WO2008119231A1 - Système et procédé permettant de prendre en charge une pluralité de technologies d'accès multiples et structure de trames à cet effet - Google Patents

Système et procédé permettant de prendre en charge une pluralité de technologies d'accès multiples et structure de trames à cet effet Download PDF

Info

Publication number
WO2008119231A1
WO2008119231A1 PCT/CN2008/000005 CN2008000005W WO2008119231A1 WO 2008119231 A1 WO2008119231 A1 WO 2008119231A1 CN 2008000005 W CN2008000005 W CN 2008000005W WO 2008119231 A1 WO2008119231 A1 WO 2008119231A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiple access
downlink
uplink
area
frame
Prior art date
Application number
PCT/CN2008/000005
Other languages
English (en)
French (fr)
Inventor
Hongyun Qu
Sean Cai
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to EP08700565.8A priority Critical patent/EP2136569B1/en
Priority to JP2010501355A priority patent/JP4902783B2/ja
Priority to US12/594,590 priority patent/US8199712B2/en
Publication of WO2008119231A1 publication Critical patent/WO2008119231A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a system, method, and frame structure thereof that can simultaneously support multiple multiple access technologies in a wireless communication system.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • SDMA Space Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the FDMA technology divides the total bandwidth of the system into several non-overlapping sub-bands and allocates each sub-band to each user.
  • the TDMA technology divides each channel into several time slots and assigns each. Time slots are given to each user; CDMA technology assigns each user a pseudo-random code that has excellent autocorrelation and cross-correlation properties so that multiple users can simultaneously transmit signals at the same bandwidth.
  • TDMA and CDMA typically use FDMA to divide their frequency bands into small frequency bands and then perform time division or code division.
  • SDMA is the use of spatial irrelevance to achieve multi-address capabilities.
  • the base station and the terminal are more suitable for supporting low-rate voice services because they transmit signals on a single carrier frequency or a narrow bandwidth.
  • single-carrier systems or narrow-band systems have more severe intersymbol interference, which requires higher receiver equalizers.
  • the filter bank for signal separation at the receiver end. This multiple access technology is relatively simple to implement, and the disadvantage is low spectrum utilization.
  • the OFDMA technology which can support high-speed data services, divides the channel bandwidth into different sub-channels, and multiple users can simultaneously transmit signals in different bandwidths.
  • the OFDMA system can effectively reduce inter-signal interference by serial-to-parallel conversion of high-speed data, thereby reducing the complexity of the receiver.
  • the OFDMA system utilizes the orthogonality between subcarriers, allowing the frequency of the subchannels to overlap each other, the largest Use spectrum resources to the limit.
  • the OFDMA system has a higher peak-to-average ratio than a single carrier.
  • a base station can only support one terminal of a multiple access technology. As in current wireless communication systems, a base station can only support one terminal of a multiple access technology. As in
  • a base station In a CDMA communication system, a base station can only support terminals that use CDMA multiple access technology for both uplink and downlink. In the IEEE (Institute of Electrical and Electronics Engineers) 802.16e system, the base station can only support terminals that use OFDMA multiple access technology for both uplink and downlink.
  • the technical problem to be solved by the present invention is to provide a system, method and frame structure supporting the multiple multiple access technologies, and can support multiple multiple access technologies in the same carrier frequency.
  • the present invention provides a method for accessing a terminal in a system supporting multiple multiple access technologies, including the following steps:
  • the base station sends a downlink frame, where the downlink frame includes at least one downlink multiple access zone, and each downlink multiple access zone supports a downlink multiple access zone, and each downlink multiple access zone is associated with one or more uplink multiple access zones, each The uplink control message of a downlink multiple access area includes the uplink multiple access technology information supported by the associated uplink multiple access area and the allocation information of the corresponding initial access area, and the uplink frame is divided into at least two technologies supporting different uplink multiple access technologies.
  • Uplink multiple access area
  • the terminal scans the downlink channel, searches for the synchronization signal of the downlink multiple access technology supported by the terminal, and after establishing synchronization with the base station, obtains an uplink control message from the corresponding downlink multiple access area, according to which The information is judged to support its own uplink multiple access technology, and the initial network access is performed according to the initial access area information indicated in the uplink control message, otherwise the channel is rescanned.
  • the uplink multiple access area and the downlink multiple access area are divided according to a time division manner or a frequency division manner, and the uplink control message of each downlink multiple access area further includes the location of the associated uplink multiple access area and/or Or the size information; the downlink multiple access area and the uplink multiple access area are associated, and the terminal supports the downlink multiple access technology corresponding to the downlink multiple access area and the uplink multiple access technology corresponding to the associated uplink multiple access area.
  • the downlink frame sent by the base station includes a downlink multiple access zone, where the downlink multiple access zone is associated with multiple uplink multiple access zones in the uplink frame;
  • the downlink frame sent by the base station includes at least two downlink multiple access areas, and each downlink multiple access area is associated with one or more uplink multiple access areas in the uplink frame.
  • the allocation information of the initial access area corresponding to the uplink multiple access area includes one or any combination of the following: location and size of the initial access area, and types of supported uplink multiple access technologies.
  • the terminals using different uplink multiple access technologies use different initial access areas for access, and each initial access area is located in the corresponding uplink multiple access area;
  • the initial access area is located in a common area in the uplink frame, and terminals using multiple uplink multiple access technologies can use the same initial access area for access.
  • the relative positions of the respective downlink multiple access regions are also variable;
  • the base station When the location of a downlink multiple access zone needs to be changed, the base station sends the location change information in advance in the downlink control message corresponding to the downlink multiple access zone, including the new location of the downlink multiple access zone in the frame and the generated frame;
  • the terminal communicates with the base station normally. After receiving the information indicating the change of the position of the downlink multiple access area in a subsequent frame indicated by the downlink control message in the downlink multiple access area, the terminal is located in the new downlink multiple access area according to the indication.
  • the frame performs a search for the synchronization signal, and continues the normal communication after the synchronization is completed.
  • the base station transmits a synchronization signal of each downlink multiple access technology in a synchronization channel of each downlink multiple access area; or The base station sends a synchronization signal to all downlink multiple access technology terminals on a common synchronization area of the downlink frame, and the synchronization signal of each downlink multiple access technology corresponds to one downlink multiple access area.
  • the downlink multiple access technology includes one or more of an OFDMA multiple access technology, an SC-FDMA multiple access technology, and an MC-TD-SCDMA multiple access technology;
  • the uplink multiple access technology includes an OFDMA multiple access technology, At least two of SC-FDMA multiple access technology and MC-TD-SCDMA multiple access technology.
  • the present invention also provides a method for implementing downlink transmission in a system supporting multiple multiple access technologies, including the following steps:
  • the base station sends a downlink frame, where the downlink frame includes at least one downlink multiple access area, and each downlink multiple access area supports one downlink multiple access technology transmission, and each downlink multiple access area is associated with one or more uplink multiple access areas.
  • the uplink control message of each downlink multiple access area includes the information of the associated uplink multiple access area, and the downlink control message of each downlink multiple access area includes the resource allocation information of the area, and the uplink frame is divided into at least two. Supporting uplink multiple access areas of different uplink multiple access technologies;
  • the terminal After completing the initial access, the terminal obtains a downlink control message from the downlink multiple access area corresponding to the supported downlink multiple access technology, and receives data downlinked by the base station according to the resource allocation information therein.
  • the downlink frame sent by the base station includes a downlink multiple access zone, where the downlink multiple access zone is associated with multiple uplink multiple access zones in the uplink frame, or the downlink frame sent by the base station includes at least two downlinks.
  • An address area, each downlink multiple access area is associated with one or more uplink multiple access areas in an uplink frame, and the uplink multiple access area and the downlink multiple access area are divided according to a time division or a frequency division manner;
  • the downlink multiple access area and the uplink multiple access area are associated, and the terminal supports the downlink multiple access technology corresponding to the downlink multiple access area and the uplink multiple access technology corresponding to the associated uplink multiple access area.
  • the downlink control message of each downlink multiple access area includes the resource allocation information of the area, and further includes location information and/or downlink transmission parameters of the downlink multiple access area, where the resource allocation information includes one of the following parameters. Or any combination: a location, a size, a type, a destination address, and a transmission parameter of a downlink resource block, where the target address is used to indicate a terminal that can receive data in the downlink resource block.
  • each downlink multiple access region The relative position is variable.
  • the base station sends the location change information in advance in the downlink control message corresponding to the downlink multiple access area, including the new location of the downlink multiple access area in the frame, and
  • the frame that occurs after the terminal receives the information of the location change of the downlink multiple access zone in a subsequent frame that is indicated in the downlink control message of the downlink multiple access zone, and then indicates that the new downlink multiple access zone is located.
  • the frame performs a search for the synchronization signal, and continues the normal communication after the synchronization is completed.
  • the downlink multiple access technology includes one or more of an OFDMA multiple access technology, an SC-FDMA multiple access technology, and an MC-TD-SCDMA multiple access technology;
  • the uplink multiple access technology includes an OFDMA multiple access technology, At least two of SC-FDMA multiple access technology and MC-TD-SCDMA multiple access technology.
  • the present invention also provides a method for implementing uplink transmission by a system supporting multiple multiple access technologies, the process comprising the following steps:
  • the base station sends a downlink frame, where the downlink frame includes at least one downlink multiple access area, and each downlink multiple access area supports one downlink multiple access technology transmission, and each downlink multiple access area is associated with one or more uplink multiple access areas.
  • the uplink control message of each downlink multiple access area includes resource allocation information of the associated uplink multiple access area, and the uplink frame is divided into at least two uplink multiple access areas supporting different uplink multiple access technologies;
  • the terminal After completing the initial access, the terminal obtains an uplink control message from the downlink multiple access area corresponding to the supported downlink multiple access technology, and uses the uplink resource multiple access technology to perform uplink transmission according to the resource allocation information.
  • the downlink frame sent by the base station includes a downlink multiple access zone, where the downlink multiple access zone is associated with multiple uplink multiple access zones in the uplink frame; or the downlink frame sent by the base station includes at least two downlinks.
  • a multiple access area each downlink multiple access area is associated with one or more uplink multiple access areas in the uplink frame; the downlink multiple access area and the uplink multiple access area are associated, and the terminal supports the downlink multiple access area correspondingly The downlink multiple access technology and the uplink multiple access technology corresponding to the associated uplink multiple access area.
  • the uplink control message includes one or any combination of the following information of the associated uplink multiple access area in addition to the resource allocation information of the associated uplink multiple access area: Supported uplink multiple access technical information, location And size, where the resource allocation packet is one of the following parameters or Any combination: the location, size, type, destination address, and transmission parameters of the uplink resource block, where the target address is used to indicate a terminal that can perform uplink transmission in the uplink resource block.
  • the relative positions of the multiple uplink multiple access areas in the uplink frame are variable; when the location of an uplink multiple access area needs to be changed, the base station sends the uplink in the uplink control message corresponding to the downlink multiple access area.
  • the location of the multiple access area changes ( ⁇ information indicating the new location of the uplink multiple access area in the current frame;
  • the terminal After receiving the new location information of the uplink multiple access zone in the current frame indicated by the uplink control message in the downlink multiple access zone, the terminal performs uplink signal transmission in the new uplink multiple access zone.
  • the downlink multiple access technology includes one or more of an OFDMA multiple access technology, an SC-FDMA multiple access technology, and an MC-TD-SCDMA multiple access technology;
  • the uplink multiple access technology includes an OFDMA multiple access technology, At least two of SC-FDMA multiple access technology and MC-TD-SCDMA multiple access technology.
  • the present invention further provides a system frame structure supporting a plurality of multiple access technologies, including a downlink frame and an uplink frame, wherein the downlink frame includes at least one downlink multiple access region, and each downlink multiple access region supports one In the downlink multiple access technology, the uplink frame includes at least two uplink multiple access areas supporting different uplink multiple access technologies, and each downlink multiple access area is associated with one or more uplink multiple access areas.
  • the downlink frame includes a downlink multiple access area, where the downlink multiple access area is associated with multiple uplink multiple access areas in the uplink frame; or the downlink frame includes at least two downlink multiple access areas, each The downlink multiple access area is associated with one or more uplink multiple access areas in the uplink frame; the downlink multiple access area and the uplink multiple access area are associated, and the terminal supports the uplink of the downlink multiple access downlink multiple access E area at the same time.
  • the control message contains information about the associated uplink multiple access area.
  • the uplink frame further includes an initial access area, where the initial access area is located in a corresponding uplink multiple access area, or the initial access area is located in a common area in the uplink frame.
  • the information of the associated uplink multiple access area in the uplink control message includes one or any combination of the following information: corresponding initial access area allocation information, supported uplink multiple access technical information, and associated uplink uplink information.
  • the downlink multiple access technology includes one or more of an OFDMA multiple access technology, an SC-FDMA multiple access technology, and an MC-TD-SCDMA multiple access technology;
  • the uplink multiple access technology includes an OFDMA multiple access technology, At least two of SC-FDMA multiple access technology and MC-TD-SCDMA multiple access technology.
  • the synchronization channel of each downlink multiple access area includes a synchronization signal corresponding to the downlink multiple access technology; or, the synchronization signal of all the downlink multiple access technologies is included in the common synchronization channel area of the downlink frame, and each downlink multiple access
  • the synchronization signal of the technology corresponds to a downlink multiple access area.
  • the present invention also provides a system for supporting multiple multiple access technologies, including a base station and a terminal, the base station is configured to send a downlink frame, and the downlink frame includes at least one downlink multiple access area, and each downlink multiple access area supports one type.
  • the downlink multiple access technology is sent, and each downlink multiple access area is associated with one or more uplink multiple access areas, and the uplink control message of each downlink multiple access area includes uplink multiple access technical information supported by the associated uplink multiple access area.
  • the frame is divided into at least two uplink multiple access areas supporting different uplink multiple access technologies;
  • the terminal is configured to scan the downlink channel, search for the synchronization signal of the downlink multiple access technology supported by the terminal, and obtain the uplink control message from the corresponding downlink multiple access area after establishing synchronization with the base station, for example, according to the information, the system supports the system.
  • the uplink multiple access technology performs initial network access according to the initial access area information indicated in the uplink control message, and then obtains a downlink control message and an uplink control message from the downlink multiple access area corresponding to the supported downlink multiple access technology, according to which the base station transmits downlink data resource allocation information received, as well as their use for uplink multiple access technology available uplink transmission resource blocks 0
  • the downlink frame sent by the base station includes a downlink multiple access zone, where the downlink multiple access zone is associated with multiple uplink multiple access zones in the uplink frame, or the downlink frame sent by the base station includes at least two downlinks.
  • An address area each downlink multiple access area is associated with one or more uplink multiple access areas in an uplink frame, and the uplink multiple access area and the downlink multiple access area are divided according to a time division or a frequency division manner;
  • the downlink multiple access area and the uplink multiple access area are associated, and the terminal supports the downlink multiple access technology corresponding to the downlink multiple access area and the uplink multiple access technology corresponding to the associated uplink multiple access area.
  • the location change information is sent in advance in the downlink control message corresponding to the downlink multiple access zone, including the new location of the downlink multiple access zone in the frame and the occurrence of the frame;
  • the terminal and the base station communicate normally, and after receiving the information of the position change of the downlink multiple access area in a subsequent frame indicated in the downlink control message of the downlink multiple access area, according to the frame indicating the new downlink multiple access area
  • the synchronization signal is searched, and normal communication is continued after the synchronization is completed.
  • the base station transmits a synchronization signal of each downlink multiple access technology in a synchronization channel of each downlink multiple access area; or, sends a synchronization signal to all downlink multiple access technology terminals on a common synchronization area of the downlink frame,
  • the synchronization signal of each downlink multiple access technology corresponds to one downlink multiple access area.
  • each of the uplink multiple access areas has an initial access area, or the initial access area is located in the uplink.
  • the initial access area In the public area of the frame, terminals using multiple uplink multiple access technologies can access using the same initial access area.
  • the downlink multiple access technology supported by the downlink multiple access region in the downlink frame sent by the base station includes one or more of OFDMA multiple access technology, SC-FDMA multiple access technology, and MC-TD-SCDMA multiple access technology.
  • the uplink multiple access technology supported by the uplink multiple access region in the received uplink frame includes at least two of OFDMA multiple access technology, SC-FDMA multiple access technology, and MC-TD-SCDMA multiple access technology.
  • the same communication system can support multiple multiple access technologies in the same frequency band.
  • FIG. 1 is a schematic diagram showing a frame structure of a system implementing the first embodiment
  • FIG. 2 is a flow chart of initial network access of a terminal adopting the system of the first embodiment
  • 3 is a flow chart of downlink reception of a terminal using the system of the first embodiment
  • FIG. 4 is a flow chart of uplink transmission of a terminal using the system of the first embodiment
  • FIG. 5 is a schematic diagram of a frame structure of a system for implementing the second embodiment
  • FIG. 6 is a flow chart of initial network access of a terminal adopting the system of the second embodiment
  • FIG. 7 is a flow chart showing a synchronization process of a terminal in a downlink multiple access area using the system of the second embodiment
  • Figure 8 is a diagram showing the frame structure of the system of the third embodiment.
  • the system of the present invention supporting multiple multiple access technologies includes a base station and a terminal, wherein:
  • the base station is configured to send control information and data to one or more terminals supporting different multiple access technologies, and receive data transmitted by terminals supporting different multiple access technologies.
  • the base station sends a downlink frame, where the downlink frame includes at least one downlink multiple access zone, each downlink multiple access zone supports one downlink multiple access technology, and the uplink frame sent by the terminal includes at least two supports different uplink multiple accesses.
  • each downlink multiple access area is associated with one or more uplink multiple access areas, and the uplink control message of each downlink multiple access area includes an initial access area corresponding to the associated uplink multiple access area. Assign information.
  • the terminal is configured to receive a control message sent by the base station, receive data sent by the base station according to the control message, and send data to the base station according to the control message if the base station supports its own multiple access technology.
  • the terminal scans the respective downlink channels, searches for the synchronization signal of the downlink multiple access technology supported by the terminal, and obtains an uplink control message from the corresponding downlink multiple access area after establishing synchronization with the base station, for example, the base station supports its own uplink multiple access technology. And performing initial network access according to the initial access area information indicated in the uplink control message, using respective supported initial access technologies.
  • the base station supports one downlink multiple access technology and more than one uplink multiple access technology.
  • the base station downlink supports the OFDMA multiple access technology
  • the uplink supports the OFDMA multiple access technology and the SC-FDMA multiple access technology.
  • terminal #1 downlink supports OFDMA multiple access technology
  • uplink supports OFDMA multiple access technology
  • terminal #2 downlink supports OFDMA multiple access technology
  • uplink supports SC-FDMA multiple access technology
  • other terminal downlink supports OFDMA multiple access technology, uplink support OFDMA multiple access technology or SC-FDMA multiple access technology.
  • the frame structure implementing the embodiment is as shown in FIG. 1.
  • the frame structure includes a downlink frame and an uplink frame.
  • the downlink frame contains only one downlink multiple access area (DL Zone), which supports only one downlink multiple access technology, that is, downlink OFDMA technology.
  • the uplink frame is divided into two uplink multiple access areas according to time division or frequency division, and supports different uplink multiple access technologies respectively.
  • uplink multiple access area #1 (UL Zone#l) and uplink multiple access area #2 (UL Zone#2) support uplink OFDMA multiple access technology and uplink SC-FDMA multiple access technology, respectively.
  • the downlink multiple access area #1 is associated with two uplink multiple access areas #1 and #2.
  • the base station starts transmitting a prefix (preamble) in the downlink frame, and sends an uplink control message and a downlink control message to the terminal in the downlink multiple access area.
  • the downlink control message includes a FCH (Frame Control Head) and a DL-MAP (downlink mapping) message, and may further include a DCD (Downlink Channel Description) message
  • the uplink control message includes a UL-MAP message, and may also Includes UCD (Upstream Channel Description) messages, or other broadcast control messages (DCD and UCD are not shown).
  • the base station includes, in the downlink control message, the related parameters of the downlink transmission, the resource allocation information of the downlink multiple access area, and the location information or the update information of the downlink multiple access area in the downlink frame.
  • the relevant parameters of the downlink transmission include the identifier of the base station, the basic capability parameter of the base station, the bandwidth used by the downlink transmission, the number of points, the frame length, and the definition of the timer (the related parameters of the uplink transmission also include the above parameters);
  • the resource allocation information of the address area includes one or any combination of the following parameters: location, size, type, and destination address of all bursts of the downlink (indicating a terminal that can receive data in the downlink resource block, such as an identifier of the target terminal) , the transmission parameters (such as the modulation coding method used for transmission).
  • the downlink control message DL-MAP includes all allocation information of burst #1 to burst #9, and burst #1 is sent to terminal #1 (MS#1), burst #2 Is sent to terminal #2 (MS#2), other bursts are also indicated to the system's terminal, package Including terminal #1 and terminal #2, there may be more bursts.
  • the base station includes, in the uplink control message, information about all uplink multiple access technologies supported by the base station (such as the type of uplink multiple access technology) and related parameters of the uplink transmission (such as parameters used for uplink transmission, points, etc.), and also includes Location information and resource allocation information of uplink multi-access areas. Since the relative position and size of each uplink multiple access area are variable between frames, the location information needs to be notified to the terminal after updating.
  • the uplink multiple access area location information includes the location of the uplink frame and/or the size of the uplink multiple access area in each uplink multiple access area (such as UL Zone #1 and UL Zone #2 in FIG. 1).
  • the uplink multiple access area resource allocation information includes allocation information of bursts (Slots) or slots (Slots) in each uplink multiple access area, including one or any combination of the following parameters: each burst or time slot Location, destination address of the upstream burst or time slot (indicating that the burst can be in the burst
  • parameters such as the location and destination address of the uplink burst #1 in the uplink multiple access area #1 are indicated in the uplink control message UL-MAP, and are allocated to the terminal #1 for uplink transmission; Parameters such as position information and destination address of the uplink slot #1 in the uplink multiple access area #2 are allocated to the terminal #2 for uplink transmission.
  • the base station further carries the allocation information of the initial access area in the uplink control message, where the initial access area has at least one, and the allocation information of the initial access area includes the uplink initial in each uplink multiple access area: 1 ⁇ 2 access area (: the split interface information of the initial oscillation region and the random access slot), the allocation information includes one or any combination of the following parameters: the uplink initial access region is in the uplink frame or each uplink multiple access region. Location, size, type identification of supported uplink multiple access techniques, modulation coding methods that can be used for transmission, etc.
  • the terminal for each uplink multiple access technology allocates an initial access area in the uplink multiple access area, as shown in FIG.
  • the initial connection of the uplink multiple access area #1 and the uplink multiple access area #2 The initial ranging region and the random access slot are used for terminal #1 and terminal #2, respectively, to perform initial network access using different initial network access technologies. However, the initial access area of the terminal may also be the same.
  • the base station may support the same uplink for all in the uplink control message.
  • the terminal of the address technology allocates an initial access area in the common area of the uplink frame.
  • the initial network access process of the terminal is shown in Figure 2, including the following steps:
  • Step 210 The terminal scans the downlink channel, and searches for a synchronization signal of the downlink multiple access technology supported by the terminal.
  • the system downlink uses OFDMA multiple access technology, and terminal #1 and terminal #2 search for the downlink frame prefix shown in FIG.
  • the downlink frame has n synchronization signals, which are used for downlink network access of the terminal.
  • the terminal searches for a corresponding synchronization signal, which may be a synchronization channel signal or other synchronization signals in addition to the prefix signal.
  • Step 220 The terminal establishes synchronization with the base station.
  • Step 230 After the terminal synchronizes with the base station, the terminal receives the downlink frame sent by the base station, obtains an uplink control message, and determines whether the base station supports its uplink multiple access technology according to the identifier of the uplink multiple access technology supported by the base station obtained in the uplink control message. If yes, go to step 240, otherwise end or return to step 210;
  • the base station determines whether the base station supports the uplink OFDMA for the terminal #1, and whether the base station supports the uplink SC-FDMA for the terminal #2.
  • the terminal determines whether the base station supports its own uplink multiple access technology according to whether the identifier of the uplink multiple access technology supported by the base station matches the uplink multiple access technology identifier supported by the base station. If the terminal determines that the base station does not support its own uplink multiple access technology, Then scan again in the downlink frequency band to find a new available downlink channel.
  • Step 240 The terminal obtains an uplink control message from a downlink frame of the base station, and obtains, by using an uplink control message, allocation information of an available uplink initial access area, and uplink transmission parameter information.
  • Step 250 The terminal sends a network access message in the uplink initial access area indicated by the base station, and performs initial network access.
  • the terminal #1 and the terminal #2 use different initial technologies in the initial access area #1 and the initial access area #2 to perform initial network access according to the information of the initial access area in the uplink control message received by the base station. .
  • Step 310 The terminal receives a downlink frame sent by the base station, obtains a downlink control message, and obtains a downlink control message from the terminal. Obtaining resource allocation information of the downlink multiple access area in the downlink control message;
  • Terminal #1 and terminal #2 receive the downlink control message of the base station, here a DL-MAP message, and obtain resource allocation information of the downlink multiple access area therefrom.
  • Step 320 The terminal receives data sent by the base station in downlink according to the obtained resource allocation information.
  • Terminal #1 and terminal #2 obtain the location and related information (such as modulation and coding mode) of the data transmitted by the base station according to the resource allocation information of the downlink multiple access area, as shown in FIG. 1, the base station downlink control message DL-MAP It is indicated that the data is transmitted to the terminal #1 in the downlink burst #1, and the base station transmits the data to the terminal #2 in the downlink burst #2, and the terminal #1 and the terminal #2 respectively receive the burst position information and other parameters. Send data in #1 and burst #2.
  • the base station When the terminal and the base station are in normal communication, if the location of a downlink multiple access zone needs to be changed in the downlink frame, the base station shall send the location change information, including the downlink multiple access zone, in advance in the downlink control message of the downlink multiple access zone. The new position in the downstream frame and the frame that has changed. After receiving the location information of the new downlink area from the downlink control message, the terminal synchronizes in the new frame, and then continues to communicate normally with the base station.
  • Step 410 The terminal obtains resource allocation information of each uplink multiple access area from an uplink control message in a downlink frame sent by the base station;
  • the uplink multiple access technology used in the uplink multiple access area is supported by the terminal.
  • Step 420 The terminal sends data by using its own uplink multiple access technology in an available uplink burst in the uplink multiple access area according to the resource allocation information of the uplink multiple access area.
  • Terminal #1 and terminal #2 obtain the location and related information of the uplink burst allocated to itself according to the resource allocation information of the respective uplink multiple access areas. As shown in FIG. 1, the base station allocates burst #1 in the uplink multiple access area #1 to the terminal #1 in the uplink control message UL-MAP, and the base station allocates the uplink multiple access area #2 in the uplink control message UL-MAP. Upstream slot #1 is given to terminal #2. The terminal #1 and the terminal #2 perform uplink transmission using the respective supported uplink multiple access technologies in the uplink burst #1 and the uplink slot #1 according to the instruction of the information. Second embodiment
  • the base station supports two downlink multiple access technologies and two uplink multiple access technologies.
  • the base station supports the downlink OFDMA multiple access technology and the downlink SC-FDMA multiple access technology, and the uplink OFDMA multiple Address technology and uplink SC-FDMA multiple access technology.
  • the system also includes terminal #1 and terminal #2, terminal #1 supports downlink OFDMA multiple access technology and uplink OFDMA multiple access technology; terminal #2 supports downlink SC-FDMA multiple access technology and uplink SC-FDMA multiple access technology.
  • the frame structure of the embodiment is as shown in FIG. 5, and the frame structure includes a downlink frame and an uplink frame.
  • each downlink multiple access area supports one downlink multiple access technology
  • each uplink multiple access area supports one uplink multiple access technology.
  • the relative position of each downlink multiple access zone in the downstream frame is variable, and the relative position of each uplink multiple access zone in the upstream frame is also variable.
  • Downlink multiple access area #1 and downlink multiple access area #2 support OFDMA multiple access technology and SC-FDMA multiple access technology respectively
  • uplink multiple access area #1 and uplink multiple access area #2 support OFDMA multiple access technology and SC-FDMA, respectively. Multiple access technology.
  • the two downlink multiple access areas are associated with two uplink multiple access areas, wherein the downlink multiple access area #1 is associated with the uplink multiple access area #1, and the downlink multiple access area #2 is associated with the uplink multiple access area #2.
  • the uplink multiple access area associated with the downlink multiple access area that is, the terminal simultaneously supports the downlink multiple access technology corresponding to the downlink multiple access area and the uplink multiple access technology corresponding to the associated uplink multiple access area.
  • the base station transmits a prefix #1 and a synchronization slot #1 (Sync Slot 1 ) at the beginning of the downlink multiple access region #1 and the downlink multiple access region #2, respectively, for supporting downlink OFDMA multiple access technology and downlink SC-FDMA multiple access. Initial network search and synchronization of technical terminals.
  • the base station transmits control messages of respective downlink multiple access areas in each downlink multiple access area, including a downlink control message and an uplink control message.
  • the downlink control message and the uplink control message are respectively used for control of the downlink multiple access zone and the corresponding uplink multiple access zone.
  • the uplink control message sent in each downlink multiple access area includes information of uplink multiple access technology, uplink transmission parameters, location information, resource allocation information, and allocation information of an initial access area.
  • the location information of the uplink multiple access area includes the location and/or size of each uplink multiple access area in an uplink frame.
  • the resource allocation information of each uplink multiple access area may include one or any combination of the following parameters. : location information, size, type of the uplink burst or time slot in each multiple access area, a target address of the uplink burst or time slot, and a modulation and coding mode used for transmission, etc., the uplink burst or time
  • the target address of the slot is used to indicate a terminal that can perform uplink transmission in the burst or time slot.
  • the uplink control message further includes allocation information of the initial access area, where the terminal supporting the uplink multiple access technology performs initial network access.
  • the downlink control message sent in each downlink multiple access area includes the transmission parameter of the downlink multiple access area and the resource allocation information of the downlink multiple access area.
  • the base station shall send the location change information in advance in the downlink control message of the downlink multiple access zone, including the new downlink downlink multiple access zone in the downlink frame. Location and the frame that has changed.
  • the downlink multiple access area #1 is transmitted by the downlink control message, the DL-MAP, and the uplink control message UL-MAP, respectively, and corresponding thereto.
  • the resource allocation information of the downlink multiple access zone in the downlink control message DL-MAP includes one or any combination of the following: the location of all bursts in the downlink multiple access zone, the target terminal of the burst, the size of the burst, and the modulation used for transmission. Coding method, etc.
  • the downlink control message indicates that burst #1 is allocated to terminal #1.
  • the location information of the uplink multiple access area in the uplink control message UL-MAP indicates the location and/or size of the uplink multiple access area in the uplink frame.
  • the resource allocation information of the uplink multiple access area includes one or any combination of the following: The location of all bursts in the uplink multiple access area corresponding to the downlink multiple access area, which terminal is allocated, the size of the burst, the modulation coding method used, and the like.
  • the uplink control message supports the uplink burst #1 for the terminal #1 to perform uplink transmission.
  • the uplink control message UL-MAP may also include allocation information of the initial access area (Initial Ranging region and Random Access slot).
  • the base station transmits the location change information in the uplink control message of the downlink multiple access zone #1.
  • the downlink multiple access area #2 and the corresponding uplink multiple access area are respectively transmitted by the downlink control and the uplink control slot.
  • Location information and resource allocation information for #2 In the downlink control slot of the downlink multiple access zone #2, the downlink data slot #2 is allocated for the terminal #2, and the terminal #2 uses the uplink SC-FDMA technique for data transmission in the slot; in the downlink multiple access zone #2
  • the initial access channel and the location of the data channel are allocated in the uplink control slot.
  • the process of the initial network access of the terminal is as shown in FIG. 6, and includes the following steps: Step 610: The terminal searches for a synchronization signal of the downlink multiple access technology supported by the terminal.
  • the base station may send synchronization signals of different multiple access technologies in the following manner: the base station transmits a synchronization signal of each downlink multiple access technology in a synchronization channel of each downlink multiple access region; or the base station is in a common synchronization region of the downlink frame.
  • the synchronization signal is sent to all the terminals of the downlink multiple access technology supported by the downlink multiple access technology, and the synchronization signal of each downlink multiple access technology corresponds to one downlink multiple access area.
  • Terminal 1 and terminal 2 each scan the downlink channel and search for the synchronization signal supported by itself. As shown in FIG. 5, the terminal 1 supporting the downlink OFDMA multiple access technology searches for the downlink prefix, and the terminal 1 supporting the downlink SC-FDMA multiple access technology searches for the downlink synchronization channel.
  • Step 620 The terminal establishes synchronization with the base station.
  • Step 630 After the terminal synchronizes with the base station, the terminal receives the downlink frame sent by the base station, determines whether the base station supports its own uplink multiple access technology, and if yes, performs step 640, otherwise returns to step 610; Step 640, the terminal obtains support from the uplink control message. Allocation information and uplink transmission parameters of an initial access area of its own downlink multiple access area;
  • the terminal needs to first determine whether the base station supports its own uplink multiple access technology after synchronizing with the base station. When the base station supports only one uplink multiple access technology, the terminal accesses the network. Afterwards, the base station can default to the same multiple access technology used by the terminal as the base station.
  • Step 650 The terminal sends a network access message in the uplink initial network access area according to the allocation information of the initial access area, and performs initial network access.
  • Terminal #1 and terminal #2 perform initial network access using the respective initial techniques in the uplink multiple access area #1 and the uplink multiple access area #2, respectively.
  • the large process of the above terminal processing is the same as that of FIG. 2, but the terminal #1 and the terminal #2 are different in the supported uplink and downlink multiple access technologies, so the specific processing is different.
  • Step 710 The terminal and the base station are normal.
  • Communication Step 720 The terminal receives a downlink control message of the base station, where the message indicates location change information of the downlink multiple access zone in a subsequent frame, including a new location of the downlink multiple access zone in the downlink frame and a changed frame.
  • Step 730 The terminal searches for the synchronization signal in the frame in which the change occurs according to the indication information, and obtains synchronization;
  • Step 740 The terminal and the base station enter a normal communication state.
  • the process of receiving downlink data is as follows:
  • Step 1 The terminal receives the downlink frame sent by the base station, obtains a downlink control message from the corresponding downlink multiple access zone, and obtains resource allocation information of the downlink multiple access zone.
  • the downlink multiple access technology used in the downlink multiple access area is supported by the terminal. If the downlink control message received by the terminal indicates the information of the location change of the downlink multiple access zone in a subsequent frame, the terminal performs the search, synchronization, and downlink reception of the synchronization signal at the new location in the subsequent downlink frame.
  • Step 2 The terminal receives the downlink data sent by the base station according to the resource allocation information of the downlink multiple access area.
  • Step 1 The terminal receives an uplink control message sent by the base station in the corresponding downlink multiple access area in the downlink frame, and obtains location information and resource allocation information of the uplink multiple access area corresponding to the downlink multiple access area.
  • the downlink multiple access technology used in the downlink multiple access area and the uplink multiple access technology used in the corresponding uplink multiple access area are supported by the terminal.
  • Step 2 The terminal sends the uplink uplink or time slot in the uplink multiple access area according to the resource allocation information of the uplink multiple access area.
  • the base station supports downlink OFDMA multiple access technology and downlink MC-TD-SCDMA multiple access technology, uplink OFDMA multiple access technology, uplink SC-FDMA multiple access technology, and uplink MC-TD-SCDMA multiple access technology.
  • Terminal #1 supports downlink OFDMA multiple access technology and uplink OFDMA multiple access technology;
  • terminal #2 supports downlink OFDMA multiple access technology and uplink SC-FDMA multiple access technology;
  • terminal #3 supports downlink MC-TD-SCDMA (multi-carrier time division synchronization code) Multiple Access Multiple Access Technology and Uplink MC-TD-SCDMA Multiple Access Technology.
  • Terminal #1 communicates with the base station through downlink multiple access area #1 and uplink multiple access area #1, and terminal #2 passes downlink multiple access area #1 and uplink multiple access area.
  • #3 communicates with the base station, and terminal #3 communicates with the base station through the downlink multiple access area #2 and the uplink multiple access area #2.
  • the base station transmits a prefix #1 and a synchronization slot #1 at the beginning of the downlink multiple access area #1 and the downlink multiple access area #2, respectively, for supporting the terminal of the downlink OFDMA multiple access technology and the downlink MC-TD-SCDMA multiple access technology. Initial web search and synchronization.
  • the base station may send synchronization signals of different multiple access technologies in the following manner: the base station transmits a synchronization signal of each downlink multiple access technology in a synchronization channel of each downlink multiple access area; or a synchronization signal of a downlink multiple access technology of the base station in a downlink frame Corresponds to a downlink multiple access area.
  • the base station transmits the downlink control message DL-MAP of the downlink multiple access area and the uplink control message UL of the uplink multiple access area #1 and the uplink multiple access area #2 corresponding to the downlink multiple access area in the downlink multiple access area #1 -MAP.
  • the downlink control message includes resource allocation information of the downlink multiple access area.
  • the base station uses the downlink control message DL-MAP to allocate burst #1 and burst #2 in the downlink multiple access area #1 to the terminal #1 and the terminal #2 supporting the downlink OFDMA multiple access technology, respectively.
  • the base station uses the downlink control message DL-MAP to allocate bursts 3-6 to other terminals supporting the OFDMA multiple access technology.
  • the base station transmits the uplink information of the uplink multiple access area #1 and the uplink multiple access area #3, the resource allocation information, the allocation information of the initial access area, and the like in the uplink control of the downlink multiple access area #1. .
  • the base station allocation burst #1 is used for uplink transmission of the terminal #1; in the uplink multiple access area #3, the base station allocates the slot #2 for uplink transmission of the terminal #2.
  • the base station corresponds to the downlink multiple access zone in the uplink control message of the downlink multiple access zone #1.
  • the uplink multiple access area #1 and the uplink multiple access area #3 allocate an initial access area.
  • the initial access area in the uplink multiple access area #1 is used for the terminal supporting the uplink OFDMA multiple access technology, such as the initial network access by the terminal #1, and the random access channel in the time slot #1 of the uplink multiple access area #3. (random access channel) is used for initial network access of terminal #2.
  • the base station sends a downlink control message and an uplink control message in the downlink and uplink control slots of the downlink multiple access zone #2, respectively, including the downlink multiple access zone and the corresponding uplink multiple access zone. 2 control information.
  • the base station allocates the downlink slot #2 in the downlink multiple access area #2 to the terminal #3, allocates the uplink slot #1 in the uplink multiple access area #2 to the terminal #3, and includes the random in the uplink multiple access area #2 The allocation of the Random Access Slot.
  • the base station can transmit synchronization signals for all supported downlink multiple access techniques at the beginning of the downstream frame, or synchronization signals transmitted for the supported downlink multiple access techniques in the synchronization channel.
  • the invention can be applied to the field of wireless communication, and realizes the same carrier frequency to support different multiple access technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种支持多种多址接入技术的系统、 方法及其帧结构
技术领域
本发明涉及无线通信领域,特别涉及可在无线通信系统中同时支持多种 多址接入技术的系统、 方法及其帧结构。
背景技术
在无线通信系统中存在多种多址技术, 如码分多址(CDMA )、 频分多 址(FDMA ) 、 时分多址(TDMA )等。 随着无线通信技术的发展, 新的多 址技术不断的出现, 包括空分多址(SDMA )和正交频分多址(OFDMA ) 等。
这些多址技术各有特点, FDMA技术是把系统总的带宽分成若干个不重 叠的子频带, 分配每个子频带给每个用户; TDMA技术是把每个信道分成 若干个时隙, 分配每个时隙给每个用户; CDMA技术是给每个用户分配一 个伪随机码, 读码具有优良的自相关和互相关特性, 这样, 多个用户可以同 时在相同的带宽发送信号。 TDMA和 CDMA通常用 FDMA来将他们的频带 分成小的频带, 然后再进行时分或码分。 SDMA是利用空间的不相关性以获 得多址能力。
对于这些传统的多址接入技术而言,基站和终端由于是在单载频或者窄 带宽上进行信号发送的, 因此比较适合支持低速率的语音业务。对于高速数 据业务来说,单载波系统或者窄带系统都存在较严重的符号间干扰,从而对 接收机的均衡器的要求较高。 对于支持传统的多载波的多址接入技术而言, 要求在接收机端利用滤波器组进行信号分离。 这种多址技术实现比较简单, 缺点是频谱利用率低。
而可以支持高速数据业务的 OFDMA技术将信道带宽分为不同的子信 道, 多个用户可以同时在不同的带宽发送信号。 OFDMA系统通过高速数据 的串并转换, 可以有效地减少信号间干扰, 从而减少接收机的复杂度。 并且 OFDMA系统利用子载波之间的正交性, 允许子信道的频语相互重叠, 最大 限度地利用频谱资源。 但是, 与单载波相比, OFDMA系统存在较高的峰均 比值。
随着无线通信技术的发展, 特别是多址技术的发展, 无线终端的种类和 可支持的业务类型也获得极大的发展。 除了各种手持终端之外, 固定终端和 在笔记本电脑的应用也是重要的一部分。基本上, 手持终端由于体积和成本 的原因, 要求功耗较小, 因此可以采用传统的单载波的多址技术, 如 SC-FDMA (单载波频分复用)等, 支持低速率的语音业务。 而固定终端和 笔记本电脑由于可以使用电源供电或者其他稳定的供电设备,可以为用户提 供高速率的数据业务, 因此可以采用 OFDMA的多址技术。
在目前的无线通信系统中, 基站只能支持一种多址技术的终端。 如在
CDMA通信系统中, 基站只能支持上下行都采用 CDMA多址技术的终端。 在 IEEE (电气和电子工程师学会) 802.16e系统中, 基站只能支持上下行都 采用 OFDMA多址技术的终端。
但是, 随着无线通信技术的发展, 针对各种不同多址技术, 越来越需要 it样一种通信系统, 可以在同一载频支持不同多址技术。 发明内容
本发明要解决的技术问题是提供一种支持多种多址技术的系统、方法及 其帧结构, 可以在同一载频内支持多种多址技术。
为了解决上述技术问题,本发明提供了一种支持多种多址技术的系统中 终端的接入方法, 包括以下步骤:
)基站发送下行帧, 下行帧中包括至少一个下行多址区域, 每一下 行多址区域支持一种下行多址技术,每个下行多址区域与一个或多个上行多 址 域相关联,每一下行多址区域的上行控制消息中包含相关联上行多址区 域所支持的上行多址技术信息和对应的初始接入区域的分配信息,上行帧被 划分为至少两个支持不同上行多址技术的上行多址区域;
( b )终端扫描下行信道, 搜索自己支持的下行多址技术的同步信号, 与基站建立同步后,从对应的下行多址区域中获得上行控制消息,根据其中 信息判断有支持自己的上行多址技术,根据该上行控制消息中指示的初始接 入区域信息, 进行初始网络接入, 否则重新扫描信道。
进一步地,所述上行多址区域和下行多址区域是按照时分方式或频分方 式划分的,所迷每一下行多址区域的上行控制消息中还包含相关联上行多址 区域的位置和 /或大小信息; 所述下行多址区域和上行多址区域关联, 指有 终端同时支持该下行多址区域对应的下行多址技术和所关联上行多址区域 对应的上行多址技术。
进一步地,基站发送的所述下行帧包括一个下行多址区域, 该下行多址 区域与上行帧中的多个上行多址区域相关联; 或者
基站发送的所述下行帧包括至少两个下行多址区域,每个下行多址区域 与上行帧中的一个或多个上行多址区域相关联。
进一步地,所述上行多址区域对应的初始接入区域的分配信息包括以下 一种或任意组合: 初始接入区域的位置、 大小、 所支持的上行多址技术的类 型。
进一步地,采用不同上行多址技术的终端使用不同的初始接入区域进行 接入, 各初始接入区域位于对应的上行多址区域中; 或者
初始接入区域位于上行帧中的公共区域,采用多种上行多址技术的终端 可使用相同的初始接入区域进行接入。
进一步地, 所述下行帧包括多个下行多址区域时, 各个下行多址区域的 相对位置也是可变的;
当某个下行多址区域的位置需要改变时,基站在对应下行多址区域的下 行控制消息中提前发送位置变化的信息,包括下行多址区域在帧中的新的位 置以及所发生的帧;
终端与基站正常通信,当终端收到下行多址区域的下行控制消息中指示 的在后面某一帧中该下行多址区域的位置变化的信息后,根据指示在新的下 行多址区域所在的帧进行同步信号的搜索, 完成同步后继续正常通信。
进一步地,所述基站在每个下行多址区域的同步信道发送每个下行多址 技术的同步信号; 或者 所述基站在下行帧的公共的同步区域上向所有下行多址技术的终端发 送同步信号, 每个下行多址技术的同步信号对应一个下行多址区域。
进一步地, 所述下行多址技术包括 OFDMA多址技术、 SC-FDMA多址 技术、 MC-TD-SCDMA 多址技术中的一种或多种; 所述上行多址技术包括 OFDMA多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的至 少两种。
本发明还提供了一种支持多种多址技术的系统实现下行传输的方法,包 括以下步骤:
( a )基站发送下行帧, 下行帧中包括至少一个下行多址区域, 每一下 行多址区域支持一种下行多址技术发送,每一下行多址区域与一个或多个上 行多址区域相关联,每一下行多址区域的上行控制消息中包含相关联上行多 址区域的信息,每一下行多址区域的下行控制消息中包含该区域的资源分配 信息, 上行帧被划分为至少两个支持不同上行多址技术的上行多址区域;
( b )终端完成初始接入后, 从所支持下行多址技术对应的下行多址区 域获得下行控制消息, 根据其中的资源分配信息接收基站下行发送的数据。
进一步地,基站发送的所述下行帧包括一个下行多址区域, 该下行多址 区域与上行帧中的多个上行多址区域相关联;或者基站发送的所述下行帧包 括至少两个下行多址区域,每个下行多址区域与上行帧中的一个或多个上行 多址区域相关联,所述上行多址区域和下行多址区域按时分或频分方式划分 ,的;
所述下行多址区域和上行多址区域关联,指有终端同时支持该下行多址 区域对应的下行多址技术和所关联上行多址区域对应的上行多址技术。
进一步地,每个下行多址区域的下行控制消息包含该区域的资源分配信 息外, 还包含下行多址区域的位置信息和 /或下行发射参数, 所述资源分配 信息又包括以下参数中的一种或任意组合:下行资源块的位置、大小、类型、 目标地址和发射参数,该目标地址用于指示可以在该下行资源块接收数据的 终端。
进一步地, 所述下行帧包括多个下行多址区域时, 各个下行多址区域的 相对位置可变; 当某个下行多址区域的位置需要改变时,基站在对应下行多 址区域的下行控制消息中提前发送位置变化的信息,包括下行多址区域在帧 中的新的位置以及所发生的帧;终端收到下行多址区域的下行控制消息中指 示的后面某 ~~帧中该下行多址区域的位置变化的信息后,才艮据指示在新的下 行多址区域所在的帧进行同步信号的搜索, 完成同步后继续正常通信。
进一步地, 所述下行多址技术包括 OFDMA多址技术、 SC-FDMA多址 技术、 MC-TD-SCDMA 多址技术中的一种或多种; 所述上行多址技术包括 OFDMA多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的至 少两种。 、
本发明还提供了一种支持多种多址技术的系统实现上行传输的方法,该 过程包括以下步骤:
( a )基站发送下行帧, 下行帧中包括至少一个下行多址区域, 每一下 行多址区域支持一种下行多址技术发送,每个下行多址区域与一个或多个上 行多址区域相关联,每一下行多址区域的上行控制消息中包含相关联上行多 址区域的资源分配信息,上行帧被划分为至少两个支持不同上行多址技术的 上行多址区域;
( b )终端完成初始接入后, 从所支持下行多址技术对应的下行多址区 域获得上行控制消息,根据其中的资源分配信息在可用的资源块使用自己的 上行多址技术进行上行发送。
进一步地,基站发送的所述下行帧包括一个下行多址区域, 该下行多址 区域与上行帧中的多个上行多址区域相关联; 或者,基站发送的所述下行帧 包括至少两个下行多址区域,每个下行多址区域与上行帧中的一个或多个上 行多址区域相关联; 所述下行多址区域和上行多址区域关联,指有终端同时支持该下行多址 区域对应的下行多址技术和所关联上行多址区域对应的上行多址技术。
进一步地,所述上行控制消息中除相关联上行多址区域的资源分配信息 外,还包含相关联上行多址区域的以下信息中的一种或任意组合: 支持的上 行多址技术信息、位置和大小, 其中资源分配信息包 以下参数中的一种或 任意组合: 上行资源块的位置、 大小、 类型、 目标地址和发射参数, 该目标 地址用于指示可以在该上行资源块进行上行发送的终端。
进一步地, 所述上行帧中的多个上行多址区域的相对位置是可变的; 当某个上行多址区域的位置需要改变时,基站在对应下行多址区域的上 行控制消息中发送上行多址区域位置变^ (匕的信息,指示当前帧中上行多址区 域的新位置;
当终端收到下行多址区域的上行控制消息中指示的当前帧中上行多址 区域的新位置信息后, 在新的上行多址区域进行上行信号的发送。
进一步地, 所述下行多址技术包括 OFDMA多址技术、 SC-FDMA多址 技术、 MC-TD-SCDMA 多址技术中的一种或多种; 所述上行多址技术包括 OFDMA多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的至 少两种。
本发明还提供了一种支持多种多址技术的系统帧结构,包括下行帧和上 行帧, 其特征在于, 所述下行帧包括至少一个下行多址区域, 每一下行多址 区域支持一种下行多址技术,所述上行帧包括至少两个支持不同上行多址技 术的上行多址区域, 每个下行多址区域与一个或多个上行多址区域相关联。
进一 地, 所述下行帧包括一个下行多址区域, 该下行多址区域与上行 帧中的多个上行多址区域相关联; 或者, 所述下行帧包括至少两个下行多址 区域, 每个下行多址区域与上行帧中的一个或多个上行多址区域相关联; 所述下行多址区域和上行多址区域关联,指有终端同时支持该下行多址 下行多址 E域的上行控制消息中包含相关联上行多址区域的信息。
进一步地, 所述上行帧中还包括初始接入区域, 初始接入区域位于对应 的一个上行多址区域中, 或者, 初始接入区域位于上行帧中的公共区域。
进一步地,所述上行控制消息中的相关联上行多址区域的信息包含以下 信息中一种或任意组合: 对应的初始接入区域的分配信息、 支持的上行多址 技术信息、 相关联上行多址区域位置、 大小、 发射参数和资源分配信息, 其 中资源分配信息包括以下参数中的一种或任意组合: 上行资源块的位置、 大 小、 类型、 目标地址和发射参数, 该目标地址用于指示可以在该上行资源块 进行上行发送的终端。
进一步地, 所述下行多址技术包括 OFDMA多址技术、 SC-FDMA多址 技术、 MC-TD-SCDMA 多址技术中的一种或多种; 所述上行多址技术包括 OFDMA多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的至 少两种。
进一步地,每个下行多址区域的同步信道中包含对应下行多址技术的同 步信号; 或者,在下行帧的公共的同步信道区域上包含所有下行多址技术的 同步信号, 每个下行多址技术的同步信号对应一个下行多址区域。
本发明还提供了一种支持多种多址技术的系统, 包括基站和终端, 所述 基站用于发送下行帧, 下行帧中包括至少一个下行多址区域,每一下行多址 区域支持一种下行多址技术发送,每个下行多址区域与一个或多个上行多址 区域相关联,每一下行多址区域的上行控制消息中包含相关联上行多址区域 所支持的上行多址技术信息、对应的初始接入区域的分配信息、该下行多址 区域关联的上行多址区域的资源分配信息,每一下行多址区域的下行控制消 息中包含该下行多址区域的资源分配信息,上行帧被划分为至少两个支持不 同上行多址技术的上行多址区域;
所述终端用于扫描下行信道, 搜索自己支持的下行多址技术的同步信 号, 与基站建立同步后, 从对应的下行多址区域中获得上行控制消息, 如根 据其中信息判断出系统支持自己的上行多址技术,根据该上行控制消息中指 示的初始接入区域信息, 进行初始网络接入, 然后从所支持下行多址技术对 应的下行多址区域获得下行控制消息和上行控制消息,根据其中的资源分配 信息接收基站下行发送的数据,以及在可用的资源块使用自己的上行多址技 术进行上行发送0
进一步地, 基站发送的所述下行帧包括一个下行多址区域, 该下行多址 区域与上行帧中的多个上行多址区域相关联;或者基站发送的所述下行帧包 括至少两个下行多址区域,每个下行多址区域与上行帧中的一个或多个上行 多址区域相关联,所述上行多址区域和下行多址区域按时分或频分方式划分 的; 所述下行多址区域和上行多址区域关联,指有终端同时支持该下行多址 区域对应的下行多址技术和所关联上行多址区域对应的上行多址技术。
进一步地, 基站需要改变某个下行多址区域的位置时, 在对应下行多址 区域的下行控制消息中提前发送位置变化的信息,包括下行多址区域在帧中 的新的位置以及所发生的帧;
终端与基站正常通信,在收到下行多址区域的下行控制消息中指示的在 后面某一帧中该下行多址区域的位置变化的信息后,根据指示在新的下行多 址区域所在的帧进行同步信号的搜索, 完成同步后继续正常通信。
进一步地,所述基站在每个下行多址区域的同步信道发送每个下行多址 技术的同步信号; 或者,在下行帧的公共的同步区域上向所有下行多址技术 的终端发送同步信号, 每个下行多址技术的同步信号对应一个下行多址区 域。
进一步地,所述基站在每一下行多址区域的上行控制消息中包含的初始 接入区域的分配信息中, 各上行多址区域分别有一个初始接入区域, 或者, 初始接入区域位于上行帧中的公共区域,采用多种上行多址技术的终端可使 用相同的初始接入区域进行接入。
进一步地,所述基站发送的下行帧中的下行多址区域所支持的下行多址 技术包括 OFDMA多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技 术中的一种或多种;所接收的上行帧中的上行多址区域所支持的上行多址技 术包括 OFDMA多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术 中.的至少两种。
采用本发明所述方法,可以使得同一通信系统在同一频段内支持多种多 址技术。 附图概述
图 1为实现第一实施例的系统的帧结构示意图;
图 2为采用第一实施例系统的终端的初始网络接入流程图; 图 3为釆用第一实施例系统的终端的下行接收流程图; 图 4为采用第一实施例系统的终端的上行发送流程图;
图 5为实现第二实施例系统的帧结构示意图;
图 6为采用第二实施例系统的终端的初始网络接入流程图;
图 7 为采用第二实施例系统的终端在下行多址区域位置变化的同步过 程流程图;
图 8为实现第三实施例系统的帧结构的示意图。
本发明的较佳实施方式
本发明支持多种多址技术的系统包括基站和终端, 其中:
基站用于向一个或多个支持不同的多址技术的终端发送控制信息和数 据, 以及接收支持不同的多址技术的终端发送的数据。 具体的: 该基站发送 下行帧, 下行帧中包括至少一个下行多址区域,每一下行多址区域支持一种 下行多址技术发送,终端发送的上行帧中包括至少两个支持不同上行多址技 术的上行多址区域, 每个下行多址区域与一个或多个上行多址区域相关联, 每一下行多址区域的上行控制消息中包含相关联上行多址区域对应的初始 接入区域的分配信息。
终端用于接收基站发送的控制消息,根据该控制消息接收基站发送的数 据, 以及如果该基站支持自己的多址技术, 则根据该控制消息向所述基站发 送数据。 具体的: 终端扫描各自的下行信道, 搜索自己支持的下行多址技术 的同步信号, 与基站建立同步后,从对应的下行多址区域中获得上行控制消 息, 如基站支持自己的上行多址技术,根据该上行控制消息中指示的初始接 入区域信息, 使用各自支持的初始接入技术, 进行初始网络接入。
下面结合附图和具体实施方式对本发明作进一步详细描述,但不作为对 本发明的限定。
第一实施例 在同一载频内, 基站支持一种下行多址技术和一种以上的上行多址技 术。 在本实施例中, 基站下行支持 OFDMA 多址技术, 上行支持 OFDMA 多址技术和 SC-FDMA多址技术。 例如, 终端 #1下行支持 OFDMA多址技 术, 上行支持 OFDMA多址技术; 终端 #2下行支持 OFDMA多址技术, 上 行支持 SC-FDMA多址技术; 其他终端下行支持 OFDMA多址技未, 上行支 持 OFDMA多址技术或者 SC-FDMA多址技术。
实现本实施例的帧结构如图 1所示。该帧结构包括下行帧和上行帧。 下 行帧只包含一个下行多址区域(DL Zone ) , 该区域只支持一种下行多址技 术, 即下行 OFDMA技术。上行帧按照时分或频分的方式分为两个上行多址 区域, 分别支持不同的上行多址技术。 本实施例中, 上行多址区域 #1 ( UL Zone#l )和上行多址区域 #2 ( UL Zone#2 )分别支持上行 OFDMA多址技术 和上行 SC-FDMA多址技术。 该下行多址区域 #1与两个上行多址区域 #1和 #2相关联。
如图 1所示, 基站在下行帧开始发送前缀(preamble ) , 在下行多址区 域发送上行控制消息和下行控制消息给终端。这里,下行控制消息包括 FCH ( Frame Control Head, 帧控制头)和 DL-MAP (下行链路映射) 消息, 还 可以包括 DCD (下行信道描述) 消息, 上行控制消息包括 UL-MAP消息, 还可以包括 UCD (上行信道描述) 消息, 或者其他广播控制消息 (图中未 示出 DCD和 UCD ) 。
基站在下行控制消息中包括: 下行发射的相关参数、 下行多址区域的资 源分配信息,还可包括下行多址区域在下行帧中的位置信息或更新信息。 其 中, 下行发射的相关参数包括基站的标识, 基站的基本能力参数, 下行发射 所使用的带宽、 点数、 帧长、 定时器的定义等内容(上行发射的相关参数也 包括上述参数); 下行多址区域的资源分配信息包括以下参数的一种或任意 组合: 下行所有突发的位置、 大小、 类型、 目标地址(用于指示可以在该下 行资源块接收数据的终端, 如目标终端的标识)、 发射参数(如发送所采用 的调制编码方法) 。 如图 1所示, 下行控制消息 DL-MAP中包含了突发 #1 至突发 #9 的所有分配信息, 突发 #1 是发送给终端 #1 ( MS#1 ) 的, 突发 #2 是发送给终端 #2 ( MS#2 ) 的, 其他的突发也是被指示给该系统的终端, 包 括终端 #1和终端 #2, 所述突发还可以有更多。
基站在上行控制消息中包含基站所支持的所有上行多址技术的信息(如 上行多址技术的类型)和上行发射的相关参数(如上行发射所使用的带宽、 点数等参数), 还包括每个上行多址区域的位置信息和资源分配信息。 由于 在帧与帧之间,每个上行多址区域的相对位置和大小是可变的, 因此该位置 信息更新后需通知给终端。所述上行多址区域位置信息包括每个上行多址区 域(如图 1中的 UL Zone#l和 UL Zone#2 )在上行帧的位置和 /或上行多址 区域的大小等。所述上行多址区域资源分配信息包括每个上行多址区域中突 发(Burst )或时隙 (Slot ) 的分配信息, 包括以下参数的一种或任意组合: 每个突发或时隙的位置、该上行突发或时隙的目标地址(指示可以在该突发
/时隙进行上行发送的终端) 、 突发或时隙的大小、 类型 (指示该突发或时 隙承载什么数据)、 发送采用的调制编码方法等。 如图 1所示, 在上行控制 消息 UL-MAP中指示了在上行多址区域 #1中上行突发 #1的位置和目标地址 等参数, 并分配给终端 #1用于上行发送; 以及在上行多址区域 #2中上行时 隙 #1的位置信息和目标地址等参数, 并分配给终端 #2用于上行发送。
基站在上行控制消息中还携带初始接入区域的分配信息,所述^始接入 区域至少有一个,初始接入区域的分配信息中包含各上行多址区域中的上行 初: ½接入区域 (: it口 Initial ranging region和 random access slot ) 的分酉己信息', 该分配信息包括以下参数的一种或任意组合:该上行初始接入区域在上行帧 或每个上行多址区域中的位置、 大小、 所支持的上行多址技术的类型标识、 发送可以采用的调制编码方法等。在上行控制消息中为每种上行多址技术的 终端在上行多址区域中分别分配一个初始接入区域, 如图 1所示, 上行多址 区域 #1和上行多址区域 #2的初始接入区域 Initial ranging region和 random access slot分别用于终端 #1和终端 #2使用不同的初始网络接入技术进行初始 网络接入。 但是, 终端的初始接入区域也可以是相同的, 当终端 #1 和终端 #2使用相同的初始网络接入方式进行初始网络接入时, 基站可以在上行控 制消息中为所有支持同一上行多址技术的终端在上行帧的公共区域分配一 个初始接入区域。 终端的初始网络接入过程如图 2所示, 包括以下步骤:
步骤 210, 终端扫描下行信道, 搜索自己支持的下行多址技术的同步信 号;
在本实施例中, 系统下行采用 OFDMA多址技术, 终端 #1和终端 #2搜 索图 1中所示的下行帧前缀。 当基站支持 n种不同的下行接入方式时, 下行 帧中具有 n个同步信号, 用于终端的下行网络接入。如果系统的下行采用的 是其他的多址技术, 则终端搜索相对应的同步信号,该同步信号除了可以是 前缀信号外, 还可以是同步信道信号, 或者是其他的同步信号。
步骤 220, 终端与基站建立同步;
步骤 230, 终端与基站同步之后, 接收基站发送的下行帧, 从中获得上 行控制消息, 根据上行控制消息中获得的基站支持的上行多址技术的标识, 判断基站是否支持自己的上行多址技术, 如果是, 执行步骤 240, 否则结束 或返回步骤 210;
在本实施例中,对于终端 #1需判断基站是否支持上行 OFDMA,对于终 端 #2需判断基站是否支持上行 SC-FDMA。终端根据获得基站支持的上行多 址技术的标识是否与自己支持的上行多址技术标识相匹配,判断该基站是否 支持自己的上行多址技术, 如果终端判断基站不支持自己的上行多址技术, 则重新在下行频段内进行扫描, 寻找新的可用的下行信道。
步骤 240, 终端从基站的下行帧中获得上行控制消息, 从上行控制消息 中获得可用的上行初始接入区域的分配信息, 以及上行发射参数信息;
步骤 250, 终端在基站指示的上行初始接入区域内发送网络接入消息, 进行初始网络接入。
终端 #1和终端 #2根据接收到基站的上行控制消息中的初始接入区域的 信息, 分别在初始接入区域 #1和初始接入区域 #2使用不同的初始技术, 进 行初始网络接入。
终端接入网络后,接收基站下行数据的过程如图 3所示,包括以下步骤: 步骤 310, 终端接收基站发送的下行帧, 从中获得下行控制消息, 并从 下行控制消息中获得下行多址区域的资源分配信息;
终端 #1和终端 #2接收基站的下行控制消息, 这里为 DL-MAP消息, 并 从其中获得下行多址区域的资源分配信息。
步骤 320, 终端根据获得的资源分配信息, 接收基站下行发送的数据。 终端 #1和终端 #2根据下行多址区域的资源分配信息获得基站给自己发 送的数据的位置和相关信息(如调制编码方式等), 如图 1所示, 基站下行 控制消息 DL-MAP中指示在下行突发 #1中发送数据给终端 #1, 基站在下行 突发 #2中发送数据给终端 #2, 则终端 #1和终端 #2根据突发的位置信息以及 其他参数分别接收突发 #1和突发 #2中的数据。
终端与基站正常通信时,如果某个下行多址区域在下行帧中的位置需要 改变的时候,基站应在该下行多址区域的下行控制消息中提前发送位置变化 的信息, 包括下行多址区域在下行帧中的新的位置以及发生变化的帧。 终端 从下行控制消息中收到新的下行区域的位置信息, 则在新帧进行同步, 然后 继续与基站正常通信。
终端接入网络后, 上行数据发送过程如图 4所示, 包括以下步骤: 步骤 410, 终端从基站发送的下行帧中的上行控制消息中获得各上行多 址区域的资源分配信息;
该上行多址区域所使用的上行多址技术是该终端所支持的。
步骤 420, 终端根据上行多址区域的资源分配信息, 在上行多址区域的 可用的上行突发中使用自己的上行多址技术发送数据。
终端 #1和终端 #2根据各自上行多址区域的资源分配信息, 获得分配给 自己的上行突发的位置和相关信息。 如图 1 所示, 基站在上行控制消息 UL-MAP中分配上行多址区域 #1中的突发 #1给终端 #1, 基站在上行控制消 息 UL-MAP中分配上行多址区域 #2中的上行时隙 #1给终端 #2。终端 #1和终 端 #2根据该信息的指示分别在上行突发 #1和上行时隙 #1使用各自支持的上 行多址技术进行上行发送。 第二实施例
在同一载频内,基站支持两种下行多址技术和两种上行多址技术, 在本 实施例中, 具体的, 基站支持下行 OFDMA多址技术和下行 SC-FDMA多址 技术, 上行 OFDMA多址技术和上行 SC-FDMA多址技术。 系统中还包括终 端 #1和终端 #2, 终端 #1支持下行 OFDMA多址技术和上行 OFDMA多址技 术; 终端 #2支持下行 SC-FDMA多址技术和上行 SC-FDMA多址技术。
实现本实施例的帧结构如图 5所示, 该帧结构包括下行帧和上行帧。 下 上行多址区域,每个下行多址区域支持一种下行多址技术,每个上行多址区 域支持一种上行多址技术。每个下行多址区域在下行帧中的相对位置是可变 的,每个上行多址区域在上行帧中的相对位置也是可变的。 下行多址区域 #1 和下行多址区域 #2分别支持 OFDMA多址技术和 SC-FDMA多址技术, 上 行多址区域 #1和上行多址区域 #2分别支持 OFDMA多址技术和 SC-FDMA 多址技术。 两个下行多址区域与两个上行多址区域相关联, 其中, 下行多址 区域 #1与上行多址区域 #1关联, 下行多址区域 #2与上行多址区域 #2关联。 下行多址区域关联的上行多址区域,即有终端同时支持该下行多址区域对应 的下行多址技术和所关联上行多址区域对应的上行多址技术。
基站在下行多址区域 #1和下行多址区域 #2的开始分别发送前缀 #1和同 步时隙 #1 ( Sync Slot 1 ) , 分别用于支持下行 OFDMA 多址技术和下行 SC-FDMA多址技术的终端的初始网络搜索和同步。
基站在每个下行多址区域中分别发送各自下行多址区域的控制消息包 括下行控制消息和上行控制消息。该下行控制消息和上行控制消息分别用于 该下行多址区域以及与之相对应的上行多址区域的控制。
每个下行多址区域中发送的上行控制消息中包含上行多址技术的信息、 上行发射参数、位置信息、资源分配信息、初始接入区域的分配信息。其中, 所述上行多址区域的位置信息包括每个上行多址区域在上行帧的位置和 /或 大小;所述每个上行多址区域的资源分配信息可以包括以下参数的一种或任 意组合: 每个多址区域中上行突发或时隙的位置信息、 大小、 类型、 该上衧 突发或时隙的目标地址以及发送采用的调制编码方式等,所述上行突发或时 隙的目标地址用于指示可以在该突发或时隙进行上行发送的终端。在上行控 制消息中还包含初始接入区域的分配信息,用于支持该上行多址技术的终端 进行初始网络接入。
每个下行多址区域中发送的下行控制消息中包含该下行多址区域的发 射参数、该下行多址区域的资源分配信息。 当某个下行多址区域在下行帧中 的位置需要改变的时候,基站应在该下行多址区域的下行控制消息中提前发 送位置变化的信息,包括下行多址区域在下行帧中的新的位置以及发生变化 的帧。
如图 5所示, 在支持 OFDMA多址技术的下行多址区域 #1 中, 由下行 控制消息、 DL-MAP和上行控制消息 UL-MAP来分别发送下行多址区域 #1和 与之相对应的上行多址区域 #1 的位置信息和资源分配信息。 下行控制消息 DL-MAP中的下行多址区域的资源分配信息包括以下一种或任意组合:下行 多址区域中所有突发的位置、 突发的目标终端、 突发的大小、发送采用的调 制编码方式等。 如图 5所示, 下行控制消息指示突发 #1分配给终端 #1。 上 行控制消息 UL-MAP 中的上行多址区域的位置信息指示了该上行多址区域 在上行帧中的位置和 /或大小; 上行多址区域的资源夯配信息包括以下一种 或任意组合: 与下行多址区域相对应的上行多址区域中所有突发的位置、分 配给哪个终端、 突发的大小、 采用的调制编码方式等。 如图 5所示, 上行控 制消息支持上行突发 #1用于终端 #1进行上行发送。 上行控制消息 UL-MAP 中还可以包括初始接入区域( Initial Ranging region和 Random Access slot ) 的分配信息。 并且, 当上行多址区域 #1 的位置和 /或大小需要发生变化的时 '候, 基站在下行多址区域 #1的上行控制消息中发送位置变化信息。
如图 5所示,在支持 SC-FDMA多址技术的下行多址区域 #2中, 由下行 控制和上行控制时隙来分别发送下行多址区域 #2和与之相对应的上行多址 区域 #2的位置信息和资源分配信息。 在下行多址区域 #2的下行控制时隙分 配下行数据时隙 #2用于终端 #2, 终端 #2在该时隙使用上行 SC-FDMA技术 进行数据发送; 在下行多址区域 #2 的上行控制时隙中分配初始接入信道以 及数据信道的位置。 终端进行初始网络接入的流程如图 6所示, 包括以下步骤: 步骤 610, 终端搜索自己支持的下行多址技术的同步信号;
基站可采用以下方式发送不同多址技术的同步信号:所述基站在每个下 行多址区域的同步信道发送每个下行多址技术的同步信号;或者所述基站在 下行帧的公共的同步区域上向其支持的所有下行多址技术的终端发送同步 信号, 每个下行多址技术的同步信号对应一个下行多址区域。
终端 1和终端 2各自扫描下行信道, 搜索自己支持的同步信号。 如图 5 所示, 支持下行 OFDMA 多址技术的终端 1 搜索下行前缀, 支持下行 SC-FDMA多址技术的终端 1搜索下行同步信道。
步骤 620, 终端与基站建立同步;
步骤 630, 终端与基站同步之后, 接收基站发送的下行帧, 判断基站是 否支持自己的上行多址技术, 如果是, 执行步骤 640, 否则返回步骤 610; 步骤 640, 终端从上行控制消息中获得支持自己的下行多址区域的初始 接入区域的分配信息和上行发射参数;
当基站支持两种上行多址接入技术时,终端与基站同步后需要先行判断 该基站是否支持自己的上行多址技术; 当基站只支持一种上行多址接入技术 时, 终端接入网络后, 基站可默认该终端采用的多址技术与本基站相同。
步骤 650, 终端根据初始接入区域的分配信息在所述上行初始网络接入 区域中发送网络接入消息, 进行初始网络接入。
终端 #1和终端 #2分别在上行多址区域 #1和上行多址区域 #2使用各自的 初始技术, 进行初始网络接入。
以上终端处理的大流程与图 2相同, 但终端 #1和终端 #2由于支持的上 行和下行多址技术不同, 所以具体的处理有所不同。
当系统中终端在与基站正常通信过程中所支持的下行多址区 ¾的位置 发生变化时, 终端需要与基站重新建立同步, 如图 7所示, 包括以下步骤: 步骤 710, 终端与基站正常通信; 步骤 720, 终端接收到基站的下行控制消息, 消息中指示在后续某帧中 下行多址区域的位置变化信息,包括下行多址区域在下行帧中的新的位置以 及发生变化的帧;
步骤 730, 终端根据指示信息, 在变化发生的帧搜索同步信号, 获得同 步;
步骤 740, 终端与基站进入正常通信状态。
终端接入网络后, 接收下行数据的过程如下:
步骤一, 终端接收基站发送的下行帧,从相应的下行多址区域中获得下 行控制消息, 得到该下行多址区域的资源分配信息;
该下行多址区域所使用的下行多址技术是该终端所支持的。如果终端接 收的下行控制消息中指示在后面的某一帧中该下行多址区域的位置变化的 信息, 则终端在该后续下行帧中在新的位置进行同步信号的搜索、 同步和下 行接收。
步骤二,终端根据下行多址区域的资源分配信息接收基站下行发送的数 据。
终端接入网络后, 上行数据发送的过程如下:
步骤一,终端接收基站在下行帧中相应的下行多址区域发送的上行控制 消息,获得与该下行多址区域相对应的上行多址区域的位置信息和资源分配 息 ^
该下行多址区域所使用的下行多址技术,以及相对应的上行多址区域所 使用的上行多址技术是该终端所支持的。
步骤二,终端根据上行多址区域的资源分配信息在所述的上行多址区域 的可用的上行突发或时隙中进行发送。
第三实施例 在本实施例中,基站支持下行 OFDMA多址技术和下行 MC-TD-SCDMA 多址技术, 上行 OFDMA 多址技术, 上行 SC-FDMA 多址技术和上行 MC-TD-SCDMA 多址技术。 终端 #1 支持下行 OFDMA 多址技术和上行 OFDMA多址技术;终端 #2支持下行 OFDMA多址技术和上行 SC-FDMA多 址技术; 终端 #3支持下行 MC-TD-SCDMA (多载波时分同步码分多址) 多 址技术和上行 MC-TD-SCDMA多址技术。
实现本实施例的帧结构如图 8所示, 终端 #1通过下行多址区域 #1和上 行多址区域 #1与基站进行通信, 终端 #2通过下行多址区域 #1和上行多址区 域 #3与基站进行通信,终端 #3通过下行多址区域 #2和上行多址区域 #2与基 站进行通信。
基站在下行多址区域 #1和下行多址区域 #2的开始分别发送前缀 #1和同 步时隙 #1, 分别用于支持下行 OFDMA多址技术和下行 MC-TD-SCDMA多 址技术的终端的初始网络搜索和同步。
基站可采用以下方式发送不同多址扶术的同步信号:基站在每个下行多 址区域的同步信道发送每个下行多址技术的同步信号;或者基站在下行帧的 下行多址技术的同步信号对应一个下行多址区域。
基站在下行多址区域 #1 中发送该下行多址区域的下行控制消息 DL-MAP 以及与该下行多址区域相对应的上行多址区域 #1 和上行多址区域 #2的上行控制消息 UL-MAP。 下行控制消息包括有该下行多址区域的资源 分配信息。 如图所示, 基站使用下行控制消息 DL-MAP在下行多址区域 #1 中分别分配突发 #1和突发 #2给支持下行 OFDMA多址技术的终端 #1和终端 #2。 并且, 基站使用下行控制消息 DL-MAP分配突发 3~6给其他的支持下 行 OFDMA多址技术的终端。
如图 8所示, 基站在下行多址区域 #1 的上行控制,消息中发送上行多址 区域 #1和上行多址区域 #3的位置信息、 资源分配信息、 初始接入区域的分 配信息等。在上行多址区域 #1中,基站分配突发 #1用于终端 #1的上行发送; 在上行多址区域 #3中, 基站分配时隙 #2用于终端 #2的上行发送。 如图 8所 示, 基站在下行多址区域 #1 的上行控制消息中为与该下行多址区域相对应 的上行多址区域 #1和上行多址区域 #3分配初始接入区域。 上行多址区域 #1 中的初始接入区域用于支持上行 OFDMA多址技术的终端, 如终端 #1进行 初始网络接入,上行多址区域 #3的时隙 #1中的随机接入信道( random access channel )用于终端 #2的初始网络接入。
如图 8所示, 基站在下行多址区域 #2的下行和上行控制时隙中发送下 行控制消息和上行控制消息,分别包括对该下行多址区域和与之相对应的上 行多址区域 #2的控制信息。 基站分配下行多址区域 #2中的下行时隙 #2给终 端 #3, 分配上行多址区域 #2中的上行时隙 #1给终端 #3, 并且在上行多址区 域 #2中包括随机接入时隙 ( Random access Slot ) 的分配。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明,对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改迸等, 均应包含在本发明的保护 范围之内。
例如,基站可以在下行帧的开始发送所有支持的下行多址技术的同步信 号,, 或者在同步信道中为所支持的下行多址技术发送的同步信号。
工业实用性
本发明可应用于无线通信领域, 实现同一载频支持不同的多址技术。

Claims

权 利 要 求 书
1、 一种支持多种多址技术的系统中终端的接入方法, 包括以下步驟:
( a )基站发送下行帧, 下行帧中包括至少一个下行多址区域, 每一下 行多址区域支持一种下行多址技术,每个下行多址区域与一个或多个上行多 址区域相关联,每一下行多址区域的上行控制消息中包含相关联上行多址区 域所支持的上行多址技术信息和对应的初始接入区域的分配信息,上行帧被 划分为至少两个支持不同上行多址技术的上行多址区域;
( b )终端扫描下行信道, 搜索自己支持的下行多址技术的同步信号, 与基站建立同步后,从对应的下行多址区域中获得上行控制消息,根据其中 信息判断有支持自己的上行多址技术,根据该上行控制消息中指示的初始接 入区域信息, 进行初始网络接入, 否则重新扫描信道。
2、 如权利要求 1所述的接入方法, 其特征在于:
所述上行多址区域和下行多址区域是按照时分方式或频分方式划分的, 所述每一下行多址区域的上行控制消息中还包含相关联上行多址区域的位 置和 /或大小信息; 所述下行多址区域和上行多址区域关联, 指有终端同时 支持该下行多址区域对应的下行多址技术和所关联上行多址区域对应的上 行多址技术。
3、 如权利要求 1或 2所述的接入方法, 其特征在于:
基站发送的所述下行帧包括一个下行多址区域,该下行多址区域与上行 帧中的多个上行多址区域相关联; 或者
基站发送的所述下行帧包括至少两个下行多址区域,每个下行多址区域 与上行帧中的一个或多个上行多址区域相关联。
4、 如权利要求 1或 2所述的方法, 其特征在于:
所述上行多址区域对应的初始接入区域的分配信息包括以下一种或任 意组合: 初始接入区域的位置、 大小、 所支持的上^ ί亍多址技术的类型。
5、 如权利要求 4所述的方法, 其特征在于:
釆用不同上行多址技术的终端使用不同的初始接入区域进行接入,各初 始接入区域位于对应的上行多址区域中; 或者
初始接入区域位于上行帧中的公共区域,采用多种上行多址技术的终端 可使用相同的初始接入区域进行接入。
6、 如权利要求 1或 2所述的接入方法, 其特征在于:
所述下行帧包括多个下行多址区域时,各个下行多址区域的相对位置也 是可变的;
当某个下行多址区域的位置需要改变时,基站在对应下行多址区域的下 行控制消息中提前发送位置变化的信息,包括下行多址区域在帧中的新的位 置以及所求生的帧;
终端与基站正常通信,当终端收到下行多址区域的下行控制消息中指示 的在后面某一帧中该下行多址区域的位置变化的信息后,根据指示在新的下 行多址区域所在的帧进行同步信号的搜索, 完成同步后继续正常通信。
7、 如权利要求 1或 2所述的接入方法, 其特征在于:
所述基站在每个下行多址区域的同步信道发送每个下行多址技术的同 步信号; 或者
所述基站在下行帧的公共的同步区域上向所有下行多址技术的终端发 送同步信号, 每个下行多址技术的同步信号对应一个下行多址区域。
8、 如权利要求 1或 2所述的方法, 其特征在于:
所述下行多址技术包括 OFDMA 多址技术、 SC-FDMA 多址技术、 MC-TD-SCDMA多址技术中的一种或多种;所述上行多址技术包括 OFDMA 多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的至少两种。
9、 一种支持多种多址技术的系统实现下行传输的方法,包括以下步骤:
( a )基站发送下行帧, 下行帧中包括至少一个下行多址区域, 每一下 行多址区域支持一种下行多址技术发送,每一下行多址区域与一个或多个上 行多址区域相关联,每一下行多址区域的上行控制消息中包含相关联上行多 址区域的信息,每一下行多址区域的下行控制消息中包含该区域的资源分配 信息, ( b )终端完成初始接入后, 从所支持下行多址技术对应的下行多址区 域获得下行控制消息, 根据其中的资源分配信息接收基站下行发送的数据。
10、 如权利要求 9所述的方法, 其特征在于:
基站发送的所述下行帧包括一个下行多址区域,该下行多址区域与上行 帧中的多个上行多址区域相关联;或者基站发送的所述下行帧包括至少两个 下行多址区域,每个下行多址区域与上行帧中的一个或多个上行多址区域相
所述下行多址区域和上行多址区域关联,指有终端同时支持该下行多址 区域对应的下行多址技术和所关联上行多址区域对应的上行多址技术。
11、 如权利要求 9或 10所述的方法, 其特征在于:
每个下行多址区域的下行控制消息包含该区域的资源分配信息外,还包 含下行多址区域的位置信息和 /或下行发射参数, 所述资源分配信息又包括 以下参数中的一种或任意组合: 下行资源块的位置、 大小、 类型、 目标地址 和发射参数, 该目标地址用于指示可以在该下行资源块接收数据的终端。
12、 如权利要求 9或 10所述的方法, 其特征在于:
所述下行帧包括多个下行多址区域时,各个下行多址区域的相对位置可 变; 当某个下行多址区域的位置需要改变时,基站在对应下行多址区域的下 行控制消息中提前发送位置变化的信息,包括下行多址区域在帧中的新的位 置以及所发生的帧;终端收到下行多址区域的下行控制消息中指示的后面某 一帧中该下行多址区域的位置变化的信息后,根据指示在新的下行多址区域 所在的帧进行同步信号的搜索, 完成同步后继续正常通信。
13、 如权利要求 10或 11所述的方法, 其特征在于:
所述下行多址技术包括 OFDMA 多址技术、 SC-FDMA 多址技术、 MC-TD-SCDMA多址技术中的一种或多种;所述上行多址技术包括 OFDMA 多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的至少两种。
14、 一种支持多种多址技术的系统实现上行传输的方法,该过程包括以 下步骤: ( a )基站发送下行帧, 下行帧中包括至少一个下行多址区域, 每一下 行多址区域支持一种下行多址技术发送,每个下行多址区域与一个或多个上 行多址区域相关联,每一下行多址区域的上行控制消息中包含相关联上行多 址区域的资源分配信息,上行帧被划分为至少两个支《^,不同上行多址技术的 上行多址区域;
( b )终端完成初始接入后, 从所支持下行多址技术对应的下行多址区 域获得上行控制消息,根据其中的资源分配信息在可用的资源块使用自己的 上行多址技术进行上行发送。
15、 如权利要求 14所述的方法, 其特征在于:
基站发送的所述下行帧包括一个下行多址区域,该下行多址区域与上行 帧中的多个上行多址区域相关联; 或者,基站发送的所述下行帧包括至少两 个下行多址区域,每个下行多址区域与上行帧中的一个或多个上行多址区域 相关联;
所述下行多址区域和上行多址区域关联,指有终端同时支持该下行多址
16、 如权利要求 14或 15所述的方法, 其特征在于:
所述上行控制消息中除相关联上行多址区域的资源分配信息外,还包含 相关联上行多址区域的以下信息中的一种或任意组合:支持的上行多址技术 信息、 位置和大小, 其中资源分配信息包括以下参数中的一种或任意组合: 上行资源块的位置、 大小、 类型、 目标地址和发射参数, 该目标地址用于指 示可以在该上行资源块进行上行发送的终端。
17、 如权利要求 14或 15所述的方法, 其特征在于:
所述上行帧中的多个上行多址区域的相对位置是可变的;
当某个上行多址区域的位置需要改变时,基站在对应下行多址区域的上 行控制消息中发送上行多址区域位置变化的信息,指示当前帧中上行多址区 域的新位置; 当终端收到下行多址区域的上行控制消息中指示的当前帧中上行多址 区域的新位置信息后, 在新的上行多址区域进行上行信号的发送。
18、 如权利要求 14或 15所述的方法, 其特征在于:
所述下行多址技术包括 OFDMA 多址技术、 SC-FDMA 多址技术、 MC-TD-SCDMA多址技术中的一种或多种;所述上行多址技术包括 OFDMA 多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的至少两种。
19、 一种支持多种多址技术的系统帧结构, 包括下行帧和上行帧,其特 征在于, 所述下行帧包括至少一个下行多址区域,每一下行多址区域支持一 种下行多址技术,所述上行帧包括至少两个支持不同上行多址技术的上行多 址区域, 每个下行多址区域与一个或多个上行多址区域相关联。
20、 如权利要求 19所述的系统帧结构, 其特征在于:
所述下行帧包括一个下行多址区域,该下行多址区域与上行帧中的多个 上行多址区域相关联; 或者, 所述下行帧包括至少两个下行多址区域, 每个 下行多址区域与上行帧中的一个或多个上行多址区域相关联;
所述下行多址区域和上行多址区域关联,指有终端同时支持该下行多址 区域对应的下行多址技术和所关联上行多址区域对应的上行多址技术,每一 下行多址区域的上行控制消息中包含相关联上行多址区域的信息。
21、 如权利要求 19或 20所述的系统帧结构, 其特征在于:
所述上行帧中还包括初始接入区域,初始接入区域位于对应的一个上行 多址区域中, 或者, 初始接入区域位于上行帧中的公共区域。
22、 如权利要求 19或 20所述的系统帧结构, 其特征在于:
所述上行控制消息中的相关联上行多址区域的信息包含以下信息中一 种或任意组合:对应的初始接入区域的分配信息、支持的上行多址技术信息、 相关联上行多址区域位置、 大小、发射参数和资源分配信息, 其中资源分配 信息包括以下参数中的一种或任意组合: 上行资源块的位置、 大小、 类型、 目标地址和发射参数,该目标地址用于指示可以在该上行资源块进行上行发 送的终端。
23、 如权利要求 19或 20所述的系统帧结构, 其特征在于:
所述下行多址技术包括 OFDMA 多址技术、 SC-FDMA 多址技术、 MC-TD-SCDMA多址技术中的一种或多种;所述上行多址技术包括 OFDMA 多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的至少两种。
24、 如权利要求 19或 20所述的系统帧结构, 其特征在于:
每个下行多址区域的同步信道中包含对应下行多址技术的同步信号;或 者, 在下行帧的公共的同步信道区域上包含所有下行多址技术的同步信号, 每个下行多址技术的同步信号对应一个下行多址区域。
,
25、 一种支持多种多址技术的系统, 包括基站和终端, 其特征在于: . 所述基站用于发送下行帧, 下衧帧中包括至少一个下行多址区域,每一 下行多址区域支持一种下行多址技术发送,每个下行多址区域与一个或多个 上行多址区域相关联,每一下行多址区域的上行控制消息中包含相关联上行 多址区域所支持的上行多址技术信息、对应的初始接入区域的分配信息、该 下行多址区域关联的上行多址区域的资源分配信息,每一下行多址区域的下 行控制消息中包含该下行多址区域的资源分配信息,上行帧被划分为至少两 个支持不同上行多址技术的上行多址区域;
所述终端用于扫描下行信道, 搜索自己支持的下行多址技术的同步信 号, 与基站建立同步后, 从对应的下行多址区域中获得上行控制消息, 如根 据其中信息判断出系统支持自己的上行多址技术,根据该上行控制消息中指 示的初始接入区域信息, 进行初始网络接入, 然后从所支持下行多址技术对 应的下行多址区域获得下行控制消息和上行控制消息,根据其中的资源分配 信息接收基站下行发送的数据,以及在可用的资源块使用自己的上行多址技 术进行上行发送。
26、 如权利要求 25所述的系统, 其特征在于:
基站发送的所述下行帧包括一个下行多址区域,该下行多址区域与上行 帧中的多个上行多址区域相关联;或者基站发送的所述下行帧包括至少两个 下行多址区域,每个下行多址区域与上行帧中的一个或多个上行多址区域相 关联, 所述上行多址区域和下行多址区域按时分或频分方式划分的; 所述下行多址区域和上行多址区域关联,指有终端同时支持该下行多址 区域对应的下行多址技术和所关联上行多址区域对应的上行多址技术。
27、 如权利要求 25所述的系统, 其特征在于:
基站需要改变某个下行多址区域的位置时,在对应下行多址区域的下行 控制消息中提前发送位置变化的信息,包括下行多址区域在帧中的新的位置 以及所发生的帧;
终端与基站正常通信,在收到下行多址区域的下行控制消息中指示的在 后面某一帧中该下行多址区域的位置变化的信息后,根据指示在新的下行多 址区域所在的帧进行同步信号的搜索, 完成同步后继续正常通信。
28、 如权利要求 25所述的系统, 其特征在于:
所述基站在每个下行多址区域的同步信道发送每个下行多址技术的同 步信号; 或者,在下行帧的公共的同步区域上向所有下行多址技术的终端发 送同步信号, 每个下行多址技术的同步信号对应一个卞行多址区域。
29、 如权利要求 25所述的系统, 其特征在于:
所述基站在每一下行多址区域的上行控制消息中包含的初始接入区域 的分配信息中, 各上行多址区域分别有一个初始接入区域, 或者, 初始接入 区域位于上行帧中的公共区域,采用多种上行多址技术的终端可使用相同的 初始接入区域进行接入。
30、 如权利要求 25所述的系统, 其特征在于:.
所述基站发送的下行帧中的下行多址区域所支持的下行多址技术包括 OFDMA多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的一 种或多种; 所接收的上行帧中的上行多址区域所支持的上行多址技术包括 OFDMA多址技术、 SC-FDMA多址技术、 MC-TD-SCDMA多址技术中的至 少两种。
PCT/CN2008/000005 2007-04-03 2008-01-02 Système et procédé permettant de prendre en charge une pluralité de technologies d'accès multiples et structure de trames à cet effet WO2008119231A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08700565.8A EP2136569B1 (en) 2007-04-03 2008-01-02 A system and a method for supporting a plurality of multiple access technology and the frame structure thereof
JP2010501355A JP4902783B2 (ja) 2007-04-03 2008-01-02 多種の多重接続アクセス技術が支持されるシステム、方法及びそのフレーム構造
US12/594,590 US8199712B2 (en) 2007-04-03 2008-01-02 System and a method for supporting a plurality of multiple access technology and the frame structure thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710073809.7 2007-04-03
CN2007100738097A CN101282567B (zh) 2007-04-03 2007-04-03 一种支持多种多址接入的系统

Publications (1)

Publication Number Publication Date
WO2008119231A1 true WO2008119231A1 (fr) 2008-10-09

Family

ID=39807793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000005 WO2008119231A1 (fr) 2007-04-03 2008-01-02 Système et procédé permettant de prendre en charge une pluralité de technologies d'accès multiples et structure de trames à cet effet

Country Status (5)

Country Link
US (1) US8199712B2 (zh)
EP (1) EP2136569B1 (zh)
JP (1) JP4902783B2 (zh)
CN (1) CN101282567B (zh)
WO (1) WO2008119231A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282568B (zh) * 2007-04-03 2012-10-10 中兴通讯股份有限公司 一种联合支持多种接入的系统
CN101741795B (zh) * 2008-11-17 2015-05-20 中兴通讯股份有限公司 多频点多址接入方法和装置
PT2446685T (pt) * 2009-06-25 2019-02-01 Koninklijke Philips Nv Método de comunicação numa rede móvel
US9451575B2 (en) * 2011-02-22 2016-09-20 Telefonaktiebolaget L M. Ericsson Positioning devices and methods in cellular communication systems
US9131480B2 (en) * 2012-03-30 2015-09-08 Intel Corporation Techniques to manage group controling signaling for machine-to-machine devices
WO2013153884A1 (ja) * 2012-04-11 2013-10-17 株式会社日立国際電気 無線システム、無線基地局、及び管理装置
WO2014146304A1 (zh) * 2013-03-22 2014-09-25 华为技术有限公司 一种信号传输方法及设备
JP6527138B2 (ja) * 2014-04-16 2019-06-05 株式会社日立製作所 核磁気共鳴撮像装置およびrfシミング方法
ES2788903T3 (es) 2015-01-28 2020-10-23 Huawei Tech Co Ltd Dispositivo terminal, dispositivo de red y método de comunicación grupal
CN106341898B (zh) * 2015-07-09 2020-07-07 中兴通讯股份有限公司 多站点的传输指示、触发、执行方法及装置
CN109361496B (zh) * 2015-11-06 2019-11-05 华为技术有限公司 无线通信系统中的方法和节点
CN107155199B (zh) * 2016-03-04 2023-09-26 华为技术有限公司 一种空口技术的配置方法、装置及无线通信系统
CN107733615B (zh) * 2016-08-12 2022-09-09 中兴通讯股份有限公司 信令消息的发送、检测装置、传输系统
US10397947B2 (en) * 2016-08-12 2019-08-27 Qualcomm Incorporated Adaptive waveform selection in wireless communications
US10425962B2 (en) * 2016-12-14 2019-09-24 Qualcomm Incorporated PUCCH design with flexible symbol configuration
JP7005738B2 (ja) * 2017-08-10 2022-01-24 オッポ広東移動通信有限公司 データ伝送方法及び端末装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1205816A (zh) * 1995-10-26 1999-01-20 全点有限公司 共存式通信系统
CN1697352A (zh) * 2004-05-10 2005-11-16 朗迅科技公司 混合无线通信系统
WO2005122425A2 (en) * 2004-06-04 2005-12-22 Qualcomm Incorporated Multiplexing of w-cdma and ofdm signals in a wireless communication system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747370C1 (de) * 1997-10-27 1998-11-26 Siemens Ag Telekommunikationssystem zur drahtlosen Telekommunikation mit einer CDMA-, FDMA- und TDMA-Vielfachzugriffskomponente
US8179833B2 (en) * 2002-12-06 2012-05-15 Qualcomm Incorporated Hybrid TDM/OFDM/CDM reverse link transmission
IL165035A (en) * 2004-11-04 2011-06-30 Alvarion Ltd Method and device for incorporating different mode wireless transmissions
EP1681801A1 (de) * 2005-01-12 2006-07-19 Siemens Aktiengesellschaft Verfahren und Basisstation zum Betreiben eines WiMAX-Systems
CN100563127C (zh) * 2005-04-19 2009-11-25 大唐移动通信设备有限公司 一种在时分同步码分多址系统中的初始上行同步方法
US20070253379A1 (en) * 2006-04-28 2007-11-01 Motorola, Inc. Method and apparatus for uplink allocation placement in an uplink frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1205816A (zh) * 1995-10-26 1999-01-20 全点有限公司 共存式通信系统
CN1697352A (zh) * 2004-05-10 2005-11-16 朗迅科技公司 混合无线通信系统
WO2005122425A2 (en) * 2004-06-04 2005-12-22 Qualcomm Incorporated Multiplexing of w-cdma and ofdm signals in a wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2136569A4 *

Also Published As

Publication number Publication date
CN101282567B (zh) 2011-09-21
EP2136569A1 (en) 2009-12-23
JP2010524308A (ja) 2010-07-15
US8199712B2 (en) 2012-06-12
US20100118810A1 (en) 2010-05-13
EP2136569A4 (en) 2014-04-02
EP2136569B1 (en) 2016-07-20
JP4902783B2 (ja) 2012-03-21
CN101282567A (zh) 2008-10-08

Similar Documents

Publication Publication Date Title
WO2008119231A1 (fr) Système et procédé permettant de prendre en charge une pluralité de technologies d'accès multiples et structure de trames à cet effet
KR101050522B1 (ko) 광대역 tdd 모바일 통신 시스템에서의 물리층 랜덤액세스를 위한 방법, 디바이스 및 단말기
RU2517165C2 (ru) Структура фрейма для поддержания сценариев развертывания с большим временем запаздывания распространения
US8891455B2 (en) Synchronous spectrum sharing by dedicated networks using OFDM/OFDMA signaling
US8391217B2 (en) Synchronous spectrum sharing by dedicated networks using OFDM/OFDMA signaling
JP5108010B2 (ja) 無線資源の割当方法と装置
US8290067B2 (en) Spectrum sharing in a wireless communication network
JP5731026B2 (ja) 通信システムのためのフレキシブルなofdm/ofdmaフレーム構造
US8520606B2 (en) Synchronous spectrum sharing based on OFDM/OFDMA signaling
US7813315B2 (en) Spectrum sharing in a wireless communication network
US20100278123A1 (en) Wireless communication frame structure and apparatus
US8238301B2 (en) Method, system, and wireless frame structure for supporting different mode of multiple access
KR101611268B1 (ko) 2개의 무선 통신 방식을 지원하는 무선 통신 시스템에서의 레인징 수행 방법
KR20130037507A (ko) 다중 대역 다중 셀의 운영 방법 및 장치
KR20100132943A (ko) 통신 시스템
KR20090097962A (ko) 직교 주파수 분할 다중 액세스(ofdma) 모바일 멀티 홉 중계 무선 네트워크에서의 채널 액세스 방법
JP2015529425A (ja) 通信デバイス及び方法
JP2015529426A (ja) モバイル通信のシステム、ネットワークエレメント及び方法
CN101299839B (zh) 时分共享信道中的资源分配、终端接入方法及装置
KR20080036534A (ko) 무선 통신 시스템의 동기 스펙트럼 공유 장치 및 방법
KR101208521B1 (ko) 이동통신 시스템에서의 중계국 영역 지정 방법 및 검색방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010501355

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12594590

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008700565

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008700565

Country of ref document: EP