WO2008125094A2 - Procédé de formation d'une nanostructure et/ou d'une microstructure sur une surface, et dispositif pour la mise en oeuvre de ce procédé - Google Patents

Procédé de formation d'une nanostructure et/ou d'une microstructure sur une surface, et dispositif pour la mise en oeuvre de ce procédé Download PDF

Info

Publication number
WO2008125094A2
WO2008125094A2 PCT/DE2008/000624 DE2008000624W WO2008125094A2 WO 2008125094 A2 WO2008125094 A2 WO 2008125094A2 DE 2008000624 W DE2008000624 W DE 2008000624W WO 2008125094 A2 WO2008125094 A2 WO 2008125094A2
Authority
WO
WIPO (PCT)
Prior art keywords
microparticles
nano
magnetic field
microorganisms
optical grating
Prior art date
Application number
PCT/DE2008/000624
Other languages
German (de)
English (en)
Other versions
WO2008125094A3 (fr
WO2008125094A4 (fr
Inventor
Georg Uphoff
Original Assignee
Georg Fritzmeier Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fritzmeier Gmbh & Co. Kg filed Critical Georg Fritzmeier Gmbh & Co. Kg
Priority to DE112008001630T priority Critical patent/DE112008001630A5/de
Publication of WO2008125094A2 publication Critical patent/WO2008125094A2/fr
Publication of WO2008125094A3 publication Critical patent/WO2008125094A3/fr
Publication of WO2008125094A4 publication Critical patent/WO2008125094A4/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/002Aligning microparts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • a method of forming a nano and / or microstructure on a surface and an apparatus for performing the method
  • the present invention relates to a method for forming a nano- and / or microstructure on a surface and to an apparatus for carrying out the method, which find application in particular in medical technology, environmental technology and / or process technology.
  • Nanostructured or microstructured surfaces are produced in the prior art by means of vapor deposition or sol-gel techniques.
  • a disadvantage of the nano- or microstructured surfaces produced in this way is that only a random arrangement of the nano- or microparticles and the surface takes place, so that no intentionally repeatable structures can be formed on the surface. This is the case in particular with nano- or microparticles, which have magnetic properties, since they can mutually attract and as a result clump together.
  • the object of the present invention is therefore to provide a method with which a repeatable structuring of nano- or microparticles can be formed on a surface.
  • such a nano or microstructure is formed on a surface by applying nano- or microparticles to the surface and by means of an applied magnetic field and / or a formed optical grating on or on the surface of the nano- or microparticles along the magnetic field lines of the applied magnetic field and / or at the intensity minima or maxima of the formed optical grating are aligned or captured. Due to adhesion forces between the nano- or microparticles and the surface, the aligned nanoparticles or microparticles are pulled to the fixed positions on the surface and fixed there, whereby a defined structure of the nano- or microparticles is formed on the surface.
  • clumping of the nanoparticles or microparticles can be prevented by surrounding the nanoparticles or microparticles with a surfactant whose molecules attach to the nanoparticles or microparticles and thereby prevent clumping.
  • the nano- or microparticles are contained in microorganisms, which are advantageously applied to the surface as a gel-like mass.
  • the application of the microorganisms as a gel-like mass has the advantage that the surface does not have to have limitations which, for example, keep microorganisms in liquid form on the surface, but at the same time provide mobility of the microorganisms in the gel.
  • magnetites can be used, which, as another advantageous embodiment shows, can be present in magnetosome chains of magnetotactic batteries. These magnetosome chains align themselves along the field lines of the applied magnetic field, wherein the magnetic field strength is advantageously greater than the magnetic field strength of naturally existing magnetic fields, such as the earth's magnetic field.
  • the magnetic field lines of the applied magnetic field correspond to the surface geometry, since this allows the structure of the nano- or microparticles to be defined exactly on the surface.
  • an optical grating can be formed on the surface, at the intensity minima or maxima of which the nano- or microparticles collect.
  • Such an optical grating can for example be formed by forming a standing wave pattern on the surface, wherein the standing wave pattern is achieved by a suitable adjustment of laser parameters of at least one laser.
  • the Gittenkoordinaten are freely selectable. If the nanoparticles or microparticles are taken up in microorganisms such as, for example, the magnetotactic bacteria, the nanoparticles or microparticles are released from the microorganisms after applying the magnetic field or forming the optical lattice, the microorganisms being lysed by means of a solvent, ultrasound or enzyme action can. The released nanoparticles or microparticles are then, as previously described, attached to the surface by means of adhesion forces.
  • the release of the nanoparticles or microparticles may also include the step of disrupting the magnetosome chain cell structure in order to release the magnetites.
  • the breaking up of the cell structure can be carried out, for example, by pulsed laser radiation and / or cleavage enzymes, it being possible to advantageously use green or red light lasers.
  • structures can be formed both on organic and on inorganic surfaces.
  • a surface to be provided with such nano- or microstructuring for example, bacteriocellulose in a woven or fibrous structure can be used.
  • magnetotactic microorganisms are used as nano- or microparticle dispensers.
  • Such magnetotactic microorganisms can be used both on organic surfaces, in particular cellulose or a bacterium cellulose produced by biotechnology, or on inorganic crystals which are used, for example, in the diamond and semiconductor industries.
  • the magnetotactic microorganisms, in particular magnetotactic Archea and bacteria are applied according to the embodiment described herein in a gel-like liquid on the surface.
  • chitosan or a carbosiloxane crosslinker may be advantageously used.
  • an external magnetic field is applied, along whose field lines the magnetosome chains of the magnetotactic microorganisms can align.
  • the strength of the applied magnetic field is controlled so that naturally occurring magnetic fields, such as the earth's magnetic field can have no influence on the orientation.
  • the shape of the magnetic field can be adapted to the geometry of the surface.
  • an optical grating can be formed on the surface by means of at least one laser, wherein the optical grating is formed by the interference of laser light. Due to the appropriate choice of laser parameters, a standing wave pattern is created, which provides a periodic potential due to the strong displacement for atoms or molecules. This means that the laser light in each of the atoms or molecules induces an electric dipole moment, the interaction of which with the light results in a force on the atom or molecule. Depending on the setting of the laser light with respect to the atomic frequency, the atoms or molecules are drawn into the nodes (intensity minima) and bellies (intensity maxima) of the standing wave pattern, whereby a structuring can be produced. The exact geometry of the generated potential depends on the arrangement of the laser beams and the resulting complexity of the interference pattern, but axes and intersections are freely selectable.
  • the gel-like liquid is removed and the microorganisms are lysed.
  • the lysing of the microorganisms can take place, for example, via the addition of deionized water, wherein the microorganisms burst due to the increased osmotic pressure and release the cell structure, in particular the magnetosome chains.
  • Other possibilities of lysis are, for example, by ultrasound or the addition of special cleavage proteins or given enzymes, wherein the type of lysis is tailored to the microorganisms used.
  • the magnetosome chains themselves have a cytoskeleton structure, which fixes the magnetites - ie the nano- or microparticles.
  • This cytoskeleton structure can be broken up, for example, by additional irradiation with a green-light laser, preferably with a wavelength of 532 nanometers, and / or a red-light laser, preferably with a wavelength of 630 to 660 nanometers, so that the magnetites are liberated.
  • a green-light laser preferably with a wavelength of 532 nanometers
  • a red-light laser preferably with a wavelength of 630 to 660 nanometers
  • the cytoskeletal structure of the magnetosome chains can also be performed by a cleavage enzyme or protein.
  • a surfactant can be applied to the surface, wherein the polar heads of the surfactant molecules attach to the magnetite, whereby the magnetite particles separated from each other and clumping of the magnetite particles is prevented.
  • This surfactant can also be removed again by means of laser light.
  • the free magnetites in the structure defined by the magnetic field lines or optical lattices are pulled to the surface and bound there on the basis of the adhesion forces between magnetite and surface.
  • the method described in the application can be advantageously used as a medical device, for example for wound healing, or find its use in water treatment.
  • crystals may serve as surfaces which are normally used in the diamond or semiconductor industry and are summarized by way of example in the table below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

L'invention concerne un procédé de formation d'une nanostructure et/ou d'une microstructure sur une surface, procédé caractérisé en ce qu'il comprend les étapes suivantes : des nanoparticules ou des microparticules sont appliquées sur la surface, un champ magnétique et/ou un réseau optique est, respectivement, appliqué et/ou formé sur la surface, et les nanoparticules ou microparticules appliquées sont alignées le long de lignes magnétiques du champ magnétique appliqué et/ou les nanoparticules ou les microparticules sont captées à des intensités minimales ou maximales du réseau optique formé.
PCT/DE2008/000624 2007-04-15 2008-04-15 Procédé de formation d'une nanostructure et/ou d'une microstructure sur une surface, et dispositif pour la mise en oeuvre de ce procédé WO2008125094A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112008001630T DE112008001630A5 (de) 2007-04-15 2008-04-15 Verfahren zum Ausbilden einer Nano- und/oder Mikrostruktur auf einer Oberfläche, sowie einer Vorrichtung zum Durchführen des Verfahrens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007017946.6 2007-04-15
DE102007017946 2007-04-15

Publications (3)

Publication Number Publication Date
WO2008125094A2 true WO2008125094A2 (fr) 2008-10-23
WO2008125094A3 WO2008125094A3 (fr) 2009-03-19
WO2008125094A4 WO2008125094A4 (fr) 2009-05-07

Family

ID=39713933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/000624 WO2008125094A2 (fr) 2007-04-15 2008-04-15 Procédé de formation d'une nanostructure et/ou d'une microstructure sur une surface, et dispositif pour la mise en oeuvre de ce procédé

Country Status (2)

Country Link
DE (1) DE112008001630A5 (fr)
WO (1) WO2008125094A2 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398296A2 (fr) * 2002-09-06 2004-03-17 C.R.F. Società Consortile per Azioni Procédé de production d'une microstructure ou nanostructure tridimensionnelle
WO2004024836A2 (fr) * 2002-09-13 2004-03-25 Jds Uniphase Corporation Paillettes pigmentaires de diffraction d'alignement
WO2005059506A2 (fr) * 2003-07-08 2005-06-30 Johns Hopkins University Procede et systeme de microreseau magnetique concus pour pieger et manipuler des cellules
US20060073540A1 (en) * 2004-06-04 2006-04-06 La Corporation De L'ecole Polytechnique De Montreal Method and system for controlling micro-objects or micro-particles
US20060263539A1 (en) * 2002-07-15 2006-11-23 Jds Uniphase Corporation Alignable Diffractive Pigment Flakes And Method And Apparatus For Alignment And Images Formed Therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060263539A1 (en) * 2002-07-15 2006-11-23 Jds Uniphase Corporation Alignable Diffractive Pigment Flakes And Method And Apparatus For Alignment And Images Formed Therefrom
EP1398296A2 (fr) * 2002-09-06 2004-03-17 C.R.F. Società Consortile per Azioni Procédé de production d'une microstructure ou nanostructure tridimensionnelle
WO2004024836A2 (fr) * 2002-09-13 2004-03-25 Jds Uniphase Corporation Paillettes pigmentaires de diffraction d'alignement
WO2005059506A2 (fr) * 2003-07-08 2005-06-30 Johns Hopkins University Procede et systeme de microreseau magnetique concus pour pieger et manipuler des cellules
US20060073540A1 (en) * 2004-06-04 2006-04-06 La Corporation De L'ecole Polytechnique De Montreal Method and system for controlling micro-objects or micro-particles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BLAKEMORE R: "Magnetotactic bacteria." SCIENCE (NEW YORK, N.Y.) 24 OCT 1975, Bd. 190, Nr. 4212, 24. Oktober 1975 (1975-10-24), Seiten 377-379, XP002494442 ISSN: 0036-8075 *
SMITH B W ET AL: "Structural anisotropy of magnetically aligned single wall carbon nanotube films" APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, Bd. 77, Nr. 5, 31. Juli 2000 (2000-07-31), Seiten 663-665, XP012027152 ISSN: 0003-6951 *

Also Published As

Publication number Publication date
WO2008125094A3 (fr) 2009-03-19
WO2008125094A4 (fr) 2009-05-07
DE112008001630A5 (de) 2010-04-01

Similar Documents

Publication Publication Date Title
DE60009093T2 (de) Kolloidale Photonenkristalle
DE19752585A1 (de) Vorrichtung und Verfahren zum Verkapseln von mikrobiellen, pflanzlichen und tierischen Zellen bzw. von biologischen und chemischen Substanzen
Stan Thermodynamik des Kraftfahrzeugs
EP1042944A1 (fr) Procede et dispositif pour mesurer, etalonner et utiliser des pincettes laser
DE102012208653A1 (de) Oberflächenbeschichtung mit eisabweisenden Eigenschaften
DE10254636A1 (de) Verfahren zum Modifizieren von Mikropartikeln sowie Vorrichtung zum Modifizieren von Mikropartikeln
WO2008125094A2 (fr) Procédé de formation d'une nanostructure et/ou d'une microstructure sur une surface, et dispositif pour la mise en oeuvre de ce procédé
DE102006023238A1 (de) Vorrichtung und Verfahren zur kontaktlosen Fixierung, Positionierung, Freigabe und Entnahme von Partikeln
WO2006119957A2 (fr) Procede d'ouverture de structures creuses de nanoparticules magnetiques
DE102006028182A1 (de) Verfahren zur Agglomeration und/oder Koagulation von Aerosolen
DE102008040042A1 (de) Mikropartikel enthaltend mindestens ein Aggregat aus superparamagnetischen Nanopartikeln
AT508394A1 (de) Gerät und verfahren zur anwendung der durch magnetische feldvariation modulierten ringstrominduktion in elektrisch leitfähigen nano-partikeln zur mechanischen einwirkung auf zelluläre membranen
EP1259590B1 (fr) Procede pour transferer de la matiere dans un systeme cellulaire
Dahmen Optical and structural properties of noble-metal nanoparticles; Optische und strukturelle Eigenschaften von Edelmetallnanopartikeln
Heisel et al. Bruchmodelle für die Modellierung von Zerspanprozessen
Pfalz Optical spin selection rules in semiconductor nanostructures; Optische Spinauswahlregeln in Halbleiternanostrukturen
Brinkmann Deformation-induced structural changes of amorphous Ni {sub 0.5} Zr {sub 0.5} in molecular-dynamic simulations; Verformungsinduzierte Strukturaenderungen bei amorphen Ni {sub 0.5} Zr {sub 0.5} in Molekulardynamik-Simulationen
DE202021000161U1 (de) Demonstrationsvorrichtung zum Nachweis der Existenz der selbsterregten Schwingungen bei Grenzflächen- und elektrokinetischen Vorgängen sowie zur Verallgemeinerung der Phänomene
Mourad Empirical tight-binding modeling of ordered and disordered semiconductor structures
DE102014106603A1 (de) Verfahren und Vorrichtung zur Abreicherung von zirkulierenden Tumorzellen aus einer Zellsuspension
DE19910707A1 (de) Verfahren und Vorrichtung zur Behandlung von Graphit
Mourad Empirical tight-binding modeling of ordered and disordered semiconductor structures; Empirische Tight-Binding-Modellierung geordneter und ungeordneter Halbleiterstrukturen
EP4000929A1 (fr) Procédé de séchage de corps cru pour la fabrication additive après la réticulation induite par la lumière des nano particules inorganiques en suspension
DE102011122607A1 (de) Verfahren zum Extrahieren einer Probe aus einem tiefgeforenen Substrat und Befestigen der Probe an einem Probenhalter in einem Elektronenmikroskop
ZABEL et al. J. DEBUS*, P. PESCHKE, A. LORENZ, EW HAHN, WJ LORENZ, H. IFFLÄNDER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757935

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1120080016305

Country of ref document: DE

REF Corresponds to

Ref document number: 112008001630

Country of ref document: DE

Date of ref document: 20100401

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08757935

Country of ref document: EP

Kind code of ref document: A2