WO2008124736A2 - Sondage de nœuds de réseau permettant une optimisation - Google Patents

Sondage de nœuds de réseau permettant une optimisation Download PDF

Info

Publication number
WO2008124736A2
WO2008124736A2 PCT/US2008/059678 US2008059678W WO2008124736A2 WO 2008124736 A2 WO2008124736 A2 WO 2008124736A2 US 2008059678 W US2008059678 W US 2008059678W WO 2008124736 A2 WO2008124736 A2 WO 2008124736A2
Authority
WO
WIPO (PCT)
Prior art keywords
node
network
probing
nodes
lmo
Prior art date
Application number
PCT/US2008/059678
Other languages
English (en)
Other versions
WO2008124736A3 (fr
Inventor
Ronald Lee
Ken Chu
Robert Lawrence Hare, Jr.
Glenn Delucio
Original Assignee
Entropic Communications, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entropic Communications, Inc. filed Critical Entropic Communications, Inc.
Priority to JP2010502354A priority Critical patent/JP5401445B2/ja
Priority to CN200880013106.8A priority patent/CN101681347B/zh
Priority to KR1020097021734A priority patent/KR101516442B1/ko
Priority to EP08745312A priority patent/EP2137633A4/fr
Publication of WO2008124736A2 publication Critical patent/WO2008124736A2/fr
Publication of WO2008124736A3 publication Critical patent/WO2008124736A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/16Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
    • G06F15/163Interprocessor communication
    • G06F15/173Interprocessor communication using an interconnection network, e.g. matrix, shuffle, pyramid, star, snowflake
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • H04L41/042Network management architectures or arrangements comprising distributed management centres cooperatively managing the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • H04L41/044Network management architectures or arrangements comprising hierarchical management structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/10Active monitoring, e.g. heartbeat, ping or trace-route
    • H04L43/103Active monitoring, e.g. heartbeat, ping or trace-route with adaptive polling, i.e. dynamically adapting the polling rate

Definitions

  • This disclosure is directed generally to a communication network, and in particular to optimizing a communication network through node probing.
  • communication networks may be formed when multiple interoperable nodes communicating over a shared medium detect
  • PATENT Docket No.: E085 1020PCT the existence of other nodes.
  • a network that operates in accordance to the Media over Coax Alliance (“MoCA”) MAC/PHY Specification v. 1.0.
  • nodes may function as “clients” or “slave” nodes, or as “master'T'network control ler'V'network coordinator” (“NC”) nodes.
  • a network will typically have a single NC node and any number of client nodes, and the NC node may transmit beacons and other control information to manage the network.
  • nodes may scan the available range of possible frequencies to determine where to operate, searching for signals from an NC node. If an NC node signal is found, indicating an existing network, a node may join the existing network.
  • Joining a network involves a node following the protocol specified for network admission. Joining generally involves receiving network information transmitted by the NC node, determining time slots in which to transmit a network admission request, and sending a network admission request, including an identifying message on a designated time slot. The requesting node receives acknowledgement from the NC node for admission to the network. If an existing network is not found, the node may establish a network at a specific frequency by operating as an NC node and waiting for other nodes to detect its presence and join the network.
  • One embodiment is a method for optimizing a network that is formed from a plurality of nodes.
  • the NC node of the network compiles an order that the plurality of nodes perform a probing operation.
  • the order is typically round robin.
  • the NC node receives a request from a client that identifies a next node to perform the probing operation. Based on the request, the NC node changes the order so that the next node performs the probing operation after the current node that is performing the probing operation has completed the operation.
  • FIG. 1 is a block diagram of a network in accordance with one embodiment.
  • FIG. 2 is a block diagram of a node in accordance with one embodiment.
  • Fig. 3 is a flow diagram of the functionality of the node of Fig. 2 in accordance with one embodiment when reordering the LMO nodes (when functioning as an NC node) and when requesting LMO node reordering (when functioning as a client node).
  • Fig. 4 is a flow diagram of the functionality of the node of Fig. 2 in accordance with one embodiment when accelerating LMO when the node is assigned as the LMO node.
  • One embodiment is a network that performs a link maintenance probing operation in order to determine the operating characteristics of the network and to optimize the paths between the nodes.
  • One of the nodes may request an out of order probing operation if it is in distress. Further, the probing operation may be accelerated during periods of low network usage.
  • Fig. 1 is a block diagram of a network 10 in accordance with one embodiment.
  • Network 10 includes an NC node 12 and client nodes 13-15.
  • network 10 is a network in a home environment, and nodes 12-15 are integrated with or coupled to devices in a home that communicate digital data in the form of messages between each other. Examples of such devices include set-top boxes, digital video recorders ("DVFTs), computers, televisions, routers, etc.
  • Nodes 12- 15 are coupled to a network media 16 that provides the media over which the digital data is transferred.
  • network media 16 is coaxial cable.
  • network media 16 may be any other type of media, including other wired media or wireless media.
  • network 10 is a full mesh network so that any node on the network can communicate directly with any of the other nodes on the network in any direction.
  • network 10 may include up to 16 nodes.
  • network 10 is formed by a node that scans a list of frequency channels to search for an existing network. If an existing network is found, the node will join that network as a client node. If no existing networks are found, the node will start a new network, such as network 10, as an NC node, and client nodes will
  • network 10 operates as a network within the allowable frequencies of Media over Coax Alliance MAC/PHY Specification v. 1.0 (hereinafter, "MoCA 1.0").
  • MoCA 1.0 Media over Coax Alliance MAC/PHY Specification v. 1.0
  • the range of frequencies in MoCA 1.0 is 875 - 1500 MHz, and frequency channels exists at intervals of either 25 MHz or 50 MHz.
  • network 10 operates at frequency channel B1 (e.g., 900 MHz), while another network having an NC node and multiple client nodes may operate at frequency channel D2 (e.g., 1200 MHz).
  • LMO link maintenance operation
  • An LMO in general involves transmitting probe messages formed using a predetermined bit sequence and length from one node to another node to estimate the channel characteristics between the nodes.
  • the receiving node processes the probe messages as received and determines the impairment present between the transmitter and receiver. Based on the measured impairment of the channel, the modulation between transmitter and receiver is adapted.
  • bitloading is used to adapt the modulation. Bitloading is a method of allocating a higher order signal constellation to carriers that have higher signal-to-
  • the node's greatest common denominator (“GCD") modulation profile may then be calculated based on the individual point-to-point LMO results and in another embodiment, GCD probes may be sent to determine the GCD modulation profile.
  • GCD greatest common denominator
  • network 10 transmits digital data between nodes using Orthogonal frequency-division multiplexing (“OFDM”) modulation.
  • OFDM Orthogonal frequency-division multiplexing
  • digital data communicated over the link is sent on each of 256 carriers modulated to carry information and all carriers are transmitted to the same recipient in parallel on different frequencies. Therefore, network 10 includes 256 carriers, of which 224 are typically used to carry content in one embodiment.
  • Each of the 224 content carrying carriers is modulated using Binary Phase-Shift Keying (“BPSK”), Quadrature Phase-Shift Keying (“QPSK”), or other Quadrature Amplitude Modulation (“QAM”) in one embodiment.
  • BPSK Binary Phase-Shift Keying
  • QPSK Quadrature Phase-Shift Keying
  • QAM Quadrature Amplitude Modulation
  • a node when a node is assigned as the "LMO node" it initiates an LMO to every other node in the network. Every path between nodes is tested in one embodiment because the path between each node is generally different due to variations in power, noise, media characteristics, etc.
  • the duplicate paths between the two same nodes, such as the path from node 13 to node 15, and the path from node 15 to node 13 may even be different. Therefore, every path should be subject to an LMO during an LMO probing cycle.
  • an LMO between two nodes takes approximately 3 seconds. Therefore, when the number of nodes in a
  • the order that each node performs an LMO is compiled and specified by the NC node.
  • the NC node will assign a first node as an LMO node, and a second node as the next LMO node.
  • that node When assigned as an LMO node, that node will send probe messages to every other node in the network. The timing of these probe messages is fixed and specified by the NC node in combination with the LMO node.
  • the next LMO node will then perform its LMO.
  • the order of nodes to perform the LMO is assigned by the NC node on a round robin basis. Therefore, for example, in network 10, NC node 12 may perform an LMO, followed by node 13, node 15, and node 14.
  • Fig. 2 is a block diagram of a node 21 in accordance with one embodiment.
  • Node 21 can function as an NC node, such as node 12 of Fig. 1 , or as a client node, such as nodes 13-15 of Fig. 1.
  • Node 21 includes a processor 20, a transceiver 27, and memory 22.
  • Processor 20 may be any type of general or specific purpose processor.
  • Transceiver 27 can be any device that transmits and receives digital data.
  • Memory 22 stores information and instructions to be executed by processor 20.
  • Memory 22 can be comprised of any combination of random access memory (“RAM”), read only memory (“ROM”), static storage such as a magnetic or optical disk, or any other type of computer readable medium.
  • RAM random access memory
  • ROM read only memory
  • static storage such as a magnetic or optical disk, or any other type of computer readable medium.
  • Computer readable medium may be any available media that can be accessed by processor 20 and includes both volatile and nonvolatile media, removable
  • Communication media may include computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave, or other transport mechanism, and includes any information delivery media.
  • memory 22 stores software modules that provide functionality when executed by processor 20.
  • the modules include an operating system 24, and a probing module 25.
  • the functionality of these modules although shown as software in Fig. 2, can be implemented by any combination of hardware or software in other embodiments.
  • operating system 24 provides the functionality that allows processor 20 to operate node 21 , including controlling transceiver 27 and memory 22.
  • probing module 25 initiates and executes an LMO when node 21 is functioning as an NC node, including allowing a node to be assigned as the LMO node out of order as disclosed below.
  • probing module 25 issues a request for any node in the network to be assigned the LMO node out of order if necessary.
  • probing module 25 performs further functionality disclosed below, including the transmission of GCD probes at the highest power and accelerated LMO probing.
  • Fig. 3 is a flow diagram of the functionality of node 21 of Fig. 2 in accordance with one embodiment when reordering the LMO nodes (when functioning as an NC node) and when requesting LMO node reordering (when functioning as a client node).
  • node 21 experiences distress based on one or more received messages.
  • received messages from one or more of the nodes include excessive errors, indicating impairment of the link between the nodes transmitting messages and node 21.
  • errors are considered to be excessive when errors have occurred in more than N one second intervals out of M intervals, where N and M are integers. In one embodiment, N and M are 1 and 20, respectively.
  • node 21 As a client node, node 21 generates and sends a next LMO request to the NC node.
  • the next LMO request may request that the client node that is making the request becomes the next LMO node after the current LMO node completes its LMO node probing operation. However, if the receiving client node experiences excessive errors from transmissions from a particular transmitting node, it may request that the particular transmitting node become the next LMO node.
  • node 21 receives a next LMO request from a client node.
  • the next LMO request identifies a node that is requested to become the next LMO node.
  • the NC node in response to receiving the next LMO request, reorders the LMO round robin ordering so that the identified node in the next LMO
  • PATENT Docket No.: E085 1020PCT request becomes the next LMO node.
  • "Reordering" may be as simple as giving a node an extra try as an LMO node before moving on to the next LMO node. If more than one next LMO request is received by the NC node from multiple client nodes, in one embodiment the NC node services them on a first come first serve basis. In another embodiment, the NC node services multiple requests according to one of the following guidelines: (1) The client node with the most source traffic should be serviced next; (2) The client node requested by the most nodes to be the next LMO node should be serviced next.
  • the NC node must ensure that every node gets an LMO opportunity at least every X LMO cycles, where X is 32 in one embodiment.
  • the NC node keeps track of a counter for each client node which resets when a client node gets an LMO opportunity and increments every time another node performs an LMO cycle. The NC node can use this counter to determine when reordering of the round robin has caused a client node to lose too many LMO opportunities.
  • An NC node should schedule an LMO opportunity for any client node whose counter has reached 32.
  • all nodes of the network keep track of the same counter so that if it a node ever becomes the NC node it has enough information to schedule LMOs for nodes whose counter reaches 32.
  • the NC node merely tracks whether a node has been given a extra LMO during the current round robin.
  • Some possible round robin reordering schemes include: (1) Leave the
  • the client node In response to being selected the next LMO node by the NC node, at 324 the client node becomes the next LMO node and performs LMO probing when the current LMO node completes its LMO probing.
  • the speed of the LMO cycles is determined by the LMO node's pacing of transmission requests for probes, which is typically a fixed number (e.g., send a probe every X milliseconds).
  • the LMO node may speed up LMO cycles (i.e., accelerated LMO) by requesting probe transmissions more often as long as there is network bandwidth to sustain the probes.
  • Fig. 4 is a flow diagram of the functionality of node 21 of Fig. 2 in accordance with one embodiment when accelerating LMO when node 21 is assigned as the LMO node.
  • the LMO node determines if available network bandwidth will support faster LMO cycles.
  • the network bandwidth may be determined through the NC node sending a bit in the current Media Access Plan ("MAP") message to let the LMO
  • the PATENT Docket No.: E085 1020PCT node know if bandwidth is available to speed up LMO requests.
  • the MAP is a message sent by the NC node to client nodes to define assignments of nodes to time slots as disclosed in MoCA 1.0 and announces the schedule of upcoming transmissions.
  • the LMO node since it decodes the MAP, can also directly determine available bandwidth.
  • the calculations used by the LMO node or NC node to determine if bandwidth is available includes determining how many timeslots were idle using a running average over the last several to tens of map cycles. In one embodiment, the calculations include scaling the probe interval linearly with the percentage of utilized timeslots.
  • the LMO node speeds up LMO packet transmission requests.
  • the LMO packet transmission requests are sped up by at least 5 times the previous known levels disclosed in MoCA 1.0.
  • a goal is that a two node network with a Physical Layer (“PHY") Rate > 200 Mbps with less than 5 Mbps of traffic should fully bitload in both directions in less than 4 seconds after admission.
  • PHY Physical Layer
  • PATENT Docket No.: E085 1020PCT also be supported just as well with a bigger CP and/or higher power. However, in most cases higher power level may result in a lower signal-to-noise ratio (“SNR”) due to more signal level being received.
  • SNR signal-to-noise ratio
  • an extra probe/report cycle is added.
  • the extra probe/report cycle sends LMO probes using the highest power of all point-to-point links and the biggest CP of all the point-to-point links to represent the actual GCD data transmissions as much as possible to get as accurate a result as possible.
  • the other nodes report back the bitloading it calculates for these probes.
  • the node transmitting the probes calculates the GCD modulation profile for each subcarrier as the lowest subcarrier modulation in any report. This GCD modulation profile is what is reported to the network during this phase of the LMO cycle.
  • embodiments include a network that allows an LMO node to be assigned out of order when requested by a distressed link. Further, LMO probing can be accelerated and GCD probes can be transmitted at the highest power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • General Factory Administration (AREA)

Abstract

L'invention concerne un procédé d'optimisation d'un réseau qui est formé à partir d'une pluralité de nœuds. Le nœud NC du réseau compile un ordre dans lequel la pluralité de nœuds effectue une opération de sondage. L'ordre est typiquement round robin. Le nœud NC reçoit une requête d'un client qui identifie un nœud suivant pour effectuer l'opération de sondage. Sur la base de la requête, le nœud NC change l'ordre de telle sorte que le nœud suivant effectue l'opération de sondage après que le nœud actuel qui effectue l'opération de sondage, ait achevé l'opération.
PCT/US2008/059678 2007-04-08 2008-04-08 Sondage de nœuds de réseau permettant une optimisation WO2008124736A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010502354A JP5401445B2 (ja) 2007-04-08 2008-04-08 最適化のためのネットワークノードのプロービング
CN200880013106.8A CN101681347B (zh) 2007-04-08 2008-04-08 探测网络节点以实现优化
KR1020097021734A KR101516442B1 (ko) 2007-04-08 2008-04-08 최적화용 네트워크 노드 프로빙
EP08745312A EP2137633A4 (fr) 2007-04-08 2008-04-08 Sondage de n uds de réseau permettant une optimisation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US91066607P 2007-04-08 2007-04-08
US60/910,666 2007-04-08
US91680507P 2007-05-08 2007-05-08
US60/916,805 2007-05-08

Publications (2)

Publication Number Publication Date
WO2008124736A2 true WO2008124736A2 (fr) 2008-10-16
WO2008124736A3 WO2008124736A3 (fr) 2009-12-30

Family

ID=39827939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/059678 WO2008124736A2 (fr) 2007-04-08 2008-04-08 Sondage de nœuds de réseau permettant une optimisation

Country Status (6)

Country Link
US (2) US8849969B2 (fr)
EP (1) EP2137633A4 (fr)
JP (1) JP5401445B2 (fr)
KR (1) KR101516442B1 (fr)
CN (1) CN101681347B (fr)
WO (1) WO2008124736A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401445B2 (ja) * 2007-04-08 2014-01-29 エントロピック・コミュニケーションズ・インコーポレイテッド 最適化のためのネットワークノードのプロービング
US9112717B2 (en) * 2008-07-31 2015-08-18 Broadcom Corporation Systems and methods for providing a MoCA power management strategy
KR20110104524A (ko) * 2008-12-15 2011-09-22 엔트로픽 커뮤니케이션즈, 인크. 수신기 결정 프로브
US8238227B2 (en) * 2008-12-22 2012-08-07 Broadcom Corporation Systems and methods for providing a MoCA improved performance for short burst packets
US8683256B2 (en) * 2010-06-24 2014-03-25 Entropic Communications, Inc. Method and system for interference detection and mitigation
US10491357B2 (en) * 2010-07-12 2019-11-26 Entropic Communications Llc Method and apparatus for using dynamic subchannels in a communications network
US8861363B2 (en) * 2010-12-23 2014-10-14 Entropic Communications, Inc. Method and system for interference detection and mitigation
US11695804B2 (en) * 2014-07-24 2023-07-04 Entropie Communications, LLC Method and apparatus for MoCA network with protected set-up
US9716763B2 (en) * 2015-05-13 2017-07-25 Arris Enterprises Llc Content streaming apparatus for transferring a streaming session to another apparatus
CN110870338B (zh) * 2017-07-04 2023-07-28 诺基亚技术有限公司 网络优化
CN114025014B (zh) * 2021-10-29 2024-01-30 北京恒安嘉新安全技术有限公司 一种资产探测方法、装置、电子设备及存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424934B2 (en) * 1998-05-18 2002-07-23 Solidum Systems Corp. Packet classification state machine having reduced memory storage requirements
US6788670B1 (en) 2000-10-27 2004-09-07 Telefonaktiebolaget Lm Ericsson (Publ) Method for forwarding in multi-hop networks
US7035326B1 (en) * 2001-02-09 2006-04-25 Ikanos Communication, Inc. Method and apparatus for initializing modem communications
US7295518B1 (en) * 2001-08-30 2007-11-13 Entropic Communications Inc. Broadband network for coaxial cable using multi-carrier modulation
US20040059807A1 (en) 2002-09-16 2004-03-25 Finisar Corporation Network analysis topology detection
US20040120482A1 (en) * 2002-12-20 2004-06-24 Bentley Ronald Locker System and method for reducing disruption in a DSL environment caused by a pots transient event
US7386606B2 (en) 2003-09-12 2008-06-10 Microsoft Corporation Self-organizing overlay networks
US8483105B2 (en) * 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US7356048B1 (en) * 2003-12-08 2008-04-08 Ikanos Communications, Inc. Method and apparatus for network modems on a shared communications channel
US7165192B1 (en) * 2003-12-19 2007-01-16 Sun Microsystems, Inc. Fault isolation in large networks
US7251703B1 (en) 2004-02-27 2007-07-31 Entropic Communications, Inc. Method of time stamping to enable device bridging over dissimilar buses
CN1756189B (zh) * 2004-09-30 2010-04-14 北京航空航天大学 基于snmp的ip网络拓扑发现方法
JP5401445B2 (ja) * 2007-04-08 2014-01-29 エントロピック・コミュニケーションズ・インコーポレイテッド 最適化のためのネットワークノードのプロービング

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2137633A4

Also Published As

Publication number Publication date
US8996680B2 (en) 2015-03-31
CN101681347A (zh) 2010-03-24
KR20100015679A (ko) 2010-02-12
KR101516442B1 (ko) 2015-05-04
EP2137633A2 (fr) 2009-12-30
EP2137633A4 (fr) 2012-07-11
WO2008124736A3 (fr) 2009-12-30
US8849969B2 (en) 2014-09-30
US20080250133A1 (en) 2008-10-09
JP2010524362A (ja) 2010-07-15
JP5401445B2 (ja) 2014-01-29
US20140293813A1 (en) 2014-10-02
CN101681347B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
US8996680B2 (en) Probing network nodes for optimization
US8228910B2 (en) Aggregating network packets for transmission to a destination node
US20200044885A1 (en) Frequency scanning to form a communication network
JP3881529B2 (ja) ワイヤレスデータのリンクレベルのサポート
CA2579568C (fr) Procede et appareil d'emission reception de signaux a bande etroite dans un systeme de communication a large bande
JP5408673B2 (ja) 持続性資源配分
AU2009298598B2 (en) Data transmission over a network with channel bonding
WO2005074312A1 (fr) Procede de demande et reponse relatives a la qualite d'un canal dans un systeme internet sans fil de portables
KR101219503B1 (ko) 접속 식별자를 식별 및/또는 선택하기 위한 방법 및 장치
KR20140023738A (ko) 무선 통신 시스템에서 링크 간의 간섭 정보 공유에 기반한 링크 스케줄링 방법 및 장치
EP2820900A1 (fr) Procédés et appareil pour mesurer un brouillage et des données de transmission
JP2018182405A (ja) チャネル状態予測装置、チャネル状態予測方法、無線通信装置および無線通信方法
JP5080576B2 (ja) 状態間で遷移するための方法および装置
KR100801289B1 (ko) 직교 주파수 분할 다중 접속 시스템의 상향링크 자원할당을위한 스케줄링 방법 및 장치
US20240163703A1 (en) Rate adaptation and power structure for communicating wi-fi peers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880013106.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08745312

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2010502354

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6600/DELNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20097021734

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008745312

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008745312

Country of ref document: EP