WO2008122392A1 - Verfahren zur steuerung eines antriebssystems für ein kraftfahrzeug - Google Patents

Verfahren zur steuerung eines antriebssystems für ein kraftfahrzeug Download PDF

Info

Publication number
WO2008122392A1
WO2008122392A1 PCT/EP2008/002608 EP2008002608W WO2008122392A1 WO 2008122392 A1 WO2008122392 A1 WO 2008122392A1 EP 2008002608 W EP2008002608 W EP 2008002608W WO 2008122392 A1 WO2008122392 A1 WO 2008122392A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
thrust
electric motor
combustion engine
internal combustion
Prior art date
Application number
PCT/EP2008/002608
Other languages
English (en)
French (fr)
Inventor
Michael Back
Harald Braun
Norbert Ebner
Ralf KÖRBER
Oliver Vollrath
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2008122392A1 publication Critical patent/WO2008122392A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/024Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters
    • B60W10/026Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters of lock-up clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/246Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/024Clutch engagement state of torque converter lock-up clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to a method for controlling a drive system for a motor vehicle with an internal combustion engine comprising a crankshaft and at least one electric motor which can be coupled to the internal combustion engine.
  • Such a drive system is commonly referred to as a hybrid drive.
  • a hybrid drive When developing and optimizing new drive systems for motor vehicles, emissions, fuel consumption, performance and ride comfort are taken into account.
  • Today's internal combustion engines are generally equipped with engine management functions that can set different operating conditions.
  • coasting is adjustable when the driver takes his foot off the accelerator pedal while driving.
  • the internal combustion engine is pushed by the inertia of the motor vehicle in overrun mode, the drive power of the internal combustion engine is no longer needed.
  • the injection and the internal combustion engine is switched off, wherein the motor vehicle is braked by the compression work to be performed by the internal combustion engine and by friction losses.
  • a deactivation of the fuel cut is either at least indirectly by the driver, for example by this gas again, or automatically, for example, when the speed of the engine falls below a certain limit. Then, fuel is supplied again and the ignition is switched on, so that the internal combustion engine again generates a drive torque.
  • the overrun operation is characterized as a transient and highly temperature-dependent operating state by a transient driving behavior of the motor vehicle.
  • the torque changes, delays, irregularities and / or fluctuations in the driving behavior of the motor vehicle resulting from the sudden changes in overrun mode or from overrun with overrun fuel cutoff or without overrun fuel cutoff are generally perceived as disturbing.
  • the invention is therefore based on the object of specifying an improved method for controlling a drive system for a motor vehicle, in which a driving behavior of the motor vehicle is made possible without significant impairment of driving comfort and driving sensation, especially during overrun.
  • the thrust characteristic is determined during overrun of the motor vehicle on the basis of a characteristic curve or characteristic map the motor vehicle representing total thrust torque determined. From the difference between total thrust torque and at least momentary thrust torque of the internal combustion engine, a Schubrekuperationsmoment is determined, which is set on the electric motor.
  • the instantaneous thrust torque of the internal combustion engine is understood to mean, in particular, the minimum actual torque of the internal combustion engine with little or no injection in overrun operation when the internal combustion engine is braking and does not drive.
  • the method is preferably implemented in one or more control units, in particular in an already existing control unit, for example an engine control unit and / or a brake control unit, or in a controller, in particular an already existing controller, eg an idling governor.
  • the total thrust torque is determined when the motor vehicle is in coasting operation and in particular when the internal combustion engine has exceeded at least a predetermined idling speed and a torque converter lockup clutch connecting the internal combustion engine and the transmission is closed when a predetermined engine speed is reached. This ensures that the total thrust torque is only determined and used for adjustment and compensation when the motor vehicle is in overrun mode.
  • the characteristic field is formed from a number of thrust characteristics, each as a torque-speed curve depending on the selected automatic program, a slope, an engine speed, a vehicle speed, a longitudinal, a lateral acceleration and / or a temperature of the internal combustion engine, Electric motor and / or a battery is determined.
  • a reproducibility of the thrust behavior of the motor vehicle is largely a quiet ride in overrun mode allows.
  • corresponding thrust characteristics are determined.
  • a higher negative or positive thrust torque is taken into account for driving in the automatic program "Sport” on the basis of the associated thrust characteristic, so that the driver decelerates or accelerates the motor vehicle during sporty driving feels clearly.
  • correspondingly lower thrust torques are set in the automatic program "comfort” or “standard”, so that the motor vehicle behaves correspondingly quieter and more comfortable.
  • the thrust characteristics may depend on the selected gear. To account for different negative drag torques resulting from different slopes of the road, the thrust characteristics are determined as a function of the gradient, which is determined for example by means of an acceleration and / or inclination sensor.
  • a thrust cutoff torque resulting from an activated fuel cutoff is taken into account in the determination of the thrust characteristic curve. This can be compensated in particular from the fuel cut resulting torque changes.
  • the shift range of deactivating or activating the fuel cutoff is set by setting a fuel cut request signal, e.g. from a diagnosis, identified.
  • the fuel cutoff activation or deactivation request signal may be formed depending on the state of charge of a battery, a slope, an engine speed of the engine, and / or the requested fuel cutoff torque.
  • the request signal provides more Schubrekuperationsmoment available.
  • a Schubrekupera ⁇ tion torque for the electric motor is determined by the method described above, theopen- way above an effective minimum torque of the electric motor, this is preferably switched on, wherein the determined Schubrekuperationsmoment is set as the desired torque for the electric motor.
  • the Schubrekuperationsmoment is set even when the electric motor is already set as the desired torque.
  • a difference between the determined Schubrekuperationsmoment and instantaneous actual torque of the electric motor is expediently set when the electric motor as the target torque.
  • the electric motor is in particular a rotating electrical machine, which can be operated both as an electric motor and as an electric brake and / or generator.
  • a braking energy obtained in a conventional manner from a set and applied braking torque can be stored for example in a battery by the electric motor, which can also be operated as a generator, or used to supply other electrical consumers.
  • the electric motor can be coupled or coupled indirectly via an automated manual transmission or an automatic transmission with the internal combustion engine.
  • the electric motor may also be directly coupled or couplable, e.g. when the rotor of the electric motor - similar to a flywheel - is arranged directly on the crankshaft of the internal combustion engine or on a couplable extension of this crankshaft.
  • Fig. 1 shows schematically a control device for controlling a drive system with an internal combustion engine and a coupled or coupled to this electric motor, and
  • FIG. 2 is a schematic diagram of a torque curve as a function of the rotational speed for possible embodiments of a thrust characteristic curve for determining a Schubrekuperationsmoments in overrun operation of a motor vehicle.
  • FIG. 1 schematically shows a drive system 1 designed as a hybrid drive for a motor vehicle, comprising a combustion engine 2 and an electric motor 3.
  • the electric motor 3 is connected to or connectable with and capable of driving a crankshaft 4 of the engine 2, that is, driving the crankshaft 4 of the engine 2. exert positive or negative torques on them.
  • the electric motor 3 is connected to a battery 5.
  • the electric motor 3 is directly or indirectly via a transmission 6, e.g. an automated manual transmission or an automatic transmission, with the crankshaft 4 coupled.
  • the electric motor 3 can be coupled directly to the crankshaft 4.
  • an electronic control unit 7 For controlling and / or regulating the drive system 1, an electronic control unit 7 is provided.
  • the control unit 7 may be an already existing control unit, eg brake control unit or engine control unit, in which the following described method is implemented.
  • further control and / or regulation methods eg for driving stability, engine control and / or brake control, can be implemented in the control unit 7.
  • both the internal combustion engine 2 and the electric motor 3 or preferably only the electric motor 3 can be controlled and / or regulated.
  • a pushing operation In the operation of the motor vehicle, by removing an acceleration request, for example, the driver takes his foot off the accelerator pedal 8 and no longer actuated, or by an automatic traction control, for example, a so-called cruise control, no acceleration, but a speed reduction, or by a spacer for automatically maintaining a distance requesting a speed reduction, for the motor vehicle as the operating state, a pushing operation are set, in which the motor vehicle is pushed by its inertia and the drive power of the engine 2 is no longer needed.
  • an acceleration request for example, the driver takes his foot off the accelerator pedal 8 and no longer actuated
  • an automatic traction control for example, a so-called cruise control
  • no acceleration but a speed reduction
  • a spacer for automatically maintaining a distance requesting a speed reduction for the motor vehicle as the operating state
  • the controller 7 is provided with at least the following parameters, values and / or parameters: a set value A of a pedal value transmitter 9 of the accelerator pedal 8 and a torque demand M derived from the set value A, a speed n of a speed sensor 10, temperature values T v , T E and T B of temperature sensors 11 to 13 of the engine 2, the electric motor 3 and the battery 5, a state of charge value L of a state of charge SOC of the battery 5, an inclination value N of a tilt sensor 14, a program value P by means of a switch 15 selected automatic program of the transmission 6, the vehicle speed v, a position S to a lockup clutch 16 and / or a Lteils sec.
  • Transverse acceleration a L , a Q of the motor vehicle and instantaneous minimum actual torques M m1nV and M 1111nE of the internal combustion engine 2 and of the electric motor 3 of the motor vehicle driving in overrun mode (which are referred to as thrust torques M minV , M minE hereinafter ).
  • the converter lock-up clutch 16 is open at speeds n less than a closing speed n s and closed above this closing speed n s .
  • the closing speed n s may be different for the different gear ratios of the transmission 6, but always greater than the idle speed n L. Likewise, a switching back and forth of the lockup clutch 16 can be avoided by a hysteresis.
  • a total thrust behavior of the motor vehicle representing total thrust torque Ms ge s determined.
  • a Schubrekuperationsmoment M SR is formed, which is set by means of the control unit 7 on the electric motor 3. That is, the internal combustion engine 2 is still operated with a minimum thrust torque M m i n v.
  • the determined Schubrekuperationsmoment M SR is set to the electric motor 3, which leads to a switch on the electric motor 3 and which is set with the electric motor 3 as the desired torque M SOIIE , resulting positive or negative torque values are applied to the crankshaft 4 for Schubrekuperation.
  • torque fluctuations M of the internal combustion engine 2 are compensated in overrun, which repeatedly a largely same thrust behavior can be adjusted on the motor vehicle.
  • the thrust behavior of the motor vehicle influencing characteristics the relevant thrust characteristic Kl from the characteristic field F (KO to Kn) depending on the selected automatic program P, from the determined slope N, the engine speed n of the internal combustion engine 2, the Vehicle speed v, the temperatures T v , T E , T B , the longitudinal acceleration a L and / or the lateral acceleration a Q for a speed-dependent characteristic of the Schubrekuperationsmoments M SR of the electric motor 3 determined.
  • the consideration of these dependencies by a determined thrust characteristic K L in the determination of the Schubrekuperationsmoments M SR to be set is used in particular an improved ride comfort and / or vehicle safety and / or vehicle stability.
  • the Schubrekuperationsmoment M 5R is not activated in order to avoid too high Belas- tion of the electric motor 3 to avoid. Even if the battery temperature T B is too high or the charge SOC of the battery 5 is still too high or the internal combustion engine 2 is still cold, ie the engine temperature T v is low, an application of the Schubrekuperationsmoments M SR is omitted.
  • the request signal S 3 can be generated automatically as a function of the state of charge SOC of the battery 5, of the gradient N, of the engine speed n of the internal combustion engine 2 and / or the value of a requested fuel cut-off torque M SA s. be.
  • the requested overrun fuel deceleration torque M SAS is a torque M dependent on the minimum thrust or actual torque M minV of the internal combustion engine 2 and on the braking power of the internal combustion engine 2 and the inertia of the motor vehicle, which torque is determined, for example, by means of the control unit 7 on the basis of the parameters and parameters.
  • the fuel cutoff torque M SAS representing the overrun fuel cutoff SAS is taken into account as a torque dependency in the determination of the thrust characteristic K1.
  • a corresponding thrust reaction is determined as a function of at least the instantaneous minimum thrust torque M minV of the internal combustion engine 2 on the basis of the determined thrust characteristic Kl and the total thrust torque M Sges determined therefrom.
  • kuperationsmoment M SR determines that is set with the electric motor 3 off as target torque M So i 1E .
  • the electric motor 3 which is guided by the setpoint torque M SollE , engages the crankshaft 4 of the internal combustion engine 2 with associated positive or negative torque values corresponding to the determined thrust characteristic Kl, so that the same and repetitive thrust behavior of the motor vehicle is always enabled.
  • FIG. 2 shows an example of a schematic diagram with several torque curves V1 to V4 as a function of the rotational speed n and various examples of a thrust characteristic K0 to Kn of a characteristic field F (K0 to Kn).
  • the torque curve V 1 represents a maximum torque M max of the motor vehicle which is formed from the maximum torque M max v of the internal combustion engine 2 and the maximum torque M maxE of the electric motor 3 and which sets the total torque Mg es of the motor vehicle to an upper value during driving operation. so without thrust, limited.
  • the torque curve V2 represents the speed-dependent profile of the maximum torque M max v of the internal combustion engine 2 without an engaging torque from the electric motor 3.
  • the torque curves V3 and V3 'each represent the speed-dependent curve of a minimum torque M min of the motor vehicle, which corresponds to the minimum thrust torque M min v of the internal combustion engine 2 without an engaging torque from the electric motor 3 in overrun without fuel cut SAS or with fuel cut SAS.
  • An arrow Pl represents the fuel cut-off torque M SAS considered in the torque curve V3 'when the fuel cut-off SAS is activated.
  • the minimum torque M mn is the minimum thrust torque M m i n v of the internal combustion engine 2 and the minimum torque M mn E of the electric motor 3 and with the overrun fuel cut-off SAS from the fuel cut-off torque M 5AS speed-dependent formed and on a lower limited value in overrun mode.
  • An arrow P2 represents the fuel cut-off torque M SAS considered in the torque curve V4 when the fuel cut-off SAS is activated.
  • the difference between a torque of the torque curve V2 and a corresponding torque of the torque curve V3 describes the pending by the accelerator pedal 8 clamping A for the respective speed n.
  • This clamping A is to be achieved at full throttle position of the accelerator pedal 8 maximum torque M max v of the engine 2 and the bex mecanicgten accelerator pedal 8 to be achieved minimum thrust torque M minV of the internal combustion engine 2 limited.
  • An arrow P3 represents dxe closed position S to the Wandleruberblruckungskupplung 16 when exceeding the closing speed n s , which may depend on the torque, the vehicle speed and other large.
  • An arrow P4 represents an activated in response to the set request signal S a fuel cut SAS U exceeded the closing speed n s .
  • the torque curve V5 represents an example with reference to the method described above from a family of characteristics F (KO to Kn) determined thrust characteristic Kl which speed dependent as total thrust torque M Sges the minimum thrust torque M minV of the internal combustion engine 2 in overrun, possibly with activated overrun SAS the resulting Schubabscariasnavmoment M SAS and the Schubre- Kuperationsmoment M SR of the electric motor 3 includes.
  • a family of characteristics F (KO to Kn) determined thrust characteristic Kl which speed dependent as total thrust torque M Sges the minimum thrust torque M minV of the internal combustion engine 2 in overrun, possibly with activated overrun SAS the resulting Schubabscariassearchmoment M SAS and the Schubre- Kuperationsmoment M SR of the electric motor 3 includes.
  • three possible thrust characteristics KO, Kl and Kn of the characteristic field F (KO to Kn) are shown by way of example.
  • a recuperation braking torque M BR may be taken into account by a recuperative braking system, not shown, of the electric motor 3.

Abstract

Die Erfindung betrifft ein Verfahren zur Steuerung eines Antriebssystems (1) für ein Kraftfahrzeug mit einem eine Kurbelwelle (4) umfassenden Verbrennungsmotor (2) und mindestens einem mit dem Verbrennungsmotor (2), insbesondere der Kurbelwelle (4) gekoppelten oder koppelbaren Elektromotor (3), wobei im Schubbetrieb des Kraftfahrzeuges anhand einer aus einem Kennlinienfeld (F(KO bis Kn) ) ermittelten Schubkennlinie (K1) ein das Schubverhalten des Kraftfahrzeuges repräsentierendes Gesamtschubdrehmoment (MSges) bestimmt wird und aus der Differenz von Gesamtschubdrehmoment (MSges) und momentanem minimalen Schubdrehmoment (MminV) des Verbrennungsmotors (2) ein Schubrekuperationsmoment (MSR) ermittelt wird, das am Elektromotor (2) eingestellt wird.

Description

VERFAHREN ZUR STEUERUNG EINES ANTRIEBSSYSTEMS FÜR EIN
KRAFTFAHRZEUG
Die Erfindung betrifft ein Verfahren zur Steuerung eines Antriebssystems für ein Kraftfahrzeug mit einem eine Kurbelwelle umfassenden Verbrennungsmotor und mindestens einem mit dem Verbrennungsmotor koppelbaren Elektromotor.
Ein derartiges Antriebssystem wird üblicherweise als Hybridantrieb bezeichnet. Bei der Entwicklung und Optimierung neuer Antriebssysteme von Kraftfahrzeugen werden insbesondere Emissionsverhalten, Verbrauch, Leistung und Fahrkomfort berücksichtigt. Dabei werden heutige Verbrennungsmotoren im Allgemeinen mit Motormanagementfunktionen ausgestattet, die verschiedene Betriebszustände einstellen können.
So ist beispielsweise zur Senkung des Verbrauchs und von Schadstoffemissionen als Betriebszustand ein Schubbetrieb einstellbar, wenn der Fahrer während der Fahrt den Fuß vom Fahrpedal nimmt. Dabei wird im Schubbetrieb der Verbrennungsmotor durch die Trägheit des Kraftfahrzeuges angeschoben, wobei die Antriebsleistung des Verbrennungsmotors nicht mehr benötigt wird. Durch Aktivierung einer so genannten Schubabschaltung im Schubbetrieb werden insbesondere oberhalb einer unteren Drehzahlgrenze, die oberhalb der Leerlaufdrehzahl liegt, üblicherweise die Einspritzung und der Verbrennungsmotor abgeschaltet, wobei das Kraftfahrzeug durch die vom Verbrennungsmotor zu verrichtende Kompressionsarbeit sowie durch Reibungsverluste abgebremst wird. Eine Deaktivierung der Schubabschaltung erfolgt entweder zumindest mittelbar durch den Fahrer, z.B. indem dieser wieder Gas gibt, oder automatisch, z.B. wenn die Drehzahl des Verbrennungsmotors eine bestimmte Grenze unterschreitet. Daraufhin wird erneut Kraftstoff zugeführt und die Zündung zugeschaltet, so dass der Verbrennungsmotor wieder ein Antriebsmoment erzeugt.
Der Schubbetrieb ist als transienter und stark temperaturabhängiger Betriebszustand durch ein instationäres Fahrverhalten des Kraftfahrzeuges gekennzeichnet. So werden die aus den plötzlichen Wechseln in den Schubbetrieb oder aus dem Schubbetrieb mit Schubabschaltung oder ohne Schubabschaltung resultierenden Drehmomentänderungen, Verzögerungen, Unregelmäßigkeiten und/oder Schwankungen im Fahrverhalten des Kraftfahrzeuges zumeist als störend empfunden.
Zur Verminderung derartiger durch einen Schubbetrieb und/oder eine Schubabschaltung verursachten Beeinträchtigungen sind verschiedene Verfahren bekannt.
Aus der EP 1 108 128 Bl ist beispielsweise ein Verfahren zum Betreiben eines Antriebssystems für ein Kraftfahrzeug bekannt, bei dem beim Aktivieren und Deaktivieren der Schubabschaltung ein damit einhergehender Beschleunigungsruck durch Aufbringen eines Drehmoments einer elektrischen Maschine ver¬ mindert wird, wobei die ruckvermindernde Wirkung der elektri¬ schen Maschine durch ein Aktivierungs- bzw. Deaktivierungs- signal der Schubabschaltung gesteuert wird. Dabei reicht allein die ruckvermindernde Wirkung der elektrischen Maschine durch Aufbringen eines Drehmoments ohne Berücksichtigung weiterer Einflussfaktoren, wie z.B. der Temperaturabhängigkeit, nicht für ein sich wiederholendes gleichmäßiges Fahrverhalten des Kraftfahrzeuges im Schubbetrieb aus, so dass der Fahrkomfort und das Fahrempfinden weiterhin beeinträchtigt sein können.
Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes Verfahren zur Steuerung eines Antriebssystems für ein Kraftfahrzeug anzugeben, bei welchem insbesondere im Schubbetrieb ein Fahrverhalten des Kraftfahrzeuges ohne wesentliche Beeinträchtigungen des Fahrkomforts und des Fahrempfindens ermöglicht ist.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.
Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Bei einem erfindungsgemäßen Verfahren zur Steuerung eines Antriebssystems für ein Kraftfahrzeug mit einem eine Kurbelwelle umfassenden Verbrennungsmotor und mindestens einem mit dem Verbrennungsmotor, insbesondere dessen Kurbelwelle gekoppelten oder koppelbaren Elektromotor wird im Schubbetrieb des Kraftfahrzeuges anhand einer aus einer Kennlinie oder aus einem Kennfeld ermittelten Schubkennlinie ein das Schubverhalten des Kraftfahrzeuges repräsentierendes Gesamtschubdrehmoment bestimmt. Aus der Differenz von Gesamtschubdrehmoment und zumindest momentanen Schubdrehmoment des Verbrennungsmotors wird ein Schubrekuperationsmoment ermittelt, das am E- lektromotor eingestellt wird. Durch das Einstellen und Auf- bringen eines Schubrekuperationsmoments des Elektromotors, das anhand der das Schubverhalten des Kraftfahrzeuges repräsentierenden Schubkennlinie gebildet wird und abwechselnd positive und negative Werte aufweisen kann und somit als bremsendes oder antreibendes Moment auf eine Kurbelwelle aufgebracht wird, wird ein stets gleiches und somit ein reproduzierbares Schubverhalten des Kraftfahrzeuges erreicht. Unter dem momentanen Schubdrehmoment des Verbrennungsmotors wird insbesondere das minimale Istdrehmoment des Verbrennungsmotors bei geringer oder keiner Einspritzung im Schubbetrieb verstanden, wenn der Verbrennungsmotor bremst und nicht antreibt. Insbesondere werden durch Schaltwechsel, z.B. Aktivierung oder Deaktivierung einer Schubabschaltung sowie Zu- und Abschaltung des Schubbetriebs, verursachte Schwankungen und/oder Schwingungen des Antriebsmoments, insbesondere im Schubbetrieb des Schubmoments, zuverlässig unterdrückt oder zumindest weitgehend vermindert. Durch die erfindungsgemäße Schubrekuperation mit einer drehzahlabhängigen Kennlinienführung des Drehmoments des Elektromotors ist es möglich, dass das Gesamtschubdrehmoment am Kraftfahrzeug im Schubbetrieb immer gleichmäßig und damit reproduzierbar ausgeführt wird. Hierdurch wird ein ruhiges Fahrverhalten des Fahrzeuges erzielt. Darüber hinaus sind durch ein derartig einstellbares gleichmäßiges Fahrverhalten im Schubbetrieb und insbesondere im Schubbetrieb mit Schubabschaltung der Kraftstoffverbrauch und Schadstoffemissionen reduziert.
Das Verfahren ist bevorzugt in einem oder in mehreren Steuergeräten, insbesondere in einem bereits vorhandenen Steuergerät, z.B. einem Motorsteuergerät und/oder einem Bremssteuergerät, oder in einem Regler, insbesondere einem bereits vorhandenen Regler, z.B. einem Leerlaufregier, implementiert. Zweckmäßigerweise wird das Gesamtschubdrehmoment dann ermittelt, wenn das Kraftfahrzeug sich im Schubbetrieb befindet und insbesondere wenn der Verbrennungsmotor zumindest eine vorgegebene Leerlaufdrehzahl überschritten hat und eine den Verbrennungsmotor und das Getriebe verbindende Wandlerüber- brückungskupplung bei Erreichen einer vorgegebenen Motordrehzahl geschlossen wird. Hierdurch wird sichergestellt, dass das Gesamtschubdrehmoment erst dann ermittelt und zur Einstellung und Kompensation genutzt wird, wenn das Kraftfahrzeug sich im Schubbetrieb befindet.
Vorzugsweise wird das Kennlinienfeld aus einer Anzahl von Schubkennlinien gebildet, die jeweils als Drehmoment- Drehzahl-Kennlinie in Abhängigkeit vom gewählten Automatikprogramm, von einer Steigung, einer Motordrehzahl, einer Fahrzeuggeschwindigkeit, einer Längs-, einer Querbeschleunigung und/oder einer Temperatur des Verbrennungsmotors, des Elektromotors und/oder einer Batterie bestimmt wird. Durch die Berücksichtigung von das Gesamtschubdrehmoment beeinflussenden Faktoren, wie Automatikprogramm, Steigung, Motordrehzahl, Fahrzeuggeschwindigkeit und/oder verschiedenen Temperaturen ist gegenüber einem herkömmlichen, im Wesentlichen die Drehmoment- und/oder Drehzahlschwankungen berücksichtigenden Betriebs- und Steuerungsverfahren weitgehend eine Reproduzierbarkeit des Schubverhaltens des Kraftfahrzeuges und damit ein ruhiges Fahrverhalten im Schubbetrieb ermöglicht. Dabei werden beispielsweise anhand des gewählten Automatikprogramms, z.B. "Sport", "Komfort" oder "Standard", entsprechende Schubkennlinien ermittelt. Dabei wird z.B. für ein Fahren im Automatikprogramm "Sport" anhand der zugehörigen Schubkennlinie ein höheres negatives oder positives Schubdrehmoment berücksichtigt, so dass der Fahrer beim sportlichen Fahren ein Verzögern bzw. ein Beschleunigen des Kraftfahrzeuges deutlich spürt. Demgegenüber werden im Automatikprogramm "Komfort" oder "Standard" entsprechend geringere Schubdrehmomente eingestellt, so dass sich das Kraftfahrzeug entsprechend ruhiger und komfortabler verhält. Durch Berücksichtigung verschiedener Temperaturen, wie der Temperatur des Verbrennungsmotors, des Elektromotors und/oder der Batterie, wird in der jeweiligen Schubkennlinie sichergestellt, dass beispielsweise der Elektromotor bei einer zu niedrigen Temperatur des Verbrennungsmotors, wenn dieser noch kalt ist, keine starke Belastung durch eine Momentenaufbringung durch den Elektromotor auf den Verbrennungsmotor ausführt. Sind alternativ oder zusätzlich die Temperatur des Elektromotors und/oder der Batterie zu hoch, so unterbleibt eine Einstellung des zusätzlichen Schubrekuperationsmoments am Elektromotor, um Nachfolgeschäden, z.B. durch eine zu hohe Belastung des Elektromotors bzw. der Batterie, zu vermeiden. Darüber hinaus können verschiedene Schubkennlinien vom gewählten Gang abhängig sein. Zur Berücksichtigung von aus unterschiedlichen Steigungen der Fahrbahn resultierenden verschiedenen negativen Schleppmomenten werden die Schubkennlinien in Abhängigkeit von der Steigung, die beispielsweise mittels eines Beschleunigungs- und/oder Neigungssensors bestimmt wird, ermittelt.
In einer weiteren vorteilhaften Weiterbildung wird bei einer aktivierten Schubabschaltung ein daraus resultierendes Schubabschaltungsdrehmoment bei der Bestimmung der Schubkennlinie berücksichtigt. Hierdurch können insbesondere aus der Schubabschaltung resultierende Drehmomentänderungen kompensiert werden.
Im Schaltbereich der Deaktivierung oder Aktivierung der Schubabschaltung wird zweckmäßigerweise anstelle des Schubab- Schaltungsdrehmoments das momentane Schubdrehmoment des Verbrennungsmotors (= minimales Istdrehmoment des im Schubbetrieb bremsenden Verbrennungsmotors) bei der Bestimmung der Schubkennlinie berücksichtigt, da sich das Istdrehmoment des Verbrennungsmotors nicht sprunghaft, sondern weitgehend kontinuierlich oder stetig mit einem so genannten PTl-Verhalten ändert, so dass durch die Aktivierung bzw. Deaktivierung der Schubabschaltung verursachte sprunghafte Drehmomentänderungen kompensiert werden können.
Zweckmäßigerweise wird der Schaltbereich der Deaktivierung oder Aktivierung der Schubabschaltung durch Setzen eines Anforderungssignals für eine Schubabschaltung, z.B. aus einer Diagnose, identifiziert. Das Anforderungssignal für die Aktivierung oder Deaktivierung der Schubabschaltung kann in Abhängigkeit vom Ladezustand einer Batterie, von einer Steigung, von einer Motordrehzahl des Verbrennungsmotors und/oder vom angeforderten Schubabschaltungsdrehmoment gebildet werden. Dabei hängt die Ermittlung des Anforderungssignals für die Schubabschaltung maßgeblich vom angeforderten oder momentanen Schubdrehmoment ab, wobei bei der Ermittlung des Anforderungssignals zu dessen Änderung bevorzugt die weiteren Fahr- und Betriebsgrößen berücksichtigt werden, wie Ladezustand der Batterie, Steigung (= Bergauffahrt ) , Regelparameter eines rekuperativen Bremssystems des Elektromotors und/oder Kompensationsparameter bei Eingriff eines Abstandsregeltempo- mat, wenn beispielsweise das Schubabschaltungsdrehmoment nicht mehr kompensierbar ist. Durch eine derartige Anpassung des Anforderungssignals steht mehr Schubrekuperationsmoment zur Verfügung.
Wird nach dem oben beschriebenen Verfahren ein Schubrekupera¬ tionsmoment für den Elektromotor ermittelt, das zweckmäßiger- weise oberhalb eines effektiven Minimaldrehmoment des Elektromotors liegt, wird dieser vorzugsweise zugeschaltet, wobei das ermittelte Schubrekuperationsmoment als Solldrehmoment für den Elektromotor eingestellt wird. Das Schubrekuperationsmoment wird auch bei bereits eingeschaltetem Elektromotor als Solldrehmoment eingestellt. Im Detail wird bei eingeschaltetem Elektromotor als dessen Solldrehmoment zweckmäßigerweise eine Differenz aus ermitteltem Schubrekuperationsmoment und momentanem Istdrehmoment des Elektromotors eingestellt.
Der Elektromotor ist insbesondere eine rotierende elektrische Maschine, welche sowohl als elektrischer Motor als auch als elektrische Bremse und/oder Generator betrieben werden kann. Darüber hinaus kann eine in herkömmlicher Weise aus einem eingestellten und aufgebrachten Bremsmoment gewonnene Bremsenergie durch den auch als Generator betreibbaren Elektromotor beispielsweise in einer Batterie gespeichert werden oder zur Versorgung anderer elektrischer Verbraucher verwendet werden.
Der Elektromotor kann indirekt über ein automatisiertes Handgetriebe oder ein Automatikgetriebe mit dem Verbrennungsmotor gekoppelt oder koppelbar sein. Alternativ kann der Elektromotor auch direkt gekoppelt oder koppelbar sein, z.B. wenn der Läufer des Elektromotors - ähnlich einem Schwungrad - direkt auf der Kurbelwelle des Verbrennungsmotors oder auf einer koppelbaren Verlängerung dieser Kurbelwelle angeordnet ist.
Ausführungsbeispiele der Erfindung werden im Folgenden anhand von Zeichnungen näher erläutert.
Dabei zeigt: Fig. 1 schematisch ein Steuergerät zur Steuerung eines Antriebssystems mit einem Verbrennungsmotor und einem an diesen koppelbaren oder gekoppelten Elektromotor, und
Fig. 2 ein schematisches Diagramm eines Drehmomentverlaufs als Funktion der Drehzahl für mögliche Ausführungsbeispiele einer Schubkennlinie zur Ermittlung eines Schubrekuperationsmoments im Schubbetrieb eines Kraftfahrzeuges .
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
In Figur 1 ist schematisch ein als Hybridantrieb ausgebildetes Antriebssystem 1 für ein Kraftfahrzeug gezeigt, das einen Verbrennungsmotor 2 und einen Elektromotor 3 umfasst. Der Elektromotor 3 ist mit einer Kurbelwelle 4 des Verbrennungsmotors 2 verbunden oder verbindbar und kann diese antreiben, d.h. positive oder negative Drehmomente auf sie ausüben. Zur Gewinnung von Rekuperationsenergie ist der Elektromotor 3 mit einer Batterie 5 verbunden. Je nach Art und Aufbau des Hybridantriebs, z.B. Mischhybrid, Parallelhybrid oder Starter- Generator-System, ist der Elektromotor 3 direkt oder indirekt über ein Getriebe 6, z.B. ein automatisiertes Handgetriebe oder ein Automatikgetriebe, mit der Kurbelwelle 4 koppelbar. Im Ausführungsbeispiel nach Figur 1 ist der Elektromotor 3 direkt mit der Kurbelwelle 4 koppelbar.
Zur Steuerung und/oder Regelung des Antriebssystems 1 ist ein elektronisches Steuergerät 7 vorgesehen. Das Steuergerät 7 kann ein bereits vorhandenes Steuergerät, z.B. Bremssteuergerät oder Motorsteuergerät, sein, in welches das nachfolgend beschriebene Verfahren implementiert ist. Darüber hinaus können weitere Steuerungs- und/oder Regelungsverfahren, z.B. zur Fahrstabilität, Motorsteuerung und/oder Bremssteuerung, im Steuergerät 7 implementiert sein. Mittels des Steuergeräts 7 sind sowohl der Verbrennungsmotor 2 als auch der Elektromotor 3 oder bevorzugt nur der Elektromotor 3 Steuer- und/oder regelbar.
Im Betrieb des Kraftfahrzeuges kann durch Wegnahme einer Beschleunigungsanforderung, indem beispielsweise der Fahrer den Fuß vom Fahrpedal 8 nimmt und dieses nicht mehr betätigt, oder indem eine automatische Fahrantriebssteuerung, beispielsweise ein so genannter Tempomat, keine Beschleunigung, sondern eine Geschwindigkeitsreduzierung anfordert, oder indem ein Distanzhalter zur automatischen Einhaltung einer Distanz eine Geschwindigkeitsreduzierung anfordert, für das Kraftfahrzeug als Betriebszustand ein Schubbetrieb eingestellt werden, in welchem das Kraftfahrzeug durch dessen Trägheit angeschoben wird und die Antriebsleistung des Verbrennungsmotors 2 nicht mehr benötigt wird.
Zur Steuerung des Antriebssystems 1 in einem solchen Schubbetrieb dienen dem Steuergerät 7 zumindest folgende Parameter, Werte und/oder Kenngrößen: ein Aufspannungswert A eines Pedalwertgebers 9 des Fahrpedals 8 und eine aus dem Aufspannungswert A abgeleitete Drehmomentanforderung M, eine Drehzahl n eines Drehzahlgebers 10, Temperaturwerte Tv, TE und TB von Temperatursensoren 11 bis 13 des Verbrennungsmotors 2, des Elektromotors 3 bzw. der Batterie 5, ein Ladezustandswert L eines Ladezustands SOC der Batterie 5, ein Neigungswert N eines Neigungssensors 14, ein Programmwert P eines mittels eines Schalters 15 gewählten Automatikprogramms des Getriebes 6, die Fahrzeuggeschwindigkeit v, eine Stellung Szu einer Wandlerüberbrückungskupplung 16 und/oder eine Längsbzw. Querbeschleunigung aL, aQ des Kraftfahrzeuges sowie momentane minimale Istdrehmomente Mm1nV und M1111nE des Verbrennungsmotors 2 bzw. des Elektromotors 3 des im Schubbetrieb fahrenden Kraftfahrzeuges (die im Weiteren Schubdrehmomente MminV, MminE genannt werden) .
Die Wandlerüberbrückungskupplung 16 ist bei Drehzahlen n kleiner einer Schließdrehzahl ns geöffnet und oberhalb dieser Schließdrehzahl ns geschlossen. Die Schließdrehzahl ns kann für die verschiedenen Gangstufen des Getriebes 6 verschieden, aber immer größer als die Leerlaufdrehzahl nL sein. Ebenso kann ein Hin und Her-Schalten der Wandlerüberbrückungskupplung 16 durch eine Hysterese vermieden werden.
Im Schubbetrieb wird in Abhängigkeit vom Wert der dem Steuergerät 7 zugeführten Kenngrößen, insbesondere in Abhängigkeit vom Überschreiten der vorgegebenen Leerlaufdrehzahl nL und vom Überschreiten der Schließdrehzahl ns und somit dem Schließen bzw. einer geschlossenen Stellung Szu der Wandlerüberbrückungskupplung 16 das nachfolgend beschriebene Verfahren zur Einstellung eines Schubrekuperationsmoment MSR ausgeführt.
Dabei wird gemäß der vorliegenden Erfindung mittels des Steuergeräts 7 anhand einer aus einem Kennlinienfeld F(KO bis Kn) ermittelten Schubkennlinie Kl ein das Schubverhalten des Kraftfahrzeuges repräsentierendes Gesamtschubdrehmoment Msges ermittelt. Aus der Differenz des Gesamtschubdrehmoments MSges und dem momentanen minimalen Schubdrehmoment M1nInV des Verbrennungsmotors 2, der im Schubbetrieb bremsend wirkt, wird ein Schubrekuperationsmoment MSR gebildet, welches mittels des Steuergeräts 7 am Elektromotor 3 eingestellt wird. D.h. der Verbrennungsmotor 2 wird noch mit einem minimalen Schubdrehmoment Mminv betrieben. Zusätzlich wird das ermittelte Schubrekuperationsmoment MSR am Elektromotor 3 eingestellt, welches zu einem Einschalten des Elektromotors 3 führt bzw. welches bei eingeschaltetem Elektromotor 3 als Solldrehmoment MSOIIE eingestellt wird, wobei daraus resultierende positive oder negative Drehmomentwerte auf die Kurbelwelle 4 zur Schubrekuperation aufgebracht werden. Durch ein derartiges kennliniengeführtes, zusätzlich auf die Kurbelwelle 4 aufgebrachtes Schubrekuperationsmoment MSR des Elektromotors 3 werden Drehmomentschwankungen M des Verbrennungsmotors 2 im Schubbetrieb kompensiert, wodurch wiederholt ein weitgehend gleiches Schubfahrverhalten am Kraftfahrzeug eingestellt werden kann.
Um darüber hinaus die weiteren, das Schubverhalten des Kraftfahrzeuges beeinflussenden Kenngrößen zu berücksichtigen, wird die betreffende Schubkennlinie Kl aus dem Kennlinienfeld F(KO bis Kn) in Abhängigkeit vom gewählten Automatikprogramm P, von der ermittelten Steigung N, der Motordrehzahl n des Verbrennungsmotors 2, der Fahrzeuggeschwindigkeit v, der Temperaturen Tv, TE, TB, der Längsbeschleunigung aL und/oder der Querbeschleunigung aQ für eine drehzahlabhängige Kennlinienführung des Schubrekuperationsmoments MSR des Elektromotors 3 bestimmt. Die Berücksichtigung dieser Abhängigkeiten durch eine ermittelte Schubkennlinie Kl bei der Bestimmung des einzustellenden Schubrekuperationsmoments MSR dient insbesondere einem verbesserten Fahrkomfort und/oder der Fahrzeugsicherheit und/oder der Fahrzeugstabilität.
So wird beispielsweise zur Fahrzeugsicherheit bei einer zu hohen Motortemperatur TE des Elektromotors 3 das Schubrekuperationsmoment M5R nicht aufgeschaltet , um eine zu hohe Belas- tung des Elektromotors 3 zu vermeiden. Auch bei einer zu hohen Batterietemperatur TB bzw. bei einem zu hohen Ladezustand SOC der Batterie 5 oder noch kaltem Verbrennungsmotor 2, d.h. dessen Motortemperatur Tv ist niedrig, unterbleibt eine Aufbringung des Schubrekuperationsmoments MSR.
Zur Berücksichtigung eines angeforderten oder eingestellten Fahrkomforts, beispielsweise bei einer sportlich eingestellten Fahrweise mittels eines entsprechend eingestellten Automatikprogramms P werden bei der ermittelten Schubkennlinie Kl gegenüber einer Schubkennlinie im Komfortprogramm höhere negative bzw. positive Drehmomentwerte für ein sportliches Fahren vorgegeben, so dass der Fahrer auch im erfindungsgemäßen kennliniengeführten Schubbetrieb ein Verzögern bzw. Beschleunigen des Kraftfahrzeuges spürt.
Kommt es im Schubbetrieb ferner zu einer Aktivierung oder Deaktivierung der Schubabschaltung SAS, d.h. in Abhängigkeit vom Überschreiten einer oberhalb der Leerlaufdrehzahl nL vorgegebenen unteren Drehzahl ns (= Schließdrehzahl ns zum Schließen der Wandlerüberbrückungskupplung 16) wird die Schubabschaltung SAS aktiviert bzw. deaktiviert und die Einspritzung und Zündung des Verbrennungsmotors 2 werden ausgeschaltet, so wird vor und im Schaltbereich der Aktivierung das momentane minimale Schubdrehmoment MminV des Verbrennungsmotors 2 zur Bestimmung der Schubkennlinie Kl berücksichtigt. Zur Identifizierung des Schaltbereichs der Aktivierung bzw. Deaktivierung der Schubabschaltung SAS wird das Setzen eines Anforderungssignals Sa überwacht. Alternativ oder zusätzlich kann das Anforderungssignal S3 in Abhängigkeit vom Ladezustand SOC der Batterie 5, von der Steigung N, von der Motordrehzahl n des Verbrennungsmotors 2 und/oder vom Wert eines angeforderten Schubabschaltungsmoment MSAs automatisch gebil- det werden. Das angeforderte Schubabschaltungsmoment MSAS ist dabei ein vom minimalen Schub- oder Istdrehmoment MminV des Verbrennungsmotors 2 und vom Bremsvermogen des Verbrennungsmotors 2 und der Trägheit des Kraftfahrzeuges abhangiges Drehmoment M, das beispielsweise mittels des Steuergeräts 7 anhand der Kenngroßen und Parameter ermittelt wird. Nach Aktivierung und somit bei aktivierter Schubabschaltung SAS wird als Drehmomentabhangigkeit das die Schubabschaltung SAS repräsentierende Schubabschaltungsdrehmoment MSAS bei der Ermittlung der Schubkennlmie Kl berücksichtigt.
Ist nun im Schubbetrieb anhand der ermittelten Kenngroßen und/oder Parameter eine aktuelle Schubkennlmie Kl bestimmt worden, so wird in Abhängigkeit zumindest vom momentanen minimalen Schubdrehmoment MminV des Verbrennungsmotors 2 anhand der ermittelten Schubkennlinie Kl und dem aus dieser ermittelten Gesamtschubdrehmoment MSges ein entsprechendes Schubre- kuperationsmoment MSR bestimmt, das bei ausgeschaltetem Elektromotor 3 als Solldrehmoment MSoi1E eingestellt wird. Dabei greift der durch das Solldrehmoment MSollE geführte Elektromotor 3 mit zugehörigen positiven oder negativen Drehmomentwerten entsprechend der ermittelten Schubkennlinie Kl auf die Kurbelwelle 4 des Verbrennungsmotors 2 ein, so dass stets ein gleiches und sich wiederholendes Schubverhalten des Kraftfahrzeuges ermöglicht wird. Dabei bilden das minimale Schubdrehmoment MminV des Verbrennungsmotors 2 und das Schubrekuperationsmoment MSR des Elektromotors 3 und gegebenenfalls das bei einer aktivierten Schubabschaltung SAS auftretende Schubabschaltungsdrehmoment MSAS das Gesamtschubdreh¬ moment MSgesΛ das durch die Schubkennlinie Kl drehzahlabhangig vorgegeben wird. Figur 2 zeigt ein Beispiel für ein schematisches Diagramm mit mehreren Drehmomentverlaufen Vl bis V4 als Funktion der Drehzahl n und verschiedene Beispiele für eine Schubkennlinie KO bis Kn eines Kennlmienfeldes F(KO bis Kn) .
Dabei stellt der Drehmomentverlauf Vl ein Maximaldrehmoment Mmax des Kraftfahrzeuges dar, das aus dem Maximaldrehmo- ment Mmaxv des Verbrennungsmotors 2 und dem Maximaldrehmoment MmaxE des Elektromotors 3 gebildet ist und das das Gesamtdrehmoment Mges des Kraftfahrzeuges auf einen oberen Wert im Fahrbetrieb, also ohne Schub, begrenzt.
Der Drehmomentverlauf V2 stellt den drehzahlabhangigen Verlauf des Maximaldrehmoments Mmaxv des Verbrennungsmotors 2 ohne ein eingreifendes Drehmoment vom Elektromotor 3 dar.
Die Drehmomentverlaufe V3 und V3 ' stellen jeweils den drehzahlabhangigen Verlauf eines Minimaldrehmoments Mmin des Kraftfahrzeuges dar, der dem minimalen Schubdrehmoments Mminv des Verbrennungsmotors 2 ohne ein eingreifendes Drehmoment vom Elektromotor 3 im Schubbetrieb ohne Schubabschaltung SAS bzw. mit Schubabschaltung SAS entspricht. Ein Pfeil Pl repräsentiert das im Drehmomentverlauf V3 ' berücksichtigte Schubabschaltungsmoment MSAS bei aktivierter Schubabschaltung SAS.
Die Drehmomentverlaufe V4 und V4 ' stellen jeweils den drehzahlabhangigen Verlauf eines Minimaldrehmoments Mmin des Kraftfahrzeuges im Schubbetrieb mit bzw. ohne aktivierte Schubabschaltung SAS dar. Das Minimaldrehmoment Mmn ist aus dem minimalen Schubdrehmoment Mminv des Verbrennungsmotors 2 und dem Minimaldrehmoment MmnE des Elektromotors 3 und bei eingeschalteter Schubabschaltung SAS aus dem Schubabschaltungsmoment M5AS drehzahlabhangig gebildet und auf einen unte- ren Wert im Schubbetrieb begrenzt. Ein Pfeil P2 repräsentiert das im Drehmomentverlauf V4 berücksichtigte Schubabschaltungsmoment MSAS bei aktivierter Schubabschaltung SAS.
Die Differenz aus einem Drehmoment des Drehmomentverlaufs V2 und einem korrespondierenden Drehmoment des Drehmomentverlaufs V3 beschreibt das durch die am Fahrpedal 8 anstehende Aufspannung A für die jeweilige Drehzahl n. Diese Aufspannung A wird durch das bei Vollgasstellung des Fahrpedals 8 zu erzielende Maximaldrehmoment Mmaxv des Verbrennungsmotors 2 und das bex nichtbetatigten Fahrpedal 8 zu erzielende minimale Schubdrehmoment MminV des Verbrennungsmotors 2 begrenzt.
Ein Pfeil P3 repräsentiert dxe geschlossene Stellung Szu der Wandleruberbruckungskupplung 16 bei Überschreiten der Schließdrehzahl ns, welche vom Drehmoment, der Fahrzeuggeschwindigkeit und anderen Großen abhangen kann.
Ein Pfeil P4 repräsentiert eine in Abhängigkeit vom gesetzten Anforderungssignal Sa aktivierte Schubabschaltung SAS bei U- berschreiten der Schließdrehzahl ns.
Der Drehmomentverlauf V5 stellt beispielhaft eine anhand des oben beschrieben Verfahrens aus einem Kennlinienfeld F(KO bis Kn) ermittelte Schubkennlinie Kl dar, welche drehzahlabhangig als Gesamtschubdrehmoment MSges das minimale Schubdrehmoment MminV des Verbrennungsmotors 2 im Schubbetrieb, gegebenenfalls bei aktivierter Schubabschaltung SAS das daraus resultierende Schubabschaltungsdrehmoment MSAS und das Schubre- kuperationsmoment MSR des Elektromotors 3 umfasst. Dabei sind beispielhaft drei mögliche Schubkennlinien KO, Kl und Kn des Kennlinienfeldes F(KO bis Kn) dargestellt. Dabei wird, wie oben unter Figur 1 näher beschrieben, die den Elektromotor 3 führende Schubkennlinie Kl aus dem Kennlinienfeld F(KO bis Kn) mittels des Steuergeräts 7 anhand der er- fassten und/oder ermittelten Kenngrößen und Parameter bestimmt und zur Ermittlung des Schubrekuperationsmoments MSR für die jeweilige Drehzahl n herangezogen, wobei das ermittelte Schubrekuperationsmoment MSR auf ein vorgegebenes effektives Minimaldrehmoment MeffminE des Elektromotors 3 begrenzt wird.
Darüber hinaus kann gegebenenfalls drehzahlabhängig ein Reku- perationsbremsmoment MBR von einem nicht näher dargestellten rekuperativen Bremssystem des Elektromotors 3 berücksichtigt werden.
Bezugszeichenliste
1 Antriebssystem
2 Verbrennungsmotor
3 Elektromotor
4 Kurbelwelle
5 Batterie
6 Getriebe
7 Steuergerät
8 Fahrpedal
9 Fahrpedalgeber
10 Drehzahlsensor
11 Temperatursensor für Verbrennungsmotor
12 Temperatursensor für Elektromotor
13 Temperatursensor für Batterie
14 Neigungssensor
15 Schalter zur Auswahl eines Automatikprogramms
16 Wandlerüberbrückungskupplung
A Aufspannung am Fahrpedal aL Längsbeschleunigung aQ Querbeschleunigung
KO bis Kn Schubkennlinien
F(KO bis Kn) Kennlinienfeld der Schubkennlinien
MBR Rekuperationsbremsmoment des Elektromotors
MseffminE effektives Minimaldrehmoment des Elektromotors
Mmin minimales Gesamtdrehmoment des Kraftfahrzeuges Mmax maximales Gesamtdrehmoment des Kraftfahrzeuges
MmaxE maximales Drehmoment (maximales Istdrehmoment im Fahrbetrieb) des Elektromotors
Mmaxv maximales Drehmoment (maximales Istdrehmoment im Fahrbetrieb) des Verbrennungsmotors
MminE minimales Schubdrehmoment (minimales Istdrehmoment im Schubbetrieb) des Elektromotors
Mminv minimales Schubdrehmoment (minimales Istdrehmoment im Schubbetrieb) des Verbrennungsmotors
MSAS Schubabschaltungsdrehmoment
MSges Gesamtschubdrehmoment
MsoiiE Solldrehmoment des Elektromotors
M3R Schubrekuperationsmoment
N Steigung n Drehzahl nL Leerlaufdrehzahl ns Schließdrehzahl
P Automatikprogramm
Pl bis P4 Pfeile
Sa Anforderungssignal für Schubabschaltung
Szu Stellung der Wandlerüberbrückungskupplung
SAS Schubabschaltung
SOC Ladezustand der Batterie
Vl bis V4 Kurvenverläufe

Claims

Patentansprüche
1. Verfahren zur Steuerung eines Antriebssystems (1) für ein Kraftfahrzeug mit einem eine Kurbelwelle (4) umfassenden Verbrennungsmotor (2) und mindestens einem mit dem Verbrennungsmotor (2), insbesondere der Kurbelwelle (4) gekoppelten oder koppelbaren Elektromotor (3) , wobei im Schubbetrieb des Kraftfahrzeuges anhand einer aus einem Kennlinienfeld (F(KO bis Kn)) ermittelten Schubkennlinie (Kl) ein das Schubverhalten des Kraftfahrzeuges repräsentierendes Gesamtschubdrehmoment (MSges) bestimmt wird und aus der Differenz von Gesamtschubdrehmoment (MSges) und momentanem minimalen Schubdrehmoment (MmnV) des Verbrennungsmotors (2) ein Schubrekuperationsmoment (MSR) ermittelt wird, das am Elektromotor (2) eingestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Gesamtschubdrehmoment (MSges) ermittelt wird, wenn der Verbrennungsmotor (2) zumindest eine Leerlaufdrehzahl (nL) überschritten hat und eine den Verbrennungsmotor (2) und ein Getriebe (6) verbindende Wandlerüberbrü- ckungskupplung (16) bei Erreichen einer vorgegebenen Motordrehzahl (ns) geschlossen wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Kennlinienfeld (F(KO bis Kn)) aus einer Anzahl von Schubkennlinien (KO bis Kn) gebildet wird, die jeweils als Drehmoment-Drehzahl-Kennlinie in Abhängigkeit vom gewählten Automatikprogramm (P) , von einer Steigung (N) , einer Motordrehzahl (n) , einer Fahrzeuggeschwindigkeit (v) , einer Längsbeschleunigung (aL) und/oder einer Temperatur (Tv, TE, TB) des Verbrennungsmotors (2), des Elektromotors (3) und/oder einer Batterie (5) bestimmt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass bei einer aktivierten Schubabschaltung (SAS) ein daraus resultierendes Schubabschaltungsdrehmoment (MSAS) bei der Bestimmung der Schubkennlinie (Kl) berücksichtigt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass im Schaltbereich der Deaktivierung oder Aktivierung der Schubabschaltung (SAS) anstelle des Schubabschaltungsdrehmoments (MSAS) das momentane Schubdrehmoment (MminV) des Verbrennungsmotors (2) bei der Bestimmung der Schubkennlinie (Kl) berücksichtigt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Schaltbereich der Deaktivierung oder Aktivierung der Schubabschaltung (SAS) durch Setzen eines Anforderungssignals (SJ für eine Schubabschaltung (SAS) identifiziert wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Anforderungssignal (Sa) für die Schubabschaltung (SAS) in Abhängigkeit von einem Ladezustand (SOC) einer Batterie (5), von einer Steigung (N), von einer Motordrehzahl (n) des Verbrennungsmotors (2) und/oder vom angeforderten Schubabschaltungsdrehmoment (MSÄS) gebildet wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass bei Vorliegen eines Schubrekuperationsmoments (MSR) und ausgeschaltetem Elektromotor (3) dieser zugeschaltet wird und das ermittelte Schubrekuperationsmoment (MSR) als Solldrehmoment (MSOIIE) für den Elektromotor (3) eingestellt wird.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass bei Vorliegen eines Schubrekuperationsmoments (MSR) und eingeschaltetem Elektromotor (3) eine Differenz aus ermitteltem Schubrekuperationsmoment (MSR) und momentanem Istdrehmoment (MminE) des Elektromotors (3) als Solldrehmoment (MSOIIE) für den Elektromotor (3) eingestellt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das ermittelte Schubrekuperationsmoment (MSR) auf ein vorgegebenes Minimaldrehmoment (MeffminE) des Elektromo¬ tors (3) begrenzt wird.
PCT/EP2008/002608 2007-04-05 2008-04-02 Verfahren zur steuerung eines antriebssystems für ein kraftfahrzeug WO2008122392A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007016515A DE102007016515A1 (de) 2007-04-05 2007-04-05 Verfahren zur Steuerung eines Antriebssystems für ein Kraftfahrzeug
DE102007016515.5 2007-04-05

Publications (1)

Publication Number Publication Date
WO2008122392A1 true WO2008122392A1 (de) 2008-10-16

Family

ID=39627378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/002608 WO2008122392A1 (de) 2007-04-05 2008-04-02 Verfahren zur steuerung eines antriebssystems für ein kraftfahrzeug

Country Status (2)

Country Link
DE (1) DE102007016515A1 (de)
WO (1) WO2008122392A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039642A1 (de) 2010-08-23 2012-02-23 Bayerische Motoren Werke Aktiengesellschaft Einstellung des Schleppmoments eines Kraftfahrzeugs-Antriebsstrangs für den Schubbetrieb
CN111433098A (zh) * 2017-12-04 2020-07-17 舍弗勒技术股份两合公司 用于控制内燃机的方法
US11572055B2 (en) 2019-03-11 2023-02-07 Zf Friedrichshafen Ag Method and control unit for operating a hybrid vehicle

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039614A1 (de) * 2009-09-01 2011-03-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung eines rekuperativen Verzögerungssystems für ein Kraftfahrzeug
DE102009039615A1 (de) 2009-09-01 2011-03-03 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Steuerung eines rekuperativen Verzögerungssystems für ein Kraftfahrzeug
DE102013217092B4 (de) * 2013-08-28 2022-02-03 Zf Friedrichshafen Ag Verfahren zum Betrieb eines Fahrzeugs
CN104417346B (zh) 2013-09-09 2017-04-12 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417554B (zh) 2013-09-09 2018-03-13 比亚迪股份有限公司 混合动力汽车及其的巡航控制方法
CN104417544B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417344B (zh) 2013-09-09 2017-03-15 比亚迪股份有限公司 混合动力汽车及其的驱动控制方法
CN104417543B (zh) 2013-09-09 2017-08-22 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
CN104417557B (zh) * 2013-09-09 2017-07-04 比亚迪股份有限公司 一种车辆的滑行回馈控制系统及其控制方法
CN104417347B (zh) 2013-09-09 2017-08-04 比亚迪股份有限公司 混合动力汽车的控制系统和控制方法
DE112017005710A5 (de) * 2016-11-14 2019-08-08 Magna Steyr Fahrzeugtechnik Ag & Co Kg Kraftfahrzeug umfassend einen Generator und eine Generatorsteuerung
DE102017209765A1 (de) * 2017-06-09 2018-12-13 Volkswagen Aktiengesellschaft Antriebsstrang und Betriebsverfahren für ein Hybridfahrzeug mit einem freilaufgeschalteten Vorwärtsgang

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532128A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag Antriebssystem, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben desselben
EP0800947A2 (de) * 1996-04-10 1997-10-15 Honda Giken Kogyo Kabushiki Kaisha Regelungssystem für Hybridfahrzeug
EP1108128A1 (de) 1998-08-28 2001-06-20 Continental ISAD Electronic Systems GmbH & Co. oHG Antriebssystem für ein kraftfahrzeug sowie verfahren zum betreiben eines antriebssystems
WO2002006072A1 (de) * 2000-07-18 2002-01-24 Siemens Aktiengesellschaft Steuereinheit für ein getriebe und zugehöriges betriebsverfahren
DE102004016186A1 (de) * 2004-04-01 2005-10-20 Volkswagen Ag Verfahren zum Betreiben eines Hybridfahrzeugs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532128A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag Antriebssystem, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben desselben
EP0800947A2 (de) * 1996-04-10 1997-10-15 Honda Giken Kogyo Kabushiki Kaisha Regelungssystem für Hybridfahrzeug
EP1108128A1 (de) 1998-08-28 2001-06-20 Continental ISAD Electronic Systems GmbH & Co. oHG Antriebssystem für ein kraftfahrzeug sowie verfahren zum betreiben eines antriebssystems
WO2002006072A1 (de) * 2000-07-18 2002-01-24 Siemens Aktiengesellschaft Steuereinheit für ein getriebe und zugehöriges betriebsverfahren
DE102004016186A1 (de) * 2004-04-01 2005-10-20 Volkswagen Ag Verfahren zum Betreiben eines Hybridfahrzeugs

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039642A1 (de) 2010-08-23 2012-02-23 Bayerische Motoren Werke Aktiengesellschaft Einstellung des Schleppmoments eines Kraftfahrzeugs-Antriebsstrangs für den Schubbetrieb
CN111433098A (zh) * 2017-12-04 2020-07-17 舍弗勒技术股份两合公司 用于控制内燃机的方法
CN111433098B (zh) * 2017-12-04 2023-12-29 舍弗勒技术股份两合公司 用于控制内燃机的方法
US11572055B2 (en) 2019-03-11 2023-02-07 Zf Friedrichshafen Ag Method and control unit for operating a hybrid vehicle

Also Published As

Publication number Publication date
DE102007016515A1 (de) 2008-10-09

Similar Documents

Publication Publication Date Title
WO2008122392A1 (de) Verfahren zur steuerung eines antriebssystems für ein kraftfahrzeug
EP2066543B1 (de) Verfahren zum Betreiben eines Hybridantriebs eines Kraftfahrzeugs
EP2079622B1 (de) Verfahren zum betreiben einer hybridantriebsvorrichtung mit einem drehmomentwandler
WO2008122393A1 (de) Verfahren zur steuerung eines antriebssystems für ein kraftfahrzeug
DE19833909B4 (de) Vorrichtung und Verfahren zur drehmomentgestützten Fahrzeuggeschwindigkeitsregelung
EP1399327B1 (de) Verfahren zum steuern eines antriebsstrangs eines kraftfahrzeugs
DE19540061C1 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftfahrzeug-Dieselmotors
EP1472111B1 (de) Verfahren zur steuerung des betriebsverhaltens eines hybridantriebes eines fahrzeuges
EP0556942A1 (de) Fahrzeug mit Verbrennungsmotor, elektrischem Generator und Elektromotor
WO2007115922A1 (de) Betriebsarten- und momentenkoordination bei hybrid-kraftfahrzeugantrieben
WO1998058814A1 (de) System zur gemeinsamen steuerung einer servokupplung und eines fahrzeugmotors
WO2008122391A1 (de) Verfahren zur steuerung eines antriebssystems für ein kraftfahrzeug
DE10328786B4 (de) Verfahren zum Betreiben eines Kraftfahrzeuges
WO2007113288A1 (de) Fahrpedalaufsetzpunkt bei hybridfahrzeugen
EP2203338A1 (de) Verfahren zum betreiben einer antriebsvorrichtung, insbesondere hybridantriebsvorrichtung
EP3351787B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung
DE102012210359A1 (de) Verfahren zum Betreiben eines Kraftfahrzeugs
EP3592588B1 (de) Verfahren zur steuerung eines kraftfahrzeuges und kraftfahrzeug
DE19642006A1 (de) Steuervorrichtung für stufenlos veränderliches Getriebe
EP1539525B1 (de) Antriebsstrang eines kraftfahrzeugs und verfahren zum steuern eines kraftfahrzeug-antriebsstrangs
DE112019003902T5 (de) Fahrzeugsteuervorrichtung
EP3827165B1 (de) Verfahren zum betreiben einer leerlaufregelvorrichtung, leerlaufregelvorrichtung und kraftfahrzeug
DE19821481C2 (de) Verfahren und Einrichtung zur Steuerung einer Kraftfahrzeug-Antriebseinheit mit Verbrennungsmotor und CVT-Getriebe
DE102013225853A1 (de) Verfahren zum Betrieb eines segelbetriebsfähigen Kraftfahrzeugs
DE102021100820A1 (de) Motordrehmoment-steuervorrichtung für hybridfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08734956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08734956

Country of ref document: EP

Kind code of ref document: A1