WO2008133488A9 - Proceso de composteo semi -estático mejorado para la producción de un sustrato humectante de baja densidad, para su uso en viveros e invernaderos - Google Patents

Proceso de composteo semi -estático mejorado para la producción de un sustrato humectante de baja densidad, para su uso en viveros e invernaderos Download PDF

Info

Publication number
WO2008133488A9
WO2008133488A9 PCT/MX2008/000056 MX2008000056W WO2008133488A9 WO 2008133488 A9 WO2008133488 A9 WO 2008133488A9 MX 2008000056 W MX2008000056 W MX 2008000056W WO 2008133488 A9 WO2008133488 A9 WO 2008133488A9
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
low density
semi
composting process
accordance
Prior art date
Application number
PCT/MX2008/000056
Other languages
English (en)
French (fr)
Other versions
WO2008133488A1 (es
Inventor
Sergio Rubén TREJO ESTRADA
Julieta Salomé VELOZ RENDÓN
Minerva Rosas Morales
Ana Itzel Reyes Mendez
Original Assignee
Central Motzorongo S.A. De C.V.
Instituto Politécnico Nacional
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motzorongo S.A. De C.V., Instituto Politécnico Nacional filed Critical Central Motzorongo S.A. De C.V.
Priority to US12/597,413 priority Critical patent/US20100120112A1/en
Publication of WO2008133488A1 publication Critical patent/WO2008133488A1/es
Publication of WO2008133488A9 publication Critical patent/WO2008133488A9/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/002Solid waste from mechanical processing of material, e.g. seed coats, olive pits, almond shells, fruit residue, rice hulls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates in general to the area of agricultural biotechnology, mainly to the processing of agroindustrial wastes and in particular to an improved composting process for the production of a low density wetting substrate for use in intensive agricultural production in greenhouses, in nurseries and agricultural field.
  • Soil improvement is an urgent need. The well-being of civilization depends largely on its good maintenance (Wallace, 1998). Currently the value of the land is recognized, since it is from it, that civilization has the capacity to produce food. But there is another important reason to participate in soil maintenance that acts as an environmental filter to clean the air and water (Rechcigl 1 , 1995). In reality the soil is not a renewable resource in a short time and must be taken care of so that future generations obtain the same benefits from the Earth (Wallace, 1998).
  • composting is the practice of using organic waste that is transformed into humus or similar substances by biological reduction (Wallace, 1998).
  • Humus is the organic matter of the soil of dark color and has physical and chemical properties that are not subject to rapid decomposition like plant residues (Kohnke, 1995). It is a colloidal substance (as glue) that contains about 50% carbon, 5% nitrogen and 0.5% phosphorus, chemically it is a combination of modified lignin (constituent of the plant cell wall more resistant to degradation), amino acids
  • the improver or conditioner is an organic or inorganic material that is added for the purpose of improving the pores in the compost matrix and / or increasing the biodegradable components (Haug, 1993).
  • the volume agent is an organic or inorganic material, of sufficient size to provide structural support and maintain air spaces between the compost matrix (Haug 1993).
  • the composting system is usually divided into three phases, the first and second stage are high activity and the third is a stabilization or maturation phase.
  • the first and second phase the method of quarries or static, semi-static, agitated piles can be used or they can be carried out in reactors; Since they are characterized by a high demand for oxygen, moderate to high temperatures, the pH is acidic due to the production of organic acids, a rapid reduction of volatile biodegradable solids and unpleasant odors (Haug, 1993).
  • the degree of maturation of a compost is dictated by the use that will be given or by the final product. Some criteria have been developed to measure the degree of stabilization (Rechcigl, 1995): • Temperature decline at the end of the composting process.
  • Bacteria populations constitute the largest proportion of the biological communities present in composts and are responsible for most of the breakdown of organic matter. Actinomycetes are also common, and impart the characteristic shine and smell of soil in the compost. These together with the Fungi break down much of the cellulose, hemicellulose and lignin present in organic matter (Sylvia, 2005).
  • the quantification of microbial communities have shown the enormous changes in the distribution of populations during composting. Some of the largest composting participants progress from the second stage that is dominated by mesophilic microorganisms (which preferably grow between 20 ° C and 40 ° C), to the third stage that has elevated temperatures (40 ° C to 80 ° C), and is dominated by thermophiles. The last stage is a gradual period of cooling, and constitutes the stage of stabilization or maturation of the compost (Sylvia, 2005).
  • Compost effects on soil properties Physical properties such as density, water retention capacity, porosity and stability of aggregates are soil properties that can be affected as a result of the application of composts, which are generally attributed to the increase in organic matter by the addition of this (Wallace, 1998).
  • Soil structure A significantly beneficial effect of the application of compost to the soil is to improve the structure of the soil by increasing the integrity and stability of the aggregates by the availability of the mineral fraction of the soil for microorganisms. Adding organic matter increases the growth of microbial populations (Wallace, 1998).
  • Density Another beneficial effect of adding compost to the soil is the decrease in density, which increases water infiltration and increases the volume of the pores (Rechcigl, 1995).
  • Soil erosion is another beneficial effect of adding compost to the soil.
  • a substrate is any solid material other than soil, natural, synthetic or residual, mineral or organic, which Placed in a container, in pure form or in mixture, it allows the anchorage of the root system of the plant, thus playing a supporting role for the plant.
  • the substrate may or may not be involved in the mineral nutrition process of the plant. Horticulture substrates have been used for (Garcia, 2002):
  • the properties that the substrates must have to obtain a good yield in the growth of the plants are: a) Physical Properties
  • Porosity is a measure of the total volume of the substrate occupied by both solid particles and the spaces between these that contain air or water. This value is usually expressed as a percentage, that is, a substrate with 50% porosity is half solid particles and half pore space. Its optimal value should not be less than 80-85%, although substrates of lower porosity can be used advantageously under certain conditions (Plaster, 2003). The porosity must be greater, since there are more pores, they are in contact with the open space, which induces an exchange of fluids with the open space and therefore serves as a store for the root. The size and quantity of the pores conditions the aeration and retention of water in the substrate (Plaster, 2003). • Density
  • a substrate has particle density and bulk density. Density is the relationship between weight and volume unit The density of a particle is determined by the weight of a solid particle of the substrate divided by the volume of the solid particle of the substrate. To obtain a solid particle, one must compress the sample of the substrate until the space between the pores, which is occupied by air or water, is eliminated. The bulk density considers the total space occupied by the solid components plus the space of the pores. The bulk density indirectly indicates the porosity of the substrate and its ease of transport and handling (Sylvia, 1999).
  • Density has a relative interest. Its value varies depending on the subject matter and usually ranges between 2.5-3 g / ml for most substrates of mineral origin. Bulk density values are preferred low (0.7-0.1 g / ml) and that guarantee a certain consistency of the structure (Sylvia, 1999).
  • the first has no stable shape, easily fitting the shape of the container, while the second will depend on the characteristics of the fibers. If they are fixed by some type of cementing material, they retain rigid shapes and do not adapt to the container but have some ease of changing volume and consistency when they go from dry to wet
  • the particle distribution affects two important aspects of the substrates: the internal surface area and the number and size of the pore space.
  • the internal surface area is the total surface area of all particles in the substrate. Then the substrates With many small particles, they have a larger internal surface area (Sylvia, 1999).
  • the internal surface area is important because the reactions occur on the surface of the soil particles. If the particles are very large, most of the water would drain very quickly, it would have better aeration. Following the rule of particle size, a substrate with small particles retains more water because there is more internal surface area for water to adhere (Sylvia, 1999).
  • the size and number of pores depends on the particle size, that is, with large particles there are large pores and with small particles there are small pores. Substrates with large particles quickly drain the water, and as water drains, the air spaces are filled. And smaller particles tend to retain water. Both sizes are important because the substrate needs micropores to retain water and macropores for air (Sylvia, 1999). • Water retention
  • the water that a substrate can retain and that which is viable for plants are two different characteristics, since only the water portion of the substrate between the field capacity and the depletion point is available to the plants.
  • Water that can retain a substrate and that which is viable for plants is established in the texture of the substrate (Plaster, 2003).
  • substrates with very large particles their internal surface area is too small to retain water films.
  • the pores are too large and much of the volume of each pore is too far from the surface of the particles to retain water against gravity.
  • the opposite in substrates with medium to small particles that consequently have pores of smaller size and their internal surface area is larger, have a greater water retention capacity, but no greater water retention capacity available.
  • Substrates with a mixture of both particles have the highest water retention capacity available (Plaster, 2003). b) Chemical properties
  • the chemical reactivity of a substrate is defined as the transfer of matter between the substrate and the nutrient solution that feeds the plants through the roots (Kohnke, 1995). This transfer is reciprocal between substrate and nutrient solution and may be due to reactions of different nature: • Chemicals
  • Sphagn ⁇ m peat is a bryophyte that accumulates in swampy bogs, which forms a very acidic mass, with a pH of approximately 4.0, little oxygenated and with a low content of nutritious minerals.
  • the esfagnos accumulate in the peat bog and form a moss due to the natural conditions of the swampy soils, this peat decomposes very slowly and, over periods of thousands of years, can form a mattress of 1 to 6 meters of thickness.
  • the peat bogs consist of 92% water.
  • ditches are dug inside and around the bog to drain the water around the moss.
  • Stump is removed and stumps, large roots and other debris are also removed from the surface of the peat bog.
  • the Sphagnum peat is then collected on a thickness of 15 cm, allowed to dry in the environment, and then, by using a vacuum cleaner, the upper part is harvested on a thickness of 5 cm.
  • the high cation exchange capacity of peat is unfavorable for plant nutrition, since it has a pH level of 3.5 - 4.0.
  • coconut fiber Another substrate of industrial importance is coconut fiber.
  • the product has managed to compete with Sphangum peat.
  • the product has a water retention capacity of up to 3 or 4 times its weight, a slightly acidic pH (6.3 - 6.5) and its porosity is quite good.
  • its availability is scarce in regions distant from the production sites, in addition to that for its use thorough washing is necessary, since its stabilization is based on a product rich in salts that allow its stabilization.
  • Another problem with coconut fiber is that its production process does not prevent contamination by pathogenic microorganisms, or weed seeds (Prince, 2000; Wilson, 2001).
  • Composts as conditioners can not only eliminate environmental impact, but can also help reduce costs associated with fertilization, reduce irrigation volumes and eliminate costs associated with pathogen suppression operations (Benito , 2005).
  • Composts have the advantage of being produced at low costs (Wilson, 2001; Pérez, 2006), they can act as an effective nutrient cover by increasing their concentration in the soil, improving the availability and capacity of water retention and suppressing weeds.
  • the application of composts guarantees the permanence of nutrients in the soil and ensures the sustained production of agricultural products of food interest (Garc ⁇ a, 2002).
  • composts have been developed based on: agroindustrial waste or shear, municipal solids, and garden waste, among others.
  • the application of the composts has improved the physical properties of the soil, as well as the quality of the nutrients in the soil, which has allowed the production of better quality plants in commercially important crops (Stabnikova, 2005).
  • Many of the works have focused on the use of composts produced from municipal sludge, due to its high content of nitrogen, phosphorus and trace elements. Composts of this type were tested as conditioners on substrates for the cultivation of different vegetables.
  • composts were tested as additives in substrates for the cultivation of plants of agricultural or ornamental interest. Physical and chemical properties were also determined in order to determine the maturity and quality of the compost, and germination tests were performed. Increases in the weight of the plants, in the number and weight of the leaves, the number of shoots, in the total size of the plants, and in the thickening of the stems were reported in most of the studies.
  • composts and their application in agricultural and horticultural production have only focused on their use as an additive with the main objective of being a biofertilizer (no more than 50% in the substrate: compost ratio) for a substrate , one of the barriers for the production of composts on an industrial scale to obtain as a final product a substrate for greenhouses that is made from waste and that is a consistent and predictable product in quality (Guérin, 2001; Simone, 2003; Hernández, 2005). Maintaining a compost of uniform quality is a particular problem when the resource it comes from has great variability and a high amount of organic matter.
  • the final product was a colored compost with the appearance of a high calcium soil.
  • This compost has been a partial substitute for peat in some container systems in the production of citrus seeds.
  • the containers that were formulated with this compost had plants with heavier buds, thicker stems, a greater total height and commercially at an early age greater number of larger and heavier fruits than those without compost.
  • the medium contains sludge from the milling of sugarcane, coconut fiber, and non-Sphagnum-derived materials.
  • non-Sphagnum derivatives includes any material used in peat that is not derived from Sphagnum moss or peat moss. Such materials can be any that are derived from trees or shrubs, and the other material that contains the substrate is coconut fiber that is commonly known as coconut peat, this is the most fibrous part of the coconut's crust.
  • Sludge from sugarcane grinding refers to the washed material that includes cane washes, silt, cane juice impurities and fine bagasse.
  • Both non-Sphagnum-derived materials and sludge from sugarcane milling when used individually for plant growth or as soil improvers, were useful for plant cultivation and fungal proliferation.
  • the relative concentrations of the non-derived components of Sphagnum and the sludge from the sugarcane milling were optimized to obtain the desirable properties of the substrate.
  • the formulation was adjusted to reach optimum levels of water retention, aeration, pH, salt content and nutrient levels.
  • non-Sphagnum derived materials have undesirable properties such as low pH, low nutrient levels and too much porosity.
  • sludge from sugarcane grinding has a high salt content, low water retention, presence of pathogenic microorganisms, or susceptibility to their growth.
  • patent application WO1994022790 a method for producing a substitute for pedestrian moss is described.
  • the invention is related to formulations of cellulosic starting materials, an inoculum with degrading microorganisms of this material in the form of ammonium generating bacteria, in addition to degrading bacteria of lignocelluloses, fertilizers, and municipal wastes or similar wastes.
  • the mixed material is treated with steam.
  • Patent application WO2003002638 Al refers to the treatment of vegetable fibers and straw with formaldehyde, and starches, for the generation of a mixture.
  • the mixture is treated with high vapor pressures (300-450 kg / cm 2 ) and 120 to 18O 0 C.
  • the products generated in the aforementioned inventions consist of materials useful for the production of easily degraded substrates and good support characteristics.
  • the materials are treated with disinfectant chemicals, or with high steam and temperature, which requires a source of thermal energy and highly technical reactors of continuous operation.
  • disinfectant chemicals or with high steam and temperature
  • high steam and temperature which requires a source of thermal energy and highly technical reactors of continuous operation.
  • the management and treatment of agricultural by-products represents a very high cost when developed with high-tech systems, in automated reactors isolated from rain or drought. The investment required for such equipment, which processes thousands of tons of material, is quoted in the order of millions of dollars.
  • the Ingenios produce a large amount of waste, which is not always used, and therefore causes contamination in underground aquifers and surface water sources for human consumption. If the environmental impact of these wastes is considered, the importance of developing basic and applied research in the field of agroindustrial solid waste processing, manufacturing of mature composts and fermented fertilizers can contribute to the improvement of soil quality and conservation can be deduced. of a healthy environment. In the state of Tabasco the effect of the application of sugar cane stubble in a vertisol soil, on the physical and chemical properties of the soil and the yields of sugarcane in production was investigated agricultural (Sánchez, 2003).
  • Bagasse is a fibrous lignocellulosic residue that is obtained from the last milling of the sugar process and is formed by a heterogeneous set of fibers that measure between 1 and 25 mm long. It comes from the mixture of four different morphologically identifiable portions of the sugar cane stalk: •
  • the epidermis which constitutes 5% of the bagasse, corresponds to the cuticle of the sugar cane, and is formed by waxes that constitute the main protection of the stem against acids and pathogens.
  • the epidermis acts as a waterproofing agent for internal sugar to the outside.
  • the bark provides the stiffness and hardness of the stem, and consists of fibers of a certain size and diameter that constitute the majority fraction of the bagasse.
  • the parenchyma (30% of the bagasse) is the tissue responsible for the storage of sugary juices. • Fibrovascular bundles (15% of the bagasse) immersed in the parenchyma, are responsible for the conduction of minerals and nutrients in the stem.
  • the ground cane does not allow the distinction of fibers of different anatomical origins without the use of complex microscopic and chemical analysis systems thereof.
  • the fiber constituted by the fibers of the cortex and parenchyma
  • the medulla constituted by the fibrovascular bundles, the epidermal fibers and the small soil particles (Rosas-Morales, 2003).
  • bagasse allows us to know that between 41 and 44% is cellulose, a polymer of glucose residues linked by beta 1-4 bonds; hemicelluloses, which constitute between 25 and 27%, are mostly given by xylans and mannans.
  • lignin which is a compound that constitutes between 20 and 22% of the bagasse is formed by complex polymers of a phenolic nature (Rosas-Morales, 2003).
  • Cachaza another of the agroindustrial derivatives of the sugarcane process, is a sludge that is removed during the clarification of cane juice.
  • the cachaza also known as filtration sludge, is obtained by sedimentation of the colloidal matter contained in the juice, and is obtained by the precipitation of insoluble solids from the use of alkalis that flocculate by the formation of insoluble salts (phosphates of calcium fundamentally) (Rosas-Morales, 2003).
  • the bagasse comprises both the bagasse or marrow, as the bark, or long fiber.
  • the cachaza or mud of filtration is recovered like a mud with very high humidity. Its water content is between 75 and 77%, and the corresponding dry matter constitutes between 23 and 27% (Rosas-Morales, 2003).
  • the cachaza is constituted by a rich mixture of sources of nitrogen and carbon and at the same time of phosphated minerals and other types (Table 1).
  • the amount of cachaza obtained in percentage to the cane, and its composition vary greatly with respect to the different production locations, depending on the variety of the cane processed, the efficiency of the grinding, and the method of clarification, among other parameters (Rosas-Morales, 2003).
  • the parameters that were used to assess the maturity of the compost were pH, dry weight, and the content of organic matter and nitrogen.
  • the composting period can vary from 12 to 28 weeks depending on the season. In the rainy season, the process temperature is modified, the porosity of the material drops, and dehydration occurs more slowly, between 24 and 28 weeks. In the dry season, the process is faster, between 12 and 20 weeks.
  • the compost generated by this process has very high bulk density, from 0.8 to 1.3 g / ml, very low porosity, low moisture retention ( ⁇ 60%), and a very long processing time (> 12 weeks). Even when the qualities of the material as a nutritional soil improver is well established (Rosas-Morales, 2003; Meunchang, 2005).
  • the compost generated is a useful material as an agricultural soil improver because of its nutritional quality, but in no way does it have appropriate characteristics for its application in horticulture as a substrate in greenhouses or nurseries, much less in operations of restoration of agricultural lands damaged by drought or erosion . In addition to its long composting time of at least 12 weeks, it makes it particularly expensive. That is why in the present invention the traditional composting process of agroindustrial wastes was modified, more preferably lignocellulosic wastes, even more preferably fibrous lignocellulosic residues, such as residues from sugar mills, corn, agave, gramine straws and grain husks such as rice and barley.
  • cane bagasse Specifically of cane bagasse, cane bagasse, cachaza or filtering mud.
  • the material is mixed, and degraded in the course of 7 to 8 weeks, greatly reducing the time of composting.
  • the carbon is lowered, and therefore the C: N ratio, the material is dehydrated, and the nitrogen nutrients are concentrated.
  • a mature substrate is also generated, but of high porosity, low density and very high moisture retention, which allows its use as a single substrate in greenhouses and nurseries, and its application as a dual agent, moisturizer and nutritional improver, in agricultural and forest soils .
  • the present invention contributes to an improved composting process for the production of a low density wetting substrate (SHBD), which allows a substantial improvement in the quality of the final product.
  • SHBD low density wetting substrate
  • a pathogen-free material like traditional or typical compost
  • very low density 0.2 to 0.4 g / ml
  • very high water retention > 90%
  • the new process also provides a low density wetting substrate (SHBD) that is produced from agroindustrial wastes, more preferably lignocellulosic wastes, even more preferably fibrous lignocellulosic wastes, such as sugar mill residues, from corn, agave, grass straws and grain husks such as rice and barley.
  • SHBD low density wetting substrate
  • agroindustrial wastes more preferably lignocellulosic wastes, even more preferably fibrous lignocellulosic wastes, such as sugar mill residues, from corn, agave, grass straws and grain husks such as rice and barley.
  • cane bagasse, bagasse, cachaza or sludge of filtration by means of a controlled composting process, per batch fed.
  • the process of the present invention provides a SHBD with characteristics similar to those of pedestrians or peat, and those of other fibers used in agriculture and horticulture, which not only has utility in greenhouses and agricultural and forestry nurseries, but as a wetting agent for the restoration and recovery of soils and for the establishment of agricultural and forestry plantations of greater success and productivity.
  • the present invention also provides a product useful for use in greenhouses and nurseries, either as a substitute or complement to other products (peat moss, coconut fiber, polyethylene toppings), or in mixtures with natural and synthetic substrates for production Agricultural and forestry Likewise, the present invention provides a process for producing a substrate, which ensures reproducible quality, physicochemical and biological stability that allows optimum seed germination.
  • the purpose of the present invention is the use of agroindustrial waste, more preferably lignocellulosic residues, even more preferably fibrous lignocellulosic residues, such as sugar mill residues, of corn, agave, grass straws and grain husks such as rice and barley.
  • agroindustrial waste more preferably lignocellulosic residues, even more preferably fibrous lignocellulosic residues, such as sugar mill residues, of corn, agave, grass straws and grain husks such as rice and barley.
  • cane bagasse, bagasse, cachaza or sludge of filtration or of other equivalent shells of lignocellulosic materials which allows a better alternative of waste disposal.
  • the process and product generated within the framework of the present invention is based on an improved composting process from residual materials such as residues or agroindustrial shears, more preferably lignocellulosic residues, even more preferably fibrous lignocellulosic residues, such as residues from sugar mills, corn, agave, grass straws and grain husks such as rice and barley.
  • residual materials such as residues or agroindustrial shears, more preferably lignocellulosic residues, even more preferably fibrous lignocellulosic residues, such as residues from sugar mills, corn, agave, grass straws and grain husks such as rice and barley.
  • cane bagasse, bagasse, cachaza or filtering mud Specifically of cane bagasse, bagasse, cachaza or filtering mud.
  • the main contribution lies in the application, at different stages of the composting process to obtain a low density wetting substrate, of lignocellulosic materials
  • the addition materials are added in order to obtain a material with greater porosity, lower density and better water retention capacity.
  • the addition materials used may be: cane bagasse, cane bagasse, agave bagasse or straws, corn, grasses, and grain husks such as rice and barley, in general any fibrous lignocellulosic residue.
  • the composting process under this improvement, becomes a solid, controlled, batch fed fermentation system.
  • the composting system used is quarries or semi-static biopiles.
  • the first step in the process consists of cleaning the composting area, which is done with the help of a tractor.
  • the experimental area is delimited, to mark the location of the biopiles or stonecutters (windrows in English), tracing rectangles on the ground according to the dimensions of the already known technique of 3 mx 2.5 m (7.5 m 2 ), to generate biopiles 1.4 m high, or for industrial scale batteries from 12 to 15 mx 2.5 m (30 to 37.5 m 2 ) to form 3 m high piles.
  • the material to be composted is allowed to stand, that is without turning, for a week.
  • the controlled feeding of fresh lignocelluloses begins, by adding a bagasse load of 1-3.5% of weight with respect to the initial amount of cachaza.
  • the material is thoroughly homogenized with the composter and left for another week at rest, that is, without turning
  • the composter After the first cycle, the battery temperature is typically between 50 and 60 0 C even at rest. Repeat 5 more cycles of bagacillo additions, corresponding to the following 5 weeks. Additional feeds consist of the same bagasse weight as the first feeding event.
  • the material under composting generates temperatures associated systems bioconversion thermophilic, typically between 65 and 85 0 C.
  • the addition cycles lignocellulose by fed batch favor for the pH is neutral, without drastic changes. From the second cycle, there is a rapid reduction of volatile biodegradable solids and therefore of the production of unpleasant odors.
  • the material is left at rest, that is, without turning over the composter, for a week. Composting products are stabilized by dispersing the material, even hot, in order to lower its temperature, and to allow evaporation of excessive moisture.
  • This drying process consists of dispersing the complete compost pile in 50 - 60cm beds, which is exposed to the sun for 2 or 3 weeks, until 30% of the compost's total humidity is reduced. While maintaining exposure to the sun, the compost must be turned and mixed every 5 days, in order to have a homogeneous drying. Finally, a mature compost is obtained, with good texture characteristics, and excellent physicochemical and biological properties. In this process, phytotoxic compounds have been metabolized and microbial pathogens have been removed from plants, which typically do not withstand temperatures greater than 60 0 C, much less for prolonged times.
  • the low density moisturizing substrate that is the final product obtained from the improved composting system generates, in the course of 7 to 8 weeks, a pathogen-free material (like traditional or typical compost), of very low density ( 0.2 to 0.4 g / ml), high porosity, and very high water retention (> 90%). It contrasts with mature composts, obtained from batch operations, not derived from the controlled feeding of materials during the process. This difference is due to the fact that the physicochemical characteristics of typical composts are not suitable for use as wetting substrates, since their high density and their prevailing particle size of very fine particles make them more similar to a superficial soil, than to a substrate. moisturizer These characteristics limit their use as nursery substrates, as supports in greenhouses, as well as their application in agricultural plantations, in the form of moisturizing covers. Analytical methods
  • the materials under composting were sampled through the use of a cylindrical punch with a diameter of 15 cm and a meter in length.
  • the samples were 1000 g material representative of all levels (from the center to the surface) of the composting material.
  • Compost samples were stored for periods not exceeding 2 weeks under refrigeration at 4 ° C until analysis. In the laboratory, samples were analyzed for granulometric profiles, pH, bulk density, water retention, humidity and porosity. The samples are they selected with characteristics similar to peat moss for the germination test.
  • Moisture and total solids were determined with the gravimetric method. Approximately 1Og of a wet sample was placed in petri dishes, and the exact weight was determined with the aid of a Voyager Ohaus analytical balance.
  • the moisture content and total solids content were then calculated as a percentage of the wet sample weight.
  • the bulk density of a substrate is the mass per unit volume expressed as g / cm 3 . Once the apparent density, the measurement of the mass of the substrate, the percentage or volume can be expressed interchangeably or in absolute terms (Okalebo, 1993; Plaster, 2003).
  • the bulk density of the samples was determined using a 1 Lt specimen in which a 200 gram sample was placed. The volume occupied by the sample was then determined and the density was then calculated. Water retention
  • a germination test was carried out, using grass and tomato seeds. 20 g of sample were weighed, the seeds were washed with 10% chlorine and rinsed with deionized sterilized water. They were then added to the 20 g of substrate sample placed in a glass petri dish. Keeping the humidity constantly at saturation for all tests, the plates were kept for 7 days in a plant growth chamber with periods of light of 12 hours and at a constant temperature of 25 0 C. Porosity Porosity was determined by drying 1 kg of sample of each substrate in an oven at 90 ° C for 72 hours, until a constant weight is obtained.
  • the dried sample is deposited in a test tube until it reaches 500 ml and the weight of each sample is recorded using a Voyager Ohaus analytical balance.
  • the next step is to take the sample from the specimen and place it on a tray with water until it is completely saturated. Subsequently the sample is removed from the tray and allowed to drain until that the drip ceases, finally the weight of the drained sample is recorded (Plaster, 2005). Porosity Percentage Calculation
  • the compost must have a drying stage.
  • the drying stage consisted of dispersing the complete compost pile in 50-60cm beds, which is exposed to the sun for 10-15 days, until reducing the compost's total humidity by 30%. While maintaining exposure to the sun, the compost must be turned and mixed every 5 days, in order to have a homogeneous drying.
  • Example 2 For the realization of this example the formulation was chosen whose substrate presented the physical characteristics similar to those of the pedestrian and correspond to the characteristics of an ideal substrate for horticulture, and which also presented extraordinary results for the germination test. The comparison of the characteristics of peat moss and the substrate of the formulation 5.6 of Table 2 is presented in Table 11.
  • a formulation for composting was used on an industrial scale that was 100 ton whose proportion of the initial material It was 43: 1 cachaza: bagacillo. This quarry was added 2.3% of bagasse with respect to the weight of the initial cachaza. Simultaneously, two control beds were established, which had a 43: 1 and 30: 1 ratio of cachaza: bagacillo.
  • Table 4 shows the results of the moisture content present in the composts in the different formulations, the Moisture content is an adequate indicator of the quality of the composts as a substrate.
  • a substrate that retains sufficient moisture can reduce irrigation costs.
  • An adequate moisture content favors the germination of seeds and the growth of crops, an excess of it can cause nutrient deficiency and fungal disease development.
  • the apparent density of pedestrian samples is between 0.18 and 0.22 g / ml.
  • the density of 0.32 obtained in formulation 5.6 in the seventh week is in the apparent density range of an ideal substrate and is the lowest of all formulations.
  • water retention capacity is the maximum amount of water that, after free drainage, a substrate can retain (Okalebo, 1993).
  • a high water retention capacity in a substrate indicates that most of the particles have a medium to small size and have a larger internal surface area, therefore the pores are small, which allows water to be retained against the gravity. While not all of the water that a substrate retains is available for use by plants, water retention available to plants depends on the substrate having a mixture of mega-large to fine particles, resulting from large pores and small, with a larger proportion of pores of medium size. The relationship between texture and water retention capacity is clear.
  • the particle size distribution is important because it affects the movement of oxygen in the substrate (through its influence on porosity), and in the access of microbes and enzymes to the substrate.
  • Table 8 Percentage of water retention capacity of compost samples under different formulations with bagasse.
  • the mega-particles have a diameter greater than lmm. Large particles are in a range of 0.5 to 1. Omm, medium ones of 0.025 to 0.5 mm, and fine particles of less than 0.025mm (Plaster, 2003).
  • Benito (2005) highlights the importance of the fraction between 0.5 and 1.0 mm, due to its relationship with the water retention capacity of a soil and the viable water for a plant.
  • the fraction corresponding to particles larger than 1.98 mm contains about 24% of the total weight of the material. This fraction favors the existence of macropores, which determine a good drainage of the substrate.
  • the fraction of particles between 0.5 and 1.98 tniti constitutes 40% of the total particle weight, the one with the highest proportion of the analyzed material. This fraction corresponds to the macropores-mesopores, associated with a high water retention capacity.
  • the fraction that corresponds to the particle size between 0.005 and 0.5 mm constitutes 27%, which corresponds to the fraction of the substrate that is available for microbial activity.
  • Example 1 For the germination test, the three formulations of Example 1 were chosen with the physical properties most similar to pedestrians that were 5-6, 7-8, 9-10 in the seventh and sixteenth week, and grass and tomato seeds were used , very common crops, nitrogen demanding plants, and fast growing.
  • the germination test focused on the early stages of plant growth, where nutrient deficiencies or inhibitory effects are more apparent, and differences between formulations can be better observed.
  • the numbers of the buds successfully emerged from the samples of the different selected formulations were counted, in order to obtain the percentage of the germinated seeds, and compare them with the organic substrate of greater use peat moss.
  • Example 2 In this test of Example 2a industrial scale of 100 tons of cachaza, the same proportion of 2.3% of weekly bagasse (AI) additions was used. Simultaneously, new control biopiles, of three tons of initial cachaza, were established. In the first case 2.3% of bagasse (control 2A) was added, and in the second (3A) 3.3%.
  • bagasse was added for six weeks and feeds ceased at the seventh week (after a rest week), without continuing until the week 10.
  • the samples of the three biopiles of this example 2 were determined the physical parameters described above. Additionally, the porosity was determined and the chemical analysis of the product was carried out. Both peat moss and coconut fiber were used as comparison substrates.
  • the samples of the formulation IA and its controls in the first week they are in values close to 5 and as the weeks go by the samples become more alkaline, except that of the formulation IA that in The last week has values of 4.9.
  • the peat moss has a pH of 3.9 and coconut fiber of 6.5 (table 12).
  • the substrate of the formulation IA has 0.38 g / ml, a value that is within the desired level for an ideal substrate.
  • Controls 2A and 3A have densities between 0.24 and 0.21 g / ml respectively.
  • the Bulk density for peat moss was 0.17 g / ml, and for coconut fiber 0.14 g / ml (table 12).
  • the substrate of the formulation IA in the last week of the process has an average of 235%, being the highest with respect to pedestrian values, and very close to the levels of the coconut fiber.
  • the substrate of the formulation IA has in the last week of composting, the lowest percentage of retained grams in the 1.98mm mesh, with respect to 2A and 3A.
  • the substrate of the formulation IA has in the last week of composting, the lowest percentage of retained grams in the 1.98mm mesh, with respect to 2A and 3A.
  • the 0.5 IA mesh it had 43%, a percentage slightly higher than the other test beds.
  • IA obtained values very close to the percentages of the same fraction in pedestrian moss and in coconut fiber (table 12).
  • AI has 52%, compared to pedestrians that has 56%, that is, AI and pedestrians have a low apparent density and a larger pore space, ideal for use in greenhouses and nurseries.
  • the fertility of a substrate is its ability to provide nutrients during plant growth.
  • the substrate can function as a container where nutrients are stored, stored in different forms, some more bioavailable than others.
  • the concept of the fertility of a substrate not only includes the amount of nutrients it stores, but also how much they are protected from washing due to rain, how bioavailable they are, and how easily they are assimilated by the root ( Plaster 2003).
  • AI sample was analyzed in a chemical soil analysis laboratory, certified for that purpose, where the following methodologies were used: Officials Methods of Analysis of AOAC International, Officials Methods of Analysis of APHA (American Public Health Association), Test performed by Atomic Absorption Spectrophotometry / Flame Technique, Test performed by OLSEN method.
  • the substrate of formulation IA has a composition of: organic matter 13.9-23.6%, Total Nitrogen 0.3-0.7%, Potassium 0.14-0.22%, Calcium 0.41-0.45%, Exchangeable Magnesium 540-720 ppm, Phosphorus 590 ppm, Bicarbonates 240 -620 ppm, Sulfates 120-650 ppm, Magnesium 235-510 ppm, Sodium 70-465 ppm, Chlorides 270-310 ppm, Zinc 35-65 ppm.
  • Substrates with high salt content are defined as a substrate with an electrical conductivity of 4 or more mohms / cm.
  • Samples of SHBD were analyzed by using culture media that promote the growth of pathogenic fungi, such as Papa - Dextrose - Agar (PDA), Sabouraud, Malt Extract - Agar (EMA), and VPN3.
  • pathogenic fungi typically associated with agricultural and greenhouse soils, of genera such as Verticilliura, Pythium, Rhizoctonia, Fusarium, Phytophthora, Sclerotium or Colletotrichum, among others, were absent from the mentioned means, in incubation temperatures between 25 and 30 0 C
  • the fungi found in these media grew in greater proportion at 45 ° C, and belong to genera typically associated with high temperature composts, such as Penicillium, Phanaerochaete, Rhizopus and Thermomucor, among others, none of which is pathogenic known of plants, or causal of root or systemic pathogenesis (Rouxel and Francis, 2000; Singleton et al, 1992).
  • Its treatment time is very short (almost two months) compared to the processing time of a mature compost, which typically ranges from 12 to 24 weeks, and during composting temperatures are reached between 60 and 85 ° C, which allow the elimination of weed seeds, as well as fungi and pathogenic bacteria.
  • SHBD contains cachaza.
  • bagasse is mostly used, although any residue with high content of lignocellulosic fibers can be used.
  • Alternative materials can be: whole cane bagasse (bark and pith), agave bagasse, corn and other grass straws, and grain husks such as rice and barley.
  • the composting process to produce SHBD is a very flexible process that allows us to modify different treatment steps to obtain variations of SHBD with different characteristics and qualities, depending on the use to which it will be used.
  • SHBD in its different forms can be used as cover land, soil improvement and volumetric agents, wetting agents, biofertilizers, and as integral substrates for horticulture and forest production in greenhouses and nurseries
  • Rosas-Morales M. Composting improvement of sugarcane derivatives: cachaza and bagacillo. Master's Thesis. Environmental Science Program. Institute of Sciences of the Benemérita Autonomous University of Puebla.
  • Warman P. R. and Termeer W. C Cornposting and evaluation of racetrack manure, grass clippings and sewage sludge. (nineteen ninety six)
  • Patent No. 20050284202 of Rampton Lea et al.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Botany (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Esta invención comprende el composteo mejorado de cachaza de caña y materiales lignocelulósicos. Se obtiene un sustrato humectante de baja densidad (SHBD) para aplicación en agricultura. El proceso se desarrolla en biopilas semi- estáticas, homogenizadas y aireadas mecánicamente. Los materiales de lignocelulosa se adicionan en un sistema de lote alimentado, en etapas y dosis que dependen del tipo de material lignocelulósico, y de la calidad del sustrato final deseado. Otro objetivo es proporcionar, en 8 semanas, un material sin microorganismos patógenos ni malezas, de baja densidad (< 0.4 g/ml), alta porosidad (110%), y alta retención de agua (> 90%), aplicable como sustrato en horticultura y producción forestal en viveros e invernaderos; o como agente humectante y mejorador de suelos en campo agrícola y en suelos erosionados. Dicho sustrato tiene mejores características físicas, químicas y biológicas para la nutrición vegetal, que sustratos equivalentes, tales como la turba y las fibras de coco.

Description

PROCESO DE COMPOSTEO SEMI-ESTÁTICO MEJORADO PARA LA PRODUCCIÓN DE UN SUSTRATO HUMECTANTE DE BAJA DENSIDAD, PARA SU USO EN VIVEROS E INVERNADEROS
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se refiere en general al área de biotecnología agrícola, principalmente al procesamiento de residuos agroindustriales y en particular a un proceso de composteo mejorado para la producción de un sustrato humectante de baja densidad para su uso en la producción agrícola intensiva en invernaderos, en viveros y en campo agrícola.
ANTECEDENTES
El mejoramiento de los suelos es una necesidad urgente. El bienestar de la humanidad depende en gran parte de su buen mantenimiento (Wallace, 1998). Actualmente se reconoce el valor del suelo, por cuanto es a partir de él, que la humanidad tiene la capacidad de producir alimentos. Pero hay otra razón importante para participar en el mantenimiento del suelo que es que actúa como un filtro ambiental para limpiar el aire y el agua (Rechcigl1, 1995) . En realidad el suelo no es un recurso renovable en corto tiempo y debe ser cuidado para lograr que futuras generaciones obtengan los mismos beneficios de la Tierra (Wallace, 1998) . Una forma de beneficiar al suelo es mediante el uso del composteo y esté se define como la descomposición biológica y la estabilización de sustratos orgánicos bajo condiciones que permiten el desarrollo de temperaturas altas como resultado del calor producido biológicamente, con el fin de obtener un producto final que sea estable, libre de patógenos y malezas (Bertrán, 2004) . En términos generales, el composteo es la práctica de emplear desechos orgánicos que mediante reducción biológica se transforman a humus o sustancias parecidas (Wallace, 1998) . El humus es la materia orgánica del suelo de color oscuro y tiene propiedades físicas y químicas que no están sujetas a una rápida descomposición como los residuos de plantas (Kohnke, 1995) . Es una sustancia coloidal (como pegamento) que contiene cerca del 50% de carbono, 5% de nitrógeno y 0.5% de fósforo, químicamente es una combinación de lignina modificada (constituyente de la pared celular de las plantas mas resistente a la degradación) , aminoácidos
(componentes de las proteínas) y otros componentes nitrogenados (Kohnke, 1995) . El composteo ofrece varios beneficios sobre la simple adición de materia orgánica al suelo (Plaster, 2003) :
• Reduce el peso y el volumen de la materia orgánica haciéndola mas fácil de manejar y de transportar (Plaster, 2003) . • Puede mitigar la intemperización y las limitantes agronómicas de los suelos, mejorando los niveles de retención de agua, contenido nutricional de la mezcla del suelo, disminuyendo la densidad aparente, y aumentando la estabilidad de los agregados del suelo (Tilston, 2005) .
• Reduce las cantidades de carbono y nitrógeno de los materiales que se van a adherir al suelo (Plaster, 2003) .
• Inhibe patógenos microbianos que puede ser de una forma general o especifica, en la forma general la exclusión es a través de la competencia por el espacio. Y en la especifica existe la producción de metabolitos inhibitorios o tóxicos de determinados microorganismos .
• La aplicación de desechos no composteados puede generar la inmovilización de los nutrientes de las plantas y producir fitotoxicidad (Goyal, 2005) .
Diversos estudios del proceso de composteo se han realizado intensamente en las últimas décadas, debido al incremento de la actividad industrial y de la población humana. La mayor parte de los estudios se han enfocado en el uso de los desechos municipales e industriales para la producción de compostas.
En los estudios sobre composteo existen objetivos comunes: el control del proceso de composteo, la caracterización de compostas y criterios para la estabilización de las compostas. Para lograr estos objetivos se han planteado algunas estrategias (Bodin, 2005) :
• Ajustar los parámetros del proceso, composición de la mezcla inicial de materia orgánica, temperaturas durante el proceso, aireación, y frecuencia de composteo, entre otros.
• Alterar las condiciones de inicio por el cambio de la composición o tipo de material usados como fuentes de carbono y nitrógeno.
• Modificar el proceso de composteo aplicando en dos diferentes ocasiones, al inicio y a la mitad del proceso materiales nutritivos, del tipo de fertilizantes, con la finalidad de tener una composta madura con los niveles adecuados de nitrógeno.
Estrictamente hablando cualquier material orgánico que se adhiera, debe ser considerado como esquilmos útiles para composteo (Haug, 1993) . Aún así, en la práctica se han adoptado los términos mej oradores o acondicionadores y agentes de volumen, a ciertos tipos de sustratos adicionados al composteo:
• El mejorador o acondicionador es un material orgánico o inorgánico que se adiciona con el propósito de mejorar los poros en la matriz de la composta y/o incrementar los componentes biodegradables (Haug, 1993) .
• El agente de volumen es un material orgánico o inorgánico, de un tamaño suficiente para proveer un soporte estructural y mantener los espacios de aire entre la matriz de la composta (Haug 1993) .
La selección y/o preparación de la materia prima y de los componentes de la mezcla inicial para la composta, establecen el sistema de composteo a utilizar. Es por esto que los componentes de la mezcla se deben ajustar a proporciones que permitan tener porosidad, humedad y nutrientes óptimos durante el proceso (Goyal, 2005) .
Etapas o fases del proceso de composteo
El sistema de composteo por lo regular se divide en tres fases, la primera y segunda etapa son de alta actividad y la tercera es una fase de estabilización o maduración. En la primera y segunda fase se pueden usar el método de canteros o pilas estáticas, semi-estáticas, agitadas, o pueden realizarlas en reactores; puesto que se caracterizan por una alta demanda de oxigeno, temperaturas de moderadas a altas, el pH es ácido por la producción de ácidos orgánicos, una pronta reducción de sólidos biodegradables volátiles y olores desagradables (Haug, 1993) .
En la tercera etapa también se pueden usar canteros o pilas semi-estáticas o totalmente estáticas y hasta reactores cerrados. Esta fase se caracteriza por bajas temperaturas, reducción de la demanda de oxígeno, y baja producción de olores. También se lleva a cabo la degradación de materiales con baja disponibilidad, hay un decaimiento en la actividad microbiana por los efectos impuestos por una cinética limitante, la reestabilización de bajas temperaturas, el pH se incrementa por la descomposición de proteínas que liberan amonio y el producto final tiene un pH de neutro a alcalino. Finalmente, se obtiene una composta madura, en lo que se han metabolizado compuestos fitotóxicos y suprimido patógenos para las plantas. La calidad del producto generado depende de las características del material de inicio, del diseño de los parámetros en la primera y segunda fases y de las condiciones de operación mantenidas en el sistema (Haug, 1993) .
El grado de maduración de una composta es dictado por el uso que se le va a dar o por el producto final. Se han desarrollado algunos criterios para medir el grado de estabilización (Rechcigl, 1995) : • Declinamiento de la temperatura al final del proceso de composteo.
• Oscurecimiento del producto final.
• Análisis del contenido de la relación deseable de C:N, 30:1. • Demanda de oxigeno del producto final en una proporción 1/30 del sustrato.
• Presencia de nitrato con casi ausencia de amonio y almidón.
• No debe haber atracción de insectos, ni presencia de larvas.
• No debe haber presencia de malos olores característicos en el producto final. Como se describió anteriormente muchos parámetros se han propuesto para evaluar la estabilidad de la composta. Aún asi, no hay un solo método que pueda ser universalmente aplicado a todos los tipos de composta debido a la variabilidad de materiales y al proceso de composteo. Se ha sugerido usar un ensayo de germinación para asegurar la estabilización de la composta; cuando el Índice de germinación es mayor al 80%, la composta es considerada madura y prácticamente libre de sustancias fitotóxicas (Rechcigl, 1995) .
Biota de la composta y sus actividades
La mayoría de las compostas tienen una carga microbiana que proviene del ambiente. Los representantes de estas comunidades biológicas son bacterias, actinomicetos y hongos que están presentes normalmente cuando comienza la primera etapa del composteo. También la mesofauna es importante en la primera etapa del composteo como son gusanos, milpiés, ciempiés, ácaros, escarabajos, lombrices y tisanuros que rompen el material orgánico en pedazos pequeños; este paso preparativo acelera el grado de descomposición por el incremento de la superficie, mejorando el acceso de los microbios a los sustratos (SyIv- ia, 2005) . Muchos protozoos también están activos durante la primera etapa del composteo, procesando partículas y materia orgánica coloidal y depredando poblaciones microbianas (Sylvia, 2005) .
Las poblaciones de bacterias constituyen la mayor proporción de las comunidades biológicas presentes en las compostas y son las responsables de la mayor parte de la descomposición de la materia orgánica. Los actinomicetos son también comunes, e imparten el brillo y olor característico a tierra en la composta. Estos junto con los hongos descomponen mucha de la celulosa, hemicelulosa y lignina presentes en la materia orgánica (Sylvia, 2005) . La cuantificación de las comunidades microbianas han mostrado los enormes cambios en la distribución de las poblaciones durante el composteo. Algunos de los mayores participantes del composteo progresan desde la segunda etapa que es dominada por microorganismos mesófilos (que crecen preferentemente entre 20°C y 40°C) , hasta la tercera etapa que presenta temperaturas elevadas (40°C a 80°C) , y es dominada por los termófilos. La última etapa es un periodo gradual de enfriamiento, y constituye la etapa de estabilización o maduración de la composta (Sylvia, 2005) .
Efectos de la composta en las propiedades del suelo Propiedades físicas como la densidad, capacidad de retención de agua, porosidad y estabilidad de los agregados son propiedades del suelo que pueden ser afectadas como consecuencia de la aplicación de compostas, que generalmente se atribuyen al incremento de materia orgánica por la adición de está (Wallace, 1998). a) Estructura del suelo. Un efecto significantemente benéfico de la aplicación de composta al suelo es el de mejorar la estructura del suelo incrementando la integridad y estabilidad de los agregados por la disponibilidad de la fracción mineral del suelo para los microorganismos. Adicionar materia orgánica incrementa el crecimiento de las poblaciones microbianas (Wallace, 1998). b) Densidad. Otro efecto benéfico de agregar composta al suelo es el decremento de la densidad, que incrementa la infiltración del agua y aumenta el volumen de los poros (Rechcigl, 1995) . c) Erosión del suelo. Muchos investigadores han confirmado la importancia de la materia orgánica en la estabilidad de los agregados a través de la formación de complejos órgano-minerales. La erosión de un suelo depende de la fuerza de los agregados del suelo al viento, al impacto de la lluvia, o al flujo de la superficie. Con la adición de la materia orgánica se incrementa la cantidad de sustancias húmicas que sirven como agentes de unión en los complejos órgano-minerales. (Wallace, 1998) . d) Relación de humedad del suelo. Incorporar composta a los suelos ha resultado en un incremento en la capacidad de retención de agua, agua disponible para las plantas, y poros receptores de agua, mientras que hay un decremento importante en el movimiento del agua bajo condiciones de saturación (Rechcigl, 1995).
Efectos en la quimica del suelo
La adición de materia orgánica a los suelos incrementa la capacidad de intercambio catiónico del suelo en forma significativa. Esta capacidad es primordial en la nutrición de las plantas y en el manejo de la fertilidad del suelo, efectivamente constituye un reservorio temporal para cationes y es considerado como un indicador de la capacidad nutricional del suelo (Wallace 1998) . Las adiciones de composta pueden también alterar el pH del suelo, lo que afecta la viabilidad de los iones y su absorción por las plantas. Un incremento en el pH brinda una fuerte adsorción de las partículas del suelo, en algunos casos, la precipitación de Cd, Mn, Pb y Zn, y otros metales, lo cual permite una baja acumulación de metales en los tejidos vegetales (Wallace, 1998).
Sustratos
Un sustrato es todo material sólido distinto del suelo, natural, de síntesis o residual, mineral u orgánico, que colocado en un contenedor, en forma pura o en mezcla, permite el anclaje del sistema radicular de la planta, desempeñando, por tanto un papel de soporte para la planta. El sustrato puede intervenir o no en el proceso de la nutrición mineral de la planta. Los sustratos en horticultura han sido utilizados para (Garcia, 2002) :
• El crecimiento de semillas.
• Propagación de plantas.
• Producción de vegetales. • Producción de plantas ornamentales.
Las propiedades que deben tener los sustratos para obtener un buen rendimiento en el crecimiento de las plantas son: a) Propiedades Físicas
• Porosidad La porosidad es una medida del volumen total del sustrato que ocupan tanto las partículas sólidas como los espacios entre estás que contienen aire o agua. Este valor es usualmente expresado en porcentaje, es decir un sustrato con el 50% de porosidad es mitad partículas sólidas y mitad espacio del poro. Su valor óptimo no debe ser inferior al 80-85 %, aunque sustratos de menor porosidad pueden ser usados ventajosamente en determinadas condiciones (Plaster, 2003) . La porosidad debe ser mayor, pues al haber más cantidad de poros, estos se encuentran en contacto con el espacio abierto, que induce un intercambio de fluidos con el espacio abierto y por tanto sirve como almacén para la raíz. El tamaño y cantidad de los poros condiciona la aireación y retención de agua del sustrato (Plaster, 2003) . • Densidad
Un sustrato tiene densidad de partícula y densidad aparente. La densidad es la relación entre el peso y la unidad de volumen. La densidad de una partícula es determinada por el peso de una partícula sólida del sustrato dividida entre el volumen de la partícula sólida del sustrato. Para obtener una partícula sólida, uno debe comprimir la muestra del sustrato hasta eliminar el espacio entre los poros, que esta ocupado por aire o por agua. La densidad aparente considera el espacio total ocupado por los componentes sólidos más el espacio de los poros. La densidad aparente indica indirectamente la porosidad del sustrato y su facilidad de transporte y manejo (Sylvia, 1999) .
La densidad tiene un interés relativo. Su valor varia según la materia de que se trate y suele oscilar entre 2.5-3 g/ml para la mayoría de los sustratos de origen mineral. Los valores de densidad aparente se prefieren bajos (0.7-0.1 g/ml) y que garanticen una cierta consistencia de la estructura (Sylvia, 1999) .
• Estructura
Puede ser granular como la de la mayoría de los sustratos minerales o bien fibrilares. La primera no tiene forma estable, acoplándose fácilmente a la forma del contenedor, mientras que la segunda dependerá de las características de las fibras. Si son fijadas por algún tipo de material de cementación, conservan formas rígidas y no se adaptan al recipiente pero tienen cierta facilidad de cambio de volumen y consistencia cuando pasan de secas a mojadas
(Wallace, 1998) .
• Granulometria
La distribución de partícula afecta dos aspectos importantes de los sustratos: el área de superficie interna y el número y tamaño del espacio de los poros. El área de superficie interna es el área total de la superficie de todas las partículas en el sustrato. Entonces los sustratos con muchas partículas pequeñas, tienen un área de superficie interna más grande (Sylvia, 1999) . El área de superficie interna es importante por que las reacciones ocurren sobre la superficie de las partículas del suelo. Si las partículas son muy grandes la mayoría del agua drenaría muy rápidamente, tendría una mejor aireación. Siguiendo la regla del tamaño de las partículas, un sustrato con partículas pequeñas retiene más agua por que hay más área de superficie interna para que el agua quede adherida (Sylvia, 1999) .
El tamaño y número de poros depende del tamaño de partícula, es decir con partículas grandes hay poros grandes y con partículas pequeñas hay poros pequeños. Los sustratos con partículas grandes drenan rápidamente el agua, y así como se drena el agua se llenan los espacios de aire. Y las partículas de menor tamaño tienden a retener el agua. Ambos tamaños son importantes por que el sustrato necesita microporos para retener el agua y macroporos para el aire (Sylvia, 1999) . • Retención de agua
El agua que puede retener un sustrato y la que se encuentra viable para las plantas son dos características diferentes, puesto que solo la porción de agua del sustrato entre la capacidad de campo y el punto de agotamiento está disponible para las plantas. El agua que puede retener un sustrato y la que se encuentra viable para las plantas está establecida en la textura del sustrato (Plaster, 2003) . Por ejemplo sustratos con partículas muy grandes, su área de superficie interna es muy pequeña para retener las películas de agua. En adición a esto los poros son demasiado grandes y mucho del volumen de cada poro esta demasiado lejos de la superficie de las partículas para retener agua en contra de la gravedad. Lo contrario en sustratos con partículas de medianas a pequeñas que consecuentemente tienen poros de menor tamaño y su área de superficie interna es mayor, tienen una mayor capacidad de retención de agua, pero no mayor capacidad de retención de agua disponible. Los sustratos con una mezcla de ambas partículas tienen la mayor capacidad de retención de agua disponible (Plaster, 2003) . b) Propiedades químicas
La reactividad química de un sustrato se define como la transferencia de materia entre el sustrato y la solución nutritiva que alimenta las plantas a través de las raíces (Kohnke, 1995) . Esta transferencia es recíproca entre sustrato y solución de nutrientes y puede ser debida a reacciones de distinta naturaleza: • Químicas
Se deben a la disolución e hidrólisis de los propios sustratos y pueden provocar:
1. Efectos fitotóxicos por liberación de iones H+ y
OH" y ciertos iones metálicos como el Co+2. 2. Efectos carenciales debido a la hidrólisis alcalina de algunos sustratos que provoca un aumento del pH y la precipitación del fósforo y algunos microelementos.
3. Efectos osmóticos provocados por un exceso de sales solubles y el consiguiente descenso en la absorción de agua por la planta. • Físico-químicas
Son reacciones de intercambio de iones. Se dan en sustratos con contenidos en materia orgánica o los de origen arcilloso es decir, aquellos en los que hay cierta capacidad de intercambio catiónico (C. I. C). Estas reacciones provocan modificaciones en el pH y en la composición química de la solución nutritiva por lo que el control de la nutrición de la planta se dificulta (Kohnke, 1995) .
• Bioquímicas
Son reacciones que producen la biodegradación de los materiales que componen el sustrato. Se producen sobre todo en materiales de origen orgánico, destruyendo la estructura y variando sus propiedades físicas. Esta biodegradación libera CO2 y otros elementos minerales por destrucción de la materia orgánica. La actividad química aporta a la solución nutritiva elementos adicionales por procesos de hidrólisis o solubilidad. Si éstos son tóxicos, el sustrato no sirve y hay que descartarlo, pero aunque sean elementos nutritivos útiles entorpecen el equilibrio de la solución al superponer su incorporación un aporte extra con el que habrá que contar, y dicho aporte no tiene garantía de continuidad cuantitativa (temperatura, agotamiento, etc) . Los procesos químicos también perjudican la estructura del sustrato, cambiando sus propiedades físicas de partida (Kohnke, 1995) .
Sustratos Orgánicos
El sustrato orgánico más usado en la industria de los invernaderos es preparado con turba de Sphangum, debido a su baja variación de degradación y a su alta estabilidad física y química (Benito 2005) . La turba de Sphagnυm es una briofita que se acumula en las turberas pantanosas, que forma una masa muy acida, con un pH de 4.0 aproximadamente, poco oxigenada y con un bajo contenido de minerales nutritivos. A través de los años, los esfagnos se acumulan en la turbera y forman un musgo debido a las condiciones naturales de los suelos pantanosos, esta turba se descompone muy lentamente y, a lo largo de períodos de millares de años, puede formar un colchón de 1 a 6 metros de espesor. Las turberas están constituidas de un 92% de agua. En previsión a la cosecha, se cavan zanjas en el interior y alrededor de la turbera para drenar el agua alrededor del musgo. Se elimina la vegetación no útil y también se eliminan de la superficie de la turbera los tocones, las grandes raices y otros residuos. Se recoge luego la turba de Sphagnum sobre un espesor de 15 cm, se deja secar al ambiente, y después, mediante el uso de un aspirador, se cosecha la parte superior sobre un espesor de 5 cm. La alta capacidad de intercambio catiónico de la turba es desfavorable para la nutrición vegetal, ya que presenta un nivel de pH de 3.5 - 4.0.
El alto costo de la turba comercial, aunado al agotamiento de este recurso no renovable y el consecuente deterioro ambiental, han favorecido la generación de productos capaces de sustituir total o parcialmente este sustrato (Guérin, 2001) .
Otro sustrato de importancia industrial es la fibra de coco. En años recientes, dicho sustrato ha logrado competir con la turba de Sphangum. El producto tiene una capacidad de retención de agua de hasta 3 o 4 veces su peso, un pH ligeramente ácido (6.3 - 6.5) y su porosidad es bastante buena. Sin embargo, su disponibilidad es escasa en regiones distantes de los sitios de producción, además de que para su uso es necesario el lavado exhaustivo, pues su estabilización se basa en un producto rico en sales que permiten su estabilización. Otro problema de la fibra de coco es que su proceso de producción no previene de contaminación por microorganismos patógenos, o semillas de malezas (Prince, 2000; Wilson, 2001) .
Compostas como acondicionadores Desarrollar sustratos orgánicos alternativos de bajos costos y ricos en nutrientes puede no solo eliminar el impacto ambiental, si no también puede ayudar a reducir costos asociados a la fertilización, abatir volúmenes de irrigación y eliminar los costos asociados a las operaciones de supresión de patógenos (Benito, 2005) . Las compostas tienen la ventaja de producirse a bajos costos (Wilson, 2001; Pérez, 2006) , pueden actuar como una efectiva cobertura de nutrientes incrementando la concentración de éstos en el suelo, mejorando la disponibilidad y la capacidad de retención de agua y de suprimir malezas. La aplicación de compostas garantiza la permanencia de nutrientes en el suelo y asegura la producción sostenida de productos agricolas de interés alimentario (García, 2002) .
Varios autores han reportado la utilización de compostas como tierras de cobertura con diferentes composiciones. Se han desarrollado compostas basadas en: residuos o esquilmos agroindustriales, sólidos municipales, y residuos de jardinería, entre otros. La aplicación de las compostas ha mejorado las propiedades físicas del suelo, asi como la calidad de los nutrientes del suelo, lo que ha permitido que se obtengan plantas de mejor calidad en cultivos de importancia comercial (Stabnikova, 2005) . Muchos de los trabajos se han enfocado al uso de compostas producidas a partir de los lodos municipales, debido a su elevado contenido de nitrógeno, fósforo y elementos traza. Compostas de este tipo se probaron como acondicionadores en sustratos para el cultivo de diferentes hortalizas. Los resultados de dichos estudios indican que estas compostas parecen ser un buen suplemento de nutrientes, asi como claros mejoradores de las propiedades físicas del subsuelo. La aplicación de dichas compostas no afectó los niveles de eficiencia de germinación. Los contenidos de metales pesados en las plantas estuvieron por debajo de los niveles tóxicos. (Warman, 1996; Stabnikova, 2005; Pérez-Murcia, 2006) Materiales iniciales de diferentes orígenes se han utilizado para la formulación de compostas. Entre ellos se encuentran: residuos de jardinería derivados de la siega de pastos (Bodin, 2005; Benito, 2005); residuos de la industria de madera (Hernández 2005); esquilmos agroindustriales como lodos del proceso de malteo (Garcia 2002), fondajes de producción de vinos, y tallos de uvas (Bertrán, 2004); fibras cortas de papel (Ekinci, 2000) y residuos de la clarificación de la pulpa del papel (Simone, 2003); aguas residuales de la extracción del aceite de oliva (Paredes, 2005), por mencionar algunos.
En algunos de los trabajos referidos se probaron las compostas como aditivos en sustratos para el cultivo de plantas de interés agrícola u ornamental . Se determinaron asimismo propiedades físicas y químicas con el fin de determinar la madurez y calidad de la composta, y se realizaron ensayos de germinación. En la mayor parte de los estudios se reportaron incrementos en el peso de las plantas, en el número y peso de las hojas, el número de brotes, en la talla total de las plantas, y en el engrosamiento de los tallos.
En todos los estudios las compostas y su aplicación en la producción agrícola y hortícola solo se han enfocado al uso de éstas como un aditivo con el principal objetivo de ser un biofertilizante (no más del 50% en la relación sustrato: composta) para un sustrato, una de las barreras para la producción de compostas en escala industrial para obtener como producto final un sustrato para invernaderos que sea elaborado a partir de desperdicios y que sea un producto consistente y predecible en calidad (Guérin, 2001; Simone, 2003; Hernández, 2005) . Mantener una composta de calidad uniforme es un problema particular cuando el recurso del que proviene tiene una gran variabilidad y una alta cantidad de materia orgánica. Es por eso que las operaciones del proceso de composteo deben ser optimizadas para garantizar la eficiencia de la transformación de los desechos, y para asegurar una calidad uniforme del producto final (Simone, 2003) Uno de los principales problemas que acarrea el uso excesivo de compostas se encuentran asociados a la intoxicación de las plantas debida a los altos contenidos de sales y la consecuente acumulación de metales pesados en las tierras de cultivo, tratadas con compostas. Dicha acumulación puede poner en riesgo la salud humana y la del ganado al consumir estas plantas, principalmente cuando se han utilizado compostas fabricadas con desechos municipales (Soumaré, 2003) . Una de las principales características de las compostas, que ha impedido su uso generalizado como sustratos agrícolas, es su alta densidad. Las compostas, típicamente de alta densidad y baja porosidad se compactan después del riego, y pueden generar quebraduras en raíces y tallos, además de limitar el intercambio gaseoso y comprometer el buen drenaje del suelo.
Es por eso que existe la necesidad de un proceso de composteo para el aprovechamiento de materiales orgánicos consiste en la generación de sustratos para horticultura, para aplicación agrícola intensiva en el campo, para invernaderos y viveros, agrícolas y forestales, con el cual se pueda obtener un producto que permita la sustitución del principal sustrato de uso en sistemas de producción agroforestales, la turba o peat moss. La utilización de los desechos de la industria azucarera como composta para la formulación de un sustrato como mejorador del suelo en un sistema de producción de jitomates fue estudiada por Stofella y Graetz (2002). Los lodos de la clarificación del jugo de caña de azúcar o cachaza se mezclaban con agua y bombeaban desde los molinos hacia los campos, permitiendo que permanecieran en pantanos por más de un año. El producto final era una composta coloreada con la apariencia de un suelo alto en calcio. Está composta ha sido un sustituto parcial de la turba en algunos sistemas de contenedores en la producción de semillas de cítricos. Para las plantas de jitomates, los contenedores que fueron formulados con esta composta tuvieron plantas con brotes más pesados, tallos más gruesos, una mayor altura total y comercialmente a una edad temprana mayor número de frutos más grandes y pesados que aquellos contenedores sin composta.
En el 2006, Ram y colaboradores, desarrollaron un estudio sobre la optimización de la aplicación de agua y nitrógeno en cultivos de menta (Mentha arvensis L.), a través de los desechos de paja de caña de azúcar en un suelo arenoso- arcilloso de un clima semi-árido subtropical. La menta es un cultivo de importancia para la industria. El mentol, como esencia, es ampliamente usado en farmacia, cosmética, y en la industria alimenticia, como saborizante. Los cultivos de menta responden favorablemente a fertilizantes con altos niveles de nitrógeno. Los rendimientos agrícolas oscilan entre 150 y 200 kg/ha. En base a los patrones de crecimiento de la menta, y bajo diferentes regímenes de fertilización con nitrógeno, los resultados del estudio permitieron concluir que el mayor crecimiento se registró en los lotes adicionados con paja de caña de azúcar, bajo condiciones de un radio de irrigación de 134 kg/ha en 16 aplicaciones. En esas condiciones, el requerimiento de nitrógeno para la producción de 200 kg de menta por hectárea, quedó cubierto con la aplicación de esquilmos de caña. Como se mencionó anteriormente, se ha buscado la sustitución de la turba debido a su alto costo de producción, y a que su recolección ha impactado negativamente en el ambiente, ocasionando un claro deterioro ambiental. En el proceso descrito en la solicitud de patente U.S. 20050274074, el propósito es generar un sustrato apropiado tanto para el cultivo de plantas como para la producción de hongos. El medio contiene lodos de la molienda de la caña de azúcar, fibra de coco, y materiales no-derivados de Sphagnum. Deberá entenderse, que el término "no-derivados de Sphagnum" incluye cualquier material usado en la turba que no es derivado de Sphagnum moss o peat moss. Materiales de ese tipo pueden ser cualquiera que se derive de árboles o arbustos, y el otro material que contiene el sustrato es fibra de coco que es comúnmente conocida como turba de coco, esta es la parte más fibrosa de la corteza del coco.
Los lodos de la molienda de la caña de azúcar se refieren al material lavado que incluye los lavados de la caña, limo, las impurezas del jugo de caña y bagazo fino. Ambos, los materiales no-derivados de Sphagnum y los lodos de la molienda de la caña de azúcar, cuando se usaron individualmente para el crecimiento de plantas o como mejoradores del suelo, fueron útiles para el cultivo de plantas y la proliferación de hongos. Sin embargo, en la investigación referida, se determinó que al mezclar ambos materiales (los no derivados de Sphagnum y los lodos de la molienda de la caña de azúcar) , se obtiene un material superior, de mayor calidad para su uso como medio de cultivo para las plantas o para el mejoramiento del suelo para la producción agricola.
En el proceso descrito, las concentraciones relativas de los componentes no-derivados de Sphagnum y los lodos de la molienda de la caña de azúcar, fueron optimizados para obtener las propiedades deseables del sustrato. La formulación se ajustó para llegar a los niveles óptimos de retención de agua, aireación, pH, contenido de sales y niveles de nutrientes. Por ejemplo, los materiales no- derivados de Sphagnum tienen propiedades indeseables como son un bajo pH, bajos niveles de nutrientes y demasiada porosidad. En contraste, los lodos de la molienda de la caña de azúcar tienen un alto contenido en sales, baja retención de agua, presencia de microorganismos patógenos, o susceptibilidad al crecimiento de los mismos.
En el caso de la solicitud de patente U.S. 200502844302, se describe la generación de un sustrato para el cultivo de plantas. Los inventores generaron una mezcla para macetas basada en aserrin de pinos solo, o mezclado con materiales orgánicos de desechos. El material es molido mediante un proceso continuo, y sumergido en agua caliente que contiene un aditivo químico para tratamiento. La mezcla es parcialmente drenada hasta perder un 15 - 25% de su peso. La capacidad de retención de la formulación final es cercana al 50% en peso.
En la solicitud de patente WO1994022790 se describe un método para producir un substituto para peat moss. La invención esta relacionada con formulaciones de materiales iniciales celulósicos, un inoculo con microorganismos degradadores de este material en la forma de bacterias generadoras de amonio, además de bacterias degradadoras de lignocelulosas, abonos, y desechos municipales o desechos similares. El material mezclado es tratado con vapor. La solicitud de patente WO2003002638 Al se refiere al tratamiento de fibras vegetales y paja con formaldehido, y almidones, para la generación de una mezcla. La mezcla es tratada con altas presiones de vapor (300-450 kg/cm2) y 120 a 18O0C.
Los productos generados en las invenciones referidas consisten de materiales útiles para la producción de sustratos de fácil degradación y buenas características de soporte. Sin embargo en este producto generado son tratados los materiales con productos químicos desinfectantes, o con vapor y temperatura elevados, lo que requiere de una fuente de energía térmica y de reactores altamente tecnificados de operación continua. En general, en las localidades rurales, en operaciones cercanas a la producción de pajas, bagazos y residuos o esquilmos agroindustriales lignocelulósicos, no se lleva a cabo un aprovechamiento adecuado de estos residuos. Por lo regular el manejo y tratamiento de los subproductos agrícolas representa un costo muy elevado cuando se desarrolla con sistemas de alta tecnificación, en reactores automatizados aislados de lluvia o sequia. La inversión necesaria para un equipo de ese tipo, que procese miles de toneladas de material, se cotiza en el orden de los millones de dólares. Por lo tanto, y con el objeto de disminuir los costos de inversión, es necesario que el procesamiento de dichos materiales se lleve a cabo en operaciones a cielo abierto, o bajo cubierta, con sistemas semi-mecanizados, del tipo de revolvedoras o mezcladoras. En los que se busca que durante el composteo, el calor metabólico generado por la biodegradación de celulosas permita la producción de sustratos de características adecuadas para la producción de plantas, libres de microorganismos fitopatógenos, y de semillas de malezas. En el que las inversiones en equipo e infraestructura sean menores, más económicas, y adecuadas para el procesamiento de grandes cantidades de material lignocelulósico en zonas rurales de difícil acceso.
Desechos de la Industria Azucarera en México En México, dos de los residuos agroindustriales generados en mayor volumen son los de maiz y caña de azúcar. La producción de maiz en nuestro pais se produce de manera muy dispersa, lo cual causa enormes dificultades en su recolección y utilización. En comparación, la caña de azúcar es procesada en lugares centralizados, y los costos asociados de acopio son mínimos, es por eso que la presente invención se enfoca a estos recursos. Actualmente operan en México 58 Ingenios azucareros (22 de estos se encuentran en el Estado Veracruz) . En total, los Ingenios mexicanos produjeron alrededor de 5.8 millones de toneladas de azúcar, durante la zafra 2004/2005. El total de caña molida fue de 50.9 millones de toneladas (Infozafra 2005/2006) . Los Ingenios producen una gran cantidad de residuos, que no siempre son aprovechados, y causan por tanto contaminación en acuiferos subterráneos y fuentes superficiales de agua de consumo humano. Si se considera el impacto ambiental de dichos residuos, se puede deducir la importancia de desarrollar investigación básica y aplicada en el campo de procesamiento de residuos sólidos agroindustriales, fabricación de compostas maduras y abonos fermentados pueden contribuir al mejoramiento de la calidad del suelo y a la conservación de un ambiente sano. En el estado de Tabasco se investigó el efecto de la aplicación de rastrojos de caña de azúcar en un suelo vertisol, sobre las propiedades físicas y químicas del suelo y los rendimientos de caña de azúcar en producción agrícola (Sánchez, 2003) . Después de dos años de reciclar rastrojos de cosecha en un suelo vertisol cultivado con caña, el suelo fue evaluado para determinar el efecto de los rastrojos sobre sus propiedades físicas y químicas así como el rendimiento del cultivo. Las formulaciones aplicados fueron Tl quema de rastrojos (testigo) , T2 rastrojos colocados en bandas sobre los surcos centrales de la parcela y T3 rastrojos picados y esparcidos en la parcela. Las variables estudiadas fueron materia orgánica, nitrógeno total, fósforo, pH, densidad aparente, humedad residual y rendimientos de cosecha. Se concluyó que en el cultivo de caña de azúcar, el reciclaje de rastrojo (T2 y T3) no promueve cambios en las variables en el estudio en un período de dos años. El tratamiento T2 reflejó en edades más tempranas mejores indicadores edáficos que Tl y T3, aunque la humedad residual disminuyó en las cosechas inmediatamente posteriores al aporte de rastrojos. En el estado de Veracruz, en México, se han desarrollado estudios asociados al composteo de los subproductos de la caña de azúcar. En el Ingenio Central Motzorongo se caracterizó la microbiología de una composta formulada con los subproductos de caña y con el proceso de composteo asociado. Los derivados de la producción de azúcar que pueden utilizarse para la elaboración de composta son el bagacillo, el bagazo y la cachaza (Rosas-Morales, 2003; Meunchang et al, 2005) .
El bagacillo es un residuo lignocelulósico fibroso que se obtiene de la última molienda del proceso azucarero y esté formado por un conjunto heterogéneo de fibras que miden entre 1 y 25 mm de largo. Proviene de la mezcla de cuatro diferentes porciones, morfológicamente identificables, del tallo de la caña de azúcar: • La epidermis, que constituye el 5% del bagacillo, corresponde a la cutícula de la caña de azúcar, y se encuentra formada por ceras que constituyen la principal protección del tallo contra ácidos y patógenos. La epidermis actúa como impermeabilizante del azúcar interno hacia el exterior.
Químicamente, esta fracción esta compuesta por los denominados "extraíbles" del bagacillo:
• La corteza, por otra parte, aporta la rigidez y dureza del tallo, y está constituida por fibras de tamaño y diámetro determinado que constituyen la fracción mayoritaria del bagacillo.
• El parénquima (30% del bagacillo) es el tejido responsable del almacenamiento de los jugos azucarados. • Los haces fibrovasculares (15% del bagacillo) inmersos en el parénquima, son responsables de la conducción de minerales y nutrientes en el tallo.
La caña molida no permite la distinción de las fibras de diferentes orígenes anatómicos sin la utilización de complejos sistemas de análisis microscópicos y químicos de las mismas. En general se reconocen dos fracciones típicas, la fibra constituida por las fibras de la corteza y parénquima, y la médula, constituida por los haces fibrovasculares, las fibras epidérmicas y las partículas pequeñas de suelo (Rosas-Morales, 2003) .
La composición química del bagacillo permite saber que entre el 41 y el 44% es celulosa, un polímero de residuos de glucosa unidas por enlaces beta 1-4; las hemicelulosas, que constituyen entre el 25 y el 27%, están dadas mayoritariamente por xilanos y mananos. Por último la lignina que es un compuesto que constituye entre el 20 y 22% del bagacillo se encuentra formada por polímeros complejos de naturaleza fenólica (Rosas-Morales, 2003) . La cachaza, otro de los derivados agroindustriales del proceso cañero, es un lodo que se elimina durante la clarificación del jugo de caña. La cachaza, conocida también como lodo de filtración, se obtiene por la sedimentación de la materia coloidal contenida en el jugo, y es obtenida por la precipitación de sólidos insolubles a partir del uso de alcalizantes que floculan por la formación de sales insolubles (fosfatos de calcio fundamentalmente) (Rosas-Morales, 2003) .
El bagazo, en cambio, comprende tanto el bagacillo o médula, como la corteza, o fibra larga. La cachaza o lodo de filtración, se recupera como un lodo con muy alta humedad. Su contenido de agua es de entre 75 y 77%, y la materia seca correspondiente constituye entre 23 y 27% (Rosas-Morales, 2003) .
La cachaza está constituida por una rica mezcla de fuentes de nitrógeno y carbono y a la vez de minerales fosfatados y de otros tipos (Tabla 1) .
La cantidad de cachaza obtenida en porcentaje a la caña, y su composición, varían enormemente con respecto a las diferentes localidades de producción, dependiendo de la variedad de la caña procesada, la eficiencia de la molienda, y el método de clarificación, entre otros parámetros (Rosas-Morales, 2003) .
En un estudio del proceso de composteo de cachaza y bagacillo como materiales iniciales a cielo abierto, se definió que el material bajo composteo generado tanto en la temporada de lluvia como en la de sequia, presenta ciclos de acidificación, alcalinización e incremento de temperatura que oscilaron entre 50 y 70°C, tipico de un composteo semiaerobio. La composta obtenida tuvo un incremento en el peso seco de 50% y una disminución en la relación C:N del 50%, con respecto a la formulación antes del composteo. Que la adición de bagacillo como material inicial de composteo no tuvo efecto en el pH, ni en otros parámetros en la composta madura; de hecho, en las formulaciones iniciales con más bagacillo generó mayor porosidad y mejores tiempos de composteo, sin que se modificara de manera sustancial la calidad de la composta final. En el proceso de biodegradación se encontraron poblaciones de bacterias gram positivas (actinomicetos y bacilos), asi como hongos filamentosos. La mayor parte de estos organismos son termotolerantes y lignoceluloliticos, y son por consiguiente capaces de degradar los materiales presentes en la pila de composteo (Rosas-Morales, 2003) . Otro estudio, más reciente, de co-composteo de cachaza y bagazo integral, no se refiere a la microbiología de la composta, pero claramente establece que el mezclado de inicio de cachaza y bagazo permiten la conservación de nitrógeno.
Tabla 1. Composición de la cachaza % en base seca
Figure imgf000028_0001
* Cabe destacar que en "Otros" está contenido, probablemente, una concentración importante del suelo cañero que constituye la fuente microbiana que funciona como inoculo central de los microorganismos que catabolizan lignocelulosas durante el composteo.
Los parámetros que se utilizaron para evaluar la madurez de la composta fueron el pH, el peso seco, y el contenido de materia orgánica y de nitrógeno. En condiciones de clima variable, el periodo de composteo puede variar de 12 a 28 semanas dependiendo de la época. En época de lluvias, la temperatura del proceso se modifica, la porosidad del material baja, y la deshidratación ocurre de manera más lenta, entre 24 y 28 semanas. En la época de sequía, el proceso es más rápido, de entre 12 y 20 semanas. La composta generada por este proceso tiene muy alta densidad aparente, de 0.8 hasta 1.3 g/ml, muy baja porosidad, baja retención de humedad (< 60%), y un tiempo muy extenso de procesamiento (> 12 semanas) . Aún cuando las cualidades del material como mejorador nutricional de suelos se encuentra bien establecida (Rosas-Morales, 2003; Meunchang, 2005) . La composta generada es un material útil como mejorador de suelos agrícolas por su calidad nutricional, pero de ninguna forma tiene características apropiadas para su aplicación en horticultura como sustrato en invernaderos o viveros, menos aún en operaciones de restauración de terrenos agrícolas siniestrados por sequía o erosión. Además de que su prolongado tiempo de composteo, de al menos 12 semanas, lo hace particularmente costoso. Es por esto que en la presente invención se modificó el proceso de composteo tradicional de residuos agroindustriales, de manera más preferible de residuos lignocelulósicos, de manera todavía más preferible de residuos lignocelulósicos fibrosos, tales como residuos de ingenios azucareros, de maiz, de agave, pajas de gramineas y cascarillas de granos tales como arroz y cebada. Específicamente de bagacillo de caña, bagazo de caña, cachaza o lodo de filtración. Mediante este nuevo proceso de composteo mecanizado, semi-aerobio, el material es mezclado, y degradado en el curso de 7 a 8 semanas, reduciendo en gran medida el tiempo de composteo. En el curso del proceso se abate el carbono, y por tanto la relación C:N, el material se deshidrata, y se concentran los nutrientes nitrogenados. Se genera además un sustrato maduro, pero de gran porosidad, baja densidad y muy alta retención de humedad, que posibilita su uso como sustrato único en invernaderos y viveros, y su aplicación como agente dual, humectante y mejorador nutricional, en suelos agrícolas y forestales.
SUMARIO
La presente invención contribuye con un proceso de composteo mejorado para la producción de un sustrato humectante de baja densidad (SHBD) , que permite una sustancial mejora en la calidad del producto final. A través de este nuevo proceso, derivado de intensa experimentación se genera, en el curso de 7 a 8 semanas, un material libre de patógenos (al igual que la composta tradicional o típica), de muy baja densidad (0.2 a 0.4 g/ml), de alta porosidad, y de muy alta retención de agua (> 90%), plenamente aplicable para su uso como sustrato de producción en horticultura, forestal en viveros, asi como agente humectante y mejorador de suelos en campo agrícola y en suelos erosionados. También el nuevo proceso proporciona un sustrato humectante de baja densidad (SHBD) que se produce a partir de de residuos agroindustriales, de manera más preferible de residuos lignocélulósicos, de manera todavía más preferible de residuos lignocélulósicos fibrosos, tales como residuos de ingenios azucareros, de maíz, de agave, pajas de gramíneas y cascarillas de granos tales como arroz y cebada. Específicamente de bagacillo de caña, bagazo, cachaza o lodo de filtración, mediante un proceso controlado de composteo, por lote alimentado.
Además, el proceso de la presente invención proporciona un SHBD con características similares a las del peat moss o turba, y a las de otras fibras utilizadas en agricultura y horticultura, que no solo tiene utilidad en invernaderos y viveros agrícolas y forestales, sino como agente humectante para la restauración y recuperación de suelos y para el establecimiento de plantaciones agrícolas y forestales de mayor éxito y productividad. Así mismo la presente invención proporciona un producto útil para su uso en invernaderos y viveros, ya sea como substituto o complemento de otros productos (peat moss, fibra de coco, coberturas de polietileno) , o en mezclas con sustratos naturales y sintéticos para la producción agrícola y forestal. De igual manera la presente invención proporciona un proceso de producción de un sustrato, mismo que asegura calidad reproducible, estabilidad fisicoquímica y biológica que permite la germinación óptima de semillas. También el propósito de la presente invención es el aprovechamiento de los de residuos agroindustriales, de manera más preferible de residuos lignocélulósicos, de manera todavía más preferible de residuos lignocélulósicos fibrosos, tales como residuos de ingenios azucareros, de maíz, de agave, pajas de gramíneas y cascarillas de granos tales como arroz y cebada. Específicamente de bagacillo de caña, bagazo, cachaza o lodo de filtración o bien de otros esquilmos equivalentes de materiales lignocelulósicos, lo que permite una mejor alternativa de aprovechamiento de desechos.
DESCRIPCIÓN DE LA INVENCIÓN
El proceso y producto generados en el marco de la presente invención, se basa en un proceso de composteo mejorado a partir materiales residuales como de residuos o esquilmos agroindustriales, de manera más preferible de residuos lignocelulósicos, de manera todavía más preferible de residuos lignocelulósicos fibrosos, tales como residuos de ingenios azucareros, de maíz, de agave, pajas de gramíneas y cascarillas de granos tales como arroz y cebada. Específicamente de bagacillo de caña, bagazo, cachaza o lodo de filtración. La principal contribución radica en la aplicación, en diferentes etapas del proceso de composteo para la obtención de un sustrato humectante de baja densidad, de materiales lignocelulósicos de manera controlada y definida que se establecieron por experimentación. Los materiales de adición se agregan con el objeto de obtener un material con mayor porosidad, menor densidad y de mejor capacidad de retención de agua. Los materiales de adición utilizados pueden ser: bagacillo de caña, bagazo de caña, bagazo de agave o pajas de, maíz, gramíneas, y cascarillas de granos tales como arroz y cebada, en general cualquier residuo lignocelulósico fibroso. El proceso de composteo, bajo esta mejora, se convierte en un sistema de fermentación sólida, controlada, de lote alimentado. El sistema de composteo que se utiliza es de canteros o biopilas semi-estáticas. El primera paso del proceso consiste en la limpieza del área de composteo, que se realiza con la ayuda de un tractor. Posteriormente, se delimita el área de experimentación, para marcar la ubicación de las biopilas o canteros (windrows en inglés), trazándose rectángulos en el suelo de acuerdo a las dimensiones de la técnica ya conocida de 3 m x 2.5 m (7.5 m2), para generar biopilas de 1.4 m de alto, o para los pilas de escala industrial de 12 a 15 m x 2.5 m (30 a 37.5 m2) para formar pilas de 3 m de altura.
Con una composición inicial de materiales constituida por bagacillo de caña, bagazo, cachaza o lodo de filtración. En una proporción de materiales iniciales de cachaza y bagacillo de 86:1, 43:1, 10:1. El material se deposita, a cielo abierto, sobre una cama absorbente de bagazos o pajas de algunos 5-15 centímetros de espesor, para evitar el escurrimiento y la pérdida de jugos contenidos en la cachaza. El material se homogeniza con una composteadora mecánica, con la finalidad de distribuir uniformemente los materiales iniciales, además de que el uso de la composteadora, permite la distribución de oxigeno, que en las primeras semanas es indispensable para incrementar la actividad de los microorganismos aerobios presentes en la composta.
Después de este primer mezclado, el material a compostear se deja reposar, es decir sin volteos, durante una semana. A la semana de iniciado el composteo, comienza la alimentación controlada de lignocelulosas frescas, mediante la adición de una carga de bagacillo, del 1-3.5% de peso con respecto a la cantidad de cachaza inicial. El material se homogeniza intensamente con la composteadora y se deja durante una semana más en reposo, es decir sin volteo por la composteadora. Después de ese primer ciclo, la temperatura de la pila se encuentra típicamente entre 50 y 60 0C aun en reposo. Se repiten 5 ciclos más de adiciones de bagacillo, correspondientes a las siguientes 5 semanas. Las alimentaciones adicionales consisten del mismo peso de bagacillo que del primer evento de alimentación. En el curso de ese periodo de biodegradación por el proceso de lote alimentado, el material bajo composteo genera temperaturas asociadas a sistemas de bioconversión de termófílos, típicamente entre 65 y 85 0C. Los ciclos de adición de lignocelulosas por lote alimentado favorecen para que el pH sea neutro, sin cambios drásticos. A partir del segundo ciclo, existe una pronta reducción de los sólidos biodegradables volátiles y por tanto de la producción de olores desagradables. En la semana posterior al último ciclo de adición del bagacillo, el material se deja en reposo, es decir sin volteo por la composteadora, durante una semana. Los productos de composteo se estabilizan por la dispersión del material, aun caliente, con el objeto de abatir su temperatura, y para permitir la evaporación de la humedad excesiva. Este proceso de secado consiste en dispersar en camas de 50 - 60cm la pila completa de composta, la cual se expone al sol durante 2 o 3 semanas, hasta reducir un 30 % de humedad total de la composta. Mientras se mantiene en exposición al sol, la composta debe ser volteada y mezclada cada 5 días, con el fin de tener un secado homogéneo. Finalmente se obtiene una composta madura, con buenas características de textura, y excelentes propiedades tanto fisicoquímicas como biológicas. En dicho proceso, se han metabolizado compuestos fitotóxicos y se han eliminado patógenos microbianos de las plantas, que típicamente no soportan temperaturas mayores a 60 0C, y mucho menos por tiempos prolongados.
El sustrato humectante de baja densidad que es el producto final obtenido del sistema de composteo mejorado se genera, en el curso de 7 a 8 semanas, un material libre de patógenos (al igual que la composta tradicional o típica) , de muy baja densidad (0.2 a 0.4 g/ml), de alta porosidad, y de muy alta retención de agua (> 90%). Contrasta con compostas maduras, obtenidas de las operaciones por lote, no derivadas de la alimentación controlada de materiales durante el proceso. Esta diferencia se debe a que las características fisicoquímicas de las compostas típicas, no son adecuadas para su uso como sustratos humectantes, pues su alta densidad y su granulometria prevaleciente de partículas muy finas, los hacen mas parecidos a un suelo superficial, que a un sustrato humectante. Dichas características limitan su utilización como sustratos para vivero, como soportes en invernaderos, asi como su aplicación en plantaciones agrícolas, en la forma de coberturas humectantes. Métodos Analíticos
Los materiales bajo composteo se muestrearon mediante el uso de un sacabocado cilindrico de 15 cm de diámetro y un metro de longitud. Las muestras eran de 1000 g material representativo de todos los niveles (desde el centro hasta la superficie) del material en composteo.
Las muestras de composta se almacenaron por períodos no mayores a 2 semanas bajo refrigeración a 4 °C hasta su análisis. En el laboratorio, las muestras se analizaron con respecto a perfiles granulométricos, pH, densidad aparente, retención de agua, humedad y porosidad. Las muestras se seleccionaron con características similares a peat moss para el ensayo de germinación.
Humedad por el Método Gravimétrico
La humedad y los sólidos totales se determinaron con el método gravimétrico. Se colocaron aproximadamente 1Og de una muestra húmeda en placas petri, y se determinó el peso exacto con ayuda de una balanza analítica Voyager Ohaus.
Se registró el peso de cada muestra y después se depositó en una estufa a 9O0C. Se monitoreó el peso cada 24 horas hasta que se mantuvo el peso constante y se estableció como peso final. Posteriormente se determinó el porcentaje de sólidos y de la humedad presentes en las compostas
(Valdés, 2005) .
Se calculó entonces el contenido de humedad y de sólidos totales como porcentaje del peso de la muestra húmeda.
Humedad (H) = (Peso de la composta Humedad) - (Peso de la composta seca) - Porcentaje de Humedad = (H*100)/10
Porcentaje de sólidos totales = 100-Porcentaje de Humedad pH
En está prueba se determina la concentración de iones
Hidrogeno en una solución de la composta. El pH se determinó diluyendo una parte de composta en proporción 1:2 (10g de composta y 20ml de agua). La muestra se homogeneizó por vortex y se dejó entonces reposar durante 30 minutos.
Después del reposo la muestra se agitó vigorosamente y se determinó el pH por medición con un potenciómetro marca
Orion, modelo 410a. En la determinación de pH se incluyeron muestras de cachaza sola (muestras 3 y 4) sin adición de bagacillo, así como muestras de turba y fibra de coco
(Valdés, 2005) .
Densidad aparente La densidad aparente de un sustrato es la masa por unidad de volumen expresada como g/cm3. Una vez conocida la densidad aparente, la medición de la masa del sustrato, el porcentaje o volumen se pueden expresar intercambiadamente o en términos absolutos (Okalebo, 1993; Plaster, 2003) .
La densidad aparente de las muestras se determinó utilizando una probeta de 1 Lt en la cual se colocó una muestra de 200 gramos. Se determinó entonces el volumen ocupado por la muestra y se calculó entonces la densidad. Retención de Agua
Se define como la cantidad máxima de agua, que después del libre drenaje, puede retener un sustrato determinado. Se estima después de que un sustrato es saturado con agua, y se ha permitido el drenaje sin dejar que su humedad sea eliminada por evaporación (Okalebo, 1993) .
Para la determinación de capacidad retención de agua, se pesan de 5 a 1Og de la muestra de sustrato en una caja petri. Esta se coloca en la estufa a 900C hasta obtener el peso constante. Un disco de papel filtro se satura con agua, se registra su peso y se coloca en un embudo. La muestra seca se vierte en el embudo y se pesa, se agrega agua a la muestra hasta saturarse, y se deja escurrir hasta que cese el goteo. Una vez que cesa el goteo se registra el peso final (Okalebo, 1993) . Para el cálculo de la capacidad de retención de agua:
• (U) Unidad = Peso del papel filtro + composta
• Peso de la U con el suelo saturado = Peso del papel filtro húmedo + peso de la muestra seca • Agua Retenida = Peso del papel filtro con la muestra saturada con agua - peso del papel filtro con la muestra seca. • Capacidad de Retención de Agua = (Agua retenida*100) /10 Granulometria
Para medir la distribución del tamaño de las partículas, las diferentes muestras de composta fueron secadas a temperatura ambiente durante tres dias, se tomaron 10Og de cada muestra y estas se pasaron a través de cuatro tamices de diferentes medidas. Se pesó el residuo que quedó en cada tamiz. Los tamaños de poro de la cribas utilizadas fue de 1.98, 0.5, 0.025, y 0.005 milímetros (Benito, 2005) . Ensayo de Germinación
Para garantizar la utilidad de las muestras de sustrato como medio de cultivo en invernadero, se efectuó una prueba de germinación, utilizando semillas de pasto y de jitomate. Se pesaron 20 g de muestra, las semillas fueron lavadas con cloro al 10 % y enjuagadas con agua esterilizada desionizada. Se agregaron entonces a los 20 g de muestra de sustrato colocados en una placa petri de vidrio. Manteniendo la humedad constantemente a saturación para todos los ensayos, las placas se mantuvieron durante 7 dias en una cámara de crecimiento vegetal con periodos de luz de 12 horas y a una temperatura constante de 25 0C. Porosidad La porosidad se determinó secando 1 kg de muestra de cada sustrato en una estufa a 90°C por 72 horas, hasta obtener un peso constante. Después, la muestra seca se deposita en un probeta hasta llegar a 500 mi y con ayuda de una balanza analítica Voyager Ohaus se registra el peso de cada muestra. El siguiente paso es tomar la muestra de la probeta y colocarla en una bandeja con agua hasta que se encuentra completamente saturada. Posteriormente la muestra se retira de la bandeja y se deja escurrir hasta que cese el goteo, finalmente se registra el peso de la muestra drenada (Plaster, 2005) . Cálculo del Porcentaje de Porosidad
Porcentaje de Porosidad = (Peso Húmedo-Peso seco/ Volumen (Peso Húmedo) ) *100
Ejemplo 1
Para esta prueba se utilizaron canteros de 3.0 ton de material inicial. El sistema de composteo para el sustrato fue por pilas semi-estáticas con aireación por homogeneización periódica. En cada homogeneización se utilizó una composteadora que operó para cada cantero por espacio de 20 minutos. La homogeneización, además de incorporar los materiales de manera más uniforme, permitió la inclusión de aire en la composta.
La homogeneización, además de incorporar los materiales de manera más uniforme, permitió la inclusión de aire en la composta . Para los materiales iniciales se evaluaron diferentes formulaciones, que diferian por la proporción de bagacillo y cachaza que contenían. Se probaron también diferentes regímenes de adición de bagacillo en las formulaciones de los lotes alimentados. El diseño del experimento se presenta en la tabla 2.
Cada tratamiento, con su repetición, se desarrolló de acuerdo a la tabla 2. La cantidad de bagacillo se adiciono al cantero de acuerdo a las formulaciones. Después de iniciado el proceso, cada semana se adicionó bagacillo en diferentes proporciones. Las adiciones prosiguieron hasta cumplir las 10 semanas. Después de la adición de bagacillo correspondiente, se homogenizó la composta y se tomó una muestra de cada cantero para análisis en laboratorio .
Tabla 2. Composición de las pilas para el proceso de composteo
Figure imgf000040_0001
& adición de 1.7% de bagacillo con respecto al peso inicial de cachaza
&& adición de 2.3% de bagacillo con respecto al peso inicial de cachaza
M muestreo Posterior al periodo de reposo, la composta debe tener una etapa de secado. La etapa de secado consistió en dispersar en camas de 50-60cm la pila completa de composta, la cual se expone al sol durante 10-15 dias, hasta reducir un 30 % de humedad total de la composta. Mientras se mantiene en exposición al sol, la composta debe ser volteada y mezclada cada 5 dias, con el fin de tener un secado homogéneo.
Ejemplo 2 Par la realización de esta ejemplo se eligió la formulación cuyo sustrato presento las características físicas semejantes a las del peat moss y corresponden a las características de un sustrato ideal para horticultura, y que además presentaron resultados extraordinarios para el ensayo de germinación. La comparación de las características de peat moss y el sustrato de la formulación 5,6 de la tabla 2 se presenta en la tabla 11. Para este ejemplo se empleo una formulación para composteo a escala industrial que fue de 100 ton cuya proporción del material inicial fue 43:1 cachaza:bagacillo. A este cantero se le adicionaron 2.3% de bagacillo con respecto al peso de la cachaza inicial. Simultáneamente se establecieron dos canteros controles, que se tenían una proporción de 43:1 y 30:1 de cachaza:bagacillo. Con adiciones de 2.3% y 3.3% de bagacillo con respecto al peso inicial de la cachaza. El diseño experimental de estas pruebas se presenta en la tabla 3. En este experimento, las adiciones de bagacillo se interrumpieron en la séptima semana, que corresponde al estadio de mejores características de sustrato, definidas por análisis de materiales en el experimento del ejemplo 1 (ver Tabla 2) . A las muestras obtenidas semanalmente de la biopila o cantero de 100 toneladas, así como a los otros dos canteros se les determinaron todos los parámetros físicos y químicos descritos en la metodología. Los análisis de laboratorio del sustrato humectante de baja densidad permitieron determinar su calidad, en comparación con las características de un sustrato orgánico peat moss o turba de Sphangum.
Tabla 3. Composición de los canteros IA escala industrial, 2A y 3A controles, semanas de muestreo y adición de bagacillo según el diseño
Figure imgf000042_0001
& adición de 2.3% de bagacillo con respecto al peso inicial de cachaza
&& adición de 3.3% de bagacillo con respecto al peso inicial de cachaza
M muestreo
CARACTERIZACIÓN DEL SUSTRATO HUMECTANTE DE BAJA DENSIDAD (SHBD)
En ambos ejemplos se evaluaron los cambios fisicoquímicos de la cachaza sujeta a composteo, por efecto de la adición de bagacillo, y la frecuencia de adición del mismo (Tablas 2 y 3) . Las muestras de los diferentes canteros, fueron evaluadas con respecto a los parámetros establecidos: humedad, granulometria, pH, retención de agua, densidad aparente, porosidad, porcentaje de germinación. Y para fines de comparación se utilizó como control el peat moss comercial.
En la tabla 4, se presentan los resultados del contenido de humedad presente en las compostas en las diferentes formulaciones, el contenido de Humedad es un indicador adecuado de la calidad de las compostas como sustrato.
Un sustrato que conserva suficiente humedad permite abatir los costos de irrigación. Un contenido adecuado de humedad favorece la germinación de semillas y el crecimiento de cultivos, un exceso de la misma puede provocar deficiencia de nutrientes y desarrollo de enfermedades fungosas.
En el caso concreto del peat moss el sustrato de mayor uso en invernaderos y viveros, su contenido de humedad es aproximadamente de 45.5%. Las muestras de compostas de las formulaciones 5, 6 y 7, 8 correspondientes a la cuarta y séptima semana, tienen un contenido de humedad semejante al peat moss, alrededor 40-43%. Las formulaciones control para dicho experimento que solo contienen cachaza o que contienen en el material inicial cachaza más 300Kg de bagacillo tienen, para las mismas semanas de muestreo, contenidos de humedad de entre 50 y 60%. Se reconoce que para aplicación en agricultura los sustratos deben tener un contenido de humedad aproximado del 50%. Para todas las formulaciones en la dieciseisava semana se encuentran con una humedad menor del 35%. Los sustratos que se utilizan para agricultura intensiva, horticultura y producción en invernaderos y viveros deben oscilar entre 40 y 45 % de humedad total. En la tabla 5 se presentan los resultados correspondientes al contenido de sólidos totales de las compostas derivadas de las diferentes formulaciones. Los resultados indican que el contenido de sólidos totales para peat moss es del 54.5%. Mientras que las compostas correspondientes a las formulaciones 5, 6 y 7, 8 de la cuarta y séptima semana, tienen un contenido de sólidos totales de alrededor del 57%, para las formulaciones control para dicho experimento (que solo contienen cachaza o que contienen en el material inicial cachaza mas 300 Kg de bagacillo) tienen, para las mismas semanas, contenidos de sólidos de entre 50 y 40%. El porcentaje de humedad de peat moss es 2.5 % mayor que las compostas correspondientes a la formulación 5 y 6, de la séptima semana, lo cual genera un incremento del 2.5% más en sólidos. Esto quiere decir que tiene un 5% menos de masa de agua por masa de suelo seco, lo que nos refiere que podemos aplicar un sistema de irrigación parecido al que se usa con peat moss. Se ha establecido que para una composta madura, el óptimo de pH debe ser neutro, de 6.7 a 7.7 (Wilson, 2001) . El pH de un sustrato es importante por que los microorganismos y las plantas responden marcadamente a los cambios químicos de su ambiente. La mayoría de ellos prefieren una variación de pH neutro o cercano al neutro puesto que la viabilidad de muchos de los nutrientes es mejor en este intervalo de pH (Sylvia, 2005) . Por ejemplo los actinomicetos requieren condiciones neutras y no toleran muy bien los ambientes ácidos. La mayoría de los hongos, que pueden ser patógenos en muchos de los casos, son ácido tolerantes (Sylvia, 2005) .
Muchos de los elementos del sustrato cambian el resultado de las reacciones en el suelo. Estas reacciones controladas por el pH alteran la solubilidad de los nutrientes, asi como su viabilidad.
Tabla 4. Porcentaje de humedad de las muestras de composta bajo diferentes formulaciones con bagacillo.
Figure imgf000045_0001
Tabla 5. Porcentaje de sólidos totales de las muestras de
Figure imgf000045_0002
Es de notarse que la mayoría de los nutrientes se encuentran más disponibles en niveles neutros de pH. Para la mayoría de los cultivos se prefiere un intervalo de pH de 6.0-7.0.
Los resultados del cambio en el valor de pH de compostas de cachaza bajo diferentes formulaciones de bagacillo se presentan en la tabla 6.
Los resultados indican que en todos los casos el pH comienza en niveles mayores a 8.0, francamente alcalinos, y que dichos valores tienden a neutralizarse, de forma tal que para las muestras de las últimas semanas los valores de pH son cercanos o en algunos casos menores a 7, como es el caso de la formulación 9, 10. Un sustrato ideal para agricultura intensiva debe tener valores de pH de entre 5.3 y 6.8. En el caso del peat moss, el pH tiene un valor de 3.8 lo que le asegura una prolongada vida de anaquel. Sin embargo la acidez asociada puede provocar la liberación de sales de aluminio de alta toxicidad, lo que compromete la capacidad de intercambio catiónico del suelo. Los resultados indican que las compostas correspondientes a la formulación 5 y 6, de la cuarta y séptima semana, tienen un pH de alrededor de 7.7 que es ligeramente alcalino para fines de aplicación de agricultura intensiva, pero se encuentra muy próximo a los niveles adecuados de pH. En contraste el valor de 3.8 de pH de peat moss, requiere de1 formulación especifica para alcanzar niveles adecuados de pH, para su uso en viveros e invernaderos.
Tabla 6. pH de muestras de composta bajo diferentes formulaciones con bagacillo.
Figure imgf000046_0001
Los mej oradores de suelos y compostas determinan su utilidad en agricultura intensiva en buena medida por su densidad aparente. Los valores asociados para un sustrato 'ideal oscilan alrededor de 0.7 g/ml (Pérez, 2006). El efecto fisico de la aplicación de acondicionadores o agentes de volumen en compostas se encuentra bien documentado. La reducción de la densidad aparente del sustrato conduce a una mayor capacidad de retención de agua, mejora la infiltración y el drenaje del agua, y mejora también la estructura de los agregados del sustrato. En la tabla 7 se presentan los resultados del efecto de formulaciones de bagacillo sobre la densidad aparente de compostas. Los resultados indican que para la formulación 5 y 6, la adición de bagacillo abatió la densidad aparente del material, en particular para las muestras de la séptima y dieciseisava semana para dichas formulaciones. La muestra de la séptima semana presentó una densidad aparente de 0.32 g/ml, y constituye la densidad mas baja registrada para muestras de cualquiera de las formulaciones. Para el control de solo cachaza, correspondió la densidad más alta registrada en las 20 semanas de proceso.
Si bien para las formulaciones 1, 2 y para 9,10 la densidad aparente en la séptima semana fue baja, (entre 0.34 y 0.35), los valores son sustancialmente mayores a los correspondientes a la formulación 5,6.
La densidad aparente de muestras de peat moss es de entre 0.18 y 0.22 g/ml. La densidad de 0.32 obtenida en la formulación 5,6 en la séptima semana se encuentra en el intervalo de densidad aparente de un sustrato ideal y es las más baja de todas las formulaciones.
Tabla 7. Densidad Aparente de muestras de composta bajo diferentes formulaciones con bagacillo.
Figure imgf000047_0001
Otro parámetro de gran importancia para sustratos útiles en agricultura intensiva es la capacidad de retención de agua, que es la cantidad máxima de agua que, después del libre drenaje, un sustrato puede retener (Okalebo, 1993) . Una alta capacidad de retención de agua en un sustrato, indica que la mayoría de las partículas tiene un tamaño de mediano a pequeño y tiene una mayor área de superficie interna, por lo consiguiente los poros son pequeños, lo que permite retener agua en contra de la gravedad. Si bien no toda el agua que retiene un sustrato esta disponible para su utilización por las plantas, la retención de agua disponible para las plantas depende de que el sustrato tenga una mezcla de partículas mega-grandes a finas, por lo resultante de poros grandes y pequeños, con una mayor proporción de poros de tamaño mediano. Es clara la relación entre la textura y la capacidad de retención de agua.
Los resultados de la capacidad de retención de agua de las compostas bajo diferentes relaciones de material de inicio se presentan en la tabla 8. Los resultados indican que una vez más, la formulación 5,6 en la séptima semana demostró la mayor capacidad de retención de agua. Dicha formulación retienen el 90.45%, con respecto a su propio peso seco, en comparación con el 123.7% que es capaz de retener el peat moss.
Otro parámetro de importancia para la caracterización de sustratos de uso hortícola es la distribución del tamaño de partícula. El tamaño de la partícula es importante porque afecta el movimiento de oxigeno en el sustrato (a través de su influencia en la porosidad) , y en el acceso de los microbios y enzimas al sustrato. Tabla 8. Porcentaje de la capacidad de retención de agua de muestras de composta bajo diferentes formulaciones con bagacillo.
Figure imgf000049_0001
Partículas grandes promueven la difusión del oxigeno porque solo su presencia significa un poro grande (Sylvia, 2005) . Aun asi la presencia de partículas grandes minimiza la superficie de área especifica del sustrato. Esto quiere decir, que la mayoría del sustrato no se encuentra inmediatamente accesible a los microbios y a sus enzimas.
Las mega-particulas tienen un diámetro mayor a lmm. Las partículas grandes se encuentran en un intervalo de 0.5 a 1. Omm, las medianas de 0.025 a 0.5 mm, y las finas de menos de 0.025mm (Plaster, 2003) .
Benito (2005) , destaca la importancia de la fracción de entre 0.5 y 1.0 mm, debido a su relación con la capacidad de retención de agua de un suelo y del agua viable para una planta.
Los resultados de la distribución del tamaño partícula de las diferentes muestras de composta bajo tratamiento con bagacillo se presentan en la tabla 9 indican que para la fase piloto de experimentación, el efecto del tratamiento con bagacillo generó grandes diferencias en la distribución del tamaño de partícula de compostas.
Para las compostas de la formulación 5,6 en la séptima semana, encontramos que la fracción que corresponde a partículas mayores de 1.98 mm, contiene alrededor del 24% del peso total del material. Dicha fracción favorece la existencia de macroporos, que determinan un buen drenaje del sustrato. La fracción de partículas de entre 0.5 y 1.98 tniti, constituye el 40% del total del peso de partículas, la de mayor proporción del material analizado. Esta fracción corresponde a los macroporos-mesoporos, asociados a una alta capacidad de retención de agua.
La fracción que corresponde al tamaño de partícula de entre 0.005 y 0.5 mm constituye el 27%, que corresponde a la fracción del sustrato que está disponible para la actividad microbiana.
Tabla 9. Porcentaje del Tamaño de las partículas de muestras de composta en las diferentes formulaciones con bagacillo.
Figure imgf000050_0001
Figure imgf000051_0001
Para el ensayo de germinación se eligieron las tres formulaciones del ejemplo 1 con las propiedades fisicas más parecidas al peat moss que fueron 5-6, 7-8, 9-10 en la séptima y dieciseisava semana , y se utilizaron semillas de pasto y jitomate, cultivos muy comunes, de plantas demandantes de nitrógeno, y de crecimiento rápido. El ensayo de germinación se concentró en las etapas tempranas de crecimiento de las plantas, donde las deficiencias de nutrientes o los efectos inhibitorios son más aparentes, y las diferencias entre las formulaciones se pueden observar mejor. Se contaron los números de los brotes satisfactoriamente emergidos de las muestras de las diferentes formulaciones seleccionadas, para obtener el porcentaje de las semillas germinadas, y compararlos con el sustrato orgánico de mayor uso peat moss. En la tabla 10 se puede observar que para la formulación 5, 6 en la séptima semana se tiene un 76% de germinación para jitomate y 72% para pasto, porcentajes ambos que se incrementan a 85% después de 5 dias más de análisis. En contraste, el porcentaje de germinación a partir de peat moss fue muy bajo (47% para pasto, y 13% para jitomate) . En este sentido, Wei y colaboradores (2005), reconocen que una composta con >80% de germinación, derivada de deshechos animales, se considera madura para uso agrícola. Placas testigo que no fueron sembradas con semillas de jitomate o pasto no registraron germinación de semilla alguna, ninguna plántula se desarrolló en dichas unidades experimentales. Lo anterior indica que el material se encuentra libre de semillas viables de malezas o de semillas viables contaminantes, tal y como se espera de un material sometido a composteo en alta temperatura. En el ejemplo 2, al sustrato que se produjo con la formulación 5, 6 del ejemplo 1 se llevó a una escala industrial y se probó con dos controles (2A y 3A) (Tabla
3) .
En esta prueba del ejemplo 2a escala industrial de 100 toneladas de cachaza, se utilizó la misma proporción del 2.3% de adiciones de bagacillo semanales (IA) . De manera simultánea se establecieron nuevas biopilas control, de tres toneladas de cachaza inicial. En el primer caso se adicionó el 2.3% de bagacillo (control 2A), y en el segundo (3A) el 3.3%.
Tabla 10. Porcentaje de germinación de las muestras de composta en las diferentes formulaciones con baαacillo.
Figure imgf000052_0001
Tabla 11. Características de sustrato de peat moss y de composta de tratamiento 5, 6.
Figure imgf000052_0002
H Humedad ST Sólidos Totales DA Densidad Aparente
%CRA Porcentaje de Capacidad de Retención de Agua
A diferencia del ejemplo 1, y debido a los resultados encontrados en el mismo, en las pruebas del ejemplo 2 se adicionó bagacillo durante seis semanas y las alimentaciones cesaron a la séptima semana (después de una semana de reposo), sin continuar hasta la semana 10.
Las muestras de las tres biopilas de este ejemplo 2 se les determinaron los parámetros fisicos descritos anteriormente. Adicionalmente se determinó la porosidad y se efectuó el análisis químico del producto. Se utilizaron como sustratos de comparación tanto peat moss como fibra de coco.
En la tabla 12 se puede observar que en la séptima semana el sustrato de la formulación IA tiene un 60% de humedad, mientras que peat moss y fibra de coco tienen contenidos de humedad de alrededor del 46-48%. Los controles 2A y 3A tienen alrededor del 40% de humedad total.
En lo que se refiere al pH, las muestras de la formulación IA y sus controles, en la primera semana se encuentran en valores cercanos a 5 y conforme van pasando las semanas las muestras van siendo más alcalinas, excepto la de la formulación IA que en la última semana presenta valores de 4.9. El peat moss tiene un pH de 3.9 y la fibra de coco de 6.5 (tabla 12) . En cuanto a la densidad aparente, en la sexta y séptima semanas, en promedio, el sustrato de la formulación IA presenta 0.38 g/ml, valor que esta dentro del nivel deseado para un sustrato ideal. Los controles 2A y 3A tienen densidades de entre 0.24 y 0.21 g/ml respectivamente. La densidad aparente para peat moss fue de 0.17 g/ml, y para fibra de coco de 0.14 g/ml (tabla 12).
En cuanto a la capacidad de retención de agua el sustrato de la formulación IA en la última semana de proceso, tiene un promedio de 235%, siendo el más elevado con respecto a los valores de peat moss, y muy cercano a los niveles de la fibra de coco.
En relación al tamaño de particula, el sustrato de la formulación IA tiene en la ultima semana de composteo, el menor porcentaje de gramos retenidos en la malla 1.98mm, con respecto a 2A y 3A. Para la malla de 0.5 IA tuvo 43%, un porcentaje ligeramente superior al de los otros canteros de prueba. Para las fracciones de menor tamaño (0.025- 0.005mm), IA obtuvo valores muy cercanos a los porcentajes de la misma fracción en peat moss y en fibra de coco (tabla 12) .
En lo que se refiere a la porosidad, IA tiene el 52%, en comparación con el peat moss que presenta 56%, es decir que IA y peat moss tienen una densidad aparente baja y un mayor espacio de poro, ideal para usarse en invernaderos y viveros.
Tabla 12. Características fisicoquímicas de materiales en composteo del SHBD y sus controles 3A y 2A, colectadas en la ultima semana del proceso.
Figure imgf000054_0001
H Humedad ST Sólidos Totales
DA Densidad Aparente
%CRA Porcentaje de Capacidad de Retención de Agua
Análisis quimico
La fertilidad de un sustrato es la capacidad del mismo de proporcionar nutrientes durante el crecimiento de la planta. El sustrato puede funcionar como un recipiente donde se almacenen los nutrientes, guardados en diferentes formas, unos más biodisponibles que otros. El concepto de la fertilidad de un sustrato no solo incluye la cantidad de nutrientes que este almacena, sino también qué tanto se encuentran protegidos de los lavados por efecto de las lluvias, qué tan biodisponibles son, y qué tan fácilmente son asimilados por la raiz (Plaster 2003) .
Para el análisis quimico la muestra de IA se analizó en un laboratorio de análisis quimico de suelos, certificado para ese fin, en donde se utilizaron las siguientes metodologías: Officials Methods of Analysis of AOAC Internacional, Officials Methods of Analysis of APHA (American Public Health Association) , Ensayo realizado por Espectrofotometria de Absorción Atómica/Técnica de flama, Ensayo realizado por método OLSEN. El sustrato de la formulación IA tiene una composición de: materia orgánica 13.9-23.6%, Nitrógeno total 0.3-0.7%, Potasio 0.14-0.22%, Calcio 0.41-0.45%, Magnesio intercambiable 540-720 ppm, Fósforo 590 ppm, Bicarbonatos 240-620 ppm, Sulfatos 120-650 ppm, Magnesio 235-510 ppm, Sodio 70-465 ppm, Cloruros 270-310 ppm, Zinc 35-65 ppm. Los sustratos con alto contenido en sales se definen como un sustrato con una conductividad eléctrica de 4 o más mohms/cm. Aún asi bajos niveles de salinidad como 2 mohms/cm pueden provocar algunos problemas en cultivos sensibles (de 2-20 mohms/cm) . La mayoría de las sales son cloradas y sulfatos, menos de la mitad de los cationes son sodios, y una pequeña porción se adsorbe por los coloides del sustrato. El principal efecto de la salinidad es hacer más difícil para las plantas absorber los nutrientes del sustrato. En sustratos con muy alta salinidad como lo es la fibra de coco el agua no solo es atraída por las partículas del suelo, sino también es atraída por los iones en solución, así que menos agua se encuentra disponible para las plantas. Para el sustrato de la formulación IA tiene un intervalo de conductividad de 2.7-3 mohms/cm, aunque tiene niveles bajos de salinidad puede presentar problemas en algunos cultivos muy sensibles. Análisis Microbiológico Muestras de SHBD fueron analizadas mediante el uso de medios de cultivo que promueven el crecimiento de hongos patógenos, tales como Papa - Dextrosa - Agar (PDA), Sabouraud, Extracto de Malta - Agar (EMA), y VPN3. Los hongos patógenos típicamente asociados con suelos agrícolas e invernaderos, de géneros tales como Verticilliura, Pythium, Rhizoctonia, Fusarium, Phytophthora , Sclerotium o Colletotrichum, entre otros, estuvieron ausentes de los medios referidos, en temperaturas de incubación de entre 25 y 30 0 C. Los hongos que se encontraron en dichos medios, crecieron en mayor proporción a 45 ° C, y pertenecen a géneros típicamente asociados a compostas de alta temperatura, tales como Penicillium, Phanaerochaete, Rhizopus y Thermomucor, entre otros, ninguno de los cuales es patógeno conocido de plantas, ni causal de patogénesis radicular o sistémica (Rouxel y Francis, 2000; Singleton et al, 1992) . DESCRIPCIÓN GENERAL DEL SUSTRATO HUMECTANTE DE BAJA DENSIDAD (SHBD)
Es un producto generado de un proceso de composteo mejorado a partir de residuos agroindustriales o esquilmos, de manera más preferible de residuos lignocélulosicos, de manera todavia más preferible de residuos lignocélulosicos fibrosos, de manera más preferible de residuos de ingenios azucareros, de maiz, de agave, pajas de gramineas y cascarillas de granos tales como arroz y cebada. Todavia de manera más preferible de bagacillo de caña, bagazo, cachaza o lodo de filtración. Se genera en biopilas semi-estáticas, denominadas como lotes alimentados, con adiciones en diferentes etapas de material lignocelulósico. Su tiempo de tratamiento es muy corto (casi dos meses) comparado con el tiempo de proceso de una composta madura, que típicamente, va de 12 a 24 semanas, y durante el composteo se alcanzan temperaturas de entre 60 y 85°C, que permiten la eliminación de semillas de malezas, asi como de hongos y bacterias patógenas.
Como materia prima inicial SHBD contiene cachaza. Para las adiciones o alimentaciones de fibra lignocelulósica se utiliza mayoritariamente bagacillo, aunque puede utilizarse cualquier residuo con alto contenido de fibras lignocelulósicas . Materiales alternativos pueden ser: bagazo completo de caña (corteza y médula), bagazo de agave, pajas de maiz y de otras gramíneas, y cascarillas de granos tales como arroz y cebada. El proceso de composteo para producir SHBD es un proceso muy flexible que nos permite modificar diferentes pasos del tratamiento para obtener variaciones de SHBD con diferentes características y calidades, dependiendo del uso al que se le va a destinar. El SHBD en sus diferentes formas puede ser utilizado como tierras de cobertura, agentes mejoradores y de volumen del suelo, agentes humectantes, biofertilizantes, y como sustratos integrales para horticultura y producción forestal en invernaderos y viveros
Muestras de SHBD derivadas de la producción de 100 toneladas, se han utilizado como sustrato único para la producción intensiva de jitomate bajo invernadero. Los resultados de germinación y crecimiento inicial de las plantas, indican que el sustrato es superior al peat moss como sustrato único.
De la misma forma, cuando SHBD se aplicó en surco de producción de papa, en campo agrícola, se mejoró el peso y la calidad del producto, presumiblemente por su función humectante y de mejoramiento de suelos.
CITAS BIBLIOGRÁFICAS
Baca M. T., Esteban E., Almendros G. y Sanches-Raya A. J., Changes in the gas phase of compost during solid state fementation of sugarcane Bagase. (1993) Bioresource
Tchnology 44 5-8.
Benito M., Masaguer A., De Antonio R. y Moliner A., Use of pruning waste compost as a component in soilless growing media. (2005) Bioresource Tchnology 96 597-603.
Bertrán E., Sort X., Soliva M. y Trillas I., Composting winwry waste: sludge and grpa stalks. (2004) Bioresource
Tchnology 95 203-208.
Bodin D. y Thorup-Kristensen K., Delayed nutrient application affects mineralization rate during composting of plant residues. (2005) Bioresource Tchnology 96 1093-
1101. Ekinci K., Keener H. M. y Elwell D. L., Composting short paper fiber with broiler litter and additives. (2000) Compost science and Utilization, VoI. 8, No. 2, 160-172. Garcia-Gomez A., Bernal M. P. y Roig A., Growht of ornamental plants in two composts prepared from agroindustrial wastes. (2002) Bioresource Tchnology 83 81- 87.
Haug T. H., The principal handbook of compost engineering. Ed. Lewis Publshers, BocaRaton, Florida, 1993. Hernández A. L., Gaseó M.A., Gaseó M. J. y Guerrero F., Reuse of waste materials as growing media for ornamental plants. (2005) Bioresource Technology 96 125-131.
Kohnke H. y Franzmeier D. P., Soil science simplified. Editorial Waveland, 4°ed, 1995, USA; pp. 1-53. Meunchang S., Panichsakapatana S., Weaver R. W., Co- composting of filter cake and bagasse by-produets from a sugar mili. (2005) Bioresource Technology 96: 437-442 Okalebo J. R. y Gathua W. K., Laboratory methods of soil and plant analysis: A working manual. Editorial KARY SSSEA TSBF UNESCO-ROSTA, 1993, Nairobi, Kenya; pp.1-87.
Paredes C, Cegarra J., Bernal M. P. y Roig A., Influence of olive mili wastewater in composting and impact of the compost on a Swiss chard crop and soil properties. (2005) Enviroment International 31 305-312 Pérez-Murcia D. M., Moral R., Caselles-Moreno J., Perez-
Espinosa A. y Paredes C, Use of composted swage sludge in growht media for brócoli . (2006) Bioresource Tchnology 97
123-130.
Plaster J. E., Soil science and management. Editorial Delmar Learning, 4°ed, 2003, USA; pp. 246-257.
Prince W., Sivakumar S., Ravi V. y Subburam V., The effectes of coirpith compost on the growth and quality of leaves of the mulberry plant Morυs alba L. (2000)
Bioresource Tchnology 72 95-97.
Ram D., Ram M. y Singh R., Optimization of water and nitrogen application to menthol mint {Mentha arvensis L.) through sugarcane trash mulch in a sandy loam of semi-arid subtropical climate. (2006) Bioresource Tchnology 97 886-
893.
Rechcigl E. J., Soil amendments and environmental quality.
Editorial Lewis Publisher, 1995, USA; pp. 249-327. Rechcigl E. J., Soil amendments impacts on biotic systems.
Editorial Lewis Publisher, 1995, USA; pp. 2-30.
Rosas-Morales M., Mejoramiento del composteo de los derivados de la caña de azúcar: cachaza y bagacillo. Tesis de Maestria. Programa de Ciencias Ambientales. Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla.
México, 2003, pp. 1-76.
Rouxel I. y Francis I. I., Detection and Isolation of Soil
Fungi, 2000, Science Publishers Inc. USA.
Simone L. J. y Taylor R. B., Effects of pulp mili solids and three composts on early growth of tomatoes. (2003)
Bioresource Tchnology 89 297-305.
Sánchez R., Palma J., Obrador J. y López U., Efecto de los rastrojos sobre las propiedades físicas y químicas de un suelo vertisol y rendimiento de caña de azúcar [Saccharum officinarum L.) en Tabasco, México. (JuI 2003) Interciencia
VoI.28, No.7, 404-407
Singleton L. A., Mihail J. D., Rush CM. , Methods for research on soilborne phytopathogenic fungi (1992) American
Phytopathological Society, USA. Soumaré M., Tack F. M. G. y Verloo M. G., Effects of a municipal solid waste compost and mineral fertilization on plant growth in two tropical agricultural soils of MaIi.
(2003) Bioresource Tchnology 86 15-20. Stabnikova 0., Goh W. K., Ding H., Tay J. y Wang J., The use of swage sludge and horticultural waste to develop artificial soil of plant cultivation in Singapore. (2005)
Bioresource Technology 96 1073-1080. Stoffella P. y Graetz D., Utilization of sugarcane compost as a soil amendment in a tomato production system. (2000)
Compost science and Utilization, VoI. 8, No. 3, 210-214.
Sylivia M. D., Hartel G. P., Furhmann J. J., y Zuberer A. D.,
Principies and applications of soil microbiology . Editorial Pearson Education Inc., 2°ed, 2005, USA; pp. 587-605
Valdés M. y Medina J. N., Ecología Microbiana del suelo
Compendio práctico. Editorial IPN, Ia ed. D. F., México,
2005.
Wallace A. y Richard E. T., Handbook of Soil Conditioners : substances that enhance the physical properties of soil.
Editorial Marcel Dekker, 1998, New York, USA; pp. 43-96.
Warman P. R. y Termeer W. C, Cornposting and evaluation of racetrack manure, grass clippings and sewage sludge. (1996)
Bioresource Tchnology 55 95-101. Wei Y. S.; Fan Y. B., Wang M. J., Wang J. S. Composting and compost application in China. 2000. Resources, Conservation and Recycling 30, 277-300.
Wilson S. y Stoffella P., Evaluation of compost as an amendment to commercial mixes used for container-grown golden shrimp plant production. (Ene-Mar 2001)
HortTechnology 11(1), 31-34
Patente No. 20050284202, de Rampton Lea et al.
Patente No. 20050274074 de Stamp John Wesley.
Patente No. WO1994022790 de Bandurski, William E. Patente No. WO2003002638 de ONG, Tet, Siong.
Infozafra 2005/2006 www.caneros.org.mx

Claims

REIVINDICACIONES
1. Un proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad que comprende los pasos de proporcionar los materiales de inicio que comprenden materiales lignocelulósicos fibrosos; formar las biopilas o canteros; mezclar los materiales lignocelulósicos de inicio, homogenizando uniformemente estos materiales de inicio; dejar reposar los materiales de inicio; adicionar lignocelulosas frescas; mezclar y dejar reposar nuevamente; estabilizar el material composteado mediante secado; caracterizándose el proceso porque los pasos de adicionar lignocelusosas frescas, mezclar y dejar reposar los materiales de inicio se repiten en forma periódica por al menos 5 veces.
2. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque los materiales de inicio se seleccionan a partir de residuos de ingenios azucareros, residuos de agave, residuos de maíz, pajas de gramíneas y cascarillas de granos de trigo, maíz, arroz y cebada.
3. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 2, caracterizado porque los materiales de inicio se seleccionan a partir de bagacillo de caña, bagazo, cachaza, o lodo de filtración.
4. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque el paso de proporcionar los materiales de inicio comprenden una proporción de cachaza o lodos de filtración de caña y bagazos o bagacillos de caña en proporción de entre 10:1 y 83:1.
5. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque el paso de proporcionar los materiales de inicio comprenden una mezcla de cachaza o lodos de filtración y bagazo de caña en proporción de entre 30:1 y 43:1.
6. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque el paso de proporcionar los materiales de inicio comprenden una proporción de cachaza o lodos de filtración:bagazo de caña que es de 43:1.
7. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque la formación de biopilas se realiza sobre una cama absorbente de bagazos o pajas de aproximadamente 50 a 60 cm de espesor.
8. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque el paso de mezclado se realiza con una composteadora mecánica.
9. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque el paso de dejar reposar el material de inicio comprende un tiempo que es de una semana .
10. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque la adición de lignocelulosas frescas es, en cada dosis, de entre 0.75 y 5% en peso, con respecto al peso de cachaza en la mezcla inicial.
11. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque en el proceso, entre la mezcla inicial y las adiciones subsecuentes, la lignocelulosa total adicionada es de un peso total equivalente a, entre 6 y 35%, del peso inicial de cachaza fresca.
12. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque los reposos adicionales son también de una semana.
13. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque el paso de secado para la estabilización del material composteado se realiza a temperatura ambiente hasta que el material composteado tenga una humedad de entre 20 y 35%.
14. El proceso de composteo por biopilas semi-estáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en la reivindicación 1, caracterizado porque durante la primer repetición de los pasos de adicionar las lignocelulosas frescas, mezclar y dejar reposar los materiales de inicio se alcanzan temperaturas entre 5O0C y 600C y durante las repeticiones posteriores de los pasos de adicionar las lignocelulosas frescas, mezclar y dejar reposar los materiales de inicio se alcanzan temperaturas entre 65 0C y 85 0C.
15. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 al4, caracterizado porque se llevan a cabo a cielo abierto.
16. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 al4, caracterizado porque se llevan a cabo en un tiempo de 7 a 8 semanas.
17. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 a 16, que tiene un intervalo de humedad total de 40 al 60% y de sólidos totales de 60 a 40%, y que bajo secado al sol se equilibra en < 30%.
18. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 a 16, que tiene un intervalo de pH entre 5.0 y 8.0.
19. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 a 16, que tiene un intervalo de entre 0.21 y 0.48 g/ml.
20. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 a 16, que tiene un intervalo de 80 a 130% de capacidad de retención de agua con respecto a su peso.
21. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 a 16, que tiene un intervalo de granulometria entre 21 y 30% de partículas mayores a 1.98 mm, entre 30 y 45% de partículas de tamaño de entre 0.5 y 1.98 mm, y entre 10 y 30% de partículas de entre 0.005 y 0.5 mm de tamaño.
22. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 a 16, que por su distribución de tamaño de partícula tienen muy baja densidad, alta retención de humedad, y gran dsiponibilidad de agua para la planta.
23. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 a 16, que tiene una porosidad de entre 50 y 60%.
24. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 al 16, y que está libre, debido al tratamiento en alta temperatura de hongos patógenos de plantas y de semillas o plántulas de malezas.
25. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 a 16, como único sustrato o como sustrato principal para la producción de plantas en sistemas de agricultura intensiva bajo invernadero y vivero.
26. El proceso de composteo por biopilas semiestáticas para obtener un sustrato humectante de baja densidad de conformidad con lo reclamado en las reivindicaciones 1 a 16, para su aplicación como humectante y mejorador de suelos en agricultura.
PCT/MX2008/000056 2007-04-26 2008-04-23 Proceso de composteo semi -estático mejorado para la producción de un sustrato humectante de baja densidad, para su uso en viveros e invernaderos WO2008133488A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/597,413 US20100120112A1 (en) 2007-04-26 2008-04-23 Process of Improved Semi-Static Composting for the Production of a Humectant Substrate of Low Density of Use Thereof in Nurseries and Greenhouses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2007005076A MX2007005076A (es) 2007-04-26 2007-04-26 Proceso de composteo semi-estatico mejorado para la produccion de un sustrato humectante de baja densidad, para su uso en viveros e invernaderos.
MXMX/A/2007/005076 2007-04-26

Publications (2)

Publication Number Publication Date
WO2008133488A1 WO2008133488A1 (es) 2008-11-06
WO2008133488A9 true WO2008133488A9 (es) 2009-12-10

Family

ID=39925880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000056 WO2008133488A1 (es) 2007-04-26 2008-04-23 Proceso de composteo semi -estático mejorado para la producción de un sustrato humectante de baja densidad, para su uso en viveros e invernaderos

Country Status (3)

Country Link
US (1) US20100120112A1 (es)
MX (1) MX2007005076A (es)
WO (1) WO2008133488A1 (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912632B2 (en) * 2014-10-07 2024-02-27 Pittmoss, Llc Materials suitable as substitutes for peat mosses and processes and apparatus therefor
CN104342123B (zh) * 2014-10-21 2016-02-24 淄博职业学院 能反映环境湿度的荧光薄膜材料及其制备方法
US9985760B2 (en) 2015-03-31 2018-05-29 Huawei Technologies Co., Ltd. System and method for an adaptive frame structure with filtered OFDM
CN108218507B (zh) * 2016-12-22 2020-02-14 贵州筑信达创科技有限公司 一种甘蔗的种植方法
CN107827489A (zh) * 2017-12-12 2018-03-23 北京易农农业科技有限公司 一种酵素肥及其制备方法
CN110240521A (zh) * 2019-07-11 2019-09-17 广西博世科环保科技股份有限公司 一种用甘蔗滤泥和市政污泥生产的有机肥及其制备方法
CN112175406B (zh) * 2020-09-30 2022-08-12 中国科学院天津工业生物技术研究所 可降解复合材料在调湿中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2523953A1 (fr) * 1982-03-24 1983-09-30 Agri Als Sarl Procede de compostage aerobie accelere et dirige de matieres vegetales et/ou de fumiers, en particulier de verts de sucrerie, et dispositif pour la mise en oeuvre de ce procede
AU2003252456A1 (en) * 2003-07-24 2005-02-14 Francisco Javier Arbelaez Carrero Method for producing organic fertilisers, and resulting material

Also Published As

Publication number Publication date
MX2007005076A (es) 2009-03-02
WO2008133488A1 (es) 2008-11-06
US20100120112A1 (en) 2010-05-13

Similar Documents

Publication Publication Date Title
CN103214315B (zh) 一种含采石场渣土、畜粪、秸秆和木炭粉的绿化基质及其制备方法
KR100779756B1 (ko) 해조류 부산물을 이용한 농업용 육묘상토 제조방법
KR101383445B1 (ko) 임해매립지 토양개량제 및 그 제조방법
Sarwar Use of compost for crop production in Pakistan
Abid et al. Date palm wastes co-composted product: An efficient substrate for tomato (Solanum lycopercicum L.) seedling production
CN104119168A (zh) 凹凸棒压缩营养土的生产方法
WO2008133488A9 (es) Proceso de composteo semi -estático mejorado para la producción de un sustrato humectante de baja densidad, para su uso en viveros e invernaderos
EA029342B1 (ru) Удобрение, его применение и способ его получения
US9919976B1 (en) Soil conditioners and method of making them
CN109618870B (zh) 一种花卉或树木移栽用培养土及其制备方法
CN107721658A (zh) 一种肥料增效调节剂及其生产方法
JP5796843B2 (ja) 剪定枝葉を発酵処理して堆肥化する堆肥の製造方法
US8083829B2 (en) Organic water retention mix for use on soil
KR100401247B1 (ko) 무발효 퇴비, 유기질 비료 및 그의 제조방법
Gusnidar et al. Role of compost derived from rice straw and tithonia in improving chemical fertility of Regosol on onion cultivation
US9382166B1 (en) Plant nutrient composition
Sari et al. Application of Urban Waste Organic Fertilizer on the Growth of Mustard Plants (Brassica Juncea L.)
CN105254429A (zh) 一种枧木专用肥及其制备方法
CN108901751A (zh) 一种适合蔬菜立体种植的固体基质及种植方法
CN108675899A (zh) 基肥复合肥及其应用
KR100726345B1 (ko) 석영섬록영암 화산석을 이용한 친환경 부산물 비료퇴비
RU2301825C1 (ru) Искусственная почва
DE202019103796U1 (de) Organisch natives Substrat
KR100924071B1 (ko) 댐부유물 및 하수슬러지를 이용한 부숙질비료 조성물과 그 제조방법
JP3302342B2 (ja) シクラメン栽培用培地

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08753718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12597413

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08753718

Country of ref document: EP

Kind code of ref document: A1