WO2008133333A1 - Carbonaceous sheet and fuel cell separator using the same - Google Patents

Carbonaceous sheet and fuel cell separator using the same Download PDF

Info

Publication number
WO2008133333A1
WO2008133333A1 PCT/JP2008/058158 JP2008058158W WO2008133333A1 WO 2008133333 A1 WO2008133333 A1 WO 2008133333A1 JP 2008058158 W JP2008058158 W JP 2008058158W WO 2008133333 A1 WO2008133333 A1 WO 2008133333A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
nonwoven fabric
sheet
graphite powder
carbonaceous
Prior art date
Application number
PCT/JP2008/058158
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Araki
Joichi Takenaka
Original Assignee
Jfe Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Chemical Corporation filed Critical Jfe Chemical Corporation
Publication of WO2008133333A1 publication Critical patent/WO2008133333A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carbonaceous material that is thin and excellent in surface smoothness and electrical conductivity, and also relates to a fuel cell separator using the same.
  • the polymer electrolyte fuel cell has a structure (stack structure) in which about several tens to several hundreds of unit cells are stacked in series.
  • Each unit cell is mainly composed of a solid polymer membrane, a fuel electrode side catalyst, and an air electrode side catalyst opto separator.
  • the separator is formed with a groove for introducing fuel gas or air on at least one side, and in addition to functioning as a gas flow path, it also functions as a blocking function to prevent mixing of fuel gas and air. .
  • hydrogen or methanol is used as the fuel gas.
  • This separator is made of metal or carbon material, but all of them have gas barrier properties against air and fuel gas, conductivity, high mechanical strength, and ions that affect the degradation of high molecular films. Many performances are required such as low elution of ionic impurities.
  • the separator is made of a carbon material containing fibers, if there is a defect in surface smoothness such as blistering or fiber exposure, the contact resistance increases and the conductivity decreases. Therefore, excellent surface smoothness such as no swelling or fiber exposure is also required.
  • the separator to reduce the size of the fuel cell, it is necessary to make the separator thinner. Since the separator requires a flow path for fuel gas and air, it is provided with a groove. In order to reduce the thickness of the separator while providing this groove, it is desirable that the cross section be corrugated. For this purpose, a carbon material that is thin and has good workability is desired.
  • a carbon material for such a separator and a method for producing a separator using the carbon material have been studied.
  • Japanese Patent Application Laid-Open No. 62-166061 proposes forming a separator using a carbon material made of a mixture of black bell powder, a thermosetting resin, and phenol fibers. Yes.
  • This carbon material is excellent in corrosion resistance and has sufficient strength, electrical conductivity, and processability as long as it can be used as a home-use fuel cell separator (thickness: about 2 mm).
  • Thickness about 2 mm
  • a thin shape thickness: about 0.2 to 0.3 thigh
  • it has the following problems in terms of conductive opacification.
  • this carbon material is usually formed into a plate shape by injection molding, compression molding or the like to form a separator.
  • the separator is molded by these molding methods, the fiber inhibits the flow of the graphite powder and the thermosetting resin, so that a short shot (hereinafter referred to as “shot”) tends to occur at the edge portion. Therefore, for example, after the carbon material is formed into a sheet shape, it is placed on a mold and subjected to treatments such as heating and compression.
  • the thickness is reduced, the amount of black bells is reduced, so that fibers are easily exposed on the surface, and the smoothness of the surface is impaired.
  • an object of the present invention is to provide a thin carbonaceous sheet excellent in surface smoothness and conductivity and a thin fuel cell separator using the same, and using the same. To do. Disclosure of the invention
  • the present invention relates to a carbon fiber nonwoven fabric having a weight per unit area of 1 to 30 g / m 2 , and a resin containing 3 to 20% by mass of resin on both surfaces of the carbon fiber nonwoven fabric.
  • a carbonaceous sheet having a coated graphite powder and having a weight per unit area of 1000 g / m 2 or less.
  • the carbon fiber nonwoven fabric is a nonwoven fabric of at least one fiber selected from the group consisting of PAN-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, phenol-based carbon fibers, and graphite fibers. Preferably there is.
  • the average particle size of the graphite powder constituting the resin-coated graphite powder is preferably 10 to 100 m.
  • the resin is at least one selected from the group consisting of a thermoplastic resin, a resole phenol resin, a nopolac phenol resin, an epoxy resin, and an epoxy phenol resin.
  • a seed resin is preferred.
  • the resin-coated graphite powder preferably has an average particle size of 15 to L 10 m.
  • any of the above carbonaceous sheets preferably has a density of 1.7 g / cm 3 or more.
  • the present invention is also a fuel cell separator using a carbonaceous sheet having a density of 1.7 g / cm 3 or more. .
  • the present invention is also a fuel cell separator obtained by compression-molding any one of the above carbonaceous sheets.
  • the present invention is a fuel cell separator molding sheet obtained by adhering resin-coated graphite powder on both surfaces of a carbon-based nonwoven fabric substrate,
  • the resin-coated graphite powder contains 3 to 20% by mass of resin, the carbon-based nonwoven fabric base material has a basis weight of 1 to 30 g / m 2 , and the molding sheet has a basis weight of 10 00 A fuel cell separator molding sheet characterized by having a gZm of 2 or less.
  • FIG. 1 is a cross-sectional view of the molded product of the example. BEST MODE FOR CARRYING OUT THE INVENTION
  • the carbonaceous sheet (also referred to as a molding sheet) of the present invention has a carbon fiber non-woven fabric (also referred to as a carbon-based non-woven fabric) as a base material, and a graphite powder having a surface coated with a resin on both sides of the base material. It has resin-coated graphite powder, for example, by adhesion.
  • the fuel cell separator of the present invention is obtained by, for example, compression molding the carbonaceous sheet.
  • the carbonaceous sheet of the present invention uses a carbon fiber nonwoven fabric composed of discontinuous fibers as the base material.
  • a non-woven fabric web in which carbon fibers are dispersed together with a resin by filtering (papermaking) and heating and drying can be exemplified.
  • a non-woven fabric in which a small amount of resin or inorganic binder is sprayed on carbon fibers to bond the carbon fibers together is also equivalent.
  • the carbonaceous sheet of the present invention uses a nonwoven fabric as its base material, when the carbonaceous sheet is molded into a separator, the whole can be stretched uniformly, and the corrugated plate shape can be accommodated. it can. Furthermore, since the nonwoven fabric has a structure in which short fibers are laminated, it can be thinned.
  • the carbon fiber said by this invention is a high-order concept word also including graphite fiber. Therefore, as the fiber forming the carbon fiber nonwoven fabric, at least one selected from PAN-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, phenol-based carbon fiber and graphite fiber is used. It can also be used. In particular, PAN-based carbon fibers are most preferable because they are readily available and can withstand the shearing force when being molded into a separator. Similarly, the carbonaceous material referred to in the present invention preferably includes not only carbon but also black bells. The average fiber length of the fibers used in the carbon fiber nonwoven fabric is not particularly limited, but is preferably 3 to 50 mm, more preferably 5 to 30 mm.
  • the average fiber diameter of the fibers used in the carbon fiber nonwoven fabric is not particularly limited, but is preferably smaller than the particle diameter of the graphite powder from the viewpoint of securing the strength and the contact area between the graphite powder, 50 / m or less, more preferably 3 ⁇ or less, and further preferably 3 to 30 ⁇ .
  • a carbon fiber nonwoven fabric having a weight per unit area (also referred to as basis weight) of 1 to 30 g / m 2 is used.
  • 1 to 20 g / m 2 is used. This is because if the weight per unit area of the carbon fiber nonwoven fabric is less than 1 g / m 2 , the effect of improving the strength cannot be obtained, and if it exceeds 30 g / m 2 , the black bell powder is used in the separator molding process. This is because it may not enter the carbon fiber nonwoven fabric and may cause delamination of the separator.
  • nonwoven fabric production methods such as the melt-pro method, the water jet method, the dry papermaking method and the wet papermaking method are used.
  • a wet papermaking method as disclosed in Japanese Patent Application Laid-Open No. 4-232047 is preferable in that a thin and uniform nonwoven fabric can be produced.
  • graphite powder When graphite powder is present on both sides of the carbon fiber nonwoven fabric, it has the effect of reducing the volume resistivity of the resulting carbonaceous sheet and improving the conductivity.
  • the graphite powder having a surface coated with a resin is used.
  • the resin coated on the surface of the graphite powder works effectively to improve the uniformity of the composition of the separator obtained using the carbonaceous sheet, heat resistance, mechanical strength, and the like.
  • the carbon fiber nonwoven fabric is not impregnated with resin and graphite powder as in the prior art, but the black bell powder coated with resin is applied to both surfaces of the carbon fiber nonwoven fabric. It exists by adhesion.
  • the carbonaceous sheet is placed in a heated mold and compression-molded to produce a fuel cell separator, the following effects are produced. That is, for resin-coated graphite powder, graphite powder And the resin flow together, not only to the end of the mold, but also to the corners such as the edge of the separator even when the thickness changes in the separator. Thus, no shots are generated in the separator, surface smoothness is improved, and uniform conductivity is ensured.
  • the average particle size of the resin-coated graphite powder is preferably 15 to: L 0 0 zm.
  • the amount of the resin coated on the surface of the graphite powder is an amount that occupies 3 to 20% by mass of the total amount of the resin and the graphite powder. This is because, if the coating amount of the resin on the black bell powder is less than 3% by mass with respect to the total amount of the resin and the graphite powder, the separator strength is lowered, whereas the mass is 20%. This is because if it exceeds 0 , the volume resistivity increases and the power generation efficiency deteriorates.
  • thermosetting resin As the resin used for the coating, at least one of a thermoplastic resin and a thermosetting resin can be used. From the viewpoint of heat resistance, durability, dimensional stability, etc., it is preferable to use a thermosetting resin.
  • thermosetting resin examples include a resol type phenol resin, a novolac type phenol resin, an epoxy resin, and an epoxy monophenol resin. At least one of these resins or a mixed resin can be used. Among these, resol-type phenol resin, epoxy resin, epoxy resin and novolac-type phenol resin are preferred because they have less ion elution, and epoxy resin does not generate gas during curing. It is more preferable.
  • the thermosetting resin coated on the surface of the graphite powder has a curing rate of 40% or less, preferably 20% or less, more preferably 10% or less, or an uncured state. Yes. This is because when the curing rate is 40% or less, graphite powders are more likely to adhere to each other in the molding process.
  • the resin-coated graphite powder may contain a coupling agent, a release agent, an inorganic compound that improves fluidity, and various other conventionally disclosed additives.
  • a coupling agent is used for surface modification of graphite powder, and has an effect of improving dispersibility and resin strength.
  • a mold release agent is a mold release property when a separator is molded. There is an effect of improving.
  • the graphite powder constituting the resin-coated graphite powder artificial graphite, natural graphite, and a mixture thereof can be used.
  • the artificial graphite is preferably made from petroleum pitch, coal pitch, or the like, carbonized and calcined, graphitized, and powdered.
  • a flake shape, a needle shape, a spherical shape, or the like can be used as the shape of the graphite powder. From the viewpoint of moldability, it is preferable to use a spherical shape or a flake shape. ⁇
  • the average particle size of the graphite powder is preferably 10 to 100 ⁇ , more preferably 10 to 85 ⁇ , and still more preferably 15 to 60 ⁇ m. This is because when the black & black average particle size is 10 jm or more, the viscosity at the time of molding is low, so the moldability is excellent. On the other hand, when the average particle size is 100 ⁇ m or less, it becomes easier to reduce the thickness. In this effort, the average particle size used was a particle size of 50 wt% when the particle size distribution curve was measured with a particle measuring device (manufactured by Microtrak).
  • the method for coating the graphite powder with the resin is not particularly limited.
  • a known method such as a mechanochemical method or a thermosetting resin dissolved in an organic solvent, mixed with graphite powder, and dried can be used.
  • a method for uniformly coating a small amount of resin it is preferable to use a method in which the resin is dissolved in a solvent, mixed with graphite powder, and dried.
  • drying can be carried out by using a conventional method such as agitation while stirring in a fluidized tank, or vacuum drying, but a method including a vacuum drying step is preferably used from the viewpoint of preventing blistering during molding. .
  • a method may be used in which the mixture is uniformly mixed and hardened, then pulverized and adjusted to a predetermined particle size.
  • a carbonaceous sheet having the above-described resin-coated graphite powder on both surfaces of a carbon fiber nonwoven fabric is prepared by a method such as adhesion. This prevents the fibers that make up the carbon fiber nonwoven fabric from being exposed, provides excellent surface smoothness (no fiber bulging or swelling), and volume resistance. A separator with a low drag rate can be obtained.
  • the resin-coated graphite powder is attached to only one side of the carbon fiber nonwoven fabric, sufficient mechanical strength cannot be obtained, so that it is difficult to form a separator, and the resin-coated graphite powder is attached. This is not preferable because the carbon-based fibers are exposed on the surface of the separator on the side that is not.
  • the amount of the resin-coated black lead powder adhering to the carbon fiber nonwoven fabric may be the same or different on the front and back surfaces, and may be appropriately selected according to the separator characteristics. Further, in the present invention, the weight per unit area of the obtained carbonaceous sheet is 100 g / m 2 or less. More preferably, it is 5 0 to 100 0 g / m 2 . The reason is that if the weight per unit area of the carbonaceous sheet is too large, a large amount of the resin-coated graphite powder is adhered to the carbon fiber nonwoven fabric, and a thin separator cannot be formed.
  • the weight per unit area is 50 g / m 2 or more because the mechanical strength is high and the manufacture of the carbonaceous sheet facilitates the manufacture of the separator.
  • the carbonaceous sheet of the present invention preferably has a density of 1.7 g / cm 3 or more. This is because when the density is high, conductivity and gas barrier uniformity are excellent when formed into a fuel cell separator.
  • resin-coated graphite powder is deposited in a mold or the like.
  • a carbon fiber nonwoven fabric is placed thereon, and then a resin-coated graphite powder is further deposited on the carbon fiber nonwoven fabric.
  • the laminate is heated and pressurized to a temperature at which the thermosetting resin softens and melts and does not cure, or higher than the melting point of the thermoplastic resin, and then cooled to produce a carbonaceous sheet. it can.
  • a conventionally known method can be used.
  • a carbonaceous sheet prepared as described above is placed in a heated mold and compression-molded, or a corrugated plate heated to a temperature range where the thermosetting resin does not sufficiently cure from normal temperature
  • a separator molding sheet carbonaceous sheet
  • heat treatment is performed under the condition that the thermosetting resin is cured.
  • the resin-coated graphite powder particles penetrate the carbon fiber nonwoven fabric of the formed separator.
  • Resol-type phenol resin HKG 100 g was dissolved in 200 g of aseton, mixed with 900 g of natural graphite (spherical, average particle size 60 // m), and then in a vacuum dryer. And dried under reduced pressure at 30 ° C for 12 hours.
  • the graphite powder coated with this phenol resin was placed in a pulverizer and pulverized to adjust the average particle size to 65 ⁇ .
  • a PAN-based carbon fiber manufactured by Toho Tenax, fiber diameter: 7 ⁇ , length: 13 mm
  • force ⁇ a carbon fiber nonwoven fabric having a weight per unit area of 5 gZm 2 was prepared by a papermaking method.
  • Graphite powder coated with the above phenol resin (resin content 10%) is deposited in a 100 mm square flat plate mold at 200 g / m 2 , the carbon fiber nonwoven fabric is placed thereon, and the phenol resin is further deposited thereon. There was deposited black 1 powder coated on 200 gZm 2 uniform.
  • a carbon fiber nonwoven fabric in which this graphite powder was placed on both sides was pressurized at 80 ° C. and then cooled to produce a carbonaceous sheet (weight per unit area: 405 g / m 2 ). Place this carbon sheet on a mold set at 200 ° C, close the mold while applying pressure at 20 OMPa, perform thermosetting molding for 10 minutes, and mold as shown in the cross-sectional view of Fig.
  • This molded product is a model of the uneven shape of the fuel cell separator, a: 3 mm in FIG. 1, b: 1 mm. Further, the thickness of the flat part c of the obtained molded product was 220 ⁇ , and the density was 1.84 g / cm 3 .
  • the resulting molded product was observed for conductivity (volume resistivity), surface smoothness (exposure of fiber, -swelling) and shots, and the results are shown in Table 1 together with the thickness c of the molded product.
  • Nippon Kayaku Co., Ltd. trisphenol type epoxy resin 33 g, curing agent phenol novolak resin 16.5 g, curing catalyst 2-phenylimidazole (2 PZ) 0.5 g dissolved in 200 g of aceton, Natural graphite (spherical, average particle size: 60 ⁇ m) 950 g And then dried in a vacuum dryer for 12 hours at a temperature of 30 ° C. under reduced pressure. This epoxy resin or coated graphite powder was put in a powder container and ground to adjust the average particle size to 2 2 ⁇ .
  • a carbon fiber nonwoven fabric with a weight per unit area of 10 g / m 2 was prepared from PAN-based carbon fiber (Toho Tenax diameter 5 / m, length 6 mm) by papermaking.
  • Black bell powder coated with the above epoxy resin (resin content 5%) was deposited in a 100 mm square flat plate mold at a rate of 200 g / m 2 , and a carbon fiber nonwoven fabric was placed on top of it. After pressurizing at ° C, it was cooled.
  • 20 g / m 2 of graphite powder coated with the epoxy resin is further uniformly deposited on the carbon fiber nonwoven fabric in the mold, repressurized at 80 ° C., and then cooled.
  • a carbonaceous sheet (weight per unit area: 4 10 g / m 2 ) was produced.
  • This carbonaceous sheet was placed on a 200 ° C. mold in the same manner as in Example 1, and subjected to thermosetting molding for 10 minutes to obtain a molded product.
  • the resulting molded product was observed for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and shot generation, and the results are shown in Table 1 together with the thickness c of the molded product.
  • the density of part c was 1.95 5 g / cm 3 .
  • a carbon fiber nonwoven fabric having a weight per unit area of 20 g / m 2 from a PAN-based carbon fiber (Toho Tenax diameter: 7 m, length: 13 mm) force was prepared by a papermaking method.
  • Graphite powder coated with the above epoxy resin (resin content 15%) is deposited in a 100 mm square flat plate mold at 200 gZm 2 and a carbon fiber non-woven fabric is placed on it at 80 ° C. Caro. Cooled after pressing.
  • graphite powder 20 g / m 2 coated with the above epoxy resin is further uniformly deposited on the carbon fiber nonwoven fabric in the mold, re-pressurized at 80 ° C., cooled, A carbonaceous sheet (weight per unit area: 4 20 g / m 2 ) was prepared.
  • This carbonaceous sheet was placed on a 200 ° C. mold in the same manner as in Example 1 and thermosetting molded for 10 minutes to obtain a molded product.
  • the resulting molded product was observed for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and shot generation, and the results are shown in Table 1 together with the thickness c of the molded product.
  • the density of part c was 2.00 g / cm 3 .
  • a satin weave fabric made of carbon fiber having a diameter of 7 ⁇ and having a weight per unit area of 30 g / m 2 was used as a base material.
  • the graphite powder coated with the epoxy resin used in Example 2 above (resin content 5%) was deposited in a 10 Omm square flat plate mold with 200 gZm 2 , and a carbon fiber woven fabric was placed on it. On top of this, graphite powder coated with phenol resin was uniformly deposited at 200 gZm 2 .
  • a carbon fiber woven fabric in which this black lead powder was placed on both sides was pressurized at 80 ° C and then cooled to produce a carbonaceous sheet (weight per unit area: 430 gZm 2 ).
  • This carbonaceous sheet was placed on a 200 ° C. mold in the same manner as in Example 1, and subjected to thermosetting molding for 10 minutes to obtain a molded product.
  • the resulting molded product was observed for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and shot generation, and the results are shown in Table 1 together with the thickness c of the molded product.
  • the density of part c was 1.43 g / cm 3 .
  • a carbon fiber nonwoven fabric with a weight per unit area of 20 gZm 2 was prepared from PAN-based carbon fiber (Toho Tenax diameter 7 / iii, length 13 mm) by the papermaking method. After applying the slurry to the obtained carbon fiber nonwoven fabric, it was dried under reduced pressure at a temperature of 30 ° C. for 12 hours in a vacuum dryer (resin content 10%). The weight per unit area of the carbonaceous sheet after drying was 340 g / m 2 .
  • This carbonaceous sheet was molded in the same manner as in Example 1, and the resulting molded product was observed for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and generation of shots.
  • the results are shown in Table 1 together with the thickness c of the molded product.
  • the density of part c is 1. 79 g / cm 3 It was.
  • a carbonaceous sheet and a molded product were produced in the same manner as in Example 1 except that a carbon fiber nonwoven fabric having a weight per unit area of 40 g / m 2 was used as the substrate, and the conductivity (volume resistivity), surface The smoothness (exposure of fibers, swelling) and the occurrence of shots were evaluated. The results are shown in Table 1 together with the thickness c of the molded product. The density of part c was 1.222 g / cm 3 .
  • a carbon fiber nonwoven fabric substrate with a weight per unit area of 10 gZm 2 was prepared from PAN-based carbon fiber (Toho Tenax, diameter 7 m, length 13 mm) by the papermaking method.
  • a carbon fiber nonwoven fabric substrate having a weight per unit area of 10 g / m 2 was prepared from PAN-based carbon fibers (made by Toho Tenax, diameter 7 ⁇ , length 13 mm) by the papermaking method. Except for using these raw materials, carbonaceous sheets and molded products were produced in the same manner as in Example 1 and evaluated for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and occurrence of shots. did. The results are shown in Table 1 together with the thickness c of the molded product. The density of part c was 1.78 g / cm 3 .
  • the graphite powder and carbon fiber nonwoven fabric coated with phenol resin used in Example 1 were used. Black bell powder phenolic resin is coated, 10 Omm angle within the flat die is 750 g / m 2 is deposited, thereon Place the 10 g / m 2 of carbon fiber nonwoven fabric, phenol resin thereon to further The graphite powder coated with was uniformly deposited at 750 g / m 2 .
  • a carbon fiber nonwoven fabric in which this resin-coated black bell powder was placed on both sides was pressed at 80 ° C. and then cooled to prepare a carbonaceous sheet (weight per unit area: 1510 g / m 2 ). This carbonaceous sheet was molded in the same manner as in Example 1 to obtain a molded product.
  • the thickness of the flat part c was 750 / m.
  • the obtained molded product was evaluated for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and occurrence of shots. The results are shown in Table 1 together with the thickness c of the molded product.
  • the density of part c was 2.01 g / cm 3 .
  • volume resistivity, surface smoothness (expansion and fiber exposure), and occurrence of shots were measured as follows.
  • the conductivity of the molded product was evaluated by measuring the volume resistivity by two methods. One was measured with respect to the surface direction of the molded product by using a Loresta HP-550 manufactured by Mitsubishi Chemical Co., Ltd., according to a method (four-probe method) based on JIS K 7 1 94.
  • the volume resistivity in the thickness direction of the molded product was measured and evaluated by the following method. In other words, a 5 cm square is cut out from the flat plate part (left side of part a) of the molded product, sandwiched between gold-plated Yin and Yang electrodes, and voltage is applied while applying pressure at 40 MPa (40,8 kgf Z cm 2 ) The volume resistivity was measured by applying.
  • the surface of the molded product was observed visually, and the presence or absence of S-curvature was observed.
  • the surface was observed with a microscope, and the presence or absence of carbon fiber was observed.
  • the parts a and b of the molded product were cut out, embedded in an epoxy resin and polished, and then observed with an optical microscope to observe the presence or absence of corners on the molded product.
  • a thin molded product fuel cell separator
  • a thickness c of around 200 ⁇ should be easily manufactured. I was able to.
  • the film was excellent in conductivity and surface smoothness, and there was no occurrence of shots. Further, the obtained molded product did not bend even if it was bent lightly, and was sufficient in strength.
  • Comparative Example 1 since the woven fabric was used for the base material, the carbon fiber of the base material did not stretch, shots occurred at the corners of part a, and the thickness c was as thick as 300 ⁇ m. Low conductivity. Further, in Comparative Example 2, blistering, which was probably caused by the organic solvent impregnated in the carbon fiber nonwoven fabric, and exposure of the fibers and shots at part b were confirmed.
  • Comparative Example 3 the weight per unit area of the carbon fiber nonwoven fabric and the carbonaceous sheet is large. Therefore, even when the carbonaceous sheet is pressed, the thickness c is as high as 3600 m. In addition, graphite could not enter the inside of the carbon fiber nonwoven fabric, and voids were generated, and the molded product was peeled off from the upper and lower surfaces.
  • Comparative Example 4 since the amount of the phenol resin for coating was small, when the carbonaceous sheet was placed in the mold, the graphite dropped out, and the exposure of carbon fibers was observed on the surface of the molded product. In addition, the strength of the molded product was low, and cracking occurred during handling.
  • a carbonaceous sheet that can be formed into a thin fuel cell separator that is excellent in conductivity and surface smoothness without causing shots at the edge portion or the like of the separator. Furthermore, a fuel cell separator can be provided. As a result, the fuel cell separator can be reduced in weight and thickness, so that a small polymer electrolyte fuel cell that can be mounted on an automobile or the like can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

Disclosed is a carbonaceous sheet having a weight per unit area of not more than 1000 g/m2. This carbonaceous sheet is composed of a carbon fiber nonwoven fabric having a weight per unit area of 1-30 g/m2 and a resin-coated graphite powder arranged on both sides of the carbon fiber nonwoven fabric and containing 3-20% by mass of a resin. Also disclosed is a fuel cell separator using such a carbonaceous sheet, which is thin and excellent in conductivity and surface smoothness.

Description

炭素質シートおよびそれを用いた燃料電池セパレータ 技術分野 Carbonaceous sheet and fuel cell separator using the same
この発明は薄型で、表面平滑性と導電性に優れた炭素質、^一ト(成型用シートとも 呼ぶ)およびそれを用いた燃料電池セパレータに関する。 背景技術  The present invention relates to a carbonaceous material that is thin and excellent in surface smoothness and electrical conductivity, and also relates to a fuel cell separator using the same. Background art
固体高分子型燃料電池は、単位セルを数十個〜数百個程度直列に積層した構造(ス タック構造) からなる。 各単位セルは、 主に固体高分子膜、 燃料極側触媒、 空気極 側触媒おょぴセパレータから構成されている。 このうち、 セパレータは、 少なくと も片面に燃料ガスあるいは空気を導入するための溝が形成され、 ガス流路としての 機能の他、 燃料ガスと空気との混合を防ぐための遮断機能を果たしている。 通常、 該燃料ガスとしては水素やメタノールが用いられる。  The polymer electrolyte fuel cell has a structure (stack structure) in which about several tens to several hundreds of unit cells are stacked in series. Each unit cell is mainly composed of a solid polymer membrane, a fuel electrode side catalyst, and an air electrode side catalyst opto separator. Among these, the separator is formed with a groove for introducing fuel gas or air on at least one side, and in addition to functioning as a gas flow path, it also functions as a blocking function to prevent mixing of fuel gas and air. . Usually, hydrogen or methanol is used as the fuel gas.
なお、 このセパレータは、 金属製や炭素材料製のものがあるが、 いずれも空気や 燃料ガスに対するガスパリア一性や、 導電性、 高い機械的強度を有すると共に、 高 分子膜の劣化に影響するイオン性不純物の溶出が少ないことなど、 多くの性能が要 求されている。 なかでも、 繊維を含有する炭素材料でセパレータを構成するような 場合には、 膨れや繊維の露出など、 表面平滑性に欠陥があると接触抵抗が大きくな り、 導電性が低下する。 よって、 膨れや繊維の露出が無いなどの優れた表面平滑性 も要求される。 また、 燃料電池を小型化するには、'セパレータを薄型化する必要が ある。 セパレータには燃料ガスや空気を流す流路が必要なため、 溝が設けられてい る。 この溝を設けながらセパレータを薄型化するには断面を波形にすることが望ま しい。 そのためには薄くて加工性が良い炭素材料が望まれている。  This separator is made of metal or carbon material, but all of them have gas barrier properties against air and fuel gas, conductivity, high mechanical strength, and ions that affect the degradation of high molecular films. Many performances are required such as low elution of ionic impurities. In particular, when the separator is made of a carbon material containing fibers, if there is a defect in surface smoothness such as blistering or fiber exposure, the contact resistance increases and the conductivity decreases. Therefore, excellent surface smoothness such as no swelling or fiber exposure is also required. Also, to reduce the size of the fuel cell, it is necessary to make the separator thinner. Since the separator requires a flow path for fuel gas and air, it is provided with a groove. In order to reduce the thickness of the separator while providing this groove, it is desirable that the cross section be corrugated. For this purpose, a carbon material that is thin and has good workability is desired.
このようなセパレータ用の炭素材料やそれを用いたセパレータの製造方法が従来 から検討されている。 例えば、 特開昭 6 2— 1 6 0 6 6 1号公報には、 黒鈴粉末と熱硬化性樹脂とフエ ノール繊維の混合物からなる炭素材料を用いてセパレータを形成することが提案さ れている。 この炭素材料は、 耐食性に優れると共に、 家庭据え置き型の燃料電池セ パレータ (厚み: 2mm程度) として使用する程度ならば十分な強度と導電性、 およ ぴ加工性を有しているが、 車载用燃料電池のように薄型 (厚み: 0. 2〜0. 3腿程度) に成型すると導電性おょぴ加工性の点で以下のような問題を抱えている。 A carbon material for such a separator and a method for producing a separator using the carbon material have been studied. For example, Japanese Patent Application Laid-Open No. 62-166061 proposes forming a separator using a carbon material made of a mixture of black bell powder, a thermosetting resin, and phenol fibers. Yes. This carbon material is excellent in corrosion resistance and has sufficient strength, electrical conductivity, and processability as long as it can be used as a home-use fuel cell separator (thickness: about 2 mm). When molded into a thin shape (thickness: about 0.2 to 0.3 thigh) like an onboard fuel cell, it has the following problems in terms of conductive opacification.
すなわち、 この炭素材料は、 通常、 射出成形や圧縮成形などにより板状に成形さ れてセパレータとしている。 しかしながら、 これらの成形方法によってセパレータ の成形を行うと、 繊維が黒鉛粉末と熱硬化樹脂の流動を阻害するため、 そのエッジ 部にショートショット (以下、 「ショット」 と呼ぶ) が発生し易い。 そこで、 例え ば、 ー且、 前記炭素材料をシート状に成形した後、 金型上に配置し、 加熱、 圧縮等 の処理を行っている。 し力 し、 薄型化すると黒鈴量が少なくなるため表面に繊維が 露出しやすくなり、 表面の平滑性が損なわれるという問題があった。  That is, this carbon material is usually formed into a plate shape by injection molding, compression molding or the like to form a separator. However, when the separator is molded by these molding methods, the fiber inhibits the flow of the graphite powder and the thermosetting resin, so that a short shot (hereinafter referred to as “shot”) tends to occur at the edge portion. Therefore, for example, after the carbon material is formed into a sheet shape, it is placed on a mold and subjected to treatments such as heating and compression. However, when the thickness is reduced, the amount of black bells is reduced, so that fibers are easily exposed on the surface, and the smoothness of the surface is impaired.
また、 特開 2 0 0 5 - 3 3 9 9 5 3号公報およぴ特開 2 0 0 5— 2 2 9 9 5 4号 公報には、 燃料電池セパレータの機械的強度や、 導電性、 成形性の向上を目的とし て、 炭素繊維や黒鉛不織布などの導電性基材に、 熱硬化性樹脂と黒鉛粒子とを含浸 させたプリプレダが提案されている。 しかしながら、 このプリプレダは、 熱硬化性 樹脂と黒鉛粒子とが基材中に完全に含浸されているため、 これを加熱、 加圧等して セパレータを成形する際に、 樹脂およぴ黒 、粒子が流動せず、 セパレータのエッジ 部等にショットが発生しやすいという問題点があった。 また、 同様に表面に繊維が 露出するという問題があつた。  In addition, in Japanese Patent Laid-Open No. 2 0 0 5-3 3 9 95 3 and Japanese Patent Laid-Open No. 2 0 0 5-2 2 9 9 5 4, the mechanical strength of the fuel cell separator, conductivity, For the purpose of improving moldability, a pre-preda in which a conductive substrate such as carbon fiber or graphite nonwoven fabric is impregnated with a thermosetting resin and graphite particles has been proposed. However, since this pre-preda is completely impregnated with a thermosetting resin and graphite particles in the base material, when the separator is formed by heating, pressurizing, etc., the resin and black particles Does not flow and shots are likely to occur at the edge of the separator. Similarly, there was a problem that fibers were exposed on the surface.
そこで、 本発明は、 薄型で、 表面平滑性と導電性に優れた炭素質シートおよびそ れを用いた、 薄型で、 表面平滑性と導電性に優れた燃料電池セパレータを提供する ことを目的とする。 発明の開示  Accordingly, an object of the present invention is to provide a thin carbonaceous sheet excellent in surface smoothness and conductivity and a thin fuel cell separator using the same, and using the same. To do. Disclosure of the invention
すなわち、 本発明は、 単位面積当たりの重量が 1〜3 0 g /m 2である炭素繊維 不織布、 およぴ該炭素繊維不織布の両面に、 3〜 2 0質量%の樹脂を含有する樹脂 被覆黒鉛粉末を有する、 単位面積当たりの重量が 1000 g/m2以下である炭素 質シートである。 That is, the present invention relates to a carbon fiber nonwoven fabric having a weight per unit area of 1 to 30 g / m 2 , and a resin containing 3 to 20% by mass of resin on both surfaces of the carbon fiber nonwoven fabric. A carbonaceous sheet having a coated graphite powder and having a weight per unit area of 1000 g / m 2 or less.
なお、 この炭素質シートは、 前記炭素繊維不織布が、 PAN系炭素繊維、 ピッチ 系炭素繊維、 レーョン系炭素繊維、 フエノール系炭素繊維および黒鉛繊維からなる 群より選ばれる少なくとも 1種の繊維の不織布であるのが好ましい。  In this carbonaceous sheet, the carbon fiber nonwoven fabric is a nonwoven fabric of at least one fiber selected from the group consisting of PAN-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, phenol-based carbon fibers, and graphite fibers. Preferably there is.
また、 上記のいずれかの炭素質シートは、 前記樹脂被覆黒鉛粉末を構成する黒鉛 粉末の平均粒径が、 10〜100 mであるのが好ましい。  In any one of the above carbonaceous sheets, the average particle size of the graphite powder constituting the resin-coated graphite powder is preferably 10 to 100 m.
さらに、 上記のいずれかの炭素質シートは、 前記樹脂が、 熱可塑性樹脂、 レゾー ル型フエノール樹脂、 ノポラック型フエノール樹脂、 エポキシ樹脂、 およぴェポキ シ一フエノール樹脂からなる群より選らばれる少なくとも 1種の樹脂であるのが好 ましい。  Further, in any one of the above carbonaceous sheets, the resin is at least one selected from the group consisting of a thermoplastic resin, a resole phenol resin, a nopolac phenol resin, an epoxy resin, and an epoxy phenol resin. A seed resin is preferred.
また、 上記のいずれかの炭素質シートは、 前記樹脂被覆黒鉛粉末が、 平均粒径が 15〜: L 10 mであるのが好ましい。  In any one of the above carbonaceous sheets, the resin-coated graphite powder preferably has an average particle size of 15 to L 10 m.
さらに、 上記のいずれかの炭素質シートは、 該シートの密度が、 1. 7 g/cm3 以上であるのが好ましい。 Furthermore, any of the above carbonaceous sheets preferably has a density of 1.7 g / cm 3 or more.
また、 本発明は、 前述した密度が 1. 7 g/cm3以上である炭素質シートを用い た燃料電池セパレータでもある。. The present invention is also a fuel cell separator using a carbonaceous sheet having a density of 1.7 g / cm 3 or more. .
さらに、 本焭明は、 上記のいずれかの炭素質シートを圧縮成形した燃料電池セパ レータでもある。  Furthermore, the present invention is also a fuel cell separator obtained by compression-molding any one of the above carbonaceous sheets.
また、 本発明は、 炭素系不織布基材の両面に、 樹脂被覆黒鉛粉末を付着させてな る燃料電池セパレータ成形用シートであって、  Further, the present invention is a fuel cell separator molding sheet obtained by adhering resin-coated graphite powder on both surfaces of a carbon-based nonwoven fabric substrate,
前記樹脂被覆黒鉛粉末は、 3〜20質量%の樹脂を含み、 前記炭素系不織布基材 は、 目付が 1〜30 g/m2のものであり、 かつ前記成形用シートは、 目付が 10 00 gZm2以下であることを特徴とする燃料電池セパレータ成形用シートである。 図面の簡単な説明 ' The resin-coated graphite powder contains 3 to 20% by mass of resin, the carbon-based nonwoven fabric base material has a basis weight of 1 to 30 g / m 2 , and the molding sheet has a basis weight of 10 00 A fuel cell separator molding sheet characterized by having a gZm of 2 or less. Brief description of the drawings ''
図 1は、 実施例の成形品の断面図である。 発明を実施するための最良の形態 FIG. 1 is a cross-sectional view of the molded product of the example. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 この発明の理解を容易にするために実施形態の一例をもつて説明する。 本発明の炭素質シート (成形用シートとも呼ぶ) は、 炭素繊維不織布 (炭素系不 織布とも呼ぶ)を基材とし、この基材の両面に、表面が樹脂で被覆された黒鉛粉末、 即ち樹脂被覆黒鉛粉末を、 例えば付着などによって、 有するものである。 そして、 本発明の燃料電池セパレータは、 前記炭素質シートを、 例えば圧縮成形することな どにより得られるものである。  Hereinafter, an example of the embodiment will be described to facilitate understanding of the present invention. The carbonaceous sheet (also referred to as a molding sheet) of the present invention has a carbon fiber non-woven fabric (also referred to as a carbon-based non-woven fabric) as a base material, and a graphite powder having a surface coated with a resin on both sides of the base material. It has resin-coated graphite powder, for example, by adhesion. The fuel cell separator of the present invention is obtained by, for example, compression molding the carbonaceous sheet.
本発明の炭素質シートは、 その基材として不連続繊維からなる炭素繊維不織布を 用いる。 例えば、 炭素繊維を樹脂と共に分散させた水性液をろ過 (抄紙) し、 加熱 乾燥させることによって炭素繊維同士を接着させた不織布 (ウェブ) などを例示で きる。 あるいは、 炭素繊維に樹脂や無機バインダーを少量嘖霧して炭素繊維同士を 接着させた不織布なども相当する。  The carbonaceous sheet of the present invention uses a carbon fiber nonwoven fabric composed of discontinuous fibers as the base material. For example, a non-woven fabric (web) in which carbon fibers are dispersed together with a resin by filtering (papermaking) and heating and drying can be exemplified. Alternatively, a non-woven fabric in which a small amount of resin or inorganic binder is sprayed on carbon fibers to bond the carbon fibers together is also equivalent.
一方、 基材として織布を使用した場合、 これを用いてセパレータに成形加工する と、 伸びが足りず、 破断したり、 ショットが発生したりしてしまう可能性がる。 ま た、 織布は連続繊維束が織ってあるため、 繊維束が重なった箇所は、 薄肉化が難し く、 さらに繊維束が重なった部分と重なっていない部分では、 体積抵抗率が異なる ため、 セパレータ全体の体積抵抗率が不均一となるおそれがある。  On the other hand, when a woven fabric is used as a base material, if it is molded into a separator using this, there is a possibility that the film will not be stretched sufficiently and may break or cause a shot. In addition, because the woven fabric is woven with continuous fiber bundles, it is difficult to reduce the thickness of the place where the fiber bundles overlap, and the volume resistivity differs between the part where the fiber bundles overlap and the part where they do not overlap. There is a possibility that the volume resistivity of the whole separator becomes non-uniform.
これに対し、 本発明の炭素質シートは、 その基材として不織布を用いるので、 こ れをセパレータに成形加工した際に、 全体が均一に伸びることができ、 波板形状に も対応することができる。 さらに不織布は、 短繊維が積層した構造であるため、 薄 肉化が可能である。  On the other hand, since the carbonaceous sheet of the present invention uses a nonwoven fabric as its base material, when the carbonaceous sheet is molded into a separator, the whole can be stretched uniformly, and the corrugated plate shape can be accommodated. it can. Furthermore, since the nonwoven fabric has a structure in which short fibers are laminated, it can be thinned.
なお、 本発明で言う炭素繊維は、 黒鉛繊維も含む上位概念語である。 よって、 該 炭素繊維不織布を形成する繊維としては、 P AN系炭素繊維、 ピッチ系炭素繊維、 レーョン系炭素繊維、 フエノール系炭素繊維およぴ黒鉛繊維のうちから選ばれるい ずれか 1種以上を用いることもできる。 とくに、 P AN系炭素繊維は、 入手が容易 で、 セパレータに成形加工する際の剪断力に耐えられる点で最も好ましい。 また、 同様に、 本発明で言う炭素質とは、 炭素のみならず黒鈴を含んでも好い。 炭素繊維不織布に用いられる繊維の平均繊維長は、 特に制限されないが、 好まし くは 3 ~ 5 0 mm、 より好ましくは 5 ~ 3 0 mmの範囲である。 平均繊維長が 3 m πι以上の方が、 基材として成形したときに充分な強度が得られやすい。 一方、 平均 繊維長が 5 0 mm以下である方が、 シート状に成形し易い。 . また、 炭素繊維不織布に用いられる繊維の平均繊維径は、 特に制限されないが、. 強度と黒鉛粉末との接触面積を確保するという点から、 黒鉛粉末の粒径よりも小さ いことが好ましく、 5 0 / m以下、 より好ましくは 3 Ο μ πι以下、 さらに好ましく は 3〜3 0 ζ πιである。 - また、 本発明において、 炭素繊維不織布は、 単位面積当たりの重量 (目付とも言 う) が 1〜3 0 g /m2のものを用いる。 より好ましくは 1〜2 0 g /m2のものを 用いる。 これは、 炭素繊維不織布の単位面積当たりの重量が 1 g /m 2未満では、 強度を向上させる効果が得られず、 3 0 g /m 2超では、 セパレータ成形工程にお いて、 黒鈴粉末が炭素繊維不織布に入り込めず、 セパレータの層間剥離を生じるお それがあるからである。 In addition, the carbon fiber said by this invention is a high-order concept word also including graphite fiber. Therefore, as the fiber forming the carbon fiber nonwoven fabric, at least one selected from PAN-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, phenol-based carbon fiber and graphite fiber is used. It can also be used. In particular, PAN-based carbon fibers are most preferable because they are readily available and can withstand the shearing force when being molded into a separator. Similarly, the carbonaceous material referred to in the present invention preferably includes not only carbon but also black bells. The average fiber length of the fibers used in the carbon fiber nonwoven fabric is not particularly limited, but is preferably 3 to 50 mm, more preferably 5 to 30 mm. When the average fiber length is 3 mπι or more, sufficient strength is easily obtained when molded as a substrate. On the other hand, when the average fiber length is 50 mm or less, it is easier to form a sheet. Further, the average fiber diameter of the fibers used in the carbon fiber nonwoven fabric is not particularly limited, but is preferably smaller than the particle diameter of the graphite powder from the viewpoint of securing the strength and the contact area between the graphite powder, 50 / m or less, more preferably 3 Ομπι or less, and further preferably 3 to 30 ζπι. -In the present invention, a carbon fiber nonwoven fabric having a weight per unit area (also referred to as basis weight) of 1 to 30 g / m 2 is used. More preferably, 1 to 20 g / m 2 is used. This is because if the weight per unit area of the carbon fiber nonwoven fabric is less than 1 g / m 2 , the effect of improving the strength cannot be obtained, and if it exceeds 30 g / m 2 , the black bell powder is used in the separator molding process. This is because it may not enter the carbon fiber nonwoven fabric and may cause delamination of the separator.
炭素繊維不織布の製造には、 メルトプロ一法やウォータージェット法、 乾式抄紙 法、湿式抄紙法などの従来の不織布製造方法等が用いられる。その中でも、例えば、 特開平 4 - 2 3 2 0 4 7号に開示されているような湿式抄紙法は、 薄肉で均一な不 織布を製造できる点で好ましい。  For the production of carbon fiber nonwoven fabrics, conventional nonwoven fabric production methods such as the melt-pro method, the water jet method, the dry papermaking method and the wet papermaking method are used. Among them, for example, a wet papermaking method as disclosed in Japanese Patent Application Laid-Open No. 4-232047 is preferable in that a thin and uniform nonwoven fabric can be produced.
前記炭素繊維不織布の両面に黒鉛粉末が存在すると、 得られる炭素質シートの体 積抵抗率を低減し、 導電性を向上させる作用がある。 本発明では、 この黒鉛粉末と して、 その表面に、 樹脂を被覆したものを用いる。 なお、 黒鉛粉末表面に被覆する 樹脂は、 該炭素質シートを用いて得られるセパレータの組成の均一性や、 耐熱性、 機械的強度などを向上させるために有効に働く。  When graphite powder is present on both sides of the carbon fiber nonwoven fabric, it has the effect of reducing the volume resistivity of the resulting carbonaceous sheet and improving the conductivity. In the present invention, the graphite powder having a surface coated with a resin is used. The resin coated on the surface of the graphite powder works effectively to improve the uniformity of the composition of the separator obtained using the carbonaceous sheet, heat resistance, mechanical strength, and the like.
本発明の炭素質シートにおいては、 従来技術のように樹脂と黒鉛粉末とを炭素繊 維不織布中に含浸させるのではなく、 樹脂が被覆された黒鈴粉末を該炭素繊維不織 布の両面に付着などにより存在させる。 こうすることにより、 例えば、 加熱した金 型内に該炭素質シートを配置し、 圧縮成形等して燃料電池用セパレータを作製する 際などに、 次のような作用効果が生じる。 即ち、 樹脂被覆黒鉛粉末では、 黒鉛粉末 と樹脂とが共に流動するようになり、 金型の端にまで流動するだけでなく、 セパレ 一タ内で厚みが変化している場合でも、 セパレータのエッジ部などの角部にまで流 動して、 セパレータにショットが発生することがなくなり、 表面平滑性が向上し、 均一な導電性が確保される。 また、 この樹脂被覆黒鉛粉末によれば、 炭素質シート を圧縮し、 黒鉛を流動させて薄型化しても、 樹脂と黒鉛が均一組成のまま流動する ので、 樹脂の添加量を增やすことなく、 セパレ一タの体積抵抗率を小さくしながら 強度を確保できる。 つまり、 樹脂を予め黒鉛粉末に被覆しておくことが有効なので ある。 In the carbonaceous sheet of the present invention, the carbon fiber nonwoven fabric is not impregnated with resin and graphite powder as in the prior art, but the black bell powder coated with resin is applied to both surfaces of the carbon fiber nonwoven fabric. It exists by adhesion. By doing so, for example, when the carbonaceous sheet is placed in a heated mold and compression-molded to produce a fuel cell separator, the following effects are produced. That is, for resin-coated graphite powder, graphite powder And the resin flow together, not only to the end of the mold, but also to the corners such as the edge of the separator even when the thickness changes in the separator. Thus, no shots are generated in the separator, surface smoothness is improved, and uniform conductivity is ensured. In addition, according to this resin-coated graphite powder, even if the carbonaceous sheet is compressed and the graphite is flown to make it thinner, the resin and graphite flow with a uniform composition, so the amount of resin added is not increased. Strength can be secured while reducing the volume resistivity of the separator. In other words, it is effective to previously coat the resin with graphite powder.
なお、 上述の樹脂被覆黒鉛粉末の平均粒径は、 1 5〜: L 0 0 z mとするのが好ま しい。  The average particle size of the resin-coated graphite powder is preferably 15 to: L 0 0 zm.
また、 本発明の前記樹脂被覆黒鉛粉末において、 黒鉛粉末の表面に被覆する樹脂 の量は、 樹脂と黒鉛粉末との合計量の 3〜2 0質量%を占める量とする。 これは、 黒鈴粉末への樹脂の被覆量が、 樹脂と黒鉛粉末の合計量に対し、 3質量%よりも少 ないと、 セパレータ強度が低下してしまい、 一方、 2 0質量。 /0超になると、 体積抵 抗率が大きくなってしまい、 発電効率が悪化するためである。 In the resin-coated graphite powder of the present invention, the amount of the resin coated on the surface of the graphite powder is an amount that occupies 3 to 20% by mass of the total amount of the resin and the graphite powder. This is because, if the coating amount of the resin on the black bell powder is less than 3% by mass with respect to the total amount of the resin and the graphite powder, the separator strength is lowered, whereas the mass is 20%. This is because if it exceeds 0 , the volume resistivity increases and the power generation efficiency deteriorates.
該被覆に用いられる樹脂としては、 熱可塑性樹脂と熱硬化性樹脂の少なくとも 1 種を使用することができる。 耐熱性、 耐久性、 寸法安定性などの点から、 熱硬化性 樹脂を用いることが好ましい。  As the resin used for the coating, at least one of a thermoplastic resin and a thermosetting resin can be used. From the viewpoint of heat resistance, durability, dimensional stability, etc., it is preferable to use a thermosetting resin.
熱硬化性樹脂としては、 例えばレゾール型フエノール樹脂、 ノボラック型フエノ ール樹脂、 エポキシ樹脂、 エポキシ一フエノール樹脂が挙げられ、 これらのうちの 少なくとも 1種の樹脂あるいは混合樹脂を用いることができる。 これらの中でも、 レゾール型フエノール樹脂、 エポキシ樹脂おょぴエポキシ樹脂とノボラック型フエ ノール樹脂との混合物は、 イオンの溶出が少ないため好適に用いられ、 エポキシ樹 脂は、 硬化時にガスが発生しない点で、 さらに好適である。  Examples of the thermosetting resin include a resol type phenol resin, a novolac type phenol resin, an epoxy resin, and an epoxy monophenol resin. At least one of these resins or a mixed resin can be used. Among these, resol-type phenol resin, epoxy resin, epoxy resin and novolac-type phenol resin are preferred because they have less ion elution, and epoxy resin does not generate gas during curing. It is more preferable.
また、 黒鉛粉末の表面に被覆された熱硬化性樹脂は、 硬化率が 4 0 %以下、 '好ま しくは 2 0 %以下、 より好ましくは 1 0 %以下もしくは未硬化状態であることが好 ましい。 これは、 硬化率が 4 0 %以下の方が、 成形加工において、 黒鉛粉末同士が 付着し易いからである。 また、 本発明においては、 樹脂被覆黒鉛粉末に、 カップリング剤や離型剤、 流動 性を向上させる無機化合物、 その他、 従来開示されているさまざまな添加剤を含有 させても良い。例えば、カップリング剤は、黒鉛粉末の表面改質のために用いられ、 分散性や樹脂の強度を向上させる効果があり、 また、 離型剤は、 セパレータを成形 した際の金型離型性を向上させる効果がある。 In addition, the thermosetting resin coated on the surface of the graphite powder has a curing rate of 40% or less, preferably 20% or less, more preferably 10% or less, or an uncured state. Yes. This is because when the curing rate is 40% or less, graphite powders are more likely to adhere to each other in the molding process. In the present invention, the resin-coated graphite powder may contain a coupling agent, a release agent, an inorganic compound that improves fluidity, and various other conventionally disclosed additives. For example, a coupling agent is used for surface modification of graphite powder, and has an effect of improving dispersibility and resin strength. Also, a mold release agent is a mold release property when a separator is molded. There is an effect of improving.
本発明において、 該樹脂被覆黒鉛粉末を構成する黒鉛粉末としては、'人造黒鉛、 天然黒鉛ならびにこれらの混合物などを用いることができる。 人造黒鉛は、 石油系 ピッチ、 石炭系ピッチなどを原料とし、 これを炭化'焼成して黒鉛化処理し、 粉碎 したものなどが好適である。 該黒鉛粉末の形状は、 燐片状、 針状、 球状などを用い ることができるが、 成形性の点から、 球状または燐片状のものを用いることが好ま しい。 ·  In the present invention, as the graphite powder constituting the resin-coated graphite powder, artificial graphite, natural graphite, and a mixture thereof can be used. The artificial graphite is preferably made from petroleum pitch, coal pitch, or the like, carbonized and calcined, graphitized, and powdered. As the shape of the graphite powder, a flake shape, a needle shape, a spherical shape, or the like can be used. From the viewpoint of moldability, it is preferable to use a spherical shape or a flake shape. ·
この黒鉛粉末の平均粒径は、 1 0〜1 0 0 μ πιであることが好ましく、 より好ま しくは 1 0 ~ 8 5 μ πι、 さらに好ましくは 1 5〜 6 0 μ mである。 これは、 黒 &の 平均粒径が 1 0 j m以上の方が、成形時の粘度が低いので、成形性に優れる。一方、 平均粒径が 1 0 0 μ m以下の方が、 薄型化し易くなる。 なお、 本努明では、 平均粒 径として粒 測定装置 (Microtrak社製) で粒度分布曲線を測定したときに 5 0 wt% を示す粒子径を用いた。  The average particle size of the graphite powder is preferably 10 to 100 μπι, more preferably 10 to 85 μπι, and still more preferably 15 to 60 μm. This is because when the black & black average particle size is 10 jm or more, the viscosity at the time of molding is low, so the moldability is excellent. On the other hand, when the average particle size is 100 μm or less, it becomes easier to reduce the thickness. In this effort, the average particle size used was a particle size of 50 wt% when the particle size distribution curve was measured with a particle measuring device (manufactured by Microtrak).
該黒鉛粉末に該樹脂を被覆する方法としては、 特に制限はない。 例えば、 メカノ ケミカル法や熱硬化性樹脂を有機溶剤に溶かし、 黒鉛粉末と混合、 乾燥するなどの 既知の方法を用いることができる。 中でも、 少量の樹脂を均一に被覆する方法とし て、樹脂を溶剤に溶かし、黒鉛粉末と混合、乾燥する方法を用いることが好ましい。 また、 乾燥は、 流動槽の中で攪拌しながら行う方法や、 真空乾燥など従来の方法を 用いることができるが、 成形中の膨れを防止する点から真空乾燥工程を含む方法を 用いることが好ましい。 また、 一旦、 均一に混合して固めた後、 粉砕し、 所定の粒 度に調整する方法を用いても良い。  The method for coating the graphite powder with the resin is not particularly limited. For example, a known method such as a mechanochemical method or a thermosetting resin dissolved in an organic solvent, mixed with graphite powder, and dried can be used. Among them, as a method for uniformly coating a small amount of resin, it is preferable to use a method in which the resin is dissolved in a solvent, mixed with graphite powder, and dried. In addition, drying can be carried out by using a conventional method such as agitation while stirring in a fluidized tank, or vacuum drying, but a method including a vacuum drying step is preferably used from the viewpoint of preventing blistering during molding. . Alternatively, a method may be used in which the mixture is uniformly mixed and hardened, then pulverized and adjusted to a predetermined particle size.
本発明では、 上述した樹脂被覆黒鉛粉末を、 付着などの方法で炭素繊維不織布の 両面に有する炭素質シートを作製する。 これにより、 炭素繊維不織布を構成する繊 維の露出が防止され、 表面平滑性 (繊維の浮き出しや膨れが無い) に優れ、 体積抵 抗率の小さいセパレータを得ることができる。 なお、 該樹脂被覆黒鉛粉末を、 炭素 繊維不織布の片面のみに付着させた場合には、十分な機械的強度が得られないため、 セパレータの成形が困難であり、 また該樹脂被覆黒鉛粉末が付着していない側のセ パレータ表面に炭素系繊維が露出しゃすくなるため好ましくない。 この樹脂被覆黒 鉛粉末の炭素繊維不織布への付着量は、 表裏面とも同じ量であっても、 異なってい てもよく、 セパレータ特性に合わせて適宜に選定すればよい。 ' さらに、 本発明において、 得られた炭素質シートの単位面積当たりの重量は、 1 0 0 0 g /m2以下である。 より好ましくは 5 0 ~ 1 0 0 0 g /m2である。 その理 由は、 炭素質シートの単位面積当たりの重量が大きすぎると、 炭素繊維不織布に樹 脂被覆黒鉛粉末を多量に付着させることになり、 薄型のセパレータを成形すること ができない。 In the present invention, a carbonaceous sheet having the above-described resin-coated graphite powder on both surfaces of a carbon fiber nonwoven fabric is prepared by a method such as adhesion. This prevents the fibers that make up the carbon fiber nonwoven fabric from being exposed, provides excellent surface smoothness (no fiber bulging or swelling), and volume resistance. A separator with a low drag rate can be obtained. When the resin-coated graphite powder is attached to only one side of the carbon fiber nonwoven fabric, sufficient mechanical strength cannot be obtained, so that it is difficult to form a separator, and the resin-coated graphite powder is attached. This is not preferable because the carbon-based fibers are exposed on the surface of the separator on the side that is not. The amount of the resin-coated black lead powder adhering to the carbon fiber nonwoven fabric may be the same or different on the front and back surfaces, and may be appropriately selected according to the separator characteristics. Further, in the present invention, the weight per unit area of the obtained carbonaceous sheet is 100 g / m 2 or less. More preferably, it is 5 0 to 100 0 g / m 2 . The reason is that if the weight per unit area of the carbonaceous sheet is too large, a large amount of the resin-coated graphite powder is adhered to the carbon fiber nonwoven fabric, and a thin separator cannot be formed.
しかし、単位面積当たりの重量が 5 0 g /m2以上ある方が、機械的強度が高く、 炭素質シートの製造ゃセパレータの製造が容易になるため好ましい。 However, it is preferable that the weight per unit area is 50 g / m 2 or more because the mechanical strength is high and the manufacture of the carbonaceous sheet facilitates the manufacture of the separator.
なお、 本発明の炭素質シートは、 その密度が、 1 . 7 g / c m 3以上であるのが好 ましい。 密度が高いと、 燃料電池セパレータに成形した際に、 導電性とガスバリア 一性に優れるからである。 The carbonaceous sheet of the present invention preferably has a density of 1.7 g / cm 3 or more. This is because when the density is high, conductivity and gas barrier uniformity are excellent when formed into a fuel cell separator.
次に、 本発明の炭素質シートの製造方法の一例を示す。  Next, an example of the manufacturing method of the carbonaceous sheet of this invention is shown.
まず、 樹脂被覆黒鉛粉末を金型等の中に堆積させる。 次に、 その上に炭素繊維不 織布を置き、 次いで、 その炭素繊維不織布の上にさらに樹脂被覆黒鉛粉末を堆積さ せる。 その後、 この積層材を、 熱硬化性樹脂が軟化溶融し、 硬化しない温度、 また は熱可塑性樹脂の融点以上に加熱して加圧した後、 冷却することによつて炭素質シ ートが製造できる。  First, resin-coated graphite powder is deposited in a mold or the like. Next, a carbon fiber nonwoven fabric is placed thereon, and then a resin-coated graphite powder is further deposited on the carbon fiber nonwoven fabric. After that, the laminate is heated and pressurized to a temperature at which the thermosetting resin softens and melts and does not cure, or higher than the melting point of the thermoplastic resin, and then cooled to produce a carbonaceous sheet. it can.
次に、 本発明の燃料電池セパレータの製造方法を説明する。  Next, the manufacturing method of the fuel cell separator of the present invention will be described.
その方法としては、 従来既知の方法を用いることができる。 例えば、 加熱した金 型内に上述のようにして作製した炭素質シートを配置し、 圧縮成形する方法や、 常 温から熱硬化性樹脂が十分に硬化じない温度範囲に加熱された波板形状の金型内に セパレータ成形用シート (炭素質シート) を配置し、 ー且、 セパレータを賦形した 後、 熱硬化性樹脂が硬化する条件で熱処理を行う方法などがある。 いずれの製造方 法を用いた場合にも、 層間剥離を防止するため、 樹脂被覆黒鉛粉末粒子が、 成形さ れたセパレータの炭素繊維不織布を貫通していることが好ましい。 実施例 As the method, a conventionally known method can be used. For example, a carbonaceous sheet prepared as described above is placed in a heated mold and compression-molded, or a corrugated plate heated to a temperature range where the thermosetting resin does not sufficiently cure from normal temperature There is a method in which a separator molding sheet (carbonaceous sheet) is placed in the mold, and after the separator is shaped, heat treatment is performed under the condition that the thermosetting resin is cured. Which manufacturing method Even when the method is used, in order to prevent delamination, it is preferable that the resin-coated graphite powder particles penetrate the carbon fiber nonwoven fabric of the formed separator. Example
(実施例 1 )  (Example 1)
群栄化学工業 (株) 製レゾール型フエノール樹脂 HKG 100 gをァセトン 20 0 gに溶解し、天然黒鉛(球状、平均粒径 60 //m) 900 gと均一に混合した後、 真空乾燥器中で 12時間、 30°Cの温度で減圧乾燥した。 このフヱノール樹脂が被 覆された黒鉛粉末を粉碎器に入れて粉砕し、 平均粒径 65 μπιに調整した。  Gunei Chemical Industry Co., Ltd. Resol-type phenol resin HKG 100 g was dissolved in 200 g of aseton, mixed with 900 g of natural graphite (spherical, average particle size 60 // m), and then in a vacuum dryer. And dried under reduced pressure at 30 ° C for 12 hours. The graphite powder coated with this phenol resin was placed in a pulverizer and pulverized to adjust the average particle size to 65 μπι.
次に、 抄紙法によって PAN系炭素繊維 (東邦テナックス製、 繊維径: 7 μιη、 長さ : 13 mm) 力 ^単位面積当たりの重量が 5 gZm 2の炭素繊維不織布を作製 した。 Next, a PAN-based carbon fiber (manufactured by Toho Tenax, fiber diameter: 7 μιη, length: 13 mm) force ^ a carbon fiber nonwoven fabric having a weight per unit area of 5 gZm 2 was prepared by a papermaking method.
上記フエノール樹脂が被覆された黒鉛粉末 (樹脂含有率 10%) を、 100mm 角の平板金型内に 200 g/m2堆積させ、 その上に上記炭素繊維不織布を置き、 さらにその上にフエノール樹脂が被覆された黒 1粉末を 200 gZm2均一に堆積 させた。 この黒鉛粉末を両面に配置された炭素繊維不織布を 80°Cで加圧した後、 冷却し、 炭素質シート (単位面積当たりの重量: 405 g/m2) を作製した。 この炭素質シートを、 200°Cに設定した金型上に配置し、 20 OMP aで加圧 しながら金型を閉じ、 10分間熱硬化成型を行い、 図 1の断面図に示すような成形 品を得た。 この成形品は、 燃料電池セパレータの凹凸形状をモデル化したものであ り、 図 1の a : 3mm、 b : 1mmである。 また、 得られた成形品の平坦部 cの厚 みは 220 μηα、 密度は 1. 84 g/cm3であった。 Graphite powder coated with the above phenol resin (resin content 10%) is deposited in a 100 mm square flat plate mold at 200 g / m 2 , the carbon fiber nonwoven fabric is placed thereon, and the phenol resin is further deposited thereon. There was deposited black 1 powder coated on 200 gZm 2 uniform. A carbon fiber nonwoven fabric in which this graphite powder was placed on both sides was pressurized at 80 ° C. and then cooled to produce a carbonaceous sheet (weight per unit area: 405 g / m 2 ). Place this carbon sheet on a mold set at 200 ° C, close the mold while applying pressure at 20 OMPa, perform thermosetting molding for 10 minutes, and mold as shown in the cross-sectional view of Fig. 1 I got a product. This molded product is a model of the uneven shape of the fuel cell separator, a: 3 mm in FIG. 1, b: 1 mm. Further, the thickness of the flat part c of the obtained molded product was 220 μηα, and the density was 1.84 g / cm 3 .
得られた成形品の導電性 (体積抵抗率) 、 表面平滑性 (繊維の露出、-膨れ) 、 シ ョットの発生を観察し、 その結果を成形品の厚み cと共に表 1に示した。  The resulting molded product was observed for conductivity (volume resistivity), surface smoothness (exposure of fiber, -swelling) and shots, and the results are shown in Table 1 together with the thickness c of the molded product.
(実施例 2)  (Example 2)
日本化薬(株)製トリスフエノール型エポキシ樹脂 33 g、硬化剤フエノールノ ボラック樹脂 16. 5 g、 硬化触媒 2—フエ二ルイミダゾール ( 2 P Z) 0. 5 g をァセトン 200 gに溶解して、 天然黒鉛 (球状、 平均粒径: 60 μ m) 950 g と均一に混合した後、真空乾燥器中で 1 2時間、 3 0°Cの温度で減圧乾燥した。 こ のエポキシ樹脂か被覆された黒鉛粉末を粉碎器に入れて粉碎し、平均粒径 2 2 τη に調整した。 - 次に、 抄紙法によって PAN系炭素繊維 (東邦テナックス製 径 5 / m、長さ 6 mm) から単位面積当たりの重量が 1 0 g/m2の炭素繊維不織布を作製した。 上記エポキシ樹脂が被覆された黒鈴粉末(樹脂含有率 5%) を 1 0 0 mm角の平 板金型内に 2 0 0 g/m2堆積し、 その上に炭素繊維不織布を置いて 8 0°Cで加圧 した後、 冷却した。 次に、 この金型内の炭素繊維不織布の上に、 上記エポキシ樹脂 が被覆された黒鉛粉末 2 0 0 g/m2をさらに均一に堆積し、 8 0°Cで再加圧した 後、冷却し、炭素質シート (単位面積当たりの重量: 4 1 0 g/m2) を作製した。 この炭素質シートを実施例 1と同様に 2 00°Cの金型上に配置し、 1 0分間熱硬 化成型を行い、 成形品を得た。 得られた成形品の導電性 (体積抵抗率) 、 表面平滑 性 (繊維の露出、 膨れ) 、 ショットの発生を観察し、 その結果を成形品の厚み cと 共に表 1に示した。 c部の密度は 1. 9 5 g/ c m3であった。 Nippon Kayaku Co., Ltd. trisphenol type epoxy resin 33 g, curing agent phenol novolak resin 16.5 g, curing catalyst 2-phenylimidazole (2 PZ) 0.5 g dissolved in 200 g of aceton, Natural graphite (spherical, average particle size: 60 μm) 950 g And then dried in a vacuum dryer for 12 hours at a temperature of 30 ° C. under reduced pressure. This epoxy resin or coated graphite powder was put in a powder container and ground to adjust the average particle size to 2 2 τη. -Next, a carbon fiber nonwoven fabric with a weight per unit area of 10 g / m 2 was prepared from PAN-based carbon fiber (Toho Tenax diameter 5 / m, length 6 mm) by papermaking. Black bell powder coated with the above epoxy resin (resin content 5%) was deposited in a 100 mm square flat plate mold at a rate of 200 g / m 2 , and a carbon fiber nonwoven fabric was placed on top of it. After pressurizing at ° C, it was cooled. Next, 20 g / m 2 of graphite powder coated with the epoxy resin is further uniformly deposited on the carbon fiber nonwoven fabric in the mold, repressurized at 80 ° C., and then cooled. Then, a carbonaceous sheet (weight per unit area: 4 10 g / m 2 ) was produced. This carbonaceous sheet was placed on a 200 ° C. mold in the same manner as in Example 1, and subjected to thermosetting molding for 10 minutes to obtain a molded product. The resulting molded product was observed for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and shot generation, and the results are shown in Table 1 together with the thickness c of the molded product. The density of part c was 1.95 5 g / cm 3 .
(実施例 3 )  (Example 3)
日本化薬(株) 製トリスフエノール型エポキシ樹脂 9 9 g、硬化剤フエノールノ ポラック樹脂 4 9. 5 g、硬化触媒 2—フエ二ルイミダゾール (2 P Z) 1. 5 g をァセトン 6 0 0 gに溶解して、 天然黒鉛 (球状、 平均粒径 2 0 ^ m) 8 5 0 gと 均一に混合した後、真空乾燥器中で 1 2時間、 3 0°Cの温度で減圧乾燥した。 この エポキシ樹脂力 4皮覆された黒鉛粉末を粉砕器に入れて粉砕し、平均粒径 2 2 μ πιに 調整した。  Nippon Kayaku Co., Ltd. trisphenol type epoxy resin 9 9 g, curing agent phenol nopolac resin 4 9.5 g, curing catalyst 2-phenylimidazole (2 PZ) 1.5 g into caseone 600 0 g After being dissolved and uniformly mixed with natural graphite (spherical, average particle size 20 ^ m) 8 50 g, it was dried under reduced pressure at a temperature of 30 ° C. for 12 hours in a vacuum dryer. This graphite resin covered with epoxy resin 4 was put into a pulverizer and pulverized to adjust the average particle size to 22 μm.
次に、抄紙法によって PAN系炭素繊維 (東邦テナックス製 径 7 m、 長さ 1 3 mm) 力 ら単位面積当たりの重量が 2 0 g /m 2の炭素繊維不織布を作製した。 上記エポキシ樹脂が被覆された黒鉛粉末 (樹脂含有率 1 5%) を 1 0 0mm角の 平板金型内に 2 0 0 gZm2堆積し、 その上に炭素繊維不織布を置いて 8 0°Cでカロ. 圧した後、冷却した。 次に、 この金型内の炭素繊維不織布上に上記エポキシ樹脂が 被覆された黒鉛粉末 2 0 0 g/m2をさらに均一に堆積させ、 8 0 °Cで再加圧した 後、冷却し、炭素質シート (単位面積当たりの重量: 4 2 0 g/m2) を作製した。 この炭素質シートを実施例 1と同様に 200°Cの金型上に配置し、 10分間熱硬 化成型を行い、 成形品を得た。 得られた成形品の導電性 (体積抵抗率) 、 表面平滑 性 (繊維の露出、 膨れ) 、 ショットの発生を観察し、 その結果を成形品の厚み cと 共に表 1に示した。 c部の密度は 2. 00 g/cm3であった。 Next, a carbon fiber nonwoven fabric having a weight per unit area of 20 g / m 2 from a PAN-based carbon fiber (Toho Tenax diameter: 7 m, length: 13 mm) force was prepared by a papermaking method. Graphite powder coated with the above epoxy resin (resin content 15%) is deposited in a 100 mm square flat plate mold at 200 gZm 2 and a carbon fiber non-woven fabric is placed on it at 80 ° C. Caro. Cooled after pressing. Next, graphite powder 20 g / m 2 coated with the above epoxy resin is further uniformly deposited on the carbon fiber nonwoven fabric in the mold, re-pressurized at 80 ° C., cooled, A carbonaceous sheet (weight per unit area: 4 20 g / m 2 ) was prepared. This carbonaceous sheet was placed on a 200 ° C. mold in the same manner as in Example 1 and thermosetting molded for 10 minutes to obtain a molded product. The resulting molded product was observed for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and shot generation, and the results are shown in Table 1 together with the thickness c of the molded product. The density of part c was 2.00 g / cm 3 .
(比較例 1 )  (Comparative Example 1)
炭素繊維不織布の代わりに、直径 7 μ Ιηの炭素繊維から作製した単位面積当たり の重量が 30 g/m 2の朱子織の織布を基材として使用した。 上記実施例 2で使用 したエポキシ樹脂が被覆された黒鉛粉末(樹脂含有率 5%) を 10 Omm角の平板 金型内に 200 gZm2堆積し、 その上に炭素繊維織布を置き、 さらに、 その上に フエノール樹脂が被覆された黒鉛粉末を 200 gZm2均一に堆積させた。 この黒 鉛粉末を両面に配置された炭素繊維織布を 80°Cで加圧した後、 冷却し、 炭素質シ ート (単位面積当たりの重量: 430 gZm2) を作製した。 この炭素質シートを 実施例 1と同様に 200°Cの金型上に配置し、 10分間熱硬化成型を行い、成形品 を得た。得られた成形品の導電性(体積抵抗率)、表面平滑性(繊維の露出、膨れ)、 ショットの発生を観察し、 その結果を成形品の厚み cと共に表 1に示した。 c部の 密度は 1. 43 g/cm3であった。 Instead of the carbon fiber nonwoven fabric, a satin weave fabric made of carbon fiber having a diameter of 7 μΙη and having a weight per unit area of 30 g / m 2 was used as a base material. The graphite powder coated with the epoxy resin used in Example 2 above (resin content 5%) was deposited in a 10 Omm square flat plate mold with 200 gZm 2 , and a carbon fiber woven fabric was placed on it. On top of this, graphite powder coated with phenol resin was uniformly deposited at 200 gZm 2 . A carbon fiber woven fabric in which this black lead powder was placed on both sides was pressurized at 80 ° C and then cooled to produce a carbonaceous sheet (weight per unit area: 430 gZm 2 ). This carbonaceous sheet was placed on a 200 ° C. mold in the same manner as in Example 1, and subjected to thermosetting molding for 10 minutes to obtain a molded product. The resulting molded product was observed for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and shot generation, and the results are shown in Table 1 together with the thickness c of the molded product. The density of part c was 1.43 g / cm 3 .
(比較例 2 )  (Comparative Example 2)
群栄化学工業(株)製レゾール型フエノール樹脂 HKG 100 gを、 アセトン 4 00 gに溶解し、 天然黒鉛 (球状、 平均粒径 60 μ m) 900 gと均一に混合して スラリーを作製した。  100 g of resol-type phenol resin HKG manufactured by Gunei Chemical Industry Co., Ltd. was dissolved in 400 g of acetone and uniformly mixed with 900 g of natural graphite (spherical, average particle size 60 μm) to prepare a slurry.
次に、 抄紙法によって PAN系炭素繊維 (東邦テナックス製 径 7 / iii、 長さ 1 3 mm) から単位面積当たりの重量が 20 gZm 2の炭素繊維不織布を作製した。 得られた炭素繊維不織布に、 スラリーを塗布した後、 真空乾燥器中で 1 2時間、 30°Cの温度で減圧乾燥した (樹脂含有率 10%)。乾燥後の炭素質シートの単位面 積当たりの重量は 340 g/m2であった。 Next, a carbon fiber nonwoven fabric with a weight per unit area of 20 gZm 2 was prepared from PAN-based carbon fiber (Toho Tenax diameter 7 / iii, length 13 mm) by the papermaking method. After applying the slurry to the obtained carbon fiber nonwoven fabric, it was dried under reduced pressure at a temperature of 30 ° C. for 12 hours in a vacuum dryer (resin content 10%). The weight per unit area of the carbonaceous sheet after drying was 340 g / m 2 .
この炭素質シートを実施例 1と同様にして成形し、得られた成形品の導電性(体 積抵抗率) 、 表面平滑性 (繊維の露出、 膨れ) 、 ショットの発生を観察した。 その 結果を成形品の厚み cと共に表 1に示した。 c部の密度は 1. 79 g/ cm3であつ た。 This carbonaceous sheet was molded in the same manner as in Example 1, and the resulting molded product was observed for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and generation of shots. The results are shown in Table 1 together with the thickness c of the molded product. The density of part c is 1. 79 g / cm 3 It was.
(比較例 3.)  (Comparative Example 3.)
基材として単位面積当たりの重量が 40 g/m2の炭素繊維不織布を用いた以外 は、 実施例 1と同様にして炭素質シートおよび成形品を作製し、導電性(体積抵抗 率) 、 表面平滑性 (繊維の露出、 膨れ) 、 ショットの発生を評価した。 その結果を 成形品の厚み cと共に表 1に示す。 c部の密度は 1· 22 g/cm3であった。 A carbonaceous sheet and a molded product were produced in the same manner as in Example 1 except that a carbon fiber nonwoven fabric having a weight per unit area of 40 g / m 2 was used as the substrate, and the conductivity (volume resistivity), surface The smoothness (exposure of fibers, swelling) and the occurrence of shots were evaluated. The results are shown in Table 1 together with the thickness c of the molded product. The density of part c was 1.222 g / cm 3 .
(比較例 4)  (Comparative Example 4)
群栄化学工業(株)製レゾール型フヱノール樹脂 HKG 20 gをアセトン 200 gに溶解し、 天然黒鉛 (球状、 平均粒径 60 μιη) 980 gと均一に混合した後、 真空乾燥器中で 12時間、 30 °Cの温度で減圧乾燥した。 このフヱノール樹脂が被 覆された黒鉛粉末を粉枠器に入れて粉碎し、 平均粒径 63 μπιに調整した(樹脂含 有率 2%)。 20 g of Resol type phenolic resin HKG manufactured by Gunei Chemical Industry Co., Ltd. was dissolved in 200 g of acetone and mixed uniformly with 980 g of natural graphite (spherical, average particle size 60 μιη), then in a vacuum dryer for 12 hours. And dried under reduced pressure at a temperature of 30 ° C. The graphite powder coated with the phenol resin was placed in a powder frame and ground to adjust the average particle size to 63 μπι (resin content 2%).
次に、 抄紙法によって PAN系炭素繊維 (東邦テナックス製、 径 7 m、 長さ 1 3mm) から単位面積当たりの重量が 10 gZm2の炭素繊維不織布基材を作製し た。 Next, a carbon fiber nonwoven fabric substrate with a weight per unit area of 10 gZm 2 was prepared from PAN-based carbon fiber (Toho Tenax, diameter 7 m, length 13 mm) by the papermaking method.
これらの原材料を用いた以外は、実施例 1と同様にして炭素質シートおよび成形 品を作製し、 導電性 (体積抵抗率) 、 表面平滑性 (繊維の露出、 膨れ) 、 ショット の発生を評価した。その結果を成形品の厚み cと共に表 1に示す。 c部の密度は 1. 86 g/ cm3であった。 Except for using these raw materials, carbonaceous sheets and molded products were produced in the same manner as in Example 1 and evaluated for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and occurrence of shots. did. The results are shown in Table 1 together with the thickness c of the molded product. The density of part c was 1.86 g / cm 3 .
(比較例 5 )  (Comparative Example 5)
群栄化学工業(株)製レゾール型フヱノール樹脂 HKG 300 gをアセトン 20 0 gに溶解し、天然黒鉛(球状、平均粒径 60 m) 70 gと均一に混合した後、 真空乾燥器中で 12時間、 30 °Cの温度で減圧乾燥した。 このフヱノール樹脂が被 覆された黒鉛粉末を粉砕器に入れて粉枠し、 平均粒径 65 に調整した(樹脂含 有率 30%)。  300 g of resol type phenolic resin HKG made by Gunei Chemical Industry Co., Ltd. was dissolved in 200 g of acetone and mixed uniformly with 70 g of natural graphite (spherical, average particle size 60 m). It was dried under reduced pressure for 30 hours at a temperature of 30 ° C. The graphite powder coated with this phenol resin was placed in a pulverizer and powdered to adjust the average particle size to 65 (resin content 30%).
次に、 抄紙法によって PAN系炭素繊維 (東邦テナックス製、 径 7 μιη、長さ 1 3 mm) から単位面積当たりの重量が 10 g /m 2の炭素繊維不織布基材を作製し た。 これらの原材料を用いた以外は、実施例 1と同様にして炭素質シートおよび成形 品を作製し、 導電性 (体積抵抗率) 、 表面平滑性 (繊維の露出、 膨れ) 、 ショット の発生を評価した。その結果を成形品の厚み cと共に表 1に示す。 c部の密度は 1. 78 g/ cm3であった。 Next, a carbon fiber nonwoven fabric substrate having a weight per unit area of 10 g / m 2 was prepared from PAN-based carbon fibers (made by Toho Tenax, diameter 7 μιη, length 13 mm) by the papermaking method. Except for using these raw materials, carbonaceous sheets and molded products were produced in the same manner as in Example 1 and evaluated for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and occurrence of shots. did. The results are shown in Table 1 together with the thickness c of the molded product. The density of part c was 1.78 g / cm 3 .
(比較例 6)  (Comparative Example 6)
実施例 1で用いたフヱノール樹脂が被覆された黒鉛粉末および炭素繊維不織布 を使用した。 フエノール樹脂が被覆された黒鈴粉末を、 10 Omm角の平板金型内 に 750 g/m2堆積させ、 その上に 10 g/m2の炭素繊維不織布を置き、 さら にその上にフエノール樹脂が被覆された黒鉛粉末を 750 g/m2均一に堆積させ た。この樹脂被覆黒鈴粉末を両面に配置した炭素繊維不織布を 80°Cで加圧した後、 冷却し、 炭素質シート (単位面積当たりの重量: 1510 g/m2) を作製した。 この炭素質シートを、 実施例 1と同様に成形し、成形品を得た。 平坦部 cの厚み は、 750 / mであった。得られた成形品の導電性(体積抵抗率)、表面平滑性(繊 維の露出、 膨れ) 、 ショットの発生を評価した。 その結果を成形品の厚み cと共に 表 1に示す。 c部の密度は 2. 01 g/cm3であった。 The graphite powder and carbon fiber nonwoven fabric coated with phenol resin used in Example 1 were used. Black bell powder phenolic resin is coated, 10 Omm angle within the flat die is 750 g / m 2 is deposited, thereon Place the 10 g / m 2 of carbon fiber nonwoven fabric, phenol resin thereon to further The graphite powder coated with was uniformly deposited at 750 g / m 2 . A carbon fiber nonwoven fabric in which this resin-coated black bell powder was placed on both sides was pressed at 80 ° C. and then cooled to prepare a carbonaceous sheet (weight per unit area: 1510 g / m 2 ). This carbonaceous sheet was molded in the same manner as in Example 1 to obtain a molded product. The thickness of the flat part c was 750 / m. The obtained molded product was evaluated for conductivity (volume resistivity), surface smoothness (fiber exposure, swelling), and occurrence of shots. The results are shown in Table 1 together with the thickness c of the molded product. The density of part c was 2.01 g / cm 3 .
表 1 table 1
Figure imgf000015_0001
Figure imgf000015_0001
なお、 体積抵抗率、 表面平滑性 (膨れと繊維の露出) 、 ショットの発生は、 以下 のようにして測定した。 Volume resistivity, surface smoothness (expansion and fiber exposure), and occurrence of shots were measured as follows.
(体積抵抗率)  (Volume resistivity)
成形品の導電性は、 2通りの方法で体積抵抗率を測定して評価した。 一つは、 三 菱化学製ロレスタ H P— 5 0を用いて、 J I S K 7 1 9 4に準拠した方法(四探 針法) により、 成形品の面方向について測定した。  The conductivity of the molded product was evaluated by measuring the volume resistivity by two methods. One was measured with respect to the surface direction of the molded product by using a Loresta HP-550 manufactured by Mitsubishi Chemical Co., Ltd., according to a method (four-probe method) based on JIS K 7 1 94.
もう一つは、成形品の厚み方向の体積抵抗率を、以下の方法によって測定して評 価した。 すなわち、 成形品の平板部分 (a部左側) から 5 c m角に切り出し、 これ を金メッキを施した陰陽両電極で挟み、 4 0 M P a ( 4 0 8 k g f Z c m 2) で加 圧しながら電圧を印加して体積抵抗率を測定した。 In the other, the volume resistivity in the thickness direction of the molded product was measured and evaluated by the following method. In other words, a 5 cm square is cut out from the flat plate part (left side of part a) of the molded product, sandwiched between gold-plated Yin and Yang electrodes, and voltage is applied while applying pressure at 40 MPa (40,8 kgf Z cm 2 ) The volume resistivity was measured by applying.
(表面平滑性)  (Surface smoothness)
成形品の表面を目視で観察し、 S彭れの有無を観察した。 また、表面は、 マイクロ スコープで観察し、 炭素繊維の露出の有無を観察した。  The surface of the molded product was observed visually, and the presence or absence of S-curvature was observed. The surface was observed with a microscope, and the presence or absence of carbon fiber was observed.
(ショットの発生)  (Occurrence of shot)
成形品の a部と b部を切り出し、 これをエポキシ樹脂に埋め込んで研磨した後、 光学顕微鏡で観察し、 成形品の角部分の欠けの有無を観察した。 表 1の結果から明らかなように、 実施例 1〜 3の炭素質シートを使用した場合、 厚み cが 2 0 0 μ πα前後である薄型の成形品 (燃料電池セパレータ) を容易に製造 することができた。 しかも、導電性と表面平滑性に優れ、 ショットの発生も無いこ とが判った。 また、 得られた成形品は、軽く曲げても折れ曲がらず、 強度的にも十 分であった。  The parts a and b of the molded product were cut out, embedded in an epoxy resin and polished, and then observed with an optical microscope to observe the presence or absence of corners on the molded product. As is clear from the results in Table 1, when the carbonaceous sheets of Examples 1 to 3 are used, a thin molded product (fuel cell separator) having a thickness c of around 200 μπα should be easily manufactured. I was able to. Moreover, it was found that the film was excellent in conductivity and surface smoothness, and there was no occurrence of shots. Further, the obtained molded product did not bend even if it was bent lightly, and was sufficient in strength.
これに対し、比較例 1では、基材に織布を用いたので、基材の炭素繊維が伸びず、 a部の角でショットが発生し、 厚み cも 3 0 0 μ πιと厚い上、 導電性も低い。 また、比較例 2では、炭素繊維不織布中に含浸した有機溶剤が原因と思われる膨 れと、 繊維の露出および b部でショットが確認された。  On the other hand, in Comparative Example 1, since the woven fabric was used for the base material, the carbon fiber of the base material did not stretch, shots occurred at the corners of part a, and the thickness c was as thick as 300 μm. Low conductivity. Further, in Comparative Example 2, blistering, which was probably caused by the organic solvent impregnated in the carbon fiber nonwoven fabric, and exposure of the fibers and shots at part b were confirmed.
比較例 3では、炭素繊維不織布および炭素質シートの単位面積当たり'の重量が大 きいため、炭素質シートの成形時に加圧しても、厚み cは 3 6 0 mにもなつてし まう上、黒鉛が炭素繊維不織布の内部にまで入り込むことができず、空隙が発生し、 成形品が上面と下面とに剥離してしまつた。 In Comparative Example 3, the weight per unit area of the carbon fiber nonwoven fabric and the carbonaceous sheet is large. Therefore, even when the carbonaceous sheet is pressed, the thickness c is as high as 3600 m. In addition, graphite could not enter the inside of the carbon fiber nonwoven fabric, and voids were generated, and the molded product was peeled off from the upper and lower surfaces.
比較例 4では、被覆用のフヱノール樹脂量が少ないため、炭素質シートを金型内 に設置する際、黒鉛が脱落し、成形品の表面に炭素繊維の露出が観察された。 また 、 成形品の強度が低く、 ハンドリング時に割れが生じた。  In Comparative Example 4, since the amount of the phenol resin for coating was small, when the carbonaceous sheet was placed in the mold, the graphite dropped out, and the exposure of carbon fibers was observed on the surface of the molded product. In addition, the strength of the molded product was low, and cracking occurred during handling.
比較例 5では、被覆用のフエノール樹脂量が多過ぎるため、 面方向、厚み方向の 体積抵抗率の値が大きく、 導電性が低くなつてしまう。  In Comparative Example 5, since the amount of the phenol resin for coating is too large, the volume resistivity values in the surface direction and the thickness direction are large, and the conductivity is low.
比較例 6では、積層した黒鉛粉末が多過ぎるため、成形品の厚み cは 7 5 0 μ m と厚くなつてしまい、 薄型化が出来なかった。 産業上の利用可^性'  In Comparative Example 6, since the laminated graphite powder was too much, the thickness c of the molded product became as thick as 7500 μm, and the thickness could not be reduced. Industrial applicability
上述した構成を採用した本発明によれば、 セパレータのエッジ部等にショットを 発生することなく、 薄型で、 導電性と表面平滑性に優れた燃料電池セパレータを成 形することのできる炭素質シートおよぴ燃料電池セパレータを提供することができ る。 これにより、 燃料電池セパレータの軽量化および薄型化が可能となるため、 自 動車等に搭载可能な小型の固体高分子型燃料電池を提供することができる。  According to the present invention employing the above-described configuration, a carbonaceous sheet that can be formed into a thin fuel cell separator that is excellent in conductivity and surface smoothness without causing shots at the edge portion or the like of the separator. Furthermore, a fuel cell separator can be provided. As a result, the fuel cell separator can be reduced in weight and thickness, so that a small polymer electrolyte fuel cell that can be mounted on an automobile or the like can be provided.

Claims

請求 の 範 囲 The scope of the claims
1. 1.
単位面積当たりの重量が 1〜30 g/m 2である炭素繊維不織布;および 該炭素繊維不織布の両面に、 3〜20質量%の樹脂を含有する樹脂被覆黒鈴粉末; を有する、 単位面積当たりの重量が 1 ΰ 00 g/m2以下である炭素質シート。A carbon fiber nonwoven fabric having a weight per unit area of 1 to 30 g / m 2 ; and a resin-coated black bell powder containing 3 to 20% by mass of a resin on both surfaces of the carbon fiber nonwoven fabric; Carbonaceous sheet with a weight of 1 ΰ 00 g / m 2 or less.
2. 2.
前記炭素繊維不織布が、 PAN系炭素繊維、 ピッチ系炭素繊維、 レーヨン系炭素 繊維、 フエノール系炭素繊維および黒鉛繊維からなる群より選ばれる少なくとも 1 種の繊維の不織布である請求項 1に記載の炭素質シート。  2. The carbon according to claim 1, wherein the carbon fiber nonwoven fabric is a nonwoven fabric of at least one fiber selected from the group consisting of PAN-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers, phenol-based carbon fibers, and graphite fibers. Quality sheet.
3. 3.
前記樹脂被覆黒鉛粉末を構成する黒鉛粉末の平均粒径が、 1 0〜 1 0 0 μ mである請求項 1 に記載の炭素質シー ト。  2. The carbonaceous sheet according to claim 1, wherein an average particle diameter of the graphite powder constituting the resin-coated graphite powder is 10 to 100 μm.
4. Four.
前記樹脂が、 熱可塑性樹脂、 レゾール型フエノール樹脂、 ノポラック型フエノー ル榭脂、 エポキシ樹脂、 およびエポキシ一フエノール樹脂からなる群より選らばれ る少なくとも 1種の樹脂である請求項 1に記載の炭素質シート。  2. The carbonaceous material according to claim 1, wherein the resin is at least one resin selected from the group consisting of a thermoplastic resin, a resol type phenol resin, a nopolac type phenol resin, an epoxy resin, and an epoxy monophenol resin. Sheet.
5. Five.
前記樹脂被覆黒鉛粉末が、 平均粒径が 15〜 1 10 μ mである請求項 1に記載の 炭素質シート。  The carbonaceous sheet according to claim 1, wherein the resin-coated graphite powder has an average particle size of 15 to 110 µm.
6. 6.
該シートの密度が、 1. 7 g/cm3以上である請求項 1〜 5に記載の炭素質シー The carbonaceous sheet according to any one of claims 1 to 5, wherein the density of the sheet is 1.7 g / cm 3 or more.
7. 7.
請求項 6に記載の炭素質シートを用いた燃料電池セパレータ。  A fuel cell separator using the carbonaceous sheet according to claim 6.
8. 8.
請求項 1〜 5に記載の炭素質シートを圧縮成形した燃料電池セパレータ。 A fuel cell separator obtained by compression-molding the carbonaceous sheet according to claim 1.
9. 9.
炭素系不織布基材の両面に、 樹脂被覆黒鉛粉末を付着させてなる燃料電池セパレ ータ成形用シートであって、  A fuel cell separator molding sheet comprising resin-coated graphite powder adhered to both surfaces of a carbon-based nonwoven fabric substrate,
前記樹脂被覆黒鉛粉末は、 3〜20質量%の樹脂を含み、 前記炭素系不織布基材 は、 目付が 1〜30 g/m2のものであり、 かつ前記成形用シートは、 目付が 10 00 gZm2以下であることを特徴とする燃料電池セパレータ成形用シート。 The resin-coated graphite powder contains 3 to 20% by mass of resin, the carbon-based nonwoven fabric base material has a basis weight of 1 to 30 g / m 2 , and the molding sheet has a basis weight of 10 00 A fuel cell separator molding sheet characterized by having a gZm of 2 or less.
PCT/JP2008/058158 2007-04-25 2008-04-21 Carbonaceous sheet and fuel cell separator using the same WO2008133333A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007115358A JP2008270133A (en) 2007-04-25 2007-04-25 Sheet for molding fuel cell separator, and fuel cell separator using the same
JP2007-115358 2007-04-25

Publications (1)

Publication Number Publication Date
WO2008133333A1 true WO2008133333A1 (en) 2008-11-06

Family

ID=39925779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058158 WO2008133333A1 (en) 2007-04-25 2008-04-21 Carbonaceous sheet and fuel cell separator using the same

Country Status (2)

Country Link
JP (1) JP2008270133A (en)
WO (1) WO2008133333A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391783B2 (en) * 2009-03-31 2014-01-15 戸田工業株式会社 Granular conductive resin composite particles for fuel cell separators
JP2020126757A (en) * 2019-02-04 2020-08-20 トヨタ自動車株式会社 Manufacturing method for fuel cell separator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294610A (en) * 1987-05-27 1988-12-01 Showa Denko Kk Conductive molding plate and its manufacture
JP2002198064A (en) * 2000-12-22 2002-07-12 Nippon Pillar Packing Co Ltd Separator for fuel cell and its manufacturing method
JP2003257446A (en) * 2001-12-26 2003-09-12 Mitsubishi Chemicals Corp Composite material for molding fuel cell separator, manufacturing method therefor, and fuel cell separator by use of composite material
JP2003308853A (en) * 2002-04-15 2003-10-31 Nippon Pillar Packing Co Ltd Separator for fuel cell
JP2005339954A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Prepreg for fuel cell, separator for fuel cell consisting of this prepreg, and manufacturing method for it
JP2006179400A (en) * 2004-12-24 2006-07-06 Dainippon Ink & Chem Inc Fuel cell separator having hydrophilic conductive layer and its manufacturing method
JP2007012292A (en) * 2005-06-28 2007-01-18 Piolax Inc Graphite particle molding and its manufacturing method
JP2007035615A (en) * 2005-06-21 2007-02-08 Dainippon Ink & Chem Inc Fuel cell separator, its manufacturing method and fuel cell using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294610A (en) * 1987-05-27 1988-12-01 Showa Denko Kk Conductive molding plate and its manufacture
JP2002198064A (en) * 2000-12-22 2002-07-12 Nippon Pillar Packing Co Ltd Separator for fuel cell and its manufacturing method
JP2003257446A (en) * 2001-12-26 2003-09-12 Mitsubishi Chemicals Corp Composite material for molding fuel cell separator, manufacturing method therefor, and fuel cell separator by use of composite material
JP2003308853A (en) * 2002-04-15 2003-10-31 Nippon Pillar Packing Co Ltd Separator for fuel cell
JP2005339954A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Prepreg for fuel cell, separator for fuel cell consisting of this prepreg, and manufacturing method for it
JP2006179400A (en) * 2004-12-24 2006-07-06 Dainippon Ink & Chem Inc Fuel cell separator having hydrophilic conductive layer and its manufacturing method
JP2007035615A (en) * 2005-06-21 2007-02-08 Dainippon Ink & Chem Inc Fuel cell separator, its manufacturing method and fuel cell using it
JP2007012292A (en) * 2005-06-28 2007-01-18 Piolax Inc Graphite particle molding and its manufacturing method

Also Published As

Publication number Publication date
JP2008270133A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
CA3029514C (en) Porous base material, porous electrode, carbon fiber paper, method for manufacturing carbon fiber paper, and method for manufacturing porous base material
EP3550650B1 (en) Method for producing separator for fuel cells
JP3903791B2 (en) Conductive resin composition
CN112272692B (en) Conductive adhesive
WO2002021620A1 (en) Separator for fuel cell, process for producing the same, and material therefor
CN114784307B (en) Graphene reinforced expanded graphite/polyimide-polyether-ether-ketone composite bipolar plate and preparation method thereof
WO2008133333A1 (en) Carbonaceous sheet and fuel cell separator using the same
JP2002522885A (en) Layer material
US20080220154A1 (en) Method of forming fluid flow field plates for electrochemical devices
KR101231629B1 (en) PEM fuel cell bipolar plate comprising composite layer comprising CNTs grown on the carbon fiber and method for fabricating the same
KR100631146B1 (en) Method for producing bipolar plate for fuel cell
WO2006062227A1 (en) Sheet made by papermaking process, multilayer sheet and separator for fuel cell
JP5416990B2 (en) Porous carbon electrode substrate, membrane-electrode assembly and solid polymer fuel cell using the same
JP7275539B2 (en) Conductive metal-resin laminate and molded product thereof
CN114759209A (en) Expanded graphite/polyimide-polyether sulfone composite bipolar plate and preparation method thereof
JPWO2002035631A1 (en) Fuel cell separator
JP4761979B2 (en) Raw material composition for fuel cell separator and fuel cell separator
JP2005339953A (en) Prepreg for fuel cell, separator for fuel cell consisting of this prepreg and manufacturing method for it
JP2009280437A (en) Method for producing porous carbon sheet
KR101926458B1 (en) Composite materials separator and method of manufacturing the same
JP2007048558A (en) Separator material for fuel cell and its manufacturing method
JP5681565B2 (en) Molding material for fuel cell separator, method for producing fuel cell separator, and fuel cell separator
KR102641855B1 (en) Separator member for fuel cell and method of manufacturing the same
JP5979529B2 (en) Manufacturing method of fuel cell separator
KR102003962B1 (en) Gasket integral separator of fuel cell and method for manufacturng the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764248

Country of ref document: EP

Kind code of ref document: A1