquid volume reached 27.3 L, 22.5 L of methanol was added, and the filtrate was concentrated under reduced pressure until the liquid volume reached 13.5 L. Further, 22.5 L of methanol was added, and after concentration under reduced pressure until the liquid volume became 15 L, 31.06 L of methanol was added. To this solution was added 5.48 L (26.98 mol) of a 28% sodium methoxide / methanol solution at 60 ° C, and the mixture was washed with 10.62 L of methanol. After stirring at 64 ° C for 5 hours, the mixture was cooled to 30 ° C and 15.96 L (31. 89 mol) of 2M hydrochloric acid was added. The solid precipitated after stirring at 30 ° C for 16 hours was separated by a centrifuge and washed with 21.31 L of a 30 ° C aqueous methanol solution (70% v / v). The obtained wet solid was dried under reduced pressure at 60 ° C. for 19 hours to obtain 3487 g of the title compound.
¾ NMR (400MHz, DMS0_d6): δ 3. 63 (s, 3H, methyl ester) , 3. 84 (s, 2H, 5— CH2) . ¾ NMR (400MHz, DMS0_d 6) : δ 3. 63 (s, 3H, methyl ester), 3. 84 (s, 2H, 5- CH2).
ESI-MS : ra/z 158 (M+H) +, 156 (M-H) -  ESI-MS: ra / z 158 (M + H) +, 156 (M-H)-
(工程 2 ) 4 - [ ( 1 R , 2 R ) 一 2—ァミノシクロへキシルァミノ]一 3—ピ 口リン一 2—オン塩酸塩の合成 (Step 2) 4-[(1 R, 2 R) 1 -2-aminocyclohexylamino] 1-3-ringoline 1-one hydrochloride synthesis
ジメチルホルムァミド 4. 5Lに工程 1で得られた化合物 600gを加え、 ジメチル ホルムアミド 0. 3Lで洗い込んだ。 この混合物を 100°Cに昇温後水 103ml を滴下 し 1 0分間攪拌した。 この操作を 5バッチ行い各反応液を、 5DCに冷却したジメ チルホルムアミ ド 6. OILに加えていき 4ーヒドロキシー 2—ォキソー 3—ピロリ ンのジメチルホルムアミ ド溶液を得た。 各パッチともジメチルホルムァミ ド 0. 605Lで洗い込んだ。 600 g of the compound obtained in Step 1 was added to 4.5 L of dimethylformamide and washed with 0.3 L of dimethylformamide. The mixture was heated to 100 ° C., 103 ml of water was added dropwise, and the mixture was stirred for 10 minutes. The this operation 5 batches performed each reaction, 5 to obtain a dimethylformamidine de solution D C to the cooled dimethyl Chiruhorumuami de 6. continue addition to OIL 4-hydroxy-2- Okiso 3 pylori emissions. Each patch was washed with 0.55 L of dimethylformamide.
(1R,2R) - 1, 2-ジアミノシクロへキサン 2180g (19. 09raol) をジメチルホルムァ ミド 7, 5Lに溶解し 6°Cに冷却後 6M塩酸 3· 18L (19. 09mol) を 6〜18°Cで添加し た。 ここに上記で得た 4ーヒドロキシー 2—ォキソ一 3—ピロリン溶液のうち 18L を滴下した。 表題化合物の種結晶 (例えば、 種結晶を用いずに本法と同様に して得られる) 11. 45g (含量 88. 4%) を添加後残りの溶液 17Lを滴下した。 洗い 込みにジメチルホルムアミド 0.6L を使用した。 6°Cで 1時間攪拌後トルエン 21.04L を 4 5分間で滴下しさらに 2 1時間攪拌した。 析出した固体を遠心分離 機で分離し、 10°Cのジメチルホルムアミ ドートルエン混合溶液 (容積比 50 : 50) 12Lで洗浄、 続いてトルエン 12Lで洗浄した。 得られた湿固体を 60°Cで 16 時間減圧乾燥し、 表題化合物 3924gを得た。 (1R, 2R)-1,2-Diaminocyclohexane 2180g (19.09raol) was dissolved in dimethylformamide 7,5L, cooled to 6 ° C and 6M hydrochloric acid 3.18L (19.09mol) Added at 18 ° C. 18 L of the 4-hydroxy-2-oxo-1-pyrroline solution obtained above was added dropwise thereto. Seed crystals of the title compound (for example, obtained in the same manner as this method without using seed crystals) 11. 45 g (content 88.4%) was added, and the remaining 17 L of the solution was added dropwise. wash Dimethylformamide 0.6 L was used. After stirring at 6 ° C for 1 hour, 21.04 L of toluene was added dropwise over 45 minutes, and the mixture was further stirred for 21 hours. The precipitated solid was separated with a centrifugal separator, washed with 12 L of a 10 ° C dimethylformamide toluene mixed solution (volume ratio 50:50), and then washed with 12 L of toluene. The obtained wet solid was dried under reduced pressure at 60 ° C. for 16 hours to obtain 3924 g of the title compound.
¾ 匪 R (400MHz, DMSO- d6): δ 1.21 (m, 3H, cyclohexyl) , 1.44(ra, 1H, cyclohexyl) , 1.67 (m, 2H, cyclohexyl), 1.93 (m, 1H, cyclohexyl) , 2.05 (m, 1H, cyclohexyl), 2.90(m, 1H, 2, — H), 3.08 (m, 1H, 1, 一 H), 3.79(dd, 2H, J=16, 7, 43.5Hz, 5— CH2), 4.58 (s, 1H, 3— H) , 6.67 (brs, 1H, NH), 6.89 (m, 1H, NH), 8.23 (brs, 2H, NH2) ¾ 匪 R (400MHz, DMSO-d 6 ): δ 1.21 (m, 3H, cyclohexyl), 1.44 (ra, 1H, cyclohexyl), 1.67 (m, 2H, cyclohexyl), 1.93 (m, 1H, cyclohexyl), 2.05 (m, 1H, cyclohexyl), 2.90 (m, 1H, 2, — H), 3.08 (m, 1H, 1, 1 H), 3.79 (dd, 2H, J = 16, 7, 43.5Hz, 5— CH2 ), 4.58 (s, 1H, 3-H), 6.67 (brs, 1H, NH), 6.89 (m, 1H, NH), 8.23 (brs, 2H, NH2)
13C NMR(100MHz, DMSO— d6) : δ 23.2, 23.7, 29.0, 30.6, 45.9, 53.4, 55.3, 13 C NMR (100 MHz, DMSO—d 6 ): δ 23.2, 23.7, 29.0, 30.6, 45.9, 53.4, 55.3,
86.6, 163.4, 176.7. 86.6, 163.4, 176.7.
ESI- MS: m/z 196 (M+H) +, 194 (M-H) - (工程 3) (1R,8R, 10R)- 8-フエニル- 2,5,9-トリァザトリシクロ [8,4.0.03'7]テ トラデカ -3 (7) -ェン -6-ォンの合成 ESI-MS: m / z 196 (M + H) +, 194 (MH)-(Step 3) (1R, 8R, 10R)-8-phenyl-2,5,9-triazatricyclo [8,4.0 .0 3 ' 7 ] Synthesis of Tetradeca-3 (7) -en-6-one
メタノール 150mLに工程 2で得られる化合物 27.8g (含量 89.8°ん 107.7mmol) 、 27.8 g of the compound obtained in step 2 in 150 mL of methanol (content 89.8 ° 107.7 mmol),
28%ナトリウムメ トキシド /メタノール溶液 20.7mL (102. lmmol) 、 酢酸ナトリウ ム 442mg (5.4mmol) を加え 30分間攪拌した。 20.7 mL (102. lmmol) of 28% sodium methoxide / methanol solution and 442 mg (5.4 mmol) of sodium acetate were added and stirred for 30 minutes.
この混合物にベンズアルデヒド 12. OmL (118.5mmol) を加え 60°Cで 1 4時間加 熱攪拌後液量約 130mLまで減圧濃縮した。 析出した塩化ナトリウムを濾過、 メタ ノール 42.4mLで洗浄し、 濾過液を液量約 lOOmLまで減圧濃縮した。  To this mixture was added benzaldehyde 12. OmL (118.5 mmol), and the mixture was heated and stirred at 60 ° C. for 14 hours, and then concentrated under reduced pressure to about 130 mL. The precipitated sodium chloride was filtered and washed with 42.4 mL of methanol, and the filtrate was concentrated under reduced pressure to a liquid volume of about 10 mL.
2—プロパノール計 260mLを加え減圧濃縮する操作を 3回に分けて行った後液 量を約 llOmLに調整した。 得られた液を 50°Cで 1時間保持し、 約 4時間かけて 10°Cまで冷却し、 さらに 10°Cで約 10時間保持した。 析出した固体を濾過、 10°C に冷却した 2—プロパノール 84.9mLで洗浄した。 得られた湿固体を 60°Cで減圧 乾燥し、 表題化合物 21.40g (含量 88.3%) を得た。  The procedure of adding 260 mL of 2-propanol and concentrating under reduced pressure was performed in three steps, and then the liquid volume was adjusted to about llOmL. The obtained liquid was kept at 50 ° C for 1 hour, cooled to 10 ° C over about 4 hours, and further kept at 10 ° C for about 10 hours. The precipitated solid was filtered and washed with 84.9 mL of 2-propanol cooled to 10 ° C. The obtained wet solid was dried under reduced pressure at 60 ° C. to obtain 21.40 g (content 88.3%) of the title compound.
¾ 麗 R (300MHz, DMS0-d6): δ 0.50-3.40 (10Η, m) , 3.69 (1H, d, J=16.0Hz), 3.84(1H, d, J=16.0Hz), 4.79(1H, s), 6.32 (1H, s), 6.75 (1H, s), 7.10-7.30 (5H, m) . ESI - MS: m/z 284 (M+H) + (工程 4) (1R,8R, 10R)- 5, 9-ビス(2 -ァセトキシァセチル) -8-フェ二ル- 2, 5, 9- トリァザトリシクロ [8.4.0.03'7]テトラデカ- 3 (7) -ェン- 6-オンの合成 ¾ Rei R (300MHz, DMS0-d 6 ): δ 0.50-3.40 (10mm, m), 3.69 (1H, d, J = 16.0Hz), 3.84 (1H, d, J = 16.0Hz), 4.79 (1H, s), 6.32 (1H, s), 6.75 (1H, s), 7.10-7.30 (5H, m). ESI-MS: m / z 284 (M + H) + (Step 4) (1R, 8R, 10R) -5,9-bis (2-acetoxyacetyl) -8-phenyl-2,5,9-triazatricyclo [8.4.0.0 3 ' 7 ] Synthesis of tetradeca-3 (7) -en-6-one
ァセトニトリル 130mL に 10°Cでァセトキシァセチルク口ライ ド 17. lmL (159. lmmol) 、 続いて工程 3で得られた化合物 19.50g (含量 92.3%, 63.5mmol) を加えた。 ここにァセトニトリル 50mL に溶解したトリェチルァミン 24mL (172.2mmol) を 10〜13°Cで 1時間で滴下した。 10°Cで 3時間攪拌後水 108mL を加え反応を停止した。 減圧下でァセトニトリルを留去後酢酸ェチルで抽 出、 有機層を炭酸水素ナトリウム水溶液 (6.9wt%) で洗浄し減圧濃縮した。 濃縮 液に酢酸ェチルを加え減圧濃縮することを 2回繰り返した後、 液量が約 llOmLに なるように酢酸ェチルを加えた。 55°Cに昇温後表題化合物の種結晶 (例えば、 種 結晶を用いずに本法と同様にして得られる) 18mg を添加、 55°Cで 1 時間保持後、 ヘプタン (5% 2—プロパノール含有) 123mLを 1時間で滴下した。 55°Cで 1時間 保持し約 4.5時間かけて 10°Cまで冷却し、 さらに 10°Cで約 8時間保持した。 析 出した固体を濾過、 10°Cに冷却した酢酸ェチルーヘプタン混合溶液 (容積比 40: 60) 36mL で洗浄した。 得られた湿固体を 60°Cで減圧乾燥し、 表題化合物 24.12g (含量 97.0%) を得た。  To 130 mL of acetonitrile, 17.1 mL (159. 1 mmol) of acetylacetyl chloride was added at 10 ° C., followed by 19.50 g (content 92.3%, 63.5 mmol) of the compound obtained in Step 3. To this, 24 mL (172.2 mmol) of triethylamine dissolved in 50 mL of acetonitrile was added dropwise at 10 to 13 ° C. over 1 hour. After stirring at 10 ° C for 3 hours, 108 mL of water was added to stop the reaction. Acetonitrile was distilled off under reduced pressure, followed by extraction with ethyl acetate, and the organic layer was washed with an aqueous sodium bicarbonate solution (6.9 wt%) and concentrated under reduced pressure. Ethyl acetate was added to the concentrated solution and concentrated under reduced pressure twice, and then ethyl acetate was added so that the liquid volume became about llOmL. After raising the temperature to 55 ° C, add 18 mg of seed crystals of the title compound (for example, obtained in the same manner as this method without using seed crystals), hold for 1 hour at 55 ° C, and then add heptane (5% 2-propanol Contained) 123 mL was added dropwise over 1 hour. It was kept at 55 ° C for 1 hour, cooled to 10 ° C over about 4.5 hours, and further kept at 10 ° C for about 8 hours. The precipitated solid was filtered and washed with 36 mL of an ethyl acetate-heptane mixed solution (volume ratio 40:60) cooled to 10 ° C. The obtained wet solid was dried under reduced pressure at 60 ° C. to obtain 24.12 g (content 97.0%) of the title compound.
¾ NMR (400MHz, MeOH - d4) δ:0.76 (1Η, br-dd) , 1.14(1H, br-dd), 1.23(1H, br- dd), 1.34 (1H, br-d), 1.58(2H, br— dx2), 2.08 (1H, br— d), 2.10 (3H, s), 2.15(3H, s), 2.59 (1H, br-dd), 2.90 (1H, ddd), 4.19 (1H, ddd), 4.35 (1H, d), 4.41 (1H, d) , 4.77 (1H, d), 5.17 (1H, d), 5.17(2H, s), 5· 78 (1H, br— s), 7.37(1H, dd), 7.41 (4H, m) . ¾ NMR (400MHz, MeOH-d 4 ) δ: 0.76 (1Η, br-dd), 1.14 (1H, br-dd), 1.23 (1H, br-dd), 1.34 (1H, br-d), 1.58 ( 2H, br—dx2), 2.08 (1H, br—d), 2.10 (3H, s), 2.15 (3H, s), 2.59 (1H, br-dd), 2.90 (1H, ddd), 4.19 (1H, ddd), 4.35 (1H, d), 4.41 (1H, d), 4.77 (1H, d), 5.17 (1H, d), 5.17 (2H, s), 5 · 78 (1H, br—s), 7.37 (1H, dd), 7.41 (4H, m).
13C NMR(100MHz, MeOH - d4) δ :29.18, 35.09, 48.91, 56.50, 59.05, 61.04, 63.74, 64.89, 95.22, 128.92, 129.27, 129.82, 138.53, 159.77, 167.85, 169.04, 171.71, 172.30, 172.39. 13 C NMR (100 MHz, MeOH-d 4 ) δ: 29.18, 35.09, 48.91, 56.50, 59.05, 61.04, 63.74, 64.89, 95.22, 128.92, 129.27, 129.82, 138.53, 159.77, 167.85, 169.04, 171.71, 172.30, 172.39 .
ESI- MS: ra/z 484(M+H)+, 482(M - H)一 ESI- MS: ra / z 484 (M + H) + , 482 (M-H)
(工程 5) (1R,8R, 10R)- 9- (2 -ヒドロキシァセチル )-8 -フエ-ノレ - 2, 5, 9 -トリ ァザトリシクロ [8.4.0.03' 7]テトラデカ - 3 (7) -ェン- 6-オン (式 (I) で表され る化合物) の合成 ェタノール 86mLに工程 4で得られた化合物 22. 16g (含量 97· 0°ん 44. 5mmol) 、 28%ナトリウムメトキシド /メタノール溶液 1. 6raL (8. Ommol) を加え 25°Cで 1時 間攪拌した。 減圧濃縮後エタノールを加え溶液重量が 58. 4gになるように調整し た。 50°Cに昇温後水 109. 7mLを 1時間で滴下し表題化合物の種結晶 (例えば、 種 結晶を用いずに本法と同様にして得られる) 15mg を添加した。 1時間かけて 40°Cまで冷却し 40°Cで 1時間保持後、 水 54. 8mLを 1時間で滴下した。 40°Cで 1 時間保持し 3時間かけて 10°Cまで冷却し、 さらに 10°Cで 5. 2時間保持した。 析 出した固体を濾過、 10°Cに冷却したエタノール一水混合溶液 (容積比 25 : 75) 30. ImLで洗浄した。 得られた湿固体を 60°Cで減圧乾燥し、 表題化合物 14. 33gを 得た。 (Step 5) (1R, 8R, 10R) - 9-(2 - hydroxy § cetyl) -8 - Hue - Honoré - 2, 5, 9 - tri Azatorishikuro [8.4.0.0 3 '7] tetradec - 3 (7) Synthesis of -en-6-one (compound represented by formula (I)) To the ethanol 86 mL, add 22.16 g of the compound obtained in step 4 (content: 9 ° 0 °, 44.5 mmol), 28% sodium methoxide / methanol solution 1.6 raL (8. Ommol), and add at 25 ° C for 1 hour. Stir. After concentration under reduced pressure, ethanol was added to adjust the solution weight to 58.4 g. After raising the temperature to 50 ° C., 109.7 mL of water was added dropwise over 1 hour, and 15 mg of the title compound seed crystal (for example, obtained in the same manner as in this method without using the seed crystal) was added. After cooling to 40 ° C over 1 hour and holding at 40 ° C for 1 hour, 54.8 mL of water was added dropwise over 1 hour. It was kept at 40 ° C for 1 hour, cooled to 10 ° C over 3 hours, and further kept at 10 ° C for 5.2 hours. The precipitated solid was filtered and washed with ethanol / water mixed solution cooled to 10 ° C (volume ratio 25:75) 30. ImL. The obtained wet solid was dried under reduced pressure at 60 ° C. to obtain 14.33 g of the title compound.
¾ 匪 R (300MHz, DMSO— d6) : δ 0. 50-2. 72 (9H, m), 3. 75—4. 05 (4H, m), 4. 42 (1H, m), 4. 72 (lH, m) , 5. 54 (1H, s) , 6. 74 (1H, s) , 6. 80 (1H, s) , 7. 22-7. 37 (5H, m) . ¾ negation R (300MHz, DMSO- d 6) :.. Δ 0. 50-2 72 (9H, m), 3. 75-4 05 (4H, m), 4. 42 (1H, m), 4. 72 (lH, m), 5.54 (1H, s), 6.74 (1H, s), 6.80 (1H, s), 7.22-7.37 (5H, m).
ESI- MS : m/z 342 (M+H) + [実施例 1 ] ESI-MS: m / z 342 (M + H) + [Example 1]
ジクロロメタン溶液からの晶析による I型結晶の製造 Production of type I crystals by crystallization from dichloromethane solution
(1R, 8R, 10R) - 9 - (2-ヒ ドロキシァセチノレ)- 8 -フエ二ノレ- 2, 5, 9 -トリァザトリシ クロ [8. 4. 0. 03, 7]テトラデカ- 3 (7) -ェン- 6-オン約 2 0〜 3 0 m gを約 6 0 °Cま で加熱したジクロロメタン約 3 m Lに溶解した。 その後、 冷蔵 (約 0〜 1 0 °C) で 1 0日間放置し、 析出した結晶を桐山ロートを用いて吸引ろ過し、 採取した。 その結晶を約 6 0 °Cでー晚真空乾燥し、 約 1 3 m gの結晶を得た。 得られた結晶 の粉末 X線回折スぺクトルを測定し、 I型結晶であることを確認した。  (1R, 8R, 10R)-9-(2-Hydroxycetinole) -8-Fueninole-2, 5, 9-Triazatricyclo [8. 4. 0. 03, 7] Tetradeca-3 (7 ) About 20-30 mg of -en-6-one was dissolved in about 3 mL of dichloromethane heated to about 60 ° C. Then, it was left to stand in a refrigerator (about 0 to 10 ° C) for 10 days, and the precipitated crystals were collected by suction filtration using a Kiriyama funnel. The crystals were vacuum-dried at about 60 ° C. to obtain about 13 mg of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be an I-type crystal.
[実施例 2 ] [Example 2]
酢酸ェチル和物結晶の脱溶媒による I型結晶の製造 Production of type I crystals by desolvation of ethyl acetate solvate crystals
(工程 1 ) 酢酸ェチル和物結晶の製造  (Step 1) Production of ethyl acetate hydrate crystals
(1R, 8R, 10R) - 9- (2-ヒ ドロキシァセチル)-8-フエニル- 2, 5, 9 -トリァザトリシ クロ [8. 4. 0. 03, 7]テトラデカ- 3 (7) -ェン- 6 -オン約 1 5〜 2 0 m gを約 7 8。Cま で加熱した酢酸ェチル約 1 . 5 m Lに溶解した。 その後、 室温で 1日間放置し、 析出した結晶を桐山ロートを用いて吸引ろ過し、 採取した。 その結晶を約 6 0 °C でー晚真空乾燥し、 約 5 m gの結晶を得た。 (1R, 8R, 10R)-9- (2-Hydroxycetyl) -8-phenyl-2,5,9-triazatricyclo [8. 4. 0. 03, 7] tetradeca-3 (7) 6-on about 15-20 mg about 7-8. Dissolved in about 1.5 mL of ethyl acetate heated to C. Then, it was left to stand at room temperature for 1 day, and the precipitated crystals were collected by suction filtration using a Kiriyama funnel. About 60 ° C After vacuum drying, about 5 mg of crystals were obtained.
得られた結晶の粉末 X線回折スぺク トル (図 1) 及び1 H— NMRスぺク トル を測定し、 約 0. 5酢酸ェチル和物であることを確認した。A powder X-ray diffraction spectrum (FIG. 1) and 1 H-NMR spectrum of the obtained crystals were measured and confirmed to be about 0.5 ethyl acetate.
— NMR (400MH z, CD3OD) δ = 0. 7 5- 0. 8 1 ( 1 Η, m) , 1. 07-1. 16 (1Η, m) , 1. 22— 1. 37 (2Η, m) , 1. 26 (1. 5H, t, J = 7. 1Hz) , 1. 58 (2H, d, J = 1 1. OH z) , 2. 03 (1. 5H, s ) , 2. 05 (1 H, d, J = 1 1. 8H z) , 2. 66-2. 90 (2H, m) , 4. 01 (2H, d d, J = 3 1. 7, 17. 0Hz) , 4. 09-4. 1 3 ( 1 H, m) , 4. 1 2-4. 1 9 (2H, m) , 4. 62 (1H, d, J = 1 5. 2H z) , 5. 72 ( 1 H, s ) , 7. 30-7. 41 (5H, m) . — NMR (400MH z, CD 3 OD) δ = 0.7 5-0. 8 1 (1 Η, m), 1. 07-1. 16 (1 Η, m), 1. 22— 1. 37 (2Η , m), 1.26 (1.5H, t, J = 7.1 Hz), 1.58 (2H, d, J = 1 1. OH z), 2.03 (1.5H, s), 2 05 (1 H, d, J = 1 1.8H z), 2. 66-2. 90 (2H, m), 4.01 (2H, dd, J = 3 1. 7, 17. 0Hz), 4. 09-4. 1 3 (1 H, m), 4. 1 2-4. 1 9 (2H, m), 4.62 (1H, d, J = 1 5. 2H z), 5. 72 (1 H, s), 7. 30-7. 41 (5H, m).
(工程 2 ) 酢酸ェチル和物結晶の脱溶媒 (Step 2) Desolvation of ethyl acetate solvate crystals
工程 1で得られた酢酸ェチル和物結晶を約 160 °Cまで加熱して脱溶媒した。 得られた結晶の粉末 X線回折スぺク トルを測定した結果、 I型結晶であることが 確認された (図 1) 。  The ethyl acetate hydrate crystals obtained in Step 1 were heated to about 160 ° C. to remove the solvent. As a result of measuring the powder X-ray diffraction spectrum of the obtained crystal, it was confirmed to be a type I crystal (Fig. 1).
[実施例 3] [Example 3]
ァニソ一ル和物結晶の脱溶媒による I型結晶の製造 Preparation of type I crystals by desolvation of anisolate crystals
(工程 1) ァ-ソ一ル和物結晶の製造 .  (Step 1) Manufacture of a solvate crystal.
(1R, 8R, 10R) - 9- (2 -ヒ ドロキシァセチル) 8-フェ二ル- 2, 5, 9 -トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7)-ェン- 6 -オン約 96 Omgをジメチルホルム アミド約 9 m Lに室温で溶解させ、 フィルタ一でろ過し、 飽和溶液を調製した。 スターラーで攪拌しながら、 この飽和溶液約 1 HI Lに徐々にァニソールを添カロし (計約 2. 5mL) 、 添加後すぐに析出した結晶を桐山ロートを用いて吸引ろ過 し、 採取した。 その結晶を約 60°Cでー晚真空乾燥し、 約 10 Omgの結晶を得 た。  (1R, 8R, 10R)-9- (2-Hydroxycetyl) 8-phenyl-2,5,9-triazatricyclo [8.4.0.03, 7] tetradeca-3 (7) -en-6-one About 96 Omg was dissolved in about 9 mL of dimethylformamide at room temperature and filtered through a filter to prepare a saturated solution. While stirring with a stirrer, about 1 HI of this saturated solution was gradually added with anisole (total of about 2.5 mL), and the crystals precipitated immediately after the addition were collected by suction filtration using a Kiriyama funnel. The crystals were vacuum dried at about 60 ° C. to obtain about 10 Omg of crystals.
得られた結晶の粉末 X線回折スぺク トル (図 2) 及び1 H— NMRスぺク トル を測定し、 約 0. 5ァ-ソール和物であることを確認した。 The powder X-ray diffraction spectrum (Fig. 2) and 1 H-NMR spectrum of the obtained crystals were measured, and it was confirmed that the obtained crystals were about 0.5 sol.
'H-NMR (40 OMH z , CD3OD) δ = 0. 75 - 0. 78 ( 1 H, m) , 1. 09- 1. 13 (1H, m) , 1. 26— 1. 33 (2H, m) ,'H-NMR (40 OMH z, CD 3 OD) δ = 0.75-0.78 (1 H, m), 1. 09- 1.13 (1H, m), 1. 26— 1. 33 (2H, m),
1. 58 (2H, d, J = 1 1. 5 H z) , 2. 05 (1H, d, J = 1 2. 61. 58 (2H, d, J = 1 1.5 H z), 2. 05 (1H, d, J = 1 2.6
Hz) , 2. 66-2. 90 (2H, m) , 3. 80 (1. 5 H, s) , 4. 0Hz), 2.66-2.90 (2H, m), 3.80 (1.5 H, s), 4.0
2 (2H, d d, J = 29. 9, 16. 9H z) , 4. 12-4. 16 (2H, m) , 4. 62 ( 1 H, d, J = 15. 2H z) , 5. 72 ( 1 H, s ) , 6. 90-6. 93 (1. 5 H, m) , 7. 25 - 7. 29 ( 1 H, m) , 7. 25 一 7. 41 (5H, m) . 2 (2H, dd, J = 29.9, 16.9Hz), 4. 12-4.16 (2H, m), 4.62 (1H, d, J = 15.2Hz), 5. 72 (1 H, s), 6. 90-6. 93 (1.5 H, m), 7.25-7.29 (1 H, m), 7.25 1 7.41 (5H, m) .
(工程 2 ) ァ-ソ一ル和物結晶の脱溶媒 (Step 2) Desolvation of solvate crystals
工程 1で得られたァ-ソ一ル和物結晶を約 170°Cまで加熱して脱溶媒し、 得 られた結晶の粉末 X線回折スぺクトルを測定した結果、 結晶性は悪いながらも I 型結晶であることが確認された (図 2) 。  The solvate crystals obtained in Step 1 were heated to about 170 ° C to remove the solvent, and the powder X-ray diffraction spectrum of the obtained crystals was measured. It was confirmed to be a type I crystal (Fig. 2).
[実施例 4] [Example 4]
ベンゾニトリル和物結晶の脱溶媒による I型結晶の製造 Preparation of type I crystals by desolvation of benzonitrile solvate crystals
(工程 1 ) ベンゾニトリル和物結晶の製造  (Step 1) Production of benzonitrile solvate crystals
(1R, 8R, 10R)- 9- (2 -ヒ ドロキシァセチル)-8 -フエ-ル- 2, 5, 9-トリァザトリシ ク口 [8.4.0.03, 7]テトラデカ- 3 (7)-ェン- 6-オン約 270〜300mgを約 7 9 °Cまで加熱したベンゾ-トリル約 2 m Lに溶解した。 その後、 冷蔵で 1 7日間 放置し (約.0〜10°C) 、 析出した結晶を桐山ロートを用いて吸引ろ過し、 採取 した。 その結晶を約 60°Cでー晚真空乾燥し、 約 1 1 Omgの結晶を得た。  (1R, 8R, 10R) -9- (2-Hydroxycetyl) -8-phenol-2,5,9-triazatric port [8.4.0.03, 7] tetradeca-3 (7) -en-6 -About 270-300 mg of ON was dissolved in about 2 mL of benzo-tolyl heated to about 79 ° C. After that, it was left to stand for 17 days in a refrigerator (about 0.0 to 10 ° C.), and the precipitated crystals were collected by suction filtration using a Kiriyama funnel. The crystals were vacuum-dried at about 60 ° C. to obtain about 11 mg of crystals.
得られた結晶の粉末 X線回折スぺク トル (図 3) 及ぴ1 H— NMRスぺク トル を測定し、 約 0. 5ベンゾエトリル和物であることを確認した。 A powder X-ray diffraction spectrum (Fig. 3) and 1 H-NMR spectrum of the obtained crystal were measured and confirmed to be about 0.5 benzoethryl.
'H-NMR (40 OMH z , CD3OD) δ = 0. 7 1— 0. 8 1 ( 1 H, m) , 1. 06— 1. 16 ( 1 H, m) , 1. 22— 1. 37 (2H, m) , 1. 58 (2H, d, J = 1 1. 8H z) , 2. 05 (1 H, d, J = 1 2. 6 Hz) , 2. 66-2. 90 (2H, m) , 4. 01 (2H, d d, J = 32. 2, 17. OH z) , 4. 1 3-4. 16 (2H, m) , 4. 62 (1 H, d, J = 15. 2H z) , 5. 72 (1H, s) , 7. 30-7. 40 (5H, m) : 7. 55-7. 76 (2. 5H, m) . (工程 2) ベンゾニトリル和物結晶の脱溶媒 'H-NMR (40 OMH z, CD 3 OD) δ = 0.7 1—0.8 1 (1 H, m), 1.06— 1.16 (1 H, m), 1.22 — 1 37 (2H, m), 1.58 (2H, d, J = 1 1. 8H z), 2. 05 (1 H, d, J = 1 2.6 Hz), 2. 66-2. 90 (2H, m), 4.01 (2H, dd, J = 32.2, 17. OH z), 4.1 3-4. 16 (2H, m), 4.62 (1 H, d, J = 15.2H z), 5.72 (1H, s), 7.30-7.40 (5H, m) : 7.55-7.76 (2.5H, m). (Step 2) Desolvation of benzonitrile solvate crystals
工程 1で得られたベンゾニトリル和物結晶を約 170°Cまで加熱して脱溶媒し、 粉末 X線回折を測定した結果、 I型結晶であることが確認された (図 3) 。  The benzonitrile solvate crystal obtained in Step 1 was heated to about 170 ° C to remove the solvent, and as a result of measuring powder X-ray diffraction, it was confirmed to be a type I crystal (Fig. 3).
[実施例 5 ] [Example 5]
水溶液からの晶析による I I型結晶の製造 Production of type I crystals by crystallization from aqueous solution.
(1R, 8R, 10R)- 9一 (2 -ヒ ドロキシァセチル)一 8-フエ-ルー 2, 5, 9-トリァザトリシ ク口 [8.4.0.03, 7]テトラデ力- 3 (7) -ェン- 6-オン約 1000 m gを約 80°Cまで 加熱した水約 1 6 5m Lに溶解した。 その後、 2日間冷蔵保存し (約 0〜 1 0°C) 、 析出した結晶を桐山ロートを用いて吸引ろ過し、 採取した。 その結晶を 約 60°Cでー晚真空乾燥し、 約 56 Omgの結晶を得た。 得られた結晶の粉末 X 線回折スペク トルを測定し、 I I型結晶であることを確認した。 [実施例 6 ]  (1R, 8R, 10R) -9 (2-Hydroxycetyl) 8-Fueru 2, 5, 9-Triazatric port [8.4.0.03, 7] Tetrade force-3 (7) -Yen-6 -About 1000 mg of ON was dissolved in about 1 65 mL of water heated to about 80 ° C. Then, it was refrigerated for 2 days (about 0 to 10 ° C), and the precipitated crystals were collected by suction filtration using a Kiriyama funnel. The crystals were vacuum-dried at about 60 ° C to obtain about 56 Omg crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured to confirm that it was an I-type crystal. [Example 6]
エタノール溶液からの晶析による I I型結晶の製造 ' Production of type I crystals by crystallization from ethanol solution ''
(1R, 8R, 10R)- 9- (2 -ヒ ドロキシァセチル) -8-フエニル- 2, 5, 9-トリァザトリシ クロ [8.4.0.03, 7]テトラデカ -3 (7) -ェン- 6 -オン約 790〜860 m gを約 7 7 °Cまで加熱したエタノール約 2 mLに溶解した。 その後、 室温で 1日間放置し、 さらに 14日.間冷蔵保存し (約 0〜.10 °C) 、 析出した結晶を桐山ロートを用い て吸引ろ過し、 採取した。 その結晶を約 60°Cでー晚真空乾燥し、 約 51 Omg の結晶を得た。 得られた結晶の粉末 X線回折スペク トルを測定し、 I I型結晶で あることを確認した。 [実施例 7 ]  (1R, 8R, 10R) -9- (2-Hydroxycetyl) -8-phenyl-2,5,9-triazatricyclo [8.4.0.03, 7] tetradeca-3 (7) -en-6-one approx. 790-860 mg was dissolved in about 2 mL of ethanol heated to about 77 ° C. Then, it was allowed to stand at room temperature for 1 day, and further refrigerated for 14 days (about 0 to .10 ° C). The precipitated crystals were collected by suction filtration using a Kiriyama funnel. The crystals were vacuum dried at about 60 ° C. to obtain about 51 Omg of crystals. The powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be II type crystal. [Example 7]
無水エタノール溶液からの晶析による I I型結晶の製造 Production of type I crystals by crystallization from absolute ethanol solution
(1R, 8R, 10R)- 9- (2 -ヒ ドロキシァセチル) - 8-フエニル- 2, 5, 9 -トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7)-ェン- 6 -オン約 460 m gを約 78。Cまで加 熱した無水エタノール約 ImLに溶解した。 その後、 室温で 3日間放置し、 さら に 5日間冷蔵保存し (約 0〜10°C) 、 析出した結晶を桐山ロートを用いて吸引 ろ過し、 採取した。 その結晶を約 60°Cでー晚真空乾燥し、 約 4 Omgの結晶を 得た。 得られた結晶の粉末 X線回折スペク トルを測定し、 I I型結晶であること を確認した。 [実施例 8] (1R, 8R, 10R) -9- (2-Hydroxycetyl)-8-phenyl-2,5,9-triazatricyclo [8.4.0.03, 7] tetradeca-3 (7) -en-6-one approx. Approximately 78 to 460 mg. Dissolved in about 1 mL of absolute ethanol heated to C. Then, leave it at room temperature for 3 days, and store it in the refrigerator for another 5 days (about 0 ~ 10 ° C), and suck the precipitated crystals with a Kiriyama funnel. Filtered and collected. The crystals were vacuum dried at about 60 ° C. to obtain about 4 Omg crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be a type II crystal. [Example 8]
ブタノール溶液からの晶析による I I型結晶の製造 Production of type I crystals by crystallization from butanol solutions.
(1R, 8R, 10R)- 9- (2 -ヒ ドロキシァセチル) -8-フェニル -2, 5, 9-トリァザトリシ ク口 [8.4.0.03, 7]テトラデカ- 3(7)-ェン- 6-オン約 1 90〜200mgを約 7 8 °Cまで加熱したブタノール約 1. 5mLに溶解した。 その後、 室温で 2日間放 置し、 析出した結晶を桐山ロートを用いて吸引ろ過し、 採取した。 その結晶を約 60 °Cでー晚真空乾燥し、 約 1 10 m gの結晶を得た。 約 1ヶ月半冷蔵 (約 0〜 10°C) で保存した後、 得られた結晶の粉末 X線回折スぺク トルを測定し、 I I 型結晶であることを確認した。 [実施例 9]  (1R, 8R, 10R) -9- (2-Hydroxycetyl) -8-phenyl-2,5,9-triazatric port [8.4.0.03, 7] tetradec-3 (7) -en-6-one About 190-200 mg was dissolved in about 1.5 mL of butanol heated to about 78 ° C. Then, it was left to stand at room temperature for 2 days, and the precipitated crystals were collected by suction filtration using a Kiriyama funnel. The crystals were vacuum-dried at about 60 ° C. to obtain about 1 10 mg of crystals. After refrigerated for about 1 and a half months (about 0 to 10 ° C), the powder X-ray diffraction spectrum of the obtained crystal was measured to confirm that it was an I I type crystal. [Example 9]
メタノール溶液への水の添加による I I型結晶の製造 Production of type I crystals by adding water to methanol solutions.
(1R, 8R, 10R)- 9- (2 -ヒ ドロキシァセチル) - 8_フエ二ル- 2, 5, 9-トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7) -ェン- 6-オン約 1 7 Omgをメタノール約 3 mLに室温で溶解させ、 フィルターでろ過し、 飽和溶液を調製した。 スターラー で攪拌しながら、 この飽和溶液約 1 m.Lに徐々に水を添カ卩し.(計約 2 m L) 、 1 日間冷蔵保存し (約 o〜io°c) 、 析出した結晶を桐山ロートを用いて吸引ろ過 し、 採取した。 その結晶を約 60°Cでー晚真空乾燥し、 約 2 Omgの結晶を得た。 得られた結晶の粉末 X線回折スペク トルを測定し、 I I型結晶であることを確認 した。  (1R, 8R, 10R) -9- (2-Hydroxycetyl) -8_phenyl-2,5,9-triazatricyclo [8.4.0.03, 7] tetradeca-3 (7) -en-6- About 17 mg of ON was dissolved in about 3 mL of methanol at room temperature and filtered through a filter to prepare a saturated solution. While stirring with a stirrer, slowly add water to about 1 mL of this saturated solution (about 2 mL in total) and store in the refrigerator for about 1 day (about o to io ° c). Using suction filtration, it was collected. The crystals were vacuum dried at about 60 ° C. to obtain about 2 Omg of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be an I-type crystal.
[実施例 10] [Example 10]
ェタノール溶液への水の添加による I I型結晶の製造 Preparation of type I crystals by adding water to ethanol solutions.
(1R, 8R, 10R)- 9- (2-ヒ ドロキシァセチル)-8-フエニノレ- 2, 5, 9 -トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7)-ェン- 6-オン約 28 Omgをエタノール約 2. 5mLに室温で溶解させ、 フィルターでろ過し、 飽和溶液を調製した。 スタ^ "ラ 一で攪拌しながら、 この飽和溶液約 I mLに徐々に水を添加し (計約 2. 5 m L) 、 1日間冷蔵保存し、 析出した結晶を桐山ロートを用いて吸引ろ過し、 採取 した。 その結晶を約 60°Cで一 B免真空乾燥し、 約 70 m gの結晶を得た。 得られ た結晶の粉末 X線回折スぺク トルを測定し、 I I型結晶であることを確認した。 (1R, 8R, 10R) -9- (2-Hydroxycetyl) -8-phenenole-2,5,9-triazatricyclo [8.4.0.03,7] tetradeca-3 (7) -en-6-one approx. 28 Omg was dissolved in about 2.5 mL of ethanol at room temperature and filtered through a filter to prepare a saturated solution. Star ^ "La Gradually add water to about 1 mL of this saturated solution while stirring at the same time (about 2.5 mL in total) and store in the refrigerator for 1 day. The precipitated crystals were collected by suction filtration using a Kiriyama funnel. . The crystals were vacuum-dried at about 60 ° C for 1 B to obtain about 70 mg of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be a type II crystal.
[実施例 1 1] [Example 1 1]
ェタノール溶液へのエーテルの添加による I I型結晶の製造 Preparation of type I crystals by the addition of ether to ethanol solutions.
(1R, 8R, 10R)_ 9- (2—ヒ ドロキシァセチル) - 8-フエ二ル- 2, 5, 9—トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3(7)-ェン- 6 -オン約 28 Omgをエタノール約 2. 5 mLに室温で溶解させ、 フィルターでろ過し、 飽和溶液を調製した。 スターラ 一で攪拌しながら、 この飽和溶液約 ImLに徐々にエーテルを添加し (計約 5 m L) 、 1日間冷蔵保存し (約 0〜1 0°C) 、 析出した結晶を桐山ロートを用いて 吸引ろ過し、 採取した。 その結晶を約 6 0°Cで一 |¾真空乾燥し、 微量の結晶を得 た。 得られた結晶の粉末 X線回折スペク トルを測定し、 I I型結晶であることを 確認した。  (1R, 8R, 10R) _ 9- (2-Hydroxycetyl)-8-phenyl-2, 5, 9-triazatricyclo [8.4.0.03, 7] tetradeca-3 (7) -en-6- About 28 Omg of ON was dissolved in about 2.5 mL of ethanol at room temperature and filtered through a filter to prepare a saturated solution. While stirring with a stirrer, ether is gradually added to about ImL of this saturated solution (about 5 mL in total), and refrigerated for 1 day (about 0 to 10 ° C). And suction filtered. The crystals were vacuum-dried at about 60 ° C for 1 to 3 ¾ to obtain a trace amount of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be an I-type crystal.
[実施例 1 2] [Example 1 2]
プロパノール溶液への水の添加による I I型結晶の製造 Production of type I crystals by adding water to propanol solutions.
(1R, 8R, 10R)- 9- (2-ヒ ドロキシァセチル )-8-フエニル- 2, 5, 9一トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7)-ェン- 6-オン約 1 5 Omgをプロパノール約 1. 5mLに室温で溶解させ、 フィルタ一でろ過し、 飽和溶液を調製した。 スタ 一ラーで攪拌しながら、 この飽和溶液約 1. 5 mLに徐々に水を添加し (計約 2 OmL) 、 6日間冷蔵保存し (約 0〜1 0°C) 、 析出した結晶を桐山ロートを用 いて吸引ろ過し、 採取した。 その結晶を約 6 0°Cで一晩真空乾燥し、 約 5 Omg の結晶を得た。 得られた結晶の粉末 X線回折スペク トルを測定し、 I I型結晶で あることを確認、した。  (1R, 8R, 10R) -9- (2-Hydroxyacetyl) -8-phenyl-2,5,9-triazatricyclo [8.4.0.03,7] tetradeca-3 (7) -en-6-one approx. 15 Omg was dissolved in about 1.5 mL of propanol at room temperature and filtered through a filter to prepare a saturated solution. While stirring with a stirrer, gradually add water to about 1.5 mL of this saturated solution (total of about 2 OmL) and store in a refrigerator for about 6 days (about 0 to 10 ° C). The solution was collected by suction filtration using a funnel. The crystals were vacuum dried at about 60 ° C. overnight to obtain about 5 Omg of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be II type crystal.
[実施例 1 3] [Example 1 3]
プロパノール溶液へのエーテルの添加による I I型結晶の製造 Preparation of type I crystals by addition of ether to propanol solutions.
(1R, 8R, 10R)- 9- (2 -ヒ ドロキシァセチル) - 8 -フエ二ル- 2, 5, 9-トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7) -ェン- 6-ォン約 l O Omgをプロパノール約 ImLに室温で溶解させ、 フィルターでろ過し、 飽和溶液を調製した。 スターラ 一で攪拌しながら、 この飽和溶液約 1 m Lに徐々にエーテルを添加し (計約 5 m L) 、 8日間冷蔵保存し (約 0〜10°C) , 析出した結晶を桐山ロートを用いて 吸引ろ過し、 採取した。 その結晶を約 60°Cでー晚真空乾燥し、 約 50m gの結 晶を得た。 得られた結晶の粉末 X線回折スペク トルを測定し、 I I型結晶である ことを確認した。 (1R, 8R, 10R) -9- (2-Hydroxycetyl) -8-phenyl-2,5,9-triazatrici Chromium [8.4.0.03, 7] tetradeca-3 (7) -en-6-one About lO Omg was dissolved in about ImL of propanol at room temperature and filtered through a filter to prepare a saturated solution. While stirring with a stirrer, ether is gradually added to about 1 mL of this saturated solution (about 5 mL in total) and stored refrigerated for 8 days (about 0 to 10 ° C). Using suction filtration, it was collected. The crystals were vacuum dried at about 60 ° C. to obtain about 50 mg of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be a type II crystal.
[実施例 14] [Example 14]
プロパノール溶液への酢酸ィソブチルの添加による I I型結晶の製造 Preparation of type I crystals by addition of isobutyl acetate to propanol solutions.
(1R, 8R, 10R) - 9- (2 -ヒ ドロキシァセチル) -8-フェ二ル- 2, 5, 9-トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7) -ェン- 6 -オン約 90 Om gをプロパノール約 8mLに室温で溶解させ、 フィルターでろ過し、 飽和溶液を調製した。 スターラ 一で攪拌しながら、 この飽和溶液約 1 m Lに徐々に酢酸ィソプチルを添加し (計 約 30mL) 、 8日間冷蔵保存し (約 0〜1 0°C) 、 析出した結晶を桐山ロート を用いて吸引ろ過し、 採取した。 その結晶を約 60°Cでー晚真空乾燥し、 約 5m gの結晶を得た。 得られた結晶の粉末 X線回折スペク トルを測定し、 I I型結晶 であることを確認した。 [実施例 1 5 ]  (1R, 8R, 10R)-9- (2-Hydroxycetyl) -8-phenyl-2,5,9-triazatricyclo [8.4.0.03, 7] tetradeca-3 (7) -en-6- About 90 Omg of ON was dissolved in about 8 mL of propanol at room temperature and filtered through a filter to prepare a saturated solution. While stirring with a stirrer, gradually add isoptil acetate to about 1 mL of this saturated solution (about 30 mL in total) and store in the refrigerator for 8 days (about 0 to 10 ° C). Using suction filtration, it was collected. The crystals were vacuum dried at about 60 ° C. to obtain about 5 mg of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured to confirm that it was an I-type crystal. [Example 1 5]
ジメチルスルホキシド溶液への水の添加による I I型結晶の製造 Preparation of type I crystals by adding water to dimethyl sulfoxide solution.
(1R, 8R, 10R)- 9— (2-ヒ ドロキシァセチル)ー8—フエ二ノレ— 2, 5, 9—トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7)-ェン -6 -オン約 184 Omgをジメチルスル ホキシド約 3. 5 mLに室温で溶解させ、 フィルターでろ過し、 飽和溶液を調製 した。 スターラーで攪拌しながら、 この飽和溶液約 ImLに徐々に水を添加し (計約 0. 8mL) 、 1日間冷蔵保存し (約 0〜10°C) 、 析出した結晶を桐山 ロートを用いて吸引ろ過し、 採取した。 その結晶を約 60°Cで一晩真空乾燥し、 約 21 Omgの結晶を得た。 得られた結晶の粉末 X線回折スぺク トルを測定し、 I I型結晶であることを確認した。 [実施例 16] (1R, 8R, 10R) -9- (2-Hydroxycetyl) -8-phenolinore 2, 5, 9-triazatricyclo [8.4.0.03, 7] tetradeca-3 (7) -ene -6- About 184 Omg of ON was dissolved in about 3.5 mL of dimethyl sulfoxide at room temperature and filtered through a filter to prepare a saturated solution. While stirring with a stirrer, gradually add water to about ImL of this saturated solution (total of about 0.8mL) and store in a refrigerator for about 1 day (about 0 to 10 ° C). Suction the precipitated crystals using a Kiriyama funnel. Filtered and collected. The crystals were vacuum dried at about 60 ° C. overnight to obtain about 21 Omg of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be a type II crystal. [Example 16]
ジメチルホルムアミド溶液への水の添加による I I型結晶の製造 Preparation of type I crystals by adding water to dimethylformamide solution.
(1R,8R,10R)- 9- (2 -ヒ ドロキシァセチル)-8-フエ-ル- 2, 5, 9-トリァザトリシ クロ [8.4.0.03, 7]テ 1、ラデ力- 3 (7) -ェン- 6-オン約 96 Omgをジメチルホルム アミド約 9 mLに室温で溶解させ、 フィルターでろ過し、 飽和溶液を調製した。 スターラーで攪拌しながら、 この飽和溶液約 lmLに徐々に水を添加し (計約 2 OmL) 、 6日間冷蔵保存し (約 0~10°C) 、 析出した結晶を桐山ロートを用 いて吸引ろ過し、 採取した。 その結晶を約 60°Cでー晚真空乾燥し、 約 4 Omg の結晶を得た。 得られた結晶の粉末 X線回折スペク トルを測定し、 I I型結晶で あることを確認した。  (1R, 8R, 10R) -9- (2-Hydroxycetyl) -8-Fer-2, 5, 9-Triazatricyclo [8.4.0.03, 7] Te 1, Rade force-3 (7) About 96 Omg of N-6-one was dissolved in about 9 mL of dimethylformamide at room temperature and filtered through a filter to prepare a saturated solution. While stirring with a stirrer, gradually add water to about 1 mL of this saturated solution (about 2 OmL in total) and store in the refrigerator for 6 days (about 0 to 10 ° C). The precipitated crystals are suction filtered using a Kiriyama funnel. And collected. The crystals were vacuum dried at about 60 ° C. to obtain about 4 Omg of crystals. The powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be II type crystal.
[実施例 1 7] [Example 1 7]
ホルムアミド溶液への水の添加による I I型結晶の製造 Preparation of type I crystals by adding water to formamide solution.
(1R,8R,10R)- 9- (2-ヒ ドロキシァセチル) - 8 -フエ-ル- 2, 5, 9 -トリァザトリシ クロ [8.4.0.03, 7]テトラデ力- 3 (7)-ェン- 6_オン約 1 3 Omgをホルムァミド約 1. 5 mLに室温で溶解させ、 フィルターでろ過し、 飽和溶液を調製した。 スタ 一ラーで攪拌しながら、 この飽和溶液約 1 m Lに徐々に水を添加し (計約 20 m L) 、 14日間冷蔵保存し (約 0〜10°C) 、 析出した結晶を桐山ロートを用い て吸引ろ過し、 採取した。 その結晶を約 60°Cでー晚真空乾燥し、 約 25m gの 結晶を得た。 得られた結晶の粉末 X線回折スペク トルを測定し、 I I型結晶であ ることを確認した。  (1R, 8R, 10R) -9- (2-Hydroxycetyl)-8 -Ferr-2,5,9 -Triazatricyclo [8.4.0.03, 7] tetrade force-3 (7) -En-6 _ About 1 3 Omg of ON was dissolved in about 1.5 mL of formamide at room temperature and filtered through a filter to prepare a saturated solution. While stirring with a stirrer, gradually add water to about 1 mL of this saturated solution (about 20 mL in total) and store in a refrigerator for about 14 days (about 0 to 10 ° C). Using suction filtration, it was collected. The crystals were vacuum-dried at about 60 ° C. to obtain about 25 mg of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be an I-type crystal.
[実施例 18] [Example 18]
I型結晶への水の添加による I I型結晶の製造  Production of type I crystals by adding water to type I crystals
I型結晶の検体各約 1 00 m gに各々水約 5 mLを加え、 過飽和状態で約 2 5°Cでそれぞれ 10分間、 1時間、 2時間、 3時間、 4時間攪拌した後、 ろ過し、 約 60°Cでー晚真空乾燥し、 結晶を得た。 それぞれの結晶について粉末 X線回折 を測定し, 全て I I型結晶であることを確認した。 [実施例 1 9 ] I I型結晶への水の添カロ Add approximately 5 mL of water to approximately 100 mg of each sample of type I crystal, stir at approximately 25 ° C for 10 minutes, 1 hour, 2 hours, 3 hours, and 4 hours respectively in a supersaturated state, then filter, Crystals were obtained by vacuum drying at about 60 ° C. Powder X-ray diffraction was measured for each crystal and all were confirmed to be type II crystals. [Example 1 9] Addition of water to type II crystals
I I型結晶の検体約 1 0 Omgに水約 5 m Lを加え、 過飽和状態で約 25 °Cで 4時間攪拌した後、 ろ過し、 約 60°Cで一晩真空乾燥し、 結晶を得た。 その結晶 について粉末 X線回折を測定し、 I I型結晶であることを確認した。 これにより、 I I型結晶は水の添加で転移しないことが確認された。  About 5 mL of water was added to approximately 10 mg of a sample of type II crystals, stirred at approximately 25 ° C for 4 hours in a supersaturated state, filtered, and vacuum dried at approximately 60 ° C overnight to obtain crystals. . The powder was measured by powder X-ray diffraction and confirmed to be II type crystal. As a result, it was confirmed that the I-type crystals did not transfer when water was added.
[実施例 20] [Example 20]
テトラヒドロフラン和物結晶の製造 Production of tetrahydrofuran solvate crystals
(1R, 8R, 10R) - 9- (2 -ヒ ドロキシァセチル) -8 -フエ-ル- 2, 5, 9 -トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7) -ェン -6-オン約 1 0〜 2 Omgを約 6 5 °Cま で加熱したテトラヒドロフラン約 1. 5 m Lに溶解した。 その後、 室温で 1日間 放置し、 析出した結晶を桐山ロートを用いて吸引ろ過し、 採取した。 その結晶を 約 60 °Cでー晚真空乾燥し、 約 6 m gの結晶を得た。  (1R, 8R, 10R)-9- (2-Hydroxycetyl) -8 -Fer-2, 5, 9 -Triazatricyclo [8.4.0.03, 7] Tetradeca-3 (7) -Yen -6- About 10 to 2 Omg of ON was dissolved in about 1.5 mL of tetrahydrofuran heated to about 65 ° C. Then, it was left to stand at room temperature for 1 day, and the precipitated crystals were collected by suction filtration using a Kiriyama funnel. The crystals were vacuum-dried at about 60 ° C to obtain about 6 mg of crystals.
得られた結晶につき、 粉末 X線回折スペク トル (図 4) 及び1 H— NMRスぺ クトルを測定し、 テトラヒドロフラン和物であることを確認した。 The obtained crystals were measured by powder X-ray diffraction spectrum (FIG. 4) and 1 H-NMR spectrum, and confirmed to be a tetrahydrofuran solvate.
'Η- -NMR (4 0 OMH z , CD3 OD) δ = 0. 7 5 - 0. 7 8 ( 1 H, m) , 1. 0 7- 1. 1 6 (1 H, m) , 1. 22一 1. 3 6 (2H , m) ,'Η- -NMR (4 0 OMH z, CD 3 OD) δ = 0.75-0.78 (1 H, m), 1.0 0-1. 1 6 (1 H, m), 1 22 1 1. 3 6 (2H, m),
1. 58 (2H, d, J = 1 0. 3H z) , 1. 8 7一 1. 9 1 (2H , m) ,1. 58 (2H, d, J = 1 0. 3H z), 1. 8 7 1 1. 9 1 (2H, m),
2. 0 5 (1 H, d, J = 1 2. 6Hz) , 2. 6 6一 2. 8 9 (2H , m) ,2. 0 5 (1 H, d, J = 1 2.6 Hz), 2. 6 6 1 2. 8 9 (2H, m),
3. 73- 3. 76 (2H, m) , 4. 0 2 (2H, d d, J = 3 1. 4, 1 '3. 73- 3. 76 (2H, m), 4.0 2 (2H, d d, J = 3 1. 4, 1 '
OH z) , 4. 1 2-4. 1 6 (2H, m) , 4. 6 2 (1 H, d, J = 1 5.OH z), 4.1 2-4. 1 6 (2H, m), 4.6 2 (1 H, d, J = 1 5.
2H z) , 5. 7 2 (1 H, s) , 7. 3 0 - 7. 4 1 (5 H, m) . 2H z), 5. 7 2 (1 H, s), 7. 3 0-7. 4 1 (5 H, m).
[実施例 2 1] [Example 2 1]
ェタノール溶液へのトルェン添加によるトルェン和物結晶の製造 Manufacture of tolene hydrate crystals by adding toluene to ethanol solution
参考例 1に記載された方法によって得られた(1R,8R,10R)- 9- (2-ヒドロキシ ァセチル) - 8 -フエ-ル- 2, 5, 9-トリァザト リシクロ [8, 4.0.03, 7]テ トラデ力- 3 (7) -ェン -6-オン 20 5 gをエタノール 5 5 5mLに約 5 5 °Cで溶解させた。 ス ターラーで攪拌しながら、 この溶液に 5 0°Cでトルエンを 20 3 8mL添加した ところで、 I I型晶を接種したところ、 起晶した。 さらにトルエン 73 7mLを 添加した後、 1 o°cに冷却し、 一晩熟成した。 析出した結晶を遠心濾過機を用い て分離した。 その結晶の一部 (1. 2 g) を 40°Cで一晚真空乾燥し、 1. O g の結晶を得た。 得られた結晶の粉末 X線回折スペク トル (図 5) 及ぴ1 H— NM Rスペク トルを測定し、 トルエン和物結晶であることを確認した。 — NMR (400MHz, DMSO— d 6) 6 = 0. 50 - 2. 72 (9H, m) , 2. 30 (2. 6H, s) , 3. 75-3. 99 (4H, m) , 4. 42-4. 4 7 (lH, m) , 4. 74-4. 77 ( 1 H, m) , 5. 56 (1H, s) , 6. 77 (1H, s) , 6. 83 (1H, s) , 7. 23-7. 37 (5H, m) , 7. 23-7. 29 (4. 3H, m) . (1R, 8R, 10R) -9- (2-hydroxyacetyl) -8-phenol-2,5,9-triazatricyclo [8, 4.0.03, obtained by the method described in Reference Example 1 [7] Tetrade force-3 (7) -en-6-one 20 5 g was dissolved in 55 5 mL of ethanol at about 55 ° C. While stirring with a stirrer, 2038 mL of toluene was added to this solution at 50 ° C., and when type II crystals were inoculated, crystallization occurred. Add 7mL of toluene 73 After the addition, it was cooled to 1 ° C. and aged overnight. The precipitated crystals were separated using a centrifugal filter. A part of the crystals (1.2 g) was vacuum dried at 40 ° C for a while to obtain 1. O g crystals. Powder X-ray diffraction spectrum (Fig. 5) and 1 H-NM R spectrum of the obtained crystals were measured and confirmed to be toluene solvate crystals. — NMR (400MHz, DMSO— d 6 ) 6 = 0.50-2.72 (9H, m), 2. 30 (2.6 H, s), 3. 75-3. 99 (4H, m), 4 42-4. 4 7 (lH, m), 4. 74-4. 77 (1 H, m), 5. 56 (1H, s), 6. 77 (1H, s), 6. 83 (1H , s), 7.23-7.37 (5H, m), 7.23-7.29 (4.3H, m).
[実施例 22] [Example 22]
トルエン和物結晶から I I型結晶の製造  Production of type I crystals from toluene solvate crystals
実施例 21に記載された方法と同様にして得られた乾燥前のトルエン和物約 2 50 gを 80。Cでー晚真空乾燥した。 粉末 X線回折スぺク トルを測定したところ 乾燥結晶はトルェン和物のままであった。 この乾燥結晶に、 水 1370 m Lを加 え、 25°Cで 1. 5時間スラリー状態で攪拌した後、 遠心濾過機で結晶を分離し た。 60°Cで一晩真空乾燥して得られた結晶の粉末 X線回折スぺク トルを測定し、 I I型結晶と変換されることを確認した。 [実施例 23] .  80 of about 250 g of toluene hydrate prior to drying, obtained in the same manner as described in Example 21. C. Vacuum dried. When the powder X-ray diffraction spectrum was measured, the dried crystals remained as the Tolen hydrate. 1370 mL of water was added to the dried crystals, and the mixture was stirred in a slurry state at 25 ° C. for 1.5 hours, and then separated by a centrifugal filter. The powder X-ray diffraction spectrum of the crystal obtained by vacuum drying at 60 ° C overnight was measured, and it was confirmed that it was converted to II type crystal. [Example 23].
I I型結晶の製造  I Manufacture of type I crystals
実施例 22と同様にして得られた I I型結晶 54 gをェタノ ル 102 m L、 水 51 m Lの混合溶媒に 68 °Cにて溶角军させた。 濾過後、 50 °C以下に冷却し、 スターラーで撹拌しながら水 1 14mLを加え I I型晶を接種し 40°Cで 1. 5 時間熟成したところ起晶した。 さらに水 140 m L加え 10 °Cまで冷却した。 析出した結晶を桐山ロートを用いて吸引濾過し、 適当な程度まで (30°C 2 k P aで 12時間) 乾燥することで乾燥結晶 50 gを得た。 得られた結晶は、 力 ールフィッシャー法による水分測定及ぴ粉末 X線回析スぺク トルの測定から、 水 分約 4 %を含む I I型結晶であることを確認した。  54 g of type I I crystals obtained in the same manner as in Example 22 was melted at 68 ° C. in a mixed solvent of 102 mL of ethanol and 51 mL of water. After filtration, the mixture was cooled to 50 ° C. or lower, and 14 mL of water was added with stirring with a stirrer to inoculate type I I crystals. After aging at 40 ° C. for 1.5 hours, crystallization occurred. Further, 140 mL of water was added and cooled to 10 ° C. The precipitated crystals were suction filtered using a Kiriyama funnel and dried to an appropriate level (12 hours at 30 ° C. 2 kPa) to obtain 50 g of dried crystals. The obtained crystals were confirmed to be II-type crystals containing about 4% water from the moisture measurement by the force-fisher method and the measurement of the powder X-ray diffraction spectrum.
また、 乾燥を十分に行うことにより上記と同様にして、 約 0%含水率の I I型 結晶を得ることもできた。 In addition, after sufficient drying, type II with a water content of about 0% was obtained in the same manner as above. Crystals could also be obtained.
[実施例 24] [Example 24]
ェタノール溶液へのヘプタンの添加による I型結晶の製造 Preparation of type I crystals by addition of heptane to ethanol solution
(1R, 8R, 10R)- 9- (2 -ヒドロキシァセチル)—8-フエ-ル- 2, 5, 9-トリァザトリシ クロ [8.4.0.03, 7]テトラデカ- 3 (7) -ェン- 6-オン 4 2 gをエタノール 3 2 OmL に 45°Cで溶解させた後、 3 0°Cに冷却した。 3 0°C下、 スターラーで攪拌しな がら、 ヘプタンを 464mL添加した後、 I型晶を接種した。 さらにヘプタン 1 7 6mLを添カ卩し、 起晶を確認した後、 30°Cで 1時間熟成させた。 続けて、 へ プタンを 640 m L添加し 1時間熟成した後、 1 0 °Cに冷却して一晚攪拌した。 析出した結晶を桐山ロートを用いて吸引ろ過し、 採取した。 その結晶を 6 0°Cで ー晚真空乾燥し、 3 2 gの結晶を得た。 得られた結晶の粉末 X線回折スぺクトル を測定し、 I型結晶であることを確認した。 [実施例 2 5]  (1R, 8R, 10R) -9- (2-Hydroxyacetyl) -8-phenol-2,5,9-triazatricyclo [8.4.0.03,7] tetradeca-3 (7) -en-6 -2 g of ON was dissolved in 3 2 OmL of ethanol at 45 ° C and then cooled to 30 ° C. While stirring with a stirrer at 30 ° C, 464 mL of heptane was added, and then type I crystals were inoculated. Further, 1 76 mL of heptane was added, and after crystallization was confirmed, the mixture was aged at 30 ° C for 1 hour. Subsequently, after adding 640 mL of heptane and aging for 1 hour, the mixture was cooled to 10 ° C. and stirred for one hour. The precipitated crystals were collected by suction filtration using a Kiriyama funnel. The crystals were vacuum-dried at 60 ° C. to obtain 32 g of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured and confirmed to be an I-type crystal. [Example 2 5]
ェタノ一ノレ溶液へのヘプタンの添加による I I型結晶の製造 Preparation of type I crystals by addition of heptane to ethano-nore solutions.
(1R, 8R, 10R)- 9- (2-ヒドロキシァセチル) - 8 -フエ-ル- 2, 5, 9-トリァザトリシク 口 [8.4.0.03, 7]テトラデカ- 3 (7)-ェン- 6-オン 5 gをエタノール 22 m Lに 60 °Cで溶解させた後、 スターラーで攪拌しながら、 ヘプタンを 4 7mL添加し、 I 型晶を接種した。 60°Cで.1時間熟成させたところ起晶が確認された。 5 0°Cに 冷却して、 さらにヘプタン 1 9m Lを添加した後、 1 0°Cに冷却し、 ー晚攪拌し た。 析出した結晶を桐山ロートを用いて吸引ろ過し、 採取した。 その結晶を 60 °Cで一 B免真空乾燥し、 4. 3 gの結晶を得た。 得られた結晶の粉末 X線回折スぺ タトルを測定し、 I I型結晶であることを確認した。 (1R, 8R, 10R) -9- (2-Hydroxyacetyl)-8 -Ferle 2, 5, 9-Triazatrisic [8.4.0.03, 7] Tetradeca-3 (7) -En-6 -After dissolving 5 g of ON in 22 mL of ethanol at 60 ° C, 47 mL of heptane was added while stirring with a stirrer to inoculate type I crystals. After aging for 1 hour at 60 ° C, crystallization was confirmed. After cooling to 50 ° C. and further adding 19 mL of heptane, the mixture was cooled to 10 ° C. and stirred. The precipitated crystals were collected by suction filtration using a Kiriyama funnel. The crystals were vacuum-dried at 60 ° C for 1 B to obtain 4.3 g of crystals. A powder X-ray diffraction spectrum of the obtained crystal was measured to confirm that it was an II type crystal.
[試験例 1 ] [Test Example 1]
I型結晶の物性データ  Physical property data of type I crystals
I型結晶の粉末 X線回折スペクトルを図 6に、 示差走査熱量測定 (DS C) の チャートを図 7にそれぞれ示す。 [試験例 2] Fig. 6 shows the powder X-ray diffraction spectrum of the type I crystal, and Fig. 7 shows the differential scanning calorimetry (DSC) chart. [Test Example 2]
I型結晶の水蒸気吸脱着測定  Water vapor adsorption / desorption measurement of type I crystals
I型結晶を約 10 Omg採取し、 約 50°Cでー晚真空乾燥した後、 約 25 の 恒温下、 全自動水蒸気吸着測定装置を用いて、 水分吸着量を測定した。 その結果、 相対湿度の上昇とともに連続的に水分吸着量は上昇した。 結果を図 8に示す。  About 10 Omg of type I crystals were collected and dried in a vacuum at about 50 ° C. Then, the moisture adsorption amount was measured at a constant temperature of about 25 using a fully automatic water vapor adsorption measuring device. As a result, the amount of moisture adsorbed continuously increased with increasing relative humidity. The results are shown in FIG.
[試験例 3] [Test Example 3]
I型結晶の保存安定性試験  Storage stability test of type I crystals
25°C60%RH及び 40 °C 75 % R Hの恒温恒湿槽内で保存した。 25 °C 6 0%RH下の保存は、 18箇月まで行った。 40°C75%RH下の保存は、 6箇 月で試験を終了した。 何れの条件とも、 保存後も不純物の目立った増減は確認さ れな力ゝつた。  It preserve | saved in the constant temperature and humidity tank of 25 degreeC60% RH and 40 degreeC75% RH. Storage at 25 ° C 60% RH was carried out for up to 18 months. Storage at 40 ° C and 75% RH was completed in 6 months. In any condition, no significant increase or decrease in impurities was observed after storage.
結果を表 1 (25°C60%RH) 及び表 2 (40°C75%RH) に示す。 [表 1 ]  The results are shown in Table 1 (25 ° C 60% RH) and Table 2 (40 ° C75% RH). [table 1 ]
Figure imgf000042_0001
Figure imgf000042_0001
[表 2] [Table 2]
Figure imgf000042_0002
乾燥減量 (%) 0.3 0.7 0.8
Figure imgf000042_0002
Loss on drying (%) 0.3 0.7 0.8
定量 (%) 99.9 99.9 99.9  Quantitative (%) 99.9 99.9 99.9
粉末 X線 I型結晶 I型結晶 I型結晶  Powder X-ray Type I crystal Type I crystal Type I crystal
[試験例 4] [Test Example 4]
I I型結晶の物性データ  I Physical properties data of type I crystals
I I型結晶(水分量約 3〜 5%)の粉末 X線結晶回折スぺクトルを図 9に、 実施 例 5に記載された方法によって得られた I I型結晶の示差走査熱量測定 (DS C) のチャートを図 10にそれぞれ示す。 DSCチャート中、 90度付近にピー クを有するのブロードな吸熱ピークは水の消失に対応していると考えられ、 本結 晶が含水物であることを支持している。  Fig. 9 shows a powder X-ray crystal diffraction spectrum of a type II crystal (water content of about 3-5%), and differential scanning calorimetry (DS C) of the type II crystal obtained by the method described in Example 5 Figure 10 shows these charts. In the DSC chart, a broad endothermic peak with a peak near 90 degrees is considered to correspond to the disappearance of water, and supports the fact that this crystal is a hydrated substance.
また、 真空下から周囲湿度条件下まで湿度条件を段階的に変化させて粉末 X線 回折を測定し、 スペク トルの連続的なシフトを確認した。 真空下で 60分間放置 後、 真空下で粉末 X線回折を測定した結果を図 1 1に示す。  In addition, powder X-ray diffraction was measured by changing the humidity conditions stepwise from vacuum to ambient humidity conditions, and a continuous spectrum shift was confirmed. Fig. 11 shows the results of powder X-ray diffraction measurements after standing for 60 minutes under vacuum.
[試験例 5 [Test Example 5
I I型結晶の水蒸気吸脱着測定  I Water vapor adsorption / desorption measurement of type I crystals
実施例 6に記載された方法によって得られた I I型結晶を約 100 i g採取し、 約 50°Cで一晩真空乾燥した後、 約 25°Cの恒温下、 全自動水蒸気吸着測定装置 を用いて、 水分吸着量を測定した。 その結果、 相対湿度の上昇とともに連続的に 水分吸着量は上昇したが、 4 %前後からその増加率は減少する傾向が認められた。 結果を図 12に示す。  About 100 ig of type II crystals obtained by the method described in Example 6 were collected, vacuum-dried overnight at about 50 ° C, and then used at a constant temperature of about 25 ° C using a fully automatic water vapor adsorption measuring device. Then, the moisture adsorption amount was measured. As a result, the amount of moisture adsorbed increased continuously with increasing relative humidity, but the rate of increase tended to decrease from around 4%. The results are shown in FIG.
[試験例 6] [Test Example 6]
I I型結晶の水分量の経時変化  I Moisture content of type I crystals over time
試験例 5の水分吸脱着測定の結果から、 I I型結晶は、 水分量が 4〜5%付近 が最も安定であると認められたため、 水分量 4〜 5%の I I型結晶 (検体 1) 及 ぴ十分に乾燥した I I型結晶 (検体 2) について、 1 1%RH〜84%RHまで の一定の相対湿度下で保存し、 水分量の経時変化を確認した。 検体 1について, 初期水分量が 4. 4 %であることを確認した後、 約 1 1 %R H (塩化リチウム 1水和物の飽和溶液下) 、 約 3 3 % R H (塩化マグネシゥム六 水和物の飽和溶液下) 及び約 84%RH (塩化カリウムの飽和溶液下) で開放系 で保存した。 保存 1、 6及び 26時間後にそれぞれの検体の水分量を測定した。 From the results of moisture absorption / desorption measurement in Test Example 5, it was recognized that the type II crystal was most stable when the water content was around 4-5%. Therefore, the type II crystal (sample 1) with a water content of 4-5% A well-dried type II crystal (specimen 2) was stored at a constant relative humidity of 11% RH to 84% RH, and the change in moisture content over time was confirmed. For sample 1, after confirming that the initial moisture content was 4.4%, about 11% RH (under a saturated solution of lithium chloride monohydrate), about 33% RH (magnesium chloride hexahydrate) ) And about 84% RH (under a saturated solution of potassium chloride) in an open system. The water content of each specimen was measured after 1, 6 and 26 hours of storage.
6 0 °Cで 2時間真空乾燥した検体を検体 2とし、 水—分量を測定し、 0. 2 %で あることを確認した。 その後, 約 6 0 % R H ( 2 5 °C 6 0 % R Hの恒温恒湿槽 内) 及ぴ 84%RH (塩化カリウムの飽和溶液下) で開放系で保存した。 保存 1、 6及び 26時間後にそれぞれの検体の水分量を測定した。  The specimen that was vacuum-dried at 60 ° C for 2 hours was designated as specimen 2, and the water content was measured and confirmed to be 0.2%. After that, it was stored in an open system at about 60% RH (in a constant temperature and humidity chamber of 25 ° C 60% RH) and 84% RH (under a saturated solution of potassium chloride). The water content of each specimen was measured after 1, 6 and 26 hours of storage.
なお, 水分量の測定にはカールフィッシャー測定装置 (三菱化学株式会社 C A— 0 6) を用いた。  The Karl Fischer measurement device (Mitsubishi Chemical Corporation CA-06) was used for the measurement of water content.
結果を図 1 3に示す.  The results are shown in Fig. 13.
その結果、 初期水分量 4. 4%の検体 (検体 1) は、 いずれの相対湿度下にお いても、 3〜5°/。内の一定の範囲の水分量を有しており、 水分量の変動が少なく、 秤量の際などに湿度の影響を受けにくい、 取り扱い易い結晶であることが確認さ れた。 また、 乾燥した結晶も、 通常あるいは加湿度条件下で、 上記範囲の水分量 を有する含水結晶となることが認められた。  As a result, the specimen with the initial moisture content of 4.4% (Sample 1) is 3-5 ° / at any relative humidity. It was confirmed that the crystal was easy to handle, having a moisture content within a certain range, having little fluctuation in moisture content, and being hardly affected by humidity during weighing. In addition, it was confirmed that the dried crystals became water-containing crystals having a water content in the above range under normal or humid conditions.
[試験例 7] [Test Example 7]
I I型結晶の保存安定性試験  I Storage stability test of type I crystals
I I型結晶を 25 °C 60 %RH及び 40 °C 7 5 %RH.の恒温恒湿槽内で遮光、 気密条件下保存した。 2 5°C6 0%RH下の保存は, 1 2箇月まで行った。 4 I Type I crystals were stored in a thermostatic chamber at 25 ° C 60% RH and 40 ° C 75% RH. 2 Storage at 5 ° C6 0% RH was performed for up to 12 months. Four
0°C7 5%RH下の保存は、 6箇月で試験を終了した。 何れの条件とも、 保存後 も不純物の目立った増減は確認されなかった。 Storage at 0 ° C7 5% RH ended the study in 6 months. Under any condition, no significant increase or decrease in impurities was observed after storage.
結果を表 3 (2 5°C60%RH) 及び表 4 (40°C75%RH) に示す。  The results are shown in Table 3 (25 ° C 60% RH) and Table 4 (40 ° C 75% RH).
[表 3]  [Table 3]
Figure imgf000044_0001
3.9 4.0 3.9 40 3.8 定量 (%) 99.6 99.7 100.3 100.4 99.8 粉末 X線 I I型結晶 I I型結晶 I I型結晶 I I型結晶 I I型結晶
Figure imgf000044_0001
3.9 4.0 3.9 40 3.8 Determination (%) 99.6 99.7 100.3 100.4 99.8 Powder X-ray Type II crystal Type II crystal Type II crystal Type II crystal Type II crystal
[表 4] [Table 4]
Figure imgf000045_0001
Figure imgf000045_0001
[試験例 8] [Test Example 8]
I I型結晶の保存安定性試験 (苛酷条件下)  I Storage stability test for type I crystals (under severe conditions)
80°C/90%RH, 25°C/40%RH, 60°C/90%RH、 あるいは、 6 0°CZなりゆき湿度 (低湿度) の恒温恒湿槽内で II型結晶を開放状態で保存した 。 保存は 3箇月まで行った。 その結果、 何れの条件とも、 保存後も不純物の目立 つた増減は確認されなかった。  Type II crystals open in a constant temperature and humidity chamber at 80 ° C / 90% RH, 25 ° C / 40% RH, 60 ° C / 90% RH, or 60 ° CZ Saved with. Storage was performed for up to 3 months. As a result, no significant increase or decrease in impurities was observed after storage under any of the conditions.
結果を表 5 (80°C/90°/oRH) 、 表 6 (25°C/40%RH) 、 表 7 (60 °C/90%RH) 、 及ぴ表 8 (60°C/なりゆき湿度) に示す。  The results are shown in Table 5 (80 ° C / 90 ° / oRH), Table 6 (25 ° C / 40% RH), Table 7 (60 ° C / 90% RH), and Table 8 (60 ° C / now) Humidity)
[表 5] 80°C/90%RH [Table 5] 80 ° C / 90% RH
Figure imgf000045_0002
[表 6] 25°C/40%RH
Figure imgf000046_0001
Figure imgf000045_0002
[Table 6] 25 ° C / 40% RH
Figure imgf000046_0001
[表 7] 60°C/90%RH[Table 7] 60 ° C / 90% RH
Figure imgf000046_0002
Figure imgf000046_0002
[表 8] 60°CZなりゆき湿度 (低湿度) [Table 8] Humidity at 60 ° CZ (low humidity)
Figure imgf000046_0003
Figure imgf000046_0003
*) 上述の水分量変化に基づく若干のピーク値シフト有り 上記試験例から理解されるように、 I I型結晶 (約 3〜5%含水) は保存安 定性が高く、 上記のような広範囲の温度及び湿度下において不純物を生じない。 高温低湿度の条件下では微細な変化が見られるものの、 基本的にその水分量も粉 末 X線パターンも変化しない安定な結晶であり、 医薬品製造などに極めて有用で ある 産業上の利用可能性 *) There is a slight peak value shift based on the moisture content change as described above. As can be seen from the above test example, type II crystals (containing about 3-5% water) have high storage stability, and have a wide range of temperatures as described above. And does not produce impurities under humidity. Although it shows slight changes under high temperature and low humidity conditions, it is basically a stable crystal that does not change its water content or powder X-ray pattern, and is extremely useful for pharmaceutical production. Industrial applicability
本発明の式 (I ) で表される化合物またはその製薬学的に許容される塩の結晶 は、 高い保存安定性を有するので、 前記式 (I ) で表される化合物を含む医薬の 製造などに有用である。  Since the crystal of the compound represented by the formula (I) or the pharmaceutically acceptable salt thereof of the present invention has high storage stability, production of a medicament containing the compound represented by the formula (I), etc. Useful for.
本発明の式 (1— 1 ) で表される化合物の結晶などは、 無水結晶なので医薬品 製造における原薬、 標準物質などとしても有用である。  Since the crystals of the compound represented by the formula (1-1) of the present invention are anhydrous crystals, they are useful as drug substances and standard substances in pharmaceutical production.
本発明の式 (1 — 2 ) で表される結晶などは、 水分量の変化が少ないので、 医 薬品製造などに極めて有用である。  The crystal represented by the formula (1-2) of the present invention is extremely useful for pharmaceutical production and the like because the change in water content is small.

Claims

請求の範囲 式 (I) Claim Formula (I)
Figure imgf000048_0001
Figure imgf000048_0001
(I)  (I)
で表される化合物またはその製薬学的に許容される塩の結晶。 Or a pharmaceutically acceptable salt thereof.
2. 無水物結晶である、 請求項 1記載の結晶。  2. The crystal according to claim 1, which is an anhydrous crystal.
3. 式 (I一 1)  3. Formula (I 1 1)
Figure imgf000048_0002
Figure imgf000048_0002
(1-1)  (1-1)
で表される化合物の結晶。 A compound crystal represented by:
4. 粉末 X線回折において、 回折角度 (2 Θ) =1 2. 4、 21. 8および 24. In powder X-ray diffraction, diffraction angle (2 Θ) = 1 2.4, 21.8 and 2
6. 3に特徴的なピークを有する請求項 1または 3記載の結晶。 6. The crystal according to claim 1 or 3, which has a characteristic peak in 3.
5. 粉末 X線回折において、 回折角度 (20) =1 1. 4、 12. 4、 15. 5. In powder X-ray diffraction, diffraction angle (20) = 1.1.4, 12.4, 15.
3、 19. 1、 20. 2、 20. 8、 21. 8、 23. 6および 26. 3に特徴 的なピークを有する請求項 1、 3または 4記載の結晶。 The crystal according to claim 1, 3 or 4 having peaks characteristic of 3, 19.1, 20.2, 20.8, 21.8, 23.6 and 26.3.
6. さらに、 示差走査熱量測定において、 228〜234°Cの範囲に吸熱ピー クを有する請求項 1、 3、 4または 5記載の結晶。 6. The crystal according to claim 1, 3, 4 or 5, further having an endothermic peak in the range of 228 to 234 ° C in differential scanning calorimetry.
7. 水和物結晶である、 請求項 1記載の結晶。  7. The crystal according to claim 1, which is a hydrate crystal.
8. 式 ( I一 2)
Figure imgf000049_0001
8. Formula (I 1 2)
Figure imgf000049_0001
"XH20 "XH 2 0
(1-2)  (1-2)
(式中、 xは 0〜1の数である。 ) (In the formula, x is a number from 0 to 1.)
で表される化合物の結晶。 A compound crystal represented by:
9. Xが 0. 6〜1である、 請求項 8記載の結晶。  9. The crystal according to claim 8, wherein X is 0.6 to 1.
10. 粉末 X線回折において、 回折角度 (20) =1 3. 6、 16. 1-16. 2および 27. 4に特徴的なピークを有する請求項 1、 8または 9記載の結晶。10. The crystal according to claim 1, 8 or 9, which has a characteristic peak at diffraction angle (20) = 13.6, 16. 1-16.2 and 27.4 in powder X-ray diffraction.
1 1. 粉末 X線回折において、 回折角度 (20) =9. 7〜9. 8、 1 3. 6、 16. 1〜16. 2、 19. 4〜19. 6、 20. 8〜20. 9、 22. 5〜2 2. 6および 27. 4に特徴的なピークを有する請求項 1、 8、 9または 10記 載の結晶。 1 1. In powder X-ray diffraction, diffraction angle (20) = 9.7 to 9.8, 13.6, 16.1 to 16.2, 19.4 to 19.6, 20.8 to 20. The crystal according to claim 1, 8, 9 or 10 having peaks characteristic of 9, 22.5 to 22.6 and 27.4.
1 2. 粉末 X線回折において、 回折角度 (26) =9. 8、 13. 6、 16. 1、 19. 6、 20· 8、 22. 6および 27. 4に特徴的なピークを有する請 求項 1、 8、 9、 10または 1 1記載の結晶。  1 2. In powder X-ray diffraction, the diffraction angle (26) = 9. 8, 13. 6, 16. 1, 19. 19. 20, 20. 8, 22. 6 and 27.4. A crystal according to claim 1, 8, 9, 10, or 11.
13. さらに、 示差走査熱量測定において、 204〜210°Cの範囲に吸熱ピ ークを有する請求項 1、 8、 9、 10、 1 1または 1 2記載の結晶。  13. The crystal according to claim 1, further comprising an endothermic peak in a range of 204 to 210 ° C. in differential scanning calorimetry.
14. 請求項 1〜 13のいずれかに記載の結晶を含有する医薬。  14. A pharmaceutical comprising the crystal according to any one of claims 1 to 13.
15. 糖輸送増強作用剤である、 請求項 14記載の医薬。  15. The medicament according to claim 14, which is an agent for enhancing sugar transport.
16. 血糖降下剤である、 請求項 14記載の医薬。  16. The medicament according to claim 14, which is a hypoglycemic agent.
17. 糖尿病、 糖尿病性末梢神経障害、 糖尿病性腎症、 糖尿病性網膜症、 糖尿 病性大血管症、 耐糖能異常、 もしくは肥満症の予防およびノまたは治療薬である、 請求項 14〜 16のいずれかに記載の医薬。  17. It is a prophylactic and therapeutic agent for diabetes, diabetic peripheral neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic macroangiopathy, impaired glucose tolerance, or obesity. The medicament according to any one of the above.
18. 溶媒和物結晶である、 請求項 1記載の結晶。 18. The crystal according to claim 1, which is a solvate crystal.
19. 酢酸ェチル和物結晶である、 請求項 18記載の結晶。 19. The crystal according to claim 18, which is an ethyl acetate solvate crystal.
20. 式 ( I一 3)
Figure imgf000050_0001
20. Formula (I 1 3)
Figure imgf000050_0001
■1/2 CH3COOC2H5  ■ 1/2 CH3COOC2H5
(1-3)  (1-3)
で表される化合物の結晶。 A compound crystal represented by:
21. 粉末 X線回折において、 回折角度 (20) =5. 8、 1 1. 6、 18. 4、 1 9. 5、 20. 5、 21. 0、 21. 9および 22. 8に特徴的なピーク を有する請求項 1または 20記載の結晶。  21. In powder X-ray diffraction, diffraction angle (20) = 5. 8, 1 1. 6, 18. 4, 1 9. 5, 20. 5, 21. 0, 21.9 and 22.8 21. The crystal according to claim 1 or 20, which has a unique peak.
22. ァニソ一ル和物結晶である、 請求項 18記載の結晶。  22. The crystal according to claim 18, wherein the crystal is an anisosolvate crystal.
一 4)  1)
Figure imgf000050_0002
Figure imgf000050_0002
■1/2 C6H5OCH3 ■ 1/2 C 6 H 5 OCH 3
(1-4)  (1-4)
で表される化合物の結晶。 A compound crystal represented by:
24. 粉末 X線回折において、 回折角度 (26) =5. 8、 1 1, 6、 18 4、 1 9. 3、 20. 4、 21. 0、 21. 8および 22. 8に特徴的なピー を有する請求項 1または 23記載の結晶。  24. In powder X-ray diffraction, diffraction angle (26) = 5.8, 1 1, 6, 18 4, 1 9. 3, 20. 4, 21.0, 21.8 and 22.8 24. The crystal according to claim 1 or 23, which has a peak.
25. ベンゾニトリル和物結晶である、 請求項 18記載の結晶。  25. The crystal according to claim 18, which is a benzonitrile solvate crystal.
26. 式 ( I一 5) 26. Formula (I 1 5)
Figure imgf000050_0003
で表される化合物の結晶。
Figure imgf000050_0003
A compound crystal represented by:
27. 粉末 X線回折において、 回折角度 (20) =6. 2、 12. 4、 1 7. 6、 18. 2、 20. 2、 20. 4、 20. 8、 21. 3および 24. 2に特 ί敷 的なピークを有する請求項 1または 26記載の結晶。  27. In powder X-ray diffraction, diffraction angle (20) = 6.2, 12. 4, 1 7. 6, 18. 2, 20. 2, 20. 4, 20. 8, 21. 3 and 24.2 27. The crystal according to claim 1 or 26, wherein the crystal has a special peak.
28. テトラヒドロフラン和物結晶である、 請求項 18記載の結晶。 28. The crystal according to claim 18, which is a tetrahydrofuran solvate crystal.
一 6)  1)
Figure imgf000051_0001
Figure imgf000051_0001
■C4H80 ■ C 4 H 8 0
(1-6)  (1-6)
で表される化合物の結晶。 A compound crystal represented by:
30. 粉末 X線回折において、 回折角度 (20) =7. 1、 14. 4、 1 9, 9、 21. 3、 22. 5および 23. 7に特徴的なピークを有する請求項 1また は 29記載の結晶。  30. In powder X-ray diffraction, the diffraction angle (20) = 7.1, 14.4, 1, 9, 9, 21.3, 22.5 and 23.7 have characteristic peaks at claim 1 or The crystal according to 29.
31. トルェン和物である、 請求項 1 8記載の結晶。  31. The crystal according to claim 18, wherein the crystal is a Toruen sum.
一 7)  1)
Figure imgf000051_0002
Figure imgf000051_0002
■U6H5し Ηΐ3  ■ U6H5 Ηΐ3
(1-7)  (1-7)
で表される化合物の結晶。 A compound crystal represented by:
33. 粉末 X線回折において、 回折角度 (2 Θ) =5. 9、 8. 3、 1 1. 8、 14. 5、 18. 5、 21. 3, 22. 9 および 29. 6に特徴的なピークを 有する請求項 1または 32記載の結晶。  33. In powder X-ray diffraction, diffraction angle (2 Θ) = 5.9, 8. 3, 1 1. 8, 14. 5, 18. 5, 21. 3, 22. 9 and 29.6 The crystal according to claim 1 or 32, which has a large peak.
34. 式 (I)
Figure imgf000052_0001
34. Formula (I)
Figure imgf000052_0001
(I)  (I)
で表される化合物を含有する溶液を冷却する工程を含む、 請求項 2〜 6のいずれ かに記載の結晶の製造方法。 The manufacturing method of the crystal | crystallization in any one of Claims 2-6 including the process of cooling the solution containing the compound represented by these.
35. 式 ( I ) 35. Formula (I)
Figure imgf000052_0002
Figure imgf000052_0002
(I) (I)
で表される化合物を含有する溶液に貧溶媒を添加する工程を含む、 請求項 2〜 6 のいずれかに記載の結晶の製造方法。 The manufacturing method of the crystal | crystallization in any one of Claims 2-6 including the process of adding a poor solvent to the solution containing the compound represented by these.
36. 式 ( I ) 36. Formula (I)
Figure imgf000052_0003
Figure imgf000052_0003
(I) (I)
で表される化合物の溶媒和物結晶を脱溶媒する工程を含む、 請求項 2〜 6のいず れかに記載の結晶の製造方法。 The method for producing a crystal according to any one of claims 2 to 6, comprising a step of desolvating the solvate crystal of the compound represented by formula (1).
3 7. 式 (I)
Figure imgf000053_0001
3 7. Formula (I)
Figure imgf000053_0001
(I)  (I)
で表される化合物を含有する溶液を冷却する工程を含む、 請求項 7〜13のいず れかに記載の結晶の製造方法。 The method for producing a crystal according to any one of claims 7 to 13, comprising a step of cooling a solution containing the compound represented by formula (1).
38. 式 (I) 38. Formula (I)
Figure imgf000053_0002
Figure imgf000053_0002
(I) (I)
で表される化合物を含有する溶液に貧溶媒を添加する工程を含む、 請求項 7〜 1 3のいずれかに記載の結晶の製造方法。 The manufacturing method of the crystal | crystallization in any one of Claims 7-13 including the process of adding a poor solvent to the solution containing the compound represented by these.
39. 請求項 2〜 6のいずれかに記載の結晶に水を添加する工程を含む、 請求 項 7〜 1 3のいずれかに記載の結晶の製造方法。  39. The method for producing a crystal according to any one of claims 7 to 13, comprising a step of adding water to the crystal according to any one of claims 2 to 6.
40.. 請求項 31〜 33のいずれかに記載の結晶に水を添加する工程を含む、 請求項 7〜 13のいずれかに記載の結晶の製造方法。  40 .. The method for producing a crystal according to any one of claims 7 to 13, comprising a step of adding water to the crystal according to any one of claims 31 to 33.
PCT/JP2007/059540 2007-04-27 2007-04-27 Crystalline form of lactam compound and process for producing the same WO2008139574A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2007/059540 WO2008139574A1 (en) 2007-04-27 2007-04-27 Crystalline form of lactam compound and process for producing the same
PCT/JP2008/058038 WO2008136394A1 (en) 2007-04-27 2008-04-25 Method for production of lactam compound, and intermediate for the production method
PCT/JP2008/058037 WO2008136393A1 (en) 2007-04-27 2008-04-25 Crystal of lactam compound, and method for production thereof
PCT/JP2008/058036 WO2008136392A1 (en) 2007-04-27 2008-04-25 Preparation for oral administration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/059540 WO2008139574A1 (en) 2007-04-27 2007-04-27 Crystalline form of lactam compound and process for producing the same

Publications (1)

Publication Number Publication Date
WO2008139574A1 true WO2008139574A1 (en) 2008-11-20

Family

ID=40001806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059540 WO2008139574A1 (en) 2007-04-27 2007-04-27 Crystalline form of lactam compound and process for producing the same

Country Status (1)

Country Link
WO (1) WO2008139574A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044180A1 (en) * 2000-12-01 2002-06-06 Ajinomoto Co.,Inc. Lactam compounds and medicinal use thereof
JP2004010523A (en) * 2002-06-05 2004-01-15 Ajinomoto Co Inc Condensed polycyclic compound and its medical use
WO2004069259A1 (en) * 2003-02-07 2004-08-19 Ajinomoto Co., Inc. Remedy for diabetes
WO2005042536A1 (en) * 2003-10-31 2005-05-12 Ajinomoto Co., Inc. Novel fused polycyclic compound having heterocycle and medicinal use thereof
JP2005529933A (en) * 2002-05-31 2005-10-06 シェーリング コーポレイション Xanthine phosphodiesterase V inhibitor polymorph
JP2006225382A (en) * 2005-01-24 2006-08-31 Sankyo Co Ltd Production method for thiazolidinedione compound and its production intermediate
WO2006118341A1 (en) * 2005-04-28 2006-11-09 Ajinomoto Co., Inc. Novel lactam compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044180A1 (en) * 2000-12-01 2002-06-06 Ajinomoto Co.,Inc. Lactam compounds and medicinal use thereof
JP2005529933A (en) * 2002-05-31 2005-10-06 シェーリング コーポレイション Xanthine phosphodiesterase V inhibitor polymorph
JP2004010523A (en) * 2002-06-05 2004-01-15 Ajinomoto Co Inc Condensed polycyclic compound and its medical use
WO2004069259A1 (en) * 2003-02-07 2004-08-19 Ajinomoto Co., Inc. Remedy for diabetes
WO2005042536A1 (en) * 2003-10-31 2005-05-12 Ajinomoto Co., Inc. Novel fused polycyclic compound having heterocycle and medicinal use thereof
JP2006225382A (en) * 2005-01-24 2006-08-31 Sankyo Co Ltd Production method for thiazolidinedione compound and its production intermediate
WO2006118341A1 (en) * 2005-04-28 2006-11-09 Ajinomoto Co., Inc. Novel lactam compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CSJ: THE CHEMICAL SOCIETY OF JAPAN: "Jikken Kagaku Koza 1 Kihon Sosa I", vol. 4TH ED., 5 November 1990, MARUZEN CO., LTD., pages: 184 - 186, XP003024077 *
KAGAKU DOJIN HENSHUBU: "Zoku.Jikken no Anzenni Okonau Tameni, new edition", 10 December 1987, KAGAKU-DOJIN PUBLISHING CO., LTD., pages: 82 - 83, XP003024078 *
OKANO T.: "Shin.Yakuzaigaku Soron", NANKODO CO., LTD., 10 April 1987 (1987-04-10), pages 110 - 111 *

Similar Documents

Publication Publication Date Title
KR20160121544A (en) N-4-[67--4-]-n'-4- -11- crystalline solid forms of n-[-[-dimethoxyquinolin--yloxy]phenyl]-n'-[-fluorophenyl cyclopropane--dicarboxamide processes for making and methods of use
US20220356173A1 (en) Polymorphic forms of kinase inhibitor compound, pharmaceutical composition containing same, preparation method therefor and use thereof
US11286259B2 (en) Co-crystals of ribociclib and co-crystals of ribociclib monosuccinate, preparation method therefor, compositions thereof, and uses thereof
KR20080089659A (en) Amorphous and crystalline forms of aprepitant and processes for the preparation thereof
EP2870163A1 (en) Pharmaceutical compositions comprising rifaximin and amino acids, preparation method and use thereof
WO2016029828A1 (en) Crystalline free acid, hemicalcium salt and α-phenylethylamine salt of ahu-377 as well as preparation method therefor and application thereof
JP2008501024A (en) Mixed co-crystal and pharmaceutical composition comprising the same
EP3279201B1 (en) Cdk inhibitor, eutectic crystal of mek inhibitor, and preparation method therefor
EP4337638A1 (en) Solid forms of salts of 4-[5-[(3s)-3-aminopyrrolidine-1-carbonyl]-2-[2-fluoro-4-(2-hydroxy-2-ethylpropyl)phenyl]phenyl]-2-fluoro-benzonitrile
WO2016155578A1 (en) New crystal form of dapagliflozin and preparation method therefor
WO2011023146A1 (en) Imatinib mesylate polymorphs generated by crystallization in aqueous inorganic salt solutions
KR100752549B1 (en) Pseudopolymorphic forms of carvedilol
RU2598378C2 (en) Crystalline form iii and iv of n-benzoylstaurosporine
JP2021532165A (en) Addition salt of S1P1 receptor agonist and its crystalline form, and pharmaceutical composition
AU2002338726A1 (en) Pseudopolymorphic forms of carvedilol
CN103421011B (en) A kind of method for preparing sitagliptin phosphate anhydrous crystal forms I
JP2019509306A (en) Crystalline form of drug hydrochloride used for treatment or prevention of JAK-related diseases and method for producing the same
US12011442B2 (en) Solid-state forms of Abemaciclib, their use and preparation
WO2008139574A1 (en) Crystalline form of lactam compound and process for producing the same
TW201008935A (en) Crystalline forms of thiazolidinedione compound and its manufacturing method
CA2679936A1 (en) Polymorphs of 7-[(3-chloro-6,11-dihydro-6-methyldibenzo[c,f][1,2]thiazepin-11-yl)amino]heptanoic acid s,s-dioxide and methods of making and using the same
US11713310B2 (en) Crystal forms of crenolanib and methods of use thereof
WO2022144042A1 (en) Crystal form of tas-116, and preparation method therefor, pharmaceutical composition, and use therefor
WO2023051753A1 (en) Preparation method for rock inhibitor, intermediate thereof and preparation method for intermediate
EP4181923A1 (en) Crystal forms of crenolanib and methods of use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07742975

Country of ref document: EP

Kind code of ref document: A1