WO2008125533A2 - Composition a base d'or, d'oxyde de cerium et d'oxyde de silicium, de tungstene, de vanadium, de molybdene ou de niobium, procede de preparation et utilisation comme catalyseur - Google Patents

Composition a base d'or, d'oxyde de cerium et d'oxyde de silicium, de tungstene, de vanadium, de molybdene ou de niobium, procede de preparation et utilisation comme catalyseur Download PDF

Info

Publication number
WO2008125533A2
WO2008125533A2 PCT/EP2008/054152 EP2008054152W WO2008125533A2 WO 2008125533 A2 WO2008125533 A2 WO 2008125533A2 EP 2008054152 W EP2008054152 W EP 2008054152W WO 2008125533 A2 WO2008125533 A2 WO 2008125533A2
Authority
WO
WIPO (PCT)
Prior art keywords
gold
oxide
composition
composition according
compound
Prior art date
Application number
PCT/EP2008/054152
Other languages
English (en)
Other versions
WO2008125533A3 (fr
Inventor
Franck Fajardie
Stephan Verdier
Kazuhiko Yokota
Original Assignee
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations filed Critical Rhodia Operations
Publication of WO2008125533A2 publication Critical patent/WO2008125533A2/fr
Publication of WO2008125533A3 publication Critical patent/WO2008125533A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/287Treatment of tobacco products or tobacco substitutes by chemical substances by inorganic substances only
    • A24B15/288Catalysts or catalytic material, e.g. included in the wrapping material
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/682Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium, tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a composition based on gold, cerium oxide and at least one oxide of another element chosen from silicon, tungsten, vanadium, molybdenum and niobium, and its preparation method. and its use as a catalyst, especially for the oxidation of carbon monoxide.
  • the object of the invention is to provide catalysts effective at low temperatures and / or high vvh.
  • the composition of the invention is based on gold on a support and is characterized in that it has a halogen content expressed by the molar ratio halogen / gold is at most 0.04, in that the gold is in the form of particles having a size of at most 10 nm and in that the support is based on cerium oxide and at least one oxide of another element Mi chosen from silicon, tungsten, vanadium, molybdenum and niobium.
  • This composition is effective at low temperature and also particularly for the oxidation of alcohols, aldehydes and ketones. It also has the advantage of a lower tendency to hydration and thus improved durability.
  • Other features, details and advantages of the invention will appear even more fully on reading the description which follows, as well as various concrete but non-limiting examples intended to illustrate it.
  • composition of the invention comprises gold and a support based on cerium oxides and the element Mi.
  • support must be taken in a broad sense to designate, in the composition of the invention, the constituent or constituents which are the majority in the composition, the supported element being present essentially on the surface of these constituents.
  • support and supported phase we will speak in the following description support and supported phase but it will be understood that it would be understood that it would not be outside the scope of the present invention in the case where an element described as belonging to the supported phase would be present in the support, for example having been introduced during the preparation of the support itself.
  • the composition of the invention may contain gold with, in addition, at least one other metal element M 2 selected from silver, platinum, palladium and copper.
  • this or these other metallic elements may be present for example in a quantity of at most 400%, more particularly at most 120% and in particular between 5% and 50% with respect to gold, this amount being expressed as mol% metal element (s) M 2 / gold.
  • Compositions of this type in the case of high vvh use, can reach their maximum efficiency even more quickly.
  • the contents of gold, or gold and M 2 element above, of the composition are not critical, they correspond to the levels generally used in the catalysts to obtain a catalytic activity. By way of example, this content is at most 5%, especially at most 1%.
  • composition of the invention has specific characteristics which will be described more particularly below.
  • the first is its halogen content.
  • the halogen may be more particularly bromine or chlorine. This content, which is expressed by the molar ratio halogen / gold, is at most 0.04. More particularly, it is at most 0.025 and preferably at most 0.01.
  • the halogen dosage can be achieved by implementing the following method.
  • the amount of catalyst required for analysis is vaporized in the flame of an oxyhydrogen torch (H2 / O2 mixture at about 2000 ° C.).
  • the resulting vapor is trapped in an aqueous solution containing hydrogen peroxide.
  • the combustion gases water + H2O2
  • the collected filtrate is then analyzed by ion chromatography and the halogen content calculated by integrating the appropriate dilution factor.
  • the halogen content of the catalyst is calculated taking into account the mass of catalyst used for the analysis.
  • the other characteristic is the size of the gold particles present in the composition.
  • This size is at most 10 nm, preferably at most 3 nm.
  • this size is determined from the analysis of the X-ray spectra of the composition, using the width (I) at half the height of the diffraction peak of gold.
  • the size of the particles is proportional to the inverse (1/1) of the value of this width I. Note that the RX analysis does not detect a phase corresponding to gold for particles whose size is smaller. at 3 nm neither detect gold at gold grades below 0.25%. In both cases, MET analysis can be used.
  • compositions of the invention are based on cerium oxide and at least one oxide of another element Mi selected from silicon, tungsten, vanadium, molybdenum and niobium. It is quite possible to have a combination in the carrier of cerium oxide with oxides of several elements Mi. Silicon constitutes the preferred element Mi. Media of this type are known. They can be obtained in particular from a cerium oxide, prepared beforehand, by impregnation of this oxide with a precursor compound of the oxide of Mi, for example a salt. Silicon precursor compound that may be mentioned more particularly alkali silicates and in particular sodium silicate.
  • Silicon can also be provided by a compound of the silica sol type, for example Morrisol or Ludox marketed respectively by Morrisons Gas Related Products Limited and Grace Davison or by an organometallic compound such as sodium ortho-tetraethylsilicate (TEOS), potassium methylsiliconate or the like.
  • TEOS sodium ortho-tetraethylsilicate
  • TEOS potassium methylsiliconate
  • tungsten precursor compounds As tungsten precursor compounds, mention may be made of ammonium metatungstate (NH 4 ) 6 Wi 2 O 4 i and sodium metatungstate Na 2 WO 4 , ammonium heptamolybdate (NH 4 ) 6 M ⁇ 7 O 2 4 , 4H 2 O.
  • Precursor compounds of niobium and vanadium include niobium ammonium oxalate trihydrate (NH 4 ) 3 NbO (oxalate) 3, 3H 2 O, vanadium chloride VCI 5 , vanadyl acetylacetonate VO (acac ) 2 or vanadium oxyesulphate pentahydrate VOSO 4 , 5H 2 O.
  • the impregnation techniques are well known.
  • the total volume of solution used for the impregnation is approximately equal to the total pore volume presented by the support that is to be impregnated.
  • the determination of the pore volume can be made according to the known method with the mercury porosimeter or by measuring on a sample of the quantity of water which it absorbs. It is also possible to impregnate the support by soaking the one in the solution of the oxide precursor of the element Mi and to eliminate the excess solution by dripping.
  • the element Mi in the form of its oxide precursor, during the actual preparation of the ceric oxide. This preparation can thus be done by a process of coprecipitation of the various elements and then calcination of the precipitate obtained.
  • Another method that can be envisaged is to introduce at least one oxide precursor of the element Mi into an aqueous colloidal dispersion of a cerium compound and then destabilize said dispersion by addition of a base, the precipitate obtained is separated off and subject to a heat treatment.
  • EP-A-207857 which describes supports based on cerium oxide and silicon. Supports having a specific surface area, for example substrates which can have, after calcination at 500 ° C. for 4 hours, an area of at least 40 m 2 / g.
  • the amount of element Mi in the support is at most 50%, more particularly at most 20% and even more particularly at most 10% by weight of element Mi relative to the mass of the entire support.
  • a compound based on cerium oxide and at least one oxide of another element Mi is contacted with a compound based on a gold halide and, if appropriate, a compound based on element M 2 , forming a suspension of these compounds, the pH of the medium thus formed being set at a value of at least 8;
  • the first step of the process consists in bringing into contact a compound based on cerium oxide and at least one oxide of another element Mi with a compound based on a gold halide and optionally, a compound based on silver, platinum, palladium or copper. This bringing into contact is done by forming a suspension which is generally an aqueous suspension.
  • This starting suspension can be obtained from a preliminary dispersion of a support based on cerium oxide and at least one oxide of another element Mi of the type described above, prepared by dispersing this support in a liquid phase, for example water, and by mixing with a solution or a dispersion of the gold compound.
  • a liquid phase for example water
  • chlorinated or brominated compounds of gold for example chlorauric acid HAuCl 4 or its salts, such as NaAlCl 4, which are the most common compounds.
  • organic acid salts and in particular the saturated aliphatic carboxylic acid salts or the hydroxycarboxylic acid salts.
  • organic acid salts and in particular the saturated aliphatic carboxylic acid salts or the hydroxycarboxylic acid salts.
  • platinum hydroxide of platinum (II) tetramine can be mentioned in particular.
  • the starting suspension can be obtained for example by introducing into the dispersion of the support the solution or dispersion of the gold compound.
  • the pH of the suspension thus formed is brought to a value of at least 8, more particularly of at least 8.5 and even more particularly of at least 9.
  • the pH is maintained at the value of at least 8 during the formation of the suspension, when the cerium oxide compound is brought into contact with at least one oxide of another element.
  • Mi and the gold halide compound by concomitant introduction of a basic compound.
  • a basic compound is added at the same time.
  • the flow rate of basic compound can be adjusted so as to maintain the pH of the medium at a constant value, that is to say a value varying by more or less than 0.3 pH unit relative to the fixed value.
  • the products of the hydroxide or carbonate type can be used in particular.
  • alkali or alkaline earth hydroxides and ammonia There may be mentioned secondary, tertiary or quaternary amines. We can also mention urea.
  • the basic compound is generally used in the form of a solution.
  • the contacting of the compound based on cerium oxide and at least one oxide of another element Mi and the gold halide-based compound is generally at room temperature but it is possible to do so. hot for example at a temperature of at least 60 ° C.
  • the suspension formed during the first stage of the process is generally stirred for a period of a few minutes.
  • the solid is separated from the reaction medium by any known means.
  • this basic solution has a pH of at least 8, more particularly at least 9.
  • the basic solution may be based on the same basic compounds as those mentioned above.
  • This washing can be carried out according to any suitable method, for example using the technique of washing piston or redispersion. In the latter case, the solid is redispersed in the basic solution and then, generally after stirring, the solid is separated from the liquid medium.
  • the washing with the basic solution can be repeated several times if necessary. It can be followed, possibly by washing with water.
  • the solid obtained is generally dried.
  • the drying can be done by any suitable method, for example in air or by lyophilization. There is usually no need for calcination.
  • calcination is not excluded, preferably at low temperature, that is to say at most 250 0 C for a period of at most 4 hours for example and in air.
  • the product in particular after drying, to a reduction treatment.
  • This treatment is carried out in such a way that the totality of the gold element has a degree of oxidation lower than its oxidation state before the treatment, this degree of oxidation before treatment being generally of 3.
  • the degree of oxidation of gold can be determined by techniques known to those skilled in the art, for example by the programmed temperature reduction method (RTP) or X-ray photoelectron spectroscopy (XPS).
  • a chemical reduction can firstly be carried out by contacting the product with a reducing agent such as ferrous, citrate or stannous ions, oxalic acid, citric acid, hydrogen peroxide, hydrides such as NaBH 4 , hydrazine (NH 2 -NH 2 ), formaldehyde in aqueous solution (H 2 CO), phosphorus reducers including tetrakis (hydroxymethyl) phosphonium chloride or NaH 2 PO 2 .
  • This treatment can be by suspending the product in an aqueous medium containing the reducing agent or also on the product in the reaction medium after the deposition of the gold. In the case of the implementation of this type of reduction, it may be advantageous to then calcinate under the conditions described above.
  • the treatment can be done in this case on a solution or suspension of the product or on a powder.
  • these treatments can be done before or after the washing step described above.
  • the reduction treatment can be done by gas using a reducing gas which can be chosen from hydrogen, carbon monoxide or hydrocarbons, this gas can be used in any volume concentration. Hydrogen diluted in argon can be used in particular. In the case of a reduction treatment according to the latter type, this is done after the aforementioned washing step.
  • a reducing gas which can be chosen from hydrogen, carbon monoxide or hydrocarbons, this gas can be used in any volume concentration.
  • Hydrogen diluted in argon can be used in particular. In the case of a reduction treatment according to the latter type, this is done after the aforementioned washing step.
  • the treatment is done at a temperature that is at most
  • calcination may be carried out as described above.
  • the method of the invention may also be implemented according to a second embodiment which comprises the following steps: - gold and, where appropriate, silver, platinum, palladium or copper are deposited on a compound based on cerium oxide and at least one oxide of another element Mi by impregnation or by ion exchange; the solid resulting from the preceding stage is washed with an alkaline solution having a pH of at least 10.
  • the first step consists in depositing the gold and, where appropriate, silver, platinum, palladium or copper, on the compound based on cerium oxide and the element Mi by impregnation or by ion exchange.
  • the impregnation method has already been mentioned above and dry impregnation is preferably used.
  • the gold compound is here of the same type as that described above for the first embodiment.
  • Ion exchange deposition is also a known method.
  • the same type of gold compound can be used as before.
  • the product resulting from the preceding step is then washed with a basic solution whose pH is at least 10, preferably at least 11. This washing can be done in the same way and with the same basic compounds as described for the first mode method.
  • compositions of the invention as obtained by the method described above are in the form of powders but they may optionally be shaped to be in the form of granules, balls, cylinders, extrudates or honeycombs. variable dimensions.
  • compositions may be applied to any carrier material conventionally used in the field of catalysis, that is to say in particular thermally inert materials such as alumina, titanium oxide, zirconium oxide, silica, spinels. , zeolites, silicates, crystalline silicoaluminum phosphates, crystalline aluminum phosphates.
  • compositions may be used in catalytic systems comprising a coating (wash coat) based on these compositions, on a substrate of the type for example metallic monolith or ceramic.
  • the coating may for example comprise a carrier material of the type described above. It may be noted that the deposition of the gold can also be done on a support previously put in a form of the type given above.
  • the compositions of the invention, as described above or obtained by the process detailed above, can be used more particularly, as catalysts, in processes involving oxidation of carbon monoxide.
  • the catalytic composition may be in the form of a powder. It can also be shaped properly, for example, it can be shaped into granules or flakes.
  • the particle size of the composition may be between 1 ⁇ m and 200 ⁇ m. In the case of granules, this size can be between 700 ⁇ m and 1500 ⁇ m, for pearls, the size can be between 200 ⁇ m and 700 ⁇ m and between 100 ⁇ m and 1500 ⁇ m for flakes.
  • the catalytic composition may be incorporated by mixing or bonding with the fiber which constitutes the filter of the cigarette (for example cellulose acetate) during the manufacture of the filter, in particular in the case of so-called “dual filter” or “triple filter” filters. ".
  • the catalytic composition may also be deposited on the inner part of the paper wrapping the cable constituting the filter ("tipping paper") in the case of a "patch filter” type filter.
  • the catalytic composition may also be introduced into the cavity of a "Cavity filter” type filter.
  • the composition reduction treatment can be carried out once it has been incorporated in the filter.
  • the reduction treatment is then carried out according to the methods that have been described above.
  • the amount of catalyst composition used is not critical. It is limited in particular by the size of the filter and the pressure drop due to the presence of the composition in the filter. It is generally at most 350 mg per cigarette, preferably it is between 20 mg and 100 mg per cigarette.
  • the invention therefore relates to a cigarette filter, which contains a composition as described above or obtained by the methods detailed above.
  • cigarette must be taken in a broad sense to cover any article intended to be smoked and made of tobacco wrapped in a tube for example based on paper or tobacco.
  • This term also applies here to cigars and cigarillos.
  • the compositions of the invention may also be used in air purification treatments in the case of an air containing at least one carbon monoxide type compound or of the type of volatile or malodorous organic compounds in the family. oxygenated compounds, sulfur, nitrogen or hydrocarbons. This treatment must be understood as being intended to achieve a partial or preferably total oxidation of the abovementioned compounds.
  • compositions of the invention have the advantage of having a low water uptake.
  • oxygenated compounds mention may be made of primary, secondary or tertiary alcohols, aldehydes, ketones, carboxylic acids, esters or lactones.
  • sulfur compounds mention may be made of mercaptans, sulphides, disulphides or hydrogen sulphide.
  • Nitrogen compounds include primary, secondary or tertiary amines or ammonia, nitric oxide or nitrous oxide.
  • the family of hydrocarbons includes both saturated or unsaturated hydrocarbons such as alkenes, especially ethylene, alkynes or aromatic hydrocarbons.
  • This treatment is done by contacting the air to be treated with a composition as described above or obtained by the method detailed above.
  • the compositions of the invention make it possible to carry out this treatment at temperatures below 120 ° C. and close to ambient temperature, more preferably.
  • COMPARATIVE EXAMPLE 1 This example relates to a composition based on gold on a cerium oxide support only. 40 g of a Rhodia cerium oxide powder with a surface area of 170 m 2 / g are dispersed with stirring in 250 ml of water. The pH of the suspension is then adjusted to 9 by adding a solution of 1 M Na 2 CO 3.
  • the gold solution is then added over one hour to the cerium oxide suspension.
  • the pH of the suspension is maintained between pH 8.7 and 9.3 during the addition of the gold solution by addition of a solution of 1M Na 2 CO 3.
  • the resulting suspension is stirred for 20 minutes before to be filtered under vacuum.
  • the cake obtained is redispersed in a solution of Na 2 CO 3 at pH 11 whose volume is equivalent to that of the mother liquors removed during the first filtration step.
  • the suspension is stirred for 20 minutes. This basic washing procedure is repeated 2 more times.
  • the cake obtained is finally redispersed in a volume of water equivalent to the volume of mother liquor removed during the first filtration and then vacuum filtered.
  • the washed cake is dried by lyophilization and then treated for 2 hours at 170 ° C. with a gaseous mixture composed of 10% by volume of dihydrogen diluted in argon.
  • This example is an example according to the invention which relates to a composition based on gold on a support based on cerium and silicon oxides.
  • 100 g of a Rhodia cerium oxide powder having a surface area of 170 m 2 / g are dry impregnated with a solution of Rhodia sodium silicate so as to obtain an Si / Ce molar ratio of 0.1.
  • the impregnated solid is then dried in an oven at 120 ° C. overnight and then calcined under air at 500 ° C. for 4 hours.
  • the gold is then deposited as in Example 1 using initially
  • This example is an example according to the invention which relates to a composition based on gold, platinum and palladium on a support based on cerium and silicon oxides.
  • Rhodia cerium oxide powder having a surface area of 60 m 2 / g are dry impregnated with a solution of sodium silicate Rhodia so as to obtain a Si / Ce molar ratio of 0.04.
  • the impregnated solid is then dried in an oven at 120 ° C. overnight and then calcined under air at 500 ° C. for 4 hours.
  • This platinum and palladium support is then deposited on the support by dry co-impregnation of the solutions of platinum nitrate and of palladium nitrate so as to obtain a mass content relative to the support of
  • the gold is then deposited as in Example 1, initially using 40 g of this doped silicon, platinum and palladium-doped cerium oxide with a surface area of 50 m 2 / g.
  • This example is an example according to the invention which relates to a composition based on gold on a support based on cerium and tungsten oxides.
  • a Rhodia cerium oxide powder with a surface area of 170 m 2 / g are dry impregnated with a solution of ammonium metatungstate so as to obtain a molar ratio W / Ce of 0.1.
  • the impregnated solid is then dried in an oven at 120 ° C overnight and then calcined in air at 500 ° C for 4h.
  • the gold is then deposited as in Example 1, initially using 40 g of this silicon-doped cerium oxide with a surface area of 70 nrv / g.
  • COMPARATIVE EXAMPLE 5 The product is prepared according to the same protocol as that described in Example 1 except that the product is not washed (neither washing with the Na 2 CO 3 solution nor washing with water) before being dried under air and subsequently treated under hydrogen.
  • EXAMPLE 6 This example relates to the use of the compositions described in the previous examples as catalysts in a CO oxidation process.
  • the catalytic compound is tested in the form of flakes of 125 to 250 microns which are obtained by pelletizing, grinding and sieving of the composition powder or catalytic compound.
  • the catalytic compound is placed in the reactor on a frit which acts as a physical support for the powder.
  • SiC silicon carbide SiC is added so that the sum of the masses of the catalytic compound and SiC is equal to 200 mg.
  • SiC is inert with respect to the oxidation reaction of CO and here acts as a diluent to ensure the homogeneity of the catalyst bed.
  • T50% half-conversion temperature
  • compositions according to the invention are capable of oxidizing CO at room temperature and at high WH.
  • This example relates to the use of the compositions described in the preceding examples in a process for treating volatile organic compounds.
  • the results for the purification of a number of volatile organic compounds were obtained by carrying out the catalytic oxidation test which is described below.
  • the catalytic compound is tested in the form of 250 to 500 ⁇ m granules which are obtained by pelletizing, grinding and sieving the powder of composition or catalytic compound.
  • the catalytic compound is placed in the reactor on a frit which acts as a physical support for the powder.
  • a synthetic mixture is passed over the catalyst containing from 100 to 1000 vpm of volatile organic compound in ambient air which can contain up to about 500 vpm of CO2 and about 10,000 vpm of H 2 O.
  • gaseous mixture circulates continuously in a quartz reactor containing up to 200 mg of catalytic compound with a flow rate up to 20 L / h.
  • SiC silicon carbide SiC is added so that the sum of the masses of the catalytic compound and SiC is equal to 200 mg.
  • SiC is inert with respect to the oxidation reaction and here acts as a diluent making it possible to ensure the homogeneity of the catalytic bed.
  • the conversion of the volatile organic compound is measured in isotherm at a temperature between 20 and 100 ° C.
  • the gases leaving the reactor are analyzed by gas chromatography using Agilent 3000 ⁇ GC chromatograph equipped with 4 modules with thermal conductivity (TCD) at intervals of about 3 min. in order to identify the products of the reaction and to deduce the conversion of the volatile organic compound.
  • TCD thermal conductivity
  • the doping of the cerium oxide support with a dopant such as silicon or tungsten makes it possible to increase the conversion level of the methanol at 35 ° C.
  • the total oxidation of methanol can even be obtained at this temperature.
  • the 100% CO 2 selectivity measured reflects the fact that the oxidation of methanol is total according to the equation:
  • the introduction of the acidic dopant into the support of the gold-bearing cerium medium mainly improves the CO 2 selectivity and makes it possible to direct the conversion of the pollutant towards total oxidation to CO 2 and H 2 O.
  • the other reaction product observed is propanal.
  • EXAMPLE 8 This example relates to the ability of the compositions of the preceding examples to rehydrate.
  • a mixture of water + sodium chloride is introduced.
  • a porous ceramic support is then placed beneath the liquid mixture and on which a weighed mass of precisely the composition to be tested is introduced. Once closed and thermostated at 20 ° C, the water + sodium chloride mixture will generate a charged atmosphere at 1.8% H 2 O which will condition the catalyst in an atmosphere equivalent to 60% relative humidity at 22 ° C.
  • the mass of composition is then measured as a function of the time elapsed after the closure of the chamber and it is deduced therefrom by difference with the mass. initial composition introduced into the enclosure the body of water taken up by the composition.
  • the support of the composition according to Example 2 has the lowest water uptake, which makes it possible to increase its durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

La composition de l'invention est à base d'or sur un support et elle est caractérisée en ce qu'elle présente une teneur en halogène exprimée par le rapport molaire halogène/or est d'au plus 0,04, en ce que l'or se présente sous forme de particules de taille d'au plus 10 nm et en ce que le support est à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi choisi parmi le silicium, le tungstène, le vanadium, le molybdène et le niobium. Cette composition peut être utilisée comme catalyseur dans un traitement de purification de l'air, cet air contenant au moins un composé du type monoxyde de carbone ou du type des composés organiques volatils ou malodorants.

Description

COMPOSITION A BASE D1OR, D'OXYDE DE CERIUM ET D'OXYDE DE
SILICIUM, DE TUNGSTENE, DE VANADIUM, DE MOLYBDENE OU DE
NIOBIUM, PROCEDE DE PREPARATION ET UTILISATION COMME
CATALYSEUR
La présente invention concerne une composition à base d'or, d'oxyde de cérium et d'au moins un oxyde d'un autre élément choisi parmi le silicium, le tungstène, le vanadium, le molybdène et le niobium, son procédé de préparation et son utilisation comme catalyseur, notamment pour l'oxydation du monoxyde de carbone.
Il existe déjà des catalyseurs à base d'or qui sont utilisés notamment dans des procédés d'oxydation du CO. Par ailleurs, un certain nombre de ces procédés d'oxydation se déroulent à des températures relativement basses, par exemple inférieures à 2500C, notamment dans des réactions de conversion du gaz à l'eau (water gas shift). On cherche même à oxyder le CO à la température ambiante, par exemple dans des procédés de traitement de l'air, et/ou dans des conditions dures telles que des vitesses volumiques horaires (vvh) très élevées, c'est le cas par exemple du traitement des fumées de cigarettes.
Les catalyseurs disponibles actuellement et qui sont utilisables d'un point de vue économique ne présentent pas des performances suffisantes pour répondre à ce besoin.
L'objet de l'invention est de fournir des catalyseurs efficaces à températures faibles et/ou à vvh élevées.
Dans ce but, la composition de l'invention est à base d'or sur un support et elle est caractérisée en ce qu'elle présente une teneur en halogène exprimée par le rapport molaire halogène/or est d'au plus 0,04, en ce que l'or se présente sous forme de particules de taille d'au plus 10 nm et en ce que le support est à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi choisi parmi le silicium, le tungstène, le vanadium, le molybdène et le niobium.
Cette composition est efficace à basse température et aussi tout particulièrement pour l'oxydation des alcools, des aldéhydes et des cétones. Elle présente aussi l'avantage d'une plus faible tendance à l'hydratation et donc une durabilité améliorée. D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.
La classification périodique des éléments à laquelle il est fait référence dans cette description est celle publiée dans le Supplément au Bulletin de la Société Chimique de France n° 1 (janvier 1966).
On entend par surface spécifique, la surface spécifique B. ET. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER - EMMETT- TELLER décrite dans le périodique "The Journal of the American Chemical Society, 60, 309 (1938)". Comme indiqué plus haut, la composition de l'invention comprend de l'or et un support à base d'oxydes de cérium et de l'élément Mi.
Le terme « support » doit être pris dans un sens large pour désigner, dans la composition de l'invention, le ou les constituants qui sont majoritaires dans la composition, l'élément supporté étant présent essentiellement en surface de ces constituants. Pour simplifier, on parlera dans la suite de la description de support et de phase supportée mais on comprendra que l'on ne sortirait pas du cadre de la présente invention dans le cas où un élément décrit comme appartenant à la phase supportée serait présent dans le support, par exemple en y ayant été introduit lors de la préparation même du support.
Il faut noter que la composition de l'invention peut contenir de l'or avec, en outre, au moins un autre élément métallique M2 choisi parmi l'argent, le platine, le palladium et le cuivre. Dans ce cas, ce ou ces autres éléments métalliques peuvent être présents par exemple dans une quantité d'au plus 400%, plus particulièrement d'au plus 120% et notamment comprise entre 5% et 50% par rapport à l'or, cette quantité étant exprimée en % molaire élément(s) métallique(s) M2/or. Les compositions de ce type, dans le cas d'une utilisation à forte vvh, peuvent atteindre encore plus rapidement leur efficacité maximale. Les teneurs en or, ou en or et élément M2 précité, de la composition ne sont pas critiques, elles correspondent aux teneurs généralement utilisées dans les catalyseurs pour obtenir une activité catalytique. A titre d'exemple, cette teneur est d'au plus 5%, notamment d'au plus 1 %. Elle peut être plus particulièrement d'au plus 0,5% et même d'au plus 0,25%. Des teneurs supérieures à 5% n'ont généralement pas d'intérêt d'un point de vue économique. Ces teneurs sont exprimées en pourcentage massique d'or, éventuellement avec l'élément M2, par rapport à l'ensemble des oxydes qui constitue le support. La composition de l'invention présente des caractéristiques spécifiques qui vont être décrites plus particulièrement ci-dessous.
La première est sa teneur en halogène. L'halogène peut être plus particulièrement le brome ou le chlore. Cette teneur, qui est exprimée par le rapport molaire halogène/or, est d'au plus 0,04. Plus particulièrement, elle est d'au plus 0,025 et de préférence d'au plus 0,01.
Le dosage de l'halogène peut être réalisé en mettant en œuvre la méthode suivante. La quantité de catalyseur nécessaire à l'analyse est vaporisée dans la flamme d'un chalumeau oxhydrique (mélange H2/O2 à environ 20000C). La vapeur résultante est piégée dans une solution aqueuse contenant de l'eau oxygénée. Dans le cas où un résidu solide est obtenu à l'issue du traitement sous chalumeau oxhydrique celui-ci est mis en suspension dans la solution où ont été recueillis les gaz de combustion (eau + H2O2) puis on filtre. Le filtrat recueilli est ensuite analysé par chromatographie ionique et la teneur en halogène calculée en intégrant le facteur de dilution adéquat. On calcule enfin la teneur en halogène du catalyseur en tenant compte de la masse de catalyseur utilisée pour l'analyse.
L'autre caractéristique est la taille des particules d'or présentes dans la composition. Cette taille est d'au plus 10 nm, de préférence d'au plus 3 nm. Ici, et pour l'ensemble de la présente description, cette taille est déterminée à partir de l'analyse des spectres RX de la composition, en utilisant la largeur (I) à mi hauteur du pic de diffraction de l'or. La taille des particules est proportionnelle à l'inverse (1/1) de la valeur de cette largeur I. On notera que l'analyse RX ne permet ni de détecter une phase correspondant à l'or pour des particules dont la taille est inférieure à 3nm ni de détecter l'or pour des teneurs en or inférieures à 0,25%. Dans ces deux cas, on peut utiliser l'analyse MET.
Une autre caractéristique spécifique des compositions de l'invention est la nature de leur support. Ce support est à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi choisi parmi le silicium, le tungstène, le vanadium, le molybdène et le niobium. Il est tout à fait possible d'avoir une combinaison dans le support de l'oxyde de cérium avec des oxydes de plusieurs éléments Mi. Le silicium constitue l'élément Mi préféré. Les supports de ce type sont connus. Ils peuvent être obtenus notamment à partir d'un oxyde de cérium, préalablement préparé, par imprégnation de cet oxyde avec un composé précurseur de l'oxyde de Mi, par exemple un sel. Comme composé précurseur du silicium on peut mentionner plus particulièrement les silicates alcalins et notamment le silicate de sodium. Le silicium peut aussi être apporté par un composé du type sol de silice comme par exemple le Morrisol ou le Ludox commercialisés respectivement par les sociétés Morrisons Gas Related Products Limited et Grâce Davison ou encore par un composé organométallique comme l'ortho-tétraéthylsilicate de sodium (TEOS), le méthylsiliconate de potassium ou analogue.
Comme composés précurseurs du tungstène, on peut mentionner le métatungstate d'ammonium (NH4)6Wi2O4i et le métatungstate de sodium Na2WO4, l'heptamolybdate d'ammonium (NH4)6Mθ7θ24, 4H2O. Comme composés précurseurs du niobium et du vanadium, on peut citer le trihydrate d'oxalate de niobium ammonium (NH4)3NbO(oxalate)3, 3H2O, le chlorure de vanadium VCI5, le vanadyle acétylacétonate VO(acac)2 ou l'oxysulfate de vanadium pentahydraté VOSO4, 5H2O. Les techniques d'imprégnation sont bien connues. On peut utiliser plus particulièrement l'imprégnation "à sec" Dans ce cas, le volume total de solution utilisée pour l'imprégnation est approximativement égal au volume poreux total présenté par le support que l'on cherche à imprégner. La détermination du volume poreux peut être faite selon la méthode connue au porosimètre à mercure ou bien par mesure sur un échantillon de la quantité d'eau qu'il absorbe. Il est également possible d'imprégner le support par trempage de celui dans la solution du précurseur d'oxyde de l'élément Mi et d'éliminer l'excès de solution par égouttage.
Il est aussi possible d'introduire l'élément Mi, sous la forme de son précurseur d'oxyde, au cours de la préparation même de l'oxyde cérique. Cette préparation peut ainsi se faire par un procédé de coprécipitation des différents éléments puis calcination du précipité obtenu. Un autre procédé envisageable est d'introduire au moins un précurseur d'oxyde de l'élément Mi dans une dispersion colloïdale aqueuse d'un composé de cérium puis on déstabilise ladite dispersion par addition d'une base, on sépare le précipité obtenu et on le soumet à un traitement thermique.
Il est possible à l'issue de l'imprégnation ou de la précipitation de procéder à une étape de lavage notamment avec une solution basique de manière à éliminer les contre-ions provenant des composés précurseurs des éléments Mi.
On pourra se référer notamment à EP-A-207857 qui décrit des supports à base d'oxyde de cérium et de silicium. On utilise des supports ayant une surface spécifique adaptée, par exemple des supports pouvant présenter après calcination à 5000C 4 heures une surface d'au moins 40 m2/g.
La quantité en élément Mi dans le support est d'au plus 50%, plus particulièrement d'au plus 20% et encore plus particulièrement d'au plus 10% en masse d'élément Mi par rapport à la masse de l'ensemble du support.
Le procédé de préparation de la composition de l'invention va maintenant être décrit.
Ce procédé peut être mis en œuvre selon un premier mode de réalisation qui comporte les étapes suivantes :
- on met en contact un composé à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi et un composé à base d'un halogénure d'or et, le cas échéant un composé à base de l'élément M2, en formant une suspension de ces composés, le pH du milieu ainsi formé étant fixé à une valeur d'au moins 8;
- on sépare le solide du milieu réactionnel;
- on lave le solide avec une solution basique.
Dans ce premier mode, la première étape du procédé consiste à mettre en contact un composé à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi avec un composé à base d'un halogénure d'or et, le cas échéant d'un composé à base d'argent, de platine, de palladium ou de cuivre. Cette mise en contact se fait en formant une suspension qui est généralement une suspension aqueuse.
Cette suspension de départ peut être obtenue à partir d'une dispersion préliminaire d'un support à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi du type décrit plus haut, préparée en dispersant ce support dans une phase liquide, par exemple de l'eau, et par mélange avec une solution ou une dispersion du composé d'or. Comme composé de ce type, on peut utiliser les composés chlorés ou bromes de l'or, par exemple l'acide chloraurique HAuCI4 ou ses sels comme NaAuCI4 qui sont les composés les plus courants.
Dans le cas de la préparation d'une composition comprenant aussi de l'argent, du platine, du palladium ou du cuivre, on peut choisir comme composé de ces éléments les sels d'acides inorganiques comme les nitrates, les sulfates ou les chlorures.
On peut aussi utiliser les sels d'acides organiques et notamment les sels d'acides carboxyliques aliphatiques saturés ou les sels d'acides hydroxycarboxyliques. A titre d'exemples, on peut citer les formiates, acétates, propionates, oxalates ou les citrates. On peut citer enfin en particulier pour le platine l'hydroxyde de platine (II) tétramine.
Pour la suite de la description du procédé on ne mentionnera que le composé à base de l'halogénure d'or mais on devra comprendre que la description s'applique de même aussi au cas où l'on mettrait en œuvre un composé de l'argent, du platine, du palladium ou du cuivre tel que décrit ci- dessus.
La suspension de départ peut être obtenue par exemple en introduisant dans la dispersion du support la solution ou dispersion du composé d'or. Selon une caractéristique spécifique du procédé, le pH de la suspension ainsi formée est amené à une valeur d'au moins 8, plus particulièrement d'au moins 8,5 et encore plus particulièrement d'au moins 9.
De préférence, on maintient le pH à la valeur d'au moins 8 lors de la formation de la suspension, lors de la mise en contact du composé à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi et du composé à base d'halogénure d'or par introduction concomitante d'un composé basique. Par exemple lorsque l'on procède en introduisant dans la dispersion du support la solution ou dispersion du composé d'or, on ajoute en même temps un composé basique. Le débit de composé basique peut être ajusté de manière à maintenir le pH du milieu à une valeur constante, c'est à dire une valeur variant de plus ou moins 0,3 unité de pH par rapport à la valeur fixée.
Comme composé basique, on peut utiliser notamment les produits du type hydroxyde ou carbonate. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux et l'ammoniaque. On peut aussi utiliser les aminés secondaires, tertiaires ou quaternaires. On peut aussi mentionner l'urée. Le composé basique est généralement utilisé sous forme d'une solution.
Selon une variante du procédé, il est possible de mettre en œuvre une dispersion du support et une solution ou dispersion du composé d'or qui ont été toutes les deux préalablement amenées à un pH d'au moins 8 de sorte qu'il n'est pas nécessaire, lors de leur mise en contact, de rajouter un composé basique.
La mise en contact du composé à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi et du composé à base d'halogénure d'or se fait généralement à température ambiante mais il est possible de la faire à chaud par exemple à une température d'au moins 600C. La suspension formée lors de la première étape du procédé est généralement maintenue sous agitation pendant une durée de quelques minutes.
Dans une deuxième étape, on sépare le solide du milieu réactionnel, par tout moyen connu.
Le solide ainsi obtenu est ensuite lavé avec une solution basique. De préférence, cette solution basique présente un pH d'au moins 8, plus particulièrement d'au moins 9. La solution basique peut être à base des mêmes composés basiques que ceux qui ont été mentionnés plus haut. Ce lavage peut être réalisé selon toute méthode convenable, par exemple en utilisant la technique du lavage piston ou par redispersion. Dans ce dernier cas, on redisperse le solide dans la solution basique puis, généralement après un maintien sous agitation, on sépare le solide du milieu liquide. Le lavage avec la solution basique peut être répété plusieurs fois si nécessaire. Il peut être suivi, éventuellement par un lavage à l'eau.
A l'issue du lavage, le solide obtenu est généralement séché. Le séchage peut être fait par toute méthode convenable, par exemple à l'air ou encore par lyophilisation. II n'est généralement pas nécessaire de procéder à une calcination.
Cependant, une telle calcination n'est pas exclue, de préférence à faible température, c'est-à-dire à au plus 2500C pour une durée d'au plus 4 heures par exemple et sous air.
Selon une variante de l'invention, on peut faire subir au produit, notamment après le séchage, un traitement de réduction. Ce traitement est conduit de manière telle que la totalité de l'élément or présente un degré d'oxydation inférieure à son degré d'oxydation avant le traitement, ce degré d'oxydation avant traitement étant généralement de 3. Le degré d'oxydation de l'or peut être déterminé par des techniques connues de l'homme du métier par exemple par la méthode de réduction en température programmée (RTP) ou par spectroscopie de photoélectron X (XPS).
Différents types de traitement de réduction peuvent être envisagés.
On peut tout d'abord effectuer une réduction chimique en mettant en contact le produit avec un réducteur tel que des ions ferreux, citrates ou stanneux, l'acide oxalique, l'acide citrique, l'eau oxygénée, les hydrures comme NaBH4, l'hydrazine (NH2-NH2), le formaldéhyde en solution aqueuse (H2CO), les réducteurs phosphores dont le chlorure de tétrakis(hydroxyméthyl)phosphonium ou le NaH2PO2. Ce traitement peut se faire en mettant en suspension le produit dans un milieu aqueux contenant le réducteur ou aussi sur le produit dans le milieu réactionnel après le dépôt de l'or. Dans le cas de la mise en œuvre de ce type de réduction, il peut être avantageux de faire ensuite une calcination dans les conditions décrites ci- dessus.
On peut aussi faire une réduction sous rayons ultra-violets; le traitement pouvant se faire, dans ce cas, sur une solution ou suspension du produit ou encore sur une poudre.
Dans le cas de ces deux types de traitement de réduction, ces traitements peuvent se faire avant ou après l'étape de lavage décrite plus haut.
Enfin, le traitement de réduction peut se faire par voie gaz en utilisant un gaz réducteur qui peut être choisi parmi l'hydrogène, le monoxyde de carbone ou les hydrocarbures, ce gaz pouvant être utilisé dans une concentration volumique quelconque. On peut utiliser tout particulièrement de l'hydrogène dilué dans de l'argon. Dans le cas d'un traitement de réduction selon ce dernier type, celui-ci se fait après l'étape de lavage précitée.
Dans ce cas, le traitement se fait à une température qui est d'au plus
2000C, de préférence d'au plus 1800C. La durée de ce traitement peut être comprise entre 0,5 et 6 heures notamment. A l'issue du traitement de réduction on peut éventuellement effectuer une calcination telle que décrite plus haut.
Le procédé de l'invention peut aussi être mis en œuvre selon un second mode de réalisation qui comporte les étapes suivantes : - on dépose de l'or et, le cas échéant de l'argent, du platine, du palladium ou du cuivre sur un composé à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi par imprégnation ou par échange ionique; - on lave le solide issu de l'étape précédente avec une solution basique présentant un pH d'au moins 10. La première étape consiste à déposer l'or et, le cas échéant de l'argent, du platine, du palladium ou du cuivre, sur le composé à base d'oxyde de cérium et de l'élément Mi par imprégnation ou par échange ionique.
La méthode par imprégnation a déjà été mentionnée plus haut et on utilise de préférence l'imprégnation à sec. Le composé d'or est ici du même type que celui qui a été décrit plus haut pour le premier mode de réalisation.
Le dépôt par échange ionique est aussi une méthode connue. On peut utiliser là aussi le même type de composé d'or que précédemment. Dans la seconde étape du procédé, le produit issu de l'étape précédente est ensuite lavé avec une solution basique dont le pH est d'au moins 10, de préférence d'au moins 11. Ce lavage peut se faire de la même manière et avec les mêmes composés basiques que ce qui a été décrit pour le procédé selon le premier mode.
Par ailleurs, on peut mettre en œuvre aussi dans ce second mode de réalisation un traitement de réduction et de séchage de la même manière que ce qui a été décrit plus haut.
Enfin, il faut noter qu'il est aussi possible, dans le cas de la préparation d'une composition à base, outre l'or, d'un autre élément métallique M2, de déposer dans un premier temps cet élément métallique sur le support, par exemple par imprégnation, puis, dans un deuxième temps, de procéder au dépôt de l'or en suivant les procédés qui viennent d'être décrits.
Les compositions de l'invention telles qu'obtenues par le procédé décrit ci-dessus se présentent sous forme de poudres mais elles peuvent éventuellement être mises en forme pour se présenter sous forme de granulés, billes, cylindres, extrudés ou nids d'abeille de dimensions variables.
Ces compositions peuvent être appliquées sur tout matériau porteur utilisé habituellement dans le domaine de la catalyse, c'est à dire notamment des matériaux inertes thermiquement comme l'alumine, l'oxyde de titane, l'oxyde de zirconium, la silice, les spinelles, les zéolites, les silicates, les phosphates de silicoaluminium cristallins, les phosphates d'aluminium cristallins.
Ces compositions peuvent être utilisées dans des systèmes catalytiques comprenant un revêtement (wash coat) à base de ces compositions, sur un substrat du type par exemple monolithe métallique ou en céramique. Le revêtement peut par exemple comporter un matériau porteur du type décrit ci- dessus. On peut noter que le dépôt de l'or peut aussi se faire sur un support préalablement mis sous une forme du type donné ci-dessus. Les compositions de l'invention, telles que décrites ci-dessus ou obtenues par le procédé détaillé plus haut, peuvent être utilisées plus particulièrement, à titre de catalyseurs, dans les procédés mettant en œuvre une oxydation du monoxyde de carbone.
Elles sont tout particulièrement efficaces pour des procédés de ce type qui sont mis en œuvre à des températures basses, on entend par là des températures d'au plus 2500C. Elles sont même efficaces à température ambiante. Par température ambiante, on entend ici et pour l'ensemble de la description sauf indication contraire, une température d'au plus 500C, plus particulièrement dans une gamme de 100C à 400C. Enfin, elles peuvent aussi être efficaces dans des conditions de vvh élevées qui, par exemple, peuvent aller au moins jusqu'à 600.000 cm3/gcata/h.
Ainsi à titre d'exemple d'utilisation dans des procédés mettant en œuvre une oxydation du monoxyde de carbone, elles peuvent être employées dans le traitement d'une fumée de cigarette, dans la réaction de conversion du gaz à l'eau (water gas shift) (CO +H2O → CO2 + H2) à température inférieure à 100°C notamment, ou encore dans le traitement des gaz de réformage à température inférieure à 1500C, traitement du type PROX (oxydation préférentielle du CO en présence d'hydrogène).
Dans le cas particulier du traitement des fumées de cigarette, la composition catalytique peut se présenter sous forme d'une poudre. Elle peut aussi subir une mise en forme adéquate, par exemple, elle peut être mise sous forme de granulés ou de paillettes. Dans le cas d'une poudre, la granulométrie de la composition peut être comprise entre 1 μm et 200 μm. Dans le cas de granulés, cette taille peut se situer entre 700 μm et 1500 μm, pour les perles, la taille peut être comprise entre 200 μm et 700 μm et entre 100 μm et 1500 μm pour les paillettes.
La composition catalytique peut être incorporée par mélange ou collage avec la fibre qui constitue le filtre de la cigarette (par exemple l'acétate de cellulose) lors de la fabrication du filtre notamment dans le cas de filtres dits « Dual filter » ou « Triple filter ». La composition catalytique peut également être déposée sur la partie interne du papier enveloppant le câble constituant le filtre ("tipping paper") dans le cas d'un filtre de type "Patch filter". La composition catalytique pourra aussi être introduite dans la cavité d'un filtre de type "Cavity filter".
Dans le cas de l'utilisation de la composition catalytique de l'invention dans un filtre pour cigarette, on peut effectuer le traitement de réduction de la composition une fois celle-ci incorporée dans le filtre. Le traitement de réduction se fait alors selon les méthodes qui ont été décrites plus haut.
La quantité de composition catalytique utilisée n'est pas critique. Elle est limitée notamment par les dimensions du filtre et la perte de charge due à la présence de la composition dans le filtre. Elle est généralement d'au plus 350 mg par cigarette, de préférence elle est comprise entre 20 mg et 100 mg par cigarette.
L'invention concerne donc un filtre pour cigarette, qui contient une composition telle que décrite précédemment ou obtenue par les procédés détaillés plus haut. On notera ici que le terme « cigarette » doit être pris au sens large pour couvrir tout article destiné à être fumé et à base de tabac enveloppé dans un tube par exemple à base de papier ou de tabac. Ce terme s'applique donc ici aussi aux cigares et cigarillos. Enfin, les compositions de l'invention peuvent aussi être utilisées dans des traitements de purification de l'air dans le cas d'un air contenant au moins un composé du type monoxyde de carbone ou du type des composés organiques volatils ou malodorants dans la famille des composés oxygénés, soufrés, azotés ou des hydrocarbures. Ce traitement doit s'entendre comme étant destiné à réaliser une oxydation partielle ou de préférence totale des composés précités.
Il faut noter ici qu'une des limitations de l'utilisation de catalyseurs pour la purification de l'air réside dans leur hydratation lors de leur stockage entre leur préparation et leur utilisation. Il y a donc intérêt à limiter la reprise en eau des catalyseurs pour en obtenir le maximum de performance et améliorer leur durabilité. Or, les compositions de l'invention ont l'avantage de présenter une faible reprise en eau.
En ce qui concerne les composés oxygénés précités, on peut mentionner les alcools primaires, secondaires ou tertiaires, les aldéhydes, les cétones, les acides carboxyliques, les esters ou les lactones. Parmi les composés soufrés, on peut citer les mercaptans, les sulfures, les disulfures ou l'hydrogène sulfuré. Parmi les composés azotés, on peut citer les aminés primaires, secondaires ou tertiaires ou encore l'ammoniac, le monoxyde d'azote ou l'oxyde nitreux. La famille des hydrocarbures désigne aussi bien les hydrocarbures saturés ou insaturés tels que les alcènes, notamment l'éthylène, les alcynes ou les hydrocarbures aromatiques.
Ce traitement se fait par mise en contact de l'air à traiter avec une composition telle que décrite précédemment ou obtenue par le procédé détaillé plus haut. Les compositions de l'invention permettent de réaliser ce traitement à des températures inférieures à 1200C et proches de l'ambiante plus préférentiellement.
Des exemples vont maintenant être donnés.
EXEMPLE 1 COMPARATIF Cet exemple concerne une composition à base d'or sur un support en oxyde de cérium uniquement. 40g d'une poudre d'oxyde de cérium Rhodia de surface de170 m2/g sont dispersés sous agitation dans 250 ml d'eau. Le pH de la suspension est ensuite ajusté à 9 par ajout d'une solution de Na2Cθ3 1 M.
Parallèlement 0,8g de HAuCI4.3H2O (Sigma-AIdrich) sont dissous dans 250 ml d'eau.
La solution d'or est alors ajoutée en une heure à la suspension d'oxyde de cérium. Le pH de la suspension est maintenu entre pH 8,7 et 9,3 pendant l'ajout de la solution d'or par ajout d'une solution de Na2CO3 1 M. La suspension résultante est maintenue sous agitation 20 minutes avant d'être filtrée sous vide.
Le gâteau obtenu est redispersé dans une solution de Na2CO3 à pH 11 dont le volume est équivalent à celui des eaux mères éliminées lors de la première étape de filtration. La suspension est maintenue sous agitation pendant 20 minutes. Cette procédure de lavage basique est reproduite 2 fois de plus. Le gâteau obtenu est finalement redispersé dans un volume d'eau équivalent au volume d'eaux mères éliminées lors de la première filtration puis filtré sous vide.
Le gâteau lavé est séché par lyophilisation puis traité 2h à 1700C par un mélange gazeux composé de 10vol% de dihydrogène dilué dans de l'argon.
EXEMPLE 2
Cet exemple est un exemple selon l'invention qui concerne une composition à base d'or sur un support à base d'oxydes de cérium et de silicium. 100g d'une poudre d'oxyde de cérium Rhodia de surface de 170 m2/g sont imprégnés à sec avec une solution de silicate de sodium Rhodia de manière à obtenir un rapport molaire Si/Ce de 0,1. Le solide imprégné est ensuite séché à l'étuve à 1200C pendant une nuit puis calciné sous air à 500°C pendant 4h. On dépose ensuite l'or comme dans l'exemple 1 en utilisant au départ
40g de cet oxyde de cérium dopé silicium de surface de 140 m2/g.
EXEMPLE 3
Cet exemple est un exemple selon l'invention qui concerne une composition à base d'or, de platine et de palladium sur un support à base d'oxydes de cérium et de silicium.
100g d'une poudre d'oxyde de cérium Rhodia de surface de 60 m2/g sont imprégnés à sec avec une solution de silicate de sodium Rhodia de manière à obtenir un rapport molaire Si/Ce de 0,04. Le solide imprégné est ensuite séché à l'étuve à 1200C pendant une nuit puis calciné sous air à 5000C pendant 4h.
On dépose ensuite sur ce support du platine et du palladium par co- imprégnation à sec des solutions de nitrate de platine et de nitrate de palladium de manière à obtenir une teneur massique par rapport au support de
0,5% en platine et 0,5% en palladium. Le solide imprégné est séché à l'étuve à
120°C pendant une nuit et calciné sous air à 5000C pendant 4h.
On dépose ensuite l'or comme dans l'exemple 1 en utilisant au départ 40g de cet oxyde de cérium dopé silicium, platine et palladium de surface de 50 m2/g.
EXEMPLE 4
Cet exemple est un exemple selon l'invention qui concerne une composition à base d'or sur un support à base d'oxydes de cérium et de tungstène.
100g d'une poudre d'oxyde de cérium Rhodia de surface de 170 m2/g sont imprégnés à sec avec une solution de métatungstate d'ammonium de manière à obtenir un rapport molaire W/Ce de 0,1. Le solide imprégné est ensuite séché à l'étuve à 120°C pendant une nuit puis calciné sous air à 500°C pendant 4h.
On dépose ensuite l'or comme dans l'exemple 1 en utilisant au départ 40g de cet oxyde de cérium dopé silicium de surface de 70 nrvVg.
EXEMPLE 5 COMPARATIF Le produit est préparé selon le même protocole que celui décrit dans l'exemple 1 excepté que le produit n'est pas lavé (ni lavage avec la solution de Na2Cθ3, ni lavage à l'eau) avant d'être séché sous air et ultérieurement traité sous hydrogène.
Les analyses réalisées sur les compositions préparées selon les exemples 1 à 5 donnent les résultats qui figurent au tableau 1 ci-dessous. Tableau 1
Figure imgf000015_0001
EXEMPLE 6 Cet exemple concerne l'utilisation des compositions décrites dans les exemples précédents comme catalyseurs dans un procédé d'oxydation du CO.
Les résultats ont été obtenus en mettant en œuvre le test catalytique d'oxydation du CO qui est décrit ci-dessous.
Le composé catalytique est testé sous forme de paillettes de 125 à 250 μm qui sont obtenues par pastillage, broyage et tamisage de la poudre de composition ou composé catalytique. Le composé catalytique est placé dans le réacteur sur un fritte qui joue le rôle de support physique de la poudre.
Dans ce test, on fait passer sur le composé catalytique un mélange synthétique contenant 1 à 10%vol de CO, 10%vol de CO2, 10%vol d'O2, 1 ,8%vol de H2O dans N2. Le mélange gazeux circule en continu dans un réacteur en quartz contenant entre 25 et 200 mg de composé catalytique avec un débit de 30 L/h.
Lorsque la masse de composé catalytique est inférieure à 200 mg, du carbure de silicium SiC est ajouté de telle sorte que la somme des masses du composé catalytique et du SiC soit égale à 200 mg. SiC est inerte vis-à-vis de la réaction d'oxydation du CO et joue ici le rôle de diluant permettant d'assurer l'homogénéité du lit catalytique.
La conversion du CO est tout d'abord mesurée à température ambiante (T= 18-23°C pour les exemples qui suivent) et ce n'est que lorsque cette conversion n'est pas totale à cette température que celle-ci est augmentée à l'aide d'un four de la température ambiante à 3000C avec une rampe de 10°C/min. Les gaz en sortie du réacteur sont analysés par spectroscopie infrarouge par intervalle d'environ 10 s. afin de mesurer la conversion du CO en CO2. Lorsque la conversion du CO n'est pas totale à température ambiante, les résultats sont exprimés en température de demi-conversion (T50%), température à laquelle 50% du CO présent dans le flux gazeux est converti en CO2.
Dans les exemples qui suivent, les composés catalytiques ont été évalués pour la réaction d'oxydation du CO en CO2 dans les conditions suivantes :
Conditions A : 3%vol CO - WH=300 000 Cm3ZqnWh Mélange gazeux: 3%VOICO, 10%voiCO2, 10%voiO2, 1 ,8%voiH2O dans
N2
Débit total: 30 L/h
Masse de catalyseur: 100 mg
WH: 300 000 cc/gcata/h
Conditions B : 10%vol CO - WH=600 000 Cm3ZqnWh
Mélange gazeux: 10%volCO, 10%volCO2, 10%volO2, 1 ,8%volH2O dans N2
Débit total: 30 L/h
Masse de catalyseur: 50 mg
WH: 600 000 cc/gcata/h
On donne dans le tableau 2 ci-dessous, les résultats obtenus avec les catalyseurs des différents exemples pour la conversion du CO.
Tableau 2
Figure imgf000016_0001
Ta = Température ambiante = 18-23°C
Les compositions selon l'invention sont capables d'oxyder le CO à température ambiante et à WH élevées. EXEMPLE 7
Cet exemple concerne l'utilisation des compositions décrites dans les exemples précédents dans un procédé de traitement de composés organiques volatils. Les résultats pour la purification d'un certain nombre de composés organiques volatils ont été obtenus en mettant en œuvre le test catalytique d'oxydation qui est décrit ci-dessous.
Le composé catalytique est testé sous forme de granulés de 250 à 500μm qui sont obtenues par pastillage, broyage et tamisage de la poudre de composition ou composé catalytique. Le composé catalytique est placé dans le réacteur sur un fritte qui joue le rôle de support physique de la poudre.
Dans ce test, on fait passer sur le catalyseur un mélange synthétique contenant de 100 à 1000 vpm de composé organique volatil dans de l'air ambiant qui peut contenir jusqu'à environ 500 vpm de CO2 et environ 10000 vpm de H2O. Le mélange gazeux circule en continu dans un réacteur en quartz contenant jusqu'à 200 mg de composé catalytique avec un débit pouvant s'élever jusqu'à 20 L/h.
Lorsque la masse de composé catalytique est inférieure à 200 mg, du carbure de silicium SiC est ajouté de telle sorte que la somme des masses du composé catalytique et du SiC soit égale à 200 mg. SiC est inerte vis-à-vis de la réaction d'oxydation et joue ici le rôle de diluant permettant d'assurer l'homogénéité du lit catalytique.
La conversion du composé organique volatil est mesurée en isotherme à une température comprise entre 20 et 1000C. Les gaz en sortie du réacteur sont analysés par chromatographie en phase gazeuse à l'aide de chromatographe μGC Agilent 3000 équipé de 4 modules avec détecteurs de conductivité thermique (TCD) par intervalle d'environ 3 min. afin d'identifier les produits de la réaction et d'en déduire la conversion du composé organique volatil.
On donne dans les tableaux qui suivent les résultats obtenus pour différents alcools et pour l'acétone. Tableau 3
Figure imgf000018_0001
Conv. = conversion Sel. = sélectivité
On constate que le dopage du support oxyde de cérium par un dopant tel que le silicium ou tungstène permet d'augmenter le niveau de conversion du méthanol à 35°C. Pour l'exemple 3, l'oxydation totale du méthanol peut même être obtenue à cette température. Dans chacun des essais, la sélectivité en CO2 de 100% mesurée traduit le fait que l'oxydation du méthanol est totale selon l'équation :
CH3OH + 3/2O2 → CO2 + 2H2O
Tableau 4
Figure imgf000018_0002
Conv. = conversion Sel. = sélectivité
A 1000C, on constate que le dopage du support oxyde de céhum par un dopant tel que silicium permet d'augmenter la conversion du propan-1-ol et la sélectivité en CO2. A cette température pour l'exemple 2, l'oxydation du propan-1 -ol est quasi totale et peut s'écrire selon l'équation : CH3CH2CH2OH + 9/2O2 → 3CO2 + 4H2O
A 25°C, l'introduction du dopant acide au support oxyde de cérium support de l'or améliore surtout la sélectivité en CO2 et permet d'orienter la conversion du polluant vers l'oxydation totale en CO2 et H2O. L'autre produit de réaction observé est le propanai .
Tableau 5
Figure imgf000019_0001
Conv. = conversion Sel. = sélectivité
A 1000C, on constate que le dopage du support oxyde de cérium par le dopant silicium permet d'augmenter la sélectivité en CO2 de 20%. Une proportion plus importante du propan-2-ol converti est donc transformée en
CO2 et H2O selon l'équation (a) sachant le propan-2-ol est majoritairement partiellement oxydé en acétone selon l'équation (b):
CH3CHOHCH3 + 9/2O2 → 3CO2 + 4H2O (a) CH3CHOHCH3 + 1/2O2 → CH3COCH3 + H2O (b) Tableau 6
Figure imgf000020_0001
Conv. = conversion Sel. = sélectivité
A 1000C, on constate que le dopage du support oxyde de cérium par un dopant tel que silicium permet d'augmenter de manière importante la conversion de l'acétone et la sélectivité en CO2. A cette température pour l'exemple 2, l'oxydation de l'acétone est quasi totale et peut s'écrire selon l'équation :
CH3COCH3 + 4O2 → 3CO2 + 3H2O
EXEMPLE 8 Cet exemple concerne la capacité des compositions des exemples précédents à se réhydrater.
Pour évaluer cette capacité, on met en œuvre le test de réhydration qui est décrit ci-dessous.
Dans une enceinte, on introduit un mélange eau+chlorure de sodium. On dispose ensuite un support céramique poreux au-dessous du mélange liquide et sur lequel on introduit une masse pesée précisément de composition à tester. Une fois fermée et thermostatée à 20°C, le mélange eau+chlorure de sodium générera une atmosphère chargée à 1 ,8% H2O qui conditionnera le catalyseur dans une atmosphère équivalente à 60% d'humidité relative à 22°C.
On mesure ensuite la masse de composition en fonction du temps écoulé après la fermeture de l'enceinte et on en déduit par différence avec la masse initiale de composition introduite dans l'enceinte la masse d'eau reprise par le la composition.
On donne dans le tableau 7 ci-dessous, le pourcentage de reprise en eau des compositions dans le test décrit ci-dessus.
Tableau 7
Figure imgf000021_0001
On constate que le support de la composition selon l'exemple 2 a la plus faible reprise en eau ce qui permet d'augmenter sa durabilité.

Claims

REVENDICATIONS
1 - Composition à base d'or sur un support, caractérisée en ce qu'elle présente une teneur en halogène exprimée par le rapport molaire halogène/or est d'au plus 0,04, en ce que l'or se présente sous forme de particules de taille d'au plus 10 nm et en ce que le support est à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi choisi parmi le silicium, le tungstène, le vanadium, le molybdène et le niobium.
2- Composition selon la revendication 1 , caractérisée en ce que sa teneur en halogène est d'au plus 0,025, plus particulièrement d'au plus 0,01.
3- Composition selon l'une des revendications précédentes, caractérisée en ce que l'or se présente sous forme de particules de taille d'au plus 3 nm.
4- Composition selon l'une des revendications précédentes, caractérisée en ce que l'halogène est le chlore.
5- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend en outre au moins un autre élément métallique M2 choisi parmi l'argent, le platine, le palladium et le cuivre.
6- Composition selon l'une des revendications précédentes, caractérisée en ce que la teneur en or ou en or et élément M2 est d'au plus 5%, plus particulièrement d'au plus 1 %.
7- Composition selon la revendication 5, caractérisée en ce que l'autre élément métallique M2 précité est présent dans une quantité d'au plus 400%, plus particulièrement comprise entre 5% et 50%, par rapport à l'or.
8- Composition selon l'une des revendications précédentes, caractérisée en ce que la quantité en élément Mi dans le support est d'au plus 50% en masse, plus particulièrement d'au plus 20%.
9- Procédé de préparation d'une composition selon l'une des revendications précédentes, caractérisé en ce qu'il comporte les étapes suivantes : - on met en contact un composé à base d'oxyde de céhum et d'au moins un oxyde d'un autre élément Mi et un composé à base d'un halogénure d'or et, le cas échéant un composé à base de l'élément M2, en formant une suspension de ces composés, le pH du milieu ainsi formé étant fixé à une valeur d'au moins 8;
- on sépare le solide du milieu réactionnel;
- on lave le solide avec une solution basique.
10- Procédé selon la revendication 9, caractérisé en ce que le pH du milieu formé est maintenu à la valeur d'au moins 8 lors de la formation de la suspension du composé à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi, et du composé à base de l'halogénure d'or et, éventuellement à base de l'élément M2, par addition d'un composé basique.
11 - Procédé selon la revendication 9 ou 10, caractérisé en ce que le solide obtenu est lavé avec une solution basique présentant un pH d'au moins 8, de préférence d'au moins 9.
12- Procédé de préparation d'une composition selon l'une des revendications 1 à 8, caractérisé en ce qu'il comporte les étapes suivantes :
- on dépose de l'or et, le cas échéant de l'argent, du platine, du palladium ou du cuivre sur un composé à base d'oxyde de cérium et d'au moins un oxyde d'un autre élément Mi par imprégnation ou par échange ionique;
- on lave le solide issu de l'étape précédente avec un solution basique présentant un pH d'au moins 10.
13- Procédé selon l'une des revendications 9 à 12, caractérisé en ce que le solide obtenu, avant ou après lavage, subit un traitement de réduction.
14- Procédé selon la revendication 13, caractérisé en ce que le traitement de réduction se fait avec un gaz réducteur à une température d'au plus 2000C, de préférence d'au plus 1800C.
15- Procédé selon l'une des revendications 9 à 14, caractérisé en ce qu'on soumet le solide obtenu après lavage et, éventuellement, après le traitement de réduction, à une calcination à une température d'au plus 250°C. 16- Procédé d'oxydation du monoxyde de carbone, caractérisé en ce qu'on utilise, à titre de catalyseur, une composition selon l'une des revendications 1 à 8 ou une composition obtenue par le procédé selon l'une des revendications 9 à 15.
17- Procédé selon la revendication 16, caractérisé en ce qu'il est mis en œuvre pour le traitement d'une fumée de cigarette, dans la réaction de conversion du gaz à l'eau (water gas shift), dans le traitement des gaz de réformage (PROX).
18- Procédé de purification de l'air, cet air contenant au moins un composé du type monoxyde de carbone ou du type des composés organiques volatils ou malodorants, caractérisé en ce qu'on met en contact l'air avec une composition selon l'une des revendications 1 à 8 ou une composition obtenue par le procédé selon l'une des revendications 9 à 15.
19- Filtre pour cigarette, caractérisé en ce qu'il contient une composition selon l'une des revendications 1 à 8 ou une composition obtenue par le procédé selon l'une des revendications 9 à 15.
PCT/EP2008/054152 2007-04-13 2008-04-07 Composition a base d'or, d'oxyde de cerium et d'oxyde de silicium, de tungstene, de vanadium, de molybdene ou de niobium, procede de preparation et utilisation comme catalyseur WO2008125533A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0702692A FR2914866B1 (fr) 2007-04-13 2007-04-13 Composition a base d'or, d'oxyde de cerium et d'oxyde d'aluminium, de silicium, de tungstene, de vanadium, de molybdene ou de niobium, procede de preparation et utilisation comme catalyseur.
FR0702692 2007-04-13

Publications (2)

Publication Number Publication Date
WO2008125533A2 true WO2008125533A2 (fr) 2008-10-23
WO2008125533A3 WO2008125533A3 (fr) 2008-12-24

Family

ID=38689072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/054152 WO2008125533A2 (fr) 2007-04-13 2008-04-07 Composition a base d'or, d'oxyde de cerium et d'oxyde de silicium, de tungstene, de vanadium, de molybdene ou de niobium, procede de preparation et utilisation comme catalyseur

Country Status (2)

Country Link
FR (1) FR2914866B1 (fr)
WO (1) WO2008125533A2 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1040870A2 (fr) * 1999-03-29 2000-10-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyseur à base de métal précieux fonctionnant à température ambiante et procédé de destruction de substances gazeuses nocives
US20030060655A1 (en) * 2001-06-04 2003-03-27 Toshio Hayashi Catalyst for the preparation of carboxylic esters and method for producing carboxylic esters
FR2848784A1 (fr) * 2002-12-20 2004-06-25 Rhodia Elect & Catalysis Cigarette comprenant dans son filtre un catalyseur a base d'oxyde de cerium pour le traitement des fumees
WO2005089936A1 (fr) * 2004-02-18 2005-09-29 Rhodia Acetow Gmbh Composition a base d'or et d'un oxyde reductible, procede de preparation et utilisation comme catalyseur, notamment pour l'oxydation du monoxyde de carbone
WO2005089937A1 (fr) * 2004-02-18 2005-09-29 Rhodia Acetow Gmbh Composition a base d'or et d'oxyde de cerium, procede de preparation et utilisation comme catalyseur, notamment pour l'oxydation du monoxyde de carbone
WO2006046145A2 (fr) * 2004-10-25 2006-05-04 Philip Morris Products S.A. Catalyseur or-cerium permettant l'oxydation de monoxyde de carbone
EP1724012A1 (fr) * 2005-05-21 2006-11-22 Degussa AG Catalyseur contenant de l'or sur un support d'oxyde de cérium et d'oxyde de manganèse

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1040870A2 (fr) * 1999-03-29 2000-10-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyseur à base de métal précieux fonctionnant à température ambiante et procédé de destruction de substances gazeuses nocives
US20030060655A1 (en) * 2001-06-04 2003-03-27 Toshio Hayashi Catalyst for the preparation of carboxylic esters and method for producing carboxylic esters
FR2848784A1 (fr) * 2002-12-20 2004-06-25 Rhodia Elect & Catalysis Cigarette comprenant dans son filtre un catalyseur a base d'oxyde de cerium pour le traitement des fumees
WO2005089936A1 (fr) * 2004-02-18 2005-09-29 Rhodia Acetow Gmbh Composition a base d'or et d'un oxyde reductible, procede de preparation et utilisation comme catalyseur, notamment pour l'oxydation du monoxyde de carbone
WO2005089937A1 (fr) * 2004-02-18 2005-09-29 Rhodia Acetow Gmbh Composition a base d'or et d'oxyde de cerium, procede de preparation et utilisation comme catalyseur, notamment pour l'oxydation du monoxyde de carbone
WO2006046145A2 (fr) * 2004-10-25 2006-05-04 Philip Morris Products S.A. Catalyseur or-cerium permettant l'oxydation de monoxyde de carbone
EP1724012A1 (fr) * 2005-05-21 2006-11-22 Degussa AG Catalyseur contenant de l'or sur un support d'oxyde de cérium et d'oxyde de manganèse

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CENTENO M A ET AL: "Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts" APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 234, no. 1-2, 8 août 2002 (2002-08-08), pages 65-78, XP004370576 ISSN: 0926-860X *
OH H-S ET AL: "Selective Catalytic Oxidation of CO: Effect of Chloride on Supported Au Catalysts" JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 210, no. 2, 10 septembre 2002 (2002-09-10), pages 375-386, XP004468936 ISSN: 0021-9517 *

Also Published As

Publication number Publication date
FR2914866B1 (fr) 2012-07-20
WO2008125533A3 (fr) 2008-12-24
FR2914866A1 (fr) 2008-10-17

Similar Documents

Publication Publication Date Title
EP1715949A1 (fr) Composition a base d'or et d'un oxyde reductible, procede de preparation et utilisation comme catalyseur, notamment pour l'oxydation du monoxyde de carbone
EP0461949B1 (fr) Composition à base d'alumine dopée par des terres rares et/ou alcalino-terreux et procédé de fabrication
EP2059339B1 (fr) Composition a réductibilité élevée à base d'un oxyde de cérium nanométrique sur un support, procédé de préparation et utilisation comme catalyseur
CA2800653C (fr) Composition a base d'oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catalyse
CA2752005C (fr) Composition comprenant une perovskite a base de lanthane sur un support en alumine ou en oxyhydroxyde d'aluminium, procede de preparation et utilisation en catalyse
EP0802824B1 (fr) Composition catalytique a base d'oxyde de cerium et d'oxyde de manganese, de fer ou de praseodyme, son procede de preparation et son utilisation en catalyse postcombustion automobile
EP2083936B1 (fr) Composition a acidite elevee a base d'oxydes de zirconium, de silicium et d'au moins un autre element choisi parmi le titane, l'aluminium, le tungstene, le molybdene, le cerium, le fer, l'etain, le zinc et le manganese
CA2106117C (fr) Composition a base d'oxyde cerique, preparation et utilisation
EP2454196B1 (fr) Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
EP2288426B1 (fr) Compositions catalytiques à base d'oxydes de zirconium, de cerium et d'yttrium et leurs utilisations pour les traitement des gaz d'échappement.
CA2651938C (fr) Compositions a base d'alumine, cerium et baryum ou/et strontium utilisees notamment pour le piegeage d'oxydes d'azote (nox)
EP0547934A1 (fr) Catalyseur de réduction sélective des oxydes d'azote contenus dans un flux gazeux et application desdits catalyseurs
WO2005089937A1 (fr) Composition a base d'or et d'oxyde de cerium, procede de preparation et utilisation comme catalyseur, notamment pour l'oxydation du monoxyde de carbone
EP2669006A1 (fr) Procédé de préparation d'un catalyseur mettant en oeuvre une étape de séchage rapide et utilisation dudit catalyseur pour la synthèse Fischer-Tropsch
EP2669007A1 (fr) Procédé de préparation d'un catalyseur mettant en oeuvre au moins une étape de séchage rapide et au moins une étape de séchage en lit fluidisé et son utilisation pour la synthèse Fischer-Tropsch
FR2980722A1 (fr) Masse de captation a performances ameliorees et son utilisation dans la captation de metaux lourds
EP2470299B1 (fr) Catalyseur pour le traitement photocalytique de milieux gazeux comprenant du monoxyde de carbone
WO2008125533A2 (fr) Composition a base d'or, d'oxyde de cerium et d'oxyde de silicium, de tungstene, de vanadium, de molybdene ou de niobium, procede de preparation et utilisation comme catalyseur
EP1177032A1 (fr) Dispositif d'epuration des gaz d'echappement pour moteur a combustion interne
WO2004002247A2 (fr) Cigarette comprenant un catalyseur pour le traitement des fumees
FR2771310A1 (fr) Composition a base d'or et d'au moins un autre metal sur un support d'oxyde de cerium, d'oxyde de zirconium ou d'un melange de ces oxydes, procede de preparation et utilisation comme catalyseur
FR2994104A1 (fr) Procede de fabrication d'une poudre de particules d'alumine revetues.
WO2010034935A2 (fr) Composition catalytique pour le traitement des gaz de combustion du charbon, son procede de preparation, systeme catalytique la comprenant et utilisation
BE625662A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08735886

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08735886

Country of ref document: EP

Kind code of ref document: A2