WO2008121261A2 - Traitement efficace de tumeurs et de cancer au moyen de promédicaments de la triciribine - Google Patents

Traitement efficace de tumeurs et de cancer au moyen de promédicaments de la triciribine Download PDF

Info

Publication number
WO2008121261A2
WO2008121261A2 PCT/US2008/003853 US2008003853W WO2008121261A2 WO 2008121261 A2 WO2008121261 A2 WO 2008121261A2 US 2008003853 W US2008003853 W US 2008003853W WO 2008121261 A2 WO2008121261 A2 WO 2008121261A2
Authority
WO
WIPO (PCT)
Prior art keywords
akt
cancer
tcn
triciribine
cells
Prior art date
Application number
PCT/US2008/003853
Other languages
English (en)
Other versions
WO2008121261A3 (fr
Inventor
Lawrence Akinsanmi
Original Assignee
Vioquest Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vioquest Pharmaceuticals, Inc. filed Critical Vioquest Pharmaceuticals, Inc.
Publication of WO2008121261A2 publication Critical patent/WO2008121261A2/fr
Publication of WO2008121261A3 publication Critical patent/WO2008121261A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • This application encompasses novel prodrugs of triciribine and related compounds and therapeutic regimens of prodrugs of triciribine and related compounds and compositions for the treatment of tumors, cancer, and other disorders associated with abnormal cell proliferation.
  • the application further encompasses oral formulations of prodrugs with increased bioavailabilty, which allows a new route of administration with the attendant clinical benefits of ease of administration.
  • Cancer is an abnormal growth of cells. Cancer cells rapidly reproduce despite restriction of space, nutrients shared by other cells, or signals sent from the body to stop reproduction. Cancer cells are often shaped differently from healthy cells, do not function properly, and can spread into many areas of the body. Abnormal growths of tissue, called tumors, are clusters of cells that are capable of growing and dividing uncontrollably. Tumors can be benign (noncancerous) or malignant (cancerous). Benign tumors tend to grow slowly and do not spread. Malignant tumors can grow rapidly, invade and destroy nearby normal tissues, and spread throughout the body.
  • Cancers are classified according to the kind of fluid or tissue from which they originate, or according to the location in the body where they first developed. In addition, some cancers are of mixed types. Cancers can be grouped into five broad categories, carcinomas, sarcomas, lymphomas, leukemias, and myelomas, which indicate the tissue and blood classifications of the cancer. Carcinomas are cancers found in body tissue known as epithelial tissue that covers or lines surfaces of organs, glands, or body structures. For example, a cancer of the lining of the stomach is called a carcinoma. Many carcinomas affect organs or glands that are involved with secretion, such as breasts that produce milk. Carcinomas account for approximately eighty to ninety percent of all cancer cases.
  • Sarcomas are malignant tumors growing from connective tissues, such as cartilage, fat, muscle, tendons, and bones.
  • connective tissues such as cartilage, fat, muscle, tendons, and bones.
  • the most common sarcoma a tumor on the bone, usually occurs in young adults.
  • Examples of sarcoma include osteosarcoma (bone) and chondrosarcoma (cartilage).
  • Lymphoma refers to a cancer that originates in the nodes or glands of the lymphatic system, whose job it is to produce white blood cells and clean body fluids, or in organs such as the brain and breast. Lymphomas are classified into two categories: Hodgkin's lymphoma and non- Hodgkin's lymphoma.
  • Leukemia also known as blood cancer, is a cancer of the bone marrow that keeps the marrow from producing normal red and white blood cells and platelets.
  • White blood cells are needed to resist infection.
  • Red blood cells are needed to prevent anemia. Platelets keep the body from easily bruising and bleeding.
  • leukemia include acute myelogenous leukemia, chronic myelogenous leukemia, acute lymphocytic leukemia, and chrome lymphocytic leukemia.
  • myelogenous and lymphocytic indicate the type of cells that are involved.
  • myelomas grow in the plasma cells of bone marrow. In some cases, the myeloma cells collect in one bone and form a single tumor, called a plasmacytoma.
  • the myeloma cells collect in many bones, forming many bone tumors. This is called multiple myeloma.
  • Tumor induction and progression are often the result of accumulated changes in the tumor-cell genome. Such changes can include inactivation of cell growth inhibiting genes, or tumor suppressor genes, as well as activation of cell growth promoting genes, or oncogenes.
  • apoptosis i.e. loss of proapoptotic p53; overexpression of pro-survival Bcl-2; hyperactivation of survival pathways such as those mediated by PI3K/Akt
  • sustained angiogenesis i.e. high levels of secretion of VEGF
  • metastasis i.e. extracellular proteases and prometastatic integrins
  • Receptor tyrosine kinases such as EGFR, ErbB2, VEGFR and insulin-like growth factor I receptor (IGF-IR) are intimately involved in the development of many human cancers including colorectal pancreatic, breast and ovarian cancers (Khaleghpour, K., et al. Carcinogenesis, 2004. 25(2): p. 241-8.; Sekharam, M., et al., Cancer Res, 2003. 63(22): p. 7708-16).
  • Binding of ligands such as EGF, VEGF and IGF-I to their receptors promotes stimulation of the intrinsic tyrosine kinase activity, autophosphorylation of specific tyrosines in the cytoplasmic domain of the receptors and recruitment of signaling proteins that trigger a variety of complex signal transduction pathways (Olayioye, M.A., et al., Embo J, 2000. 19(13): p. 3159-67, Porter, A.C. and R.R. Vaillancourt, Oncogene, 1998. 17(11 Reviews): p. 1343-52).
  • Akt is a serine/threonine protein kinase (also known as PK B ), which has 3 family members Aktl, Akt2 and Akt3. Stimulation of cells with growth or survival factors results in recruitment to the receptors of the lipid kinase phosphoinositide-3-OH-kinase (PI3K) which phosphorylates phosphoinositol-4,5-biphosphate (PIP 2 ) to PIP 3 which recruits Akt to the plasma membrane where it can be activated by phosphorylation on Thr308 andSer473 (Aktl), Thr308 andSer474 (Akt2) and Thr308 andSer472 (Akt3) (Datta, S.R.et al.
  • PI3K lipid kinase phosphoinositide-3-OH-kinase
  • PIP 3 phosphoinositol-4,5-biphosphate
  • PI3K activates Akt by phosphorylating PIP2 and converting to PIP3.
  • the phosphatase PTEN dephophorylates PIP3 to PIP2 and hence prevents the activation of Akt.
  • Akt hyperactivated Akt
  • Akt is overexpressed and/or hyperactivated in 57%, 32%, 27% and 36% of human colorectal, pancreatic, breast and ovarian cancers, respectivel (Roy, H.K., et al. Carcinogenesis, 2002. 23(1): p. 201-5,.
  • Hyperactivation of Akt is due to amplification and/or overexpression of Akt itself as well as genetic alterations upstream of Akt including overexpression of receptor tyrosine kinases and/or their ligands (Khaleghpour, K., et al. Carcinogenesis, 2004. 25(2): p. 241-8.; Sekharam, M., et al., Cancer Res, 2003. 63(22): p. 7708-16, Cohen, B.D., et al., Biochem Soc Symp, 1998. 63: p. 199-210., Muller, WJ., et al. Biochem Soc Symp, 1998. 63: p.
  • TCN-P triciribine phosphate
  • TCN-P had been identified as an inhibitor of DNA, RNA and protein synthesis, which demonstrated selectivity towards cells in the S phase of the cell cycle (Roti-Roti et al. 1978 Proc Am Assoc Cancer Res and ASCO 19:40). It had also been proposed that unlike other nucleoside antitumor agents at the time, TCN- P is not phosphorylated beyond the level of the monophosphate and is not incorporated into polynucleotides (Bennett et al 1978 Biochem Pharmacol 27:233-241 , Plagemann JNCI 1976 57: 1283-95).
  • TCN-P is dephosphorylated to TCN by a plasma enzyme and by cellular ecto-5 '-nucleotidase. Inside the cells, TCN can be rephosphorylated to TCN-P by adenosine kinase (Wotring et al 1981 Proc Am Assoc Cancer Res 22: 257, Basseches et al. J Chromatogr 1982 233: 227-234).
  • TCN-P was entered into Phase I clinical trials by Mittelman and colleagues in twenty patients with advanced refractory malignancies (Mittelman et al. 1983 Cancer Treat Rep 67: 159-162).
  • TCN-P was administered as an intravenous (i.v.) infusion over fifteen minutes once every three weeks at doses from 25 to 350 mg/m 2 .
  • the patients in the trial were diagnosed with breast, head/neck, lung, pancreas, thyroid, melanoma or undetermined cancer. Only limited therapeutic responses were found and significant toxicity was evident.
  • Mittelman's group concluded that further clinical trials employing their dosing schedule were not warranted, but urged other groups to examine the effects of TCN-P in certain specific cancer types.
  • Lu et al. (ASCO Abstracts, Clinical Pharmacology, p 34 C- 133) examined the clinical pharmacology of TCN in patients given 30-40 mg/m 2 intravenously by continuous infusion for five days. Lu et al. reported that TCN contributed to liver toxicity and anemia and suggested that patients should be monitored for these toxicities.
  • Cobb et al (Cancer Treat Reports 1983 67: 173) reported the activity of TCN-P against surgical explants of human tumors in the six day subrenal capsule assay in mice. They examined eighty tumor types that represented breast, lung, colon, ovarian and cervical. Cobb et al reported that TCN produced variable response rates in the different tumors, ranging from 21 %(breast) to 88% (cervical).
  • Feun et al. Another Phase I was also reported by Feun et al. in 1984 (Cancer Research 44 (8) 3608-12). Feun et al administered 10, 20, 30, and/or 40 mg/m 2 intravenously by continuous infusion for five days, every three to four or six weeks. The patients in the trial had been diagnosed with colon, sarcoma, melanoma, lung or "other" cancer. Feun et al. reported that significant toxicity was seen, including hyperglycemia, hepatotoxicity and thrombocytopenia.
  • the authors recommended a schedule for Phase II trials of 20 mg/m 2 per day for five days for six weeks and also recommended due to the toxicity that the patients should be closely monitored for liver and pancreatic function, and that patients with diabetes, liver dysfunction or massive hepatic metastasis should be excluded.
  • Schilcher et al. (Cancer Research 1986 46: 3147-3151) reported the results of a Phase I evaluation of TCN-P using a weekly intravenous regimen. The study was conducted in twenty- four patients with advanced solid cancers via a slow intravenous injection over five minutes on days 1, 8, 15 and 22 of a 42 day cycle with a two week rest. Five dose levels ranging from 12 to 96 mg/m 2 were studied with 3-12 patients treated at each level with a total of 106 doses administered. The patients in the trial had been diagnosed with colon, rectal, bladder, adrenal, ovarian, pancreas, sarcoma, melanoma, lung or "other" cancer. Schilcher et al.
  • Powis et al (Cancer Treatment Reports 70: 359-362) reported the disposition of TCN-P in blood and plasma of patients during Phase I and II clinical trials.
  • the Phase I trial employed a daily dose of 24-55 mg/m 2 for 5 days, whereas the Phase II clinical trial employed a single dose of 250 mg/m 2 .
  • Powis et al failed to identify a correlation between TCN-P pharmacokinetic parameters and toxicity of TCN- P.
  • WO 03/079748 to the Regents of the University of California disclosed certain ZNF217 inhibitors, such as triciribine, in combination with additional chemotherapeutic agents, such as doxorubicon.
  • the present invention encompasses novel compounds and triciribine prodrugs for the administration and compositions with reduced toxicity for the treatment of tumors, cancer, and others disorders associated with abnormal cell proliferation.
  • the invention encompasses prodrugs of triciribine that are useful in modulating the activity of Akt kinase.
  • the agents useful in modulating the activity of Akt kinase include, but are not limited to, compositions and formulations comprising a prodrug of triciribine.
  • the invention encompasses novel therapeutic regimens for the administration of prodrugs of triciribine, triciribine phosphate and related compounds to treat or prevent tumors or cancer in a subject while limiting systemic toxicity.
  • the invention is based on the discovery that tumors or cancers which overexpress Akt kinase are particularly sensitive to the cytotoxic effects of triciribine prodrugs and related compounds.
  • the inventors have determined, contrary to the prior art and experience, how to successfully use prodrugs of triciribine, triciribine phosphate and related compounds to treat tumors and cancer by one or a combination of (i) administering one or more prodrugs of triciribine, triciribine phosphate and related compounds, which enhanced sensitivity to the drug; (ii) use of a described dosage level that minimizes the toxicity of the drug but yet still exhibits efficacy; or (iii) use of a described dosage regimen that minimizes the toxicity of the drug.
  • the invention further encompasses methods to treat tumors and cancers that are particulary susceptible to the toxic effects of triciribine, triciribine phosphate and related compounds.
  • the methods encompass treating a tumor in a mammal, particularly a human comprising administering to a mammal in need thereof one or more prodrugs of triciribine, triciribine phosphate or related compounds.
  • dosing regimens are provided that limit the toxic side effects of triciribine prodrugs, TCN and related compounds.
  • such dosing regimens minimize or eliminate toxic side effects, including, but not limited to, hepatoxicity, thrombocytopenia, hyperglycemia, vomiting, hypocalcemia, anemia, hypoalbunemia, myelosuppression, hypertriglyceridemia, hyperamylasemia, diarrhea, stomachitis and/ or fever.
  • the administration of prodrugs of triciribine, triciribine phosphate and related compounds provides at least a partial, such as at least 15, 20 or 30%, or complete response (i.e., treatment of the cancer or tumor).
  • Another embodiment encompasses a method for treating a subject which has been diagnosed with a tumor by administering to the subject an effective amount of one or more prodrugs of triciribine, triciribine phosphate and related compounds, according to a dosing schedule that includes administering the drug approximately one time per week for approximately three weeks followed by a one week period wherein the drug is not administered.
  • methods are provided to treat tumors or cancer in a subject by administering to the subject a dosing regimen of 10 mg/m 2 or less of one or more prodrugs of triciribine, triciribine phosphate and related compounds one time per week.
  • the prodrug compound can be administered as a single bolus dose over a short period of time, for example, about 5, 10 or 15 minutes.
  • dosing schedules are provided in which the prodrug compound is administered via continuous infusion for at least 24, 48, 72, 96, or 120 hours.
  • the continuous administration can be repeated at least once a week, once every two weeks and/ or once a month.
  • the prodrug compounds can be administered at least once every three weeks.
  • the prodrug compounds can be administered at least once a day for at least 2, 3, 4 or 5 days.
  • one or more prodrugs of triciribine, triciribine phosphate and related compounds as disclosed herein can be administered to patients in an amount that is effective in causing tumor regression.
  • the administration of one or more prodrugs of triciribine, triciribine phosphate and related compounds can provide at least a partial, such as at least 15, 20 or 30%, or complete response in vivo in at least 15- 20% of the subjects.
  • at least 2, 5, 10, 15, 20, 30 or 50 mg/m 2 of a compound disclosed herein can be administered to a subject.
  • the administration of the compound can be conducted according to any of the therapeutic regimens disclosed herein.
  • the dosing regimen can include administering less than 20 mg/m 2 of one or more prodrugs of triciribine, triciribine phosphate and related compounds. In one embodiment, less than 10 mg/m 2 of one or more prodrugs of triciribine, triciribine phosphate and related compounds can be administered once a week. In further embodiments, dosages of or less than 2 mg/m 2 , 5 mg/m 2 , 10 mg/m 2 , 15 mg/m 2 , 20 mg/m 2 , 25 mg/m 2 50 mg/m 2 , and/ or 100 mg/m 2 of one or more prodrugs of triciribine, triciribine phosphate and related compounds can be administered to a subject.
  • less than 10 mg/m 2 can be administered to a subject via continuous infusion for at least five days.
  • one or more prodrugs of triciribine, triciribine phosphate and related compounds as disclosed herein can be used for the treatment of pancreatic, prostate, colo-rectal and/or ovarian cancer.
  • the prodrug compounds and/or therapeutic formulations of the invention can be used to prevent and/ or treat a carcinoma, sarcoma, lymphoma, leukemia, and/or myeloma.
  • the prodrug compounds disclosed herein can be used to treat solid tumors.
  • the prodrug compounds and compositions disclosed herein can be used for the treatment of a tumor or cancer, such as, but not limited to cancer of the following organs or tissues: breast, prostate, bone, lung, colon, including, but not limited to colorectal, urinary, bladder, non-Hodgkin lymphoma, melanoma, kidney, renal, pancreas, pharnx, thyroid, stomach, brain, and/or ovaries.
  • one or more prodrugs of triciribine, triciribine phosphate and related compounds as disclosed herein can be used for the treatment of pancreatic, breast, colorectal and/or ovarian cancer.
  • the compounds disclosed herein can be used in the treatment of angiogenesis-related diseases.
  • methods are provided to treat leukemia via continuous infusion of one or more prodrugs of triciribine, triciribine phosphate and related compounds via continuous infusion for at least 24, 48, 72 or 96 hours.
  • the , continuous infusion can be repeated, for example, at least once every two, three or four weeks.
  • a method for the treatment of tumors, cancer, and others disorders associated with an abnormal cell proliferation in a host comprising administering to the host an effect amount of a compound - disclosed herein optionally in combination with a pharmaceutically acceptable carrier.
  • one or more prodrugs of triciribine, triciribine phosphate and related compounds as disclosed herein can be used to treat tumors or cancers resistant to one or more drugs, including the embodiments of tumors or cancers and drugs disclosed herein.
  • one or more prodrugs of triciribine, triciribine phosphate and related compounds as disclosed herein is administered in an effective amount for the treatment of a patient with a drug resistant tumor or cancer, for example, multidrug resistant tumors or cancer, including but not limited to those resistant to taxol, rapamycin, tamoxifen, cisplatin, and/ or gefitinib (iressa).
  • the one or more prodrugs of triciribine, triciribine phosphate and related compounds as disclosed herein can be administered with an additional chemotherapeutic agent that can be a P-glycoprotein inhibitor, such as verapamil, cyclosporin (such as cyclosporin A), tamoxifen, calmodulin antagonists, dexverapamil, dexniguldipine, valspodar (PSC 833), biricodar (VX-710), tariquidar (XR9576), zosuquidar (LY335979), laniquidar (R101933), and/or ONT-093.
  • P-glycoprotein inhibitor such as verapamil, cyclosporin (such as cyclosporin A), tamoxifen, calmodulin antagonists, dexverapamil, dexniguldipine, valspodar (PSC 833), biricodar (VX-710), tariquidar (XR9576
  • a method including administering to a host in need thereof an effective amount of a compound disclosed herein, or pharmaceutical composition comprising the compound, in an effective amount for the treatment of tumors, cancer, and others disorders associated with an abnormal cell proliferation in a host.
  • Figure 1 demonstrates the identification of API-2 (triciribine) as a candidate of Akt inhibitor from the NCI Diversity Set.
  • A illustrates the chemical structure of API-2 (triciribine).
  • B demonstrates that API-2 inhibits phosphorylation levels of AKT2 in AKT2-transformed NIH3T3 cells.
  • Wile type AKT2-transformed NIH3T3 cells were treated with API-2 (1 ⁇ M) for indicated times and subjected to immunoblotting analysis with anti-phospho-Akt-T308 and -S473 antibodies (top and middle panels). The bottom panel shows expression of total AKT2.
  • C it is shown that API-2 inhibits three isoforms of Akt.
  • HEK293 cells were transfected with HA-AKTl, -AKT2 and - AKT3 and treated with API-2 (1 ⁇ M) or wortmannin (15 ⁇ M) prior to EGF stimulation, the cells were lysed and immunoprecipitated with anti-HA antibody. The immunoprecipitates were subjected to in vitro kinase assay (top) and immunoblotting analysis with anti-phospho-Akt-T308 (bottom) antibody. Middle panel shows expression of transfected Aktl , AKT2 and AKT3. D illustrates that API-2 did not inhibit Akt in vitro. In vitro kinase assay of constitutively active AKT2 recombinant protein in a kinase buffer containing 1 uM API-2 (lane 3).
  • Figure 2 demonstrates that API-i does not inhibit PI3K, PDKl and the closely related members of AGC kinase family.
  • A demonstrates an in vitro PI3K kinase assay.
  • HEK293 cells were serum-starved and treated with API-2 (1 ⁇ M) or Wortmannin (15 uM) fro 30 minutes prior to EGF stimulation. Cells were lysed and immunoprecipitated with anti-pl 10a antibody. The immunoprecipitates were subjected to in vitro kinase assay using PI-4-P as substrate.
  • B illustrates the effect of API-2 on in vitro PDKl activation (top panel), closed circles show inhibition by API-2.
  • Bottom panels are immunoblotting analysis of HEK293 cells that were transfected with Myc-PDKl and treated with wortmannin or API-2 prior to EGF stimulation. The immunoblots were detected with indicated antibodies.
  • C illustrates an immunoblot analysis of phosphorylation levels of PKC D with anti-phospho- PKC ⁇ -T638 (top) and total PKC ⁇ (bottom) antibodies following treatment with API-2 or a nonselective PKC inhibitor Ro31 -8220.
  • D shows an in vitro SGK kinase assay.
  • HEK293 cells were transfected with HA-SGK and treated with API-2 or wortmannin prior to EGF stimulation.
  • In vitro kinase was performed with HA-SGK immunoprecipitates using MBP as substrate (top).
  • Bottom panel shows the expression of transfected HA-SGK.
  • E illustrates the results of a PKA kinase assay. Immuno- purified PKA was incubated in ADB buffer (Upstate Biotechnology Inc) containing indicated inhibitors (API-2 or PKAI) and substrate Kemptide. The kinase activity was quantified.
  • F a western blot is shown.
  • OVCAR3 cells were treated with API-2 for indicated times. Cell lysates were immunoblotted with indicated anti-phospho- antibodies (panels 1-4) and anti-actin antibody (bottom). /
  • Figure 3 demonstrates that API-2 inhibits Akt activity and cell growth and induces apoptosis in human cancer cells with elevated Akt.
  • A is a western blot, following treatment with API-2, phosphorylation levels of Akt were detected with anti- phospho-Akt-T308 antibody in indicated human cancer cell lines. The blots were reprobed with anti-total Akt antibody (bottom panels).
  • B a cell proliferation assay is shown. Cell lines as indicated in the figure were treated with different doses of API-2 for 24 h and 48 h and then analyzed with CellTiter 96 Cell Proliferation Assay kit (Promega).
  • C provides an apoptosis analysis. Cells were treated with API-2 and stained with annexin V and PI and analyzed by FACScan.
  • FIG. 4 shows that API-2 inhibits downstream targets of Akt and exhibits antitumor activity in cancer cell lines with elevated Akt in mouse xenograft.
  • API-2 inhibits Akt phosphorylation of tuberin, Bad, AFX and GSK- 3 ⁇ .
  • OVAR3 cells were lysed and immunoblotted with indicated antibodies.
  • B shows that API-2 inhibits tumor growth. Tumor cells were subcutaneously injected into nude mice with low level of Akt cells on left side and elevated level of Akt cells on right side. When the tumors reached an average size of about 100-150 mm 3 , animals were treated with either vehicle or 1 mg/kg/day API-2. Each measurement represents an average of 10 tumors.
  • C illustrates a representation of the mice with OVCAR3 (right) and OVCAR5 (left) xenograft treated with API-2 or vehicle (control).
  • D shows examples of tumor size (bottom) and weight (top) at the end of experiment.
  • E immunoblot analysis of tumor lysates was performed with anti- phospho-Akt-S473 (top) and anti-AKT2 (bottom) antibodies in OVCAR-3-derived tumors that were treated (T3 and T4) and untreated (Tl and T2) with API-2.
  • Figure 5 shows that API-2 (triciribine) inhibits Akt kinase activity in vitro.
  • API-2 triciribine
  • In vitro kinase assay was performed with recombinant of PDKl and Akt in a kinase buffer containing phosphatidylinositol-3,4,5-P3 (PIP3), API-2 and histone H2B as substrate. After incubation of 30 min, the reactions were separated by SDS-PAGE and exposed in a film.
  • PIP3 phosphatidylinositol-3,4,5-P3
  • Figure 6 provides the mRNA and amino acid sequence of human Aktl, restriction enzyme sites are also noted.
  • Figure 7 provides the mRNA and amino acid sequence of human Akt2 restriction enzyme sites are also noted.
  • Figure 8 provides the mRNA and amino acid sequence of human Akt3 restriction enzyme sites are also noted.
  • Figure 9 illustrates the Buffer Stability of TCN, TCNP and 5'-O-valyl phosphoramidate triciribine (TCNP-VaI.).
  • Figure 10 illustrates stability of TCN, TCNP and 5'-O-valyl phosphoramidate triciribine (TCNP-VaI) in liver homogenates.
  • Figure 11 illustrates buffer stability of 5'-O-valyl triciribine (TCN-VaI).
  • Figure 12 illustrates stability of 5'-O-valyl triciribine (TCN-VaI) in liver homogenates.
  • Ri and R 2 are each -H; and R 2 ', R 3 ', and R 5 ' are each independently -H or an an amino acid.
  • Ri, R 2 R 2 ', and R 3 ' are each -H.
  • Rs' is an an amino acid.
  • Ri, R 2 R 2 ', and R 3 ', are each -H and R 5 ' is an an amino acid.
  • the invention encompasses compounds of formula II:
  • Ri and R 2 are each H;
  • R 2 ', R 3 ', and R 5 ' are each independently -H, optionally substituted phosphate or phosphonate (including mono-, di-, or triphosphate or a stabilized phosphate prodrug).
  • R), R 2 R 2 ', and R 3 ' are each -H.
  • R5' is optionally substituted phosphate or phosphonate (including mono-, di-, or triphosphate or a stabilized phosphate prodrug).
  • Ri, R 2 R 2 ', and R 3 ' are each -H and R 5 ' is optionally substituted phosphate or phosphonate (including mono-, di-, or triphosphate or a stabilized phosphate prodrug).
  • the invention encompasses compounds of formula III:
  • R 3 is a straight chained Ci-Ci 8 alkyl, and R 2 ', R 3 ', and R 5 ' are each independently -H.
  • R 5 ', R 2 ', and R 3 ' are each -H.
  • R 3 is a straight chained Ci-Ci 8 alkyl
  • R 5 ', R 2 ', and R 3 ' are each -H and R 3 is a straight chained Ci-Ci 8 alkyl.
  • the invention encompasses a pharmaceutical composition comprising the compound of Formula I and a pharmaceutically acceptable carrier.
  • the invention encompasses a pharmaceutical composition comprising the compound of Formula II and a pharmaceutically acceptable carrier.
  • the invention encompasses a pharmaceutical composition comprising the compound of Formula III and a pharmaceutically acceptable carrier.
  • the pharmaceutical compositions are suitable for oral administration.
  • the invention encompasses a pharmaceutical composition
  • a pharmaceutical composition comprising the compound of Formula I and a pharmaceutically acceptable carrier, wherein the compound is present in an amount of about 0.1 ng to about 1000 mg.
  • the invention encompasses a pharmaceutical composition
  • a pharmaceutical composition comprising the compound of Formula II and a pharmaceutically acceptable carrier, wherein the compound is present in an amount of about 0.1 ng to about 1000 mg.
  • the invention encompasses a pharmaceutical composition
  • a pharmaceutical composition comprising the compound of Formula III and a pharmaceutically acceptable carrier, wherein the compound is present in an amount of about 0.1 ng to about 1000 mg.
  • the invention encompasses a method for treating a tumor or cancer in a mammal comprising administering to a mammal in need thereof an effective amount of a compound of Formula I.
  • the invention encompasses a method for treating a tumor or cancer in a mammal comprising administering to a mammal in need thereof an effective amount of a compound of Formula II.
  • the invention encompasses a method for treating a tumor or cancer in a mammal comprising administering to a mammal in need thereof an effective amount of a compound of Formula HI.
  • the present invention provides for the use of TCN, TCN-P and related compounds for use in particular therapeutic regimens for the treatment of proliferative disorders.
  • the invention encompasses a composition including:
  • each R 2 ', R 3 ' and Rs' are independently hydrogen, optionally substituted phosphate or phosphonate (including mono-, di-, or triphosphate or a stabilized phosphate prodrug); acyl (including lower acyl); alkyl (including lower alkyl); amide, sulfonate ester including alkyl or arylalkyl; sulfonyl, including methanesulfonyl and benzyl, wherein the phenyl group is optionally substituted with one or more substituents as for example as described in the definition of an aryl given herein; optionally substituted arylsulfonyl; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; or cholesterol; or other pharmaceutically acceptable leaving group that, in vivo, provides a compound wherein R 2 ', R 3 ' or R 5 ' is independently H or mono-, di- or tri-phosphate;
  • R x and R y are independently hydrogen, optionally substituted phosphate; acyl (including lower acyl); amide, alkyl (including lower alkyl); aromatic, polyoxyalkylene such as polyethyleneglycol, optionally substituted arylsulfonyl; a lipid, including a phospholipid; an amino acid; a carbohydrate; a peptide; or cholesterol; or other pharmaceutically acceptable leaving group.
  • the compound is administered as a 5'-phosphoether lipid or a 5 '-ether lipid.
  • Ri and R 2 each are independently H, optionally substituted straight chained, branched or cyclic alkyl (including lower alkyl), alkenyl, or alkynyl, CO-alkyl, CO-alkenyl, CO-alkynyl, CO-aryl or heteroaryl, CO-alkoxyalkyl, CO-aryloxyalkyl, CO-substituted aryl, sulfonyl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl.
  • R 2 ' and R 3 ' are hydrogen.
  • R2' and R 5 ' are hydrogen.
  • R 2 ', R 3 ' and R 5 ' are hydrogen.
  • R 2 ', R 3 ', R 5 ', Ri and R 2 are hydrogen.
  • the compound has the structure of Figure III:
  • R 3 is H, optionally substituted straight chained, branched or cyclic alkyl (including lower alkyl), alkenyl, or alkynyl, NH 2 , NHR 4 , N(R 4 ) 2 , aryl, alkoxyalkyl, aryloxyalkyl, or substituted aryl; and
  • each R 4 independently is H, acyl including lower acyl, alkyl including lower alkyl such as but not limited to methyl, ethyl, propyl and cyclopropyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkoxyalkyl, hydroxyalkyl, or aryl.
  • R 3 is a straight chained Ci-C) 8 alkyl, iso-propyl, t-butyl, or phenyl.
  • each R 4 independently is H, acyl including lower acyl, alkyl including lower alkyl such as but not limited to methyl, ethyl, propyl and cyclopropyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkoxyalkyl, hydroxyalkyl, or aryl.
  • R 6 is ethyl, CH 2 CH 2 OH, or CH 2 -phenyl.
  • each R 4 independently is H, acyl including lower acyl, alkyl including lower alkyl such as but not limited to methyl, ethyl, propyl and cyclopropyl, alkenyl, alkynyl, cycloalkyl, alkoxy, alkoxyalkyl, hydroxyalkyl.
  • R 7 is methyl, ethyl, phenyl, chloro or NH 2 .
  • the compounds disclosed herein may contain chiral centers. Such chiral centers may be of either the (R) or (S) configuration, or may be a mixture thereof.
  • the compounds provided herein may be enantiomerically pure, or be stereoisomeric or diastereomeric mixtures.
  • the disclosure of a compound herein encompasses any racemic, optically active, polymorphic, or steroisomeric form, or mixtures therof, which preferably possesses the useful properties described herein, it being well known in the art how to prepare optically active forms and how to determine activity using the standard tests described herein, or using other similar tests which are will known in the art.
  • Examples of methods that can be used to obtain optical isomers of the compounds include the following: i) physical separation of crystals- a technique whereby macroscopic crystals of the individual enantiomers are manually separated. This technique can be used if crystals of the separate enantiomers exist, i.e., the material is a conglomerate, and the crystals are visually distinct; ii) simultaneous crystallization- a technique whereby the individual enantiomers are separately crystallized from a solution of the racemate, possible only if the latter is a conglomerate in the solid state; iii) enzymatic resolutions — a technique whereby partial or complete separation of a racemate by virtue of differing rates of reaction for the enantiomers with an enzyme iv) enzymatic asymmetric synthesis — a synthetic technique whereby at least one step of the synthesis uses an enzymatic reaction to obtain an enantiomerically pure or enriched synthetic precursor of the desired enantiomer; v) chemical
  • first- and second-order asymmetric transformations a technique whereby diastereomers from the racemate equilibrate to yield a preponderance in solution of the diastereomer from the desired enantiomer or where preferential crystallization of the ⁇ diastereomer from the desired enantiomer perturbs the equilibrium such that eventually in principle all the material is converted to the crystalline diastereomer from the desired enantiomer.
  • kinetic resolutions this technique refers to the achievement of partial or complete resolution of a racemate (or of a further resolution of a partially resolved compound) by virtue of unequal reaction rates of the enantiomers with a chiral, non- racemic reagent or catalyst under kinetic conditions; ix) enantiospecif ⁇ c synthesis from non-racemic precursors — a synthetic technique whereby the desired enantiomer is obtained from non-chiral starting materials and where the stereochemical integrity is not or is only minimally compromised over the course of the synthesis; x) chiral liquid chromatography — a technique whereby the enantiomers of a racemate are separated in a liquid mobile phase by virtue of their differing interactions with a stationary phase.
  • the stationary phase can be made of chiral material or the mobile phase can contain an additional chiral material to provoke the differing interactions;
  • chiral gas chromatography a technique whereby the racemate is volatilized and enantiomers are separated by virtue of their differing interactions in the gaseous mobile phase with a column containing a fixed non-racemic chiral adsorbent phase;
  • extraction with chiral solvents a technique whereby the enantiomers are separated by virtue of preferential dissolution of one enantiomer into a particular chiral solvent;
  • xiii) transport across chiral membranes a technique whereby a racemate is placed in contact with a thin membrane barrier.
  • the barrier typically separates two miscible fluids, one containing the racemate, and a driving force such as concentration or pressure differential causes preferential transport across the membrane barrier. Separation occurs as a result of the non-racemic chiral nature of the membrane which allows only one enantiomer of the racemate to pass through.
  • TCN triciribine, triciribine phosphate (TCN-P), triciribine 5'- phosphate (TCN-P), or the DMF adduct of triciribine (TCN-DMF)
  • TCN can be synthesized by any technique known to one skilled in the art, for exmple, as described in Tetrahedron Letters, vol. 49, pp. 4757-4760 (1971).
  • TCN-P can be prepared by any technique known to one skilled in the art, for example, as described in U.S. Pat. No. 4,123,524. The synthesis of TCN-DMF is described, for example, in INSERM, vol. 81, pp. 37-82 (1978).
  • the compounds of the invention have the following structure of Formula XIV:
  • the compounds of the invention have the following structure of Formula XV:
  • the compounds of the invention have the following structure of Formula XVI:
  • compositions include those derived from pharmaceutically acceptable inorganic or organic bases and acids.
  • Suitable salts include those derived from alkali metals such as potassium and sodium, alkaline earth metals such as calcium and magnesium, among numerous other acids well known in the pharmaceutical art.
  • examples of pharmaceutically acceptable salts are organic acid addition salts formed with acids, which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, ⁇ -ketoglutarate, and ⁇ - glycerophosphate.
  • Suitable inorganic salts may also be formed, including, sulfate, nitrate, bicarbonate, and carbonate salts.
  • Pharmaceutically acceptable salts may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion.
  • nucleotide prodrug for example, sodium, potassium or lithium
  • alkaline earth metal for example calcium
  • carboxylic acids can also be made.
  • Any of the nucleotides described herein can be administered as a nucleotide prodrug to increase the activity, bioavailability, stability or otherwise alter the properties of the nucleoside.
  • a number of nucleotide prodrug ligands are known. In general, alkylation, acylation or other lipophilic modification of the mono, di or triphosphate of the nucleoside will increase the stability of the nucleotide.
  • substituent groups that can replace one or more hydrogens on the phosphate moiety are alkyl, aryl, steroids, carbohydrates, including sugars, 1 ,2-diacylglycerol and alcohols. Many are described in R. Jones and N. Bischofberger, Antiviral Research, 27 (1995) 1- 17. Any of these can be used in combination with the disclosed nucleosides to achieve a desired effect.
  • the triciribine or a related compound is provided as
  • Nonlimiting examples of U.S. patents that disclose suitable lipophilic substituents that can be covalently incorporated into the nucleoside, preferably at the 5'-OH position of the nucleoside or lipophilic preparations include U.S. Patent Nos. 5,149,794 (Sep. 22, 1992, Yatvin, et al.); 5,194,654 (mar.
  • Additional nonlimiting examples of derivatives of triciribine or a related compound s are those that contain substituents as described in the following publications. These derivatized triciribine or a related compound s can be used for the indications described in the text or otherwise as antiviral agents, including as anti-HIV or anti-HBV agents.
  • Ho, D.H. W. ( 1973) Distribution of Kinase and deaminase of 1 ⁇ -D- arabinofuranosylcytosine in tissues of man and mouse. Cancer Res. 33, 2816-2820; Holy, A. (1993) Isopolar phosphorous-modified nucleotide analogues.
  • Phospholipid-nucleoside conjugates 3. Synthesis and preliminary biological evaluation of 1- ⁇ -D-arabinofuranosylcytosine 5'diphosphate[-], 2- diacylglycerols. J. Med. Chem. 25, 1322-1329; Saflhill, R. and Hume, W.J. (1986) The degradation of 5-iododeoxyurindine and 5-bromoeoxyuridine by serum from different sources and its consequences for the use of these compounds for incorporation into DNA. Chem. Biol. Interact.
  • prodrugs that can be used are those described in the following patents and patent applications: U.S. Patent Nos. 5,614,548, 5,512,671, 5,770,584, 5,962,437, 5,223,263, 5,817,638, 6,252,060, 6,448,392, 5,411,947, 5,744,592, 5,484,809, 5,827,831 , 5,696,277, 6,022,029, 5,780,617, 5, 194,654, 5,463,092, 5,744,461, 4,444,766, 4,562,179, 4,599,205, 4,493,832, 4,221,732, 5,116,992, 6,429,227, 5,149,794, 5,703,063, 5,888,990, 4810,697, 5,512,671, 6,030,960, 2004/0259845, 6,670,341, 2004/0161398, 2002/082242, 5,512,671, 2002/0082242, and or PCT Publication Nos WO 90/110
  • cancer refers to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth, i.e., proliferative disorders.
  • proliferative disorders include cancers such as carcinoma, lymphoma, blastoma, sarcoma, and leukemia, as well as other cancers disclosed herein. More particular examples of such cancers include breast cancer, prostate cancer, colon cancer, squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, pancreatic cancer, cervical cancer, ovarian cancer, liver cancer, e.g., hepatic carcinoma, bladder cancer, colorectal cancer, endometrial carcinoma, kidney cancer, and thyroid cancer.
  • cancers are basal cell carcinoma, biliary tract cancer; bone cancer; brain and CNS cancer; choriocarcinoma; connective tissue cancer; esophageal cancer; eye cancer; cancer of the head and neck; gastric cancer; intra-epithelial neoplasm; larynx cancer; lymphoma including Hodgkin's and Non- Hodgkin's lymphoma; melanoma; myeloma; neuroblastoma; oral cavity cancer (e.g., lip, tongue, mouth, and pharynx); pancreatic cancer; retinoblastoma; rhabdomyosarcoma; rectal cancer; cancer of the respiratory system; sarcoma; skin cancer; stomach cancer; testicular cancer; uterine cancer; cancer of the urinary system, as well as other carcinomas and sarcomas.
  • tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • a particular cancer may be characterized by a solid mass tumor.
  • the solid tumor mass if present, may be a primary tumor mass.
  • a primary tumor mass refers to a growth of cancer cells in a tissue resulting from the transformation of a normal cell of that tissue. In most cases, the primary tumor mass is identified by the presence of a cyst, which can be found through visual or palpation methods, or by irregularity in shape, texture or weight of the tissue.
  • alkyl includes a saturated straight, branched, or cyclic, primary, secondary, or tertiary hydrocarbon of for example Ci to C 24 , and specifically includes methyl, trifluoromethyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, isobutyl, f-butyl, pentyl, cyclopentyl, isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl, cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl.
  • the alkyl is optionally substituted, e.g., with one or more substituents such as halo (F, Cl, Br or I), (e.g. CF 3 , 2-Br-ethyl, CH 2 F, CH 2 Cl, CH 2 CF 3 or CF 2 CF 3 ), hydroxyl (e.g. CH 2 OH), amino (e.g. CH 2 NH 2 , CH 2 NHCH 3 or CH 2 N(CH 3 ) 2 ), alkylamino, arylamino, alkoxy, aryloxy, nitro, azido (e.g. CH 2 N 3 ), cyano (e.g.
  • alkyl refers to a Ci to C 4 saturated straight, branched, or if appropriate, a cyclic (for example, cyclopropyl) alkyl group, including both substituted and unsubstituted forms.
  • alkylamino or arylamino includes an amino group that has one or two alkyl or aryl substituents, respectively.
  • amino acid includes naturally occurring and synthetic ⁇ , ⁇ , ⁇ or ⁇ amino acids, and includes but is not limited to, amino acids found in proteins, i.e. glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, proline, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartate, glutamate, lysine, arginine and histidine.
  • the amino acid is in the L- configuration.
  • the amino acid can be a derivative of alanyl, valinyl, leucinyl, isoleuccinyl, prolinyl, phenylalaninyl, tryptophanyl, methioninyl, glycinyl, serinyl, threoninyl, cysteinyl, tyrosinyl, asparaginyl, glutaminyl, aspartoyl, glutaroyl, lysinyl, argininyl, histidinyl, ⁇ -alanyl, ⁇ -valinyl, ⁇ -leucinyl, ⁇ -isoleuccinyl, ⁇ -prolinyl, ⁇ -phenylalaninyl, ⁇ -tryptophanyl, ⁇ -methioninyl, ⁇ -glycinyl, ⁇ -serinyl, ⁇ -threoninyl, ⁇ - cysteinyl,
  • amino acid When the term amino acid is used, it is considered to be a specific and independent disclosure of each of the esters of a natural or synthetic amino acid, including but not limited to ⁇ , ⁇ , ⁇ or ⁇ glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, proline, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartate, glutamate, lysine, arginine and histidine in the D and L-conf ⁇ gurations.
  • ⁇ , ⁇ , ⁇ or ⁇ glycine alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, proline, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartate, glutamate, lysine, arginine and
  • the term "protected” as used herein and unless otherwise defined includes a group that is added to an oxygen, nitrogen, sulfur or phosphorus atom to prevent its further reaction or for other purposes.
  • oxygen and nitrogen protecting groups are known to those skilled in the art of organic synthesis (see Greene and Wuts, Protective Groups in Organic Synthesis, 3 rd Ed., John Wiley & Sons, Inc., New York, NY, 1999).
  • aryl as used herein, and unless otherwise specified, includes phenyl, biphenyl, or naphthyl, and preferably phenyl.
  • the aryl group is optionally substituted with one or more moieties such as halo, hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in Greene, et al., Protective Groups in Organic Synthesis. John Wiley and Sons, 3 rd Ed., 1999.
  • alkaryl or alkylaryl includes an alkyl group with an aryl substituent.
  • aralkyl or arylalkyl includes an aryl group with an alkyl substituent.
  • halo includes chloro, bromo, iodo, and fluoro.
  • acyl includes a carboxylic acid ester in which the non-carbonyl moiety of the ester group is selected from straight, branched, or cyclic alkyl or lower alkyl, alkoxyalkyl including methoxymethyl, aralkyl including benzyl, aryloxyalkyl such as phenoxymethyl, aryl including phenyl optionally substituted with halogen, C 1 to C 4 alkyl or Ci to C 4 alkoxy, sulfonate esters such as alkyl or aralkyl sulphonyl including methanesulfonyl, the mono, di or triphosphate ester, trityl or monomethoxytrityl, substituted benzyl, trialkylsilyl (e.g.
  • isolated refers to a compound composition that includes at least 85% or 90% by weight, preferably 95% to 98 % by weight, and even more preferably 99% to 100% by weight, of the compound, the remainder comprising other chemical species or enantiomers.
  • pharmaceutically acceptable salt or prodrug is used throughout the specification to describe any pharmaceutically acceptable form (such as an ester, phosphate ester, salt of an ester or a related group) of a compound, which, upon administration to a patient, provides the compound.
  • Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic or organic bases and acids. Suitable salts include those derived from alkali metals such as potassium and sodium, alkaline earth metals such as calcium and magnesium, among numerous other acids well known in the pharmaceutical art.
  • Pharmaceutically acceptable prodrugs refer to a compound that is metabolized, for example hydrolyzed or oxidized, in the host to form the compound of the present invention.
  • prodrugs include compounds that have biologically labile protecting groups on a functional moiety of the active compound.
  • Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, acylated, deacylated, phosphorylated, dephosphorylated to produce the active compound.
  • esters as used herein, unless otherwise specified, includes those esters of one or more compounds, which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of hosts without undue toxicity, irritation, allergic response and the like, are commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
  • subject refers to an animal, preferably a mammal, most preferably a human.
  • Mammals can include non-human mammals, including, but not limited to, pigs, sheep, goats, cows (bovine), deer, mules, horses, monkeys and other non-human primates, dogs, cats, rats, mice, rabbits or any other known or disclosed herein.
  • non-human mammals including, but not limited to, pigs, sheep, goats, cows (bovine), deer, mules, horses, monkeys and other non-human primates, dogs, cats, rats, mice, rabbits or any other known or disclosed herein.
  • triciribine prodrug, TCN, TCN-P, and related compounds refers to the compounds disclosed herein, for example, the compounds of Formulas I-XVI and salts and hydrates thereof.
  • the term “triciribine prodrug” or “prodrug of triciribine” are used interchangeably and refer to, for example, compounds of Formulas I, II, III, XIV, XV, and XVI and salts and hydrates thereof.
  • dosing regimens are provided that limit the toxic side effects of the triciribine prodrug, TCN, TCN-P, and related compounds.
  • such dosing regimens minimize the following toxic side effects, including, but not limited to, hepatoxicity, thrombocytopenia, hyperglycemia, vomiting, hypocalcemia, anemia, hypoalbunemia, myelosuppression, hypertriglyceridemia, hyperamylasemia, diarrhea, stomachitis and/ or fever.
  • the administration of triciribine prodrug, TCN is provided that limit the toxic side effects of the triciribine prodrug, TCN, TCN-P, and related compounds.
  • such dosing regimens minimize the following toxic side effects, including, but not limited to, hepatoxicity, thrombocytopenia, hyperglycemia, vomiting, hypocalcemia, anemia, hypoalbunemia, myelosuppression, hypertriglyceridemia, hyperamylasemia, diarrhea, stomachitis and/ or fever
  • TCN-P, and related compounds provides at least a partial or complete response in vivo in at least 15-20% of the subjects.
  • a partial reponse can be at least 15, 20, 25, 30, 35, 40, 50, 55, 60, 65, 70, 75, 80 or 85% regression of the tumor.
  • this response can be evident in at least 15, 15, 20, 25, 30, 35, 40, 50,55, 60, 65, 70, 75, 80, 85 or 90% of the subjects treated with the therapy.
  • response rates can be obtained by any therapeutic regimen disclosed herein.
  • methods are provided to treat a subject that has been diagnosed with cancer by administering to the subject an effective amount of a triciribine prodrug, TCN, TCN-P, and related compounds according to a dosing schedule that includes administering the drug one time per week for three weeks followed by a one week period wherein the drug is not administered (i.e. via a 28 day cycle).
  • a dosing schedule that includes administering the drug one time per week for three weeks followed by a one week period wherein the drug is not administered (i.e. via a 28 day cycle).
  • such 28 day cycles can be repeated at least 2, 3, 4, or 5 times or until regression of the tumor is evident.
  • a 42 day cycle in which the compounds disclosed herein can be administered once a week for four weeks followed by a two week period in which the drug is not administered.
  • such 42 day cycles can be repeated at least 2, 3, 4, or 5 times or until regression of the tumor is evident.
  • less than 12, less than 11 or less than 10 mg/m 2 of a triciribine prodrug, TCN, TCN-P, and related compounds can be administered according to a 42 day cycle.
  • 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11 mg/m 2 of a a triciribine prodrug, TCN, TCN-P, and related compounds can be administered according to a 42 day cycle.
  • methods are provided to treat cancer in a subject by administering to the subject a dosing regimen of 10 mg/m 2 or less of a triciribine prodrug, TCN, TCN-P, and related compounds one time per week.
  • a dosing regimen of 10 mg/m 2 or less of a triciribine prodrug, TCN, TCN-P, and related compounds one time per week.
  • 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5 or 10 mg/m 2 of a triciribine prodrug, TCN, TCN-P, and related compounds as dislosed herein can be administered one time per week
  • the triciribine prodrug, TCN, TCN-P, and related compounds disclosed herein can be administered as a single bolus dose over a short period of time, for example, about 5, 10, 15, 20, 30 or 60 minutes.
  • dosing schedules are provided in which the compounds are administered via continuous infusion for at least 24, 48, 72, 96, or 120 hours.
  • the administration of the drug via continuous or bolus inhections can be repeated at a certain frequency at least: once a week, once every two weeks, once every three weeks, once a month, once every five weeks, once every six weeks, once every eight weeks, once every ten weeks and/or once every twelve weeks.
  • the type and frequency of administrations can be combined ion any manner disclosed herein to create a dosing cycle.
  • the triciribine prodrug, TCN, TCN-P, and related compounds can be repeatedly administered via a certain dosing cycles, for example as a bolus injection once every two weeks for three months.
  • the dosing cycles can be administered for at least: one, two three, four five, six, seven, eight, nine, ten, eleven, twelve, eighteen or twenty four months.
  • at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15 or 20 dosing cycles can be administered to a patient.
  • the triciribine prodrug, TCN, TCN-P, and related compounds can be administered according to any combination disclosed herein, for example, the drug can be administered once a week every three weeks for 3 cycles. [00132] In further embodiments, the triciribine prodrug, TCN, TCN-P, and related compounds can be administered at least once a day for at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 days. Such administration can follow by corresponding periods in which the drug is not administered.
  • the triciribine prodrug, TCN, TCN-P, and related compounds as disclosed herein can be administered to patients in an amount that is effective in causing tumor regression.
  • the administration of a triciribine prodrug, TCN, TCN-P, and related compounds can provide at least a partial, such as at least 15, 20 or 30%, or complete response in vivo in at least 15-20% of the subjects. In certain embodiments, at least 2, 5, 10, 15, 20, 30 or 50 mg/m 2 of a compound disclosed herein can be administered to a subject.
  • the dosing regimen includes administering less than 20 mg/m 2 of a triciribine prodrug, TCN, TCN- P, and related compounds.
  • less than 20 mg/m 2 of a triciribine prodrug, TCN, TCN-P, and related compounds can be administered once a week.
  • 2 mg/m 2 , 5 mg/m 2 , 10 mg/m 2 , and/or 15 mg/m 2 of a triciribine prodrug, TCN, TCN-P, and related compounds can be administered to a subject.
  • less than 10 mg/m 2 can be administered to a subject via continuous infusion for at least five days.
  • the invention provides for any combination of dosing type, frequency, number of cycles and dosage amount disclosed herein.
  • 6.1. Screening of Patient Populations [00135]
  • methods are provided to identify cancers or tumors that are susceptible to the toxic effects of triciribine (TCN) and related compounds.
  • methods are provided to treat a cancer or tumor in a mammal by (i) obtaining a biological sample from the tumor; (ii) determining whether the cancer or tumor overexpresses Akt kinase or hyperactivated and phosphorylated Akt kinase, and (iii) treating the cancer or tumor with triciribine or a related compound as described herein.
  • the biological sample can be a biopsy.
  • the biological sample can be fluid, cells and/or aspirates obtained from the tumor or cancer.
  • the biological sample can be obtained according to any technique known to one skilled in the art.
  • a biopsy can be conducted to obtain the biological sample.
  • a biopsy is a procedure performed to remove tissue or cells from the body for examination.
  • Some biopsies can be performed in a physician's office, while others need to be done in a hospital setting.
  • some biopsies require use of an anesthetic to numb the area, while others do not require any sedation.
  • an endoscopic biopsy can be performed.
  • This type of biopsy is performed through a fiberoptic endoscope (a long, thin tube that has a close-focusing telescope on the end for viewing) through a natural body orifice (i.e., rectum) or a small incision (i.e., arthroscopy).
  • the endoscope is used to view the organ in question for abnormal or suspicious areas, in order to obtain a small amount of tissue for study. Endoscopic procedures are named for the organ or body area to be visualized and/or treated.
  • the physician can insert the endoscope into the gastrointestinal tract (alimentary tract endoscopy), bladder (cystoscopy), abdominal cavity (laparoscopy), joint cavity (arthroscopy), mid-portion of the chest (mediastinoscopy), or trachea and bronchial system (laryngoscopy and bronchoscopy).
  • a bone marrow biopsy can be performed. This type of biopsy can be performed either from the sternum (breastbone) or the iliac crest hipbone (the bone area on either side of the pelvis on the lower back area). The skin is cleansed and a local anesthetic is given to numb the area. A long, rigid needle is inserted into the marrow, and cells are aspirated for study; this step is occasionally uncomfortable. A core biopsy (removing a small bone 'chip' from the marrow) may follow the aspiration.
  • an excisional or incisional biopsy can be performed on the mammal. This type of biopsy is often used when a wider or deeper portion of the skin is needed. Using a scalpel (surgical knife), a full thickness of skin is removed for further examination, and the wound is sutured (sewed shut with surgical thread). When the entire tumor is removed, it is referred to as an excisional biopsy technique. If only a portion of the tumor is removed, it is referred to as an incisional biopsy technique. Excisional biopsy is often the method usually preferred, for example, when melanoma (a type of skin cancer) is suspected.
  • melanoma a type of skin cancer
  • a fine needle aspiration (FNA) biopsy can be used.
  • FNA fine needle aspiration
  • This type of biopsy involves using a thin needle to remove very small pieces from a tumor. Local anesthetic is sometimes used to numb the area, but the test rarely causes much discomfort and leaves no scar.
  • FNA is not, for example, used for diagnosis of a suspicious mole, but may be used, for example, to biopsy large lymph nodes near a melanoma to see if the melanoma has metastasized (spread).
  • a computed tomography scan can be used to guide a needle into a tumor in an internal organ such as the lung or liver.
  • punch shave and/ or skin biopsies can be conducted.
  • Punch biopsies involve taking a deeper sample of skin with a biopsy instrument that removes a short cylinder, or "apple core," of tissue. After a local anesthetic is administered, the instrument is rotated on the surface of the skin until it cuts through all the layers, including the dermis, epidermis, and the most superficial parts of the subcutis (fat).
  • a shave biopsy involves removing the top layers of skin by shaving it off.
  • Shave biopsies are also performed with a local anesthetic.
  • Skin biopsies involve removing a sample of skin for examination under the microscope to determine if, for example, melanoma is present.
  • Akt kinase overexpression can refer to the phosphorylation state of the kinase. Hyperphosphorylation of Akt can be detected according to the methods described herein.
  • a tumor biopsy can be compared to a control tissue.
  • the control tissue can be a normal tissue from the mammal in which the biopsy was obtained or a normal tissue from a healthy mammal.
  • Akt kinase overexpression or hyperphosphorylation can be determined if the tumor biopsy contains greater amounts of Akt kinase and/ or Akt kinase phosphorylation than the control tissue, such as, for example, at least approximately 1.5, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75, 5, 5.5, 6, 7, 8, 9, orlO-fold greater amounts of Akt kinase than contained in the control tissue.
  • the present invention provides a method to detect aberrant Akt kinase expression in a subject or in a biological sample from the subject by contacting cells, cell extracts, serum or other sample from the subjects or said biological sample with an immunointeractive molecule specific for an Akt kinase or antigenic portion thereof and screening for the level of immunointeractive molecule-Akt kinase complex formation, wherein an elevated presence of the complex relative to a normal cell is indicative of an aberrant cell that expresses or overexpresses Akt.
  • cells or cell extracts can be screened immunologically for the presence of elevated levels of Akt kinase.
  • the aberrant expression of Akt in a cell is detected at the genetic level by screening for the level of expression of a gene encoding an Akt kinase wherein an elevated level of a transcriptional expression product (i.e. mRNA) compared to a normal cell is indicative of an aberrant cell.
  • a transcriptional expression product i.e. mRNA
  • real-time PCR as well as other PCR procedures can be used to determine transcriptional activity.
  • mRNAcan be obtained from cells of a subject or from a biological sample from a subject and cDNA optionally generated.
  • the mRNA or cDNA can then be contacted with a genetic probe capable of hybridizing to and/or amplifying all or part of a nucleotide sequence encoding Akt kinase or its complementary nucleotide sequence and then the level of the mRNA or cDNA can be detected wherein the presence of elevated levels of the mRNA or cDNA compared to normal controls can be assessed.
  • Yet another embodiment of the present invention contemplates the use of an antibody, monoclonal or polyclonal, to Akt kinase in a quantitative or semi- quantitative diagnostic kit to determine relative levels of Akt kinase in suspected cancer cells from a patient, which can include all the reagents necessary to perform the assay.
  • a kit utilizing reagents and materials necessary to perform an ELISA assay is provided.
  • Reagents can include, for example, washing buffer, antibody dilution buffer, blocking buffer, cell staining solution, developing solution, stop solution, anti-phospho-protein specific antibodies, anti-Pan protein specific antibodies, secondary antibodies, and distilled water.
  • the kit can also include instructions for use and can optionally be automated or semi-automated or in a form which is compatible with automated machine or software.
  • a phosphor-ser-473 Akt antibody that detects the activated form of AKT (Akt phosphorylated at serine 474) can be utilized as the antibody in a diagnostic kit. See, for example, Yuan et al. (2000) "Frequent Activation of AKT2 and induction of apoptosis by inhibition of phosphinositide-3-OH kinase/Akt pathway in human ovarian cancer," Oncogene 19:2324-2330. 6.2. Akt Kinases
  • Akt also named PKB 3
  • PKB 3 represents a subfamily of the serine/threonine kinase. Three members, AKTl , AKT2, and AKT3, have been identified in this subfamily.
  • Akt is activated by extracellular stimuli in a PI3K-dependent manner (Datta, S. R., et al. Genes Dev. 13: 2905-2927, 1999).
  • Full activation of Akt requires phosphorylation of Thr 308 in the activation loop and Ser 473 in the C-terminal activation domain.
  • Akt is negatively regulated by PTEN tumor suppressor. Mutations in PTEN have been identified in various tumors, which lead to activation of Akt pathway (Datta, S. R., et al.
  • Akt kinase can be any known Akt family kinase, or kinase related thereto, including, but not limited to Akt 1, Akt 2, Akt 3.
  • the mRNA and amino acid sequences of human Aktl, Akt2, and Akt 3 are illustrated in Figures 6a-c, 7a-d, and 8a-c, respectively.
  • a method for detecting the aberrant expression of an Akt kinase in a cell in a mammal or in a biological sample from the mammal, by contacting cells, cell extracts or serum or other sample from the mammal or biological sample with an immunointeractive molecule specific for an Akt kinase or antigenic portion thereof and screening for the level of immunointeractive molecule- Akt kinase complex formations and determining whether an elevated presence of the complex relative to a normal cell is present.
  • the immunointeractive molecule can be a molecule having specificity and binding affinity for an Akt kinase or its antigenic parts or its homologs or derivatives thereof.
  • the immunointeractive molecule can be an immunglobulin molecule.
  • the immunointeractive molecules can be an antibody fragments, single chain antibodies, and/or deimmunized molecules including humanized antibodies and T-cell associated antigen-binding molecules (TABMs).
  • the antibody can be a monoclonal antibody. In another particular embodiment, the antibody can be a polyclonal antibody.
  • the immunointeractive molecule can exhibit specificity for an Akt kinase or more particularly an antigenic determinant or epitope on an Akt kinase.
  • An antigenic determinant or epitope on an Akt kinase includes that part of the molecule to which an immune response is directed.
  • the antigenic determinant or epitope can be a B-cell epitope or where appropriate a T-cell epitope.
  • the antibody is a phosphor-ser 473 Akt antibody.
  • One embodiment of the present invention provides a method for diagnosing the presence of cancer or cancer-like growth in a mammal, in which aberrant Akt activity is present, by contacting cells or cell extracts from the mammal or a biological sample from the subject with an Akt kinase-binding effective amount of an antibody having specificity for the Akt kinase or an antigenic determinant or epitope thereon and then quantitatively or qualitatively determining the level of an Akt kinase- antibody complex wherein the presence of elevated levels of said complex compared to a normal cell is determined.
  • Antibodies can be prepared by any of a number of means known to one skilled in the art.
  • antibodies can be generally but not necessarily derived from non-human animals such as primates, livestock animals (e.g. sheep, cows, pigs, goats, horses), laboratory test animals (e.g. mice, rats, guinea pigs, rabbits) and/or companion animals (e.g. dogs, cats).
  • Antibodies may also be recombinantly produced in prokaryotic or eukaryotic host cells.
  • antibody based assays can be conducted in vitro on cell or tissue biopsies.
  • an antibody is suitably deimmunized or, in the case of human use, humanized, then the antibody can be labeled with, for example, a nuclear tag, administered to a patient and the site of nuclear label accumulation determined by radiological techniques.
  • the Akt kinase antibody can be a cancer targeting agent. Accordingly, another embodiment of the present invention provides deimmunized forms of the antibodies for use in cancer imaging in human and non-human patients.
  • the enzyme is required to be extracted from a biological sample whether this be from animal including human tissue or from cell culture if produced by recombinant means.
  • the Akt kinase can be separated from the biological sample by any suitable means.
  • the separation may take advantage of any one or more of the Akt kinase's surface charge properties, size, density, biological activity and its affinity for another entity (e.g. another protein or chemical compound to which it binds or otherwise associates).
  • separation of the Akt kinase from the biological fluid can be achieved by any one or more of ultra-centrifugation, ion-exchange chromatography (e.g.
  • Akt kinase can be separated from the biological fluid using any one or more of affinity separation, gel filtration and/or ultra-filtration.
  • Immunization and subsequent production of monoclonal antibodies can be carried out using standard protocols known in the art, such as, for example, described by Kohler and Milstein (Kohler and Milstein, Nature 256: 495-499, 1975; Kohler and Milstein, Eur. J. Immunol. 6(7): 511-519, 1976), Coligan et al. ("Current Protocols in Immunology, John Wiley & Sons, Inc., 1991-1997) or Toyama et al. (Monoclonal Antibody, Experiment Manual", published by Kodansha Scientific, 1987).
  • an animal is immunized with an Akt kinase-containing biological fluid or fraction thereof or a recombinant form of Akt kinase by standard methods to produce antibody- producing cells, particularly antibody-producing somatic cells (e.g. B lymphocytes). These cells can then be removed from the immunized animal for immortalization.
  • a fragment of an Akt kinase can be used to the generate antibodies.
  • the fragment can be associated with a carrier.
  • the carrier can be any substance of typically high molecular weight to which a non- or poorly immunogenic substance (e.g. a hapten) is naturally or artificially linked to enhance its immunogenicity.
  • Immortalization of antibody-producing cells can be carried out using methods which are well-known in the art.
  • the immortalization may be achieved by the transformation method using Epstein-Barr virus (EBV) (Kozbor et al., Methods in Enzymology 121: 140, 1986).
  • EBV Epstein-Barr virus
  • antibody-producing cells are immortalized using the cell fusion method (described in Coligan et al., 1991- 1997, supra), which is widely employed for the production of monoclonal antibodies.
  • somatic antibody-producing cells with the potential to produce antibodies, particularly B cells are fused with a myeloma cell line.
  • somatic cells may be derived from the lymph nodes, spleens and peripheral blood of primed animals, preferably rodent animals such as mice and rats.
  • mice spleen cells can be used.
  • rat, rabbit, sheep or goat cells can also be used.
  • Specialized myeloma cell lines have been developed from lymphocytic tumours for use in hybridoma-producing fusion procedures (Kohler and Milstein, 1976, supra; Shulman et al., Nature 276: 269-270, 1978; VoIk et al.; J. Virol. 42(1): 220-227, 1982).
  • myeloma cell lines can also be used for the production of fused cell hybrids, including, e.g. P3.times.63-Ag8, P3.times.63-AG8.653, P3/NSl-Ag4-l (NS-I), Sp2/0-Agl4 and S194/5.XXO.Bu.l.
  • the P3.times.63-Ag8 and NS-I cell lines have been described by Kohler and Milstein (1976, supra).
  • Shulman et al. (1978, supra) developed the Sp2/0-Agl4 myeloma line.
  • the S194/5.XXO.Bu.l line was reported by Trowbridge (J. Exp. Med. 148(1): 313-323, 1978).
  • Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually involve mixing somatic cells with myeloma cells in a 10:1 proportion (although the proportion may vary from about 20: 1 to about 1:1), respectively, in the presence of an agent or agents (chemical, viral or electrical) that promotes the fusion of cell membranes. Fusion methods have been described (Kohler and Milstein, 1975, supra; Kohler and Milstein, 1976, supra; Gefter et al., Somatic Cell Genet. 3: 231-236, 1977; VoIk et al., 1982, supra). The fusion-promoting agents used by those investigators were Sendai virus and polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • means to select the fused cell hybrids from the remaining unfused cells, particularly the unfused myeloma cells are provided.
  • the selection of fused cell hybrids can be accomplished by culturing the cells in media that support the growth of hybridomas but prevent the growth of the unfused myeloma cells, which normally would go on dividing indefinitely.
  • the somatic cells used in the fusion do not maintain long-term viability in in vitro culture and hence do not pose a problem.
  • Several weeks are required to selectively culture the fused cell hybrids. Early in this time period, it is necessary to identify those hybrids which produce the desired antibody, so that they may subsequently be cloned and propagated.
  • the detection of antibody-producing hybrids can be achieved by any one of several standard assay methods, including enzyme-linked immunoassay and radioimmunoassay techniques as, for example, described in Kennet et al. (Monoclonal Antibodies and Hybridomas: A New Dimension in Biological Analyses, pp 376-384, Plenum Press, New York, 1980) and by FACS analysis (O'Reilly et al., Biotechniques 25: 824-830, 1998).
  • each cell line may be propagated in either of two standard ways.
  • a suspension of the hybridoma cells can be injected into a histocompatible animal. The injected animal will then develop tumours that secrete the specific monoclonal antibody produced by the fused cell hybrid.
  • the body fluids of the animal such as serum or ascites fluid, can be tapped to provide monoclonal antibodies in high concentration.
  • the individual cell lines may be propagated in vitro in laboratory culture vessels.
  • the culture medium containing high concentrations of a single specific monoclonal antibody can be harvested by decantation, filtration or centrifugation, and subsequently purified.
  • the cell lines can then be tested for their specificity to detect the Akt kinase of interest by any suitable immunodetection means.
  • cell lines can be aliquoted into a number of wells and incubated and the supernatant from each well is analyzed by enzyme-linked immunosorbent assay (ELISA), indirect fluorescent antibody technique, or the like.
  • ELISA enzyme-linked immunosorbent assay
  • the cell line(s) producing a monoclonal antibody capable of recognizing the target LIM kinase but which does not recognize non-target epitopes are identified and then directly cultured in vitro or injected into a histocompatible animal to form tumours and to produce, collect and purify the required antibodies.
  • the invention provides, therefore, a method of detecting in a sample an
  • Akt kinase or fragment, variant or derivative thereof comprising contacting the sample with an antibody or fragment or derivative thereof and detecting the level of a complex containing the antibody and Akt kinase or fragment, variant or derivative thereof compared to normal controls wherein elevated levels of Akt kinase is determined.
  • Any suitable technique for determining formation of the complex may be used.
  • an antibody according to the invention having a reporter molecule associated therewith, may be utilized in immunoassays.
  • immunoassays include but are not limited to radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs) immunochromatographic techniques (ICTs), and Western blotting which are well known to those of skill in the art.
  • Immunoassays can also include competitive assays.
  • the present invention encompasses qualitative and quantitative immunoassays.
  • Suitable immunoassay techniques are described, for example, in U.S. Pat. Nos. 4,016,043, 4,424,279 and 4,018,653. These include both single-site and two-site assays of the non-competitive types, as well as the traditional competitive binding assays. These assays also include direct binding of a labeled antigen-binding molecule to a target antigen.
  • the invention further provides methods for quantifying Akt protein expression and activation levels in cells or tissue samples obtained from an animal, such as a human cancer patient or an individual suspected of having cancer.
  • the invention provides methods for quantifying Akt protein expression or activation levels using an imaging system quantitatively.
  • the imaging system can be used to receive, enhance, and process images of cells or tissue samples, that have been stained with AKT protein-specific stains, in order to determine the amount or activation level of AKT protein expressed in the cells or tissue samples from such an animal.
  • a calibration curve of AKTl and AKT2 protein expression can be generated for at least two cell lines expressing differing amounts of AKT protein. The calibration curve can then used to quantitatively determine the amount of AKT protein that is expressed in a cell or tissue sample. Analogous calibration curves can be made for activated AKT proteins using reagents specific for the activation features.
  • AKT protein expression in a cell or tissue sample can be quantified using an enzyme-linked immunoabsorbent assay (ELISA) to determine the amount of AKT protein in a sample.
  • ELISA enzyme-linked immunoabsorbent assay
  • enzyme immunoassays can be used to detect the Akt kinase.
  • an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate.
  • the substrates to be used with the specific enzymes are generally chosen for the production of, upon hydrolysis by the corresponding enzyme, a detectable colour change. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates.
  • the enzyme-labeled antibody can be added to the first antibody-antigen complex, allowed to bind, and then the excess reagent washed away. A solution containing the appropriate substrate can then be added to the complex of antibody- antigen-antibody.
  • the substrate can react with the enzyme linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of antigen which was present in the sample.
  • fluorescent compounds such as fluorescein, rhodamine and the lanthanide, europium (EU) can be chemically coupled to antibodies without altering their binding capacity.
  • the fluorochrome-labeled antibody When activated by illumination with light of a particular wavelength, the fluorochrome-labeled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic colour visually detectable with a light microscope.
  • the fluorescent- labeled antibody is allowed to bind to the first antibody-antigen complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to light of an appropriate wavelength. The fluorescence observed indicates the presence of the antigen of interest.
  • Immunofiuorometric assays are well established in the art and are particularly useful for the present method.
  • other reporter molecules such as radioisotope, chemiluminescent or bioluminescent molecules can also be employed.
  • antibodies to Akt kinase can also be used in ELISA-mediated detection of Akt kinase especially in serum or other circulatory fluid. This can be accomplished by immobilizing anti-Akt kinase antibodies to a solid support and contacting these with a biological extract such as serum, blood, lymph or other bodily fluid, cell extract or cell biopsy. Labeled anti-Akt kinase antibodies can then be used to detect immobilized Akt kinase.
  • This assay can be varied in any number of ways and all variations are encompassed by the present invention and known to one skilled in the art. This approach can enable rapid detection and quantitation of Akt kinase levels using, for example, a serum-based assay.
  • an Akt Elisa assay kit may be used in the present invention.
  • a Cellular Activation of Signaling ELISA kit for Akt S473 from SuperArray Bioscience can be utilized in the present invention.
  • the antibody can be an anti-pan antibody that recognizes Akt S473.
  • Elisa assay kit containing an anti-Akt antibody and additional reagents including, but not limited to, washing buffer, antibody dilution buffer, blocking buffer, cell staining solution, developing solution, stop solution, secondary antibodies, and distilled water.
  • a method to detect Akt kinases is provided by detecting the level of expression in a cell of a polynucleotide encoding an Akt kinase. Expression of the polynucleotide can be determined using any suitable technique known to one skilled in the art. In one embodiment, a labeled polynucleotide encoding an Akt kinase can be utilized as a probe in a Northern blot of an RNA extract obtained from the cell.
  • a nucleic acid extract from an animal can be utilized in concert with oligonucleotide primers corresponding to sense and antisense sequences of a polynucleotide encoding the kinase, or flanking sequences thereof, in a nucleic acid amplification reaction such as RT PCR.
  • a variety of automated solid-phase detection techniques are also available to one skilled in the art, for example, as described by Fodor et al. (Science 251: 767-777, 1991) and Kazal et al. (Nature Medicine 2: 753-759, 1996).
  • RNA can be isolated from a cellular sample suspected of containing Akt kinase RNA, e.g. total RNA isolated from human cancer tissue.
  • RNA can be isolated by methods known in the art, e.g. using. TRIZOL reagent (GIBCO- BRL/Life Technologies, Gaithersburg, Md.).
  • Oligo-dT, or random-sequence oligonucleotides, as well as sequence-specific oligonucleotides can be employed as a primer in a reverse transcriptase reaction to prepare first-strand cDNAs from the isolated RNA.
  • Resultant first-strand cDNAs can then amplified with sequence-specific oligonucleotides in PCR reactions to yield an amplified product.
  • PCR Polymerase chain reaction
  • RNA and/or DNA are amplified as described, for example, in U.S. Pat. No. 4,683,195.
  • sequence information from the ends of the region of interest or beyond is employed to design oligonucleotide primers. These primers will be identical or similar in sequence to opposite strands of the template to be amplified.
  • PCR can be used to amplify specific RNA sequences and cDNA transcribed from total cellular RNA. See generally Mullis et al. (Quant. Biol.
  • amplification of specific nucleic acid sequences by PCR relies upon oligonucleotides or "primers" having conserved nucleotide sequences wherein the conserved sequences are deduced from alignments of related gene or protein sequences, e.g. a sequence comparison of mammalian Akt kinase genes.
  • one primer is prepared which is predicted to anneal to the antisense strand and another primer prepared which is predicted to anneal to the sense strand of a cDNA molecule which encodes a Akt kinase.
  • the reaction mixture is typically subjected to agarose gel electrophoresis or other convenient separation technique and the relative presence of the Akt kinase specific amplified DNA detected.
  • Akt kinase amplified DNA may be detected using Southern hybridization with a specific oligonucleotide probe or comparing its electrophoretic mobility with DNA standards of known molecular weight. Isolation, purification and characterization of the amplified Akt kinase DNA can be accomplished by excising or eluting the fragment from the gel (for example, see references Lawn et al., Nucleic Acids Res. 2: 6103, 1981; Goeddel et al., Nucleic cids Res.
  • real-time PCR can be used to determine transcriptional levels of Akt nucleotides. Determination of transcriptional activity also includes a measure of potential translational activity based on available mRNA transcripts.
  • Real-time PCR as well as other PCR procedures use a number of chemistries for detection of PCR product including the binding of DNA binding fluorophores, the 5' endonuclease, adjacent liner and hairpin oligoprobes and the self- fluorescing amplicons. These chemistries and real-time PCR in general are discussed, for example, in Mackay et al., Nucleic Acids Res 30(6): 1292-1305, 2002; Walker, J. Biochem. MoI. Toxicology 15(3): 121-127, 2001; Lewis et al., J. Pathol. 195: 66-71, 2001.
  • the aberrant expression of Akt can be identified by contacting a nucleotide sequences isolated from a biological sample with an oligonucleotide probe having a sequence complementary to an Akt sequences selected from the nucleotide sequences of figures 6a-c, 7a-d, or 8a-c, or fragment thereof, and then detecting the sequence by hybridizing the probe to the sequence, and comparing the results to a normal sample.
  • the hybridization of the probe to the biological sample can be detected by labeling the probe using any detectable agent.
  • the probe can be labeled for example, with a radioisotope, or with biotin, fluorescent dye, electron-dense reagent, enzyme, hapten or protein for which antibodies are available.
  • the detectable label can be assayed by any desired means, including spectroscopic, photochemical, biochemical, immunochemical, radioisotopic, or chemical means.
  • the probe can also be detected using techniques such as an oligomer restriction technique, a dot blot assay, a reverse dot blot assay, a line probe assay, and a 5' nuclease assay.
  • the probe can be detected using any of the generally applicable DNA array technologies, including macroarray, microarray and DNA microchip technologies.
  • the oligonucleotide probe typically includes approximately at least 14, 15, 16, 18, 20, 25 or 28 nucleotides that hybridize to the nucleotides selected from figures 6a-c, 7a-d, and 8a-c, or a fragment thereof. It is generally not preferred to use a probe that is greater than approximately 25 or 28 nucleotides in length.
  • the oligonucleotide probe is designed to identify an Akt nucleotide sequence. [00171] Kinase Assays
  • the activity of the Akt kinases can be measured using any suitable kinase assay known in the art. For example, and not by way of limitation, the methods described in Hogg et al (Oncogene 1994 9:98-96), Mills et al (J. Biol. Chem. 1992
  • Akt kinase assays can generally use an Akt polypeptide, a labeled donor substrate, and a receptor substrate that is either specific or non-specific for Akt.
  • Akt transfers a labeled moiety from the donor substrate to the receptor substrate, and kinase activity is measured by the amount of labeled moiety transferred from the donor substrate to the receptor substrate.
  • Akt polypeptide can be produced using various expression systems, can be purified from cells, can be in the form of a cleaved or uncleaved recombinant fusion protein and/or can have non-Akt polypeptide sequences, for example a His tag or .beta.-galactosidase at its N-- or C-terminus.
  • Akt activity can be assayed in cancerous cells lines if the cancerous cell lines are used as a source of the Akt to be assayed.
  • Suitable donor substrates for Akt assays include any molecule that is susceptible to dephosphorylation by Akt., such as, for example include .gamma.-labeled ATP and ATP analogs, wherein the label is 33 P, 32 P, . 35 S or any other radioactive isotope or a suitable fluorescent marker.
  • Suitable recipient substrates for Akt assays include any polypeptide or other molecule that is susceptible to phosphorylation by Akt.
  • Recipient substrates can be derived from fragments of in vivo targets of Akt. Recipient substrates fragments can be 8 to 50 amino acids in length , usually 10 to 30 amino acids and particularly of about 10, 12, 15, 18, 20 and 25 amino s acids in length.
  • Further recipient substrates can be determined empirically using a set of different polypeptides or other molecules.
  • Targets of Recipient substrates for TTK can be capable of being purified from other components of the reaction once the reaction has been performed. This purification is usually done through a molecular interaction, where the recipient substrates is biotinylated and purified through its interaction with streptavidin, or a specific antibody is available that can specifically recognize the recipient substrates.
  • the reaction can be performed in a variety of conditions, such as on a solid support, in a gel, in solution or in living cells. ' The choice of detection methods depends on type of label used for the donor molecule and may include, for example, measurement of incorporated radiation or fluorescence by autoradiography, scintillation, scanning or fluorography. 7.
  • the a triciribine prodrug, TCN, TCN-P, and related compounds and pharmaceutical compositions provided herein can be used in the treatment of a condition including tumors, cancer, and other disorders associated with abnormal cell proliferation.
  • the compounds of the present invention can be used to treat a carcinoma, sarcoma, lymphoma, leukemia, and/or myeloma.
  • the a triciribine prodrug, TCN, TCN-P, and related compounds disclosed herein can be used to treat solid tumors.
  • the a triciribine prodrug, TCN, TCN-P, and related compounds of the invention invention can be used for the treatment of cancer, such as, but not limited to cancer of the following organs or tissues: breast, prostate, lung, bronchus, colon, urinary, bladder, non-Hodgkin lymphoma, melanoma, kidney, renal, pancreas, pharnx, thyroid, stomach, brain, multiple myeloma, esophagus, liver, intrahepatic bile duct, cervix, larynx, acute myeloid leukemia, chronic lymphatic leukemia, soft tissue, such as heart, Hodgkin lymphoma, testis, small intestine, chronic myeloid leukemia, acute lymphatic leukemia, anus, anal canal, anorectal, thyroid, vulva, gallbladder, pleura, eye, nose nasal cavity, middle ear, nasopharnx, ureter, peri
  • cancer
  • the a triciribine prodrug, TCN, TCN-P, and related compounds of the invention can be used to treat skin diseases including, but not limited to, the malignant diseases angiosarcoma, hemangioendothelioma, basal cell carcinoma, squamous cell carcinoma, malignant melanoma and Kaposi's sarcoma, and the non-malignant diseases or conditions such as psoriasis, lymphangiogenesis, hemangioma of childhood, Sturge-Weber syndrome, verruca vulgaris, neurofibromatosis, tuberous sclerosis, pyogenic granulomas, recessive dystrophic epidermolysis bullosa, venous ulcers, acne, rosacea, eczema, molluscum contagious, seborrheic keratosis, and actinic keratosis.
  • skin diseases including, but not limited to, the malignant diseases angiosarcoma,
  • compositions of this invention can be used to treat these cancers and other cancers at any stage from the discovery of the cancer to advanced stages.
  • compositions of this invention can be used in the treatment of the primary cancer and metastases thereof.
  • the compounds described herein can be used for the treatment of cancer, including, but not limited to the cancers listed in Table 1 below.
  • Trophoblastic Tumor Gestational Sezary Syndrome ⁇ Unknown Primary Site, Carcinoma Skin Cancer (non-Melanoma) of, Adult Skin Cancer, Childhood
  • Antiangiogenic small molecules include thalidomide, which acts in part by inhibiting NFkB, 2-methoxyestradiol, which influences microtubule activation and hypoxia inducing factor (HIFIa) activation, cyclo-oxygenase 2 (COX2) inhibitors, and low doses of conventional chemotherapeutic agents, including cyclophosphamide, taxanes, and vinca alkaloids (vincristine, vinblastine) (D'Amato, R. J. et al. (1994) Proc Natl. Acad. Sci. U.
  • tyrosine kinase inhibitors indirectly decrease angiogenesis by decreasing production of VEGF and other proangiogenic factors by tumor and stromal cells.
  • these drugs include Herceptin , imatinib (Glivec), and Iressa (Bergers, G. et al. (2003) Journal of Clinical Investigation 111, 1287-1295, Ciardiello, F. et al. (2001) Clinical Cancer Research 7, 1459-1465, Plum, S. M. et al.
  • angiogenesis inhibitors have moved from animal models to human patients.
  • Angiogenesis inhibitors represent a promising treatment for a variety of cancers.
  • Avastin a high affinity antibody against vascular endothelial growth factor (VEGF)
  • VEGF vascular endothelial growth factor
  • Angiogenesis-related diseases include, but are not limited to, inflammatory, autoimmune, and infectous diseases; angiogenesis-dependent cancer, including, for example, solid tumors, blood born tumors such as leukemias, and tumor metastases; benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; rheumatoid arthritis; psoriasis; eczema; ocular angiogenic diseases, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neo vascular glaucoma, retrolental fibroplasia, rubeosis; Osier-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joints; angiofibroma; and wound granulation.
  • angiogenesis-dependent cancer including, for
  • compositions of this invention can be used to treat diseases such as, but not limited to, intestinal adhesions, atherosclerosis, scleroderma, warts, and hypertrophic scars (i.e., keloids).
  • Compositions of this invention can also be used in the treatment of diseases that have angiogenesis as a pathologic consequence such as cat scratch disease (Rochele minalia quintosa), ulcers (Helobacter pylori), tuberculosis, and leprosy.
  • the invention provides compounds that can be used to treat drug resistant cancer, including the embodiments of cancers and drugs disclosed herein.
  • the compound such as a triciribine prodrug, TCN, TCN-P, and related compounds as disclosed herein, can be co-administered with a second drug.
  • Multidrug resistance occurs in human cancers and can be a significant obstacle to the success of chemotherapy. Multidrug resistance is a phenomenon whereby tumor cells in vitro that have been exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. In addition, MDR can occur intrinsically in some cancers without previous exposure to chemotherapy agents.
  • the present invention provides methods for the treatment of a patient with a drug resistant cancer, for example, multidrug resistant cancer, by administration of a triciribine prodrug, TCN, TCN-P, and related compounds as disclosed herein.
  • a triciribine prodrug, TCN, TCN-P, and related compounds can be used to treat cancers that are resistant to taxol, rapamycin, tamoxifen, cisplatin, and/ or gefitinib (iressa).
  • a triciribine prodrug, TCN, TCN-P, and related compounds as disclosed herein can be used for the treatment of drug resistent cancers of the colon, bone, kidney, adrenal, pancreas, liver and/or any other cancer known in the art or described herein.
  • the compounds and compositions disclosed herein can be combined with at least one additional chemotherapeutic agent.
  • the additional agents can be administered in combination or alternation with the compounds disclosed herein.
  • the drugs can form part of the same composition, or be provided as a separate composition for administration at the same time or a different time.
  • compounds disclosed herein can be combined with antiangiogenic agents to enhance their effectiveness, or combined with other antiangiogenic agents and administered together with other cytotoxic agents.
  • the compounds and compositions when used in the treatment of solid tumors, can be administered with the agents selected from, but not limited to IL- 12, retinoids, interferons, angiostatin, endostatin, thalidomide, thrombospondin-1, thfombospondin-2, captopryl, anti-neoplastic agents such as alpha interferon, COMP (cyclophosphamide, vincristine, methotrexate and prednisone), etoposide, mBACOD (methortrexate, bleomycin, doxorubicin, cyclophosphamide, vincristine and dexamethasone), PRO-MACE/MOPP (prednisone, methotrexate (w/leucovin rescue), doxorubic
  • the compounds and compositions disclosed herein can be administered in combination or alternation with, for example, drugs with antimitotic effects, such as those which target cytoskeletal elements, including microtubule modulators such as taxane drugs (such as taxol, paclitaxel, taxotere, docetaxel), podophylotoxins or vinca alkaloids (vincristine, vinblastine); antimetabolite drugs (such as 5-fluorouracil, cytarabine, gemcitabine, purine analogues such as pentostatin, methotrexate); alkylating agents or nitrogen mustards (such as nitrosoureas, cyclophosphamide or ifosphamide); drugs which target DNA such as the antracycline drugs adriamycin, doxorubicin, pharmorubicin or epirubicin; drugs which target topoisomerases such as etoposide
  • drugs with antimitotic effects such as those which target cytoskeletal elements, including micro
  • interferons can be used in combinations with the compounds of the present invention.
  • Suitable intereferons include: interferon alpha-2a, interferon alpha-2b, pegylated interferon alpha, including interferon alpha-2a and interferon alpha 2b, interferon beta, interferon gamma, interferon tau, interferon omega, INFERGEN (interferon alphacon-1) by InterMune, OMNIFERON (natural interferon) by Viragen, ALBUFERON by Human Genome Sciences, REBIF (interferon beta- Ia) byAres-Serono, Omega Interferon by BioMedicine, Oral Interferon Alpha by Amarillo Biosciences, and interferon gamma, interferon tau, and/or interferon gamma- Ib by InterMune.
  • a triciribine prodrug, TCN, TCN-P, and related compounds as disclosed herein can be used in combination or alternation with additional chemotherapeutic agents, such as those described herein or in Table 3, for the treatment of drug resistant cancer, for example multiple drug resistant cancer.
  • Drug resistent cancers can include cancers of the colon, bone, kidney, adrenal, pancreas, liver and/or any other cancer known in the art or described herein.
  • the additional chemotherapeutic agent can be a P-glycoprotein inhibitor.
  • the P-glycoprotein inhibitor can be selected from the following drugs: verapamil, cyclosporin (such as cyclosporin A), tamoxifen, calmodulin antagonists, dexverapamil, dexniguldipine, valspodar (PSC 833), biricodar (VX-710), tariquidar (XR9576), zosuquidar (LY335979), laniquidar (R101933), and/or ONT-093.
  • compositions comprising the triciribine prodrug, TCN, TCN-P, and related compounds disclosed herein may be suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal, or parenteral (including subcutaneous, intramuscular, subcutaneous, intravenous, intradermal, intraocular, intratracheal, intracisternal, intraperitoneal, and epidural) administration.
  • compositions may conveniently be presented in unit dosage form and may be prepared by conventional pharmaceutical techniques. Such techniques include the step of bringing into association one or more compositions of the present invention and one or more pharmaceutical carriers or excipients.
  • suitable pharmaceutical preparations such as solutions, suspensions, tablets, dispersible tablets, pills, capsules, powders, sustained release formulations or elixirs, for oral administration or in sterile solutions or suspensions for parenteral administration, as well as transdermal patch preparation and dry powder inhalers.
  • the compounds described above are formulated into pharmaceutical compositions using techniques and procedures well known in the art (see, e.g., Ansel Introduction to Pharmaceutical Dosage Forms, Fourth Edition 1985, 126).
  • effective concentrations of one or more triciribine prodrug, TCN, TCN-P, and related compounds or pharmaceutically acceptable derivatives thereof may be mixed with one or more suitable pharmaceutical carriers.
  • the compounds may be derivatized as the corresponding salts, esters, enol ethers or esters, acetals, ketals, orthoesters, hemiacetals, hemiketals, acids, bases, solvates, hydrates or prodrugs prior to formulation.
  • compositions are effective for delivery of an amount, upon administration, that treats, prevents, or ameliorates one or more of the symptoms of the target disease or disorder.
  • the compositions are formulated for single dosage administration.
  • the weight fraction of compound is dissolved, suspended, dispersed or otherwise mixed in a selected carrier at an effective concentration such that the treated condition is relieved, prevented, or one or more symptoms are ameliorated.
  • compositions suitable for oral administration may be presented as discrete units such as, but not limited to, tablets, caplets, pills or dragees capsules, or cachets, each containing a predetermined amount of one or more of the compositions; as a powder or granules; as a solution or a suspension in an aqueous liquid or a nonaqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil emulsion or as a bolus, etc,
  • Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, or otherwise mixing an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like, to thereby form a solution or suspension.
  • a carrier such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like, to thereby form a solution or suspension.
  • the pharmaceutical composition to be administered may also contain minor amounts of nontoxic auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents, preservatives, flavoring agents, and the like, for example, acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
  • auxiliary substances such as wetting agents, emulsifying agents, solubilizing agents, pH buffering agents, preservatives, flavoring agents, and the like, for example, acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
  • compositions of the invention suitable for topical administration in the mouth include for example, lozenges, having the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; pastilles, having one or more of the compositions of the present invention in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes, having one or more of the compositions of the present invention administered in a suitable liquid carrier.
  • the tablets, pills, capsules, troches and the like can contain one or more of the following ingredients, or compounds of a similar nature: a binder; a lubricant; a diluent; a glidant; a disintegrating agent; a coloring agent; a sweetening agent; a flavoring agent; a wetting agent; an emetic coating; and a film coating.
  • binders include microcrystalline cellulose, gum tragacanth, glucose solution, acacia mucilage, gelatin solution, molasses, polvinylpyrrolidine, povidone, crospovidones, sucrose and starch paste.
  • Lubricants include talc, starch, magnesium or calcium stearate, lycopodium and stearic acid.
  • Diluents include, for example, lactose, sucrose, starch, kaolin, salt, mannitol and dicalcium phosphate.
  • Glidants include, but are not limited to, colloidal silicon dioxide.
  • Disintegrating agents include crosscarmellose sodium, sodium starch glycolate, alginic acid, corn starch, potato starch, bentonite, methylcellulose, agar and carboxymethylcellulose.
  • Coloring agents include, for example, any of the approved certified water soluble FD and C dyes, mixtures thereof; and water insoluble FD and C dyes suspended on alumina hydrate.
  • Sweetening agents include sucrose, lactose, mannitol and artificial sweetening agents such as saccharin, and any number of spray dried flavors.
  • Flavoring agents include natural flavors extracted from plants such as fruits and synthetic blends of compounds which produce a pleasant sensation, such as, but not limited to peppermint and methyl salicylate.
  • Wetting agents include propylene glycol monostearate, sorbitan monooleate, diethylene glycol monolaurate and polyoxyethylene laural ether.
  • Emetic-coatings include fatty acids, fats, waxes, shellac, ammoniated shellac and cellulose acetate phthalates.
  • Film coatings include hydroxyethylcellulose, sodium carboxymethylcellulose, polyethylene glycol 4000 and cellulose acetate phthalate.
  • compositions suitable for topical administration to the skin may be presented as ointments, creams, gels, and pastes, having one or more of the compositions administered in a pharmaceutical acceptable carrier.
  • compositions for rectal administration may be presented as a suppository with a suitable base comprising, for example, cocoa butter or a salicylate.
  • compositions suitable for nasal administration when the carrier is a solid, include a coarse powder having a particle size, for example, in the range of 20 to
  • the carrier is a liquid (for example, a nasal spray or as nasal drops)
  • one or more of the compositions can be admixed in an aqueous or oily solution, and inhaled or sprayed into the nasal passage.
  • compositions suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing one or more of the compositions and appropriate carriers.
  • compositions suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats, and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • the compositions may be presented in unit- dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, water for injections, immediately prior to use.
  • compositions may be prepared from sterile powders, granules, and tablets of the kind previously described above.
  • Pharmaceutical organic or inorganic solid or liquid carrier media suitable for enteral or parenteral administration can be used to fabricate the compositions. Gelatin, lactose, starch, magnesium stearate, talc, vegetable and animal fats and oils, s gum, polyalkylene glycol, water, or other known carriers may all be suitable as carrier media.
  • Compositions may be used as the active ingredient in combination with one or more pharmaceutically acceptable carrier mediums and/or excipients.
  • pharmaceutically acceptable carrier medium includes any and all carriers, solvents, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants, adjuvants, vehicles, delivery systems, disintegrants, absorbents, preservatives, surfactants, colorants, flavorants, or sweeteners and the like, as suited to the particular dosage form desired.
  • compositions may be combined with pharmaceutically acceptable excipients, and, optionally, sustained-release matrices, such as biodegradable polymers, to form therapeutic compositions.
  • pharmaceutically acceptable excipient includes a non-toxic solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
  • the total daily usage of the compositions will be decided by the attending physician within the scope of sound medical judgment.
  • the specific therapeutically effective dose level for any particular host will depend upon a variety of factors, including for example, the disorder being treated and the severity of the disorder; activity of the specific composition employed; the specific composition employed, the age, body weight, general health, sex and diet of the patient; the time of administration; route of administration; rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidential with the specific composition employed; and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of the composition at levels lower than those required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
  • compositions are preferably formulated in dosage unit form for ease of administration and uniformity of dosage.
  • dosage unit form refers to a physically discrete unit of the composition appropriate for the host to be treated. Each dosage should contain the quantity of composition calculated to produce the desired therapeutic affect either as such, or in association with the selected pharmaceutical carrier medium.
  • Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose, or an appropriate fraction thereof, of the administered ingredient. For example, approximately 1-5 mg per day of a compound disclosed herein can reduce the volume of a solid tumor in mice.
  • the dosage will depend on host factors such as weight, age, surface area, metabolism, tissue distribution, absorption rate and excretion rate. In one embodiment, approximately 0.5 to 7 grams per day of a compound disclosed herein may be administered to humans. Optionally, approximately 1 to 4 grams per day of the compound can be administered to humans. In certain embodiments 0.001-5 mg/day is administered to a human.
  • the therapeutically effective dose level will depend on many factors as noted above. In addition, it is well within the skill of the art to start doses of the composition at relatively low levels, and increase the dosage until the desired effect is achieved.
  • compositions comprising a triciribine prodrug, TCN, TCN-P, and related compounds disclosed herein may be used with a sustained-release matrix, which can be made of materials, usually polymers, which are degradable by enzymatic or acid-based hydrolysis or by dissolution. Once inserted into the body, the matrix is acted upon by enzymes and body fluids.
  • a sustained-release matrix for example is chosen from biocompatible materials such as liposomes, polylactides (polylactic acid), polyglycolide (polymer of glycolic acid), polylactide co-glycolide (copolymers of lactic acid and glycolic acid), polyanhydrides, poly(ortho)esters, polypeptides, hyaluronic acid, collagen, chondroitin sulfate, carboxcylic acids, fatty acids, phospholipids, polysaccharides, nucleic acids, polyamino acids, amino acids such as phenylalanine, tyrosine, isoleucine, polynucleotides, polyvinyl propylene, polyvinylpyrrolidone and silicone.
  • biocompatible materials such as liposomes, polylactides (polylactic acid), polyglycolide (polymer of glycolic acid), polylactide co-glycolide (copolymers of lactic acid and glycolic acid), polyanhydr
  • a preferred biodegradable matrix is a matrix of one of either polylactide, polyglycolide, or polylactide co-glycolide (co-polymers of lactic acid and glycolic acid).
  • the triciribine prodrug, TCN, TCN-P, and related compounds may also be administered in the form of liposomes.
  • liposomes are generally derived from phospholipids or other lipid substances. Liposomes are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically-acceptable and metabolizable lipid capable of forming liposomes can be used.
  • the liposome can contain, in addition to one or more compositions of the present invention, stabilizers, preservatives, excipients, and the like.
  • lipids are the phospholipids and the phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art.
  • the compounds may be formulated as aerosols for application, such as by inhalation. These formulations for administration to the respiratory tract can be in the form of an aerosol or solution for a nebulizer, or as a microfine powder for insufflation, alone or in combination with an inert carrier such as lactose.
  • compositions comprising the triciribine prodrug, TCN, TCN-P, and related compounds disclosed herein may be used in combination with other compositions and/or procedures for the treatment of the conditions described above.
  • a tumor may be treated conventionally with surgery, radiation, or chemotherapy combined with one or more compositions of the present invention and then one or more compositions of the present invention may be subsequently administered to the patient to extend the dormancy of micrometastases and to stabilize, inhibit, or reduce the growth of any residual primary tumor.
  • Additional Embodiments may be used in combination with other compositions and/or procedures for the treatment of the conditions described above.
  • a tumor may be treated conventionally with surgery, radiation, or chemotherapy combined with one or more compositions of the present invention and then one or more compositions of the present invention may be subsequently administered to the patient to extend the dormancy of micrometastases and to stabilize, inhibit, or reduce the growth of any residual primary tumor.
  • compositions of the subject invention can be formulated according to known methods for preparing pharmaceutically useful compositions.
  • Formulations are described in a number of sources which are well known and readily available to those skilled in the art.
  • Remington s ' Pharmaceutical Sciences (Martin EW [ 1995] Easton Pennsylvania, Mack Publishing Company, 19 th ed.) describes formulations which can be used in connection with the subject invention.
  • Formulations suitable for administration include, for example, aqueous sterile injection solutions, which may contain antioxidants, buffers, bacteriostats, and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and nonaqueous sterile suspensions which may include suspending agents and thickening agents.
  • the formulations may be presented in unit- dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the condition of the sterile liquid carrier, for example, water for injections, prior to use.
  • sterile liquid carrier for example, water for injections, prior to use.
  • Extemporaneous injection solutions and suspensions may be prepared from sterile powder, granules, tablets, etc. It should be understood that in addition to the ingredients particularly mentioned above, the formulations of the subject invention can include other agents conventional in the art having regard to the type of formulation in question.
  • the methods of the invention for example, for inhibiting the growth of a cancerous cell, can be advantageously combined with at least one additional therapeutic method, including but not limited to chemotherapy, radiation therapy, therapy that selectively inhibits Ras oncogenic signaling, or any other therapy known to those of skill in the art of the treatment and management of cancer, such as administration of an anti-cancer agent.
  • additional therapeutic method including but not limited to chemotherapy, radiation therapy, therapy that selectively inhibits Ras oncogenic signaling, or any other therapy known to those of skill in the art of the treatment and management of cancer, such as administration of an anti-cancer agent.
  • a triciribine prodrug, TCN, TCN-P, and related compounds as a salt may be carried out.
  • pharmaceutically acceptable salts are organic acid addition salts formed with acids which form a physiological acceptable anion, for example, tosylate, methanesulfonate, acetate, citrate, malonate, tartarate, succinate, benzoate, ascorbate, alpha-ketoglutarate, and alpha-glycerophosphate.
  • Suitable inorganic salts may also be formed, including hydrochloride, sulfate, nitrate, bicarbonate, and carbonate salts.
  • compositions may be obtained using standard procedures well known in the art, for example by reacting a sufficiently basic compound such as an amine with a suitable acid affording a physiologically acceptable anion.
  • Alkali metal (for example, sodium, potassium or lithium) or alkaline earth metal (for example calcium) salts of carboxylic acids can also be made.
  • the triciribine prodrug, TCN, TCN-P, and related compounds of the invention can be formulated as pharmaceutical compositions and administered to a subject, such as a human or veterinary patient, in a variety of forms adapted to the chosen route of administration, i.e., orally or parenterally, by intravenous, intramuscular, topical or subcutaneous routes.
  • the triciribine prodrug, TCN, TCN-P, and related compounds of the invention may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle (i.e., carrier) such as an inert diluent or an assimilable edible carrier. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet.
  • a pharmaceutically acceptable vehicle i.e., carrier
  • the compounds may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
  • compositions and preparations should contain at least 0.1 % of active agent.
  • the percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form.
  • the amount of the active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.
  • the tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added.
  • binders such as gum tragacanth, acacia, corn starch or gelatin
  • excipients such as dicalcium phosphate
  • a disintegrating agent such as corn starch, potato starch, alginic acid and the like
  • a lubricant such as magnesium stearate
  • a sweetening agent such as sucrose, fructose, lactose or aspartame or
  • the unit dosage form When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and the like.
  • a syrup or elixir may contain the compounds of the invention, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor.
  • any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed.
  • the compounds of the invention may be incorporated into sustained-release preparations and devices.
  • the active agent e.g. , API-2, a prodrug or pharmaceutically acceptable salts thereof
  • the active agent may also be administered intravenously or intraperitoneally by infusion or injection.
  • Solutions of the active agent or its salts can be prepared in water, optionally mixed with a nontoxic surfactant.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
  • the pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes.
  • the liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants.
  • the prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions are prepared by incorporating compounds of the invention in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization.
  • the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
  • the compounds of the invention may be applied in pure-form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.
  • Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like.
  • Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the compounds of the invention can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants.
  • Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use.
  • the resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers.
  • Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
  • Examples of useful dermatological compositions which can be used to deliver the compounds of the invention to the skin are disclosed in Jacquet et al. (U.S. Patent No. 4,608,392), Geria (U.S. Patent No. 4,992,478), Smith et al. (U.S. Patent No. 4,559,157) and Woltzman (U.S. Patent No. 4,820,508).
  • the concentration of the active agent in a liquid composition can be from about 0.1-25 wt-%, or from about 0.5-10 wt.-%.
  • the concentration in a semi-solid or solid composition such as a gel or a powder can be about 0.1-5 wt.-%, preferably about 0.5- 2.5 wt.-%.
  • single dosages for injection, infusion or ingestion will generally vary between 5-1500 mg, and may be administered, i.e., 1-3 times daily, to yield levels of about 0.1-50 mg/kg, for adults.
  • Anon-limiting dosage of the present invention can be between 7.5 to 45 mg per clay, administered orally, with appropriate adjustment for the body weight of an individual.
  • the invention includes a pharmaceutical composition comprising a triciribine prodrug, TCN, TCN-P, and related compounds, as described herein, or pharmaceutically acceptable salts thereof, in combination with a pharmaceutically acceptable carrier.
  • Pharmaceutical compositions adapted for oral, topical or parenteral administration, comprising an amount of a triciribine prodrug, TCN, TCN-P, and related compounds, or a pharmaceutically acceptable salt thereof, constitute a preferred embodiment of the invention.
  • the dose administered to a subject, particularly a human, in the context of the present invention should be sufficient to effect a therapeutic response in the patient over a reasonable time frame.
  • dosage will depend upon a variety of factors including the condition of the animal, the body weight of the animal, as well as the severity and stage of the cancer.
  • a suitable dose is that which will result in a concentration of the active agent in tumor tissue which is known to effect the desired response.
  • the preferred dosage is the amount which results in maximum inhibition of cancer cell growth, without unmanageable side effects.
  • Administration of a triciribine prodrug, TCN, TCN- P, and related compounds (or a pharmaceutically acceptable salt thereof) can be continuous or at distinct intervals, as can be determined by a person of ordinary skill in • the art.
  • Mammalian species which benefit from the disclosed methods for the inhibition of cancer cell growth include, but are not limited to, primates, such as apes, chimpanzees, orangutans, humans, monkeys; domesticated animals (e.g., pets) such as dogs, cats, guinea pigs, hamsters, Vietnamese pot-bellied pigs, rabbits, and ferrets; domesticated farm animals such as cows, buffalo, bison, horses, donkey, swine, sheep, and goats; exotic animals typically found in zoos, such as bear, lions, tigers, panthers, elephants, hippopotamus, rhinoceros, giraffes, antelopes, sloth, gazelles, zebras, wildebeests, prairie dogs, koala bears, kangaroo, opossums, raccoons, pandas, hyena, seals, sea lions, elephant seals,
  • NCI Structural Diversity Set is a library of 1,992 compounds selected from the approximately 140,000- compound NCI drug depository. In-depth data on the selection, structures, and activities of these diversity set compounds can be found on the NCI Developmental Therapeutics Program web site.
  • AKT2 transformed NIH3T3 cells or LXSN vector-transfected NIH3T3 control cells were plated into 96-well tissue culture plate. Following treatment with 5 ⁇ M of NCI Diversity Set compound, cell growth was detected with CellTier 96 One Solution Cell Proliferation kit (Promega). Compounds that inhibit growth in AKT2-transformed but not LXSN-transfected NIH3T3 cells were considered as candidates of Akt inhibitor and subjected to further analysis.
  • In vitro Protein Kinase In vitro Protein Kinase.
  • Akt has been considered as an attractive molecular target for development of novel cancer therapeutics.
  • a chemical library of 1,992-compounds from the NCI was evaluated for agents capable of inhibition of growth in AKT2- transformed but not empty vector LXSN-transfected NIH3T3 cells as described in "Materials and Methods". Repeated experiments showed that 32 compounds inhibited growth only in AKT2-transformaed cells.
  • API-2 (NCI identifier: NSC 154020), suppressed cell growth at a concentration of 50 nM.
  • Fig. IA shows the chemical structure of API-2, which is also known as triciribine (Schweinsberg, P. D., et al. Biochem Pharmacol., 50- 2521-2526, 1981).
  • API-2 inhibited selectively AKT-2 transformed cells over untransformed parental cells prompted us to determine whether API-2 is an inhibitor of AKT2 kinase.
  • AKT2 was immunoprecipitated with anti-AKT2 antibody from AKT-2 transformed NIH3T3 cells following treatment with API-2.
  • AKT2 immunoprecipitates were immunoblotted with anti-phospho-Akt antibodies.
  • API-2 significantly inhibited AKT2 phosphorylation at both threonine-309 and serine-474, which are required for full activation of AKT2 (Datta, S. R., et al. Genes Dev. 13: 2905- 2927, 1999).
  • HEK293 cells were transfected with HA-AKTl, -AKT2 and -AKT3, serum-starved overnight and treated with API-2 for 60 min prior to EGF (50 ng/ml) stimulation.
  • API-2 Does Not Inhibit Known Upstream Activators of Akt. It has been well documented that Akt is activated by extracellular stimuli and intracellular signal molecules, such as active Ras and Src, through a PI3K-dependent manner. Therefore, API-2 inhibition of Akt could result from targeting upstream molecule(s) of Akt. As
  • PI3K and PDKl are direct upstream regulators of Akt (Datta, S. R., et al. Genes Dev.
  • API-2 inhibits PBK and/or PDKl was examined.
  • HEK293 cells were serum-starved and then treated with API-2 or PI3K inhibitor, wortmannin, for 30 min prior to EGF stimulation.
  • PI3K was immunoprecipitated with anti-pl lO ⁇ antibody.
  • the immunoprecipitates were subjected to in vitro PI3K kinase assay using PI-4-P as a substrate.
  • the EGF-induced PI3K activity was inhibited by wortmannin but not by API-2.
  • API-2 Is Highly Selective for the Akt over PKC. PKA. SGK.
  • Akt belongs to AGC (PKA/PKG/PKC) kinase family, which also include PKA, PKC, serum- and glucocorticoid-inducible kinase (SGK), p90 ribosomal S6 kinase, p70 S6K , mitogen- and stress-activated protein kinase and PKC-related kinase.
  • PKA PKA/PKG/PKC
  • SGK serum- and glucocorticoid-inducible kinase
  • SGK serum- and glucocorticoid-inducible kinase
  • SGK serum- and glucocorticoid-inducible kinase
  • SGK serum- and glucocorticoid-inducible kinase
  • SGK serum- and glucocorticoid-inducible kinase
  • HEK293 cells were transfected with HA-tagged PKA, PKC Q or SGK.
  • In vitro kinase assay and immunoblotting analysis showed that the kinase activities of PKA and PKC D were inhibited by PKAI and Ro 31 -8220, a PKC inhibitor, respectively, whereas API-2 exhibited no effect on their activities (Fig. 2C and 2E). Further, serum-induced SGK kinase activity was attenuated by wortmannin but not by API-2 (Fig. 2D). In addition, it was determined whether API-2 has effect on other oncogenic survival pathways.
  • API-2 Suppresses Cell Growth and Induces Apoptosis in Akt- overexpressing/activating Human Cancer Cell Lines.
  • the ability of API-2 to selectively inhibit the Akt pathway suggests that it should inhibit proliferation and/or induces apoptosis preferentially in those tumor cells with aberrant expression/activation of Akt.
  • API-2 was used to treat the cells that express constitutively active Akt, caused by overexpression of AKT2 (OVCAR3, OVCAR8, PANCl and AKT2-transformed NIH3T3) or mutations of the PTEN gene (PC-3, LNCaP, MDA-MB- 468), and cells that do not (0VCAR5, DU-145, T47D, COLO357 and LXSN-NIH3T3) as well as melanoma cells that are activated by IGF-I to activate Akt or do not respond to growth stimulation by IGF-I (Satyamoorthy, K., et al. Cancer Res.
  • API-2 treatment inhibited cell proliferation by approximate 50-60% in Akt-overexpressing/activating cell lines, LNCaP, PC-3, OVCAR3, OVCA8, PANCl, MDA-MB-468, and WM35, whereas only by about 10-20% in DU145, OVCAR5, COLO357, T47D and WM852 cells, which exhibit low levels of Akt or do not respond to growth stimulation by IGF-I.
  • API-2 induces apoptosis by 8-fold (OVCAR3), 6-fold (OVCAR8), 6-fold (PANCl), and 3-fold (AKT2-NIH3T3).
  • API-2 inhibits cell growth and induces apoptosis preferentially in cells that express aberrant Akt.
  • API-2 Inhibits Downstream Targets of Akt. It has been shown that Akt exerts its cellular effects through phosphorylation of a number of proteins (Datta, S. R., et al. Genes Dev. 13: 2905-2927, 1999).
  • Akt substrates More than 20 proteins have been identified as Akt substrates, including the members of Forkhead protein family (FKHR, AFX and FKHRLl), tuberlin/TSC2, p70 S6K , GSK-3D, p 2l WAF1/c ' P
  • FIG. 4A shows that API-2 considerably inhibited the phosphorylation levels of tuberlin leading to stabilization and upregulation of tuberin (Dan, H. C, et al. J. Biol. Chem., 277; 35364-35370, 2002).
  • the phosphorylation levels of Bad, GSK-3 D , and AFX were partially attenuated by API-2.
  • API-2 inhibition of Akt downstream targets at different degrees could be due to the fact that phosphorylation sites of these targets are also regulated by other kinase(s), for instance, Bad serine- 136 is phosphorylated by PAKl in addition to Akt (Schurmann, A., et al. MoI. Cell. Biol, 20: 453-461, 2000).
  • Example 2 Antitumor Activity in the Nude Mouse Tumor Xenograft Model.
  • Tumor cells were harvested, resuspended in PBS, and injected s.c. into the right and left flanks (2 x 10 6 cells/flank) of 8-week-old female nude mice as reported previously ( Sun, J., Blaskovic, et al. Cancer Res., 59: 4919-4926, 1999). When tumors reached about 100-150 mm 3 , animals were randomized and dosed i.p. with 0.2 ml vehicle of drug daily. Control animals were received DMSO (20%) vehicle, whereas treated animals were injected with API-2 (1 mg/kg/day) in 20% DMSO.
  • API-2 Inhibits the Growth of Tumors in Nude Mice that Overexpress Akt.
  • OVCAR5 and COLO357 implanted into the right flank, and those cell lines that express low levels of Akt (OVCAR5 and COLO357) into the left flank of mice.
  • the animals were randomized and treated i.p. with either vehicle or API-2 (1 mg/kg/day).
  • OVCAR-5 and COLO357 tumors treated with vehicle grew to about 800-1,000 mm 3 49 days after tumor implantation.
  • OVCAR3, OVCAR8 and PANCl tumors treated with vehicle control grew to about 700-900 mm 3 49 days after tumor implantation.
  • API-2 inhibited OVCAR3, OVCAR8 and PANC 1 tumor growth by 90%, 88% and 80%, respectively.
  • API-2 had little effect on the growth of OVCAR5 and COLO357 cells in nude mice (Figs. 4B-4D and data not shown). At dose 1 mg/kg/day, API-2 had no effects on blood glucose level, body weight, activity and food intake of mice. In treated tumor samples, Akt activity was inhibited by API-2 without change of total Akt content (Fig. 4E). Taken together, these results indicate that API-2 selectively inhibits the growth of tumors with elevated levels of Akt. 10.3.
  • Example 3 TCN Directly Inhibits Wild Type Akt Kinase Activity
  • API-2 can directly inhibit wild type Akt kinase activity induced by PDKl in vitro (Fig. 1). This result supports that API-2 is a direct Akt inhibitor and that the underlying mechanism may be API-2 binding to PH domain and/or threonine- 308 of Akt.
  • An in vitro kinase assay was performed with recombinant of PDKl and Akt in a kinase buffer containing phosphatidylinositol-3,4,5-P3 (PIP3), API-2 and histone H2B as substrate. After incubation of 30 min, the reactions were separated by SDS- PAGE and exposed in a film.
  • TCN Is Effective In Cancer Resistant Cells [00249] The effects of TCN (API-2) were tested in cisplatin, paclitaxel, and tamoxifen resistant A270CP, C- 13, OVCAR433 and MCF7/TAM cells. API-2 overcame cisplatin, paclitaxel, and tamoxifen resistance in these cells [00250] 10.5.
  • API-2 overcame cisplatin, paclitaxel, and tamoxifen resistance in these cells [00250] 10.5.
  • Cell Survival Assay Cytotoxicity was measured in A549 and Colo357 exponentially growing cells treated with 0.1 to 100 ⁇ M TCN, TCNP, or TCN w/heptanoyl group at position 6 for 48 hours. After drug incubation, cells were harvested by trypsinization, enumerated using a Coulter electronic particle counter, and plated in 6- well dishes at an approximate 100 viable cells per well. After 10 days, cell survival was determined by fixing the colonies with 3: 1 methanol: acetic acid, staining with 4% crystal violet, and enumerating the colonies. Cell survival was calculated as a fraction of the plating efficiency for untreated control cells for each cell type and drug condition.
  • liver homogenates were 6.5 and rat liver homogenates at 37 0 C.
  • timed aliquots were taken at 0, 1, 2, and 3 hours, mixed with cold 10% TCA and analyzed for prodrug and parent compound by LC/MS/MS as described.
  • liver homogenates samples were taken at 0, 5, 10, 20, 30 and 90 minutes, mixed with cold 10% TCA, then centrifuged for 10 minutes to remove precipitated liver homogenate protein. Samples were analyzed be LC/MS/MS as described.
  • Sprague-Dawley rats 9-10 weeks old and weighing 250-350 g were fasted for 18 hours with free access to water.
  • the rats were anesthetized with 2-5% isofluorane.
  • a catheter was placed in the jugular vein. The abdomen was opened by a 4-5 cm midline incision and the duodenal segment was located.
  • 0.5 ml of a 6mg/ml drug solution (or suspension) was injected directly into the duodenal segment, the intestine was placed back into the abdominal cavity and the incision was covered with gauze.
  • Plasma samples ( — 0.5 ml) were withdrawn over a 4 hour period and the systemic plasma concentrations of the injected prodrug and/or parent compounds were determined simultaneously using an LC/MS/MS method.
  • Sample Preparation Samples were subjected to solid phase extraction using Waters Cation SPE cartridges (MCX). The cartridges were conditioned with 1 mL methanol and 1 mL water. 0.25 mL samples were treated with an equal volume of 2% phosphoric acid and loaded onto the SPE column. The column was washed with I mL of 1 % TFA methanol solution and I mL of methanol then eluted with 1 mL of 2%
  • LC/MS/MS LC/MS/MS.
  • 10 microliter aliquots of sample were separated on a C18, 2.2 mm x 10 cm column (Higgins Analytical), at a flow rate of 0.2 ml/min over a run time of 3 minutes.
  • the mobile phase for the separation consisted of an isocratic gradient using the following mobile phases A) 70% 0.1% formic acid in water to B) 30% acetonitrile.
  • the MS/MS detector was run under MRM positive acquisition mode, with a cone voltage of 30 Volts, a collision energy of 5 Volts with a collision gas pressure of 1 x 10 "3 mbar.
  • Triciribine Prodrugs Two prodrugs of Triciribine were synthesized; a) the 5' O-valyl triciribine prodrug with the ester group at the 5' hydroxyl group of Triciribine and b) the 5 'O-valyl phosphoramidate triciribine with valyl phosphorylation at 5' hydroxyl group of Triciribine.
  • a third prodrug, the 6N hexanoyl acyl TCN was obtained from Dr. John Drach at the University of Michigan. The structures of the three prodrugs are listed below in Figure 1.
  • valyl ester was purified using flash silica gel chromatography with 9: 1 DCM to McOH as eluant and preparative HPLC to obtain the pure product. The structure was confirmed by H' NMR and LC/MS/MS. The 5' valyl ester appeared to exist in equilibrium with the 2 1 or 3 1 valyl ester, likely a result of migration of the amino acid from the 5' to the 2 1 or 3' position. Based on HPLC and H 1 NMR analyses, approximately 85 to 90% of the product exists as the 5' ester and 10 to 15% of the product is the 2' or 3' ester. [00259] 5'O-valyl phosphoramidate triciribine [6-Amino-4-methyl-8-[5-
  • Cytotoxicity was tested in 2 systems, visual inspection of I-IFF cells cultured with the compounds over an 8 day period and a cell survival assay using cells that differentially express the AKT/PKB activity responsible for the TCN cytotoxicity.
  • the TCNP and the 6N acyl derivative of TCN were more toxic than TCN, confirming historical studies performed in Dr. Drach's laboratory.
  • the two prodrugs showed no cytotoxic effects (Table 1).
  • Cytotoxicity was determined by visual inspection of HFF cells cultured for 8 days in the presence of each compound over a concentration range of 0 to 100 uM.
  • TCN, TCNP and 6N-Acyl-TCN compounds were tested against A549 cells, a human non-small cell lung cancer cell line that constitutively express high levels of Akt/PKB and Colo357, a pancreatic cancer line that shows little or no Akt expression (Table 2).
  • the compounds showed cytotoxicities ranging from 7.5 uM (TCN) to 70 uM (6N-Acyl-TCN), while in the AV Colo357, none of the compounds were cytotoxic (Table 2).
  • the N6-acyl prodrug had a peak concentration of 35.4 ng/ml and also showed low levels of TCN (5.2 ng/ml).
  • TCN 5.2 ng/ml
  • a similar pattern was seen with 5' O- valyl triciribine.
  • the 5' O-valyl-phosphoramidate triciribine prodrug showed the greatest absorption, but in this case, the major detectable compound was the parent compound, TCNP, which had a Cmax of 173.6 ng/ml.

Abstract

L'invention concerne de nouveaux promédicaments de la triciribine et de substances apparentées, ainsi que des régimes thérapeutiques de promédicaments de la triciribine et de substances apparentées et des compositions pour le traitement de tumeurs, de cancer et d'autres troubles associés à une prolifération cellulaire anormale. L'invention concerne en outre des formulations orales de promédicaments à biodisponibilité accrue, fournissant ainsi une nouvelle voie d'administration avec les avantages cliniques qui en découlent en termes de facilité d'administration.
PCT/US2008/003853 2007-03-28 2008-03-25 Traitement efficace de tumeurs et de cancer au moyen de promédicaments de la triciribine WO2008121261A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90730507P 2007-03-28 2007-03-28
US60/907,305 2007-03-28

Publications (2)

Publication Number Publication Date
WO2008121261A2 true WO2008121261A2 (fr) 2008-10-09
WO2008121261A3 WO2008121261A3 (fr) 2008-12-24

Family

ID=39712321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/003853 WO2008121261A2 (fr) 2007-03-28 2008-03-25 Traitement efficace de tumeurs et de cancer au moyen de promédicaments de la triciribine

Country Status (2)

Country Link
TW (1) TW200902034A (fr)
WO (1) WO2008121261A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163512A1 (fr) 2012-04-26 2013-10-31 The General Hospital Corporation Agents et méthodes de traitement et de prévention des verrues séborrhéiques
US10508309B2 (en) 2013-05-17 2019-12-17 The General Hospital Corporation Methods for detecting and treating variants of seborrheic keratoses
WO2021097401A1 (fr) * 2019-11-14 2021-05-20 H. Lee Moffitt Cancer Center And Research Institute, Inc. Polythérapie avec un inhibiteur d'activation de protéine kinase b pour traiter le cancer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11058704B2 (en) * 2016-10-03 2021-07-13 Arcus Biosciences, Inc. Inhibitors of adenosine 5′-nucleotidase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123524A (en) * 1977-06-08 1978-10-31 The United States Of America As Represented By The Department Of Health, Education And Welfare Synthesis of 6-amino-4-methyl-8-(β-D-ribofuranosyl)pyrrolo[4,3,2-de]pyrimido[4,5-C]pyridazine-5'-phosphate as a novel compound and its utility against L-1210 mouse leukemia

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123524A (en) * 1977-06-08 1978-10-31 The United States Of America As Represented By The Department Of Health, Education And Welfare Synthesis of 6-amino-4-methyl-8-(β-D-ribofuranosyl)pyrrolo[4,3,2-de]pyrimido[4,5-C]pyridazine-5'-phosphate as a novel compound and its utility against L-1210 mouse leukemia

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 12 May 1984 (1984-05-12), XP002499547 retrieved from STN Database accession no. 1982:32363 & A. J. BODNER ET AL.: "Induction of differentiation of human promyelocytic leukemia cells (HL-60) by nucleosides and methotrexate" JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 67, no. 5, 1981, pages 1025-1030, US DEPT. OF HEALTH, EDUCATION AND WELFARE, PUBLIC HEALTH SERVICE, NATIONAL INSTITUTES OF HEALTH, BETHESDA, MD; US *
DATABASE CAPLUS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 18 February 2004 (2004-02-18), XP002499546 retrieved from STN Database accession no. 2004:131615 & A. R. PORCARI ET AL.: "An Improved Total Synthesis of Triciribine: A Tricyclic Nucleoside with Antineoplastic and Antiviral Properties" NUCLEOSIDES, NUCLEOTIDES AND NUCLEIC ACIDS., vol. 23, no. 1, 2004, pages 31-39, TAYLOR & FRANCIS, PHILADELPHIA, PA.; US *
PORCARI, A. R. ET AL.: "6-N-Acyltriciribine Analogues: Structure-Activity Relationship between Acyl Carbon Chain Length and Activity against HIV-1" JOURNAL OF MEDICINAL CHEMISTRY., vol. 43, no. 12, 2000, pages 2457-2463, XP002499362 AMERICAN CHEMICAL SOCIETY. WASHINGTON; US *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163512A1 (fr) 2012-04-26 2013-10-31 The General Hospital Corporation Agents et méthodes de traitement et de prévention des verrues séborrhéiques
JP2015520737A (ja) * 2012-04-26 2015-07-23 ザ ジェネラル ホスピタル コーポレイション 脂漏性角化症を治療および予防するための薬剤および方法
EP2841075A4 (fr) * 2012-04-26 2016-03-30 Gen Hospital Corp Agents et méthodes de traitement et de prévention des verrues séborrhéiques
US9458462B2 (en) 2012-04-26 2016-10-04 The General Hospital Corporation Agents and methods for treating and preventing seborrheic keratosis
US9658210B2 (en) 2012-04-26 2017-05-23 The General Hospital Corporation Agents and methods for treating and preventing seborrheic keratosis
AU2013251475B2 (en) * 2012-04-26 2018-01-04 The General Hospital Corporation Agents and methods for treating and preventing seborrheic keratosis
US10443038B2 (en) 2012-04-26 2019-10-15 The General Hospital Corporation Agents and methods for treating and preventing seborrheic keratosis
AU2018202271B2 (en) * 2012-04-26 2019-12-12 The General Hospital Corporation Agents and methods for treating and preventing seborrheic keratosis
US10822586B2 (en) 2012-04-26 2020-11-03 The General Hospital Corporation Agents and methods for treating and preventing seborrheic keratosis
EP3733178A1 (fr) * 2012-04-26 2020-11-04 The General Hospital Corporation Agents et procédés pour traiter et prévenir la kératose séborrhéique
US10508309B2 (en) 2013-05-17 2019-12-17 The General Hospital Corporation Methods for detecting and treating variants of seborrheic keratoses
WO2021097401A1 (fr) * 2019-11-14 2021-05-20 H. Lee Moffitt Cancer Center And Research Institute, Inc. Polythérapie avec un inhibiteur d'activation de protéine kinase b pour traiter le cancer

Also Published As

Publication number Publication date
TW200902034A (en) 2009-01-16
WO2008121261A3 (fr) 2008-12-24

Similar Documents

Publication Publication Date Title
CA2561513C (fr) Traitement efficace des tumeurs et du cancer a l'aide de la triciribine et de composes associes
WO2008086005A1 (fr) Compositions contenant de la triciribine et du bortézomib et des dérivés de ces derniers, procédés d'utilisation correspondants
WO2008121261A2 (fr) Traitement efficace de tumeurs et de cancer au moyen de promédicaments de la triciribine
WO2008070100A1 (fr) Compositions comprenant des composés à base de triciribine et des composés inhibiteurs des récepteurs du facteur de croissance épidermique ou leurs sels et leurs procédés d'utilisation
US9457040B2 (en) Effective treatment of esophageal adenocarcinoma using triciribine and related compounds
WO2008060581A2 (fr) Compositions renfermant de la triciribine et du trastuzumab, et leurs méthodes d'utilisation
US10780104B2 (en) Compositions including triciribine and epidermal growth factor receptor inhibitor compounds or salts thereof and methods of use thereof
US9498492B2 (en) Compositions including triciribine and taxanes and methods of use thereof
EP2182939A2 (fr) Compositions contenant de la triciribine et des taxanes et méthodes d'utilisation associées
CA2724246C (fr) Therapie de combinaison anticancereuse comprenant de la triciribine
WO2008070136A1 (fr) Compositions comprenant de la triciribine et un ou plusieurs composés de platine, et leurs procédés d'utilisation
WO2008069922A9 (fr) Compositions comprenant des analogues de la triciribine et de l'anthracycline et procédés d'utilisation de celles-ci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08742227

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC (EPOFORM 1205A DATED 08.03.2010

122 Ep: pct application non-entry in european phase

Ref document number: 08742227

Country of ref document: EP

Kind code of ref document: A2