WO2008125720A1 - Expression vectors which include the human pklr gene promoter and use thereof for preparing pharmaceutical compositions for somatic genetic therapy with specific expression in erythroid cells - Google Patents

Expression vectors which include the human pklr gene promoter and use thereof for preparing pharmaceutical compositions for somatic genetic therapy with specific expression in erythroid cells Download PDF

Info

Publication number
WO2008125720A1
WO2008125720A1 PCT/ES2008/070069 ES2008070069W WO2008125720A1 WO 2008125720 A1 WO2008125720 A1 WO 2008125720A1 ES 2008070069 W ES2008070069 W ES 2008070069W WO 2008125720 A1 WO2008125720 A1 WO 2008125720A1
Authority
WO
WIPO (PCT)
Prior art keywords
vectors
cells
vector
promoter
pharmaceutical compositions
Prior art date
Application number
PCT/ES2008/070069
Other languages
Spanish (es)
French (fr)
Inventor
José Carlos SEGOVIA SANZ
Nestor W. Meza
Juan Antonio Bueren
Elena Almarza Novoa
Guillermo GÜENECHEA AMURRIO
María Eugenia ALONSO FERRERO
Original Assignee
Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) filed Critical Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat)
Publication of WO2008125720A1 publication Critical patent/WO2008125720A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • A61K48/0058Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination

Definitions

  • the present invention falls within the field of genetic engineering. Specifically, the invention relates to the use of the human gene promoter that regulates the expression of the R-form of pyruvate kinase (hRPK) in the production of vectors, to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy.
  • hRPK pyruvate kinase
  • RPK Human erythrocyte pyruvate kinase
  • Human RPK is encoded by the PKLR gene, with an approximate extension of 12 kb. It has a total of 12 exons and 11 introns that encode the RPK iso form, and the LPK iso form produced in the hepatic parenchyma. The two initial exons are specific for each iso form, l (R) for RPK and l (L) for LPK, for specific liver expression. Transcriptional control depends on the specific activity of the promoters flanking each exon 1 (R and L), allowing differential expression in erythroid (RPK) and liver tissue (LPK) respectively.
  • RPK erythroid
  • LPK liver tissue
  • the 5 'region flanking the first exon has two CAC boxes, four GATA motifs and a new transcription regulatory element called PKR-REl with the motif (CTGTC) located between the 250 base pairs upstream of the start of transcription , which together produce a specific promoter activity in erythroid cells (14-30). Therefore, the expression of the RPK isoenzyme occurs with a high temporal specificity and absolute tissue specificity, only in erythroid tissue, as a consequence of the characteristics described for its promoter and regulatory regions.
  • tissue promoters to express the protein of interest in cells committed to the differentiation of a particular lineage would avoid adverse effects associated with the ectopic expression of the protein in unwanted cells, which has been one of the objectives since the beginning of gene therapy.
  • ubiquitous promoters such as virals
  • their ability to transactivate endogenous genes, including oncogenes has been proven after their stable insertion into the genome of the stem cells.
  • the interest of limiting the influence of the promoter present in the vector on the expression of genes close to its integration site has been reinforced by recent observations that indicate that both gamma-retroviral vectors and lentiviral vectors have a high probability of insertion in nearby DNA regions or within genes (31-34).
  • Moderate and specific trangenes with promoters that are not expressed in stem cells would limit the chances of generating leukemia as a result of transactivation of oncogenes in stem cells.
  • One of the main difficulties in generating vectors with expression specificity has been the size of the regulatory sequences, in terms of the number of base pairs necessary to have all the regulatory regions necessary to confer the required specificity. The larger the promoter size, the lower specificity it will have.
  • WO 02/29103 refers to a system for the diagnosis and evaluation of the progression of liver cancer, hepatocellular carcinoma or metastasis, of a liver tumor, in a patient by detecting the level of expression of two or more genes (one of them would be the human PKLR gene) in a liver tissue sample.
  • WO 02/28999 relates to a method of detecting granulocyte activation by detecting the differential expression of the associated genes (one of them would be the specific erythroid promoter of the human PKLR gene) with said activation in a DNA microarray (biochip). This method allows the monitoring of the various states of different diseases, as well as evaluating pharmacotoxicity.
  • the European patent document EP 1 193 272 corresponding to a vector of an adeno-associated virus useful in gene therapy.
  • Said vector contains an inducible promoter that is the promoter of the pyruvate kinase gene.
  • said promoter is the specific liver promoter of the PKLR gene, whose sequence is different from the specific erythroid tissue promoter proposed herein. The liver-specific promoter would not regulate the expression of the PKLR gene in erythroid cell lines.
  • WO 89/02469 concerning an enhancer element of the transcription, specific to human erythroids. Said element provides an improvement in genetic constructs for transfection of erythroid lineage cells. Such constructs will be useful in gene therapy of disorders in erythroid cells, such as thalassemia or hemoglobinopathies.
  • the sequence used is of a larger size (800 bp) than that of the present invention, therefore, it is less specific.
  • the sequence described in said patent regulates the expression of a gene other than the PKLR gene. It is the ⁇ -globin gene, whose homology with the PKLR gene is nil.
  • the present invention is directed to the use of the specific erythrocyte promoter (RPK) in the construction of vectors, with the exception of vectors comprising adeno-associated viruses, to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue . Therefore, the present invention differs from the state of the art because it is not focused on the "per se” promoter, nor is it associated with adeno-associated vectors and its use is specifically directed to the erythroid tissue. DESCRIPTION OF THE INVENTION
  • integrative vectors have been developed comprising the promoter and the regulatory regions of the PKLR gene by directing the expression of the gene of interest. More specifically, the sequences of the human genome have been incorporated between the 507 base pairs (bp) upstream of the start of transcription of the PKLR gene and the 94 bp of the open reading frame of the PKLR gene, which had been described as responsible for the deficiency in pyruvate kinase in a patient with hemolytic anemia (8). Together, the promoter region (SEQ ID NO: 1) comprises 601 bp, an optimal size for the construction of specific integrative vectors that do not activate other genes (oncogenes) close to the PKLR gene.
  • LSinRPKCG carries the specific sequences of the PKR promoter by directing the expression of the CopGreen fluorescent protein.
  • LSinPGKEG carries the regulatory sequences of the promoter of the phosphoglycerate kinase enzyme (PGK) of ubiquitous tissue expression. It is used as a control vector.
  • Y the cell lines used are represented: HL60, non-erythroid differentiation, and cell lines K562 and HEL, both with erythroid differentiation.
  • the abscissa axis (X) represents: CN (non-transfected cells), PKLR (cells transfected with the LSinRPKCG vector) and PGK (cells transfected with the LSinPGKEG vector).
  • the cells were transduced in vitro with the vectors represented in Figure 1 (LSinPGKEG, LSinRPKCG), grown in vitro for 60 days and their expression analyzed by flow cytometry.
  • Each dot-plot represents, on the abscissa axis (X), the intensity of expression of the fluorescent protein and, on the ordinate axis (Y ), the measured cell size of the cells analyzed.
  • the positive cell window was chosen based on an expression in uninfected cells (CN) of less than 1%.
  • the percentage values included in each of the nine graphs indicate the percentage of positive cells in each dot-plot.
  • the VCN average number of viral DNA integrations per cell evaluated by quantitative real-time PCR.
  • K562 line of human origin of myelomonocytic and erythroid differentiation.
  • HEL line of human origin of erythroid differentiation.
  • HL60 leukemic line of human origin of myelomonocytic differentiation.
  • HELA line of human origin from a cervical carcinoma of epithelial differentiation.
  • V. WEHI murine origin line of myelomonocytic differentiation.
  • SAW. 3T3 Murine fibroblast differentiation line of origin. • Cell origin: H (human) and M (murine).
  • the ordinate axis (Y) represents:
  • CD34 + cells purified from umbilical cord blood were transduced in vitro with the LSinPGKEG and LSinRPKCG lentiviral vectors and cultured in the presence of different combinations of growth factors (SCF, 300 ng / mL, thrombopoietin [TPO], 100 ng / mL and Flt3L, 100 ng / mL) and in the absence or presence of recombinant human erythropoietin (5LVmL).
  • SCF 300 ng / mL
  • thrombopoietin [TPO] 100 ng / mL
  • Flt3L thrombopoietin
  • 5LVmL recombinant human erythropoietin
  • transduced with lentiviral vectors carried the green fluorescent protein directed by the RPK promoter and cultured in vitro.
  • CD34 + cells purified from umbilical cord were transduced in vitro with lentiviral vectors
  • LSinPGKEG and LSinRPKCG and cultured in vitro in semi-solid medium enriched with growth factors (H4434, StemCell Technologies) to obtain granulomacrophage and erythroid colonies.
  • the panel on the left shows representative micrographs of erythroid colonies (BFU-E) that are not transduced (CN) or transduced with the LSinRPKCG (PKLR) or LSinPGKEG (PGK) lentiviral vectors. In CN the colonies were negative for the expression of the green fluorescent protein (control). Transduction with the lentiviral vectors LSinRPKCG (PKLR) and LSinPGKEG (PGK) generated positive colonies of fluorescent green protein expression.
  • CFU-GM granulomachlophage colonies from human primary cells without transduction are shown. and transduced with the LSinRPKCG and LSinPGKEG lentiviral vectors respectively. Unlike what happened with the erythroid colonies, the granulomachophageal colonies only showed green fluorescence when they were transduced with the lentiviral vector LSinPGKEG (PGFK), but never with the LSinRPKCG vector (PKLR), demonstrating the specificity of the erythroid tissue of the LSinRPKCG vector.
  • PPFK lentiviral vector LSinPGKEG
  • PKLR LSinRPKCG vector
  • the figure shows the transduction efficiency of human hematopoietic repopulating cells after transduction of CD34 + umbilical cord blood with LSinPGKEG and LSinRPKCG lentiviral vectors and transplantation in NOD / SCID immunodeficient mice.
  • VCN mean number of viral DNA integrations per cell evaluated by quantitative real-time PCR.
  • the percentage of colonies positive to the vector is represented depending on whether they are granulomacrophagic (CFU-GM), erythroid (BFU-E) or total (CFCs) colonies, in which qPCR was detected by Proviral DNA of each vector 90 days after transplantation.
  • CFU-GM granulomacrophagic
  • BFU-E erythroid
  • CFCs total colonies
  • the figure shows the activity of the PKLR promoter in vivo in human hematopoietic cells, after transduction of umbilical cord blood CD34 + cells with the LSinPGKEG and LSinRPKCG lentiviral vectors and transplantation in NOD / SCID immunodeficient mice.
  • the diagram shows the percentage of granulomacrophage colonies (CFU-GM, white bars) and erythroids (BFU-E, gray bars) positive for the expression of the green fluorescent protein, derived from human hematopoietic cells transduced with the LSinPGKEG vectors (PGK) and LSinRPKCG (PKLR) and transplanted in immunodeficient NOD / SCID mice.
  • CFU-GM granulomacrophage colonies
  • BFU-E erythroids
  • the panel shows representative micrographs of granulomacrophage, erythroid and mixed colonies (granulomacrophages-erythroids) from mice transplanted with CD34 + cells transduced with the LSinRPKCG vector that has specific erythroid activity.
  • the figure shows the specific and differential capacity of the promoter to drive the expression of the fluorescent protein only in erythroid colonies
  • a lentiviral vector comprising the sequences that confer specific expression in RPK promoter erythroid tissue. (SEQ ID NO: 1), which directs the expression of the CopGreen marker gene (LSinRPKCG) ( Figure 1).
  • the vectors containing the aforementioned sequences of the RPK promoter constitute a tool capable of directing the stable, moderate and specific expression of erythroid tissue of transgenes, in mammalian cells both in vitro and in vivo, limiting the circumscribed problem to the vectors present in the state of the art which, by comprising promoters that direct strong expression of the transgenes and in a ubiquitous manner, cause the transactivation of other genes, including oncogenes, in unnecessary cell lines, including in hematopoietic stem cells . Therefore, the use of vectors with promoters that direct a moderate, stable and tissue-specific expression of the transgene constitutes a safer tool for gene therapy.
  • vectors expressing the EGFP transgene were used under the control of the phosphoglycerate kinase promoter (LSinPGKEG; Figure 1).
  • Figure 2 shows representative histograms of the activity of the RPK promoter against the PGK promoter, evaluating the percentage of positive cells, the level of expression (measured by the MFI value of the EGFP transgene) and the relative efficiency of the transgene by estimating of the Transcription Index (TI) (35), in human and murine cell lines of hematopoietic differentiation to myelomonocytic or erythroid lineages.
  • TI Transcription Index
  • the RPK erythroid promoter induces transgene expression specifically in human erythroid differentiation cell lines (K562 and HEL) and not in the of myelomonocytic differentiation (HL60) or in non-hematopoietic cells (HELA). It is also observed that the expression from the RPK promoter is more moderate and is maintained over time, obtaining similar results after 3 months in culture. It was also found that the RPK promoter, in addition to being tissue specific, was species specific since the expression in murine erythroid differentiation cells (MEL cells) was much lower than that obtained in human cells.
  • MEL cells murine erythroid differentiation cells
  • RPK promoter sequences that confer expression specificity to erythroid tissue can be used in lentiviral vectors, conferring a stable, moderate and tissue-specific expression of the transgenes to which it directs. Expression from the RPK promoter is undetectable in non-erythroid cells and very low in cells of non-human origin.
  • the next step in the development of the invention was to study whether the results that had been obtained using established cell lines were also demonstrated in primary hematopoietic cells.
  • primitive human progenitors were obtained from umbilical cord cells obtained with the prior informed consent of the pregnant mothers.
  • Primitive cells, CD34 + were obtained by immunomagnetic purification. Once purified, the cells were infected in vitro with the LSinPGKEG and LSinRPKCG lentiviral vectors and maintained in culture for 14 days in the presence of different combinations of growth factors. At different days after infection, an analysis was performed by flow cytometry, observing that human erythropoietin induced the expression of the fluorescent protein in cells infected with the LSinRPKCG vector.
  • CD34 + cells infected with the LSinPGKEG lentiviral vectors and LSinRPKCG were grown in semi-solid medium in the presence of growth factors that allowed the growth of granulomacrophage colonies (CFU-GM) and erythroids (BFU-E). At 10 days of culture the colonies were analyzed and the expression of the fluorescent protein was determined in the different types of colonies ( Figure 4). Whereas in cultures of cells infected with the control vector (PGK) fluorescent colonies could be detected in all types of identified colonies, in cultures of cells infected with the LSinRPKCG vector (PKLR) only erythroid colonies expressed the fluorescent protein. In no case could a CFU-GM colony be expressed expressing the fluorescent protein.
  • the present invention relates to the use of regulatory sequences comprising the PKLR gene promoter in the production of vectors (hereinafter vectors of the invention), with the exception of vectors comprising adeno-associated viruses, for be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue.
  • the regulatory sequence is SEQ ID NO: 1 and wherein said therapy is performed "in vivo" in mammals or "in vitro" in cultures of mammalian cells, characterized in that the vector produced comprises an integrative virus and more specifically a Lentivirus virus.
  • a second aspect of the present invention relates to vectors, with the exception of vectors comprising adeno-associated viruses, characterized in that they comprise at least one regulatory sequence which, in turn, comprises the gene promoter.
  • PKLR to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue.
  • the vector would consist of an integrative virus and more specifically a Lentivirus virus.
  • a third aspect of the present invention relates to cells (hereinafter cells of the invention) transduced by the vectors of the invention.
  • a fourth aspect of the present invention relates to the use of the vectors of the invention for the preparation of pharmaceutical compositions intended for use in somatic gene therapy.
  • a fifth aspect of the invention relates to the use of the cells of the invention for the preparation of pharmaceutical compositions intended for use in somatic gene therapy.
  • a sixth aspect of the invention relates to pharmaceutical compositions comprising the vectors of the invention and pharmaceutically acceptable carriers.
  • the last aspect of the invention relates to pharmaceutical compositions comprising the cells of the invention, and pharmaceutically acceptable carriers.
  • third generation self-inactivating lentiviral vectors were used. Specifically, the LSinPGKEG transfer vectors (pRRLsinl ⁇ .pptPGKeGFPWpre; EGFP, enhanced green fluorescence protein; Clontech) and LSinRPKCG, the packaging vectors pMDLg-pRRE and pRSV-REV and the envelope vector pMD2-VSVG (pMD2-VSVG vector) ). To generate the LSinRPKCG lentiviral vector (pRRLsinl ⁇ .ppthRPKCopGreenWpre), a 601 base pair fragment of the PKLR gene was amplified by PCR and cloned into the pGEMT-EASY cloning vector.
  • LSinPGKEG transfer vectors pRRLsinl ⁇ .pptPGKeGFPWpre; EGFP, enhanced green fluorescence protein; Clontech
  • LSinRPKCG the packaging vectors pMDLg-pRRE and
  • pGEMT-PKLR containing the 601 base pair fragment of the PKLR gene was used to generate a lentiviral vector in which the expression of the CopGreen protein was directed by the promoter sequence of 601 base pairs of the gene.
  • PKLR the 601 base pair fragment of the PKLR gene was cloned into the vector pRRLsinl ⁇ .pptCMVeGFPWpre (18,19), thus replacing the CMV promoter and the EGFP protein with the PKLR promoter and the CopGreen protein ( Figure 1).
  • Both the green fluorescent protein EGFP from Clontech and the CopGreen protein from Evrogen have the same characteristics in terms of MFI when expressed under the same promoter in the same number of copies.
  • Supernatants containing the lentiviral vectors were produced by transient cotransfection of the transfer vectors, pRRLsinl ⁇ .ppthPGKeGFPWpre, or pRRLsinl8.ppthRPKCopGreenWpre (9 mg), the packaging vectors pMDLg-pRRE (5.85 mgV) (p5RS-RE) (5.85 mg) 2.25 mg) and the envelope vector pMD2-VSVG (3.15 mg) in 10 cm plates with 293T cells (ATCC) at 60-70% confluence. For transient transduction with these vectors the protocol was carried out as previously described (36,37).
  • the transfective reagent Polyfect (Qyagen) was used for transient transfection with the transfer vectors, following the manufacturer's instructions. In both cases, 1 mM sodium butyrate (Sigma) was added to favor viral production. Supernatants that were recovered 24 and 48 hours after transduction were filtered through 0.45 mm filters and concentrated by ultracentrifugation at 18000 rpm and 4 ° C for 90 minutes.
  • the titre of the lentiviral supernatants was determined in HEL cells by FACS analysis and expression of the fluorescent proteins in an EPICS XL flow cytometer (Coulter Electronics, Hialeah, FL, USA). We obtained titers greater than 107 v / ml with both vectors.
  • the human non-hematopoietic cell lines used were HeLa epithelial cells and the human hematopoietic cell lines used were the idel HL60 myeloid cell line and the HEL erythroid cell line and the ide K562 myeloid line.
  • the non-hematopoietic murine cell lines used were NIH 3T3 murine fibroblasts from the ATCC (Rockville, MD, USA).
  • the hematopoietic murine cell lines used were WEHI myeloid murine cells and MEL erythroid murine cells.
  • HeLa, NIH 3T3, and MEL cells were grown in Dulbecco-modified Eagle's Medium (DMEM, Gibco Laboratories, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS; Cambrex), antibiotics ( 100 U / ml penicillin and 50 ⁇ g / ml streptomycin) and 2 mM L-Glutamine.
  • DMEM Dulbecco-modified Eagle's Medium
  • FBS fetal bovine serum
  • antibiotics 100 U / ml penicillin and 50 ⁇ g / ml streptomycin
  • 2 mM L-Glutamine 2 mM L-Glutamine.
  • HEL and WEHI cells were grown in RPMI 1640 (medium of the Roswell Park Memorial Institute, GIBCO-BRL Laboratories), supplemented with 10% FBS, antibiotics and 2 mM L-Glutamine.
  • HL60 and K562 cells were grown in Dulbecco's medium modified by Iscove (IMDM; GIBCO-BRL, Grand Island, NY), supplemented with 20% FBS and antibiotics (100 U / ml penicillin and 50 mg / ml streptomycin).
  • NOD / LtSz-scid / scid mice deficient in Fc receptors, complement function and the function of B and T lymphocytes and natural killers were used as receptors for human hematopoietic cells. Mice were purchased from The Jackson Laboratory (Bar Harbor, ME). All animals were handled in sterile conditions and kept in micro-isolators. Before the transplant, the mice from 6 to 8 weeks were irradiated in their entire body with 2.5 to 3.0 Gy of X-rays (the dosage rate was 1.03 Gy / min using a MG X-ray device -324 from Philips, Hamburg, Germany, at 300 kV, 1O mA).
  • Cell lines were transduced by adding different volumes of concentrated Lentivirus supernatants to a known number of cells depending on the multiplicity of infection (MOI) used. The cells were centrifuged 1 hour and 30 minutes at 2500 rpm and 37 ° C after 2 and 24 hours after infection in order to promote transduction efficiency.
  • MOI multiplicity of infection
  • Example 6 Analysis by flow cytometry Fluorescent protein positive cells were analyzed by flow cytometry in an EPICS XL flow cytometer (Coulter Electronics, Hialeah, FL).
  • CD71-PE anti-human Becton Dickinson
  • CD 19-PE anti-human J4.119; Immunotech
  • Umbilical cord (CB) blood cells were obtained after a normal delivery in which the gestation period was completed and with the mother's informed consent. Samples were collected at dawn and processed for the next 12 hours after delivery. Mononuclear cells (MN) were obtained by depositing the blood on Ficoll-Hypaque (1,077 g / ml; Pharmacia Biotech, Uppsala, Sweden), and centrifuging at 40Og for 30 minutes. Then the intermediate layer was collected between the Ficoll and the plasma, which was washed three times, and resuspended in the middle of
  • CD34 + cells were cryopreserved in liquid nitrogen, with 10% dimethylsulfoxide (DMSO) and 20% fetal bovine serum (FBS) until they were used.
  • DMSO dimethylsulfoxide
  • FBS fetal bovine serum
  • Example 8 Liquid culture of human hematopoietic cells CD34 +
  • the purified cells were washed and resuspended in StemSpam serum-free medium (Stem CeIl Technologies Inc., Vancouver, BC, Canada) supplemented with antibiotics (100 U / ml penicillin and 50 mg / ml streptomycin), 300 ng / ml stem cell factor (SCF, kindly provided by Amgen, Thousand Oaks, CA), 100 ng / ml of thrombopoietin (TPO, kindly assigned by Kirin Brewery, Tokyo, Japan) and 100 ng / ml of the FLT3 ligand (FLT3-L , kindly provided by Amgen, Thousand Oaks, CA).
  • antibiotics 100 U / ml penicillin and 50 mg / ml streptomycin
  • SCF stem cell factor
  • TPO thrombopoietin
  • FLT3-L FLT3 ligand
  • erythropoietin human erythropoietin (hEPO, kindly provided by Amgen, Thousand Oaks, CA) was added. Cultures were maintained at 37 0 C under 5% CO2. At 4, 7, 10 and 14 days of culture, aliquots were extracted and analyzed by flow cytometry.
  • the CD34 + cells were washed in IMDM supplemented with 10% FBS and antibiotics (100 U / ml penicillin and 50 mg / ml streptomycin). The cells were then resuspended for pre-stimulation for 2 hours with serum-free StemSpan medium (Stem CeIl Technologies Inc., Vancouver, BC, Canada) supplemented with antibiotics (100 U / ml penicillin and 50 mg / ml streptomycin), 300 ng / ml of stem cell factor (SCF, kindly provided by Amgen, Thousand Oaks, CA), 100 ng / ml of thrombopoietin (TPO, kindly assigned by Kirin Brewery, Tokyo, Japan) and 100 ng / ml of FLT3L.
  • SCF stem cell factor
  • TPO thrombopoietin
  • CD34 positive cells were then transduced with the supernatants of the LSinPGKEG and LSinRPKCG Lentiviruses for 24 hours. During this time the cells were centrifuged after 2 and 20 hours after transduction for 1 hour at 2500 rpm and 37 ° C. They were then washed again and 1 to 3x10 6 cells per mouse were transplanted into subletically irradiated NOD / SCID receptor mice. After the transplant, bone marrow samples from these animals were periodically analyzed by flow cytometry to analyze the degree of implantation of the human transplant and the cell type in which the transgene was being expressed. These bone marrow samples were aspirated from a femur by puncture through the knee joint, according to previously described procedures (38).
  • the data in the examples are presented in the form of the mean ⁇ standard deviation of the mean.
  • the significance of the differences between groups of data was determined using the Student's t-test.
  • Statistical analysis of the data was performed using the Statgraphics Plus program (Maugistics Inc., Rockville, MD, USA).
  • Miwa S Takegawa S. Conversion of pyruvate kinase (PK) isozymes during development of normal and PK deficient erythroblasts. Biomed Biochim Acta. 1983; 42: S242-246
  • PK pyruvate kinase
  • PRR-REl Pyruvate kinase regulatory element 1
  • Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc Nati Acad Sci U.S 2006; 103: 1457-1462
  • Verlinden SF van Es HH, van Bekkum DW.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Expression vectors which include the human PKLR promoter gene and use thereof for preparing pharmaceutical compositions for somatic genetic therapy with specific expression in erythroid cells. The present invention concerns the use of regulatory sequences of the promoter of the PKLR gene in the production of vectors, with the exception of vectors comprising adeno-associated viruses, for use in the preparation of pharmaceutical compositions intended for somatic genetic therapy in erythroid tissue.

Description

VECTORES DE EXPRESIÓN QUE COMPRENDEN EL PROMOTOR DEL GEN PKLR HUMANO Y SU USO PARA LA ELABORACIÓN DE COMPOSICIONES FARMACÉUTICAS DESTINADAS A TERAPIA GÉNICA SOMÁTICA CON EXPRESIÓN ESPECÍFICA EN CÉLULAS ERITROIDES. EXPRESSION VECTORS UNDERSTANDING THE PROMOTER OF THE HUMAN PKLR GENE AND ITS USE FOR THE ELABORATION OF PHARMACEUTICAL COMPOSITIONS INTENDED FOR SOMATIC GENE THERAPY WITH SPECIFIC EXPRESSION IN ERYTHROID CELLS.
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se engloba dentro del campo de la ingeniería genética. Concretamente, la invención se refiere al uso del promotor del gen humano que regula la expresión de la forma R de la piruvato quinasa (hRPK) en la producción de vectores, para ser utilizados en la elaboración de composiciones farmacéuticas destinadas a terapia génica somática. Mediante el uso del promotor del gen PKLR se ha conseguido la generación de vectores en los que el transgén se expresa específicamente y de forma moderada en células de la línea de diferenciación eritroide y más concretamente, en los estadios finales de la diferenciación hacia el eritrocito.The present invention falls within the field of genetic engineering. Specifically, the invention relates to the use of the human gene promoter that regulates the expression of the R-form of pyruvate kinase (hRPK) in the production of vectors, to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy. Through the use of the PKLR gene promoter, the generation of vectors in which the transgene is specifically and moderately expressed in cells of the erythroid differentiation line has been achieved and more specifically, in the final stages of erythrocyte differentiation.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
El desarrollo de la terapia génica como procedimiento generalizado para el tratamiento de enfermedades dependerá del equilibrio positivo entre el beneficio clínico y el riesgo asociado a esta nueva intervención terapéutica. Aunque ya es evidente la eficacia de la terapia génica para producir una mejoría clínica en pacientes con trastornos hereditarios (1-6), recientemente han surgido reservas relativas a la seguridad de dicha terapia. Los estudios experimentales han demostrado la generación de leucemias en ratones asociadas con la activación de oncogenes endógenos por provirus integrados (7,8). Además, se han observado resultados similares en pacientes humanos, cuyas células madre hematopoyéticas (CMHs) fueron transducidas con vectores gamma-retrovirales que contenían promotores virales (9,10).The development of gene therapy as a generalized procedure for the treatment of diseases will depend on the positive balance between the clinical benefit and the risk associated with this new therapeutic intervention. Although the efficacy of gene therapy to produce clinical improvement in patients with inherited disorders (1-6) is already evident, reservations have recently emerged regarding the safety of such therapy. Experimental studies have demonstrated the generation of leukemia in mice associated with the activation of endogenous oncogenes by integrated provirus (7,8). In addition, similar results have been observed in human patients, whose hematopoietic stem cells (CMHs) were transduced with gamma-retroviral vectors containing viral promoters (9,10).
La Piruvato Kinasa eritrocitaria (RPK) humana es una enzima glicolítica que se expresa sólo en células de linaje eritroide. Durante la diferenciación eritroide, la expresión de la RPK aumenta gradualmente mediante un mecanismo dependiente de la activación de su promotor por factores transcripcionales específicos del tejido eritroide (11). La expresión de la RPK es mayor en eritroblastos basó filos y policromatófϊlos (11-13).Human erythrocyte pyruvate kinase (RPK) is a glycolytic enzyme that is expressed only in erythroid lineage cells. During erythroid differentiation, the RPK expression gradually increases through a mechanism dependent on the activation of its promoter by specific transcriptional factors of erythroid tissue (11). The expression of RPK is greater in basal and polychromatophilic erythroblasts (11-13).
La RPK humana está codificada por el gen PKLR, con una extensión aproximada de 12 kb. Presenta un total de 12 exones y 11 intrones que codifican la iso forma RPK, y la iso forma LPK producida en el parénquima hepático. Los dos exones iniciales son específicos para cada iso forma, el l(R) para la RPK y el l(L) para la LPK, de expresión específica en hígado. El control transcripcional depende de la actividad específica de los promotores que flanquean cada exón 1 (el R y el L), permitiendo su expresión diferencial en tejido eritroide (RPK) y hepático (LPK) respectivamente. La región 5' que flanquea al primer exón (IR) presenta dos cajas CAC, cuatro motivos GATA y un nuevo elemento regulador de trascripción denominado PKR-REl con el motivo (CTGTC) ubicados entre los 250 pares de bases corriente arriba del inicio de transcripción, que en conjunto producen una actividad promotora específica en células eritroides (14-30). Por tanto, la expresión de la isoenzima RPK ocurre con una elevada especificidad temporal y absoluta especificidad de tejido, sólo en tejido eritroide, como consecuencia de las características descritas para sus regiones promotoras y reguladoras.Human RPK is encoded by the PKLR gene, with an approximate extension of 12 kb. It has a total of 12 exons and 11 introns that encode the RPK iso form, and the LPK iso form produced in the hepatic parenchyma. The two initial exons are specific for each iso form, l (R) for RPK and l (L) for LPK, for specific liver expression. Transcriptional control depends on the specific activity of the promoters flanking each exon 1 (R and L), allowing differential expression in erythroid (RPK) and liver tissue (LPK) respectively. The 5 'region flanking the first exon (IR) has two CAC boxes, four GATA motifs and a new transcription regulatory element called PKR-REl with the motif (CTGTC) located between the 250 base pairs upstream of the start of transcription , which together produce a specific promoter activity in erythroid cells (14-30). Therefore, the expression of the RPK isoenzyme occurs with a high temporal specificity and absolute tissue specificity, only in erythroid tissue, as a consequence of the characteristics described for its promoter and regulatory regions.
La utilización de promotores específicos de tejido para expresar la pro teína de interés en células comprometidas a la diferenciación de un particular linaje evitaría efectos adversos asociados a la expresión ectópica de la proteína en células no deseadas, lo cual ha sido uno de los objetivos desde el comienzo de la terapia génica. Además, en el caso de promotores ubicuos, tales como los virales, se ha comprobado su capacidad para transactivar genes endógenos, incluyendo oncogenes, tras su inserción estable en el genoma de las célula madre. El interés de limitar la influencia del promotor presente en el vector sobre la expresión de genes próximos a su sitio de integración se ha visto reforzada por observaciones recientes que indican que, tanto los vectores gamma-retrovirales, como los vectores lentivirales, tienen una alta probabilidad de inserción en regiones de ADN próximas o dentro de los genes (31-34). La expresión moderada y específica de trangenes con promotores que no se expresen en las células madre limitaría las posibilidades de generar leucemias como consecuencia de la transactivación de oncogenes en células madre. Una de las principales dificultades para generar vectores con especificidad de expresión ha sido el tamaño de las secuencias reguladoras, en términos de número de pares de bases necesario para tener todas las regiones reguladoras necesarias para conferir la especificidad requerida. Cuanto mayor sea el tamaño del promotor menor especificidad tendrá.The use of specific tissue promoters to express the protein of interest in cells committed to the differentiation of a particular lineage would avoid adverse effects associated with the ectopic expression of the protein in unwanted cells, which has been one of the objectives since the beginning of gene therapy. In addition, in the case of ubiquitous promoters, such as virals, their ability to transactivate endogenous genes, including oncogenes, has been proven after their stable insertion into the genome of the stem cells. The interest of limiting the influence of the promoter present in the vector on the expression of genes close to its integration site has been reinforced by recent observations that indicate that both gamma-retroviral vectors and lentiviral vectors have a high probability of insertion in nearby DNA regions or within genes (31-34). The expression Moderate and specific trangenes with promoters that are not expressed in stem cells would limit the chances of generating leukemia as a result of transactivation of oncogenes in stem cells. One of the main difficulties in generating vectors with expression specificity has been the size of the regulatory sequences, in terms of the number of base pairs necessary to have all the regulatory regions necessary to confer the required specificity. The larger the promoter size, the lower specificity it will have.
Se ha de mencionar cierta documentación perteneciente al estado de la técnica que tiene relación con la presente invención. En primer lugar, citar el sitio de Internet http://egp.gs.washington.edu (ver selección Finished Genes Table) donde se localiza información relativa al gen PKLR humano localizado en la banda q21 del cromosoma 1.Some documentation pertaining to the state of the art that relates to the present invention should be mentioned. First, cite the website http://egp.gs.washington.edu (see selection Finished Genes Table) where information regarding the human PKLR gene located in the q21 band of chromosome 1 is located.
Entre dicha información destacan varios artículos científicos de interés. Así el artículo Biochemical and Biophysical Research Communications 188(2):516-523 (1992), se relaciona con un análisis estructural del gen PKLR y la identificación de la actividad promotora específica en células eritroides.Among this information are several scientific articles of interest. Thus the article Biochemical and Biophysical Research Communications 188 (2): 516-523 (1992), is related to a structural analysis of the PKLR gene and the identification of specific promoter activity in erythroid cells.
Asimismo, en el artículo con referencia bibliográfica Nucleic Acids Research 20(21):5669-5676 (1992), se ofrece el resultado de la investigación sobre los mecanismos responsables de la especificidad en células eritroides de dicho promotor.Likewise, in the article with bibliographic reference Nucleic Acids Research 20 (21): 5669-5676 (1992), the result of the investigation on the mechanisms responsible for the specificity in erythroid cells of said promoter is offered.
Finalmente, en los artículos con referencia Blood 101(4): 1596-1602 (2003) y Blood Cells, Molecules and Diseases 34:186-190 (2005), se proporciona información concerniente a un elemento regulador del promotor específico eritroide del gen PKLR.Finally, in articles with reference Blood 101 (4): 1596-1602 (2003) and Blood Cells, Molecules and Diseases 34: 186-190 (2005), information concerning a regulatory element of the specific erythroid promoter of the PKLR gene is provided .
Por otro lado, dentro de la documentación de patentes, se han de mencionar dos documentos. El documento WO 02/29103, se refiere a un sistema para el diagnóstico y evaluación de la progresión de cáncer hepático, carcinoma hepatocelular o metástasis, de un tumor hepático, en un paciente por medio de la detección del nivel de expresión de dos o más genes (uno de ellos sería el gen PKLR humano) en una muestra de tejido de hígado. Igualmente, el documento WO 02/28999, se relaciona con un método de detección de la activación de granulocitos mediante la detección de la expresión diferencial de los genes asociados (uno de ellos sería el promotor específico eritroide del gen PKLR humano) con dicha activación en una micromatriz de ADN (biochip). Dicho método permite el seguimiento de los diversos estados de diferentes enfermedades, así como evaluar la farmacotoxicidad.On the other hand, within the patent documentation, two documents must be mentioned. WO 02/29103, refers to a system for the diagnosis and evaluation of the progression of liver cancer, hepatocellular carcinoma or metastasis, of a liver tumor, in a patient by detecting the level of expression of two or more genes (one of them would be the human PKLR gene) in a liver tissue sample. Similarly, WO 02/28999 relates to a method of detecting granulocyte activation by detecting the differential expression of the associated genes (one of them would be the specific erythroid promoter of the human PKLR gene) with said activation in a DNA microarray (biochip). This method allows the monitoring of the various states of different diseases, as well as evaluating pharmacotoxicity.
Por otro lado, se ha de citar el documento europeo de patente EP 1 193 272, correspondiente a un vector de un virus adeno-asociado de utilidad en terapia génica. Dicho vector contiene un promotor inducible que es el promotor del gen de la piruvato quinasa. Sin embargo, dicho promotor es el promotor específico de hígado del gen PKLR, cuya secuencia es diferente del promotor específico de tejido eritroide aquí propuesto. El promotor específico de hígado no regularía la expresión del gen PKLR en líneas celulares eritroides.On the other hand, the European patent document EP 1 193 272, corresponding to a vector of an adeno-associated virus useful in gene therapy, should be cited. Said vector contains an inducible promoter that is the promoter of the pyruvate kinase gene. However, said promoter is the specific liver promoter of the PKLR gene, whose sequence is different from the specific erythroid tissue promoter proposed herein. The liver-specific promoter would not regulate the expression of the PKLR gene in erythroid cell lines.
También se ha de mencionar el documento WO 89/02469, concerniente a un elemento intensificador (enhancer) de la transcripción, específico de eritroides humanos. Dicho elemento proporciona una mejora en construcciones genéticas para transfección de células de linaje eritroide. Tales construcciones serán de utilidad en terapia génica de desórdenes en células eritroides, tales como la talasemia o las hemoglobinopatías. Sin embargo en esta patente la secuencia empleada es de un tamaño mayor (800 pb) que la de la presente invención, por consiguiente, es menos específica. Además la secuencia descrita en dicha patente regula la expresión de un gen diferente al gen PKLR. Se trata del gen de la β-globina, cuya homología con el gen PKLR es nula.Mention should also be made of WO 89/02469, concerning an enhancer element of the transcription, specific to human erythroids. Said element provides an improvement in genetic constructs for transfection of erythroid lineage cells. Such constructs will be useful in gene therapy of disorders in erythroid cells, such as thalassemia or hemoglobinopathies. However, in this patent the sequence used is of a larger size (800 bp) than that of the present invention, therefore, it is less specific. In addition, the sequence described in said patent regulates the expression of a gene other than the PKLR gene. It is the β-globin gene, whose homology with the PKLR gene is nil.
La presente invención va dirigida al uso del promotor específico de eritrocitos (RPK) en la construcción de vectores, con la excepción de vectores que comprendan virus adeno-asociados, para ser utilizados en la elaboración de composiciones farmacéuticas destinadas a terapia génica somática en tejido eritroide. Por lo tanto, la presente invención se diferencia del estado de la técnica porque no está focalizada en el promotor "per se", ni está asociado a vectores adeno-asociados y su uso está dirigido específicamente al tejido eritroide. DESCRIPCIÓN DE LA INVENCIÓNThe present invention is directed to the use of the specific erythrocyte promoter (RPK) in the construction of vectors, with the exception of vectors comprising adeno-associated viruses, to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue . Therefore, the present invention differs from the state of the art because it is not focused on the "per se" promoter, nor is it associated with adeno-associated vectors and its use is specifically directed to the erythroid tissue. DESCRIPTION OF THE INVENTION
Breve descripción de la invenciónBrief Description of the Invention
En la presente invención se han desarrollado vectores integrativos que comprenden el promotor y las regiones reguladoras del gen PKLR dirigiendo la expresión del gen de interés. Más concretamente se han incorporado las secuencias del genoma humano entre los 507 pares de bases (pb) corriente arriba del inicio de transcripción del gen PKLR y los 94 pb del marco abierto de lectura del gen PKLR, que había sido descrita como responsable de la deficiencia en piruvato quinasa en un enfermo con anemia hemolítica (8). En conjunto, la región promotora (SEQ ID NO: 1) comprende 601 pb, un tamaño óptimo para la construcción de vectores integrativos específicos que no activen otros genes (oncogenes) próximos al gen PKLR. Los resultados obtenidos demuestran una expresión moderada, estable y específica de células de linaje eritroide, tanto en líneas estables de este linaje como, en células primarias humanas diferenciadas in vitro hacia el citado linaje. Así, la utilización de estas secuencias promotoras de expresión moderada y específica de tejido limita la problemática de la mayor parte de los vectores presentes en el estado de la técnica los cuales, al comprender promotores que dirigen una muy elevada expresión de los transgenes de forma ubicua en todas las células, facilitan la transactivación de otros genes, incluyendo oncogenes, en células madre con capacidad de originar leucemias. Por lo tanto, la generación de vectores con promotores que dirigen la expresión del transgén específicamente en células en diferenciación, constituye una herramienta más segura para la terapia génica.In the present invention integrative vectors have been developed comprising the promoter and the regulatory regions of the PKLR gene by directing the expression of the gene of interest. More specifically, the sequences of the human genome have been incorporated between the 507 base pairs (bp) upstream of the start of transcription of the PKLR gene and the 94 bp of the open reading frame of the PKLR gene, which had been described as responsible for the deficiency in pyruvate kinase in a patient with hemolytic anemia (8). Together, the promoter region (SEQ ID NO: 1) comprises 601 bp, an optimal size for the construction of specific integrative vectors that do not activate other genes (oncogenes) close to the PKLR gene. The results obtained demonstrate a moderate, stable and specific expression of erythroid lineage cells, both in stable lines of this lineage and in differentiated human primary cells in vitro towards said lineage. Thus, the use of these promoter sequences of moderate and tissue-specific expression limits the problem of most of the vectors present in the state of the art which, when comprising promoters that direct a very high expression of the transgenes ubiquitously in all cells, they facilitate the transactivation of other genes, including oncogenes, in stem cells with the ability to cause leukemia. Therefore, the generation of vectors with promoters that direct the expression of the transgene specifically in differentiated cells constitutes a safer tool for gene therapy.
Descripción de las figurasDescription of the figures
Figura 1Figure 1
Esquema de los vectores lentivirales generados: 1. LSinRPKCG: porta las secuencias específicas del promotor PKR dirigiendo la expresión de la proteína fluorescente CopGreen.Scheme of the generated lentiviral vectors: 1. LSinRPKCG: carries the specific sequences of the PKR promoter by directing the expression of the CopGreen fluorescent protein.
2. LSinPGKEG: porta las secuencias reguladoras del promotor de la enzima Fosfoglicerato Kinasa (PGK) de expresión tisular ubicua. Es utilizado como vector control.2. LSinPGKEG: carries the regulatory sequences of the promoter of the phosphoglycerate kinase enzyme (PGK) of ubiquitous tissue expression. It is used as a control vector.
Figura 2Figure 2
a. Figura representativa del análisis de expresión de la proteína fluorescente de en tres líneas celulares. En el eje de ordenadas (Y) se representan las líneas celulares utilizadas: HL60, de diferenciación no eritroide, y las líneas celulares K562 y HEL, las dos con diferenciación eritroide. En el eje de abscisas (X) se representa: CN (células no transfectadas), PKLR (células transfectadas con el vector LSinRPKCG) y PGK (células transfectadas con el vector LSinPGKEG).to. Representative figure of the expression analysis of the fluorescent protein in three cell lines. In the axis of ordinates (Y) the cell lines used are represented: HL60, non-erythroid differentiation, and cell lines K562 and HEL, both with erythroid differentiation. The abscissa axis (X) represents: CN (non-transfected cells), PKLR (cells transfected with the LSinRPKCG vector) and PGK (cells transfected with the LSinPGKEG vector).
Las células fueron transducidas in vitro con los vectores representados en la figura 1 (LSinPGKEG, LSinRPKCG), crecidas in vitro durante 60 días y su expresión analizada mediante citometría de flujo. Cada "dot-plot" (representado en cada una de las nueve gráficas incluidas dentro de la presente figura) representa, en el eje de abscisas (X), la intensidad de expresión de la proteína fluorescente y, en el eje de ordenadas (Y), el tamaño celular medido de las células analizadas. La ventana de células positivas se eligió en base a una expresión en células no infectadas (CN) inferior al 1%. Los valores porcentuales incluidos en cada una de las nueve gráficas indican el porcentaje de células positivas en cada dot-plot.The cells were transduced in vitro with the vectors represented in Figure 1 (LSinPGKEG, LSinRPKCG), grown in vitro for 60 days and their expression analyzed by flow cytometry. Each dot-plot (represented in each of the nine graphs included in this figure) represents, on the abscissa axis (X), the intensity of expression of the fluorescent protein and, on the ordinate axis (Y ), the measured cell size of the cells analyzed. The positive cell window was chosen based on an expression in uninfected cells (CN) of less than 1%. The percentage values included in each of the nine graphs indicate the percentage of positive cells in each dot-plot.
b. Estudio de la actividad y especificidad de expresión de los promotores PKR en líneas celulares inmortalizadas, transducidas con los lentivirus LSinPGKEG y LSinRPKCG.b. Study of the activity and specificity of expression of PKR promoters in immortalized cell lines, transduced with the LSinPGKEG and LSinRPKCG lentiviruses.
En el eje de abscisas (X) se representan, en orden descendente: • El VCN: número medio de integraciones de DNA viral por célula evaluado mediante PCR cuantitativa en tiempo real.On the abscissa axis (X) they are represented, in descending order: • The VCN: average number of viral DNA integrations per cell evaluated by quantitative real-time PCR.
• Tipo de vector utilizado para la transducción: vector lentiviral LSinPGKEG (barras negras) y vector lentiviral LSinRPKCG (barras blancas). • Las líneas celulares utilizadas:• Type of vector used for transduction: LSinPGKEG lentiviral vector (black bars) and LSinRPKCG lentiviral vector (white bars). • Cell lines used:
I. K562: línea de origen humano de diferenciación mielomonocítica y eritroide. II. HEL: línea de origen humano de diferenciación eritroide.I. K562: line of human origin of myelomonocytic and erythroid differentiation. II. HEL: line of human origin of erythroid differentiation.
III. HL60: línea leucémica de origen humano de diferenciación mielomonocítica.III. HL60: leukemic line of human origin of myelomonocytic differentiation.
IV. HELA: línea de origen humano procedente de un carcinoma cervical de diferenciación epitelial.IV. HELA: line of human origin from a cervical carcinoma of epithelial differentiation.
V. WEHI: línea de origen murino de diferenciación mielomonocítica. VI. 3T3: línea de origen murino de diferenciación a fibroblasto. • Origen de las células: H (humano) y M (murino).V. WEHI: murine origin line of myelomonocytic differentiation. SAW. 3T3: Murine fibroblast differentiation line of origin. • Cell origin: H (human) and M (murine).
En el eje de ordenadas (Y) se representa:The ordinate axis (Y) represents:
• En la gráfica superior: cuantificación de los porcentajes de transducción medido como expresión de la proteína fluorescente.• In the graph above: quantification of the percentages of transduction measured as expression of the fluorescent protein.
• En la gráfica del medio: la intensidad de expresión medida como la intensidad media de fluorescencia (MFI) evaluada por citometría de flujo.• In the graph of the medium: the intensity of expression measured as the average intensity of fluorescence (MFI) evaluated by flow cytometry.
• En la gráfica inferior: la actividad del promotor mediante la evaluación del índice de trascripción (TI, ver detalle en descripción de la invención) mediante PCR cuantitativa en tiempo real.• In the graph below: the activity of the promoter through the evaluation of the transcription index (TI, see detail in description of the invention) by quantitative PCR in real time.
Figura 3Figure 3
Análisis de la actividad del promotor RPK en células primarias humanas transducidas con vectores lentivirales portando la proteína fluorescente verde dirigida por el promotor RPK en cultivo líquido. • En el eje abscisas (X) se representa la expresión de las proteínas fluorescentes.Analysis of the activity of the RPK promoter in human primary cells transduced with lentiviral vectors carrying the green fluorescent protein directed by the RPK promoter in liquid culture. • On the abscissa (X) axis the expression of fluorescent proteins is represented.
• En el eje de ordenadas (Y) se representan los días de post-tranfección (4, 7, 10 y 14) en los cuales se analizó la expresión de la pro teína fluorescente en el cultivo, en ausencia (-EPO) y presencia (+EPO) de eritropoyetina humana recombinante y en función del vector utilizado: PKLR (utilización del vector LSinRPKCG) o PGK (utilización del vector LSinPGKEG). CN son células no transfectadas. Entre paréntesis se representa el VCN detectado en cada cultivo para cada vector.• In the ordinate (Y) axis, the days of post-transfection (4, 7, 10 and 14) in which the expression of the fluorescent protein in the culture was analyzed, in the absence (-EPO) and presence (+ EPO) of recombinant human erythropoietin and depending on the vector used: PKLR (use of the LSinRPKCG vector) or PGK (use of the LSinPGKEG vector). CN are non-transfected cells. In brackets, the CNV detected in each culture is represented for each vector.
Las células CD34+ purificadas a partir de sangre de cordón umbilical fueron transducidas in vitro con los vectores lentivirales LSinPGKEG y LSinRPKCG y puestas en cultivo en presencia de diferentes combinaciones de factores de crecimiento (SCF, 300 ng/mL, trombopoyetina [TPO], 100 ng/mL y Flt3L, 100 ng/mL) y en ausencia o presencia de eritropoyetina humana recombinante (5LVmL). Cuatro, siete, diez y catorce días post-infección se analizó la expresión de la proteína fluorescente en el cultivo, en ausencia y presencia de eritropoyetina humana recombinante. La presencia de eritropoyetina humana induce la expresión de proteína fluorescente en los cultivos de CD34+ transducidas con el vector LSinRPKCG que contiene el promotor de la RPK específico eritroide (PKLR).CD34 + cells purified from umbilical cord blood were transduced in vitro with the LSinPGKEG and LSinRPKCG lentiviral vectors and cultured in the presence of different combinations of growth factors (SCF, 300 ng / mL, thrombopoietin [TPO], 100 ng / mL and Flt3L, 100 ng / mL) and in the absence or presence of recombinant human erythropoietin (5LVmL). Four, seven, ten and fourteen days post-infection, the expression of the fluorescent protein in the culture was analyzed, in the absence and presence of recombinant human erythropoietin. The presence of human erythropoietin induces fluorescent protein expression in CD34 + cultures transduced with the LSinRPKCG vector containing the erythroid specific RPK promoter (PKLR).
Figura 4Figure 4
Análisis de la actividad del promotor RPK en células hematopoyéticas primarias humanas, transducidas con vectores lentivirales portado la proteína fluorescente verde dirigida por el promotor RPK y cultivadas in vitro. Células CD34+ purificadas a partir de cordón umbilical fueron transducidas in vitro con los vectores lentiviralesAnalysis of the activity of the RPK promoter in human primary hematopoietic cells, transduced with lentiviral vectors carried the green fluorescent protein directed by the RPK promoter and cultured in vitro. CD34 + cells purified from umbilical cord were transduced in vitro with lentiviral vectors
LSinPGKEG y LSinRPKCG y cultivadas in vitro en medio semisólido enriquecido con factores de crecimiento (H4434, StemCell Technologies) para la obtención de colonias granulomacrofágicas y eritroides. El panel de la izquierda muestra micrografías representativas de colonias eritroides (BFU-E) no transducidas (CN) o transducidas con los vectores lentivirales LSinRPKCG (PKLR) o LSinPGKEG (PGK). En CN las colonias fueron negativas a la expresión de la proteína verde fluorescente (control). La transducción con los vectores lentivirales LSinRPKCG (PKLR) y LSinPGKEG (PGK) generó colonias positivas a la expresión de proteína verde fluorescente En el panel de la derecha se muestran micrografías representativas de colonias granulomacrofágicas (CFU-GM) provenientes de células primarias humanas sin transducir y transducidas con los vectores lentivirales LSinRPKCG y LSinPGKEG respectivamente. A diferencia de lo que ocurrió con las colonias eritroides, las colonias granulomacrofágicas sólo mostraron fluorescencia verde cuando fueron transducidas con el vector lentiviral LSinPGKEG (PGFK), pero nunca con el vector LSinRPKCG (PKLR), demostrándose la especificidad del tejido eritroide del vector LSinRPKCG.LSinPGKEG and LSinRPKCG and cultured in vitro in semi-solid medium enriched with growth factors (H4434, StemCell Technologies) to obtain granulomacrophage and erythroid colonies. The panel on the left shows representative micrographs of erythroid colonies (BFU-E) that are not transduced (CN) or transduced with the LSinRPKCG (PKLR) or LSinPGKEG (PGK) lentiviral vectors. In CN the colonies were negative for the expression of the green fluorescent protein (control). Transduction with the lentiviral vectors LSinRPKCG (PKLR) and LSinPGKEG (PGK) generated positive colonies of fluorescent green protein expression. On the right panel representative micrographs of granulomachlophage colonies (CFU-GM) from human primary cells without transduction are shown. and transduced with the LSinRPKCG and LSinPGKEG lentiviral vectors respectively. Unlike what happened with the erythroid colonies, the granulomachophageal colonies only showed green fluorescence when they were transduced with the lentiviral vector LSinPGKEG (PGFK), but never with the LSinRPKCG vector (PKLR), demonstrating the specificity of the erythroid tissue of the LSinRPKCG vector.
Figura 5Figure 5
La figura muestra la eficacia de transducción de células repobladoras hematopoyéticas humanas después de la transducción de células CD34+ de sangre de cordón umbilical con vectores lentivirales LSinPGKEG y LSinRPKCG y trasplante en ratones inmunodeficientes NOD/SCID.The figure shows the transduction efficiency of human hematopoietic repopulating cells after transduction of CD34 + umbilical cord blood with LSinPGKEG and LSinRPKCG lentiviral vectors and transplantation in NOD / SCID immunodeficient mice.
En el eje de abscisas (X) se representa, en orden descendente:On the axis of abscissa (X) it is represented, in descending order:
• Tipo ratón. • VCN (número medio de integraciones de DNA viral por célula evaluado mediante PCR cuantitativa en tiempo real).• Mouse type. • VCN (mean number of viral DNA integrations per cell evaluated by quantitative real-time PCR).
• Tipo de promotor.• Type of promoter.
En el eje de ordenadas (Y) se representa el porcentaje de colonias positivas al vector en función de si son colonias granulomacrofágicas (CFU-GM), eritroides (BFU-E) o totales (CFCs), en las que se detectó por qPCR el ADN proviral de cada vector 90 días después del trasplante. El número de copias de ADN viral por célula (VCN) de las células humanas obtenidas de la médula de cada ratón también se ha indicado. Se observa que el porcentaje de colonias positivas al ADN del transgén es igual en todos los tipos de colonias.In the ordinate (Y) axis, the percentage of colonies positive to the vector is represented depending on whether they are granulomacrophagic (CFU-GM), erythroid (BFU-E) or total (CFCs) colonies, in which qPCR was detected by Proviral DNA of each vector 90 days after transplantation. The number of copies of viral DNA per cell (VCN) of the Human cells obtained from the marrow of each mouse have also been indicated. It is observed that the percentage of colonies positive to the DNA of the transgene is the same in all types of colonies.
Figura 6Figure 6
La figura muestra la actividad del promotor PKLR in vivo en células hematopoyéticas humanas, tras la transducción de células CD34+ de sangre de cordón umbilical con los vectores lentivirales LSinPGKEG y LSinRPKCG y trasplante en ratones inmunodeficientes NOD/SCID.The figure shows the activity of the PKLR promoter in vivo in human hematopoietic cells, after transduction of umbilical cord blood CD34 + cells with the LSinPGKEG and LSinRPKCG lentiviral vectors and transplantation in NOD / SCID immunodeficient mice.
a. En el eje de ordenadas (Y) se representa el porcentaje de colonias fluorescentes y en el eje de abscisas (X) se muestran en orden descendente el tipo de ratón y el promotor utilizado. Así, en los diagramas se muestra el porcentaje de colonias granulomacrofágicas (CFU-GM, barras blancas) y eritroides (BFU-E, barras grises) positivas a la expresión de la proteína verde fluorescente, derivadas de células hematopoyéticas humanas transducidas con los vectores LSinPGKEG (PGK) y LSinRPKCG (PKLR) y trasplantadas en ratones inmunodeficientes NOD/SCID. El análisis se realizó a los 60 (60 D) y 90 (90 D) días post-transplante.to. In the ordinate axis (Y) the percentage of fluorescent colonies is represented and in the abscissa axis (X) the type of mouse and the promoter used are shown in descending order. Thus, the diagram shows the percentage of granulomacrophage colonies (CFU-GM, white bars) and erythroids (BFU-E, gray bars) positive for the expression of the green fluorescent protein, derived from human hematopoietic cells transduced with the LSinPGKEG vectors (PGK) and LSinRPKCG (PKLR) and transplanted in immunodeficient NOD / SCID mice. The analysis was performed at 60 (60 D) and 90 (90 D) days post-transplant.
b. El panel muestra micrografías representativas de colonias granulomacrofágicas, eritroides y mixtas (granulomacrofágicas-eritroides) procedentes de los ratones transplantados con células CD34+ transducidas con el vector LSinRPKCG que presenta actividad específica eritroide. En la figura se aprecia la capacidad específica y diferencial del promotor para conducir la expresión de la proteína fluorescente solo en colonias eritroidesb. The panel shows representative micrographs of granulomacrophage, erythroid and mixed colonies (granulomacrophages-erythroids) from mice transplanted with CD34 + cells transduced with the LSinRPKCG vector that has specific erythroid activity. The figure shows the specific and differential capacity of the promoter to drive the expression of the fluorescent protein only in erythroid colonies
Descripción detallada de la invenciónDetailed description of the invention
En la presente invención se ha desarrollado un vector lentiviral, que comprende las secuencias que confieren expresión específica en tejido eritroide del promotor RPK (SEQ ID NO: 1), el cual dirige la expresión del gen marcador CopGreen (LSinRPKCG) (Figura 1). Los resultados obtenidos indicaron que los vectores que contienen las citadas secuencias del promotor RPK constituyen una herramienta capaz de dirigir la expresión estable, moderada y específica de tejido eritroide de transgenes, en células de mamíferos tanto in vitro como in vivo, limitando la problemática circunscrita a los vectores presentes en el estado de la técnica los cuales, al comprender promotores que dirigen una expresión fuerte de los transgenes y de manera ubicua, provocan la transactivación de otros genes, incluyendo oncogenes, en linajes celulares no necesarios, incluyendo en las células madre hematopoyéticas. Por lo tanto, el uso de vectores con promotores que dirigen una expresión moderada, estable y específica de tejido del transgén, constituye una herramienta más segura para la terapia génica. Como controles comparativos, se utilizaron vectores que expresaban el transgén EGFP bajo el control del promotor de la Fosfoglicerato Quinasa (LSinPGKEG; Figura 1).In the present invention, a lentiviral vector has been developed, comprising the sequences that confer specific expression in RPK promoter erythroid tissue. (SEQ ID NO: 1), which directs the expression of the CopGreen marker gene (LSinRPKCG) (Figure 1). The results obtained indicated that the vectors containing the aforementioned sequences of the RPK promoter constitute a tool capable of directing the stable, moderate and specific expression of erythroid tissue of transgenes, in mammalian cells both in vitro and in vivo, limiting the circumscribed problem to the vectors present in the state of the art which, by comprising promoters that direct strong expression of the transgenes and in a ubiquitous manner, cause the transactivation of other genes, including oncogenes, in unnecessary cell lines, including in hematopoietic stem cells . Therefore, the use of vectors with promoters that direct a moderate, stable and tissue-specific expression of the transgene constitutes a safer tool for gene therapy. As comparative controls, vectors expressing the EGFP transgene were used under the control of the phosphoglycerate kinase promoter (LSinPGKEG; Figure 1).
En la Figura 2 se muestran histogramas representativos de la actividad del promotor RPK frente al promotor PGK, evaluando el porcentaje de células positivas, el nivel de expresión (medido por el valor de MFI del transgén EGFP) y la eficacia relativa del transgén mediante la estimación del índice de Transcripción (TI) (35), en líneas celulares humanas y murinas de diferenciación hematopoyética a los linajes mielomonocítico o eritroide. Como se puede observar, mientras que el promotor PGK induce expresión fuerte de la proteína fluorescente en todas las líneas celulares, el promotor eritroide RPK induce la expresión del transgén específicamente en las líneas celulares humanas de diferenciación eritroide (K562 y HEL) y no en las de diferenciación mielomonocítica (HL60) ni en células no hematopoyéticas (HELA). Se observa, además, que la expresión a partir del promotor RPK es más moderada y es mantenida a lo largo del tiempo, obteniéndose resultados similares después de 3 meses en cultivo. También se comprobó que el promotor RPK, además de ser específico de tejido, era específico de especie ya que la expresión en células de diferenciación eritroide murinas (células MEL) fue muy inferior a la obtenida en células humanas. Al igual que ocurre con las líneas celulares de origen humano, en las líneas murinas de diferenciación no eritroide (células WEHI y 3T3) no hubo expresión de la proteína fluorescente a partir del promotor RPK. Como dato adicional se comprobó la especificidad de expresión del promotor RPK mediante la cuantificación de la presencia de RNA mensajero del transgen, y más concretamente, mediante la determinación del índice de Transcripción (TI) que ofrece información sobre la actividad de un determinado promotor en un tipo celular concreto, independientemente del número de copias del transgen presentes en la célula y del número de células evaluadas. Como se puede comprobar en la figura 2b la actividad del promotor aumenta cuanto más diferenciado es el fenotipo de la línea celular eritroide estudiada y es nulo en el caso de las líneas no eritroides. En las líneas celulares murinas el TI pone aún más de manifiesto la mínima actividad del promotor humano.Figure 2 shows representative histograms of the activity of the RPK promoter against the PGK promoter, evaluating the percentage of positive cells, the level of expression (measured by the MFI value of the EGFP transgene) and the relative efficiency of the transgene by estimating of the Transcription Index (TI) (35), in human and murine cell lines of hematopoietic differentiation to myelomonocytic or erythroid lineages. As can be seen, while the PGK promoter induces strong fluorescent protein expression in all cell lines, the RPK erythroid promoter induces transgene expression specifically in human erythroid differentiation cell lines (K562 and HEL) and not in the of myelomonocytic differentiation (HL60) or in non-hematopoietic cells (HELA). It is also observed that the expression from the RPK promoter is more moderate and is maintained over time, obtaining similar results after 3 months in culture. It was also found that the RPK promoter, in addition to being tissue specific, was species specific since the expression in murine erythroid differentiation cells (MEL cells) was much lower than that obtained in human cells. As with human cell lines, in murine non-erythroid differentiation lines (WEHI and 3T3 cells) there was no protein expression fluorescent from the RPK promoter. As additional information, the specificity of the RPK promoter was verified by quantifying the presence of transgene messenger RNA, and more specifically, by determining the Transcription Index (IT) that provides information on the activity of a particular promoter in a specific cell type, regardless of the number of copies of the transgene present in the cell and the number of cells evaluated. As can be seen in Figure 2b, the activity of the promoter increases as the phenotype of the erythroid cell line studied is more differentiated and is null in the case of non-erythroid lines. In murine cell lines, IT shows even more the minimal activity of the human promoter.
Globalmente, se ha comprobado que las secuencias del promotor RPK que confieren especificidad de expresión a tejido eritroide pueden ser utilizadas en vectores lentivirales, confiriendo a estos una expresión estable, moderada y específica de tejido de los transgenes a los que dirige. La expresión a partir del promotor RPK es indetectable en células no eritroides y muy baja en células de origen no humano.Overall, it has been proven that RPK promoter sequences that confer expression specificity to erythroid tissue can be used in lentiviral vectors, conferring a stable, moderate and tissue-specific expression of the transgenes to which it directs. Expression from the RPK promoter is undetectable in non-erythroid cells and very low in cells of non-human origin.
El siguiente paso en el desarrollo de la invención fue estudiar si los resultados que se habían obtenido utilizando líneas celulares establecidas se demostraba también en células hematopoyéticas primarias. Para ello, se obtuvieron progenitores primitivos humanos a partir de células de cordón umbilical obtenidas previo consentimiento informado de las madres gestantes. Las células primitivas, CD34+ se obtuvieron mediante purificación inmunomagnética. Una vez purificadas, las células se infectaron in vitro con los vectores lentivirales LSinPGKEG y LSinRPKCG y se mantuvieron en cultivo durante 14 días en presencia de diferentes combinaciones de factores de crecimiento. A diferentes días post-infección se realizó un análisis mediante citometría de flujo, observándose que la eritropoyetina humana inducía la expresión de la proteína fluorescente en las células infectadas con el vector LSinRPKCG.The next step in the development of the invention was to study whether the results that had been obtained using established cell lines were also demonstrated in primary hematopoietic cells. For this, primitive human progenitors were obtained from umbilical cord cells obtained with the prior informed consent of the pregnant mothers. Primitive cells, CD34 + were obtained by immunomagnetic purification. Once purified, the cells were infected in vitro with the LSinPGKEG and LSinRPKCG lentiviral vectors and maintained in culture for 14 days in the presence of different combinations of growth factors. At different days after infection, an analysis was performed by flow cytometry, observing that human erythropoietin induced the expression of the fluorescent protein in cells infected with the LSinRPKCG vector.
Para confirmar la actividad diferencial del promotor RPK en células eritroides humanas, células CD34+ infectadas con los vectores lentivirales LSinPGKEG y LSinRPKCG se cultivaron en medio semisólido en presencia de factores de crecimiento que permitían el crecimiento de colonias granulomacrofágicas (CFU-GM) y eritroides (BFU-E). A los 10 días de cultivo se analizaron las colonias y se determinó, en los diferentes tipos de colonias, la expresión de la proteína fluorescente (figura 4). Mientras que en los cultivos de células infectadas con el vector control (PGK) se pudieron detectar colonias fluorescentes en todos lo tipos de colonias identificadas, en las cultivos de células infectadas con el vector LSinRPKCG (PKLR) sólo las colonias eritroides expresaban la proteína fluorescente. No se pudo observar en ningún caso una colonia CFU-GM expresando la proteína fluorescente.To confirm the differential activity of the RPK promoter in human erythroid cells, CD34 + cells infected with the LSinPGKEG lentiviral vectors and LSinRPKCG were grown in semi-solid medium in the presence of growth factors that allowed the growth of granulomacrophage colonies (CFU-GM) and erythroids (BFU-E). At 10 days of culture the colonies were analyzed and the expression of the fluorescent protein was determined in the different types of colonies (Figure 4). Whereas in cultures of cells infected with the control vector (PGK) fluorescent colonies could be detected in all types of identified colonies, in cultures of cells infected with the LSinRPKCG vector (PKLR) only erythroid colonies expressed the fluorescent protein. In no case could a CFU-GM colony be expressed expressing the fluorescent protein.
En un modelo in vivo (figura 5), tras la transducción de células CD34+ de sangre de cordón umbilical con los vectores lentivirales LSinPGKEG y LSinRPKCG, las células se trasplantaron en ratones inmunodeficientes NOD/SCID, y luego se procedió a su cultivo in vitro tal como se mostró en la figura 4. La actividad del promotor RPK en células hematopoyéticas humanas presentó la misma especificidad de linaje eritroide observada en los ensayos en líneas celulares y en los cultivos in vitro de células CD34+ humanas (Figura 6).In an in vivo model (Figure 5), after transduction of CD34 + umbilical cord blood cells with the LSinPGKEG and LSinRPKCG lentiviral vectors, the cells were transplanted into immunodeficient NOD / SCID mice, and then they were cultured in vitro such as shown in Figure 4. The activity of the RPK promoter in human hematopoietic cells showed the same erythroid lineage specificity observed in cell line assays and in vitro cultures of human CD34 + cells (Figure 6).
En conjunto, podemos concluir que los resultados obtenidos demuestran la especificidad de la actividad del promotor hRPK en células de linaje eritroide, induciendo una expresión del transgén estable y moderada, tanto en líneas celulares como en células primarias hematopoyéticas humanas. Estas observaciones muestran la utilidad de la secuencia reguladora descrita para dirigir la expresión de transgenes de interés a células eritroides humanas.Together, we can conclude that the results obtained demonstrate the specificity of the activity of the hRPK promoter in erythroid lineage cells, inducing stable and moderate transgene expression, both in cell lines and in human hematopoietic primary cells. These observations show the utility of the regulatory sequence described to direct the expression of transgenes of interest to human erythroid cells.
Así, en un primer aspecto la presente invención se refiere al uso de secuencias reguladoras que comprendan el promotor del gen PKLR en la producción de vectores (en adelante vectores de la invención), con la excepción de vectores que comprendan virus adeno-asociados, para ser utilizados en la elaboración de composiciones farmacéuticas destinadas a terapia génica somática en tejido eritroide. En una realización preferida de la invención, la secuencia reguladora es la SEQ ID NO: 1 y donde dicha terapia se realiza "in vivo" en mamíferos o "in vitro" en cultivos de células de mamífero, caracterizados porque el vector producido comprende un virus integrativo y más específicamente un virus Lentivirus.Thus, in a first aspect the present invention relates to the use of regulatory sequences comprising the PKLR gene promoter in the production of vectors (hereinafter vectors of the invention), with the exception of vectors comprising adeno-associated viruses, for be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue. In a preferred embodiment of the invention, the regulatory sequence is SEQ ID NO: 1 and wherein said therapy is performed "in vivo" in mammals or "in vitro" in cultures of mammalian cells, characterized in that the vector produced comprises an integrative virus and more specifically a Lentivirus virus.
Un segundo aspecto de la presente invención se refiere a vectores, con la excepción de vectores que comprendan virus adeno-asociados, caracterizados porque comprenden al menos una secuencia reguladora que, a su vez, comprende el promotor del genA second aspect of the present invention relates to vectors, with the exception of vectors comprising adeno-associated viruses, characterized in that they comprise at least one regulatory sequence which, in turn, comprises the gene promoter.
PKLR, para ser utilizados en la elaboración de composiciones farmacéuticas destinadas a terapia génica somática en tejido eritroide. En una realización preferida de la invención el vector consistiría en un virus integrativo y más concretamente un virus Lentivirus.PKLR, to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue. In a preferred embodiment of the invention the vector would consist of an integrative virus and more specifically a Lentivirus virus.
Un tercer aspecto de la presente invención se refiere a células (en adelante células de la invención) transducidas por los vectores de la invención.A third aspect of the present invention relates to cells (hereinafter cells of the invention) transduced by the vectors of the invention.
Un cuarto aspecto de la presente invención se refiere al uso de los vectores de la invención para la elaboración de composiciones farmacéuticas destinadas a ser utilizadas en terapia génica somática.A fourth aspect of the present invention relates to the use of the vectors of the invention for the preparation of pharmaceutical compositions intended for use in somatic gene therapy.
Un quinto aspecto de la invención se refiere al uso de las células de la invención para la elaboración de composiciones farmacéuticas destinadas a ser utilizadas en terapia génica somática.A fifth aspect of the invention relates to the use of the cells of the invention for the preparation of pharmaceutical compositions intended for use in somatic gene therapy.
Un sexto aspecto de la invención se refiere a composiciones farmacéuticas que comprenden los vectores de la invención y vehículos farmacéuticamente aceptables.A sixth aspect of the invention relates to pharmaceutical compositions comprising the vectors of the invention and pharmaceutically acceptable carriers.
El último aspecto de la invención se refiere a composiciones farmacéuticas que comprenden las células de la invención, y vehículos farmacéuticamente aceptables.The last aspect of the invention relates to pharmaceutical compositions comprising the cells of the invention, and pharmaceutically acceptable carriers.
A continuación se procede a la exposición de los ejemplos. La exposición detallada de los modos de realización, ejemplos y de las figuras que siguen se proporcionan a modo de ilustración y no pretenden ser limitantes de la presente invención. EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓNThe examples are presented below. The detailed exposition of the embodiments, examples and figures that follow are provided by way of illustration and are not intended to be limiting of the present invention. EXAMPLES OF EMBODIMENT OF THE INVENTION
Ejemplo 1. Construcción de vectoresExample 1. Construction of vectors
En el presente ejemplo se utilizaron vectores lentivirales auto-inactivantes de tercera generación. Concretamente se utilizaron los vectores de transferencia LSinPGKEG (pRRLsinlδ.pptPGKeGFPWpre; EGFP, proteína de fluorescencia verde potenciada; Clontech) y LSinRPKCG, los vectores de empaquetamiento pMDLg-pRRE y pRSV- REV y el vector de la envuelta pMD2-VSVG (18,19). Para generar el vector lentiviral LSinRPKCG (pRRLsinlδ.ppthRPKCopGreenWpre), un fragmento de 601 pares de bases del 5 'del gen PKLR fue amplificado mediante PCR y se clonó en el vector de clonaje pGEMT-EASY. 40 clones fueron secuenciados para garantizar que la secuencia después de la amplificación y clonaje permanecia sin modificaciones. El plásmido resultante pGEMT-PKLR, conteniendo el fragmento de 601 pares de bases del 5 'del gen PKLR fue utilizado para generar un vector lentiviral en el que la expresión de la proteína CopGreen estuviera dirigida por la secuencia promotora de 601 pares de bases del gen PKLR. Para esto, el fragmento de 601 pares de bases del gen PKLR fue clonado en el vector pRRLsinlδ.pptCMVeGFPWpre (18,19), sustituyendo así el promotor CMV y la proteína EGFP por el promotor PKLR y la proteína CopGreen (Figura 1). Tanto la proteína verde fluorescente EGFP de Clontech como la proteína CopGreen de Evrogen tienen las mismas características en cuanto a IMF cuando son expresadas bajo un mismo promotor en igual número de copias.In the present example, third generation self-inactivating lentiviral vectors were used. Specifically, the LSinPGKEG transfer vectors (pRRLsinlδ.pptPGKeGFPWpre; EGFP, enhanced green fluorescence protein; Clontech) and LSinRPKCG, the packaging vectors pMDLg-pRRE and pRSV-REV and the envelope vector pMD2-VSVG (pMD2-VSVG vector) ). To generate the LSinRPKCG lentiviral vector (pRRLsinlδ.ppthRPKCopGreenWpre), a 601 base pair fragment of the PKLR gene was amplified by PCR and cloned into the pGEMT-EASY cloning vector. 40 clones were sequenced to ensure that the sequence after amplification and cloning remained unchanged. The resulting plasmid pGEMT-PKLR, containing the 601 base pair fragment of the PKLR gene was used to generate a lentiviral vector in which the expression of the CopGreen protein was directed by the promoter sequence of 601 base pairs of the gene. PKLR For this, the 601 base pair fragment of the PKLR gene was cloned into the vector pRRLsinlδ.pptCMVeGFPWpre (18,19), thus replacing the CMV promoter and the EGFP protein with the PKLR promoter and the CopGreen protein (Figure 1). Both the green fluorescent protein EGFP from Clontech and the CopGreen protein from Evrogen have the same characteristics in terms of MFI when expressed under the same promoter in the same number of copies.
Ejemplo 2. Producción de sobrenadante de Lentivirus recombinanteExample 2. Production of recombinant Lentivirus supernatant
Los sobrenadantes conteniendo los vectores lentivirales se produjeron mediante la cotransfección transitoria de los vectores de transferencia, pRRLsinlδ.ppthPGKeGFPWpre, o pRRLsinl8.ppthRPKCopGreenWpre (9 mg), los vectores de empaquetamiento pMDLg-pRRE (5,85 mg) y pRS V-REV (2,25 mg) y el vector de la envuelta pMD2-VSVG (3,15 mg) en placas de 10 cm con células 293T (ATCC) a un 60-70% de confluencia. Para la transducción transitoria con estos vectores se llevó a cabo el protocolo tal como ha sido descrito previamente (36,37). Para la transfección transitoria con los vectores de transferencia se utilizó el reactivo de transfección Polyfect (Qyagen), siguiendo las instrucciones del fabricante. En ambos casos se añadió butirato sódico 1 mM (Sigma) para favorecer la producción viral. Los sobrenadantes que se recuperaron 24 y 48 horas después de la transducción se filtraron a través de filtros de 0,45 mm y se concentraron mediante ultracentrifugación a 18000 rpm y 4°C durante 90 minutos.Supernatants containing the lentiviral vectors were produced by transient cotransfection of the transfer vectors, pRRLsinlδ.ppthPGKeGFPWpre, or pRRLsinl8.ppthRPKCopGreenWpre (9 mg), the packaging vectors pMDLg-pRRE (5.85 mgV) (p5RS-RE) (5.85 mg) 2.25 mg) and the envelope vector pMD2-VSVG (3.15 mg) in 10 cm plates with 293T cells (ATCC) at 60-70% confluence. For transient transduction with these vectors the protocol was carried out as previously described (36,37). The transfective reagent Polyfect (Qyagen) was used for transient transfection with the transfer vectors, following the manufacturer's instructions. In both cases, 1 mM sodium butyrate (Sigma) was added to favor viral production. Supernatants that were recovered 24 and 48 hours after transduction were filtered through 0.45 mm filters and concentrated by ultracentrifugation at 18000 rpm and 4 ° C for 90 minutes.
El título de los sobrenadantes lentivirales se determinó en células HEL mediante análisis FACS y expresión de las proteinas fluorescentes en un citómetro de flujo EPICS XL (Coulter Electronics, Hialeah, FL, EE.UU.). Obtuvimos títulos superiores a 107 v/ml con ambos vectores.The titre of the lentiviral supernatants was determined in HEL cells by FACS analysis and expression of the fluorescent proteins in an EPICS XL flow cytometer (Coulter Electronics, Hialeah, FL, USA). We obtained titers greater than 107 v / ml with both vectors.
Ejemplo 3. Líneas celulares transducidasExample 3. Transduced cell lines
Las líneas celulares no hematopoyéticas humanas utilizadas fueron células epiteliales HeLa y las líneas celulares hematopoyéticas humanas utilizadas fueron la línea la línea de células mielo ides HL60 y la línea de células eritroides HEL y la línea mielo ide K562.The human non-hematopoietic cell lines used were HeLa epithelial cells and the human hematopoietic cell lines used were the idel HL60 myeloid cell line and the HEL erythroid cell line and the ide K562 myeloid line.
Las líneas celulares murinas no hematopoyéticas utilizadas fueron fibroblastos murinos NIH 3T3, de la ATCC (Rockville, MD, EE.UU.). Las líneas celulares murinas hematopoyéticas utilizadas fueron células murinas mielo ides WEHI y células murinas eritroides MEL.The non-hematopoietic murine cell lines used were NIH 3T3 murine fibroblasts from the ATCC (Rockville, MD, USA). The hematopoietic murine cell lines used were WEHI myeloid murine cells and MEL erythroid murine cells.
Las células HeLa, NIH 3T3, y MEL se crecieron en Medio de Eagle modificado por Dulbecco (DMEM, Gibco Laboratories, Grand Island, NY, EE.UU.) suplementado con suero bovino fetal al 10% (FBS; Cambrex), antibióticos (100 U/ml de penicilina y 50 μg/ml de estreptomicina) y L-Glutamina 2 mM. Las células HEL y WEHI se hicieron crecer en RPMI 1640 (medio del Roswell Park Memorial Institute, GIBCO- BRL Laboratories), suplementado con FBS al 10%, antibióticos y L-Glutamina 2 mM. Las células HL60 y K562 se hicieron crecer en medio de Dulbecco modificado por Iscove (IMDM; GIBCO-BRL, Grand Island, NY), suplementado con FBS al 20% y antibióticos (100 U/ml de penicilina y 50 mg/ml de estreptomicina).HeLa, NIH 3T3, and MEL cells were grown in Dulbecco-modified Eagle's Medium (DMEM, Gibco Laboratories, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS; Cambrex), antibiotics ( 100 U / ml penicillin and 50 μg / ml streptomycin) and 2 mM L-Glutamine. HEL and WEHI cells were grown in RPMI 1640 (medium of the Roswell Park Memorial Institute, GIBCO-BRL Laboratories), supplemented with 10% FBS, antibiotics and 2 mM L-Glutamine. HL60 and K562 cells were grown in Dulbecco's medium modified by Iscove (IMDM; GIBCO-BRL, Grand Island, NY), supplemented with 20% FBS and antibiotics (100 U / ml penicillin and 50 mg / ml streptomycin).
Ejemplo 4. Modelos murinos utilizadosExample 4. Murine models used
Como receptores de las células hematopoyéticas humanas se utilizaron ratones NOD/LtSz-scid/scid (NOD/SCID) (deficientes en receptores Fc, la función del complemento y la función de los linfocitos B y T y de los asesinos naturales). Los ratones se adquirieron a The Jackson Laboratory (Bar Harbor, ME). Todos los animales se manejaron en condiciones estériles y se mantuvieron en microaisladores. Antes del transplante, los ratones de 6 a 8 semanas fueron irradiados en la totalidad de su cuerpo con 2,5 a 3,0 Gy de rayos X (la velocidad de dosificación fue 1,03 Gy/min utilizando un equipo de rayos X MG-324 de Philips, Hamburgo, Alemania, a 300 kV, 1O mA).NOD / LtSz-scid / scid (NOD / SCID) mice (deficient in Fc receptors, complement function and the function of B and T lymphocytes and natural killers) were used as receptors for human hematopoietic cells. Mice were purchased from The Jackson Laboratory (Bar Harbor, ME). All animals were handled in sterile conditions and kept in micro-isolators. Before the transplant, the mice from 6 to 8 weeks were irradiated in their entire body with 2.5 to 3.0 Gy of X-rays (the dosage rate was 1.03 Gy / min using a MG X-ray device -324 from Philips, Hamburg, Germany, at 300 kV, 1O mA).
Todos los procedimientos experimentales con animales de experimentación se llevaron a cabo de acuerdo con normativas españolas y europeas (RD 223/88 y OM 13-10-89 del Ministerio de Agricultura, Pesca y Alimentación español, para la protección y el uso de animales en investigaciones científicas; y el convenio europeo ETS- 123, para el uso y protección de animales vertebrados utilizados en experimentación y con otros propósitos científicos).All experimental procedures with experimental animals were carried out in accordance with Spanish and European regulations (RD 223/88 and OM 13-10-89 of the Spanish Ministry of Agriculture, Fisheries and Food, for the protection and use of animals in scientific research; and the European Convention ETS-123, for the use and protection of vertebrate animals used in experimentation and for other scientific purposes).
Ejemplo 5. Transducción de célulasExample 5. Cell Transduction
Las líneas celulares se transdujeron añadiendo diferentes volúmenes de los sobrenadantes concentrados de Lentivirus a un número conocido de células dependiendo de la multiplicidad de infección (MOI) utilizada. Las células se centrifugaron 1 hora y 30 minutos a 2500 rpm y 37°C transcurridas 2 y 24 horas desde la infección con el fin de favorecer la eficiencia de transducción.Cell lines were transduced by adding different volumes of concentrated Lentivirus supernatants to a known number of cells depending on the multiplicity of infection (MOI) used. The cells were centrifuged 1 hour and 30 minutes at 2500 rpm and 37 ° C after 2 and 24 hours after infection in order to promote transduction efficiency.
Ejemplo 6. Análisis por citometría de flujo Las células positivas para la proteína fluorescente se analizaron mediante citometría de flujo en un citómetro de fujo EPICS XL (Coulter Electronics, Hialeah, FL).Example 6. Analysis by flow cytometry Fluorescent protein positive cells were analyzed by flow cytometry in an EPICS XL flow cytometer (Coulter Electronics, Hialeah, FL).
Las células humanas cultivadas in vitro o de médula ósea de ratón NOD/SCID se marcaron con los anticuerpos monoclonales CD45-PECy5 anti-humano (Clon J33,In vitro or NOD / SCID mouse bone marrow cultured human cells were labeled with anti-human CD45-PECy5 monoclonal antibodies (Clone J33,
Immunotech, Marsella, Francia), para identificar la reconstitución humana de estos animales, y en combinación con CD34- PECy5 anti-humano (Clon 8Gl 2; BectonImmunotech, Marseille, France), to identify the human reconstitution of these animals, and in combination with anti-human CD34-PECy5 (Clone 8Gl 2; Becton
Dickinson Immunocytometry, San José, CA), CD33-PE anti-humano (P67.6; BectonDickinson Immunocytometry, San José, CA), CD33-PE anti-human (P67.6; Becton
Dickinson), CD71-PE anti-humano (Becton Dickinson), o CD 19-PE anti-humano (J4.119; Immunotech) para reconocer células primitivas humanas, células mielo ides o células linfoides B, respectivamente.Dickinson), CD71-PE anti-human (Becton Dickinson), or CD 19-PE anti-human (J4.119; Immunotech) to recognize human primitive cells, myeloid ides cells or B lymphoid cells, respectively.
Finalmente, las células se lavaron, se resuspendieron en PBA con 2 μg/mL de yoduro de propidio (PI), y se analizaron en un citómetro de flujo EPICS XL (Coulter Electronics, Hialeah, FL). Se logró un número mínimo de 104-105 células viables.Finally, the cells were washed, resuspended in PBA with 2 μg / mL propidium iodide (PI), and analyzed on an EPICS XL flow cytometer (Coulter Electronics, Hialeah, FL). A minimum number of 104-105 viable cells was achieved.
Ejemplo 7. Muestras humanas y selección de células positivas para CD34Example 7. Human samples and selection of CD34 positive cells
Se obtuvieron células de sangre del cordón umbilical (CB) después de un parto normal en el que se completó el período de gestación y con el consentimiento informado de la madre. Las muestras se recogieron al alba y se procesaron durante las siguientes 12 horas posteriores al parto. Se obtuvieron células mononucleares (MN) depositando la sangre sobre Ficoll-Hypaque (1,077 g/ml; Pharmacia Biotech, Uppsala, Suecia), y centrifugándolas a 40Og durante 30 minutos. Entonces se recogió la capa intermedia entre el Ficoll y el plasma, que se lavó tres veces, y se resuspendió en medio deUmbilical cord (CB) blood cells were obtained after a normal delivery in which the gestation period was completed and with the mother's informed consent. Samples were collected at dawn and processed for the next 12 hours after delivery. Mononuclear cells (MN) were obtained by depositing the blood on Ficoll-Hypaque (1,077 g / ml; Pharmacia Biotech, Uppsala, Sweden), and centrifuging at 40Og for 30 minutes. Then the intermediate layer was collected between the Ficoll and the plasma, which was washed three times, and resuspended in the middle of
Dulbecco modificado por Iscove (IMDM; Gibco-BRL, Grand Island, NY). Para purificar las células CD34+, la fracción MN se sometió a separación inmunomagnética utilizando el kit de aislamiento de células progenituras CD34Dulbecco modified by Iscove (IMDM; Gibco-BRL, Grand Island, NY). To purify the CD34 + cells, the MN fraction was subjected to immunomagnetic separation using the CD34 progeniture cell isolation kit
VarioMACS (Myltenyi Biotech, Auburn, CA), siguiendo las recomendaciones del fabricante. Las células CD34+ se criopreservaron en nitrógeno líquido, con dimetilsulfóxido (DMSO) al 10% y suero bovino fetal (FBS) al 20% hasta el momento de su utilización.VarioMACS (Myltenyi Biotech, Auburn, CA), following the manufacturer's recommendations. CD34 + cells were cryopreserved in liquid nitrogen, with 10% dimethylsulfoxide (DMSO) and 20% fetal bovine serum (FBS) until they were used.
Ejemplo 8. Cultivo líquido de células hematopoyéticas humanas CD34+Example 8. Liquid culture of human hematopoietic cells CD34 +
Las células purificadas se lavaron y resuspendieron en medio libre de suero StemSpam (Stem CeIl Technologies Inc., Vancouver, BC, Canadá) suplementado con antibióticos (100 U/ml de penicilina y 50 mg/ml de estreptomicina), 300 ng/ml de factor de células madre (SCF, amablemente cedido por Amgen, Thousand Oaks, CA), 100 ng/ml de trombopoyetina (TPO, amablemente cedida por Kirin Brewery, Tokio, Japón) y 100 ng/ml del ligando de FLT3 (FLT3-L, amablemente cedido por Amgen, Thousand Oaks, CA). Para la inducción de diferenciación eritroide en algunos cultivos se añadió 5 LVmL de eritropόyetina humana (hEPO, amablemente cedido por Amgen, Thousand Oaks, CA). Los cultivos se mantuvieron a 370C en atmósfera de 5% CO2. A 4, 7, 10 y 14 días de cultivo se extrajeron alícuotas y se analizaron mediante citometría de flujo.The purified cells were washed and resuspended in StemSpam serum-free medium (Stem CeIl Technologies Inc., Vancouver, BC, Canada) supplemented with antibiotics (100 U / ml penicillin and 50 mg / ml streptomycin), 300 ng / ml stem cell factor (SCF, kindly provided by Amgen, Thousand Oaks, CA), 100 ng / ml of thrombopoietin (TPO, kindly assigned by Kirin Brewery, Tokyo, Japan) and 100 ng / ml of the FLT3 ligand (FLT3-L , kindly provided by Amgen, Thousand Oaks, CA). For the induction of erythroid differentiation in some cultures, 5 LVmL of human erythropoietin (hEPO, kindly provided by Amgen, Thousand Oaks, CA) was added. Cultures were maintained at 37 0 C under 5% CO2. At 4, 7, 10 and 14 days of culture, aliquots were extracted and analyzed by flow cytometry.
Ejemplo 9. Transducción, cultivo y trasplante en ratones NOD/SCIDExample 9. Transduction, culture and transplantation in NOD / SCID mice
Después de descongelarlas, las células CD34+ se lavaron en IMDM suplementado con FBS al 10% y antibióticos (100 U/ml de penicilina y 50 mg/ml de estreptomicina). Luego, las células fueron resuspendidas para su preestimulación durante 2 horas con medio StemSpan libre de suero (Stem CeIl Technologies Inc., Vancouver, BC, Canadá) suplementado con antibióticos (100 U/ml de penicilina y 50 mg/ml de estreptomicina), 300 ng/ml de factor de células madre (SCF, amablemente cedido por Amgen, Thousand Oaks, CA), 100 ng/ml de trombopoyetina (TPO, amablemente cedida por Kirin Brewery, Tokio, Japón) y 100 ng/ml de FLT3L.After thawing, the CD34 + cells were washed in IMDM supplemented with 10% FBS and antibiotics (100 U / ml penicillin and 50 mg / ml streptomycin). The cells were then resuspended for pre-stimulation for 2 hours with serum-free StemSpan medium (Stem CeIl Technologies Inc., Vancouver, BC, Canada) supplemented with antibiotics (100 U / ml penicillin and 50 mg / ml streptomycin), 300 ng / ml of stem cell factor (SCF, kindly provided by Amgen, Thousand Oaks, CA), 100 ng / ml of thrombopoietin (TPO, kindly assigned by Kirin Brewery, Tokyo, Japan) and 100 ng / ml of FLT3L.
Estas células positivas para CD34 fueron luego transducidas con los sobrenadantes de los Lentivirus LSinPGKEG y LSinRPKCG durante 24 horas. Durante este tiempo las células se centrifugaron transcurridas 2 y 20 horas desde la transducción durante 1 hora a 2500 rpm y 37°C. Luego se volvieron a lavar y se transplataron de 1 a 3x106 células por ratón en ratones receptores NOD/SCID subletalmente irradiados. Después del trasplante se analizaron periódicamente muestras de médula ósea de estos animales mediante citóme tría de flujo para analizar el grado de implantación del trasplante humano y el tipo celular en el que se estaba expresando el transgén. Estas muestras de médula ósea se aspiraron de un fémur mediante punción a través de la articulación de la rodilla, de acuerdo con procedimientos previamente descritos (38).These CD34 positive cells were then transduced with the supernatants of the LSinPGKEG and LSinRPKCG Lentiviruses for 24 hours. During this time the cells were centrifuged after 2 and 20 hours after transduction for 1 hour at 2500 rpm and 37 ° C. They were then washed again and 1 to 3x10 6 cells per mouse were transplanted into subletically irradiated NOD / SCID receptor mice. After the transplant, bone marrow samples from these animals were periodically analyzed by flow cytometry to analyze the degree of implantation of the human transplant and the cell type in which the transgene was being expressed. These bone marrow samples were aspirated from a femur by puncture through the knee joint, according to previously described procedures (38).
Los datos de los ejemplos se presentan en forma de la media ± desviación estándar de la media. La significación de las diferencias entre grupos de datos se determinó utilizando el ensayo de la t de Student. El análisis estadístico de los datos se realizó utilizando el programa Statgraphics Plus (Maugistics Inc., Rockville, MD, EE.UU.). The data in the examples are presented in the form of the mean ± standard deviation of the mean. The significance of the differences between groups of data was determined using the Student's t-test. Statistical analysis of the data was performed using the Statgraphics Plus program (Maugistics Inc., Rockville, MD, USA).
REFERENCIASREFERENCES
1. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Nusbaum P, Yvon E, Casanova JL, Le Deist F, Fischer A. Correction of SCID-Xl disease phenotype following gamma-c gene transfer by a retroviral vector into CD34+ cells in two children. Blood. 1999;94:3671. Cavazzana-Calvo M, Hacein-Bey S, from Saint Basile G, Gross F, Nusbaum P, Yvon E, Casanova JL, Le Deist F, Fischer A. Correction of SCID-Xl disease phenotype following gamma-c gene transfer by a retroviral vector into CD34 + cells in two children. Blood. 1999; 94: 367
2. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, SeIz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A. Gene therapy of human severe combined immunodeficiency (SCID)-Xl disease. Science. 2000;288:669-672.2. Cavazzana-Calvo M, Hacein-Bey S, from Saint Basile G, Gross F, Yvon E, Nusbaum P, SeIz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A. Gene therapy of human severe combined immunodeficiency (SCID) -Xl disease. Science 2000; 288: 669-672.
3. Kustikova O, Fehse B, Modlich U, Yang M, Dullmann J, Kamino K, von Neuhoff N, Schlegelberger B, Li Z, Baum C. Clonal Dominance of Hematopoietic Stem Cells Triggered by Retroviral Gene Marking. Science. 2005;308:l 171-1174 4. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J,3. Kustikova O, Fehse B, Modlich U, Yang M, Dullmann J, Kamino K, von Neuhoff N, Schlegelberger B, Li Z, Baum C. Clonal Dominance of Hematopoietic Stem Cells Triggered by Retroviral Gene Marking. Science 2005; 308: 171-1174 4. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J,
Forster M, Stocking C, Wahlers A, Frank O, Ostertag W, Kuhlcke K, Eckert HG, Fehse B, Baum C. Murine leukemia induced by retroviral gene marking. Science. 2002;296:497.Forster M, Stocking C, Wahlers A, Frank O, Ostertag W, Kuhlcke K, Eckert HG, Fehse B, Baum C. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.
5. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, Brouns G, Schmidt M, Von Kalle C, Barington T, Jakobsen MA, Christensen HO, Al5. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, Brouns G, Schmidt M, Von Kalle C, Barington T, Jakobsen MA, Christensen HO, Al
Ghonaium A, White HN, Smith JL, Levinsky RJ, AIi RR, Kinnon C, Thrasher AJ. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet. 2004;364:2181-2187Ghonaium A, White HN, Smith JL, Levinsky RJ, AIi RR, Kinnon C, Thrasher AJ. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181-2187
6. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, Morecki S, Andolfi G, Tabucchi A, Carlucci F, Marinello E, Cattaneo F, Vai S, Servida P,6. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, Morecki S, Andolfi G, Tabucchi A, Carlucci F, Marinello E, Cattaneo F, Vai S, Served P,
Miniero R, Roncara lo MG, Bordignon C. Correction of ADA-SCID by stem cell gene therapy combined with. Science. 2002;296:2410-2413.Miniero R, Roncara lo MG, Bordignon C. Correction of ADA-SCID by stem cell gene therapy combined with. Science 2002; 296: 2410-2413.
7. Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA, von Kalle C. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood. 2003;101:2099-2114. 8. Baum C, von Kalle C, Staal FJ, Li Z, Fehse B, Schmidt M, Weerkamp F, Karlsson S, Wagemaker G, Williams DA. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther. 2004;9:5-137. Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA, von Kalle C. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood. 2003; 101: 2099-2114. 8. Baum C, von Kalle C, Staal FJ, Li Z, Fehse B, Schmidt M, Weerkamp F, Karlsson S, Wagemaker G, Williams DA. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther. 2004; 9: 5-13
9. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, Mclntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A. A serious adverse event after successful gene therapy for X-linked severe combined immunodefϊciency. N Engl J Med. 2003;348:255-2569. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, Mclntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A. A serious adverse event after successful gene therapy for X-linked severe combined immunodefϊciency. N Engl J Med. 2003; 348: 255-256
10. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohén JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-Xl. Science. 2003;302:415-41910. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-Xl. Science 2003; 302: 415-419
11. Miwa S, Takegawa S. Conversión of pyruvate kinase (PK) isozymes during development of normal and PK deficient erythroblasts. Biomed Biochim Acta. 1983;42:S242-24611. Miwa S, Takegawa S. Conversion of pyruvate kinase (PK) isozymes during development of normal and PK deficient erythroblasts. Biomed Biochim Acta. 1983; 42: S242-246
12. Nijhof W, Wierenga PK, Staal GE, Jansen G. Changes in activities and isozyme patterns of glycolytic enzymes during erythroid differentiation in vitro.12. Nijhof W, Wierenga PK, Staal GE, Jansen G. Changes in activities and isozyme patterns of glycolytic enzymes during erythroid differentiation in vitro.
Blood. 1984;64:607-613Blood. 1984; 64: 607-613
13. Takegawa S, Fujii H, Miwa S. Change of pyruvate kinase isozymes from M2- to L-type during development of the red cell. Br J Haematol. 1983;54:467-47413. Takegawa S, Fujii H, Miwa S. Change of pyruvate kinase isozymes from M2- to L-type during development of the red cell. Br J Haematol. 1983; 54: 467-474
14. Kahn A, Marie J, Vives-Corrons JL, Maigret P, Najman A. Search for a relationship between molecular anomalies of the mutant erythrocyte pyruvate kinase variants and their pathological expression. Hum Genet. 1981;57:172-17514. Kahn A, Marie J, Vives-Corrons JL, Maigret P, Najman A. Search for a relationship between molecular anomalies of the mutant erythrocyte pyruvate kinase variants and their pathological expression. Hum Genet 1981; 57: 172-175
15. Marie J, Simón MP, Dreyfus JC, Kahn A. One gene, but two messenger RNAs encode liver L and red cell L' pyruvate kinase subunits. Nature. 1981;292:70- 72 16. Kabat D. Molecular biology of Friend viral erythroleukemia. Curr Top15. Marie J, Simon MP, Dreyfus JC, Kahn A. One gene, but two messenger RNAs encode liver L and red cell L 'pyruvate kinase subunits. Nature 1981; 292: 70- 72 16. Kabat D. Molecular biology of Friend viral erythroleukemia. Curr Top
Microbio 1 Immunol. 1989;148:l-42. 17. Matsuura R, Tanigawa Y, Tsuchiya M, Mishima K, Yoshimura Y, Shimoyama M. ADP-ribosylation suppresses phosphorylation of the L-type pyruvate kinase. Biochim Biophys Acta. 1988;969:57-65Microbe 1 Immunol. 1989; 148: 1-42. 17. Matsuura R, Tanigawa Y, Tsuchiya M, Mishima K, Yoshimura Y, Shimoyama M. ADP-ribosylation suppresses phosphorylation of the L-type pyruvate kinase. Biochim Biophys Acta. 1988; 969: 57-65
18. Morisaki T, Tani K, Takahashi K, Tsutsumi H, Horiuchi N, Ogura H, Kanno H, Fujimura K, Nakayama S, Watanabe C, et al. Ten cases of pyruvate kinase18. Morisaki T, Tani K, Takahashi K, Tsutsumi H, Horiuchi N, Ogura H, Kanno H, Fujimura K, Nakayama S, Watanabe C, et al. Ten cases of Pyruvate Kinase
(PK) deficiency found in Japan: enzymatic characterization of the patients' PK. Nippon Ketsueki Gakkai Zasshi. 1988;51:1080-1085(PK) deficiency found in Japan: enzymatic characterization of the patients' PK. Nippon Ketsueki Gakkai Zasshi. 1988; 51: 1080-1085
19. Satoh H, Tani K, Yoshida MC, Sasaki M, Miwa S, Fujii H. The human liver-type pyruvate kinase (PKL) gene is on chromosome 1 at band q21. Cytogenet CeIl Genet. 1988;47: 132- 13319. Satoh H, Tani K, Yoshida MC, Sasaki M, Miwa S, Fujii H. The human liver-type pyruvate kinase (PKL) gene is on chromosome 1 at band q21. Cytogenet CeIl Genet. 1988; 47: 132-133
20. Tani K, Fujii H, Nagata S, Miwa S. Human liver type pyruvate kinase: complete amino acid sequence and the expression in mammalian cells. Proc Nati Acad Sci U S A. 1988;85:1792-179520. Tani K, Fujii H, Nagata S, Miwa S. Human liver type pyruvate kinase: complete amino acid sequence and the expression in mammalian cells. Proc Nati Acad Sci U S A. 1988; 85: 1792-1795
21. Tani K, Tsutsumi H, Takahashi K, Ogura H, Kanno H, Hayasaka K, Narisawa K, Nakahata T, Akabane T, Morisaki T, et al. Two homozygous cases of erythrocyte pyruvate kinase (PK) deficiency in Japan: PK Sendai and PK Shinshu. Am J Hematol. 1988;28:186-19021. Tani K, Tsutsumi H, Takahashi K, Ogura H, Kanno H, Hayasaka K, Narisawa K, Nakahata T, Akabane T, Morisaki T, et al. Two homozygous cases of erythrocyte pyruvate kinase (PK) deficiency in Japan: PK Sendai and PK Shinshu. Am J Hematol. 1988; 28: 186-190
22. Tani K, Yoshida MC, Satoh H, Mitamura K, Noguchi T, Tanaka T, Fujii H, Miwa S. Human M2-type pyruvate kinase: cDNA cloning, chromosomal assignment and expression in hepatoma. Gene. 1988;73:509-51622. Tani K, Yoshida MC, Satoh H, Mitamura K, Noguchi T, Tanaka T, Fujii H, Miwa S. Human M2-type pyruvate kinase: cDNA cloning, chromosomal assignment and expression in hepatoma. Gene. 1988; 73: 509-516
23. Tsutsumi H, Tani K, Fujii H, Miwa S. Expression of L- and M-type pyruvate kinase in human tissues. Genomics. 1988;2:86-8923. Tsutsumi H, Tani K, Fujii H, Miwa S. Expression of L- and M-type pyruvate kinase in human tissues. Genomics 1988; 2: 86-89
24. Valentine WN, Herring WB, Pagua DE, Steuterman MC, Brockway RA, Nakatani M. Pyruvate kinase Greensboro. A four-generation study of a high KO.5s (phosphoenolpyruvate) variant. Blood. 1988;72: 1054-105924. Valentine WN, Herring WB, Pagua DE, Steuterman MC, Brockway RA, Nakatani M. Pyruvate Kinase Greensboro. A four-generation study of a high KO.5s (phosphoenolpyruvate) variant. Blood. 1988; 72: 1054-1059
25. Yamada M, Tanioka F, Onishi M. [Clinical significance of serum pyruvate kinase activities using enzymatic method]. Rinsho Byori. 1988;36:333-33825. Yamada M, Tanioka F, Onishi M. [Clinical significance of serum pyruvate kinase activities using enzymatic method]. Rinsho Byori. 1988; 36: 333-338
26. Kanno H, Fujii H, Hirono A, Omine M, Miwa S. Identical point mutations of the R-type pyruvate kinase (PK) cDNA found in unrelated PK variants associated with hereditary hemolytic anemia. Blood. 1992;79: 1347- 1350 27. Kanno H, Fujii H, Miwa S. Structural analysis o f human pyruvate kinase L-gene and identification of the promoter activity in erythroid cells. Biochem Biophys Res Commun. 1992;188:516-52326. Kanno H, Fujii H, Hirono A, Omine M, Miwa S. Identical point mutations of the R-type pyruvate kinase (PK) cDNA found in unrelated PK variants associated with hereditary hemolytic anemia. Blood. 1992; 79: 1347-1350 27. Kanno H, Fujii H, Miwa S. Structural analysis of human pyruvate kinase L-gene and identification of the promoter activity in erythroid cells. Biochem Biophys Res Commun. 1992; 188: 516-523
28. de Vooght KM, van Wijk R, van Oirschot BA, Rijksen G, van Solinge WW. Pyruvate kinase regulatory element 1 (PKR-REl) mediates hexokinase gene expression in K562 cells. Blood Cells Mol Dis. 2005;34:186-19028. from Vooght KM, van Wijk R, van Oirschot BA, Rijksen G, van Solinge WW. Pyruvate kinase regulatory element 1 (PKR-REl) mediates hexokinase gene expression in K562 cells. Blood Cells Mol Dis. 2005; 34: 186-190
29. van Wijk R, van Solinge WW, Nerlov C, Beutler E, Gelbart T, Rijksen G, Nielsen FC. Disruption of a novel regulatory element in the erythroid-specific promoter of the human PKLR gene causes severe pyruvate kinase deficiency. Blood. 2003;101:1596-160229. van Wijk R, van Solinge WW, Nerlov C, Beutler E, Gelbart T, Rijksen G, Nielsen FC. Disruption of a novel regulatory element in the erythroid-specific promoter of the human PKLR gene causes severe pyruvate kinase deficiency. Blood. 2003; 101: 1596-1602
30. Max-Audit I, Eleouet JF, Romeo PH. Transcriptional regulation of the pyruvate kinase erythroid-specific promoter. J Biol Chem. 1993;268:5431-543730. Max-Audit I, Eleouet JF, Romeo PH. Transcriptional regulation of the pyruvate kinase erythroid-specific promoter. J Biol Chem. 1993; 268: 5431-5437
31. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-I integration in the human genome favors active genes and local. CeIl. 2002; 110:521- 529.31. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-I integration in the human genome favors active genes and local. CeIl. 2002; 110: 521-529.
32. Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science. 2003;300:1749- 175132. Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749-1751
33. Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004;2:E23433. Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2004; 2: E234
34. Recchia A, Bonini C, Magnani Z, Urbinati F, Sartori D, Muraro S, Tagliafico E, Bondanza A, Stanghellini MT, Bernardi M, Pescarollo A, Ciceri F, Bordignon C, Mavilio F. Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc Nati Acad Sci U S A. 2006;103: 1457-146234. Recchia A, Bonini C, Magnani Z, Urbinati F, Sartori D, Muraro S, Tagliafico E, Bondanza A, Stanghellini MT, Bernardi M, Pescarollo A, Ciceri F, Bordignon C, Mavilio F. Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc Nati Acad Sci U.S 2006; 103: 1457-1462
35. Meza NW, Puyet A, Perez-Benavente S, Quintana-Bustamante O, Diez A, Bueren JA, Segovia JC, Bautista JM. Functional analysis of gammaretroviral vector transduction by quantitative PCR. J Gene Med. 2006;8:1097-l 104 36. Vigna E, Amendola M, Benedicenti F, Simmons AD, Follenzi A, Naldini35. Meza NW, Puyet A, Perez-Benavente S, Quintana-Bustamante O, Ten A, Bueren JA, Segovia JC, Bautista JM. Functional analysis of gammaretroviral vector transduction by quantitative PCR. J Gene Med. 2006; 8: 1097-l 104 36. Vigna E, Amendola M, Benedicenti F, Simmons AD, Follenzi A, Naldini
L. Efficient Tet-dependent expression of human factor IX in vivo by a new self- regulating lentiviral vector. Mol Ther. 2005; 11:763-775 37. DuIl T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72:8463-8471L. Efficient Tet-dependent expression of human factor IX in vivo by a new self-regulating lentiviral vector. Mol Ther. 2005; 11: 763-775 37. DuIl T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Throne D, Naldini L. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998; 72: 8463-8471
38. Verlinden SF, van Es HH, van Bekkum DW. Serial bone marrow sampling for long-term follow up of human hematopoiesis in NOD/SCID mice.38. Verlinden SF, van Es HH, van Bekkum DW. Serial bone marrow sampling for long-term follow up of human hematopoiesis in NOD / SCID mice.
Exp.Hematol. 1998;26:627-630 Exp. Hematol. 1998; 26: 627-630

Claims

REIVINDICACIONES
1. Uso de secuencias reguladoras que comprendan el promotor del gen PKLR en la producción de vectores, con la excepción de vectores que comprendan virus adeno-asociados, para ser utilizados en la elaboración de composiciones farmacéuticas destinadas a terapia génica somática en tejido eritroide.1. Use of regulatory sequences that comprise the promoter of the PKLR gene in the production of vectors, with the exception of vectors comprising adeno-associated viruses, to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue.
2. Uso de secuencias reguladoras que comprendan el promotor del gen PKLR en la producción de vectores, con la excepción de vectores que comprendan virus adeno-asociados, para ser utilizados en la elaboración de composiciones farmacéuticas destinadas a terapia génica somática en tejido eritroide, según la reivindicación 1, donde la secuencia reguladora es la SEQ ID NO: 1.2. Use of regulatory sequences comprising the promoter of the PKLR gene in the production of vectors, with the exception of vectors comprising adeno-associated viruses, to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue, according to claim 1, wherein the regulatory sequence is SEQ ID NO: 1.
3. Uso de secuencias reguladoras que comprendan el promotor del gen PKLR en la producción de vectores, con la excepción de vectores que comprendan virus adeno-asociados, para ser utilizados en la elaboración de composiciones farmacéuticas destinadas a terapia génica somática en tejido eritroide, según la reivindicación 1 ó 2, donde dicha terapia se realiza "in vivo" en mamíferos.3. Use of regulatory sequences comprising the promoter of the PKLR gene in the production of vectors, with the exception of vectors comprising adeno-associated viruses, to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue, according to claim 1 or 2, wherein said therapy is performed "in vivo" in mammals.
4. Uso de secuencias reguladoras que comprendan el promotor del gen PKLR en la producción de vectores, con la excepción de vectores que comprendan virus adeno-asociados, para ser utilizados en la elaboración de composiciones farmacéuticas destinadas a terapia génica somática en tejido eritroide, donde dicha terapia se realiza "in vitro" en cultivos de células de mamífero.4. Use of regulatory sequences that comprise the promoter of the PKLR gene in the production of vectors, with the exception of vectors comprising adeno-associated viruses, to be used in the preparation of pharmaceutical compositions intended for somatic gene therapy in erythroid tissue, where said therapy is performed "in vitro" in mammalian cell cultures.
5. Uso, según cualquiera de las reivindicaciones 1 a 4, caracterizado porque el vector producido comprende un virus integrativo.5. Use according to any of claims 1 to 4, characterized in that the vector produced comprises an integrative virus.
6. Uso, según la reivindicación 5, caracterizado porque el vector producido comprende un virus Lentivirus. 6. Use according to claim 5, characterized in that the vector produced comprises a Lentivirus virus.
7. Vector, con la excepción de vectores que comprendan virus adeno- asociados, caracterizado porque comprende al menos una secuencia reguladora que, a su vez, comprende el promotor del gen PKLR, para ser utilizado en la elaboración de composiciones farmacéuticas destinadas a terapia génica somática en tejido eritroide.7. Vector, with the exception of vectors comprising adeno-associated viruses, characterized in that it comprises at least one regulatory sequence which, in turn, comprises the promoter of the PKLR gene, to be used in the preparation of pharmaceutical compositions intended for gene therapy somatic in erythroid tissue.
8. Vector, según la reivindicación 7, caracterizado por comprender un virus integrativo.8. Vector according to claim 7, characterized by comprising an integrative virus.
9. Vector, según cualquiera de las reivindicaciones 7 y 8, caracterizado por comprender un virus Lentivirus.9. Vector, according to any of claims 7 and 8, characterized in that it comprises a Lentivirus virus.
10. Vector según la reivindicación 7, en el que la secuencia reguladora consiste en la región promotora representada por SEQ ID NO: 1.10. Vector according to claim 7, wherein the regulatory sequence consists of the promoter region represented by SEQ ID NO: 1.
11. Vector según la reivindicación 10, que es un vector integrativo.11. Vector according to claim 10, which is an integrative vector.
12. Vector según la reivindicación 11, en el que el vector integrativo es un vector lentiviral.12. Vector according to claim 11, wherein the integrative vector is a lentiviral vector.
13. Vector según la reivindicación 12, en el que el virus lentiviral se ha producido a partir del vector de transferencia LSinRPKCG (pRRLsinl 8.ppthRPKCopGreenWpre).13. Vector according to claim 12, wherein the lentiviral virus has been produced from the LSinRPKCG transfer vector (pRRLsinl 8.ppthRPKCopGreenWpre).
14. Vector según la reivindicación 11 ó 12, que es un lentivirus recombinante.14. Vector according to claim 11 or 12, which is a recombinant lentivirus.
15. Células transducidas por vectores de las reivindicaciones 7 a 14.15. Vector transduced cells of claims 7 to 14.
16. Uso de los vectores de las reivindicaciones 7 a 14 para la elaboración de composiciones farmacéuticas destinadas a ser utilizadas en terapia génica somática.16. Use of the vectors of claims 7 to 14 for the preparation of pharmaceutical compositions intended for use in somatic gene therapy.
17. Uso de las células de la reivindicación 15, para la elaboración de composiciones farmacéuticas destinadas a ser utilizadas en terapia génica somática. 17. Use of the cells of claim 15, for the preparation of pharmaceutical compositions intended for use in somatic gene therapy.
18. Composiciones farmacéuticas que comprenden vectores de las reivindicaciones 7 a 14 y vehículos farmacéuticamente aceptables.18. Pharmaceutical compositions comprising vectors of claims 7 to 14 and pharmaceutically acceptable carriers.
19. Composiciones farmacéuticas que comprenden las células de la reivindicación 15, y vehículos farmacéuticamente aceptables. 19. Pharmaceutical compositions comprising the cells of claim 15, and pharmaceutically acceptable carriers.
PCT/ES2008/070069 2007-04-17 2008-04-15 Expression vectors which include the human pklr gene promoter and use thereof for preparing pharmaceutical compositions for somatic genetic therapy with specific expression in erythroid cells WO2008125720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200701024 2007-04-17
ES200701024A ES2325711B1 (en) 2007-04-17 2007-04-17 EXPRESSION VECTORS UNDERSTANDING THE PROMOTER OF THE HUMAN PKLR GENE AND ITS USE FOR THE ELABORATION OF PHARMACEUTICAL COMPOSITIONS INTENDED FOR SOMATIC GENE THERAPY WITH SPECIFIC EXPRESSION IN ERYTHROID CELLS.

Publications (1)

Publication Number Publication Date
WO2008125720A1 true WO2008125720A1 (en) 2008-10-23

Family

ID=39863305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070069 WO2008125720A1 (en) 2007-04-17 2008-04-15 Expression vectors which include the human pklr gene promoter and use thereof for preparing pharmaceutical compositions for somatic genetic therapy with specific expression in erythroid cells

Country Status (2)

Country Link
ES (1) ES2325711B1 (en)
WO (1) WO2008125720A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286501B2 (en) 2016-04-20 2022-03-29 Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas O.A, M.P. Methods of treating or preventing pyruvate kinase deficiency
US11642422B2 (en) 2017-10-16 2023-05-09 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, O.A, M.P. Lentiviral vectors for delivery of PKLR to treat pyruvate kinase deficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002469A2 (en) 1987-09-17 1989-03-23 Massachusetts Institute Of Technology Human erythroid-specific transcriptional enhancer
US6309878B1 (en) * 1995-04-14 2001-10-30 Institut National De La Sante Et De La Recherche Medicale Glucose-inducible recombinant viral vector
EP1193272A1 (en) 2000-10-02 2002-04-03 Hyun Chul Lee Single-chain insulin analogs
WO2002028999A2 (en) 2000-10-03 2002-04-11 Gene Logic, Inc. Gene expression profiles in granulocytic cells
WO2002029103A2 (en) 2000-10-02 2002-04-11 Gene Logic, Inc. Gene expression profiles in liver cancer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002469A2 (en) 1987-09-17 1989-03-23 Massachusetts Institute Of Technology Human erythroid-specific transcriptional enhancer
US6309878B1 (en) * 1995-04-14 2001-10-30 Institut National De La Sante Et De La Recherche Medicale Glucose-inducible recombinant viral vector
EP1193272A1 (en) 2000-10-02 2002-04-03 Hyun Chul Lee Single-chain insulin analogs
WO2002029103A2 (en) 2000-10-02 2002-04-11 Gene Logic, Inc. Gene expression profiles in liver cancer
WO2002028999A2 (en) 2000-10-03 2002-04-11 Gene Logic, Inc. Gene expression profiles in granulocytic cells

Non-Patent Citations (49)

* Cited by examiner, † Cited by third party
Title
AIUTI A ET AL.: "Correction of ADA-SCID by stem cell gene therapy combined with", SCIENCE, vol. 296, 2002, pages 2410 - 2413
BAUM C ET AL.: "Chance or necessity? Insertional mutagenesis in gene therapy and its consequences", MOL THER, vol. 9, 2004, pages 5 - 13
BAUM C ET AL.: "Side effects of retroviral gene transfer into hematopoietic stem cells", BLOOD, vol. 101, 2003, pages 2099 - 2114
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 188, no. 2, 1992, pages 516 - 523
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 188, no. 2, October 1992 (1992-10-01), pages 516 - 523 *
BLOOD CELLS, MOLECULES AND DISEASES, vol. 34, 2005, pages 186 - 190
BLOOD, vol. 101, no. 4, 2003, pages 1596 - 1602
BLOOD, vol. 104, no. 11, PART 1, November 2004 (2004-11-01), pages 454A *
BLOOD, vol. 110, no. 11, PART 1, November 2007 (2007-11-01), pages 761A - 762A *
CAVAZZANA-CALVO M ET AL.: "Correction of SCID-X1 disease phenotype following gamma-c gene transfer by a retroviral vector into CD34+ cells in two children", BLOOD, vol. 94, 1999, pages 367
CAVAZZANA-CALVO M ET AL.: "Gene therapy of human severe combined immunodeficiency (SCID)-Xl disease", SCIENCE, vol. 288, 2000, pages 669 - 672, XP003002263, DOI: doi:10.1126/science.288.5466.669
DATABASE BIOSIS [online] MEZA N.W. ET AL.: "Development of efficient therapy for the treatment of erythrocyte pyruvate kinase deficiency", XP003024155, Database accession no. (PREV200800217856) *
DATABASE BIOSIS [online] SEGOVIA J.C. ET AL.: "Gene therapy of the human erythrocyte pyruvate kinase deficiency", XP003024156, Database accession no. (PREV200510269607) *
DATABASE PUBMED [online] KANNO H. ET AL.: "Structural analysis of human pyruvate kinase L-gene and identification of the promoter activity in erithroid cells", XP003024157, accession no. EMBL Database accession no. (D13243) *
DE VOOGHT KM ET AL.: "Pyruvate kinase regulatory element 1 (PKR-REl) mediates hexokinase gene expression in K562 cells", BLOOD CELLS MOL DIS., vol. 34, 2005, pages 186 - 190, XP004757236, DOI: doi:10.1016/j.bcmd.2004.10.002
DULL T ET AL.: "A third-generation lentivirus vector with a conditional packaging system", J VIROL., vol. 72, 1998, pages 8463 - 8471
GASPAR HB ET AL.: "Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector", LANCET, vol. 364, 2004, pages 2181 - 2187, XP005066949, DOI: doi:10.1016/S0140-6736(04)17590-9
HACEIN-BEY-ABINA S ET AL.: "A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency", N ENGL J MED., vol. 348, 2003, pages 255 - 256
HACEIN-BEY-ABINA S ET AL.: "Cavazzana-Calvo M. LM02-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1", SCIENCE, vol. 302, 2003, pages 415 - 419
KABAT D: "Molecular biology of Friend viral erythroleukemia", CURR TOP MICROBIOL IMMUNOL., vol. 148, 1989, pages 1 - 42
KAHN A ET AL.: "Search for a relationship between molecular anomalies of the mutant erythrocyte pyruvate kinase variants and their pathological expression", HUM GENET, vol. 57, 1981, pages 172 - 175
KANNO H ET AL.: "Identical point mutations of the R-type pyruvate kinase (PK) cDNA found in unrelated PK variants associated with hereditary hemolytic anemia", BLOOD, vol. 79, 1992, pages 1347 - 1350
KANNO H; FUJII H; MIWA S: "Structural analysis of human pyruvate kinase L-gene and identification of the promoter activity in erythroid cells", BIOCHEM BIOPHYS RES COMMUN, vol. 188, 1992, pages 516 - 523, XP024770351, DOI: doi:10.1016/0006-291X(92)91086-6
KUSTIKOVA O ET AL.: "Clonal Dominance of Hematopoietic Stem Cells Triggered by Retroviral Gene Marking", SCIENCE, vol. 308, 2005, pages 1171 - 1174, XP002455801, DOI: doi:10.1126/science.1105063
LI Z ET AL.: "Murine leukemia induced by retroviral gene marking", SCIENCE, vol. 296, 2002, pages 497, XP002987516, DOI: doi:10.1126/science.1068893
MARIE J ET AL.: "One gene, but two messenger RNAs encode liver L and red cell L' pyruvate kinase subunits", NATURE, vol. 292, 1981, pages 70 - 72
MATSUURA R ET AL.: "DP-ribosylation suppresses phosphorylation of the L-type pyruvate kinase", BIOCHIM BIOPHYS ACTA, vol. 969, 1988, pages 57 - 65, XP025464511, DOI: doi:10.1016/0167-4889(88)90088-2
MAX-AUDIT I; ELEOUET JF; ROMEO PH: "Transcriptional regulation of the pyruvate kinase erythroid-specific promoter", J BIOL CHEM., vol. 268, 1993, pages 5431 - 5437, XP003024154
MAX-AUDIT L. ET AL.: "Transcriptional regulation of the pyruvate kinase erythroid-specific promoter", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, no. 8, March 1993 (1993-03-01), pages 5431 - 5437, XP003024154 *
MEZA NW ET AL.: "Functional analysis of gammaretroviral vector transduction by quantitative PCR", J GENE MED., vol. 8, 2006, pages 1097 - 1104
MITCHELL RS ET AL.: "Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences", PLOS BIOL. 2004;2:E234
MIWA S; TAKEGAWA S: "Conversion of pyruvate kinase (PK) isozymes during development of normal and PK deficient erythroblasts. Biomed Biochim", ACTA, vol. 42, 1983, pages 242 - 246
MORISAKI T ET AL.: "Ten cases of pyruvate kinase (PK) deficiency found in Japan: enzymatic characterization of the patients' PK", NIPPON KETSUEKI GAKKAI ZASSHI, vol. 51, 1988, pages 1080 - 1085
NIJHOF W ET AL.: "Changes in activities and isozyme patterns of glycolytic enzymes during erythroid differentiation in vitro", BLOOD, vol. 64, 1984, pages 607 - 613
NUCLEIC ACIDS RESEARCH, vol. 20, no. 21, 1992, pages 5669 - 5676
RECCHIA A ET AL.: "Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells", PROC NATL ACAD SCI USA., vol. 103, 2006, pages 1457 - 1462
SATOH H ET AL.: "The human liver-type pyruvate kinase (PKL) gene is on chromosome 1 at band q21", CYTOGENET CELL GENET, vol. 47, 1988, pages 132 - 133
SCHRODER AR ET AL.: "HIV-1 integration in the human genome favors active genes and local", CELL, vol. 110, 2002, pages 521 - 529, XP002601691, DOI: doi:10.1016/S0092-8674(02)00864-4
TAKEGAWA S; FUJII H; MIWA S: "Change of pyruvate kinase isozymes from M2- to L-type during development of the red cell", BR J HAEMATOL, vol. 54, 1983, pages 467 - 474
TANI K ET AL.: "Human liver type pyruvate kinase: complete amino acid sequence and the expression in mammalian cells", PROC NATL ACAD SCI USA., vol. 85, 1988, pages 1792 - 1795, XP001318532
TANI K ET AL.: "Human M2-type pyruvate kinase: cDNA cloning, chromosomal assignment and expression in hepatoma", GENE, vol. 73, 1988, pages 509 - 516
TANI K ET AL.: "Two homozygous cases of erythrocyte pyruvate kinase (PK) deficiency in Japan: PK Sendai and PK Shinshu", AM J HEMATOL, vol. 28, 1988, pages 186 - 190
TSUTSUMI H ET AL.: "Expression of L- and M-type pyruvate kinase in human tissues", GENOMICS, vol. 2, 1988, pages 86 - 89, XP024865403, DOI: doi:10.1016/0888-7543(88)90112-7
VALENTINE WN ET AL.: "Pyruvate kinase Greensboro. A four-generation study of a high K0.5s (phosphoenolpyruvate) variant", BLOOD, vol. 72, 1988, pages 1054 - 1059
VAN WIJK R ET AL.: "Disruption of a novel regulatory element in the erythroid-specific promoter of the human PKLR gene causes severe pyruvate kinase deficiency", BLOOD., vol. 101, 2003, pages 1596 - 1602
VERLINDEN SF; VAN ES HH; VAN BEKKUM DW: "Serial bone marrow sampling for long-term follow up of human hematopoiesis in NOD/SCID mice", EXP.HEMATOL, vol. 26, 1998, pages 627 - 630, XP002942236
VIGNA E ET AL.: "Efficient Tet-dependent expression of human factor IX in vivo by a new self- regulating lentiviral vector", MOL THER., vol. 11, 2005, pages 763 - 775, XP004863184, DOI: doi:10.1016/j.ymthe.2004.11.017
WU X ET AL.: "Transcription start regions in the human genome are favored targets for MLV integration", SCIENCE, vol. 300, 2003, pages 1749 - 1751
YAMADA M; TANIOKA F; ONISHI M: "Clinical significance of serum pyruvate kinase activities using enzymatic method", RINSHO BYORI, vol. 36, 1988, pages 333 - 338

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286501B2 (en) 2016-04-20 2022-03-29 Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas O.A, M.P. Methods of treating or preventing pyruvate kinase deficiency
US11642422B2 (en) 2017-10-16 2023-05-09 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, O.A, M.P. Lentiviral vectors for delivery of PKLR to treat pyruvate kinase deficiency

Also Published As

Publication number Publication date
ES2325711B1 (en) 2010-06-17
ES2325711A1 (en) 2009-09-14

Similar Documents

Publication Publication Date Title
KR102500531B1 (en) Globin gene therapy for treating hemoglobinopathies
US8450087B2 (en) Use of triplex structure DNA in transferring nucleotide sequences
AU784910B2 (en) Lentiviral triplex DNA, and vectors and recombinant cells containing lentiviral triplex DNA
Chang et al. The genetic engineering of hematopoietic stem cells: the rise of lentiviral vectors, the conundrum of the ltr, and the promise of lineage-restricted vectors
US20220323612A1 (en) Gene therapy of neuronal ceroid lipofuscinoses
JP2018519827A (en) Retroviral vector containing human ubiquitin C promoter in reverse orientation
AU2018378683A1 (en) Globin gene therapy for treating hemoglobinopathies
Naviaux et al. Retroviral vectors for persistent expression in vivo
US20150216948A1 (en) Cytochrome p450 suicide gene system
JP2000514284A (en) Vector with SAR element
US20120270773A1 (en) Trim5alpha mutants and uses thereof
ES2325711B1 (en) EXPRESSION VECTORS UNDERSTANDING THE PROMOTER OF THE HUMAN PKLR GENE AND ITS USE FOR THE ELABORATION OF PHARMACEUTICAL COMPOSITIONS INTENDED FOR SOMATIC GENE THERAPY WITH SPECIFIC EXPRESSION IN ERYTHROID CELLS.
US20030039984A1 (en) Sequences upstream of the CARP gene, vectors containing them and uses thereof
Terskikh et al. Long-term persistence of a nonintegrated lentiviral vector in mouse hematopoietic stem cells
ES2325702B1 (en) EXPRESSION VECTORS UNDERSTANDING THE HS1 PROMOTER OF THE ONCOGEN VAV1 AND ITS USE FOR THE PREPARATION OF PHARMACEUTICAL COMPOSITIONS INTENDED FOR GENETIC SOMATIC THERAPY.
Gopinath et al. Efficiency of different fragment lengths of the ubiquitous chromatin opening element HNRPA2B1-CBX3 in driving human CD18 gene expression within self-inactivating lentiviral vectors for gene therapy applications
JP2020500562A (en) Gene therapy for mucopolysaccharidosis type II
Schambach et al. Retroviral vectors for cell and gene therapy
WO2020223160A1 (en) A novel chromatin-opening element for stable long term gene expression
AU2007216712B2 (en) Use of Triplex Structure DNA Sequences for Transferring Nucleotide Sequences
AU2003271326B2 (en) Use of triplex structure DNA sequences for transferring nucleotide sequences
Persons et al. Prospects for Gene Therapy of Sickle Cell Disease and Thalassemia
Coleman Efficient transduction and targeted expression of lentiviral vector transgenes in the developing retina
Rivière et al. Genetic treatment of severe hemoglobinopathies
Metzl Tissue-and tumour-selective targeting of murine leukemia virus-based replication-competent retroviral vectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08750428

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08750428

Country of ref document: EP

Kind code of ref document: A1