WO2008120526A1 - Reflow device - Google Patents

Reflow device Download PDF

Info

Publication number
WO2008120526A1
WO2008120526A1 PCT/JP2008/053889 JP2008053889W WO2008120526A1 WO 2008120526 A1 WO2008120526 A1 WO 2008120526A1 JP 2008053889 W JP2008053889 W JP 2008053889W WO 2008120526 A1 WO2008120526 A1 WO 2008120526A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gas
heating device
zones
reflow
Prior art date
Application number
PCT/JP2008/053889
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Iijima
Fumihiro Yamashita
Original Assignee
Tamura Corporation
Tamura Fa System Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corporation, Tamura Fa System Corporation filed Critical Tamura Corporation
Publication of WO2008120526A1 publication Critical patent/WO2008120526A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace

Definitions

  • the present invention relates to a reflow apparatus applied to reflow or adhesive curing.
  • Solder is supplied to the electronic component or printed wiring board in advance, and the substrate is transported to the reflow furnace by a conveyor, and soldered, or the electronic component is fixed on the substrate with a thermosetting adhesive.
  • Reflow equipment is used for this purpose.
  • desired soldering can be performed by controlling the surface temperature of an object to be heated, for example, a substrate, according to a desired temperature profile.
  • Figure 6 shows an outline of the temperature profile.
  • the horizontal axis is time, and the vertical axis is the surface temperature of a printed wiring board on which an object to be heated, such as an electronic component, is mounted.
  • the first section is the heating section R 1 where the temperature rises due to heating, the next section is the preheating (preheating) section R 2 where the temperature is almost constant, and the next section is the main heating section R 3
  • the last section is the cooling section R4.
  • the temperature raising portion R 1 is a period in which the substrate is heated from room temperature to a preheating portion R 2 (for example, 1550 ° C. to 1700 ° C.).
  • the preheating portion R2 is a period for performing isothermal heating, activating the flux, removing the oxide film on the surface of the electrode and solder powder, and eliminating the heating unevenness of the printed wiring board.
  • This heating section R 3 (for example, 2 20 ° C to 2 40 ° C at peak temperature) However, it is a period of melting and joining. In this heating part R3, the temperature must be raised to a temperature exceeding the melting temperature of the solder. Even if the main heating part R 3 has passed the preheating part R 2, since there is uneven temperature rise, heating to a temperature exceeding the solder melting temperature is required.
  • curve 1 shows the temperature profile of lead-free solder.
  • the temperature profile for eutectic solder is shown by curve 2.
  • the set temperature in the preheating part R2 is considered to be higher than that of eutectic solder.
  • curve 3 in FIG. 6 shows a profile when a thermosetting adhesive for fixing an electronic component to a printed wiring board is cured.
  • the adhesive has a lower set temperature and does not require complicated temperature control.
  • the temperature is controlled so that the profile is either curve 1 or curve 2 depending on the type of solder used (lead-free solder and eutectic solder) and the type of printed wiring board. If the reflow device is used for the adhesive curing process, the profile of curve 3 is used. In the case of a reflow device, increasing the set temperature can be done in a relatively short time, but since it has a heat insulating structure, it takes time to lower the temperature.
  • Japanese Patent Application Laid-Open No. 11-1 4 5 6 the temperature of a specific zone can be set in a short time by turning off the heating heater and sending outside air or inert gas to the specific zone. It is described that it is reduced.
  • Japanese Patent Application Laid-Open No. 6-170 5 2 4 discloses that high warm air in a furnace is forcibly discharged and cold air is supplied into the furnace to forcibly cool it. Are listed.
  • the preheating part R 2 in the temperature profile It is necessary to lower the temperature of the responsible zone, and it is important how the temperature of the zone can be lowered within a short time.
  • those described in Japanese Patent Application Laid-Open Nos. 11-1 14 5 6 1 1 and 6 1 700 5 24 are different from the preheating unit R 2 in the main heating unit R 3. It does not reduce the temperature of the furnace in a specific zone, so the configuration is complicated, the time required to lower the temperature is long, and the amount of gas used for cooling is large. There was a problem such as.
  • an object of the present invention is to rapidly reduce the temperature of the zone that handles the preheating portion among a plurality of zones arranged in-line, thereby reducing the type of solder without complicating the configuration.
  • An object of the present invention is to provide a reflow apparatus capable of performing switching at high speed and efficiently. Disclosure of the invention
  • the present invention is configured such that the reflow furnace is sequentially divided into a plurality of zones along the conveyance path of the heated object to be conveyed, and is conveyed by controlling the temperature of the plurality of zones.
  • the reflow device that controls the temperature of the heated object with a desired profile
  • the change in the set temperature is large.
  • One or more zones introduces a gas that introduces a lower temperature gas than the gas in the zone.
  • This is a reflow apparatus in which a low temperature gas is introduced into the zone through a gas introduction unit to reduce the temperature of one or a plurality of zones in a short time.
  • the profile during reflow consists of a heating section, preheating section, main heating section, and cooling section, and is set in a zone that handles heating of the heating section, preheating section, and main heating section.
  • One or more zones with large temperature changes are introduced with a lower temperature gas than the gas in the zone.
  • the gas in one or a plurality of zones that are responsible for heating the preheating section is circulated in the cooling section provided outside the reflow furnace.
  • FIG. 1 is a schematic diagram showing an outline of a reflow apparatus according to an embodiment of the present invention.
  • FIG. 2 is a sectional view showing an example of the configuration of one zone in one embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a method of performing cooling by supplying N 2 in one embodiment of the present invention.
  • FIG. 4A and FIG. 4B are schematic diagrams for explaining the arrangement of the inlets and holes provided in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing an example of the set temperature of each zone.
  • FIG. 6 is a graph showing an example of a temperature profile during reflow.
  • FIG. 1 shows a schematic configuration excluding an outer plate of a reflow apparatus according to an embodiment of the present invention.
  • An object to be heated on which electronic components for surface mounting are mounted on both sides of the printed wiring board, is placed on the conveyor and is carried into the reflow apparatus from the carry-in port 11.
  • the transport conveyor moves at the specified speed in the direction of the arrow (see Fig. 1
  • the object to be heated is transported from the left to the right.
  • a reflow furnace for example, is divided into 9 zones Z 1 to Z 9 along the transfer path from the carry-in entrance 1 1 to the carry-out exit 1 2, and these zones Z 1 to Z 9 are arranged in-line. ing.
  • a flux recovery system 1 3 a is provided on the carry-in side, and flux collection systems 1 3 b and 1 3 c are provided on the carry-out side.
  • Seven zones Z1 to Z7 from the inlet side are heating zones, and two zones Z8 and Z9 on the outlet side are cooling zones.
  • the number of zones is an example, and other numbers of zones may be provided.
  • the plurality of zones Z 1 to Z 9 described above controls the temperature of the object to be heated according to the temperature profile during reflow.
  • the zones Z 1 and Z 2 are mainly responsible for the temperature control of the temperature riser R 1 in Fig. 6.
  • the temperature control of the preheating section R 2 is mainly handled by the zones Z 3, Z 4 and Z 5.
  • Zones Z 6 and Z 7 are responsible for temperature control of this heating section R 3.
  • Zone 8 and zone 9 are responsible for temperature control of cooling section R4.
  • Each of the heating zones Z1 to Z7 has an upper heating device and a lower heating device each including a blower. For example, hot air is blown to the object to be heated conveyed from the upper heating device 15 in the zone Z 1, and hot air is blown to the object to be heated conveyed from the lower heating device 35.
  • ambient temperature ambient gas nitrogen: N 2
  • the temperature in the furnaces of zones Z 3, Z 4 and Z 5 is lowered in a short time by supplying them into the lower heating devices of zones Z 3, Z 4 and Z 5 that are in charge of control.
  • Z The amount of N 2 introduced may be controlled so that more N 2 is introduced in zones closer to 6.
  • the introduction amount (flow rate) of zones Z 3, Z 4, and Z 5 is controlled as (1: 2: 4).
  • N 2 may be supplied only to the zone Z 6 that is adjacent to the zone Z 6 that is in charge of this heating section.
  • the atmosphere gas N 2 is always circulated and cooled in connection with the upper heating devices of the zones Z 4 and Z 5, including during reflow and switching of the solder type. is doing.
  • the constant circulation cooling is performed to simplify the configuration. If the heating is stopped when switching from lead-free solder to eutectic solder, the temperature of zones Z 4 and Z 5 can be lowered in a short time by the action of cooled N 2 .
  • the temperature can be lowered in a short time.
  • an inert gas other than N 2 may be used as the atmospheric gas.
  • N 2 for cooling is introduced from the lower heating device, but the upper and lower heating devices move back and forth with respect to the gas flow, so the cooling effect of introducing N 2 for cooling is not Also spread to the upper heating device.
  • the cooling effect of the circulating cooling method in the upper heating device also affects the lower heating device.
  • zone Z 5 An example of the heating apparatus will be described with reference to FIG.
  • the configuration of zone Z 5 is shown in FIG.
  • an object to be heated W with electronic components for surface mounting mounted on both sides of the printed wiring board is placed on the conveyor 4 1.
  • the partial heating device 15 and the lower heating device 35 heat the heated object W by jetting hot air to the heated object W. Infrared rays may be irradiated with hot air.
  • the upper heating device 15 includes a main heating source 16, a sub heating source 17, a blower, for example, an axial blower 18, a heat storage member 19, a hot air circulation duct 20, an opening 21, and the like. Hot air (heated atmospheric gas such as N 2 ) is blown through the opening 21 to the article W to be heated.
  • the main heating source 16 and the auxiliary heating source 17 are composed of, for example, an electric heater.
  • the heat storage member 19 is made of, for example, aluminum, and has a large number of holes. Hot air passes through the holes and is blown to the object W to be heated.
  • Hot air is circulated by an axial blower 18. That is, (Main heating source 1 6 ⁇ Heat storage member 1 9 ⁇ Opening 2 1 ⁇ Substance to be heated W ⁇ Hot air circulation duct 2 0 ⁇ Sub heating source 1 7 ⁇ Hot air circulation duct 2 0 ⁇ Axial flow production 1 8 ⁇ Hot air circulates through the path of the main heating source 1 6).
  • the radiator box 42 has a structure in which a large number of fins are provided on the peripheral surface of a gas circulating pipe and a cooling fan is provided.
  • the hot air taken out from the hole 2 2 a is cooled by the radiator box 4 2 and taken into the upper heating device 15 in the zone Z 5 from the hole 2 2 b.
  • An outlet (hole 2 2 a) force S is provided at a location where the pressure generated by the ventilation of the axial flow blower 1 8 is high, and an introduction port (hole 2 2 b) is provided at a location where the pressure is low. Gas circulates in the path including the lever box 42. At the bottom of the radiator box 4 2, a container 4 4 for collecting the flux is provided. The radiator box 4 2 cools the hot air even when the main heating source 16 and the auxiliary heating source 17 are operating. In this operating state, the main heating source 16 and the sub-heating source 17 are operated so that the temperature of the zone Z 5 becomes the set temperature.
  • the temperature of the zone Z 5 can be quickly reduced by the cooling action of the radiator box 42. Can be lowered. Further, the radiator box 42 can also serve as a flux recovery device for the upper heating device 15. A method similar to the circulating cooling method in zone Z 5 is also applied to adjacent zone Z 4. The circulation cooling method may be applied to the lower heating device 35.
  • an outside air introduction valve 23 is provided on the upper part of the upper heating device 15.
  • An electric ball valve can be used as the outside air introduction valve 2 3.
  • the outside air introduction valve 23 is turned on when switching from solder reflow to adhesive curing, and outside air is introduced.
  • the temperature in the case of curing is lower than that of soldering and does not require N 2 , so outside air is introduced when the power supply to the heating source is stopped and the supply of N 2 is stopped.
  • zone Z 5 the outside air introduction valve is provided at one location of the upper heating device 15 and one location of the lower heating device 35.
  • each of the other zones Z 1 to Z 4 is provided with one outdoor air introduction valve in each of the upper and lower sides.
  • zones Z 6 and Z 7 there are two outdoor air introduction valves at the top and bottom. A total of 18 outdoor air inlets are provided, and when the air is introduced, these outdoor air inlets are connected all at once.
  • the lower heating device 35 has the same configuration as the upper heating device 15 described above, and the description of the corresponding parts is omitted.
  • the holes 3 6 a and 3 6 b provided in the lower part of the lower heating device 3 5 are holes for collecting the flux. However, the collection container is connected through a hose. Also, lower heating device
  • a cooling N 2 inlet 3 7 is provided at the bottom of 3 5.
  • the atmosphere gas in the reflow furnace is led out from the lower heating device 35 to the flux recovery unit provided outside the reflow furnace, and the atmosphere gas is cooled by the flux recovery unit, and the flux contained in the atmosphere gas
  • the components may be condensed and recovered and introduced again into the reflow furnace.
  • the flux recovery unit is not shown in the figure, for example, when atmospheric gas passes, oxygen is added and the organic component of the flux in the atmospheric gas is converted into carbon dioxide (C 0 2 ), water (H 2 0) by the catalyst. ), Etc., and a radiator section that cools the atmospheric gas and condenses and collects flux components in the atmospheric gas.
  • N 2 is supplied to the lower heating devices of the zones Z 3, Z 4, and Z 5 that are responsible for the preheating portion from below through the cooling N 2 inlet.
  • N 2 from N 2 generator 4 5 is separated into sub-supply for cooling the main supply by a branch unit 4 6.
  • N 2 is generated by vaporizing ultra-low temperature liquefied nitrogen. Main supply and temperature control are performed even during transition.
  • the sub supply path is branched into three, and electronically controllable valves V 3, V 4 and V 5 and manual flow control volumes L 3, L 4 and L 5 are provided for each branch.
  • the valves V 3, V 4 and V 5 By switching the valves V 3, V 4 and V 5, the conduction and shut-off of the cooling N 2 to the zones Z 3, Z 4 and Z 5 are controlled.
  • the flow rate of N 2 introduced can be adjusted by the flow rate adjusting volumes L 3, L 4 and L 5. For example, the flow rate of N 2 is increased in the zone closer to zone Z 6 that is in charge of this heating unit.
  • a regulator, a pressure sensor, etc. are arranged in the N 2 supply path to each zone.
  • N 2 for cooling from the lower enters the upper heating device 1 5, further comprising a Lü letterbox 4 2 Since it is cooled by the circulation path described above, the temperature of these zones can be lowered in a short time.
  • FIG. 4A shows the top surface of the reflow device
  • FIG. 4B shows the bottom surface of the reflow device.
  • Main N 2 inlets a 1 to a 7 are formed on the upper surface of each zone, and main N 2 inlets b 1 to b 7 are formed on the lower surface.
  • the main N 2 inlet is schematically represented by a white circle in Fig. 4A and Fig. 4B.
  • Holes c 41 and c 42 for connecting to the radiator box 4 2 are formed on the upper surface of the zone Z 4 and holes c 51 and c 52 for connecting to other radiator boxes are formed on the upper surface of the zone Z 5 Yes.
  • the holes for connecting to the Raje Turbo are schematically represented by triangles in Fig. 4A and Fig. 4B.
  • an inlet d 3 for cooling N 2 is formed on the lower surface of the zone Z 3.
  • Cooling N 2 inlets d 4 and d 5 are formed on the lower surface of zone Z 4 and the lower surface of zone Z 5, respectively.
  • the inlet for cooling N 2 is schematically represented by a black circle in FIGS. 4A and 4B.
  • outside air inlets e 1 to e 5 that are conducted when the temperature is lowered for curing are formed on the upper surfaces of the zones Z 1 to Z 5.
  • Two outside air introduction ports e 61 and e 62 are formed on the upper surface of the zone Z 6, and two outside air introduction ports e 71 and e 72 are formed on the upper surface of the zone Z 7.
  • Outside air inlets f 1 to f 72 are formed in the same manner on the lower surface, and a total of 18 outside air inlets are formed.
  • the arrangement of the inlet and outlet shown in FIG. 4A and FIG. 4B is an example, and the installation location may be another location.
  • the gas or air outlet is provided at a location where the pressure is increased by the operation of the blower, and the gas or air inlet is provided at a location where the pressure is reduced by the operation of the blower.
  • an introduction port or a discharge port may be provided on the side surface of the heating device.
  • the heater temperature (upper) represents the set temperature of the heater that constitutes the main heating source and sub-heating source of the upper heating device
  • the heater temperature (lower) represents the main heating source of the lower heating device.
  • the set temperature of the heater that constitutes the auxiliary heating source The set temperatures for lead-free solder, eutectic solder and curing are shown. In the case of lead-free solder, eutectic solder and hardening, the airflow of the axial blower of the upper heating device and the airflow of the axial flow blower of the upper heating device are set to medium (M id) in each zone.
  • the transport speed is set to 0.9 (m / min).
  • the heater temperature (upper) and heater temperature (lower) of zones Z3, Z4, and Z5, which handle the preheated part are set to 190 ° C.
  • the heater temperature (top) and heater temperature (bottom) of zones Z 3, Z 4 and Z 5 are set to 160 ° C.
  • the heating zones Z 1 to Z 7 are set to 1550 ° C.
  • the desired temperature (reflow) profile for lead-free solder can be obtained with the settings shown in Fig. 5, and the desired temperature (reflow) profile can be obtained for eutectic solder.
  • the desired temperature profile for the case can be obtained.
  • the heater temperature is set to 150 ° C
  • the object to be heated for example, If the heater temperature is set to 160 ° C, the temperature of the object to be heated will be approximately 140 ° C.
  • the heater temperature is set to 190 ° C
  • the temperature of the object to be heated is approximately 170 ° C to 180 ° C
  • the heater temperature is set to 245 ° C
  • the temperature of the heated object is approximately 230 ° C.
  • these temperature changes can be performed in a short time. For example, 30 minutes can be reduced to 15 to 20 minutes.
  • the temperature of the zone having a large change in set temperature for example, the temperature of the zone that handles the preheating portion.
  • the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible.
  • the cooling according to the present invention may be applied only to a zone serving as a terminal portion of the preheating portion adjacent to the main heating portion.
  • the present invention can also be applied to temperature profile switching other than switching between lead-free solder and eutectic solder.

Abstract

An inlet for N2 for cooling is provided below lower heating devices. N2 is supplied from below to the respective lower heating devices of zones (Z3-Z5) for performing preheating. N2 supplied from an N2 generation device (45) is divided by a branch section (46) into main supply and sub-supply for cooling. The sub-supply route is branched to three, and each of the branched routes has a valve (V3-V5) and a flow rate regulation volume (L3-L5). The conduction and interruption of the N2 for cooling relative to the zones (Z3-Z5) are controlled by switching the valves (V3-V5). In switching of lead-free solder to eutectic solder, N2 are introduced into the lower heating devices of the zones (Z3-Z5) to quickly lower the temperature of these zones.

Description

明 細 書  Specification
リフロー装置 技術分野  Technical field of reflow equipment
この発明は、 リ フローまたは接着剤の硬化に適用されるリフロー装置 に関する。 背景技術  The present invention relates to a reflow apparatus applied to reflow or adhesive curing. Background art
電子部品またはプリント配線基板に対して予めはんだを供給しておき、 リフロー炉の中に基板を搬送コンペャで搬送し、 はんだ付けを行ったり、 熱硬化性接着剤によって電子部品を基板上に固定するために、 リフロー 装置が使用されている。 リフロー装置では、 被加熱物例えば基板の表面 温度を所望の温度プロファイルにしたがって制御することによって、 所 望のはんだ付けを行うことができる。 生産条件を変更した場合、 例えば 異なる種類のはんだへ変更した場合に、 短時間の内に変更後のはんだに 対応することが作業性の向上のために要請される。  Solder is supplied to the electronic component or printed wiring board in advance, and the substrate is transported to the reflow furnace by a conveyor, and soldered, or the electronic component is fixed on the substrate with a thermosetting adhesive. Reflow equipment is used for this purpose. In the reflow apparatus, desired soldering can be performed by controlling the surface temperature of an object to be heated, for example, a substrate, according to a desired temperature profile. When the production conditions are changed, for example, when changing to a different type of solder, it is required to improve the workability to cope with the changed solder within a short time.
第 6図は、 温度プロファイルの概略を示す。 横軸が時間であり、 縦軸 が被加熱物例えば電子部品が実装されたプリント配線基板の表面温度で ある。 最初の区間が加熱によって温度が上昇する昇温部 R 1であり、 次 の区間が温度がほぼ一定のプリ ヒート (予熱) 部 R 2であり、 次の区間 が本加熱部 R 3であり、 最後の区間が冷却部 R 4である。  Figure 6 shows an outline of the temperature profile. The horizontal axis is time, and the vertical axis is the surface temperature of a printed wiring board on which an object to be heated, such as an electronic component, is mounted. The first section is the heating section R 1 where the temperature rises due to heating, the next section is the preheating (preheating) section R 2 where the temperature is almost constant, and the next section is the main heating section R 3 The last section is the cooling section R4.
昇温部 R 1は、 常温からプリ ヒート部 R 2 (例えば 1 5 0 ° C〜 1 7 0 ° C ) まで基板を加熱する期間である。 プリ ヒート部 R 2は、 等温加 熱を行い、 フラックスを活性化し、 電極、 はんだ粉の表面の酸化膜を除 去し、 また、 プリント配線基板の加熱ムラをなくすための期間である。 本加熱部 R 3 (例えばピーク温度で 2 2 0 ° C〜 2 4 0 ° C ) は、 はん だが溶融し、 接合が完成する期間である。 本加熱部 R 3では、 はんだの 溶融温度を超える温度まで昇温が必要とされる。 本加熱部 R 3は、 プリ ヒート部 R 2を経過していても、 温度上昇のムラが存在するので、 はん だの溶融温度を超える温度までの加熱が必要とされる。 最後の冷却部 R The temperature raising portion R 1 is a period in which the substrate is heated from room temperature to a preheating portion R 2 (for example, 1550 ° C. to 1700 ° C.). The preheating portion R2 is a period for performing isothermal heating, activating the flux, removing the oxide film on the surface of the electrode and solder powder, and eliminating the heating unevenness of the printed wiring board. This heating section R 3 (for example, 2 20 ° C to 2 40 ° C at peak temperature) However, it is a period of melting and joining. In this heating part R3, the temperature must be raised to a temperature exceeding the melting temperature of the solder. Even if the main heating part R 3 has passed the preheating part R 2, since there is uneven temperature rise, heating to a temperature exceeding the solder melting temperature is required. Last cooling part R
4は、 急速にプリント配線基板を冷却し、 はんだ組成を形成する期間で ある。 4 is a period in which the printed wiring board is rapidly cooled to form a solder composition.
第 6図において、 曲線 1は、 鉛フリーはんだの温度プロファイルを示 す。 共晶はんだの場合の温度プロファイルは、 曲線 2で示すものとなる。  In Fig. 6, curve 1 shows the temperature profile of lead-free solder. The temperature profile for eutectic solder is shown by curve 2.
鉛フリーはんだの融点は、 共晶はんだの融点より高いので、 プリ ヒート 部 R 2における設定温度が共晶はんだに比して高いものとされている。 Since the melting point of lead-free solder is higher than the melting point of eutectic solder, the set temperature in the preheating part R2 is considered to be higher than that of eutectic solder.
さらに、 第 6図における曲線 3は、 電子部品をプリント配線基板に固定 するための熱硬化性接着剤を硬化する場合のプロファイルを示す。 はん だに比して接着剤は、 設定温度が低く、 また、 複雑な温度制御が不要で ある。 \ 使用されているはんだの種類 (鉛フリーはんだと共晶はんだ) 、 プリ ント配線基板の種類等に応じてプロファイルが曲線 1および曲線 2の何 れかになるように温度制御がなされる。 また、 リフロー装置を接着剤の 硬化工程に使用する場合には、 曲線 3のプロファイルが使用される。 リ フロー装置の場合、 設定温度を高くすることは、 比較的短時間でなしう るが、 断熱構造を有しているので、 温度を低下させるには、 時間がかか る。 Furthermore, curve 3 in FIG. 6 shows a profile when a thermosetting adhesive for fixing an electronic component to a printed wiring board is cured. Compared to solder, the adhesive has a lower set temperature and does not require complicated temperature control. \ The temperature is controlled so that the profile is either curve 1 or curve 2 depending on the type of solder used (lead-free solder and eutectic solder) and the type of printed wiring board. If the reflow device is used for the adhesive curing process, the profile of curve 3 is used. In the case of a reflow device, increasing the set temperature can be done in a relatively short time, but since it has a heat insulating structure, it takes time to lower the temperature.
例えば特開平 1 1— 1 4 5 6 1 1号公報には、 加熱用ヒータの通電を オフすると共に、 外気または不活性ガスを特定のゾーンに送り込むこと によって、 短時間で特定のゾーンの温度を低下させることが記載されて いる。 また、 特開平 6— 1 7 0 5 2 4号公報には、 炉内の高温暖気を強 制的に排出すると共に、 炉内に冷気を供給して強制的に冷却することが 記載されている。 For example, in Japanese Patent Application Laid-Open No. 11-1 4 5 6 11, the temperature of a specific zone can be set in a short time by turning off the heating heater and sending outside air or inert gas to the specific zone. It is described that it is reduced. Japanese Patent Application Laid-Open No. 6-170 5 2 4 discloses that high warm air in a furnace is forcibly discharged and cold air is supplied into the furnace to forcibly cool it. Are listed.
第 6図を参照して説明したように、 はんだの種類を鉛フリーはんだか ら共晶はんだに変更するために、 リフロー装置の炉の温度を下げる場合、 温度プロファイルの中のプリ ヒート部 R 2を受け持つゾーンの温度を下 げることが必要とされ、 そのゾーンの温度を如何に短時間の内で低下さ せることができるかが重要である。 しかしながら、 上述した特開平 1 1 - 1 4 5 6 1 1号公報および特開平 6 - 1 7 0 5 2 4号公報に記載のも のは、 プリ ヒート部 R 2を本加熱部 R 3 と区別して特定のゾーンの炉の 温度を低下させるものではないので、 構成が複雑となったり、 温度を下 げるのに要する時間が長くなつたり、 冷却のために使用するガスの量を 多く必要とする等の問題があった。  As explained with reference to Fig. 6, in order to change the solder type from lead-free solder to eutectic solder, when the temperature of the reflow furnace is lowered, the preheating part R 2 in the temperature profile It is necessary to lower the temperature of the responsible zone, and it is important how the temperature of the zone can be lowered within a short time. However, those described in Japanese Patent Application Laid-Open Nos. 11-1 14 5 6 1 1 and 6 1 700 5 24 are different from the preheating unit R 2 in the main heating unit R 3. It does not reduce the temperature of the furnace in a specific zone, so the configuration is complicated, the time required to lower the temperature is long, and the amount of gas used for cooling is large. There was a problem such as.
したがって、 この発明の目的は、 インラインに配置された複数のゾー ンの中で、 プリ ヒート部を受け持つゾーンの温度を急速に低下させるこ とによって、 構成を複雑化することなく、 はんだの種類の切り替えを高 速且つ効率的に行うことができるリフロー装置を提供することにある。 発明の開示  Therefore, an object of the present invention is to rapidly reduce the temperature of the zone that handles the preheating portion among a plurality of zones arranged in-line, thereby reducing the type of solder without complicating the configuration. An object of the present invention is to provide a reflow apparatus capable of performing switching at high speed and efficiently. Disclosure of the invention
この発明は、 上述した課題を解決するために、 搬送される被加熱物の 搬送路に沿って複数のゾーンにリフロー炉が順次分割され、 複数のゾー ンの温度を制御することによって、 搬送される被加熱物の温度を所望の プロファイルで制御するリフロー装置において、  In order to solve the above-described problems, the present invention is configured such that the reflow furnace is sequentially divided into a plurality of zones along the conveyance path of the heated object to be conveyed, and is conveyed by controlling the temperature of the plurality of zones. In the reflow device that controls the temperature of the heated object with a desired profile,
複数のゾーンの中で、 ゾーン内の設定温度を変更する場合に、 該設定 温度の変化が大きい 1または複数のゾーンに対して、 ゾーン内のガスに 比して低温のガスを導入するガス導入部を設け、  When the set temperature in a zone is changed among multiple zones, the change in the set temperature is large. One or more zones introduces a gas that introduces a lower temperature gas than the gas in the zone. Set up a section,
ガス導入部を介して該ゾーン内に低温のガスを導入して 1または複数 のゾーンの温度を短時間で低下させるようにしたリ フロ一装置である。 具体的には、 リフロー時のプロファイルが昇温部とプリ ヒート部と本 加熱部と冷却部とからなり、 昇温部、 プリヒート部および本加熱部の加 熱をそれぞれ受け持つゾーンの中で、 設定温度の変化の大きい 1または 複数のゾーンに対して、 ゾーン内のガスに比して低温のガスを導入する ようになされる。 This is a reflow apparatus in which a low temperature gas is introduced into the zone through a gas introduction unit to reduce the temperature of one or a plurality of zones in a short time. Specifically, the profile during reflow consists of a heating section, preheating section, main heating section, and cooling section, and is set in a zone that handles heating of the heating section, preheating section, and main heating section. One or more zones with large temperature changes are introduced with a lower temperature gas than the gas in the zone.
さらに、 短時間の冷却を可能とするために、 プリ ヒート部の加熱を受 け持つ 1または複数のゾーン内のガスをリフロー炉の外部に設けられた 冷却部を循環させるようになされる。 図面の簡単な説明  Furthermore, in order to enable cooling in a short time, the gas in one or a plurality of zones that are responsible for heating the preheating section is circulated in the cooling section provided outside the reflow furnace. Brief Description of Drawings
第 1図は、 この発明の一実施形態によるリフロー装置の概略を示す略 線図である。  FIG. 1 is a schematic diagram showing an outline of a reflow apparatus according to an embodiment of the present invention.
第 2図は、 この発明の一実施の形態における一つのゾーンの構成の一 例を示す断面図である。  FIG. 2 is a sectional view showing an example of the configuration of one zone in one embodiment of the present invention.
第 3図は、 この発明の一実施の形態における N 2供給によって冷却を 行う方法を説明するための略線図である。 FIG. 3 is a schematic diagram for explaining a method of performing cooling by supplying N 2 in one embodiment of the present invention.
第 4図 Aおよび第 4図 Bは、 この発明の一実施の形態において設けら れた導入口および孔の配置を説明するための略線図である。  FIG. 4A and FIG. 4B are schematic diagrams for explaining the arrangement of the inlets and holes provided in the embodiment of the present invention.
第 5図は、 各ゾーンの設定温度の一例を示す略線図である。  FIG. 5 is a schematic diagram showing an example of the set temperature of each zone.
第 6図は、 リフロー時の温度プロファイルの例を示すグラフである。 発明を実施するための最良の形態  FIG. 6 is a graph showing an example of a temperature profile during reflow. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図は、 この発明の一実施の形態によるリフロー装置の外板を除く 概略的構成を示す。 プリント配線基板の両面に表面実装用電子部品が搭 載された被加熱物が搬送コンべャの上に置かれ、 搬入口 1 1からリフロ 一装置内に搬入される。 搬送コンペャが所定速度で矢印方向 (第 1図に 向かって左から右方向) へ被加熱物を搬送し、 被加熱物が搬出口 1 2か ら取り出される。 FIG. 1 shows a schematic configuration excluding an outer plate of a reflow apparatus according to an embodiment of the present invention. An object to be heated, on which electronic components for surface mounting are mounted on both sides of the printed wiring board, is placed on the conveyor and is carried into the reflow apparatus from the carry-in port 11. The transport conveyor moves at the specified speed in the direction of the arrow (see Fig. 1 The object to be heated is transported from the left to the right.
搬入口 1 1から搬出口 1 2に至る搬送経路に沿って、 リフロー炉が例 えば 9個のゾーン Z 1から Z 9に順次分割され、 これらのゾーン Z 1〜 Z 9がインライン状に配列されている。 フラックス回収システム 1 3 a が搬入口側に設けられ、 搬出口側にフラックス回収システム 1 3 bおよ び 1 3 cが設けられている。 入り口側から 7個のゾーン Z 1〜Z 7が加 熱ゾーンであり、 出口側の 2個のゾーン Z 8および Z 9が冷却ゾーンで ある。 冷却ゾーン Z 8および Z 9に関連して強制冷却ュニッ ト 1 4が設 けられている。 なお、 ゾーン数は、 一例であって、 他の個数のゾーンを 備えても良い。  A reflow furnace, for example, is divided into 9 zones Z 1 to Z 9 along the transfer path from the carry-in entrance 1 1 to the carry-out exit 1 2, and these zones Z 1 to Z 9 are arranged in-line. ing. A flux recovery system 1 3 a is provided on the carry-in side, and flux collection systems 1 3 b and 1 3 c are provided on the carry-out side. Seven zones Z1 to Z7 from the inlet side are heating zones, and two zones Z8 and Z9 on the outlet side are cooling zones. There is a forced cooling unit 14 associated with cooling zones Z8 and Z9. The number of zones is an example, and other numbers of zones may be provided.
上述した複数のゾーン Z 1〜Z 9がリフロー時の温度プロファイルに したがって被加熱物の温度を制御する。 第 6図における昇温部 R 1の温 度制御を、 主と してゾーン Z 1および Z 2が受け持つ。 プリ ヒート部 R 2の温度制御は、 主としてゾーン Z 3、 Z 4および Z 5が受け持つ。 本 加熱部 R 3の温度制御は、 ゾーン Z 6および Z 7が受け持つ。 冷却部 R 4の温度制御は、 ゾーン 8およびゾーン 9が受け持つ。  The plurality of zones Z 1 to Z 9 described above controls the temperature of the object to be heated according to the temperature profile during reflow. The zones Z 1 and Z 2 are mainly responsible for the temperature control of the temperature riser R 1 in Fig. 6. The temperature control of the preheating section R 2 is mainly handled by the zones Z 3, Z 4 and Z 5. Zones Z 6 and Z 7 are responsible for temperature control of this heating section R 3. Zone 8 and zone 9 are responsible for temperature control of cooling section R4.
加熱ゾーン Z 1〜Z 7のそれぞれは、 それぞれ送風機を含む上部加熱 装置および下部加熱装置を有する。 例えばゾーン Z 1の上部加熱装置 1 5から搬送される被加熱物に対して熱風が吹きつけられ、 下部加熱装置 3 5から搬送される被加熱物に対して熱風が吹きつけられる。  Each of the heating zones Z1 to Z7 has an upper heating device and a lower heating device each including a blower. For example, hot air is blown to the object to be heated conveyed from the upper heating device 15 in the zone Z 1, and hot air is blown to the object to be heated conveyed from the lower heating device 35.
この発明の一実施の形態では、 鉛フリ一はんだから共晶はんだへの切 り替え時に、 加熱を停止すると共に、 常温の雰囲気ガス (窒素 : N 2 ) を外部からプリ ヒ一ト部の温度制御を受け持つゾーン Z 3 , Z 4および Z 5の下部加熱装置内に供給してこれらのゾーン Z 3, Z 4および Z 5 の炉内温度を短時間で下げる。 この場合、 本加熱部を受け持つゾーン Z 6に近いゾーンほど多くの N 2を導入するように、 N 2導入量を制御し ても良い。 例えばゾーン Z 3、 Z 4、 Z 5の導入量 (流量) を ( 1 : 2 : 4 ) と制御する。 さらに、 本加熱部を受け持つゾーン Z 6と隣接す るゾーン Z 5のみに N 2を供給しても良い。 ゾーン Z 5は、 高温とされ たゾーン Z 6の影響を受けて温度が下がりにくいからである。 なお、 送 風機の動作は、 切り替え時でも停止しない。 また、 下部加熱装置 3 5に 限らず、 上部加熱装置 1 5から冷却用の N 2を導入しても良い。 In one embodiment of the present invention, when switching from lead-free solder to eutectic solder, heating is stopped and ambient temperature ambient gas (nitrogen: N 2 ) is externally applied to the temperature of the pre-heated portion. The temperature in the furnaces of zones Z 3, Z 4 and Z 5 is lowered in a short time by supplying them into the lower heating devices of zones Z 3, Z 4 and Z 5 that are in charge of control. In this case, Z The amount of N 2 introduced may be controlled so that more N 2 is introduced in zones closer to 6. For example, the introduction amount (flow rate) of zones Z 3, Z 4, and Z 5 is controlled as (1: 2: 4). Further, N 2 may be supplied only to the zone Z 6 that is adjacent to the zone Z 6 that is in charge of this heating section. This is because the temperature of the zone Z 5 is not easily lowered due to the influence of the zone Z 6 which is set to a high temperature. The operation of the blower does not stop even when switching. Further, not only the lower heating device 35 but also cooling N 2 may be introduced from the upper heating device 15.
また、 この発明の一実施の形態では、 ゾーン Z 4および Z 5の上部加 熱装置と関連して、 リフロー時並びにはんだの種類の切り替え時を含ん で、 常時、 雰囲気ガスの N 2を循環冷却している。 常時循環冷却を行う のは、 構成の簡略化のためである。 鉛フリーはんだから共晶はんだへの 切り替え時に、 加熱を停止すると、 冷却された N 2の作用で、 短時間で ゾーン Z 4および Z 5の温度を下げることができる。 このように、 一実 施の形態では、 加熱ゾーン Z 4および Z 5に関しては、 N 2の外部から の供給と、 N 2の冷却作用とを併用して鉛フリーはんだから共晶はんだ への切り替え時に温度を短時間で下げることを可能としている。 なお、 雰囲気ガスとしては、 N 2以外の不活性ガスを使用しても良い。 In one embodiment of the present invention, the atmosphere gas N 2 is always circulated and cooled in connection with the upper heating devices of the zones Z 4 and Z 5, including during reflow and switching of the solder type. is doing. The constant circulation cooling is performed to simplify the configuration. If the heating is stopped when switching from lead-free solder to eutectic solder, the temperature of zones Z 4 and Z 5 can be lowered in a short time by the action of cooled N 2 . Thus, in one embodiment, for heating zones Z 4 and Z 5, switching from lead-free solder to eutectic solder using both the external supply of N 2 and the cooling action of N 2 Sometimes the temperature can be lowered in a short time. Note that an inert gas other than N 2 may be used as the atmospheric gas.
上述したように、 冷却用の N 2を下部加熱装置から導入しているが、 上下の加熱装置は、 ガスの流れに関しては、 互いに行き来するので、 冷 却用の N 2の導入による冷却効果は、 上部加熱装置に対しても波及する。 同様に、 上部加熱装置における循環冷却方式の冷却効果は、 下部加熱装 置に対しても波及する。 As described above, N 2 for cooling is introduced from the lower heating device, but the upper and lower heating devices move back and forth with respect to the gas flow, so the cooling effect of introducing N 2 for cooling is not Also spread to the upper heating device. Similarly, the cooling effect of the circulating cooling method in the upper heating device also affects the lower heating device.
第 2図を参照して加熱装置の一例について説明する。 例えばゾーン Z 5の構成が第 2図に示されている。 上部加熱装置 1 5と下部加熱装置 3 5 との対向間隙内で、 プリ ント配線基板の両面に表面実装用電子部品が 搭載された被加熱物 Wが搬送コンべャ 4 1上に置かれて搬送される。 上 部加熱装置 1 5 と下部加熱装置 3 5とは、 被加熱物 Wに対して熱風を噴 出して被加熱物 Wを加熱する。 なお、 熱風と共に赤外線を照射しても良 い。 An example of the heating apparatus will be described with reference to FIG. For example, the configuration of zone Z 5 is shown in FIG. Within the gap between the upper heating device 1 5 and the lower heating device 3 5, an object to be heated W with electronic components for surface mounting mounted on both sides of the printed wiring board is placed on the conveyor 4 1. Be transported. Up The partial heating device 15 and the lower heating device 35 heat the heated object W by jetting hot air to the heated object W. Infrared rays may be irradiated with hot air.
上部加熱装置 1 5は、 主加熱源 1 6、 副加熱源 1 7、 送風機例えば軸 流ブロワ 1 8、 蓄熱部材 1 9、 熱風循環ダク ト 2 0、 開口部 2 1等から なる。 開口部 2 1を通じて熱風 (熱せられた雰囲気ガス例えば N 2 ) が 被加熱物 Wに対して吹きつけられる。 主加熱源 1 6、 副加熱源 1 7は、 例えば電熱ヒータで構成される。 蓄熱部材 1 9は、 例えばアルミニウム からなり、 多数の孔が形成され、 その孔を通じて熱風が通過して被加熱 物 Wに吹きつけられる。 The upper heating device 15 includes a main heating source 16, a sub heating source 17, a blower, for example, an axial blower 18, a heat storage member 19, a hot air circulation duct 20, an opening 21, and the like. Hot air (heated atmospheric gas such as N 2 ) is blown through the opening 21 to the article W to be heated. The main heating source 16 and the auxiliary heating source 17 are composed of, for example, an electric heater. The heat storage member 19 is made of, for example, aluminum, and has a large number of holes. Hot air passes through the holes and is blown to the object W to be heated.
熱風は、 軸流ブロワ 1 8によって循環される。 すなわち、 (主加熱源 1 6→蓄熱部材 1 9→開口部 2 1→被加熱物 W→熱風循環ダク ト 2 0→ 副加熱源 1 7→熱風循環ダク ト 2 0→軸流プロヮ 1 8→主加熱源 1 6 ) の経路を介して熱風が循環する。  Hot air is circulated by an axial blower 18. That is, (Main heating source 1 6 → Heat storage member 1 9 → Opening 2 1 → Substance to be heated W → Hot air circulation duct 2 0 → Sub heating source 1 7 → Hot air circulation duct 2 0 → Axial flow production 1 8 → Hot air circulates through the path of the main heating source 1 6).
この熱風の循環経路中の例えば上部 2箇所に導出口としての孔 2 2 a および導入口としての孔 2 2 bを設け、 外部の空冷装置としてのラジェ ターボッタス 4 2とホース 4 3 aおよび 4 3 bを介して接続する。 ラジ エタ一ボックス 4 2は、 ガスの循環するパイプの周面に多数のフィンが 設けられると共に、 冷却ファンを備えた構成とされている。 例えば孔 2 2 aから取り出された熱風がラジェターボックス 4 2によって冷却され、 孔 2 2 bからゾーン Z 5の上部加熱装置 1 5内に取り込まれる。 軸流ブ ロワ 1 8の送風によって生じる圧力の高い箇所に導出口 (孔 2 2 a ) 力 S 設けられ、 圧力の低い箇所に導入口 (孔 2 2 b ) が設けられ、 圧力差を 利用してこのラジェターボックス 4 2を含む経路をガスが循環する。 ラ ジェターボックス 4 2の下部には、 フラックス回収用の容器 4 4が設け られている。 ラジェターボックス 4 2は、 主加熱源 1 6および副加熱源 1 7が動作 している状態でも、 熱風を冷却している。 この動作状態で、 ゾーン Z 5 の温度を設定温度となるように、 主加熱源 1 6および副加熱源 1 7が動 作される。 したがって、 はんだを鉛フリーはんだから共晶はんだに切り 替える時に、 主加熱源 1 6および副加熱源 1 7に対する通電を絶つと、 ラジェターボックス 4 2による冷却作用によって短時間でゾーン Z 5の 温度を下げることができる。 さらに、 ラジェターボックス 4 2が上部加 熱装置 1 5のフラックス回収装置を兼ねることができる。 ゾーン Z 5に おける循環冷却方式と同様の方式が隣接するゾーン Z 4に対しても適用 されている。 なお、 循環冷却方式を下部加熱装置 3 5に対して適用して も良い。 In the hot air circulation path, for example, two holes 2 2 a as outlets and 2 2 b as inlets are provided in the upper two places, and Raje Turbotus 4 2 and hoses 4 3 a and 4 3 as external air-cooling devices are provided. Connect via b. The radiator box 42 has a structure in which a large number of fins are provided on the peripheral surface of a gas circulating pipe and a cooling fan is provided. For example, the hot air taken out from the hole 2 2 a is cooled by the radiator box 4 2 and taken into the upper heating device 15 in the zone Z 5 from the hole 2 2 b. An outlet (hole 2 2 a) force S is provided at a location where the pressure generated by the ventilation of the axial flow blower 1 8 is high, and an introduction port (hole 2 2 b) is provided at a location where the pressure is low. Gas circulates in the path including the lever box 42. At the bottom of the radiator box 4 2, a container 4 4 for collecting the flux is provided. The radiator box 4 2 cools the hot air even when the main heating source 16 and the auxiliary heating source 17 are operating. In this operating state, the main heating source 16 and the sub-heating source 17 are operated so that the temperature of the zone Z 5 becomes the set temperature. Therefore, when the solder is switched from lead-free solder to eutectic solder, if the main heating source 16 and sub-heating source 17 are de-energized, the temperature of the zone Z 5 can be quickly reduced by the cooling action of the radiator box 42. Can be lowered. Further, the radiator box 42 can also serve as a flux recovery device for the upper heating device 15. A method similar to the circulating cooling method in zone Z 5 is also applied to adjacent zone Z 4. The circulation cooling method may be applied to the lower heating device 35.
さらに、 上部加熱装置 1 5の上部に外気導入バルブ 2 3が設けられて いる。 外気導入バルブ 2 3としては、 電動ボールバルブを使用できる。 外気導入バルブ 2 3は、 はんだリフローから接着剤硬化へ切り替える時 に導通され、 外気が導入される。 硬化の場合の温度は、 はんだ付けに比 して低く、 且つ N 2を必要と しないので、 加熱源への通電の停止、 N 2 の供給停止と共に、 外気が導入される。 Further, an outside air introduction valve 23 is provided on the upper part of the upper heating device 15. An electric ball valve can be used as the outside air introduction valve 2 3. The outside air introduction valve 23 is turned on when switching from solder reflow to adhesive curing, and outside air is introduced. The temperature in the case of curing is lower than that of soldering and does not require N 2 , so outside air is introduced when the power supply to the heating source is stopped and the supply of N 2 is stopped.
外気導入バルブは、 ゾーン Z 5の場合、 上部加熱装置 1 5の 1箇所と 下部加熱装置 3 5の 1箇所とに設けられている。 他のゾーン Z 1〜Z 4 のそれぞれも同様に、 上下各 1箇所の外気導入バルブが設けられている。 ゾーン Z 6および Z 7の場合は、 上下各 2箇所の外気導入バルブが設け られている。 合計で 1 8箇所の外気導入口が設けられ、 大気導入時には、 これらの外気導入口が一斉に導通される。  In the case of zone Z 5, the outside air introduction valve is provided at one location of the upper heating device 15 and one location of the lower heating device 35. Similarly, each of the other zones Z 1 to Z 4 is provided with one outdoor air introduction valve in each of the upper and lower sides. In the case of zones Z 6 and Z 7, there are two outdoor air introduction valves at the top and bottom. A total of 18 outdoor air inlets are provided, and when the air is introduced, these outdoor air inlets are connected all at once.
下部加熱装置 3 5は、 上述した上部加熱装置 1 5と同様の構成とされ ており、 対応する部分の説明を省略する。 下部加熱装置 3 5の下部に設 けた孔 3 6 aおよび 3 6 bは、 フラックス回収用の孔であり、 図示しな いが、 ホースを通じて回収容器が接続されている。 また、 下部加熱装置The lower heating device 35 has the same configuration as the upper heating device 15 described above, and the description of the corresponding parts is omitted. The holes 3 6 a and 3 6 b provided in the lower part of the lower heating device 3 5 are holes for collecting the flux. However, the collection container is connected through a hose. Also, lower heating device
3 5の下部には、 冷却用 N 2導入口 3 7が設けられている。 A cooling N 2 inlet 3 7 is provided at the bottom of 3 5.
なお、 下部加熱装置 3 5からリフロー炉内の雰囲気ガスをリフロー炉 外に設けられたフラックス回収ュニッ トに導出し、 フラックス回収ュニ ットで、 雰囲気ガスを冷却し、 雰囲気ガスに含まれるフラックス成分を 凝縮回収し、 再度リフロー炉内に導入するようにしてもよい。  In addition, the atmosphere gas in the reflow furnace is led out from the lower heating device 35 to the flux recovery unit provided outside the reflow furnace, and the atmosphere gas is cooled by the flux recovery unit, and the flux contained in the atmosphere gas The components may be condensed and recovered and introduced again into the reflow furnace.
フラックス回収ユニットは、 図示しないが、 例えば、 雰囲気ガスが通 過する際に、 酸素を加え、 触媒により、 雰囲気ガス中のフラックスの有 機成分を二酸化炭素 (C 02) 、 水 (H20 ) などに分解する触媒管や、 雰囲気ガスを冷却し、 雰囲気ガス中のフラックス成分などを凝縮回収す るラジェ一タ部を有する。 Although the flux recovery unit is not shown in the figure, for example, when atmospheric gas passes, oxygen is added and the organic component of the flux in the atmospheric gas is converted into carbon dioxide (C 0 2 ), water (H 2 0) by the catalyst. ), Etc., and a radiator section that cools the atmospheric gas and condenses and collects flux components in the atmospheric gas.
第 3図に示すように、 プリヒート部を受け持つゾーン Z 3、 Z 4、 Z 5のそれぞれの下部加熱装置に対して下方から冷却用 N 2導入口を介し て N 2が供給される。 N 2発生装置 4 5からの N 2が分岐部 4 6によって メイン供給と冷却用のサブ供給とに分離される。 例えば超低温の液化窒 素を気化させることで N 2が発生される。 メイン供給と温調は、 段どり 替え中でも行われる。 As shown in FIG. 3, N 2 is supplied to the lower heating devices of the zones Z 3, Z 4, and Z 5 that are responsible for the preheating portion from below through the cooling N 2 inlet. N 2 from N 2 generator 4 5 is separated into sub-supply for cooling the main supply by a branch unit 4 6. For example, N 2 is generated by vaporizing ultra-low temperature liquefied nitrogen. Main supply and temperature control are performed even during transition.
サブ供給経路は、 3個に分岐され、 各分岐に対して電子的制御可能な バルブ V 3、 V 4および V 5と手動の流量調整ボリューム L 3、 L 4、 L 5が設けられる。 バルブ V 3、 V 4および V 5を切り替えることによ つて、 ゾーン Z 3、 Z 4および Z 5に対する冷却用 N 2の導通、 遮断が 制御される。 また、 流量調整ボリューム L 3、 L 4、 L 5によって、 導 入される N 2の流量を調整することができる。 例えば本加熱部を受け持 つゾーン Z 6に近いゾーンほど N 2の流量が多く される。 なお、 図示し ないが、 各ゾーンに対する N 2の供給路中には、 レギユレータ、 圧力セ ンサ一等が配されている。 鉛フリ一はんだから共晶はんだへの切り替え 時には、 ゾーン Z 3、 Z 4および Z 5の下部加熱装置に対して、 N 2が 導入され、 下部からの冷却用の N 2が上部加熱装置 1 5に入り、 さらに、 ラジェターボックス 4 2を含む上述した循環経路で冷却されるので、 こ れらのゾーンの温度を短時間で下げることができる。 The sub supply path is branched into three, and electronically controllable valves V 3, V 4 and V 5 and manual flow control volumes L 3, L 4 and L 5 are provided for each branch. By switching the valves V 3, V 4 and V 5, the conduction and shut-off of the cooling N 2 to the zones Z 3, Z 4 and Z 5 are controlled. In addition, the flow rate of N 2 introduced can be adjusted by the flow rate adjusting volumes L 3, L 4 and L 5. For example, the flow rate of N 2 is increased in the zone closer to zone Z 6 that is in charge of this heating unit. Although not shown, a regulator, a pressure sensor, etc. are arranged in the N 2 supply path to each zone. Switching from lead-free solder to eutectic solder Sometimes, with respect to the lower heating device zone Z 3, Z 4 and Z 5, N 2 is introduced, N 2 for cooling from the lower enters the upper heating device 1 5, further comprising a Lage letterbox 4 2 Since it is cooled by the circulation path described above, the temperature of these zones can be lowered in a short time.
第 4図 Aおよび第 4図 Bを参照してこの発明の一実施の形態のリフロ 一装置に設けられた外部とのガスまたは外気導入用の孔について概略的 に説明する。 第 4図 Aは、 リフロー装置の上面を示し、 第 4図 Bは、 リ フロー装置の下面を示す。 各ゾーンの上面には、 メイン N 2の導入口 a 1から a 7が形成され、 下面には、 メイン N 2の導入口 b 1から b 7が形成 されている。 メイン N 2の導入口を第 4図 Aおよび第 4図 Bにおいて、 模式的に白い丸で表す。 With reference to FIG. 4A and FIG. 4B, a hole for introducing gas or outside air to the outside provided in the reflow apparatus of one embodiment of the present invention will be schematically described. FIG. 4A shows the top surface of the reflow device, and FIG. 4B shows the bottom surface of the reflow device. Main N 2 inlets a 1 to a 7 are formed on the upper surface of each zone, and main N 2 inlets b 1 to b 7 are formed on the lower surface. The main N 2 inlet is schematically represented by a white circle in Fig. 4A and Fig. 4B.
ゾーン Z 4の上面にラジェターボックス 4 2に接続するための孔 c 41 および c 42が形成され、 ゾーン Z 5の上面に他のラジェターボックスに 接続するための孔 c 51および c 52が形成されている。 ラジェターボック スに接続するための孔を第 4図 Aおよび第 4図 Bにおいて、 模式的に三 角形で表す。  Holes c 41 and c 42 for connecting to the radiator box 4 2 are formed on the upper surface of the zone Z 4 and holes c 51 and c 52 for connecting to other radiator boxes are formed on the upper surface of the zone Z 5 Yes. The holes for connecting to the Raje Turbo are schematically represented by triangles in Fig. 4A and Fig. 4B.
さらに、 ゾーン Z 3の下面に冷却用 N 2の導入口 d 3が形成されてい る。 ゾーン Z 4の下面およびゾーン Z 5の下面にそれぞれ冷却用 N 2の 導入口 d 4および d 5がそれぞれ形成されている。 冷却用 N 2の導入口を 第 4図 Aおよび第 4図 Bにおいて、 模式的に黒い丸で表す。 Further, an inlet d 3 for cooling N 2 is formed on the lower surface of the zone Z 3. Cooling N 2 inlets d 4 and d 5 are formed on the lower surface of zone Z 4 and the lower surface of zone Z 5, respectively. The inlet for cooling N 2 is schematically represented by a black circle in FIGS. 4A and 4B.
さらに、 硬化のために温度を下げる場合に導通される外気導入口 e 1 〜 e 5がゾーン Z 1〜Z 5のそれぞれの上面に形成されている。 ゾーン Z 6の上面には、 2箇所の外気導入口 e 61および e 62が形成され、 ゾー ン Z 7の上面には、 2箇所の外気導入口 e 71および e 72が形成されてい る。 下面にも外気導入口 f 1〜 f 72が同様の関係で形成され、 合計 1 8 箇所の外気導入口が形成されている。 第 4図 Aおよび第 4図 Bに示す導入口および導出口の配置は、 一例で あって、 設置箇所は、 他の場所であっても良い。 但し、 ガスまたは大気 の導出口は、 送風機の動作によって圧力の高くなっている箇所に設けら れ、 ガスまたは大気の導入口は、 送風機の動作によって圧力の低くなつ ている箇所に設けられる。 また、 加熱装置の側面に対して導入口または 導出口を設けても良い。 Further, outside air inlets e 1 to e 5 that are conducted when the temperature is lowered for curing are formed on the upper surfaces of the zones Z 1 to Z 5. Two outside air introduction ports e 61 and e 62 are formed on the upper surface of the zone Z 6, and two outside air introduction ports e 71 and e 72 are formed on the upper surface of the zone Z 7. Outside air inlets f 1 to f 72 are formed in the same manner on the lower surface, and a total of 18 outside air inlets are formed. The arrangement of the inlet and outlet shown in FIG. 4A and FIG. 4B is an example, and the installation location may be another location. However, the gas or air outlet is provided at a location where the pressure is increased by the operation of the blower, and the gas or air inlet is provided at a location where the pressure is reduced by the operation of the blower. In addition, an introduction port or a discharge port may be provided on the side surface of the heating device.
第 5図を参照してこの発明の一実施の形態における各ゾーンの温度設 定の一例を説明する。 第 5図において、 ヒーター温度 (上) は、 上部加 熱装置の主加熱源および副加熱源をそれぞれ構成するヒーターの設定温 度を表し、 ヒーター温度 (下) は、 下部加熱装置の主加熱源および副加 熱源をそれぞれ構成するヒーターの設定温度を表す。 鉛フリ一はんだ、 共晶はんだおよび硬化の場合のそれぞれの設定温度が示されている。 鉛フリーはんだ、 共晶はんだおよび硬化の場合で、 上部加熱装置の軸 流ブロワの風量、 並びに上部加熱装置の軸流ブロワの風量は、 各ゾーン で中 (M i d ) に設定され、 被加熱物の搬送速度は、 0 . 9 ( m/ m i n ) に設定される。 例えば鉛フリーはんだの場合では、 プリ ヒー ト部を 受け持つゾーン Z 3、 Z 4および Z 5のそれぞれのヒーター温度 (上) およびヒーター温度 (下) が 1 9 0 ° Cに設定される。 共晶はんだの場 合では、 ゾーン Z 3、 Z 4および Z 5のそれぞれのヒーター温度 (上) およびヒーター温度 (下) が 1 6 0 ° Cに設定される。 さらに、 硬化の 場合では、 加熱ゾーン Z 1〜Z 7が 1 5 0 ° Cに設定される。 第 5図に 示す設定によって鉛フリーはんだの場合の所望の温度 (リフロー) プロ ファイルが得られ、 また、 共晶はんだの場合に所望の温度 (リフロー) プロファイルを得ることができ、 さらに, 硬化の場合の所望の温度プロ ファイルを得ることができる。  An example of the temperature setting for each zone in the embodiment of the present invention will be described with reference to FIG. In Fig. 5, the heater temperature (upper) represents the set temperature of the heater that constitutes the main heating source and sub-heating source of the upper heating device, and the heater temperature (lower) represents the main heating source of the lower heating device. And the set temperature of the heater that constitutes the auxiliary heating source. The set temperatures for lead-free solder, eutectic solder and curing are shown. In the case of lead-free solder, eutectic solder and hardening, the airflow of the axial blower of the upper heating device and the airflow of the axial flow blower of the upper heating device are set to medium (M id) in each zone. The transport speed is set to 0.9 (m / min). For example, in the case of lead-free solder, the heater temperature (upper) and heater temperature (lower) of zones Z3, Z4, and Z5, which handle the preheated part, are set to 190 ° C. In the case of eutectic solder, the heater temperature (top) and heater temperature (bottom) of zones Z 3, Z 4 and Z 5 are set to 160 ° C. Furthermore, in the case of curing, the heating zones Z 1 to Z 7 are set to 1550 ° C. The desired temperature (reflow) profile for lead-free solder can be obtained with the settings shown in Fig. 5, and the desired temperature (reflow) profile can be obtained for eutectic solder. The desired temperature profile for the case can be obtained.
例えばヒーター温度を 1 5 0 ° Cに設定した場合に、 被加熱物 (例え ば所定の厚み、 大きさのプリント配線基板) の温度がほぼ 1 1 0° Cと なり、 ヒーター温度を 1 6 0° Cに設定した場合に、 被加熱物の温度が ほぼ 1 40° Cとなり、 ヒーター温度を 1 9 0° Cに設定した場合に、 被加熱物の温度がほぼ 1 7 0° C〜 1 8 0° Cとなり、 ヒーター温度を 24 5° Cに設定した場合に、 被加熱物の温度がほぼ 2 2 5° Cとなり、 ヒーター温度を 240° Cに設定した場合に、 被加熱物の温度がほぼ 2 30° Cとなる。 For example, if the heater temperature is set to 150 ° C, the object to be heated (for example, If the heater temperature is set to 160 ° C, the temperature of the object to be heated will be approximately 140 ° C. When the heater temperature is set to 190 ° C, the temperature of the object to be heated is approximately 170 ° C to 180 ° C, and when the heater temperature is set to 245 ° C, When the temperature of the object is approximately 2 25 ° C and the heater temperature is set to 240 ° C, the temperature of the heated object is approximately 230 ° C.
したがって、 鉛フリーはんだから共晶はんだの場合では、 ゾーン Z 3、 Z 4および Z 5のそれぞれの温度を 3 0° C下げることが必要とされる。 また、 鉛フリーはんだから硬化の場合では、 ゾーン Z 3、 Z 4および Z 5のそれぞれの温度を 40° C下げることが必要とされる。 この発明の 一実施の形態では、 これらの温度切り替えを短時間で行うことができる。 例えば 30分必要であったのが 1 5〜2 0分に短縮することができる。 上述したこの発明によれば、 リフロー炉の設定温度の変更が必要な時、 例えば鉛フリーはんだから共晶はんだへの切り替え時に、 設定温度の変 化の大きいゾーン例えばプリ ヒート部を受け持つゾーンの温度を急速に 低下させることによって、 切り替え作業を短時間且つ効率的に行うこと ができる。  Therefore, in the case of lead-free solder to eutectic solder, it is necessary to lower the temperatures of zones Z 3, Z 4 and Z 5 by 30 ° C. In the case of curing from lead-free solder, it is necessary to lower the temperatures of zones Z 3, Z 4 and Z 5 by 40 ° C. In one embodiment of the present invention, these temperature changes can be performed in a short time. For example, 30 minutes can be reduced to 15 to 20 minutes. According to the present invention described above, when it is necessary to change the set temperature of the reflow furnace, for example, when switching from lead-free solder to eutectic solder, the temperature of the zone having a large change in set temperature, for example, the temperature of the zone that handles the preheating portion. By rapidly reducing the value, the switching work can be performed in a short time and efficiently.
以上、 この発明の実施の形態について具体的に説明したが、 この発明 は、 上述の実施の形態に限定されるものではなく、 この発明の技術的思 想に基づく各種の変形が可能である。 例えばこの発明による冷却は、 本 加熱部に隣接するプリ ヒート部の終端部を受け持つゾーンに対してのみ 適用するようにしても良い。 また、 鉛フリーはんだと共晶はんだの切り 替え以外の温度プロファイルの切り替えに対してもこの発明を適用する ことができる。  Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various modifications based on the technical idea of the present invention are possible. For example, the cooling according to the present invention may be applied only to a zone serving as a terminal portion of the preheating portion adjacent to the main heating portion. The present invention can also be applied to temperature profile switching other than switching between lead-free solder and eutectic solder.

Claims

1 . 搬送される被加熱物の搬送路に沿って複数のゾーンにリフロー炉が 順次分割され、 上記複数のゾーンの温度を制御することによって、 搬送 される上記被加熱物の温度を所望のプロファイルで制御するリフロー装 置において、 請 1. A reflow furnace is sequentially divided into a plurality of zones along the conveyance path of the heated object to be conveyed, and the temperature of the heated object to be conveyed is set to a desired profile by controlling the temperature of the plurality of zones. In reflow equipment controlled by
上記複数のゾーンの中で、 上記ゾーン内の設定温度を変更する場合に、 該設定温度の変化が大きい 1または複数の上記ゾーンに対して、 上記ゾ ーン内のガスに比して低温のガスを導入するガス導入部を設け、  Among the plurality of zones, when changing the set temperature in the zone, the change in the set temperature is large. For one or more of the zones, the temperature is lower than the gas in the zone. A gas introduction part for introducing gas is provided,
上記ガス導入部を介して該ゾーン内に上記低温のガスを導入して 1ま 固  The low temperature gas is introduced into the zone through the gas introduction part and fixed to 1
たは複数の上記ゾーンの温度を短時間で低下させるようにしたリフロー 装置。 Or a reflow device that reduces the temperature of multiple zones in a short time.
2 . リフロー時の上記プロファイルが昇温部とプリ ヒート部と本加熱部 と冷却部とからなり、  2. The above-mentioned profile during reflow consists of the heating part, preheating part, main heating part and cooling part.
上記昇温部、 上記プリ ヒ一ト部および上記本加熱部の加熱をそれぞれ 受け持つゾーンの中で、 上記設定温度の変化の大きい 1または複数の上 記ゾーンに対して、 上記ゾーン内のガスに比して低温のガスを導入する ガス導入部を設ける請求の範囲 1記載のリフロー装置。  Among the zones that are responsible for heating the heating unit, the preheating unit, and the main heating unit, respectively, the gas in the zone is compared with one or more of the above zones having a large change in the set temperature. The reflow apparatus according to claim 1, further comprising a gas introduction unit that introduces a gas having a temperature lower than that of the first embodiment.
3 . 鉛フリーはんだの上記プロファイルを共晶はんだの上記プロフアイ ルへ切り替える時に上記低温のガスを導入する請求の範囲 1記載のリフ ロー装置。 3. The reflow apparatus according to claim 1, wherein the low-temperature gas is introduced when the profile of the lead-free solder is switched to the profile of the eutectic solder.
4 . 上記低温のガスの導入箇所が上記送風機により発生する圧力の低い 箇所に設けられる請求の範囲 3記載のリフロー装置。  4. The reflow device according to claim 3, wherein the introduction point of the low-temperature gas is provided at a location where the pressure generated by the blower is low.
5 . 上記ゾーンのそれぞれの加熱装置が上部加熱装置と下部加熱装置と から構成され、 上記上部加熱装置と下部加熱装置との対向間隙を被加熱 物が通過する構成とされ、 5. Each heating device in the above zone is composed of an upper heating device and a lower heating device, and a counter gap between the upper heating device and the lower heating device is heated. It is configured to pass things,
上記ガス導入部が上記上部加熱装置と下部加熱装置との一方に設けら れた請求の範囲 1記載のリフロー装置。  2. The reflow device according to claim 1, wherein the gas introduction part is provided in one of the upper heating device and the lower heating device.
6 . 上記設定温度の変化が大きい 1または複数の上記ゾーン内のガスを リフロー炉の外部に設けられた冷却部を循環させる請求の範囲 1記載の リフロー装置。  6. The reflow apparatus according to claim 1, wherein the gas in the one or more zones having a large change in the set temperature is circulated through a cooling unit provided outside the reflow furnace.
7 . 上記冷却部が上記ガスの通る管と、 上記管の周面に設けられた冷却 フィンと、 上記管からフラックスを回収する回収部とからなる請求の範 囲 6記載のリフロー装置。  7. The reflow device according to claim 6, wherein the cooling section comprises a pipe through which the gas passes, a cooling fin provided on a peripheral surface of the pipe, and a collection section for collecting flux from the pipe.
8 . 上記加熱部が加熱源と送風機とを有する熱風噴射型の加熱装置であ り、 8. The heating unit is a hot air jet type heating device having a heating source and a blower,
上記送風機により発生する圧力の高い箇所から上記ガスを導出して上 記冷却部へ供給し、 上記冷却部により冷却されたガスを上記送風機によ り発生する圧力の低い箇所から上記加熱部に導入される請求の範囲 6記 載のリ フロー装置。  The gas is led out from a location where the pressure generated by the blower is high and supplied to the cooling unit, and the gas cooled by the cooling unit is introduced into the heating unit from a location where the pressure generated by the blower is low. A reflow device according to claim 6.
9 . 上記ゾーンのそれぞれの加熱装置が上部加熱装置と下部加熱装置と から構成され、 上記上部加熱装置と下部加熱装置との対向間隙を被加熱 物が通過する構成とされ、  9. Each heating device in the zone is composed of an upper heating device and a lower heating device, and the heated object passes through a gap between the upper heating device and the lower heating device,
上記ガスの導出部および上記ガスの導入部が上記上部加熱装置と下部 加熱装置との一方に設けられた請求の範囲 8記載のリフロー装置。  9. The reflow device according to claim 8, wherein the gas lead-out portion and the gas introduction portion are provided on one of the upper heating device and the lower heating device.
PCT/JP2008/053889 2007-03-29 2008-02-27 Reflow device WO2008120526A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-089231 2007-03-29
JP2007089231A JP2008246515A (en) 2007-03-29 2007-03-29 Reflow apparatus

Publications (1)

Publication Number Publication Date
WO2008120526A1 true WO2008120526A1 (en) 2008-10-09

Family

ID=39808110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053889 WO2008120526A1 (en) 2007-03-29 2008-02-27 Reflow device

Country Status (2)

Country Link
JP (1) JP2008246515A (en)
WO (1) WO2008120526A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012007804B4 (en) 2012-02-24 2022-06-02 Few Fahrzeugelektrikwerk Gmbh & Co. Kg Process for the technologically optimized execution of lead-free solder connections
JP6336707B2 (en) * 2013-02-14 2018-06-06 株式会社タムラ製作所 Reflow device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134264U (en) * 1991-05-28 1992-12-14 株式会社タムラ製作所 air reflow device
JPH1071464A (en) * 1996-08-28 1998-03-17 Tamura Seisakusho Co Ltd Reflow device
JP2001198671A (en) * 1999-11-12 2001-07-24 Tamura Seisakusho Co Ltd Reflow device
JP2004197975A (en) * 2002-12-16 2004-07-15 Tamura Seisakusho Co Ltd Heating furnace device
JP2005014074A (en) * 2003-06-27 2005-01-20 Tamura Seisakusho Co Ltd Reflowing plant
JP2005095977A (en) * 2003-08-26 2005-04-14 Sanyo Electric Co Ltd Circuit device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134264U (en) * 1991-05-28 1992-12-14 株式会社タムラ製作所 air reflow device
JPH1071464A (en) * 1996-08-28 1998-03-17 Tamura Seisakusho Co Ltd Reflow device
JP2001198671A (en) * 1999-11-12 2001-07-24 Tamura Seisakusho Co Ltd Reflow device
JP2004197975A (en) * 2002-12-16 2004-07-15 Tamura Seisakusho Co Ltd Heating furnace device
JP2005014074A (en) * 2003-06-27 2005-01-20 Tamura Seisakusho Co Ltd Reflowing plant
JP2005095977A (en) * 2003-08-26 2005-04-14 Sanyo Electric Co Ltd Circuit device

Also Published As

Publication number Publication date
JP2008246515A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP5711583B2 (en) Reflow device
US5259546A (en) Procedure and arrangement for reflow-soldering electronic components onto a printed board
JP2009190061A (en) Reflowing device
KR100391219B1 (en) Gas Knife Cooling System
JP2021522675A (en) Reflow furnace and its operation method
JP5103064B2 (en) Reflow device
JP4602536B2 (en) Reflow soldering equipment
WO2008120526A1 (en) Reflow device
JP4896776B2 (en) Reflow device
CN111451592B (en) Through hole reflow soldering equipment and through hole reflow soldering processing method
JPH07115166B2 (en) Reflow soldering method and apparatus
JP6336707B2 (en) Reflow device
JP2519013B2 (en) Reflow soldering equipment
JP3179833B2 (en) Reflow equipment
JP4902487B2 (en) Reflow device, flux recovery device, and flux recovery method
JP4957797B2 (en) heating furnace
JPS63180368A (en) Method and device for reflow soldering
JP3114278B2 (en) Chisso reflow device
JP4092258B2 (en) Reflow furnace and temperature control method for reflow furnace
WO2023188840A1 (en) Conveying heating apparatus
JP3818834B2 (en) Reflow soldering equipment
JPH07336040A (en) Cooler for soldered board
JP2010012476A (en) Soldering system
JP4149768B2 (en) Reflow device, reflow method and reflow furnace
JP2555876Y2 (en) Air reflow device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08721309

Country of ref document: EP

Kind code of ref document: A1