WO2008130058A1 - Stator, its manufacturing method, and motor - Google Patents

Stator, its manufacturing method, and motor Download PDF

Info

Publication number
WO2008130058A1
WO2008130058A1 PCT/JP2008/058001 JP2008058001W WO2008130058A1 WO 2008130058 A1 WO2008130058 A1 WO 2008130058A1 JP 2008058001 W JP2008058001 W JP 2008058001W WO 2008130058 A1 WO2008130058 A1 WO 2008130058A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
self
insulating paper
stator
slot
Prior art date
Application number
PCT/JP2008/058001
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeto Takeuchi
Tomotsugu Taira
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008130058A1 publication Critical patent/WO2008130058A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines

Definitions

  • the present invention relates to a stator, a manufacturing method thereof, and a motor, and more particularly, to a stator capable of preventing electric field concentration due to an air gap between insulating paper and a coil and preventing insulation from being deteriorated, and a manufacturing method thereof.
  • the present invention relates to a motor including the stator.
  • a stator constituting a motor is formed by laminating a steel plate including an annular yoke, a plurality of teeth projecting radially inward from the yoke, and a slot formed between adjacent teeth.
  • a stator is formed from a stator core, and a stator is manufactured by fitting between teeth while a coil is inserted into the slot.
  • Concentrated winding method is a form in which a coil is mounted for each tooth, and distributed winding method spans multiple teeth. The coil is wound.
  • the protruding length of the coil end from the end of the stator core can be relatively shortened, and therefore the motor can be downsized.
  • the space factor which is the ratio of the coil cross section to the slot cross section, can be easily increased, and the production efficiency is also high.
  • the reluctance torque is relatively large, and furthermore, the amount of heat generated when the rotor is driven is small, so that the output performance of the motor (rotor performance and torque performance of the rotor) increases. .
  • slot insulation paper is interposed between the slot wall surface and the coil from the viewpoint of ensuring insulation between the slot wall surface and the coil end.
  • Interphase insulation paper is provided for insulation between different phase coils. After the insulation paper and coil are formed, coil the varnish from the coil end.
  • WO 2008/130058 It is impregnated in the coil, and the insulation between the stator core and the coil and between the different phase coils is ensured by curing the varnish.
  • the impregnation of the varnish has not only the sealing of the coil but also the purpose of ensuring insulation and promoting the heat radiation from the coil by filling the gap between the coils with the varnish.
  • FIGS. Fig. 10 shows the air gap A between the U-phase coil Q 1 and the V-phase coil Q 2 and the interphase insulating paper P 1 interposed between them at the coil end of the distributed stator. Explains the situation that is occurring.
  • each coil is impregnated with varnish W
  • each coil Q l, Q 2 and interphase insulating paper P 1 are not impregnated with varnish W, resulting in an air gap A.
  • Fig. 11 is common to both concentrated and distributed stators, and the air gap between slot insulation paper P2 and coil Q installed in slot R Explains the situation where A occurs. Even in slot R, varnish W is impregnated between the coils, but varnish becomes difficult to impregnate between the slot wall surface and coil Q as the coil space factor increases. It tends to occur.
  • the varnish is not sufficiently impregnated, it will not be possible to sufficiently obtain the effects of ensuring insulation and promoting heat dissipation as described above, and electric field concentration will occur in the air gap where the varnish is not impregnated. The part where insulation is severe will occur. Furthermore, the heat release performance of the air gap is significantly reduced as compared with the varnish-impregnated portion.
  • Patent Document 1 discloses a technique related to an electric wire for a coil of an electric motor. Specifically, an insulating coating made of polyester is formed on the surface of a conductor, and further, an inorganic filler is contained on the outside thereof. A fused film is formed. With this fusion coating, the heat dissipation of the electric wire can be improved.
  • the present invention has been made in view of the above-described problems, and it is possible to effectively generate an air gap between the coil and the stator core without lowering the coil space factor at an inexpensive manufacturing cost. It is an object of the present invention to provide a stator that can be eliminated, a method of manufacturing the stator, and a motor including the stator.
  • a stator according to the present invention includes an annular yoke, a plurality of teeth projecting radially inward from the yoke, and a slot formed between adjacent teeth.
  • a stator insulating paper having a self-bonding layer on at least one side surface between the coil and the teeth. The self-bonding layer is welded to the coil.
  • slot insulating paper is disposed in the slot, and this slot insulating paper is of a concentrated type that ensures insulation between the coil made of the conductor and the slot wall surface of the stator core. Intended for the stator.
  • the slot insulating paper used is, for example, a high heat-resistant resin material on at least one side surface of a polymer paper sheet having insulating performance such as polyethylene telenaphthalate (PET) or polyethylene naphthalate (PEN).
  • a polymer paper sheet having insulating performance such as polyethylene telenaphthalate (PET) or polyethylene naphthalate (PEN).
  • PET polyethylene telenaphthalate
  • PEN polyethylene naphthalate
  • An insulating paper having a self-bonding layer made of is used.
  • the self-bonding layer can be formed from a polyamide resin such as nylon 6, nylon 6-6, nylon 6 or 10, for example.
  • the varnish is impregnated in the coil after the coil is formed, but the self-bonding layer is heated and melted to be generated between the coil conductor and the slot insulating paper.
  • the self-bonding layer melted in the air gearup portion where the varnish is not impregnated is impregnated by the surface tension, and the air gap portion is filled.
  • the fused layer is solidified, and a stator without an air gap can be manufactured between the coil and the insulating paper.
  • the configuration in which the self-bonding layer is provided on the insulating paper does not reduce the coil space factor, and moreover, the manufacturing cost compared to the case where the self-bonding layer is formed on the conductive wire. Will be much cheaper.
  • the coil is a distributed multiphase coil, and between the U phase coil and the V phase coil and between the V phase coil and the w phase coil in the coil end.
  • interphase insulating papers each having a self-bonding layer on both sides are interposed, and the self-bonding layer is bonded to the coil.
  • the stator of the present invention is intended for a distributed type stator having a U-phase coil, a V-phase coil, and a W-phase coil.
  • this distributed type stator in addition to the slot insulating paper, Interphase insulating paper is installed to insulate between the different phase coils at the coil end.
  • the interphase insulating paper interposed between the U-phase coil and the V-phase coil and between the V-phase coil and the W-phase coil the interphase insulating paper provided with self-bonding layers on both sides of the above-mentioned polymer material is used. use.
  • the self-bonding layer of the interphase insulating paper can also be formed from the above-mentioned high heat-resistant resin material, and the air gap generated between each phase coil and the interphase insulating paper is filled with the self-bonding layer by heat treatment. be able to.
  • a motor having the above-described concentrated-winding type stator or distributed-winding type stator, a motor having high heat dissipation and high insulation safety can be obtained.
  • This insulation safety means that the occurrence of electric field concentration can be eliminated to prevent the occurrence of severely insulating parts, resulting in a low probability of motor dielectric breakdown.
  • Such high-performance motors have a wide range of applications, including not only application to next-generation SR motors for hybrid vehicles, but also motors used in various home appliances and model playground equipment.
  • the stator manufacturing method is a stator manufacturing method in which a coil is concentratedly wound, and includes a step of preparing slot insulating paper having a self-bonding layer on at least one side surface, and a stator core.
  • a step of manufacturing a step of disposing the slot insulating paper in the spout in a posture in which the self-bonding layer is directed to the side opposite to the wall surface of the spout, and a coil around each tooth.
  • the varnish is impregnated from the coil end after the coil is formed, and then the heat treatment is performed.
  • the heat treatment is performed prior to the varnish impregnation, the self-bonding layer is melted.
  • a method of melting the self-bonding layer in the heat treatment step after varnish impregnation may be used.
  • this heat treatment may be any method of current heating and furnace heating, and is preferably performed in a temperature atmosphere that is higher than the melting point of the self-bonding layer and does not cause thermal deterioration of the stator core.
  • a stator manufacturing method is a stator manufacturing method in which coils are distributedly wound, and includes slot insulating paper having a self-bonding layer on at least one side surface, and a self-bonding layer on both sides.
  • the coil end is laced and then varnish-impregnated, and the heating process is performed prior to this lacing to melt the self-bonding layer.
  • heat treatment after varnish impregnation treatment A method of melting the self-bonding layer in stages may be used.
  • the air gap between the coil and the insulating paper can be reduced at low cost without reducing the coil space factor. It is possible to eliminate the occurrence, and to obtain a stator and a motor excellent in heat dissipation and insulation.
  • FIG. 1 is a perspective view of an embodiment of the slot insulating paper of the present invention.
  • FIG. 2 is a perspective view of an embodiment of the interphase insulating paper of the present invention.
  • FIG. 3 (a) is a cross-sectional view showing the situation before the self-bonding layer of the slot insulation paper is melted, and (b) is the situation where the self-fusion layer of the slot insulation paper is melting.
  • FIG. 4 is a perspective view of the distributed winding stator of the present invention.
  • FIG. 5 is an enlarged view of a portion V in FIG.
  • FIG. 6 is a cross-sectional view of the inside of the coil end of FIG.
  • FIG. 7 is an enlarged view of a part VII in FIG.
  • FIG. 8 is a sectional view of the inside of the slot of FIG.
  • Figure 9 is a schematic diagram of a simulation analysis result image regarding the presence or absence of electric field concentration.
  • (A) is the result for a case using conventional insulating paper
  • (b) is the result of using the insulating paper of the present invention. It is the result regarding the case.
  • FIG. 10 is a cross-sectional view showing a U-phase coil and a V-phase coil in a conventional coiled end of a distributed stator and interphase insulating paper interposed therebetween.
  • FIG. 11 is a cross-sectional view showing a slot wall surface and slot insulating paper in a conventional spout of a stator.
  • 1 is a piece of paper
  • 2 is a self-bonding layer
  • 3 A, 3 B are conductors
  • 3 1 is a conductor
  • 3 2 is an enamel coating
  • 4 is a stator core
  • 4 1 is a tooth
  • 4 2 is a slot
  • 4 3 is coiled
  • 5 is varnish
  • 10 slot insulating paper
  • 20 interphase insulating paper
  • 1 0 0 is distributed stator.
  • FIG. 1 is a perspective view of an embodiment of the slot insulating paper of the present invention
  • FIG. 2 is a perspective view of an embodiment of the interphase insulating paper of the present invention
  • Fig. 3a is a cross-sectional view showing the situation before the self-bonding layer of the slot insulating paper is melted
  • Fig. 3b is a cross-section showing the state of the self-bonding layer of the slot insulating paper being melted.
  • FIG. 4 is a perspective view of a distributed-spreading stator according to the present invention
  • FIG. 5 is an enlarged view of a portion V in FIG. 4, and FIG.
  • FIG. 6 is a cross-sectional view inside the coil end of FIG. 7 is an enlarged view of the VII portion of FIG. 4, and FIG. 8 is a cross-sectional view of the inside of the slot of FIG.
  • Fig. 9 is a diagram simulating the simulation analysis result image regarding the presence or absence of electric field concentration
  • Fig. 9 a is the result for the case using conventional insulating paper
  • Fig. 9 b is the case using the insulating paper of the present invention. Is the result.
  • the shape of the insulating paper is not limited to the embodiment shown in the drawing, and any insulating paper having a self-bonding layer on at least one side and both sides of the paper may be used. The shape is arbitrary.
  • FIG. 1 shows an embodiment of slot insulation paper.
  • This slot insulating paper 10 is made of a paper piece 1 of a polymer material having an insulating performance such as polyethylene naphthalate (PET) or polyethylene naphthalate (PEN), and on one side, nylon 6, nylon A self-bonding layer 2 made of a highly heat-resistant resin material such as polyamide resin such as 6-6 and nylon 6-10 is fixed and formed.
  • PET polyethylene naphthalate
  • PEN polyethylene naphthalate
  • nylon 6 nylon A self-bonding layer 2 made of a highly heat-resistant resin material such as polyamide resin such as 6-6 and nylon 6-10 is fixed and formed.
  • the slot insulating paper 10 is arranged in a posture in which the self-bonding layer 2 is directed to the side opposite to the slot wall surface (coil side) in a stator slot (not shown).
  • FIG. 2 shows an embodiment of interphase insulating paper.
  • This interphase insulating paper 20 is a paper piece 1 made of the same material as the slot insulating paper 10 and self-bonding layers 2 and 2 of the above material fixed to both sides thereof. It is inserted between the phase coil and the V-phase coil and between the V-phase coil and the W-phase coil.
  • Fig. 3 shows that when slot insulating paper 10 is placed in a high-temperature atmosphere, its self-bonding layer 2 melts and coil 3 (consists of copper conductor 3 1 and enamel coating 3 2 on its periphery). ) And slot insulating paper 10 are simulated.
  • Fig. 3a shows the situation before melting of the self-bonding layer 2
  • Fig. 3b shows the self-bonding layer. 2 shows a melting state (the self-bonding layer 2 melts in the direction of the arrow in Fig. 3b).
  • the self-bonding layer 2 that has melted and the viscosity has been reduced penetrates between the paper piece 1 and the coil with surface tension, and the slot insulating paper 10 is disposed across the height of the stator core. Therefore, the possibility of unimpregnated parts of the melted self-bonding layer 2 is extremely low.
  • the melting of the self-bonding layer 2, that is, the heat treatment step may be performed before or after the varnish impregnation treatment step.
  • Fig. 4 shows that the slot insulating paper 10 is placed in the slot, and the interphase insulating paper 20 is between the U-phase coil and V-phase coil of coil end 4 3 and between the V-phase coil and W-phase coil.
  • a distributed stator 100 is shown in which each self-bonding layer 2 is bonded to the coil through heat treatment.
  • FIG. 5 is an enlarged view of the coil end
  • FIG. 6 is an enlarged sectional view of the inside.
  • the air gap A generated in FIG. 10 is impregnated with the melted self-bonding layer 2 of the interphase insulating paper 20, so that the U-phase coil 3 A and There is no air gap between V-phase coil 3 B and paper piece 1.
  • varnish 5 is impregnated between the conducting wires 3 A,..., 3 B,. Therefore, there is no air gap between the coils and between the coil and the insulating paper, and a stator with high interphase insulation is formed.
  • FIG. 7 is an enlarged view of the inside of the slot
  • FIG. 8 is an enlarged sectional view of the inside thereof.
  • the air gap A generated in FIG. 11 is impregnated with the melted self-bonding layer 2 of the slot insulating paper 10, and as shown in FIG. There is no air gap between and the piece of paper 1.
  • the varnish 5 is impregnated between the conductors 3 and 3 in the same manner as the coil end, so that high insulation between the stator core and the coil is ensured.
  • the present inventors simulated whether or not there is electric field concentration between the case where the insulating paper (the paper piece) and the coil conductor are fused using the insulating paper of the present invention and the case where the conventional insulating paper is used. Analyzed. An image showing the analysis results is simulated in Fig. 9, where Fig. 9a shows the case of using conventional insulating paper, and Fig. 9b shows the case of using the insulating paper of the present invention having a self-bonding layer. Shows the case.
  • Ml is a conventional insulating paper model without a self-bonding layer
  • coil models M2 and M3 are arranged on both sides of the insulating paper model M1 with a gap (air gap).
  • the potential difference is 650 V
  • the conductor diameter is 0.85 mm
  • the enamel width is 0.035 mm
  • the insulating paper thickness is 0.125 mm
  • the relative permittivity is self-bonding layer. 3 for air, 1 for coil, 0 for coil, and 4 for enamel and insulating paper.
  • the electric field distribution is 7 to 9.5 X 10 6 (V / m) in the air gap region (V l, V2 region). As the distance from the V3 region, V 4 region and the air gap increases. The voltage goes down. In other words, it can be identified that electric field concentration occurs in this air gap.
  • the electric field distribution in the region where the air gap occurred in Fig. 9a (V 3 region in Fig. 9 b) is 5 X 10 6 (V / m), and the outer V 4 region
  • the electric field level is about the same as the electric field distribution (3 X 10 6 (V / m)). From this analysis result, it is possible to specify that the electric field concentration does not occur when the paper piece and the coil are fused in the self-bonding layer and there is no air gap. Note that the electric field levels in the 3 and V4 regions in Fig. 9 & are the same as those in Fig. 9b.
  • the motor having the stator 100 is particularly suitable for a drive motor for a hybrid vehicle or an electric vehicle that requires high durability and high output performance.

Abstract

It is possible to provide a stator which can effectively eliminate generation of an air gap between a coil and a stator core without lowering a volume ratio occupied by the coil. A method for manufacturing the stator and a motor are also disclosed. Between the coil (3) and teeth is arranged a slot insulating paper sheet (10) having a self-fusing layer (2) at least on one of its surfaces with the self-fusing layer (2) facing the coil side. The self-fusing layer (2) is fused onto the coil (3) so as to constitute a stator. When the stator is a distributed winding stator, an inter-phase insulating paper sheet (20) having the self-fusing layer (2, 2) on its both surfaces is arranged between coils of different phases and the self-fusing layers (2, 2) are fused onto the coils.

Description

明細書 ステータおよびその製造方法とモータ 技術分野  Description Stator, manufacturing method thereof and motor
本発明は、 ステータおよびその製造方法とモータに係り、特に、 絶縁紙とコイル との間のエアギャップによって電界集中が齎され、 絶縁性が低下することを防止 できるステ一タおよびその製造方法と、 該ステータを具備するモータに関するも のである。 背景技術  The present invention relates to a stator, a manufacturing method thereof, and a motor, and more particularly, to a stator capable of preventing electric field concentration due to an air gap between insulating paper and a coil and preventing insulation from being deteriorated, and a manufacturing method thereof. The present invention relates to a motor including the stator. Background art
モータ (電動機) を構成するステータは、 円環状のヨークと、 該ヨークから径 方向内側に突出する複数のティースと、 隣接するティース間に形成されるスロッ トとを備えた鋼板が積層されてなるステータコアから形成されており、 コイルが このスロット内に挿入されながら、 ティース間に卷装されることによってステー タが製造される。 ここで、 コイルの卷装形態には、 集中卷き方式と分布巻き方式 があり、 集中巻き方式とはティースごとにコイルが卷装される形態であり、 分布 巻き方式とは複数のティースに跨ってコイルが巻装される形態である。  A stator constituting a motor (electric motor) is formed by laminating a steel plate including an annular yoke, a plurality of teeth projecting radially inward from the yoke, and a slot formed between adjacent teeth. A stator is formed from a stator core, and a stator is manufactured by fitting between teeth while a coil is inserted into the slot. Here, there are concentrated winding method and distributed winding method in coil winding form. Concentrated winding method is a form in which a coil is mounted for each tooth, and distributed winding method spans multiple teeth. The coil is wound.
集中卷き方式によれば、 ティースごとにコイルが卷装されることから、 ステー タコア端部からのコイルエンドの突出長を相対的に短くすることができ、 したが つて、 電動機の小型化を図り易いという利点がある。 また、 スロッ ト断面に対す るコイル断面の比からなる占積率を高め易く、生産効率も高いという利点もある。 一方、 分布卷き方式によれば、 リラクタンストルクが相対的に大きくなり、 さら には、 ロータ駆動時の発熱量も少ないため、 電動機の出力性能 (ロータの回転性 能やトルク性能) が高くなる。  According to the centralized winding method, since the coil is installed for each tooth, the protruding length of the coil end from the end of the stator core can be relatively shortened, and therefore the motor can be downsized. There is an advantage that it is easy to plan. In addition, the space factor, which is the ratio of the coil cross section to the slot cross section, can be easily increased, and the production efficiency is also high. On the other hand, according to the distributed method, the reluctance torque is relatively large, and furthermore, the amount of heat generated when the rotor is driven is small, so that the output performance of the motor (rotor performance and torque performance of the rotor) increases. .
いずれの卷き線方式においても、 スロット壁面とコイルとの間の絶縁性を確保 する観点からそれらの間にはスロット絶縁紙が介装され、 分布卷き方式の場合に はさらに、 コイルエンドにおける異相コイル間の絶縁のための相間絶縁紙が介装 されている。 絶縁紙とコィルが形成された後に、 コイルエンドからワニスをコィ „ In either method, slot insulation paper is interposed between the slot wall surface and the coil from the viewpoint of ensuring insulation between the slot wall surface and the coil end. Interphase insulation paper is provided for insulation between different phase coils. After the insulation paper and coil are formed, coil the varnish from the coil end. „
WO 2008/130058 ル内に含浸させ、 ワニスの硬化によってステータコアとコイルの間および異相コ ィル間の絶縁が確保される。 このワニスの含浸は、 コイルの封止のみならず、 絶 縁性の確保、 コイル間の隙間をワニスで満たすことでコイルからの放熱を促進す るといった目的を有している。  WO 2008/130058 It is impregnated in the coil, and the insulation between the stator core and the coil and between the different phase coils is ensured by curing the varnish. The impregnation of the varnish has not only the sealing of the coil but also the purpose of ensuring insulation and promoting the heat radiation from the coil by filling the gap between the coils with the varnish.
ところで、 コイルの占積率を高めるために卷線密度を高くするに従い、 コイル ェンドの異相コィル間ゃスロット壁面とコイルとの間にワニスが含浸し難くなり、 コイルの占積率が高くなるに従ってかかる含浸困難性は一層高くなる。 これを図 1 0, 1 1に基づいて説明する。 図 1 0は、 分布卷きステータのコイルエンドに おいて、 U相コイル Q 1および V相コイル Q 2とそれらの間に介装された相間絶 縁紙 P 1との間にエアギャップ Aが生じている状況を説明している。 ここで、 各 コイル間にはワニス Wが含浸されている一方で、 各コイル Q l, Q 2と相間絶縁 紙 P 1との間にはワニス Wが含浸されない結果、 エアギャップ Aが生じることに なる。  By the way, as the winding density is increased in order to increase the coil space factor, the varnish becomes difficult to impregnate between the slot wall surface and the coil between the coil-phase different coils, and as the coil space factor increases. Such impregnation difficulty is further increased. This will be described with reference to FIGS. Fig. 10 shows the air gap A between the U-phase coil Q 1 and the V-phase coil Q 2 and the interphase insulating paper P 1 interposed between them at the coil end of the distributed stator. Explains the situation that is occurring. Here, while each coil is impregnated with varnish W, each coil Q l, Q 2 and interphase insulating paper P 1 are not impregnated with varnish W, resulting in an air gap A. Become.
一方、 図 1 1は集中卷きステータおよび分布卷きステータ双方に共通するもの であり、 スロッ ト R内に配設されたスロッ ト絶縁紙 P 2とコイル Qとの間にやは りエアギャップ Aが生じている状況を説明している。 スロット R内においても、 コイル間にはワニス Wが含浸されるものの、スロット壁面とコイル Qとの間には、 コイルの占積率が高まるに従ってワニスが含浸し難くなり、 コイルェンドと同様 にエアギヤップが生じ易くなる。  On the other hand, Fig. 11 is common to both concentrated and distributed stators, and the air gap between slot insulation paper P2 and coil Q installed in slot R Explains the situation where A occurs. Even in slot R, varnish W is impregnated between the coils, but varnish becomes difficult to impregnate between the slot wall surface and coil Q as the coil space factor increases. It tends to occur.
ワニスの含浸が不十分な場合には、 上記する絶縁性の確保や放熱の促進といつ た効果が十分に得られないこととなり、 ワニスが未含浸のエアギャップ部には電 界集中が起きて絶縁性が厳しい部位が発生することになる。 さらに、 このエアギ ャップ部ではワニス含浸部位に比してその放熱性が顕著に低下する。  If the varnish is not sufficiently impregnated, it will not be possible to sufficiently obtain the effects of ensuring insulation and promoting heat dissipation as described above, and electric field concentration will occur in the air gap where the varnish is not impregnated. The part where insulation is severe will occur. Furthermore, the heat release performance of the air gap is significantly reduced as compared with the varnish-impregnated portion.
ところで、 特許文献 1には、 電動機のコイル用電線にかかる技術が開示されて おり、 具体的には、 導体の表面にポリエステルからなる絶縁被膜を形成し、 さら にその外側に無機充填剤を含有した融着被膜が形成されている。 この融着被膜に より、 電線の放熱性を向上させることができる。  By the way, Patent Document 1 discloses a technique related to an electric wire for a coil of an electric motor. Specifically, an insulating coating made of polyester is formed on the surface of a conductor, and further, an inorganic filler is contained on the outside thereof. A fused film is formed. With this fusion coating, the heat dissipation of the electric wire can be improved.
特許文献 1  Patent Literature 1
特開 2 0 0 3— 1 5 7 7 2 8号公報 発明の開示 JP 2 0 0 3-1 5 7 7 2 8 Disclosure of the invention
特許文献 1の電線を電動機のコイルに使用し、 この融着被膜にて電線同士を融 着させることで、 エアギャップの発生を抑制することも可能であるが、 電線がか かる構成であることから電線に占める導体部の断面が低減し、 コイルの占積率が 大幅に低下することになる。 さらに、 多重に卷装される電線をかかる構成にて製 作するために製作コストが高騰することは必至であり、 上記コイルとステータコ ァとの間のエアギヤップもしくはコイノレエンドの異相コィノレ間のエアギヤップを 解消する方策としては現実的でない。  It is possible to suppress the occurrence of an air gap by using the electric wire of Patent Document 1 for the coil of the motor and fusing the electric wires together with this fusion coating, but the electric wire takes a configuration. As a result, the cross section of the conductor occupying the electric wire is reduced, and the space factor of the coil is greatly reduced. In addition, it is inevitable that the manufacturing cost will increase because multiple wires are manufactured in such a configuration, eliminating the air gap between the coil and the stator core, or the air gap between the different phases of the coin end. It is not realistic as a way to do it.
本発明は、 上記する問題に鑑みてなされたものであり、 廉価な製作コス トで、 コイルの占積率を低下させることなく、 コイルとステータコアとの間のエアギヤ ップの発生を効果的に解消することのできるステータとその製造方法、 及び該ス テータを具備するモータを提供するこ.とを目的とする。  The present invention has been made in view of the above-described problems, and it is possible to effectively generate an air gap between the coil and the stator core without lowering the coil space factor at an inexpensive manufacturing cost. It is an object of the present invention to provide a stator that can be eliminated, a method of manufacturing the stator, and a motor including the stator.
前記目的を達成すべく、 本発明によるステータは、 円環状のヨークと、 該ョー クから径方向内側に突出する複数のティースと、 隣接するティース間に形成され るスロットと、 を備えたステータコアと、 ティース周りに形成されるコイルと、 からなるステータにおいて、 前記コイルと前記ティースとの間には自己融着層を 少なくとも一側面に備えたス口ット絶縁紙が該自己融着層をコイル側に向けた姿 勢で介装されており、 前記自己融着層がコイルに融着していることを特徴とする ものである。  To achieve the above object, a stator according to the present invention includes an annular yoke, a plurality of teeth projecting radially inward from the yoke, and a slot formed between adjacent teeth. A stator insulating paper having a self-bonding layer on at least one side surface between the coil and the teeth. The self-bonding layer is welded to the coil.
本発明のステータは、 スロッ ト絶縁紙がスロッ ト内に配設されて、 このスロッ ト絶縁紙によつて導線からなるコイルとステータコアのスロット壁面との絶縁性 が確保される集中卷き形式のステータを対象としている。  In the stator of the present invention, slot insulating paper is disposed in the slot, and this slot insulating paper is of a concentrated type that ensures insulation between the coil made of the conductor and the slot wall surface of the stator core. Intended for the stator.
ここで、 使用されるスロット絶縁紙は、 ポリエチレンテレナフタレート (P E T) やポリエチレンナフタレート (P E N) をはじめとする絶縁性能を有するポ リマー素材の紙片の少なくとも一側面に、 例えば高耐熱性の樹脂素材からなる自 己融着層が形成された絶縁紙が使用される。  Here, the slot insulating paper used is, for example, a high heat-resistant resin material on at least one side surface of a polymer paper sheet having insulating performance such as polyethylene telenaphthalate (PET) or polyethylene naphthalate (PEN). An insulating paper having a self-bonding layer made of is used.
この自己融着層としては、 例えば、 ナイロン 6、 ナイロン 6— 6、 ナイロン 6 一 1 0などのポリアミ ド樹脂から成形することができる。 本発明のステータも、 コイル形成後に該コイル内にワニスを含浸させるもので あるが、 自己融着層を加熱処理して融解させることで、 コイル用の導線とスロッ ト絶縁紙との間に生じるワニスが未含浸なエアギヤップ部に融解した自己融着層 が表面張力によって含浸していき、このエアギャップ部を埋め尽くすことになる。 最後にステータをクーリングすることで融着層が固まり、 コイルと絶縁紙との間 にエアギャップのないステータを製造することができる。 また、 絶縁紙に自己融 着層を設ける構成とすることで、 コイルの占積率を低下させることはなく、 さら には、 導線に自己融着層を形成する場合に比してその製作コストは格段に安価な ものとなる。 The self-bonding layer can be formed from a polyamide resin such as nylon 6, nylon 6-6, nylon 6 or 10, for example. In the stator of the present invention, the varnish is impregnated in the coil after the coil is formed, but the self-bonding layer is heated and melted to be generated between the coil conductor and the slot insulating paper. The self-bonding layer melted in the air gearup portion where the varnish is not impregnated is impregnated by the surface tension, and the air gap portion is filled. Finally, by cooling the stator, the fused layer is solidified, and a stator without an air gap can be manufactured between the coil and the insulating paper. In addition, the configuration in which the self-bonding layer is provided on the insulating paper does not reduce the coil space factor, and moreover, the manufacturing cost compared to the case where the self-bonding layer is formed on the conductive wire. Will be much cheaper.
また、 本発明によるステータの他の実施の形態において、 前記コイルは分布卷 きされる多相コイルであり、 コイルェンドにおける U相コイルと V相コイルの間 および V相コイルと w相コィルの間には、 それぞれ自己融着層を両側面に備えた 相間絶縁紙が介装されており、 前記自己融着層がコイルに融着していることを特 徴とするものである。  In another embodiment of the stator according to the present invention, the coil is a distributed multiphase coil, and between the U phase coil and the V phase coil and between the V phase coil and the w phase coil in the coil end. Is characterized in that interphase insulating papers each having a self-bonding layer on both sides are interposed, and the self-bonding layer is bonded to the coil.
本発明のステータは、 U相コイルと V相コイル、 および W相コイルを具備する 分布卷き形式のステータを対象としており、 この分布卷きステータの場合には、 上記スロッ ト絶縁紙のほかに、 コイルエンドにおける異相コイル間の絶縁を図る ための相間絶縁紙が介装されている。  The stator of the present invention is intended for a distributed type stator having a U-phase coil, a V-phase coil, and a W-phase coil. In the case of this distributed type stator, in addition to the slot insulating paper, Interphase insulating paper is installed to insulate between the different phase coils at the coil end.
そこで、 U相コイルと V相コイルの間および V相コイルと W相コィルの間に介 装させる相間絶縁紙として、 上記ポリマー素材の紙片の両側面に自己融着層を備 えた相間絶縁紙を使用する。 この相間絶縁紙の自己融着層も上記する高耐熱性の 樹脂素材から成形でき、 加熱処理することで各相コイルと相間絶縁紙の間に生じ るエアギャップを該自己融着層で埋め尽くすことができる。  Therefore, as the interphase insulating paper interposed between the U-phase coil and the V-phase coil and between the V-phase coil and the W-phase coil, the interphase insulating paper provided with self-bonding layers on both sides of the above-mentioned polymer material is used. use. The self-bonding layer of the interphase insulating paper can also be formed from the above-mentioned high heat-resistant resin material, and the air gap generated between each phase coil and the interphase insulating paper is filled with the self-bonding layer by heat treatment. be able to.
上記する集中卷き形式のステータまたは分布卷き形式のステータを具備するモ ータ (電動機) を製作することで、 高い放熱性と、 高い絶縁安全性を備えたモー タを得ることができる。 この絶縁安全性とは、 電界集中の発生が解消されること で絶縁的に厳しい部位の発生を防止できる結果、 モータの絶縁破壊の発生確率が 低くなることを意味している。 また、 電界集中部位が生じないことで、 より高い 電界をコイルに印加することができるようになり、 絶縁性を確保しながらより大 きなモータ出力の実現を図ることができる。 かかる高性能モータは、 ハイブリツ ド自動車用の次世代型 S Rモータ等への適用は勿論のこと、 各種家電製品や模型 遊具等に使用されるモータなど、 その用途は多岐に亘る。 By manufacturing a motor (electric motor) having the above-described concentrated-winding type stator or distributed-winding type stator, a motor having high heat dissipation and high insulation safety can be obtained. This insulation safety means that the occurrence of electric field concentration can be eliminated to prevent the occurrence of severely insulating parts, resulting in a low probability of motor dielectric breakdown. In addition, since there is no electric field concentration site, it becomes possible to apply a higher electric field to the coil, and it is possible to increase the insulation while ensuring insulation. Realization of motor output can be achieved. Such high-performance motors have a wide range of applications, including not only application to next-generation SR motors for hybrid vehicles, but also motors used in various home appliances and model playground equipment.
また、 本発明によるステータの製造方法は、 コイルを集中巻きしてなるステー タの製造方法であって、 自己融着層を少なくとも一側面に備えたスロッ ト絶縁紙 を用意する工程と、 ステータコアを製造する工程と、 前記スロッ ト絶縁紙がその 自己融着層をス口ット壁面と反対側に向けられた姿勢でス口ット内に配設される 工程と、 各ティース周りにコイルを形成する工程と、 コイルが形成されたステー タコアを加熱処理して前記スロット絶縁紙をコイルに融着させる工程と、 を少な くとも具備するものである。  The stator manufacturing method according to the present invention is a stator manufacturing method in which a coil is concentratedly wound, and includes a step of preparing slot insulating paper having a self-bonding layer on at least one side surface, and a stator core. A step of manufacturing, a step of disposing the slot insulating paper in the spout in a posture in which the self-bonding layer is directed to the side opposite to the wall surface of the spout, and a coil around each tooth. And a step of heat-treating the stator core on which the coil is formed to fuse the slot insulating paper to the coil.
上記製造方法は、 コイル形成後にコイルエンドからワニスを含浸させ、 その後 に加熱処理を施すものであるが、 ワニス含浸に先行して加熱処理を施し、 自己融 着層を融解させる方法であってもよいし、 ワニス含浸後の加熱処理段階で自己融 着層を融解させる方法であってもよい。 なお、 この加熱処理は、 通電加熱、 炉加 熱のいずれの方法であってもよく、 自己融着層の融点以上でステータコアを熱劣 化させない温度雰囲気にて実行されることが望ましい。  In the above manufacturing method, the varnish is impregnated from the coil end after the coil is formed, and then the heat treatment is performed. However, even if the heat treatment is performed prior to the varnish impregnation, the self-bonding layer is melted. Alternatively, a method of melting the self-bonding layer in the heat treatment step after varnish impregnation may be used. Note that this heat treatment may be any method of current heating and furnace heating, and is preferably performed in a temperature atmosphere that is higher than the melting point of the self-bonding layer and does not cause thermal deterioration of the stator core.
さらに、 本発明によるステータの製造方法は、 コイルを分布巻きしてなるステ ータの製造方法であって、 自己融着層を少なくとも一側面に備えたスロット絶縁 紙と、 自己融着層を両側面に備えた相間絶縁紙とを用意する工程と、 ステータコ ァを製造する工程と、 前記スロッ ト絶縁紙がその自己融着層をスロッ ト壁面と反 対側に向けられた姿勢でスロット内に配設される工程と、 U相コイルを分布卷き して前記相間絶縁紙をコイルェンドに配設し、 次いで V相コイルを分布卷きして 別途の前記相間絶縁紙をコイルェンドに配設し、 次いで W相コイルを分布巻きす る工程と、 コイルが形成されたステータコアを加熱処理して前記スロット絶縁紙 および前記相間絶縁紙をコイルに融着させる工程と、 を少なくとも具備するもの である。  Furthermore, a stator manufacturing method according to the present invention is a stator manufacturing method in which coils are distributedly wound, and includes slot insulating paper having a self-bonding layer on at least one side surface, and a self-bonding layer on both sides. A step of preparing an interphase insulating paper provided on the surface, a step of manufacturing a stator core, and the slot insulating paper with its self-bonding layer facing away from the slot wall surface in the slot. A step of arranging, distributing the U-phase coil and arranging the interphase insulating paper on the coil end, then distributing the V-phase coil and arranging the separate interphase insulating paper on the coil end, Next, it includes at least a step of distributedly winding the W-phase coil, and a step of heat-treating the stator core on which the coil is formed to fuse the slot insulating paper and the interphase insulating paper to the coil.
分布卷きコイルの場合には、 コイルェンドをレーシングし、 その後にワニス含 浸処理をおこなうものであるが、 このレーシングに先行して加熱処理をおこなつ て自己融着層を融解させる方法であってもよいし、 ワニス含浸処理後の加熱処理 段階で自己融着層を融解させる方法であってもよい。 In the case of a distributed coil, the coil end is laced and then varnish-impregnated, and the heating process is performed prior to this lacing to melt the self-bonding layer. Or heat treatment after varnish impregnation treatment A method of melting the self-bonding layer in stages may be used.
以上の説明から理解できるように、 本発明のステータと該ステータを具備する モータによれば、 低コス トでかつコイルの占積率を低下させることなく、 コイル と絶縁紙との間のエアギヤップの発生を解消することができ、 放熱性と絶縁性に 優れたステータおよびモータを得ることができる。 図面の簡単な説明  As can be understood from the above description, according to the stator of the present invention and the motor including the stator, the air gap between the coil and the insulating paper can be reduced at low cost without reducing the coil space factor. It is possible to eliminate the occurrence, and to obtain a stator and a motor excellent in heat dissipation and insulation. Brief Description of Drawings
図 1は、 本発明のスロット絶縁紙の一実施の形態の斜視図である。  FIG. 1 is a perspective view of an embodiment of the slot insulating paper of the present invention.
図 2は、 本発明の相間絶縁紙の一実施の形態の斜視図である。  FIG. 2 is a perspective view of an embodiment of the interphase insulating paper of the present invention.
図 3において、 (a ) はスロッ ト絶縁紙の自己融着層が融解する前の状況を示 した断面図であり、 (b ) はスロッ ト絶縁紙の自己融着層が融解している状況を 示した断面図である。  In Fig. 3, (a) is a cross-sectional view showing the situation before the self-bonding layer of the slot insulation paper is melted, and (b) is the situation where the self-fusion layer of the slot insulation paper is melting. FIG.
図 4は、 本発明の分布卷きステータの斜視図である。  FIG. 4 is a perspective view of the distributed winding stator of the present invention.
図 5は、 図 4の V部の拡大図である。  FIG. 5 is an enlarged view of a portion V in FIG.
図 6は、 図 5のコイルエンド内部の断面図である。  6 is a cross-sectional view of the inside of the coil end of FIG.
図 7は、 図 4の VII部の拡大図である。  FIG. 7 is an enlarged view of a part VII in FIG.
図 8は、 図 7のスロッ ト内部の断面図である。  FIG. 8 is a sectional view of the inside of the slot of FIG.
図 9は、 電界集中の有無に関するシミュレーション解析結果画像の模式図であ り、 (a ) は従来の絶縁紙を使用したケースに関する結果であり、 (b ) は本発 明の絶縁紙を使用したケースに関する結果である。  Figure 9 is a schematic diagram of a simulation analysis result image regarding the presence or absence of electric field concentration. (A) is the result for a case using conventional insulating paper, and (b) is the result of using the insulating paper of the present invention. It is the result regarding the case.
図 1 0は、 従来の分布卷きステータのコイルェンドにおける U相コイルおよび V相コイルとその間に介装された相間絶縁紙を示した断面図である。  FIG. 10 is a cross-sectional view showing a U-phase coil and a V-phase coil in a conventional coiled end of a distributed stator and interphase insulating paper interposed therebetween.
図 1 1は、 従来のステータのス口ット内におけるスロット壁面とスロット絶縁 紙とを示した断面図である。 図面において、 1は紙片、 2は自己融着層、 3 , 3 A, 3 Bは導線、 3 1は導 線、 3 2はエナメル被膜、 4はステータコア、 4 1はティース、 4 2はスロット、 4 3はコィルェンド、 5はワニス、 1 0はスロット絶縁紙、 2 0は相間絶縁紙、 1 0 0は分布卷きステータをそれぞれ示している。 発明を実施するための最良の形態 ■ FIG. 11 is a cross-sectional view showing a slot wall surface and slot insulating paper in a conventional spout of a stator. In the drawing, 1 is a piece of paper, 2 is a self-bonding layer, 3, 3 A, 3 B are conductors, 3 1 is a conductor, 3 2 is an enamel coating, 4 is a stator core, 4 1 is a tooth, 4 2 is a slot, 4 3 is coiled, 5 is varnish, 10 is slot insulating paper, 20 is interphase insulating paper, and 1 0 0 is distributed stator. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態を説明する。 図 1は本発明のスロッ ト絶縁紙の一実施の形態の斜視図であり、 図 2は本発明の相間絶縁紙の一実施の 形態の斜視図である。 図 3 aはスロッ ト絶縁紙の自己融着層が融解する前の状況 を示した断面図であり、 図 3 bはスロット絶縁紙の自己融着層が融解している状 況を示した断面図である。 図 4は本発明の分布卷きステータの斜視図であり、 図 5は図 4の V部の拡大図であり、図 6は図 5のコイルエンド内部の断面図である。 図 7は図 4の VII部の拡大図であり、 図 8は図 7のスロット内部の断面図である。 図 9は、 電界集中の有無に関するシミュレーション解析結果画像を模擬した図で あり、 図 9 aは従来の絶縁紙を使用したケースに関する結果であり、 図 9 bは本 発明の絶縁紙を使用したケースに関する結果である。 なお、 絶縁紙の形状は図示 する実施の形態に限定されるものでないことは勿論のことであり、 少なくとも紙 片とその一側面または両側面に自己融着層を備えた絶縁紙であればその形状は任 意である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an embodiment of the slot insulating paper of the present invention, and FIG. 2 is a perspective view of an embodiment of the interphase insulating paper of the present invention. Fig. 3a is a cross-sectional view showing the situation before the self-bonding layer of the slot insulating paper is melted, and Fig. 3b is a cross-section showing the state of the self-bonding layer of the slot insulating paper being melted. FIG. 4 is a perspective view of a distributed-spreading stator according to the present invention, FIG. 5 is an enlarged view of a portion V in FIG. 4, and FIG. 6 is a cross-sectional view inside the coil end of FIG. 7 is an enlarged view of the VII portion of FIG. 4, and FIG. 8 is a cross-sectional view of the inside of the slot of FIG. Fig. 9 is a diagram simulating the simulation analysis result image regarding the presence or absence of electric field concentration, Fig. 9 a is the result for the case using conventional insulating paper, and Fig. 9 b is the case using the insulating paper of the present invention. Is the result. Of course, the shape of the insulating paper is not limited to the embodiment shown in the drawing, and any insulating paper having a self-bonding layer on at least one side and both sides of the paper may be used. The shape is arbitrary.
図 1は、 スロッ ト絶縁紙の一実施の形態を示したものである。 このスロット絶 縁紙 1 0は、 ポリエチレンテレナフタレート ( P E T ) ゃポリェチレンナフタレ ート (P E N) をはじめとする絶縁性能を有するポリマー素材の紙片 1と、 その 一側面において、 ナイロン 6、 ナイロン 6— 6、 ナイロン 6— 1 0などのポリァ ミド榭脂をはじめとする高耐熱性の樹脂素材からなる自己融着層 2が固着されて 形成される。  FIG. 1 shows an embodiment of slot insulation paper. This slot insulating paper 10 is made of a paper piece 1 of a polymer material having an insulating performance such as polyethylene naphthalate (PET) or polyethylene naphthalate (PEN), and on one side, nylon 6, nylon A self-bonding layer 2 made of a highly heat-resistant resin material such as polyamide resin such as 6-6 and nylon 6-10 is fixed and formed.
このスロッ ト絶縁紙 1 0は、 不図示のステータのス口ット内に自己融着層 2を スロット壁面と反対側 (コイル側) に向けた姿勢で配設される。  The slot insulating paper 10 is arranged in a posture in which the self-bonding layer 2 is directed to the side opposite to the slot wall surface (coil side) in a stator slot (not shown).
一方、 図 2は、 相間絶縁紙の一実施の形態を示したものである。 この相間絶縁 紙 2 0は、 スロッ ト絶縁紙 1 0と同素材の紙片 1と、 その両側面に上記素材の自 己融着層 2 , 2を固着したものであり、 分布卷きステータの U相コイルと V相コ ィルの間およぴ V相コイルと W相コィルの間に介装される。  On the other hand, FIG. 2 shows an embodiment of interphase insulating paper. This interphase insulating paper 20 is a paper piece 1 made of the same material as the slot insulating paper 10 and self-bonding layers 2 and 2 of the above material fixed to both sides thereof. It is inserted between the phase coil and the V-phase coil and between the V-phase coil and the W-phase coil.
図 3は、 スロット絶縁紙 1 0を高温雰囲気下に置くことで、 その自己融着層 2 が融解してコイル 3 (銅素材の導線 3 1とその外周のエナメル被膜 3 2から構成 される) とスロッ ト絶縁紙 1 0とが融着することを模擬したものであり、 図 3 a は自己融着層 2の融解前の状況を示しており、 図 3 bは自己融着層 2が融解して いる状況を示している (図 3 bの矢印方向に自己融着層 2が溶け出す) 。 溶け出 して粘性が低下した自己融着層 2は、 紙片 1とコイルの間を表面張力にて浸透し ていくこと、 スロッ ト絶縁紙 1 0がステータコアの高さ方向に亘つて配設されて いることから、融解した自己融着層 2の未含浸部位の生じる可能性は極めて低レ、。 この自己融着層 2の融解、 すなわち、 熱処理工程はワニス含浸処理工程の前後 いずれであってもよい。 Fig. 3 shows that when slot insulating paper 10 is placed in a high-temperature atmosphere, its self-bonding layer 2 melts and coil 3 (consists of copper conductor 3 1 and enamel coating 3 2 on its periphery). ) And slot insulating paper 10 are simulated. Fig. 3a shows the situation before melting of the self-bonding layer 2, and Fig. 3b shows the self-bonding layer. 2 shows a melting state (the self-bonding layer 2 melts in the direction of the arrow in Fig. 3b). The self-bonding layer 2 that has melted and the viscosity has been reduced penetrates between the paper piece 1 and the coil with surface tension, and the slot insulating paper 10 is disposed across the height of the stator core. Therefore, the possibility of unimpregnated parts of the melted self-bonding layer 2 is extremely low. The melting of the self-bonding layer 2, that is, the heat treatment step may be performed before or after the varnish impregnation treatment step.
図 4は、 上記するスロッ ト絶縁紙 1 0がスロッ ト内に配設され、 相間絶縁紙 2 0がコイルェンド 4 3の U相コイルと V相コイルの間および V相コイルと W相コ ィルの間に配設され、 加熱処理を経てそれぞれの自己融着層 2がコイルと融着し ている分布卷きステータ 1 0 0を示している。  Fig. 4 shows that the slot insulating paper 10 is placed in the slot, and the interphase insulating paper 20 is between the U-phase coil and V-phase coil of coil end 4 3 and between the V-phase coil and W-phase coil. A distributed stator 100 is shown in which each self-bonding layer 2 is bonded to the coil through heat treatment.
図 5はコイルエンドの拡大図であり、 図 6はその内部の拡大断面図である。 図 6を図 1 0と比較して説明すると、 図 1 0にて生じていたエアギャップ Aに相間 絶縁紙 2 0の融解した自己融着層 2が含浸することで、 U相コイル 3 Aおよび V 相コイル 3 Bと紙片 1との間にエアギヤップは存在しない。なお、導線 3 A, ···、 3 B, …間にはワニス 5が含浸されている。 したがって、 コイル間およびコイル と絶縁紙間にエアギヤップは存在せず、 相間絶縁性の高いステータが形成されて いる。  FIG. 5 is an enlarged view of the coil end, and FIG. 6 is an enlarged sectional view of the inside. When FIG. 6 is compared with FIG. 10, the air gap A generated in FIG. 10 is impregnated with the melted self-bonding layer 2 of the interphase insulating paper 20, so that the U-phase coil 3 A and There is no air gap between V-phase coil 3 B and paper piece 1. In addition, varnish 5 is impregnated between the conducting wires 3 A,..., 3 B,. Therefore, there is no air gap between the coils and between the coil and the insulating paper, and a stator with high interphase insulation is formed.
—方、図 7はスロット内の拡大図であり、図 8はその内部の拡大断面図である。 図 8を図 1 1と比較して説明すると、 図 1 1に生じていたエアギヤップ Aにスロ ット絶縁紙 1 0の融解した自己融着層 2が含浸し、 図 8に示すようにコイル 3と 紙片 1との間にエアギャップは存在しない。 また、 導線 3 , 3間にはコイルェン ドと同様にワニス 5が含浸しており、 したがってステータコアとコイルとの間の 高い絶縁性が確保されている。  On the other hand, FIG. 7 is an enlarged view of the inside of the slot, and FIG. 8 is an enlarged sectional view of the inside thereof. When FIG. 8 is compared with FIG. 11, the air gap A generated in FIG. 11 is impregnated with the melted self-bonding layer 2 of the slot insulating paper 10, and as shown in FIG. There is no air gap between and the piece of paper 1. Also, the varnish 5 is impregnated between the conductors 3 and 3 in the same manner as the coil end, so that high insulation between the stator core and the coil is ensured.
導線の外周に自己融着層を形成する場合に比して、 絶縁紙の一側面もしくは両 側面に自己融着層を形成するスロット絶縁紙 1 0や相間絶縁紙 2 0を使用する場 合は、 コイルの占積率が低下することがない。 また、 絶縁紙とコイルとの間に生 じ得るエアギャップを解消するに際し、 想定されるエアギャップ断面を満たす量 P When using slot insulation paper 10 or interphase insulation paper 20 that forms a self-fusion layer on one or both sides of the insulation paper, compared to the case where a self-fusion layer is formed on the outer periphery of the conductor. The coil space factor does not decrease. Also, when the air gap that can occur between the insulation paper and the coil is eliminated, the amount that satisfies the assumed air gap cross section P
WO 2008/130058 の自己融着層を絶縁紙の側面に形成しておくことで、 かかるエアギャップをより 確実に解消することができる。 したがって、 本発明のス口ット絶縁紙およぴ相間 絶縁紙が適用されたステータを製造することで、 コイルの占積率を低下させるこ となく、 絶縁性能と放熱性能に優れたステータを得ることが可能となる。  By forming the self-bonding layer of WO 2008/130058 on the side surface of the insulating paper, such an air gap can be more reliably eliminated. Therefore, by producing a stator to which the sputt insulation paper and interphase insulation paper of the present invention is applied, a stator having excellent insulation performance and heat dissipation performance can be obtained without reducing the coil space factor. Can be obtained.
[電界集中の有無に関するシミユレーション解析結果]  [Simulation analysis results regarding the presence or absence of electric field concentration]
本発明者等は、 本発明の絶縁紙を使用して絶縁紙 (の紙片) とコイル導線とが 融着した場合と、 従来の絶縁紙を使用した場合とで電界集中の有無をシミュレ一 シヨン解析した。 その解析結果を示した画像を図 9に模擬しており、 図 9 aは従 来の絶縁紙を使用した場合を、 図 9 bは自己融着層を有する本発明の絶縁紙を使 用した場合を示している。  The present inventors simulated whether or not there is electric field concentration between the case where the insulating paper (the paper piece) and the coil conductor are fused using the insulating paper of the present invention and the case where the conventional insulating paper is used. Analyzed. An image showing the analysis results is simulated in Fig. 9, where Fig. 9a shows the case of using conventional insulating paper, and Fig. 9b shows the case of using the insulating paper of the present invention having a self-bonding layer. Shows the case.
図 9 aにおいて、 Mlは自己融着層のない従来の絶縁紙モデルであり、 その両 サイドにコィルモデル M 2, M3が絶縁紙モデル M 1と間隔 (エアギヤップ) を 置いて配設されている。 解析に際しての入力条件として、 電位差を 65 0V, 導 線径を 0. 8 5 mm、 エナメル幅を 0. 035 mm、 絶縁紙の厚みを 0. 1 25 mm、 比誘電率に関し、 自己融着層を 3、 エアを 1、 コイルを 0、 エナメルおよ ぴ絶縁紙を 4とした。  In Fig. 9a, Ml is a conventional insulating paper model without a self-bonding layer, and coil models M2 and M3 are arranged on both sides of the insulating paper model M1 with a gap (air gap). As input conditions for the analysis, the potential difference is 650 V, the conductor diameter is 0.85 mm, the enamel width is 0.035 mm, the insulating paper thickness is 0.125 mm, and the relative permittivity is self-bonding layer. 3 for air, 1 for coil, 0 for coil, and 4 for enamel and insulating paper.
解析の結果、 エアギャップ領域 (V l, V2領域) で 7〜9. 5 X 1 06 (V/ m) の電界分布となっており、 V3領域, V 4領域とエアギャップから離れるに 従って電圧が低くなつていく。 すなわち、 このエアギャップにて電界集中が生じ ていると特定できる。 As a result of the analysis, the electric field distribution is 7 to 9.5 X 10 6 (V / m) in the air gap region (V l, V2 region). As the distance from the V3 region, V 4 region and the air gap increases. The voltage goes down. In other words, it can be identified that electric field concentration occurs in this air gap.
それに対し、 自己融着層を介してコイルと絶縁紙 (の紙片) とが融着している 場合には (ここで、 自己融着層を有する絶縁紙モデルは Ml, である) 、 図 9 b に示すように、 図 9 aにてエアギャップが生じていた領域 (図 9 bにおける V 3 領域) における電界分布が 5 X 1 06 (V/m) であり、 その外側の V 4領域の電 界分布 (3 X 1 06 (V/m) ) と同程度の電界レベルである。 本解析結果より、 自己融着層にて紙片とコイルとが融着し、 エアギヤップが存在しない場合には電 界集中が生じないと特定することができる。 なお、 図 9 &にぉける 3、 V4領 域の電界レベルは図 9 bのそれと同じである。 On the other hand, when the coil and the insulating paper are fused through the self-bonding layer (here, the insulating paper model with the self-bonding layer is Ml,) As shown in b, the electric field distribution in the region where the air gap occurred in Fig. 9a (V 3 region in Fig. 9 b) is 5 X 10 6 (V / m), and the outer V 4 region The electric field level is about the same as the electric field distribution (3 X 10 6 (V / m)). From this analysis result, it is possible to specify that the electric field concentration does not occur when the paper piece and the coil are fused in the self-bonding layer and there is no air gap. Note that the electric field levels in the 3 and V4 regions in Fig. 9 & are the same as those in Fig. 9b.
上記解析結果より、 自己融着層を介して絶縁紙の紙片とコイルが融着し、 エア ギヤップが解消されることで効果的に電界集中の発生を防止できることが判明し た。 From the above analysis results, the insulating paper piece and coil are fused through the self-bonding layer, and the air It was found that the elimination of the gap can effectively prevent the occurrence of electric field concentration.
図示を省略するが、 上記ステータ 1 0 0を具備するモータは、 高耐久性能、 高 出力性能が要求されるハイプリッド自動車や電気自動車用の駆動モータに特に好 適である。  Although not shown, the motor having the stator 100 is particularly suitable for a drive motor for a hybrid vehicle or an electric vehicle that requires high durability and high output performance.
以上、 本発明の実施の形態を図面を用いて詳述してきたが、 具体的な構成はこ の実施形態に限定されるものではなく、 本発明の要旨を逸脱しない範囲における 設計変更等があっても、 それらは本発明に含まれるものである。  Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and there are design changes and the like within the scope not departing from the gist of the present invention. However, they are included in the present invention.

Claims

請求の範囲 The scope of the claims
1 . 円環状のヨークと、 該ヨークから径方向内側に突出する複数のティースと、 隣接するティース間に形成されるスロッ トと、 を備えたステータコアと、 ティー ス周りに形成されるコイルと、 からなるステータにおいて、 1. a stator core provided with an annular yoke, a plurality of teeth projecting radially inward from the yoke, slots formed between adjacent teeth, and a coil formed around the teeth; In the stator consisting of
前記コイルと前記ティースとの間には自己融着層を少なくとも一側面に備えた スロット絶縁紙が該自己融着層をコイル側に向けた姿勢で介装されており、 前記自己融着層がコイルに融着していることを特徴とするステータ。  A slot insulating paper provided with a self-bonding layer on at least one side surface is interposed between the coil and the teeth with the self-bonding layer facing the coil side, and the self-bonding layer is A stator characterized by being fused to a coil.
2 . 前記コイルは分布卷きされる多相コイルであり、  2. The coil is a distributed multiphase coil;
コイルェンドにおける U相コイルと V相コイルの間おょぴ V相コイルと w相コ ィルの間には、 それぞれ自己融着層を両側面に備えた相間絶縁紙が介装されてお り、  Between the U-phase coil and the V-phase coil in the coil end, between the V-phase coil and the w-phase coil, interphase insulating papers with self-bonding layers on both sides are interposed, respectively.
前記自己融着層がコイルに融着していることを特徴とする請求項 1に記載のス テータ。  The status according to claim 1, wherein the self-bonding layer is bonded to the coil.
3 . 請求項 1または 2に記載のステータと、 その内部で回転するロータと、 を少 なくとも具備するモータ。 3. A motor comprising at least the stator according to claim 1 or 2 and a rotor rotating inside the stator.
4 . コイルを集中巻きしてなるステータの製造方法であって、  4. A stator manufacturing method comprising concentrated winding of coils,
自己融着層を少なくとも一側面に備えたスロット絶縁紙を用意する工程と、 ステータコアを製造する工程と、  Preparing a slot insulating paper having a self-bonding layer on at least one side; manufacturing a stator core;
前記スロット絶縁紙がその自己融着層をスロッ ト壁面と反対側に向けられた姿 勢でスロット内に配設される工程と、  The slot insulating paper is disposed in the slot in such a manner that its self-bonding layer is directed to the opposite side of the slot wall surface;
各ティース周りにコイルを形成する工程と、  Forming a coil around each tooth;
コイルが形成されたステータコアを加熱処理して前記スロット絶縁紙をコイル に融着させる工程と、 を少なくとも具備するステータの製造方法。  A process of heat-treating the stator core on which the coil is formed, and fusing the slot insulating paper to the coil.
5 . コイルを分布卷きしてなるステータの製造方法であって、 5. A stator manufacturing method in which coils are distributed,
自己融着層を少なくとも一側面に備えたスロッ ト絶縁紙と、 自己融着層を両側 面に備えた相間絶縁紙とを用意する工程と、  Providing a slot insulating paper having a self-bonding layer on at least one side and a phase insulating paper having a self-bonding layer on both sides;
ステータコアを製造する工程と、  Manufacturing a stator core; and
前記スロット絶縁紙がその自己融着層をスロット壁面と反対側に向けられた姿 勢でスロット内に配設される工程と、 The slot insulating paper with its self-bonding layer facing away from the slot wall surface A step of being arranged in the slot in a force;
u相コイルを分布卷きして前記相間絶縁紙をコイルェンドに配設し、 次いで V 相コイルを分布卷きして別途の前記相間絶縁紙をコイルェンドに配設し、 次いで w相コィルを分布卷きする工程と、  Distribute the u-phase coil and dispose the interphase insulating paper on the coil end, then distribute the V-phase coil and dispose another interphase insulating paper on the coil end, and then distribute the w-phase coil. The process of
コイルが形成されたステータコアを加熱処理して前記スロット絶縁紙および前 記相間絶縁紙をコイルに融着させる工程と、 を少なくとも具備するステータの製 造方法。  And a step of heat-treating the stator core on which the coil is formed to fuse the slot insulating paper and the interphase insulating paper to the coil.
PCT/JP2008/058001 2007-04-18 2008-04-18 Stator, its manufacturing method, and motor WO2008130058A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-108847 2007-04-18
JP2007108847A JP2008271661A (en) 2007-04-18 2007-04-18 Stator, its manufacturing method and motor

Publications (1)

Publication Number Publication Date
WO2008130058A1 true WO2008130058A1 (en) 2008-10-30

Family

ID=39875577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058001 WO2008130058A1 (en) 2007-04-18 2008-04-18 Stator, its manufacturing method, and motor

Country Status (2)

Country Link
JP (1) JP2008271661A (en)
WO (1) WO2008130058A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284847B2 (en) * 2009-03-30 2013-09-11 本田技研工業株式会社 Method for manufacturing stator or rotor for electric motor
JP2012139069A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Sealed compressor
JP2022121336A (en) * 2021-02-08 2022-08-19 株式会社日立産機システム Rotary electric machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568359A (en) * 1991-09-10 1993-03-19 Fuji Electric Co Ltd Stator winding for low voltage rotating machine
JPH11178264A (en) * 1997-12-10 1999-07-02 Fuji Electric Co Ltd Armature winding for low-voltage electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568359A (en) * 1991-09-10 1993-03-19 Fuji Electric Co Ltd Stator winding for low voltage rotating machine
JPH11178264A (en) * 1997-12-10 1999-07-02 Fuji Electric Co Ltd Armature winding for low-voltage electric machine

Also Published As

Publication number Publication date
JP2008271661A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
KR101883857B1 (en) Rotary electric machine stator
JP5718854B2 (en) Inflatable sheet for rotating electrical machine, stator for rotating electrical machine using the expanded sheet for rotating electrical machine, and method for manufacturing stator for rotating electrical machine
US20120019081A1 (en) Stator for electric rotating machine
JP5157296B2 (en) Stator for motor and manufacturing method thereof
JP2010259316A (en) Stator for rotary electric machine and manufacturing method of the same
US9935515B2 (en) Armature for rotary electric machine
JP2007312560A (en) Insulator and rotary electric machine
US20140077648A1 (en) Electric winding for electric energy converters or machines, method for manufacturing same and electric machine
US20130069474A1 (en) Composite conductor insulation
JP2013505699A (en) Tape structure having a conductive outer surface and an electrically insulating inner surface
JP2010016970A (en) Concentrated winding stator and manufacturing method thereof
CN107112840B (en) Stator for an electric motor
US8720042B2 (en) Stator manufacturing method and stator
US20200336035A1 (en) Insulation of sub-conductors of a dynamoelectric machine
JP2011205834A (en) Method for manufacturing stator
JP6443303B2 (en) Rotating electrical machine stator
WO2008130058A1 (en) Stator, its manufacturing method, and motor
JP2009254025A (en) Cylindrical linear motor and its manufacturing method
US8466598B2 (en) Electric rotating machine
JP2018107921A (en) Stator of rotary electric machine
JP2012228093A (en) Winding wire and insulation structure of coil, and method for forming insulation structure of coil
JP5418471B2 (en) Motor insulation structure and manufacturing method thereof
JP2020028140A (en) Armature, and manufacturing method of armature
JP7025224B2 (en) Rotating machine stator
JP2018160955A (en) Rotary electric machine coil, and manufacturing method of rotary electric machine coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740846

Country of ref document: EP

Kind code of ref document: A1