WO2008132251A1 - Cajón de torsión multilarguero integrado de material compuesto - Google Patents

Cajón de torsión multilarguero integrado de material compuesto Download PDF

Info

Publication number
WO2008132251A1
WO2008132251A1 PCT/ES2007/070086 ES2007070086W WO2008132251A1 WO 2008132251 A1 WO2008132251 A1 WO 2008132251A1 ES 2007070086 W ES2007070086 W ES 2007070086W WO 2008132251 A1 WO2008132251 A1 WO 2008132251A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
integrated
aircraft according
torsion
manufacturing
Prior art date
Application number
PCT/ES2007/070086
Other languages
English (en)
French (fr)
Inventor
María Pilar MUÑOZ LÓPEZ
Francisco José CRUZ DOMÍNGUEZ
José David CANO CEDIEL
Original Assignee
Airbus España, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus España, S.L. filed Critical Airbus España, S.L.
Priority to BRPI0721604-1A priority Critical patent/BRPI0721604B1/pt
Priority to CA2685478A priority patent/CA2685478C/en
Priority to PCT/ES2007/070086 priority patent/WO2008132251A1/es
Priority to ES07730524.1T priority patent/ES2611033T3/es
Priority to EP07730524.1A priority patent/EP2153979B1/en
Priority to US11/825,123 priority patent/US7806367B2/en
Publication of WO2008132251A1 publication Critical patent/WO2008132251A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/065Spars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/001Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings
    • B29D99/0014Producing wall or panel-like structures, e.g. for hulls, fuselages, or buildings provided with ridges or ribs, e.g. joined ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/18Spars; Ribs; Stringers
    • B64C3/185Spars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • B29L2031/3085Wings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina

Definitions

  • the present invention relates to an integrated multilayer twist drawer structure of composite material as well as to a method of manufacturing such a structure.
  • the pieces are made of composite material, they are manufactured by stacking the different layers of fiber and thus forming layer by layer the desired element.
  • the composite material requires at this point a quite expensive curing process to achieve all its properties.
  • WO2004 / 000643A2 and US5817269 focus on the tooling system to enable the manufacture of the entire piece in a single cure with good quality, either with tools that inflate during curing or use the difference in thermal expansion of different materials for exert pressure during high temperature cure.
  • the present invention relates to an integrated structure of multistage torsion box of composite material for aircraft, comprising the following structural elements:
  • the previous torsion box is created starting from individual elements in composite material that are already integrated from the stack and that in turn assume several structural functions (they are part of the stringer, stringer and / or lining at the same time), being achieved by joining several of these elements before the final co-curing phase, a complete integrated structure required.
  • the present invention further relates to a method of manufacturing an integrated multilayer twist drawer structure of composite material for aircraft, comprising the following steps:
  • Figure 1 shows a torsion box of a horizontal stabilizer of an aircraft with a typical multi-rack structure.
  • Figure 2a shows the inside of the wing of a military aircraft with a typical multi-string structure.
  • Figure 2b shows a cross section of the inside of the wing of a military aircraft with a typical multi-strand structure.
  • Figure 2c shows a typical stringer of a wing of a military aircraft with a typical multi-string structure.
  • Figure 3 schematically shows a cross-section of a multi-beam drawer with longitudinal stiffeners, object of the present invention.
  • Figure 4 schematically shows a cross-section of a multi-beam drawer with the structural elements that compose it, object of the present invention.
  • Figure 5 shows in schematic form a structural element type 1 in U that composes a multilevel drawer with longitudinal stiffeners, object of the present invention.
  • Figure 6 shows in schematic form a structural element type 2 in U with a skirt that composes a multistage drawer with longitudinal stiffeners, object of the present invention.
  • Figure 7 shows in schematic form a structural element type 3 in C with a skirt that composes a multistage drawer with longitudinal stiffeners, object of the present invention.
  • Figure 8 shows the flat stacking of a structural element that composes a multi-beam drawer with longitudinal stiffeners, object of the present invention.
  • Figure 9 schematically shows the bending of a structural element that composes a multi-beam drawer with longitudinal stiffeners, object of the present invention.
  • Figure 10 shows the result of a bending and that of a possible second bending of a structural element that composes a multi-beam drawer with longitudinal stiffeners, object of the present invention.
  • Figure 11 shows the union of two structural elements, forming an I-shaped panel and stringers, which make up a multi-beam drawer with longitudinal stiffeners, object of the present invention.
  • Figure 12 shows the union of two structural elements, forming a panel and stringers and stringers in the shape of a T, which make up a multi-beam drawer with longitudinal stiffeners, object of the present invention.
  • Figure 13 shows the position of the rowings that join two structural elements that make up a multi-beam drawer with longitudinal stiffeners, object of the present invention.
  • the invention relates to an integrated structure of a multilayer torsion box made of composite material with integrated stiffeners with a T-shaped or I-shaped cross section, all co-curing.
  • the composite material can be both carbon fiber and glass fiber with thermosetting resin or thermoplastic
  • the main field of application are aeronautical structures of supporting surfaces, although it can also be applied to other structures with similar characteristics.
  • the main structure of the supporting surfaces of the airplanes is composed of leading edge, torsion box and trailing edge.
  • the torsion box is a typical structure composed of an upper panel and a lower panel with thin walls, and front 2 and rear 3 stringers. Within the torsion box we can find other structural elements such as ribs 4 and stringers 5, elements also being necessary stiffeners in some of these components given its extreme thinness.
  • All these elements may or may not be essential, and be more or less effective.
  • the structure most currently used for a torsion box comprises internally between the front 2 and rear 3 stringers several transverse ribs 4 whose main functions are to give torsion rigidity, limit the linings and the longitudinally longitudinal to discretize the buckling loads and maintain the shape of the aerodynamic surface (see Figure
  • This structure is usually also longitudinally stiffened by stringers 5.
  • FIG. 2 Another structural concept of a torsion box is the "multi-beam" (see Figure 2), where the ribs are dispensed with and multiple stringers 6 are introduced, which in turn comprise a cord or foot 7 and a core 8.
  • the objective of this invention is the creation of a highly integrated torsion box structure without ribs, with several stringers 9 and longitudinal stiffeners 10 (stringers) in the form of I or T, to achieve an effective structure in terms of strength / stiffness and under weight.
  • An integrated configuration can thus lead to savings in manufacturing costs and an improvement in quality.
  • the multi-beam drawer object of the present invention is composed of coverings 11 and 12, which are the elements that close the drawer upper and lower, and are characterized by mainly supporting compression-tensile and shear loads in the plane.
  • stringers 10 In order to achieve sufficient rigidity of these panels 11 and 12 and stabilize them with buckling, without increasing their thickness, stringers 10 have been introduced. The stringers 10 also assume part of the longitudinal flows resulting from bending moments.
  • the drawer from the structural point of view comprises the following elements:
  • the production process of a torsion box according to the present invention is carried out in such a way that, at the time of stacking the layers of fiber 20, U-shaped elements 15 (type 1), U with skirt 16 (type 2) or C with skirt 17 (type 3) are formed individually. Each of these elements 15, 16, 17 assumes several structural functions that, when joined together, result in the complete desired configuration. In a final stage, the entire component is cured in a single cycle and a fully integrated multi-beam drawer structure including stringers 10 is achieved.
  • stage 1 the layers 20 of fiberglass or carbon of which each element 15, 16, 17 is composed are stacked flat. These stacks can perfectly carry reinforcements 19, undergo plane changes and have stacking changes as it will then represent part of a panel 11, 12, stringer 9 or stringer 10, as shown in Figure 8.
  • stage 2 the stack is folded. This bending can be done in different ways, preferably by applying a temperature and vacuum cycle 22 that shapes the stack with the required geometry by means of the relevant tool 21 which copies its interior geometry, as shown in Figure 9.
  • stage 3 the different elements are joined to form the integrated structure, according to figures 11 and 12. It is possible that in this phase it is necessary to introduce “rowings” (unidirectional fiber strips that must be of the same material as used in the stacked or of a compatible material) to avoid gaps and thus ensure optimal co-cure ( Figure 13). It is also very possible that continuous stacking on the outside of the drawer is required, which would correspond to pure coatings, elements 18 of type 4.
  • stage 4 the curing of the complete structure is carried out by means of the application of a pressure cycle and temperature, with the help of relevant tooling system that allows adequate compaction of all areas of the structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

Estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave, que comprende un revestimiento inferior (12), un revestimiento superior (11), varios largueros (9), cada uno de los cuales comprende a su vez un cordón (13) y un alma (14), varios larguerillos (10) en el revestimiento inferior (12) y varios larguerillos (10) en el revestimiento superior (11), caracterizada porque la estructura integrada de cajón de torsión mencionada se consigue mediante la unión de elementos estructurales unitarios con forma de U (15), elementos estructurales unitarios con forma de U con faldilla (16) y elementos estructurales unitarios con forma de C con faldilla (17). La invención se refiere también a un método de fabricación de una estructura de un cajón de torsión tal multilarguero de material compuesto para aeronave.

Description

CAJÓN DE TORSIÓN MULTILARGERO INTEGRADO DE MATERIAL COMPUESTO
CAMPO DE LA INVENCIÓN
La presente invención se refiere a una estructura integrada de cajón de torsión multilarguero de material compuesto así como a un método de fabricación de una estructura tal.
ANTECEDENTES DE LA INVENCIÓN
Es comúnmente conocido que Ia industria aeronáutica requiere estructuras que por una parte soporten las cargas a las que son sometidas, cumpliendo altas exigencias de resistencia y rigidez, y por otra parte sean Io más ligeras posibles. Una consecuencia de este requisito es el uso cada vez más extendido de los materiales compuestos en estructuras primarias de aeronaves, que suponen un importante ahorro en peso frente al uso de materiales metálicos. La estructura principal de las superficies sustentadoras de los aviones se compone de borde ataque, cajón de torsión y borde de salida. El cajón de torsión de una aeronave está a su vez compuesto por varios elementos estructurales. Típicamente, el proceso de fabricación de un cajón de torsión es considerablemente manual y se realiza en numerosos pasos. Los elementos estructurales que componen el cajón se fabrican por separado y se unen mecánicamente con ayuda de útiles complicados para conseguir las tolerancias necesarias, que vienen dadas por requerimientos aerodinámicos y estructurales. Esto supone diferentes estaciones de montaje y gran cantidad de elementos de unión, Io cual conlleva penalizaciones en peso, altos costes de producción y ensamblaje, mayor capacidad logística necesaria y peor calidad aerodinámica en superficies exteriores. Si las piezas son de material compuesto, se fabrican apilando las diferentes capas de fibra y formando así capa por capa el elemento deseado. El material compuesto requiere en este punto un proceso de curado bastante costoso para conseguir todas sus propiedades.
Por esta razón, en los últimos años se han dedicado grandes esfuerzos para conseguir un nivel cada vez más alto de integración en Ia producción de cajones de torsión en material compuesto y evitar así los inconvenientes mencionados anteriormente. El problema consiste fundamentalmente en originar Ia suficiente presión en todos los elementos durante el proceso de curado conjunto. Así, existen varios documentos conocidos en los que se describen métodos de fabricación que con ayuda de útiles especiales de curado logran integrar algunos de los elementos estructurales típicos, ensamblando los demás en los siguientes estadios de montaje. Es el caso de las patentes US5216799 (integración de costillas con largueros), EP1074466A1 (integración de costillas) y US5735486 (integración larguerillos-revestimientos). Otros niveles de integración se consiguen con las soluciones presentadas en Ia patente US6237873B1 , donde se trata Ia fabricación de secciones transversales cerradas y su unión posterior, y US6190484B1 , donde se van juntando cajones contiguos para ser curados conjuntamente. También las patentes EP0582160A1 , US6896841 B2, US5454895,
WO2004/000643A2 y US5817269 se centran en el sistema de utillaje para posibilitar Ia fabricación de Ia pieza completa en un solo curado con buena calidad, bien sea con útiles que se inflan durante el curado o que utilizan Ia diferencia de expansión térmica de diferentes materiales para ejercer presión durante el curado a altas temperaturas.
Sin embargo, todas estas soluciones parten de Ia base de "pre-apilar" individualmente los elementos estructurales básicos y, con los útiles adecuados, curarlos conjuntamente, Io cual no constituye una integración completa real, al tiempo que los costes de fabricación por el elevado número de piezas a apilar son altos, existiendo además un paso no uniforme de cargas entre los elementos apilados. La presente invención está orientada a Ia solución de estos inconvenientes.
SUMARIO DE LA INVENCIÓN
Así, Ia presente invención se refiere a una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave, que comprende los siguientes elementos estructurales:
- Revestimiento inferior - Revestimiento superior
- Varios largueros, que a su vez se componen de:
- Cordón - Alma
- Varios larguerillos en el revestimiento superior - Varios larguerillos en el revestimiento inferior
El cajón de torsión anterior se crea partiendo de elementos individuales en material compuesto que están integrados ya desde el apilado y que asumen a su vez varias funciones estructurales (forman parte de larguerillo, larguero y/o revestimiento al mismo tiempo), consiguiéndose, al unir varios de estos elementos antes de Ia fase final de co-curado, una estructura completa integrada requerida. Esto significa tener todas las ventajas que una estructura integrada conlleva, además de un mayor ahorro de costes en fabricación al tener menos piezas que apilar y un paso más uniforme de cargas entre los elementos apilados.
La presente invención se refiere además a un método de fabricación de una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave, que comprende las etapas siguientes:
1 ) apilado de un compuesto con o sin refuerzos integrados, realizado por cualquier procedimiento manual o automático; 2) doblado del laminado o laminados mediante Ia aplicación del ciclo apropiado y con el útil pertinente;
3) unión de los diversos elementos que compondrán Ia estructura deseada; 4) consolidación de Ia estructura completa mediante Ia aplicación de un único ciclo de presión y temperatura.
Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que Ie acompañan.
DESCRIPCIÓN DE LAS FIGURAS
La figura 1 muestra un cajón de torsión de un estabilizador horizontal de una aeronave con una estructura multicostilla típica.
La figura 2a muestra el interior del ala de un avión militar con una estructura multilarguero típica.
La figura 2b muestra una sección transversal del interior del ala de un avión militar con una estructura multilarguero típica. La figura 2c muestra un larguero típico de un ala de un avión militar con una estructura multilarguero típica.
La figura 3 muestra esquemáticamente una sección transversal de un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención. La figura 4 muestra esquemáticamente una sección transversal de un cajón multilarguero con los elementos estructurales que Io componen, objeto de Ia presente invención.
La figura 5 muestra en esquema un elemento estructural tipo 1 en U que compone un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención. La figura 6 muestra en esquema un elemento estructural tipo 2 en U con faldilla que compone un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención.
La figura 7 muestra en esquema un elemento estructural tipo 3 en C con faldilla que compone un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención.
La figura 8 muestra el apilado en plano de un elemento estructural que compone un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención. La figura 9 muestra esquemáticamente el doblado de un elemento estructural que compone un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención.
La figura 10 muestra el resultado de un doblado y el de un posible segundo doblado de un elemento estructural que compone un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención.
La figura 11 muestra Ia unión de dos elementos estructurales, formando panel y larguerillos en forma de I, que componen un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención.
La figura 12 muestra Ia unión de dos elementos estructurales, formando panel y largueros y larguerillos en forma de T, que componen un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención.
La figura 13 muestra Ia posición de los rowings que unen dos elementos estructurales que componen un cajón multilarguero con rigidizadores longitudinales, objeto de Ia presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La invención se refiere a una estructura integrada de un cajón de torsión multilarguero de material compuesto con rigidizadores integrados con sección transversal en forma de T o de I, todo ello co-curado. El material compuesto puede ser tanto fibra de carbono como fibra de vidrio con resina termoestable o termoplástica. El principal campo de aplicación son estructuras aeronáuticas de superficies sustentadoras, si bien puede aplicarse también a otras estructuras con características similares.
Se habla de estructura integrada cuando los distintos elementos estructurales sometidos a diferentes esfuerzos (cortantes, normales, etc.), están fabricados de una vez o parten de una misma pieza. Ésta es otra ventaja del uso de los materiales compuestos ya que, por su condición de capas independientes que se pueden ir apilando en Ia forma deseada, ofrecen Ia posibilidad de integrar más Ia estructura, Io que además provoca un ahorro de costes al tener menos piezas individuales que ensamblar.
La estructura principal de las superficies sustentadoras de los aviones se compone de borde ataque, cajón de torsión y borde de salida. El cajón de torsión es una estructura típica compuesta por un panel superior y un panel inferior de paredes delgadas, y largueros anterior 2 y posterior 3. Dentro del cajón de torsión podemos encontrar otros elementos estructurales como costillas 4 y larguerillos 5, siendo también necesarios elementos rigidizadores en algunos de estos componentes dada su extrema delgadez.
Dependiendo de los requerimientos tanto estructurales, como de fabricación, mantenibilidad, certificación, etc. todos estos elementos pueden ser o no imprescindibles, y resultar más o menos eficaces.
La estructura más utilizada actualmente para un cajón de torsión comprende interiormente entre los largueros anterior 2 y posterior 3 varias costillas 4 transversales cuyas funciones principales son dar rigidez a torsión, limitar los revestimientos y los larguerillos longitudinalmente para discretizar las cargas de pandeo y mantener Ia forma de Ia superficie aerodinámica (ver Figura
1 ). Esta estructura suele además estar rigidizada longitudinalmente por larguerillos 5.
Otro concepto estructural de un cajón de torsión es el "multilarguero" (ver Figura 2), donde se prescinde de las costillas y se introducen múltiples largueros 6, los cuales comprenden a su vez un cordón o pie 7 y un alma 8. El objetivo de esta invención es Ia creación de una estructura altamente integrada de cajón de torsión sin costillas, con varios largueros 9 y rigidizadores longitudinales 10 (larguerillos) en forma de I o T, para conseguir una estructura eficaz en cuanto a resistencia/rigidez y bajo peso. Una configuración integrada puede así suponer un ahorro en costes de fabricación y una mejora de Ia calidad.
El cajón multilarguero objeto de Ia presente invención se compone de revestimientos 11 y 12, que son los elementos que cierran el cajón superior e inferiormente, y se caracterizan por soportar principalmente cargas de compresión-tracción y cortadura en el plano. Para conseguir Ia suficiente rigidez de estos paneles 11 y 12 y estabilizarlos a pandeo, sin aumentar su espesor, se han introducido larguerillos 10. Los larguerillos 10 asumen también parte de los flujos longitudinales resultantes de momentos de flexión.
Por otra parte están los múltiples largueros 9, que son, al igual que los revestimientos 11 y 12, estructuras típicas de pared delgada. Han de soportar mayoritariamente cargas de flexión y torsión. De una manera simplificada, los flujos de cortadura resultantes serán soportados por el alma del larguero 9, mientras que los pies o cordones de los largueros 9 soportarán las cargas de tracción y compresión que resultan de Ia flexión. Por Io tanto, el cajón desde el punto de vista estructural, comprende los elementos siguientes:
• Revestimiento inferior 12
• Revestimiento superior 11
• Varios largueros 9, que a su vez se componen de o Cordón 13 o Alma 14
• Varios larguerillos 10 en el revestimiento superior 11
• Varios larguerillos 10 en el revestimiento inferior 12
El proceso de producción de un cajón de torsión según Ia presente invención se realiza de tal forma que, en el momento de apilar las capas de fibra 20, se van formando individualmente elementos con forma de U 15 (tipo 1 ), U con faldilla 16 (tipo 2) o C con faldilla 17 (tipo 3). Cada uno de estos elementos 15, 16, 17 asume varias funciones estructurales que al unirlos dan como resultado Ia configuración completa deseada. En una última etapa se cura todo el componente en un solo ciclo y se consigue una estructura completamente integrada de cajón multilarguero incluyendo larguerillos 10.
Seguidamente se van a describir los pasos detallados del proceso de fabricación de un cajón de torsión multilarguero de material compuesto, que se divide en cuatro etapas:
En Ia etapa 1 se apilan en plano las capas 20 de fibra de vidrio o carbono de las que se compone cada elemento 15, 16, 17, por separado. Estos apilados pueden perfectamente llevar refuerzos 19, sufrir cambios de plano y tener cambios de apilado según vaya a representar luego parte de un panel 11 , 12, larguero 9 o larguerillo 10, según se muestra en Ia Figura 8.
En Ia etapa 2 el apilado se dobla. Este doblado puede realizarse de diferentes maneras, preferiblemente mediante Ia aplicación de un ciclo de temperatura 22 y vacío que moldea el apilado con Ia geometría requerida mediante el pertinente útil 21 el que copia su geometría interior, según se muestra en Ia Figura 9.
Si se requiere un larguerillo 10 con forma de I, podría ser necesario doblar una segunda vez (Figura 10) para conseguir un elemento 16 del tipo 2.
En Ia etapa 3 los distintos elementos se unen para formar Ia estructura integrada, según las figuras 11 y 12. Es posible que en esta fase sea necesario introducir "rowings" (tiras de fibra unidireccionales que deben ser del mismo material que el utilizado en los apilados o de un material compatible) para evitar huecos y asegurar así un co-curado óptimo (Figura 13). Es muy posible también que se requieran apilados continuos en el exterior del cajón, Io que correspondería a revestimientos puros, elementos 18 del tipo 4. En Ia etapa 4 se lleva a cabo el curado de Ia estructura completa mediante Ia aplicación de un ciclo de presión y temperatura, con Ia ayuda del pertinente sistema de utillaje que permita Ia adecuada compactación de todas las zonas de Ia estructura.
En Ia realización que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave, que comprende un revestimiento inferior (12), un revestimiento superior (11 ), varios largueros (9), cada uno de los cuales comprende a su vez un cordón (13) y un alma (14), varios larguerillos (10) en el revestimiento inferior (12) y varios larguerillos (10) en el revestimiento superior (11 ), caracterizada porque Ia estructura integrada de cajón de torsión mencionada se consigue mediante Ia unión de elementos estructurales unitarios con forma de U (15), elementos estructurales unitarios con forma de U con faldilla (16) y elementos estructurales unitarios con forma de C con faldilla (17).
2. Estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según Ia reivindicación 1 caracterizada porque el material compuesto es fibra de carbono.
3. Estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según Ia reivindicación 1 caracterizada porque el material compuesto es fibra de vidrio con resina termoestable.
4. Estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según Ia reivindicación 1 caracterizada porque el material compuesto es fibra de vidrio con resina termoplástica.
5. Estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según cualquiera de las reivindicaciones anteriores caracterizada porque comprende costillas transversales que confieren a Ia citada estructura mayor rigidez a torsión y pandeo.
6. Método de fabricación de una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave, caracterizado porque comprende las etapas de:
a) apilado en plano las capas (20) de fibra de las que se compone cada elemento (15, 16, 17) por separado; b) doblado del apilado; c) unión de los distintos elementos (15, 16, 17) para conformar Ia estructura integrada del cajón de torsión multilarguero; d) curado de Ia estructura completa mediante Ia aplicación de un ciclo de presión y temperatura, con Ia ayuda de un sistema de utillaje (21 ) que permita Ia adecuada compactación de todas las zonas de Ia estructura.
7. Método de fabricación de una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según Ia reivindicación 6, caracterizado porque los apilados de las capas (20) de fibra de las que se compone cada elemento (15, 16, 17) comprenden refuerzos (19).
8. Método de fabricación de una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según cualquiera de las reivindicaciones 6-7, caracterizado porque los apilados de las capas (20) de fibra de las que se compone cada elemento (15, 16, 17) sufren cambios de plano y cambios de apilado según vayan a formar parte posteriormente de un panel (11 , 12), de un larguero (9) o de un larguerillo (10).
9. Método de fabricación de una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según cualquiera de las reivindicaciones 6 a 8, caracterizado porque el doblado del apilado de las capas (20) de fibra de las que se compone cada elemento (15, 16, 17) se realiza mediante Ia aplicación de un ciclo de temperatura (22) y vacío que moldea el apilado con Ia geometría requerida mediante un útil (21 ) que copia su geometría interior.
10. Método de fabricación de una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según cualquiera de las reivindicaciones 6 a 9, caracterizado porque en Ia etapa de unión de los distintos elementos (15, 16, 17) para conformar Ia estructura integrada del cajón de torsión multilarguero se introducen tiras de fibra unidireccionales del llamadas rowings.
11. Método de fabricación de una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según Ia reivindicación 10, caracterizado porque las tiras de fibra unidireccionales son del mismo material que el del apilado.
12. Método de fabricación de una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según Ia reivindicación 10, caracterizado porque las tiras de fibra unidireccionales son de un material compatible con el material del apilado.
13. Método de fabricación de una estructura integrada de cajón de torsión multilarguero de material compuesto para aeronave según cualquiera de las reivindicaciones 6 a 12, caracterizado porque en Ia etapa de unión de los distintos elementos (15, 16, 17) para conformar Ia estructura integrada del cajón de torsión multilarguero se introducen apilados continuos en el exterior del citado cajón de torsión, que corresponden a revestimientos puros (18).
PCT/ES2007/070086 2007-04-30 2007-04-30 Cajón de torsión multilarguero integrado de material compuesto WO2008132251A1 (es)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0721604-1A BRPI0721604B1 (pt) 2007-04-30 2007-04-30 Método para a fabricação de uma estrutura de caixa de torção de multilongarinas integradas de material compósito para aeronave
CA2685478A CA2685478C (en) 2007-04-30 2007-04-30 Integrated multispar torsion box of composite material
PCT/ES2007/070086 WO2008132251A1 (es) 2007-04-30 2007-04-30 Cajón de torsión multilarguero integrado de material compuesto
ES07730524.1T ES2611033T3 (es) 2007-04-30 2007-04-30 Cajón de torsión multilargero integrado de material compuesto
EP07730524.1A EP2153979B1 (en) 2007-04-30 2007-04-30 Multispar torsion box made from composite material
US11/825,123 US7806367B2 (en) 2007-04-30 2007-07-02 Integrated multispar torsion box of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2007/070086 WO2008132251A1 (es) 2007-04-30 2007-04-30 Cajón de torsión multilarguero integrado de material compuesto

Publications (1)

Publication Number Publication Date
WO2008132251A1 true WO2008132251A1 (es) 2008-11-06

Family

ID=39885818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070086 WO2008132251A1 (es) 2007-04-30 2007-04-30 Cajón de torsión multilarguero integrado de material compuesto

Country Status (6)

Country Link
US (1) US7806367B2 (es)
EP (1) EP2153979B1 (es)
BR (1) BRPI0721604B1 (es)
CA (1) CA2685478C (es)
ES (1) ES2611033T3 (es)
WO (1) WO2008132251A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735502A1 (en) 2012-11-21 2014-05-28 Airbus Operations S.L. An optimized torsion box for an aircraft
EP2735504A1 (en) 2012-11-22 2014-05-28 Airbus Operations S.L. A highly integrated structure including leading and trailing edge ribs for an aircraft lifting surface
EP2889214A1 (en) 2013-12-31 2015-07-01 Airbus Operations, S.L. Highly integrated infused box made of composite material and method of manufacturing
EP4005919A1 (en) 2020-11-25 2022-06-01 Airbus Operations, S.L.U. Multispar lifting surface

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2352941B1 (es) * 2008-05-16 2012-01-25 Airbus Operations, S.L. Estructura integrada de aeronave en material compuesto
ES2371401B1 (es) * 2008-06-27 2012-11-07 Airbus Operations, S.L. Estructura de superficie sustentadora de aeronave.
ES2364109B1 (es) * 2008-11-27 2012-07-04 Airbus Operations, S.L. Un herraje delantero de trimado y su ensamblaje a la unión a tracción de los dos cajones laterales del estabilizador horizontal de un avión
US8074694B2 (en) * 2009-05-28 2011-12-13 The Boeing Company Stringer transition method
ES2383668B1 (es) * 2009-11-26 2013-05-03 Airbus Operations, S.L. Union de elementos de estructuras aeronauticas con otros elementos termoplasticos
US8585856B1 (en) 2010-05-13 2013-11-19 Textron Innovations Inc. Process for fabricating aircraft parts using an integrated form
CN103249542A (zh) * 2010-07-13 2013-08-14 里尔喷射机公司 复合结构及其形成方法
US9017510B2 (en) * 2011-12-13 2015-04-28 The Boeing Company Method and apparatus for fabricating large scale integrated airfoils
US9545757B1 (en) 2012-02-08 2017-01-17 Textron Innovations, Inc. Composite lay up and method of forming
US9051062B1 (en) 2012-02-08 2015-06-09 Textron Innovations, Inc. Assembly using skeleton structure
US9302455B1 (en) 2012-02-08 2016-04-05 Textron Innovations, Inc. Fast cure process
US9649820B1 (en) 2012-02-08 2017-05-16 Textron Innovations, Inc. Assembly using skeleton structure
US9050757B1 (en) 2012-02-08 2015-06-09 Textron Innovations, Inc. System and method for curing composites
ES2584557T3 (es) * 2012-08-16 2016-09-28 Airbus Operations S.L. Estructura interna altamente integrada de un cajón de torsión de una superficie sustentadora de una aeronave y método para su producción
EP2700574B1 (en) * 2012-08-22 2016-08-17 Airbus Operations GmbH Passive load alleviation for a fiber reinforced wing box of an aircraft with a stiffened shell structure
US9415858B2 (en) * 2012-08-28 2016-08-16 The Boeing Company Bonded and tailorable composite assembly
US9527575B2 (en) * 2012-11-26 2016-12-27 The Boeing Company Multi-box wing spar and skin
ES2674659T3 (es) 2013-09-23 2018-07-03 Airbus Operations S.L. Método para fabricar una caja de torsión aeronáutica, caja de torsión y herramienta para fabricar una caja de torsión aeronáutica
FR3015426B1 (fr) * 2013-12-20 2017-10-27 Airbus Operations Sas Procede de realisation d'un caisson central de voilure
EP2889215A1 (en) * 2013-12-27 2015-07-01 Airbus Operations S.L. Horizontal tail plane of an aircraft
EP2910365B1 (en) 2014-02-21 2017-04-26 Airbus Operations GmbH Composite structural element and torsion box
EP3095691A1 (en) 2015-05-22 2016-11-23 Airbus Operations, S.L. Multi-spar torsion box structure
US10005267B1 (en) 2015-09-22 2018-06-26 Textron Innovations, Inc. Formation of complex composite structures using laminate templates
US10207789B2 (en) 2016-08-16 2019-02-19 The Boeing Company Aircraft composite wingbox integration
US10421528B2 (en) 2016-08-16 2019-09-24 The Boeing Company Planked stringers that provide structural support for an aircraft wing
ES2764122T3 (es) 2016-12-02 2020-06-02 Airbus Operations Sl Integración del borde de ataque de un estabilizador de aeronave con el cajón de torsión y el fuselaje
EP3552952B1 (en) 2018-04-11 2021-03-03 Airbus Operations, S.L. Aircraft laminar multispar lifting surface
KR102324411B1 (ko) * 2019-04-19 2021-11-15 한국항공우주산업 주식회사 다중스파 일체형 토션박스 제작방법 및 상기 제작방법에 의한 토션박스
ES2953735T3 (es) 2019-12-11 2023-11-15 Airbus Operations Slu Borde de salida para una superficie de elevación integrada multilarguero de material compuesto y método de fabricación de dicho borde de salida
EP3854558B1 (en) 2020-01-27 2023-05-24 Airbus Operations, S.L.U. Modular tooling for multispar torsion box
EP4122682A1 (en) * 2021-07-21 2023-01-25 Airbus Operations GmbH Method of manufacturing a composite box structure

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2440831A1 (fr) * 1978-11-07 1980-06-06 Dassault Avions Panneaux a base de fibres a haute resistance, particulierement applicables a la construction des avions
US5216799A (en) 1990-11-09 1993-06-08 British Aerospace Public Limited Company Carbon fibre composite wing manufacture
EP0582160A1 (en) 1992-08-03 1994-02-09 FINMECCANICA S.p.A., RAMO AZIENDALE ALENIA System for the manufacturing of carbon fibre structures and relevant manufacturing process, suitable for aeronautic applications
US5735486A (en) 1995-08-11 1998-04-07 Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. Aircraft wing
US5817269A (en) 1996-10-25 1998-10-06 The Boeing Company Composite fabrication method and tooling to improve part consolidation
EP0967147A2 (en) * 1998-06-23 1999-12-29 Fuji Jukogyo Kabushiki Kaisha Composite material wing structure
EP1074466A1 (en) 1999-08-06 2001-02-07 Fuji Jukogyo Kabushiki Kaisha Method of fabricating a composite material wing
US6190484B1 (en) 1999-02-19 2001-02-20 Kari Appa Monolithic composite wing manufacturing process
US20020195524A1 (en) * 1999-07-19 2002-12-26 Fuji Jukogyo Kabushiki Kaisha Method of fabricating a wing of composite material
WO2004000643A2 (en) 2002-06-20 2003-12-31 Rocky Mountain Composites, Inc. Single piece co-cure composite wing
ES2205961A1 (es) * 2001-02-13 2004-05-01 Eads Construcciones Aeronauticas, S.A. Procedimiento de fabricacion de elementos de material compuesto mediante la tecnoclogia del coencolado.
US6896841B2 (en) 2003-03-20 2005-05-24 The Boeing Company Molding process and apparatus for producing unified composite structures
EP1609584A1 (en) * 2004-06-21 2005-12-28 Alenia Aeronautica S.P.A. A method of manufacturing composite structural beams for aircraft

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE603773C (de) * 1931-10-14 1934-10-08 Provencale De Const Aeronautiq Flugzeugtragfluegel
US4749155A (en) * 1985-09-30 1988-06-07 The Boeing Company Method of making wing box cover panel
US6284089B1 (en) * 1997-12-23 2001-09-04 The Boeing Company Thermoplastic seam welds
JP2000043796A (ja) * 1998-07-30 2000-02-15 Japan Aircraft Development Corp 複合材の翼形構造およびその成形方法
US7681835B2 (en) * 1999-11-18 2010-03-23 Rocky Mountain Composites, Inc. Single piece co-cure composite wing
JP4416900B2 (ja) * 2000-03-10 2010-02-17 富士重工業株式会社 複合材パネルおよびその製造方法
US6386481B1 (en) * 2001-01-08 2002-05-14 Patria Finavicomp Oy Arrangement for fastening stringers to aircraft wing ribs
US20030226935A1 (en) * 2001-11-02 2003-12-11 Garratt Matthew D. Structural members having improved resistance to fatigue crack growth

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2440831A1 (fr) * 1978-11-07 1980-06-06 Dassault Avions Panneaux a base de fibres a haute resistance, particulierement applicables a la construction des avions
US5216799A (en) 1990-11-09 1993-06-08 British Aerospace Public Limited Company Carbon fibre composite wing manufacture
EP0582160A1 (en) 1992-08-03 1994-02-09 FINMECCANICA S.p.A., RAMO AZIENDALE ALENIA System for the manufacturing of carbon fibre structures and relevant manufacturing process, suitable for aeronautic applications
US5454895A (en) 1992-08-03 1995-10-03 Finmeccanica S.P.A. - Ramo Aziendale Alenia Process for manufacturing fiber reinforced structures suitable for aeronautic applications
US5735486A (en) 1995-08-11 1998-04-07 Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. Aircraft wing
US5817269A (en) 1996-10-25 1998-10-06 The Boeing Company Composite fabrication method and tooling to improve part consolidation
EP0967147A2 (en) * 1998-06-23 1999-12-29 Fuji Jukogyo Kabushiki Kaisha Composite material wing structure
US6237873B1 (en) 1998-06-23 2001-05-29 Fuji Jukogyo Kabushiki Kaisha Composite material wing structure
US6190484B1 (en) 1999-02-19 2001-02-20 Kari Appa Monolithic composite wing manufacturing process
US20020195524A1 (en) * 1999-07-19 2002-12-26 Fuji Jukogyo Kabushiki Kaisha Method of fabricating a wing of composite material
EP1074466A1 (en) 1999-08-06 2001-02-07 Fuji Jukogyo Kabushiki Kaisha Method of fabricating a composite material wing
ES2205961A1 (es) * 2001-02-13 2004-05-01 Eads Construcciones Aeronauticas, S.A. Procedimiento de fabricacion de elementos de material compuesto mediante la tecnoclogia del coencolado.
WO2004000643A2 (en) 2002-06-20 2003-12-31 Rocky Mountain Composites, Inc. Single piece co-cure composite wing
US6896841B2 (en) 2003-03-20 2005-05-24 The Boeing Company Molding process and apparatus for producing unified composite structures
EP1609584A1 (en) * 2004-06-21 2005-12-28 Alenia Aeronautica S.P.A. A method of manufacturing composite structural beams for aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2153979A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735502A1 (en) 2012-11-21 2014-05-28 Airbus Operations S.L. An optimized torsion box for an aircraft
US9216812B2 (en) 2012-11-21 2015-12-22 Airbus Operations S.L. Optimized torsion box for an aircraft
EP2735504A1 (en) 2012-11-22 2014-05-28 Airbus Operations S.L. A highly integrated structure including leading and trailing edge ribs for an aircraft lifting surface
EP2889214A1 (en) 2013-12-31 2015-07-01 Airbus Operations, S.L. Highly integrated infused box made of composite material and method of manufacturing
EP4005919A1 (en) 2020-11-25 2022-06-01 Airbus Operations, S.L.U. Multispar lifting surface
US11708146B2 (en) 2020-11-25 2023-07-25 Airbus Operations S.L.U. Multispar lifting surface

Also Published As

Publication number Publication date
CA2685478C (en) 2012-08-14
BRPI0721604B1 (pt) 2018-06-26
ES2611033T3 (es) 2017-05-04
US7806367B2 (en) 2010-10-05
EP2153979B1 (en) 2016-10-19
US20080265093A1 (en) 2008-10-30
EP2153979A1 (en) 2010-02-17
BRPI0721604A2 (pt) 2013-01-22
CA2685478A1 (en) 2008-11-06
EP2153979A4 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
WO2008132251A1 (es) Cajón de torsión multilarguero integrado de material compuesto
ES2352941B1 (es) Estructura integrada de aeronave en material compuesto
KR102067291B1 (ko) 접착식 복합 에어포일 및 이의 제작 방법
RU2569515C2 (ru) Составной армирующий элемент для обеспечения высокой устойчивости к оттягиванию композитного стрингера
US9592651B2 (en) Composite structures having reduced area radius fillers and methods of forming the same
US9193433B2 (en) Double-sided stiffened composite panel and method for producing such a panel
US9586379B2 (en) Joining curved composite sandwich panels
EP2318466B1 (en) Method for manufacturing a composite structure and intermediate composite structure
US20130011605A1 (en) Manufacture of articles formed of composite materials
US20120148789A1 (en) Aircraft structure with structural parts connected by nanostructure and a method for making said aircraft structure
CA2804095A1 (en) Aircraft fuselage made out with composite material and manufacturing processes
RU2693154C2 (ru) Панель самолета, изготовленная из многослойных композитов, и способ ее изготовления
US9840041B2 (en) Stiffening element and reinforced structure
US9162417B2 (en) Method of manufacturing a structure
JP7291552B2 (ja) 複合材パネル用のコア構造体、これを含む航空機、及び、関連する方法
JPS61295198A (ja) 空力ロ−タ・ブレ−ド・アセンブリの後部整流構造
US20210155337A1 (en) Net edge composite core splices for aircraft wing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07730524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2685478

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2007730524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007730524

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0721604

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091029