WO2008109300A2 - Adjustable implant system - Google Patents

Adjustable implant system Download PDF

Info

Publication number
WO2008109300A2
WO2008109300A2 PCT/US2008/055039 US2008055039W WO2008109300A2 WO 2008109300 A2 WO2008109300 A2 WO 2008109300A2 US 2008055039 W US2008055039 W US 2008055039W WO 2008109300 A2 WO2008109300 A2 WO 2008109300A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
axis
restriction device
implantable
responsive element
Prior art date
Application number
PCT/US2008/055039
Other languages
French (fr)
Other versions
WO2008109300A3 (en
Inventor
Scott Pool
Blair Walker
Jay R. Mccoy
Peter P. Tran
Richard L. Quick
Shahram Moaddeb
Arvin Chang
Original Assignee
Ellipse Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ellipse Technologies, Inc. filed Critical Ellipse Technologies, Inc.
Priority to EP08730778.1A priority Critical patent/EP2114258B1/en
Priority to EP14168308.6A priority patent/EP2767265B1/en
Priority to EP20214185.9A priority patent/EP3808317A1/en
Publication of WO2008109300A2 publication Critical patent/WO2008109300A2/en
Publication of WO2008109300A3 publication Critical patent/WO2008109300A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/005Gastric bands
    • A61F5/0053Gastric bands remotely adjustable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0004Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
    • A61F2/0031Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
    • A61F2/0036Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/003Implantable devices or invasive measures inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/005Gastric bands
    • A61F5/0053Gastric bands remotely adjustable
    • A61F5/0059Gastric bands remotely adjustable with wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/005Gastric bands
    • A61F5/0066Closing devices for gastric bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F2005/0016Implantable devices or invasive measures comprising measuring means
    • A61F2005/002Implantable devices or invasive measures comprising measuring means for sensing mechanical parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/009Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof magnetic

Definitions

  • the field of the invention generally relates to medical devices for accessing and controlling dimensions of body lumens and cavities along a mammalian alimentary canal, including devices for treating obesity and gastroesophageal reflux disease (GERD).
  • GFD gastroesophageal reflux disease
  • Obesity is a common disease of unknown etiology. It is a chronic, multifactorial disease that develops from an integration of genetic, environmental, social, behavioral, physiological, metabolic, neuron-endocrine and psychological elements. This disease is considered a cause or co-morbidity to such conditions as GERD, high blood pressure, elevated cholesterol, diabetes, sleep apnea, mobility and orthopedic deterioration, and other consequences, including those limiting social and self image and those affecting the ability to perform certain everyday tasks. Since traditional weight loss techniques, such as diet, drugs, exercise, etc., are frequently ineffective with many of these patients, surgery is often the only viable alternative.
  • Body Mass Index is the most common method used to define the obese patient. This measurement is obtained by taking a persons weight in Kilograms (Kg) and dividing by the square of height in meters. Based on policies set forth by the United States National Institutes of Health (NIH), BMI is used to characterize the degree of excess weight. These categories are listed in Table 1 listed below. Presently, based on current NIH policy, only those people with a BMI of 35 or greater qualify for surgical intervention.
  • VBG vertical banded gastroplasty
  • stomach stapling Another common obesity surgery is known as vertical banded gastroplasty ("VBG"), or "stomach stapling.”
  • VBG vertical banded gastroplasty
  • the surgeon staples the upper stomach to create a small, thumb-sized stomach pouch, reducing the quantity of food that the stomach can hold to about 1-2 ounces. The outlet of this pouch is then restricted by a band that significantly slows the emptying of the pouch to the lower part of the stomach.
  • the major risks associated with the Duodenal Switch are: bleeding, infection, pulmonary embolus, loss of too much weight, vitamin deficiency, protein malnutrition, anastomotic leak or stricture, bowel obstruction, hernia, nausea/vomiting, heartburn, food intolerances, kidney stone or gallstone formation, severe diarrhea and death.
  • Adjustable Gastric Banding Through this procedure the surgeon places a band around an upper part of the stomach to divide the stomach into two parts, including a small pouch in the upper part of the stomach. The small upper stomach pouch can only hold a small amount of food. The remainder of the stomach lies below the band.
  • the pouch volume during surgery needs to be very small, approximately 7 ml.
  • the stoma initially needs to be relatively large and later needs to be substantially reduced, as the pouch volume increases.
  • the cavity in the band has to be relatively large and is defined by a thin flexible wall, normally made of silicone material.
  • the size of the stoma opening has to be gradually reduced during the first year after surgery as the gastric pouch increases in size.
  • Reduction of the stoma opening is commonly achieved by adding liquid to the cavity of the band via an injection port to expand the band radially inwardly.
  • a great disadvantage of repeatedly injecting liquid via the injection port is the increased risk of the patient getting an infection in the body area surrounding the injection port. If such an infection occurs the injection port has to be surgically removed from the patient. Moreover, such an infection might be spread along the tube interconnecting the injection port and the band to the stomach, causing even more serious complications. Thus, the stomach might be infected where it is in contact with the band, which might result in the band migrating (eroding) through the wall of the stomach.
  • the LAP-BAND Adjustable Gastric Banding System (Inamed) is a product used in the Adjustable Gastric Banding procedure.
  • the LAP-BAND system includes a silicone band, which is essentially an annular-shaped balloon.
  • the surgeon places the silicone band around the upper part of the stomach.
  • the LAP-BAND system further includes a port that is placed under the skin, and tubing that provides fluid communication between the port and the band.
  • a physician can inflate the band by injecting a fluid (such as saline) into the band through the port. As the band inflates, the size of the stoma shrinks, thus further limiting the rate at which food can pass from the upper stomach pouch to the lower part of the stomach.
  • the physician can also deflate the band, and thereby increase the size of the stoma, by withdrawing the fluid from the band through the port.
  • the physician inflates and deflates the band by piercing the port, through the skin, with a long, non-coring needle.
  • the lower esophageal sphincter is a ring of increased thickness in the circular, smooth muscle layer of the esophagus. At rest, the lower esophageal sphincter maintains a high-pressure zone between 15 and 30 millimeters (mm) Hg above intragastric pressures.
  • the lower esophageal sphincter relaxes before the esophagus contracts, and allows food to pass through to the stomach. After food passes into the stomach, the sphincter constricts to prevent the contents from regurgitating into the esophagus.
  • the resting tone of the LES is maintained by myogenic (muscular) and neurogenic (nerve) mechanisms.
  • the release of acetylcholine by nerves maintains or increases lower esophageal sphincter tone. It is also affected by different reflex mechanisms, physiological alterations, and ingested substances.
  • Gastroesophageal reflux disease results from incompetence of the lower esophageal sphincter, located just above the stomach in the lower part of the esophagus. Acidic stomach fluids may flow retrograde across the incompetent lower esophageal sphincter into the esophagus.
  • the esophagus unlike the stomach, is not capable of handling highly acidic contents so the condition results in the symptoms of heartburn, chest pain, cough, difficulty swallowing, or regurgitation. These episodes can ultimately lead to injury of the esophagus, oral cavity, the trachea, and other pulmonary structures.
  • the most common surgical repair called fundoplication surgery, generally involves manipulating the diaphragm, wrapping the upper portion of the stomach, the fundus, around the lower esophageal sphincter, thus tightening the sphincter, and reducing the circumference of the sphincter so as to eliminate the incompetence.
  • the hiatus, or opening in the diaphragm is reduced in size and secured with 2 to 3 sutures to prevent the fundoplication from migrating into the chest cavity.
  • the repair can be attempted through open surgery, laparoscopic surgery, or an endoscopic, or endoluminal, approach by way of the throat and the esophagus.
  • the open surgical repair procedure most commonly a Nissen fundoplication, is effective but entails a substantial insult to the abdominal tissues, a risk of anesthesia-related iatrogenic injury, a 7 to 10 day hospital stay, and a 6 to 12 week recovery time, at home.
  • the open surgical procedure is performed through a large incision in the middle of the abdomen, extending from just below the ribs to the umbilicus (belly button).
  • Endoscopic techniques for the treatment of GERD have been developed.
  • Laparoscopic repair of GERD has the promise of a high success rate, currently 90% or greater, and a relatively short recovery period due to minimal tissue trauma.
  • Laparoscopic Nissen fundoplication procedures have reduced the hospital stay to an average of 3 days with a 3-week recovery period at home.
  • Another type of laparoscopic procedure involves the application of radio-frequency waves to the lower part of the esophagus just above the sphincter.
  • the waves cause damage to the tissue beneath the esophageal lining and a scar (fibrosis) forms.
  • the scar shrinks and pulls on the surrounding tissue, thereby tightening the sphincter and the area above it.
  • These radio-frequency waves can also be used to create a controlled neurogenic defect, which may negate inappropriate relaxation of the LES.
  • a third type of endoscopic treatment involves the injection of material or devices into the esophageal wall in the area of the lower esophageal sphincter.
  • One laparoscopic technique that appears to show promise for GERD therapy involves approaching the esophageal sphincter from the outside, using laparoscopic surgical techniques, and performing a circumference reducing tightening of the sphincter by placement of an adjustable band such that it surrounds the sphincter.
  • this procedure still requires surgery, which is more invasive than if an endogastric transluminal procedure were performed through the lumen of the esophagus or stomach, such as via the mouth.
  • the necessity to provide for future adjustment in the band also requires some surgical access and this adjustment would be more easily made via a transluminal approach.
  • gastric banding For both treatment of obesity and GERD, gastric banding has proven to be a desirable treatment option. However, despite the advantages provided by gastric banding methods, they nonetheless suffer from drawbacks that limit the realization of the full potential of this therapeutic approach. For example, slippage may occur if a gastric band is adjusted too tight, or too loose, depending on the situation and the type of slippage. Slippage can also occur in response to vomiting, as occurs when a patient eats more food that can be comfortably accommodated in the upper pouch. During slippage, the size of the upper pouch may grow, causing the patient to be able to consume a larger amount of food before feeling full, thus lowering the effectiveness of the gastric band.
  • erosion may occur if the gastric band is adjusted or secured too tightly. In either case detecting slippage or reducing the risk of erosion may be accomplished by adjusting the device to provide a proper flow rate.
  • current methods of adjusting gastric bands and restriction devices require invasive procedures. For example, one method requires penetration of the abdomen with a needle in order to withdraw or inject a solution from a subcutaneous access port that is connected to a tube that in turn regulates the inflation of the gastric band. Infection and patient discomfort and pain are related to the use of the needle required to fill the gastric band with saline.
  • non-invasively adjustable gastric bands have been proposed, some of which seek to provide a correct reading of the inner diameter of the gastric band at all times.
  • the wall thickness of the stomach is not uniform from patient to patient, the actual inner diameter of the stomach at the stoma opening will be unknown.
  • the size of the opening of the band is at best an approximation of the stomal opening that connects the smaller upper pouch and the remainder of the stomach.
  • a gastrointestinal implant system in a first embodiment, includes an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal.
  • the implant system further includes an implantable interface including a first driving element, the first driving element being moveable and operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to movement of the first driving element.
  • the system also includes an external adjustment device having a second driving element configured to non-invasively engage the first driving element of the implantable interface from a location external to the mammal.
  • a gastrointestinal implant system in the system, actuation of the second driving element of the external adjustment device produces movement in the first driving element of the implantable interface and results in a change in the dimension or configuration of the contact surface.
  • a gastrointestinal implant system includes an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal.
  • the system includes an implantable interface including a driving element, the driving element being moveable and operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to movement of the driving element. Movement of the driving element is effectuated by application of a moving magnetic field originating external to the mammal.
  • a gastrointestinal implant in another embodiment, includes an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal.
  • the implant includes an actuator configured to change the dimension or configuration of the contact surface in response to rotational movement of an implantable interface operatively coupled to the actuator via a drive transmission.
  • the drive transmission includes a rotatable lead screw having mounted thereon a nut affixed to an end of the actuator.
  • an external adjustment device is configured to non-invasively couple to the implantable interface from a location external to the mammal. Rotational movement of the implantable interface results in a change in the dimension or configuration of the contact surface.
  • a gastrointestinal implant system includes an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal.
  • the system includes an implantable interface including a moveable magnetic element, the moveable magnetic element being operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to movement of the moveable magnetic element of the implantable interface.
  • the system further includes an external adjustment device having at least one moveable magnetic element configured to magnetically engage the moveable magnetic element of the implantable interface from a location external to the mammal.
  • a gastrointestinal implant system that is configured to be implanted within a mammal includes an external drive assembly including at least one external magnet, the external drive assembly having a plurality of alternating magnetic poles rotationally arranged about an axis of rotation.
  • the system further includes an internal drive assembly including at least one internal magnet, the internal drive assembly having a plurality of alternating magnetic poles rotationally arranged about an axis of rotation.
  • a gastrointestinal implant system includes a restrictive band configured to at least partially engage a surface of a gastrointestinal tract of a mammal, the restrictive band having a first configuration and a second configuration, wherein the second configuration constricts the gastrointestinal tract more than does the first configuration.
  • the system further includes an actuation element at least partially disposed on or in the restrictive band, wherein actuation of the actuation element results in movement of the restrictive band from the first configuration to the second configuration.
  • a gastrointestinal implant device includes an adjustable restriction device having a flexible adjustable body including a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal, the flexible adjustable body including a moveable actuator anchored at a distal end to the flexible adjustable body, the moveable actuator being disposed within the flexible adjustable body about a plurality of ribs.
  • a method of treating obesity in a mammal includes providing an adjustable restriction device configured for at least partially engaging a surface of a gastrointestinal tract of a mammal, the adjustable restriction device including an implantable interface comprising a first moveable driving element, the first moveable driving element being operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the adjustable restriction device in response to movement of the first moveable driving element.
  • An external adjustment device external to an abdominal region of the mammal is provided, the external adjustment device having a second moveable driving element configured to non-invasively engage the first moveable driving element of the implantable interface from a location external to the mammal.
  • a method of treating obesity in a mammal includes providing an adjustable restriction device configured for at least partially engaging a surface of a gastrointestinal tract of a mammal, the adjustable restriction device including an implantable interface including a moveable magnetic element, the moveable magnetic element being operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the adjustable restriction device in response to movement of the moveable magnetic element of the implantable interface.
  • An external adjustment device external to an abdominal region of the mammal having at least one moveable magnetic element configured to magnetically engage the moveable magnetic element of the implantable interface from a location external to the mammal.
  • the moveable magnetic element of the implantable interface is moved by moving the at least one moveable magnetic element of the external adjustment device.
  • the at least one magnetic element of the external adjustment device may be magnetically coupled to the at least one magnetic element of the implantable interface via various faces of the two magnetic elements. These may include, for instance, facing axial or end surfaces (e.g., ends of a cylinder or sector-shaped element) as well as radial surfaces
  • FIG. 1 illustrates a patient's torso showing the locations for placement of trocars and various other tools during a laparoscopic procedure for implantation of an obesity control system.
  • FIG. 2 illustrates a side view of a trocar with an obturator removed.
  • FIG. 3 illustrates a side view of a trocar with an obturator in place.
  • FIG. 4 illustrates an inflatable laparoscopic obesity control system according to the prior art.
  • FIG. 5 illustrates a prior art laparoscopic obesity control system after being locked around the stomach.
  • FIG. 6 illustrates a prior art laparoscopic obesity control system after being secured by suturing the stomach around a portion of the inflatable ring.
  • FIG. 7 illustrates the inflatable ring of a prior art inflatable obesity control system in a non-pressurized state.
  • FIG. 8 illustrates the inflatable ring of a prior art inflatable obesity control system with an additional 2 ml injected.
  • FIG. 9 illustrates the inflatable ring of a prior art inflatable obesity control system with an additional 4 ml injected.
  • FIG. 10 illustrates an implantable obesity control system in accordance with one embodiment.
  • FIG. 1 1 illustrates a distal section of the obesity control system in a straightened configuration (solid lines), for example, for placement into the abdominal cavity.
  • FIG. 12 illustrates a restriction device of the obesity control system just prior to being attached.
  • FIG. 13 illustrates the restriction device after being attached.
  • FIG. 14 illustrates the restriction device after being trimmed of its attachment leash.
  • FIG. 15 illustrates an alternative embodiment of a restriction device.
  • FIG. 16 illustrates a cross-sectional view of the outer shell or housing of the restriction device of FIG. 15.
  • FIG. 17 illustrates another cross-sectional view of the outer shell or housing of the restriction device of FIG. 15.
  • FIG. 18 illustrates a cross-sectional view of the restriction device taken through line 18-18'of FIG. 15.
  • FIG. 19 illustrates a detailed perspective view of the restriction device of FIG. 15.
  • FIG. 20 illustrates a perspective view of an implantable obesity control system according to one embodiment.
  • FIG. 21 illustrates a perspective view of an external device for use with the implantable obesity control system of the type illustrated in FIG. 20 according to another embodiment.
  • FIG. 22 illustrates a perspective view of the external device of FIG. 21 together with the implantable obesity control system of FIG. 20.
  • FIG. 23 illustrates a plan view of the restriction device portion of the implantable obesity control system of the type illustrated FIG. 20.
  • FIG. 24 illustrates a cross-sectional view of the restriction device portion of the implantable obesity control system illustrated in FIG. 23.
  • FIG. 25 illustrates a perspective view of an inner section of the restriction device portion of the implantable obesity control system of FIG. 20 according to one embodiment.
  • FIG. 26 illustrates a perspective view of the drive shaft portion of the implantable obesity control system of FIG. 20. Portions of the exterior or outer windings making up the complete drive shaft have been removed for clarity purposes.
  • FIG. 27 illustrates a perspective view of a sheath portion of the implantable obesity control system of FIG. 20.
  • FIG. 28 illustrates a perspective view of the drive shaft portion which connects to the implantable interface of the implantable obesity control system of FIG. 20 according to one embodiment.
  • FIG. 29 illustrates a perspective view of the attachment portion of the implantable interface of the implantable obesity control system of FIG. 20 according to one embodiment.
  • FIG. 30 illustrates a perspective top view of the implantable interface portion of the implantable obesity control system of FIG. 20.
  • FIG. 31 illustrates a perspective bottom view of the implantable interface portion of the implantable obesity control system of FIG. 20.
  • FIG. 32 illustrates a top down plan view of the implantable interface portion of
  • FIG. 33 illustrates a perspective view of a RFID chip disposed near or adjacent to an implantable interface portion of an implantable obesity control system of the type illustrated in FIG. 20.
  • FIG. 34 illustrates an implantable interface according to one embodiment which utilizes cylindrical magnets.
  • FIG. 35 illustrates the implantable interface of FIG. 34 after having been rotationally adjusted for custom fit in the patient.
  • FIG. 36 illustrates the implantable interface of FIGS. 34 and 35 with a portion removed in order to show the orientation of the poles on one of the cylindrical-shaped magnets.
  • FIG. 37A illustrates the internal drive mechanism of the implantable interface of
  • FIGS. 34-36 are identical to FIGS. 34-36.
  • FIG. 37B illustrates the implantable interface implanted within a patient while being adjusted by an external device.
  • FIG. 38 illustrates the implantable interface situated adjacent or near an external device. FIG. 38 thus represents the relative location between the implantable interface and the external device after the implantable interface has been implanted in a patient.
  • FIG. 39 illustrates a detail view of the cylinder/magnet assembly of the external device and the implantable interface.
  • the external device is shown oriented at an angle with respect to the implantable interface.
  • FIG. 40 illustrates an alternative embodiment of the implantable interface utilizing only one cylindrical magnet.
  • FIG. 41 illustrates an implantable interface secured to the fascia of a patient.
  • FIG. 42 illustrates an alternative embodiment of the restriction device having a sliding portion.
  • FIG. 43 illustrates an alternative embodiment of an implantable interface for magnetic coupling.
  • FIG. 44 illustrates a top view of the implantable interface of FIG. 43.
  • FIG. 45 illustrates a cross-sectional view of FIG. 43 taken along line 45-45', with the implantable interface sutured to the fascia and after several weeks of implantation.
  • FIG. 46 illustrates a perspective view of an external driver according to one embodiment.
  • FIG. 47 illustrates one alternative embodiment of an implantable interface.
  • FIG. 48 illustrates the implantable interface of FIG. 47 prior to engagement or deployment of the rotatable coils.
  • FIG. 49 illustrates an alternative embodiment of an implantable interface after engagement of the rotatable coils.
  • FIG. 50 illustrates various internal parts (without the housing) of an alternative embodiment of an implantable interface which uses resonance to turn or rotate a drive shaft.
  • FIG. 51 illustrates a system for driving an internally located driven magnet via an external device using a feedback mechanism.
  • FIG. 52 illustrates a plan view of an alternative embodiment of a gastric restriction device.
  • FIG. 53 illustrates a perspective view of an alternative embodiment of a gastric restriction device illustrated in FIG. 52.
  • FIG. 54 illustrates a perspective view of one end of an un-latched gastric restriction device.
  • FIG. 55 illustrates a detailed perspective view of a latching mechanism used for a gastric restriction device according to one embodiment.
  • FIG. 56 illustrates a cross-sectional view of a gastric restriction device according to one embodiment.
  • FIG. 57 illustrates a gastric restriction device with a portion removed to show detail of the actuating elements.
  • FIG. 58 illustrates a perspective view of a latching mechanism for the gastric restriction device according to one embodiment.
  • FIG. 59 illustrates another perspective view of the latching mechanism of FIG. 58.
  • FIG. 60 illustrates another perspective view of the latching mechanism of FIG. 58.
  • FIG. 61 illustrates another perspective view of the latching mechanism of FIG. 58.
  • FIG. 62 illustrates another perspective view of the latching mechanism of FIG. 58.
  • FIG. 63 illustrates a magnetic slip clutch for use with an implantable interface according to one embodiment.
  • FIG. 64 illustrates a perspective view of an implantable obesity control system according to another embodiment.
  • FIG. 65 illustrates a cross-sectional view of the distal end portion of the obesity control system illustrated in FIG. 64.
  • FIG. 66 is a plan view illustrating a connector used to connect or couple two ends or portions of a restriction device according to one embodiment.
  • FIG. 67 illustrates a perspective cross-sectional view of the housing portion of the drive transmission and proximal/distal covers encapsulating or sealing the same according to one embodiment.
  • FIG. 68 illustrates a cross-sectional view of the implantable interface according to another embodiment.
  • FIG. 69 illustrates a perspective view of a distal end of a drive cable according to one embodiment.
  • FIG. 70 illustrates a perspective view of an implantable obesity control system according to another embodiment.
  • FIG. 71 illustrates a cross-sectional view of a proximal portion of the implantable obesity control system of FIG. 70.
  • FIG. 72 illustrates a perspective view of an external magnetic driver according to one embodiment.
  • the outer housing or cover is removed to illustrate the various aspects of the external magnetic driver.
  • FIG. 73 illustrates a side or end view of the external magnetic driver of FIG. 72.
  • FIG. 74 illustrates a perspective view of an external magnetic driver of FIG. 72 with the outer housing or cover in place.
  • FIG. 75A illustrates a cross-sectional representation of the external magnetic driver being positioned on a patient's skin.
  • FIG. 75A illustrates the permanent magnet of the implantable interface in the 0° position.
  • FIG. 75B illustrates a cross-sectional representation of the external magnetic driver being positioned on a patient's skin.
  • FIG. 75B illustrates the permanent magnet of the implantable interface in the 90° position.
  • FIG. 75C illustrates a cross-sectional representation of the external magnetic driver being positioned on a patient's skin.
  • FIG. 75C illustrates the permanent magnet of the implantable interface in the 180° position.
  • FIG. 75D illustrates a cross-sectional representation of the external magnetic driver being positioned on a patient's skin.
  • FIG. 75D illustrates the permanent magnet of the implantable interface in the 270° position.
  • FIG. 76 schematically illustrates a system for driving the external magnetic driver according to one embodiment.
  • FIG. 77 illustrates a perspective view of a mount used to secure an implantable interface to a patient according to one embodiment.
  • FIG. 78 illustrates a fastening tool used to secure a mount of the type illustrated in
  • FIG. 77 to a patient according to one embodiment.
  • FIG. 79A illustrates a side view of a driving element portion of a fastening tool according to one embodiment.
  • FIG. 79B illustrates an end view of a mount being loaded into a socket positioned in the base of the driving element. The view is taken along the line B-B' of FIG. 79A.
  • FIG. 79C an end view of the central gear and four outer gears as viewed along the line C-COfFIG. 79A.
  • FIG. 79D illustrates a perspective view of the base portion of the driving element portion of the fastening tool.
  • FIG. 79E illustrates a bottom perspective view of the driving element portion of the fastening tool.
  • FIG. 80 illustrates an exploded perspective view of the distal end of the fastening tool according to one embodiment.
  • the base portion is omitted for clarity purposes.
  • FIG. 81 illustrates a perspective view of a fastener according to one embodiment.
  • FIG. 82 illustrates a perspective view of a mount and associated acoustic or sonic indicator housing that contains a magnetic ball.
  • FIGS. 83-90 illustrate cross-sectional views of the driven magnet along with the acoustic or sonic indicator housing illustrating the rotational orientation of the magnet and the magnetic ball. Various states are illustrated as the magnet rotates in the clockwise direction.
  • FIGS. 91-98 illustrate cross-sectional views of the driven magnet along with the acoustic or sonic indicator housing illustrating the rotational orientation of the magnet and the magnetic ball. Various states are illustrated as the magnet rotates in the counter-clockwise direction.
  • FIG. 99 illustrates the acoustic signal as a function of time of a coupler having an acoustic or sonic housing that contains a magnetic ball. Peaks are seen every /4 rotation of the driven magnet in the counter-clockwise direction.
  • FIG. 100 illustrates the acoustic signal as a function of time of a coupler having an acoustic or sonic housing that contains a magnetic ball. Peaks are seen every 1 A rotation of the driven magnet in the clockwise direction.
  • FIG. 101 illustrates the frequency response of the coupler of the type illustrated in
  • FIG. 82 during counter-clockwise rotation of the driven magnet.
  • FIG. 102 illustrates the frequency response of the coupler of the type illustrated in
  • FIG. 82 during clockwise rotation of the driven magnet.
  • FIGS. 103-122 illustrate sagittal (i.e., lateral) sectional views of an obese patient illustrating various embodiments of laparoscopic implantation of an obesity control system.
  • FIG. 1 illustrates the abdomen 4 of a patient 2.
  • the navel 6 and the ribline 5 are shown for reference.
  • a 12 mm trocar (or a larger trocar) is placed at first site 8.
  • FIGS. 2 and 3 illustrate a trocar 18 of this type.
  • This trocar 18 is placed prior to insufflation (inflation of the abdominal cavity by pressurized gas, such as carbon dioxide), so for safety purposes, often a trocar with an optically clear tip 20 is used.
  • a scope (such as a 5 mm laparoscope) is inserted inside the tip 20 and can view the separation of tissue layers and the safe entrance into the abdominal cavity.
  • an incision can first be made in the skin followed by finger dissection into the abdominal cavity.
  • the trocar 18 is then placed through the tract made by the finger dissection.
  • pressurized CO 2 is injected into the abdominal cavity by attaching the pressure line to a luer 22 on the trocar 18.
  • the pressure is maintained whether the trocar 18 has an obturator 26 in place, as in FIG. 3, or has no obturator 26, as in FIG. 2, by the use of a trocar valve 28.
  • the pressure inside the abdominal cavity can be maintained even after detaching the pressure line by closing a luer valve 24.
  • trocars placed at sites 10, 12, 14, 16 are typically 5 mm trocars.
  • Site 10 is located just below xiphoid process 29 of the sternum.
  • the 5 mm trocar placed at site 10 is removed and replaced with a liver retractor, which allows easier access and visualization of the upper portion of the stomach, and easier dissection of the surrounding features.
  • Sites 12, 14 and 16 are used for the variety of laparoscopic grasping, cutting, electrosurgical, and manipulating instruments, which are usually placed through the trocars, with the obturators removed.
  • FIG. 4 illustrates a prior art inflatable obesity control system 30.
  • Inflatable ring 32 is closed around the upper portion of the stomach, using general techniques described in, for example, Ren et al., Laparoscopic Adjustable Gastric Banding: Surgical Technique, Journal of Laparoendoscopic & Advanced Surgical Techniques, Vol. 13, No.
  • the inflatable ring 32 is attached to itself around the stomach using a locking mechanism 34.
  • the orientation of the inflatable band after attachment is illustrated in FIG. 5.
  • the stomach 50 includes a fundus 52 and a lesser curvature 54.
  • the attached inflatable ring 32 forms a small upper pouch 48 in the stomach 50, separated by a smaller diameter stoma (not visible) underneath the attached inflatable ring 32.
  • a portion of the wall of the upper pouch is sutured to the wall of the remainder of the stomach 50 with suture 56.
  • port 36 is implanted at a subcutaneous site and sutured to fascia (the sheath of tissue covering muscle) by the use of suture holes 40.
  • the port 36 is attached to the inflatable ring 32 by an inflation tube 42.
  • the inflation tube 42 provides a communication means between the port 36 and the inflatable ring 32 of the gastric restriction device.
  • the proximal end 44 of the inflation tube 42 is forced over a metal barb (not shown) which is integral with an extension 38 of the port 36. This can be a difficult and time consuming portion of the procedure.
  • the inflatable ring 32 can be inflated or deflated by the injection of sterile saline through the port 36 by use of a syringe attached to a non-coring needle.
  • the inflatable ring 32 can be adjusted so that the patient feels full after eating a small amount of food.
  • FIG. 7 illustrates the inflatable ring 32 in its non-pressurized state.
  • the inflatable obesity control system 30 is primed with enough saline to fill its dead space volume while removing the air. It is left at ambient pressure (and not pressurized) usually for the first several weeks while the patient heals and the body forms a fibrous capsule over portions where the implanted device interfaces with the stomach.
  • FIG. 8 illustrates the inflatable obesity control system 30 inflated with an additional 2 ml of saline (beyond the initial priming volume).
  • FIG. 9 illustrates the inflatable obesity control system 30 inflated with an additional 4 ml of saline (beyond the initial priming volume).
  • FIG. 10 illustrates an implantable obesity control system 60 comprising a restriction device 62, an implantable interface 64 and a drive transmission 66.
  • the restriction device 62 is implanted in the patient so that it creates a stoma opening and controllably restricts the size of this opening between an upper pouch and the remainder of the stomach.
  • the restriction device 62 comprises a body portion 88, a first attachment portion 68 and a second attachment portion 70.
  • the implantable interface 64 comprises a main body 72 and an extension 74 which are coupled to each other by an articulation 76.
  • the articulation 76 allows adjustment of an angle 86 between the main body 72 and the extension74 , for optimized implantation within the patient's anatomy.
  • An exemplary angle is 45°.
  • the drive transmission 66 has a distal end 82 and a proximal end 84.
  • the implantable interface 64 can be attached, detached and reattached to the drive transmission 66 by coupling or decoupling an implantable interface attachment portion 78 and a drive shaft attachment portion 80.
  • the body portion 88 can be oriented in a linear or substantially linear shape that may be placed into the abdominal cavity through the inner lumen of the trocar 18, or any other type of cannula, for example, a 12 mm or 15 mm trocar 18.
  • the restriction device 62 may be placed through the tract made after a trocar, cannula, sheath, dilator, needle or other puncturing device, cutting, spreading or dissecting device is placed, then removed.
  • the restriction device 62 may also be placed through a direct incision. For example, an incision is made through the skin, and then finger dissection is used to create the tract through fat, fascia, muscle and other connective tissue.
  • a leash 90 is adjacent the first attachment portion 68 of the restriction device 62 and can be used to aid the insertion of the restriction device 62 .
  • forceps or graspers are used to grip the restriction device 62 and insert it through the trocar 18 or the tract, for example, at first site 8.
  • the first attachment portion 68 may be chosen as the grasping point.
  • the leash 90 may be chosen as the grasping point.
  • the leash 90 may be grasped at a flattened portion 92, which conforms to the jaws of the grasper or forceps.
  • the flattened portion 92 has ribs 94 which resist slipping of the grasping instrument.
  • FIG. 12 illustrates the restriction device 62 prior to attachment around the stomach.
  • Leash 90 is inserted through a hole 96 , from the internal diameter side 102 towards the external diameter side 104.
  • Leash 90 includes a tapered barb 98 which is larger in diameter than the hole 96 and a spaced portion 100.
  • leash 90 is pulled, for example with a laparoscopic grasper, while traction is applied to second attachment portion 70, until barb 98 is forced through hole 96. Because an elastomeric material is used to construct leash 90 and second attachment portion 70, temporary deformation occurs, allowing the parts to lock together, and forming the restriction device 62 into a closed configuration, as can be seen in FIG. 13.
  • FIG. 14 illustrates the restriction device 62 after the trimming of leash 90.
  • the entire length of the inflation tube 42 must be inserted into the abdominal cavity because the proximal end 44 of the inflation tube 42 needs to be located laparoscopically and then inserted through an opening in the locking mechanism 34 in order to lock the inflatable ring 32.
  • the drive transmission 66 need not be inserted completely, because the first attachment portion 68 and second attachment portion 70 are all that need be manipulated in order to lock the restriction device 62 together.
  • the drive transmission proximal end 84 does not need to be located within the abdominal cavity prior to the locking step.
  • FIG. 15 illustrates a restriction device 106 having an external perimeter 154 and a dynamic surface 152, which is allowed to constrict via a circumferential bellows 150.
  • a better view of the dynamic surface 152 is visible in the cross-section.
  • Interspersed between the thin walled portion 155 are ribs 156 that extend the majority of the width.
  • the ribs 156 serve to reduce the contact area of a belt or band that is tightened to restrict the dynamic surface 152 to a smaller diameter, and thus to lower the tensile requirement to constrict the restriction device 106.
  • the ribs 156 are made from the same material as the thin walled portion 155.
  • the material can be a foam, for example, a polyurethane foam, which allows for compression, and also allows the inner diameter of the restriction device 106 to expand sufficiently, in the case of high stress, for example the high stress due to vomiting.
  • the ribs 156 are made of a rigid metallic or polymeric material that is attached or embedded to the thin walled portion 155. In this manner, the diameter of the dynamic surface 152 can be compressed by using only a flexible rod that is pulled in tension. As the rod tightens, it creates a radial force on the ribs 156, causing a wider diameter portion to restrict. This is especially advantageous because now the extension portion 157 can be of smaller dimensions, because it only need accommodate a rod and not a wide belt.
  • FIG. 17 A cross-section of the restriction device 106 showing more detail of the circumferential bellows 150 is illustrated in FIG. 17. It can be seen that a bias force in the form of tension from a belt or a rod will act on the dynamic surface 152 causing it to compress the diameter. The extra wall contained in the bellows 150 allows this to occur without requiring the material to have to substantially stretch, and therefore, allows this restriction to take place with a lower tension or torque requirement. Also shown in FIG. 17 is seam 158, which can aid in the manufacturing process. The outer shell of the restriction device 106 is molded with this seam open, and then during manufacture, the internal workings, such as the belt, are placed inside. Finally, an outer layer, such as a silicone dip, is covered around the assembly.
  • an outer layer such as a silicone dip
  • a drive transmission 108 couples the restriction device 106 with an implantable interface.
  • the restriction device 106 has a first attachment portion 1 10 and a second attachment portion 1 12 which can be connected together, for example, around a body lumen such as the stomach.
  • the first attachment portion 1 10 and the second attachment portion 1 12 may also be disconnected from each other and reconnected to each other.
  • it is a benefit to be able to easily disconnect the first attachment portion 1 10 and the second attachment portion 1 12, for example, in the case of mis- positioning.
  • the reversible attachment mechanism comprises a leash 1 14 having a flattened portion 1 16 which can be easily gripped by laparoscopic instruments, such as a grasper. Ribs 118 aid in engaging a grasper jaw that has teeth.
  • a grasper is placed through the tunnel.
  • the grasper is used to grasp gripping surface 120 which may also include ribs 122 for tooth engagement.
  • the first attachment portion 110 is then pulled through the tunnel by the grasper, allowing the restriction device 106 to encircle the stomach or the area at the junction of the esophagus and stomach.
  • the grasper is now used to stabilize the first attachment portion, by means of either an external gripping surface 128 (both sides of the restriction device 106), an extended gripping surface 130, or an indented gripping surface 132.
  • the leash 1 14 While stabilizing the restriction device 106 using one of these gripping methods, another grasper is used to grasp the leash 1 14, for example at the flattened portion 1 16.
  • the tip 134 of the leash 114 is inserted through an entry hole 124 until the tip 134 exits through an exit hole 126.
  • the leash 1 14 comprises a male snap 142, which is configured to lock into a female snap 144 inside the first attachment portion 1 10.
  • the grasper that was used to insert the leash 1 14 through the first attachment portion 1 10 is now used to pull the leash 1 14 out the exit hole 126, and pull it taut until internally, and the male snap 142 is forced into the female snap 144.
  • a base portion 146 of the leash 1 14 is able to elastomerically stretch to allow this locking to take place, but also to assure that a first face 138 presses up tightly against a second face 140.
  • the elastomeric property of the base portion 146 also allows a certain amount of compliance to the restriction device 106, which, for example, allows the restricted diameter of the restriction device 106 to temporarily open up during high stress events, such as vomiting, thus protecting the stomach from slippage or erosion. If the position of the restriction device 106 is considered acceptable, the tip 134 of the leash 114 is inserted by the grasper into a slack insertion hole 148, so that the slack of the leash is stored out of the way.
  • the grasper is used to grasp the leash 1 14 at the exit hole 126, where it remains accessible.
  • the leash 114 can be decoupled from the first attachment portion 1 10 by pulling it our of a split region 136.
  • Split region 136 can be inherent, or it can alternatively be peel-away. Because the relevant portions of the first attachment portion 1 10 are desirably made from elastomeric materials, there is sufficient compliance to allow multiple disconnections and reconnections.
  • laparoscopic cutters can be used to cut the slack portion of the leash 1 14. For example, by cutting the leash 1 14 at the exit hole 126 and removing the excess portion with laparoscopic graspers.
  • FIG. 20 illustrates an implantable obesity control system 160 in accordance with an embodiment of the present invention.
  • the implantable obesity control system 160 comprises a restriction device 162, an implantable interface 164 and a drive transmission 166.
  • the restriction device 162 is implanted in the patient so that it creates a stoma and controllably restricts the size of an opening between the stoma and the remainder of the stomach.
  • the restriction device 162 is laparoscopically placed into the abdominal cavity and configured in a position surrounding the stomach.
  • the restriction device 162 is placed through a trocar, or alternatively is placed though the opening created after a trocar is inserted and then removed.
  • the restriction device 162 may be implanted in a patient such that a contact surface of the restriction device 162 at least partially engages a surface of the gastrointestinal tract, such as the stomach and/or the esophagus of the patient.
  • the restriction device 162 may contact, touch, attach to, affix to, fasten to, access, penetrate (partially or completely) or otherwise engage the surface of the stomach and/or the esophagus.
  • the implantable interface 164 is placed subcutaneously at a site that may be subsequently accessed using an external device (168 in FIG. 21) but that does not interfere with the patient's mobility.
  • Some example sites that may be used include below the collar bone, above the navel, and below the ribs.
  • FIGS. 21 and 22 illustrate an external device 168 for use with the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention.
  • the restriction device 162 may be adjusted using the external device 168 without the need for penetrating the skin or entering any of the body's natural orifices.
  • the external device interface 169 of the external device 168 is first placed adjacent the implantable interface 164, and the restriction device 162 may then be adjusted via the interaction of the external device interface 169 with the implantable interface 164 to its desired size or configuration (e.g., FIG. 22).
  • the external device interface 169 may be manipulated by rotation about an axis using a motor device.
  • the external device interface 169 may be manually rotated about an axis in order to adjust the size or configuration of the restriction device 162.
  • the restriction device 162 may be used to restrict the esophagus or stomach for the treatment of obesity
  • the device 162 can be used for other restriction applications, such as gastro-esophageal reflux disease (GERD), artificial sphincters (e.g. anus or urethra), annuloplasty, and full or partial occlusion of blood vessels, such as the pulmonary artery, or blood vessels supplying a cancerous area.
  • GSD gastro-esophageal reflux disease
  • sphincters e.g. anus or urethra
  • annuloplasty e.g. anus or urethra
  • full or partial occlusion of blood vessels such as the pulmonary artery, or blood vessels supplying a cancerous area.
  • the external device 168 comprises the aforementioned external device interface 169 which in certain embodiments has one plane of free movement via a pivot 170.
  • the external device 168 may comprise a base 171 having a handle 172.
  • the external device 168 may be battery operated, as illustrated in FIG. 21, while in certain embodiments the external device 168 may be powered from external electricity and may include a power cord.
  • the external device 168 may be configured to use batteries that may be rechargeable. The batteries may reside within the base 171 of the external device 168 and may be held in place by the battery cover 173.
  • Buttons 174 near the handle 172 are thumb operated and include generic symbols for “off,” “clockwise rotation” and “counter-clockwise rotation,” or “off,” “tighten,” and “loosen.”
  • a display 175 allows the physician or health professional performing the adjustment procedure to visualize the current size or configuration of the restriction device 162. For example, the diameter, circumference, setting number (e.g. "1" through “10") or cross-sectional area of the restriction device 162 may be visualized.
  • the display may also show patient information, such as procedure dates, the patient's name, or other statistics.
  • FIG. 23 illustrates the restriction device portion of the implantable obesity control system of FIG. 20 in accordance with an embodiment of the present invention.
  • the body portion 176 of the restriction device 162 comprises two attachment portions 177 and 178. When the attachment portions 177 and 178 are not attached to each other, the body portion 176 may conform to a linear shape that may be placed into the abdominal cavity though the inner lumen of a cannula.
  • the restriction device 162 is configured so that it will dimensionally fit through the internal diameter of a 15 mm or 12 mm trocar 18. It is also configured so that it will dimensionally fit through the tract made by insertion and removal of a 10 mm or 12 mm trocar 18.
  • the restriction device 162 may be placed through a tract made after a trocar, cannula, sheath, dilator, needle or other puncturing device is placed and then removed.
  • the restriction device 162 may also be placed through a direct incision.
  • the body portion 176 is oriented around the stomach or esophagus, the attachment portions 177 and 178 are joined, creating a substantially encircling configuration.
  • the body forms a substantially circular shape when joined using both attachment portions 177 and 178, in other embodiments the body may form a shape that is substantially oval, square, triangular or another shape when both attachment portions 177 and 178 are joined.
  • the body portion 176 may comprise a biocompatible material such as silicone or polyurethane.
  • the external surface of the biocompatible material can be further altered in order to increase biocompatibility.
  • a biocompatible material may be used to completely encapsulate a material that is not known to be biocompatible.
  • the body portion 176 may also have holes (not illustrated) configured for the attachment of sutures, so that the restriction device 162 may be secured to the body.
  • the restriction device 162 may be attached to the stomach using sutures.
  • the restriction device 162 may have grooves or hooks configured for the securing of suture material. This allows the restriction device 162 to be easily secured to the stomach wall in order to prevent slippage of the device or prolapse of the stomach.
  • the attachment portions 177 and 178 may be made from the same material as the body portion 176.
  • the attachment portions 177 and 178 may be made from various polymeric or metallic materials.
  • the attachment portions 177 and 178 may be laparoscopically detached, or a section of material adjacent to the attachment portions 177 and 178 may be laparoscopically severed if removal of the restriction device 162 is ever necessitated.
  • FIG. 24 illustrates a cross section of the restriction device portion 162 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention.
  • the body portion 176 comprises an outer housing 179, a central cavity 180 and an inner distensible member 181.
  • a dynamically adjustable band 182 resides between the housing 179 and the inner distensible member 181.
  • the dynamically adjustable band 182 comprises a secured end 183 and a movable end 184.
  • the secured end 183 may be coupled to the body portion 176 using any fastening method, including insert molding, overmolding, adhesive bonding, thermal bonding, or mechanical attachment.
  • the movable end 184 is capable of moving to either increase or decrease the operative contact length of the dynamically adjustable band 182. This change in the operative contact length serves to act upon the inner distensible member 181, causing it to increase or decrease its effective perimeter, which allows for the dynamic adjustment of the size or shape of the opening between the stoma and the stomach.
  • the inner distensible member 181 is configured to cushion the wall of the stomach from any high stress concentrations imposed by the dynamically adjustable band 182, as well as minimize any pinching or folding of the stomach wall by the movement of the dynamically adjustable band 182.
  • the central cavity 180 may be pre-inflated with an incompressible material, such as silicone oil, in order to create further cushioning. If pre- inflated, this also creates the desirable situation that if there were to be break in any structure, the restriction device 162 would not draw in a large amount of body fluid.
  • FIG. 25 illustrates an inner section of the restriction device portion of the implantable obesity control system of FIG. 20 in accordance with an embodiment of the present invention.
  • the dynamically adjustable band 182 can comprise a variety of materials such as stainless steel, ELGILOY, superelastic NITINOL, polyester and Nylon (for example Nylon 6/6) that allow a small thickness with high tensile strength. It can alternatively be made from a metallic or high-strength KEVLAR mesh material encapsulated in a polymeric material.
  • the dynamically adjustable band 182 is configured with grooves 185 that allow engagement by a worm gear (186 in FIG. 24).
  • the worm gear 186 is housed within a gear housing 187 comprising an upper housing 188 and a lower housing 189.
  • the drive transmission 166 is configured to turn the worm gear 186 in either rotational direction.
  • the drive transmission 166 may turn the worm gear 186 in the clockwise direction to tighten the band 182 and in the counter-clockwise direction to loosen the band 182.
  • the drive transmission 166 comprises a drive shaft 190 which turns inside a sheath 191.
  • the drive transmission 166 may be permanently attached to the restriction device 162 and the implantable interface 164, or it may be configured attach to and detach from the restriction device 162, the implantable interface 164, or both the restriction device 162 and the implantable interface 164.
  • the drive transmission 166 may be permanently attached to the restriction device 162
  • the drive transmission 166 may be temporarily attachable to and detachable from the implantable interface 164.
  • the implantable interface 164 may be replaced, while leaving the restriction device 162 and the drive transmission 166 in place. The new implantable interface 164 can then be attached to the drive transmission 166.
  • the implantable interface 164 may thus be replaced without the need for placement of laparoscopic trocars.
  • the drive transmission 166 may be attachable to and detachable from both the restriction device 162 and the implantable interface 164.
  • the implantable obesity control system 160 may thus use two or more drive transmissions 166 of differing lengths.
  • the appropriate length drive transmission 166 may be chosen based on what best fits the anatomy of the patient in addition to the chosen surgical configuration. Additionally, if a drive transmission 166 fails while the implantable obesity control system 160 is in use, then a replacement drive transmission 166 may be attached laparoscopically to the restriction device 162 and the broken drive transmission may be removed. [00161] FIG.
  • the drive shaft 190 comprises an inner coil 192, a middle coil 193, and an outer coil 194.
  • all three of the coils 192, 193, 194 are wound with multi-filars of wire 195.
  • the direction of winding for the outer coil 194 and the inner coil 192 are the same, while the middle coil 193 is wound in the opposite direction.
  • This three layer configuration allows for torque transmission in either direction. For example, when the drive shaft 190 is turned in one direction, the outer coil 194 compresses and the middle coil 193 expands, causing them to support one another. When the drive shaft 190 is turned in the opposite direction, the middle coil 193 compresses and the inner coil 192 expands, causing them to support each other.
  • the wires 195 are made from spring tempered 304V stainless steel of diameters ranging from .003" to .015," but can also be made from a variety of materials, including ELGILOY, NITINOL and other metals.
  • the drive shaft 190 can be made resistant to kinking, which may occur during the implantation procedure.
  • the wires 195 have a diameter of, for example, .008.”
  • the three coils may be connected to each other at the ends using any conventional joining technique, such as welding, brazing, soldering, adhesive, or epoxy.
  • the drive shaft 190 can be made from a braid reinforced polymeric tube or rod.
  • the drive shaft 190 can be made from a multi-link transmission shaft.
  • the drive shaft 190 may be made from a metallic tube that has been laser machined in a way that creates a mechanically linked pseudo-spiral pattern.
  • the drive shaft 190 may simply be made from a single wire, for example a superelastic or NITINOL wire.
  • FIG. 27 illustrates the sheath 191 portion of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention.
  • the sheath 191 which houses the drive shaft 190, may comprise a composite configuration, including an inner layer 196, braiding 197, an intermediate layer 198 and an outer layer 199.
  • the inner layer 196 comprises a material with high lubricity, such as a fluoropolymer.
  • Sample fluoropolymers include polytetrafluoroethylene (PTFE) and ethylene tetraflurorethylene (ETFE).
  • the use of high lubricity materials may reduce friction between the stationary sheath 191 and the turning drive shaft 190.
  • the braiding 197 supplies mechanical strength though tension, compression and/or torsion and maintains the sheath 191 in a round cross-section as the sheath 191 is placed in a flexed configuration.
  • the braiding material may comprise 304 stainless steel, ELGILOY, MP35N, L-605 or a high strength polymeric material such as KEVLAR.
  • the braiding 197 can be replaced by a metallic coil made from any of the aforementioned materials. For example, a NITINOL coil which serves to resist kinking of the sheath.
  • the intermediate layer 198 comprises a material that encapsulates the braiding 197 and gives mechanical characteristics to the sheath 191, such as stiffness or torsional rigidity.
  • the intermediate layer 198 may be of a low enough rigidity that the sheath 191 is able to curve and comfortably fit within the patient, but of a high enough rigidity that the sheath 191 is not able to bend into a small bend radius that would cause failure of the drive shaft 190.
  • the intermediate layer 198 may also comprise a material that allows adherence between the inner layer 196 and the outer layer 199.
  • the outer layer 199 comprises a biocompatible material such as silicone, polyurethane or ETFE.
  • FIG. 28 illustrates the drive shaft 190 portion which connects to the attachment portion (209 in FIG. 29) of the implantable interface 164 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention.
  • FIG. 29 illustrates the attachment portion 207 of the implantable interface 164 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention.
  • the end of the drive shaft 190 includes a keyed element 200 including a raised portion 201 and an undercut portion 202.
  • the keyed element 200 may also include a first lead in 203 and a second lead in 204.
  • the end of the sheath 191 includes a barb 206.
  • the attachment portion 207 of the implantable interface 164 as shown in FIG. 29 comprises a keyhole 208 and a dynamic snap 209.
  • the dynamic snap 209 has an interior ramp 210 , a mechanical detent 21 1 and relieved area 212 having a reverse ramp 213.
  • the implantable interface 164 may also contain an elastic orifice (214 in FIG. 30).
  • the first lead in 203 is guided through the interior ramp 210 and the raised portion 201 is forced through the dynamic snap 209, flexing it outward until the raised portion 201 reaches the relieved area 212.
  • the keyed element 200 engages in the keyhole 208.
  • This attachment allows for axial securement and rotational communication between the implantable interface and the drive shaft.
  • the barb 206 engages with the internal diameter of the elastic orifice 214 to create a hermetic seal to protect the inner workings of the connection from the body fluids.
  • FIG. 30 illustrates a front view of the implantable interface 164 portion of the implantable obesity control system 160 of FIG.
  • the implantable interface 164 comprises an interface housing 215 and a rotatable frame 216.
  • the interface housing 215 includes suture tabs 223 for securing the implantable interface 164 to a patient.
  • the suture tabs 223 may be used to secure the implantable interface 164 to fascia covering muscular layers beneath the skin and fat of a patient.
  • the rotatable frame 216 contains several permanent magnets 217.
  • the permanent magnets 217 are configured to magnetically engage a complimentary configuration on the external device interface 169 of the external device 168 of FIGS. 21 and 22 above.
  • the permanent magnets 217 of the implantable interface 164 and the external device 168 are configured to create the maximum attraction to each other while also inhibiting the rotational slippage between the rotating portions of each component. This is achieved by using permanent magnets 217 which are shaped as wedges or sectors, and are oriented so that each consecutive permanent magnet 217 faces an opposite direction.
  • the magnets 217 may be arranged in a north-south-north-south alternating configuration.
  • the magnet material comprises rare earth magnet materials, such as Neodymium-Iron-Boron (Nd-Fe-B), which have exceptionally high coercive strengths.
  • Nd-Fe-B Neodymium-Iron-Boron
  • the individual Nd-Fe-B magnets are enclosed within a stainless steel casing or various layers of nickel, gold or copper plating to protect the corrosive Nd-Fe-B material from the environment inside the body.
  • other magnetic materials may be used, including SmCo5 (Samarium Cobalt) or AlNiCo (Aluminum Nickel Cobalt).
  • Iron Platinum Fe-Pt
  • Iron platinum magnets achieve a high level of magnetism without the risk of corrosion, and may possibly preclude the need to encapsulate.
  • the permanent magnets 217 on the implantable interface may be replaced by magnetically responsive materials such as Vanadium Permendur (also known as Hiperco).
  • the rotatable frame 216 of the implantable interface 164 is caused to rotate via the rotation of the magnets on the external device interface 169 of the external device 168.
  • the magnets on the external device are on a rotatable frame with the magnets themselves having a higher magnetism than those on the implantable interface 164.
  • the magnets on the external device 168 may also be permanent magnets of the same sector shape as the implantable interface 164, but may be of a much larger thickness or diameter.
  • the external device 168 may incorporate one or more electromagnets instead of permanent magnets. It can be appreciated that the implantable device has relatively few components and does not include a motor or electronics, thus creating a simpler, less costly, more reliable device with a higher likelihood of functioning many years after implantation.
  • FIG. 31 illustrates a rear view of the implantable interface portion 164 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention.
  • the rotatable frame 216 of the implantable interface 164 is coupled to a first bevel gear 218 which then causes the rotation of a second bevel gear 219.
  • the second bevel gear 219 is coupled to the drive shaft 190 (either permanently or by the attachable/detachable method described earlier).
  • a gear ratio of less than 1 :1 may be used (e.g. 1 :3) in order to slow the rotation of the drive shaft 190, and to increase the torque delivery to the worm gear 186 of the restriction device 162.
  • the rotatable frame 216 is forced against a clutch 221 by a spring (222 in FIG. 30).
  • the clutch 221 frictionally holds the rotatable frame 216 so that no rotational movement can occur, for example, during patient movement or exercise.
  • the magnetic engagement between the magnets of the external device interface 169 of the external device 168 and the permanent magnets 217 of the implantable interface 164 forces the rotatable frame 216 to move axially towards the external device 168, compressing the spring 222 and releasing a clutch interface 224 of the rotatable frame 216 from the clutch 221.
  • FIG. 32 illustrates a direct front view of the implantable interface 164 portion of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention.
  • the rotatable frame 216 has a square orifice 226 which is able to slide axially over a square cross-section hub 225, without allowing rotation between the two parts.
  • the rotatable frame 216 is magnetically pulled off of the clutch 221 and thus there is free rotation of the rotatable frame 216 caused by the rotation of the corresponding mechanism of the external device 168.
  • FIG. 33 illustrates a radio frequency identification (RFID) chip 220 near the implantable interface portion 164 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention.
  • RFID radio frequency identification
  • An RFID (radio frequency identification) chip 220 may be implanted in a patient during the implantation of the implantable obesity control system 160.
  • the RFID chip 220 may be implanted subcutaneously in a known location, such as a location near the implantable interface 164. In other embodiments, the RFID chip 220 may be located within the implantable interface 164.
  • the external device 168 Upon the implantation of the restriction device 162, the external device 168 stores patient information on the RFID chip 220, including the current size of the restriction device 162, the amount adjusted, the serial number of the restriction device 162, the date of the procedure, patient name, flow rate of a test fluid through the stoma, and identification.
  • patient information on the RFID chip 220 including the current size of the restriction device 162, the amount adjusted, the serial number of the restriction device 162, the date of the procedure, patient name, flow rate of a test fluid through the stoma, and identification.
  • flow rate measurements and various sensors reference is made to U.S. Provisional Patent Application No. 60/880,080 filed on January 1 1, 2007 which is incorporated by reference as if set forth fully herein.
  • This application includes fully external sensors for detecting flow through the gastrointestinal lumen as well as sensors integral or incorporated with the gastric band for detecting flow through the gastrointestinal lumen, and other characteristics.
  • the external device 168 may read the RFID chip 220 to determine information related to the patient, such as the current size of the restriction device 162.
  • the external device 168 may store updated patient information, including the size of the restriction device 162, to the RFID chip 220.
  • An RFID antenna (not shown) in the external device 168 may be used to power the RFID chip in order facilitate the read and write functions.
  • the size may be determined indirectly by the number of rotations of the rotatable assembly of the external device 168. In certain embodiments, the size may be determined by the number of rotations of the rotatable frame 216 of the implantable interface 164, by the number of rotations of any one of the gears or shafts of the implantable interface 164, or by the number of rotations of the restriction device 162 itself. In certain embodiments, a feedback mechanism, such as a Hall effect device (two additional magnets that move axially in relation to each other as drive shaft rotates and therefore as the restriction device constricts or loosens), may be used to determine the current size of the restriction device 162.
  • a Hall effect device two additional magnets that move axially in relation to each other as drive shaft rotates and therefore as the restriction device constricts or loosens
  • an optical encoder feedback mechanism may be used by placing an optical encoder in the gear box of either the external device 168, the restriction device 162 or the implantable interface 164.
  • a through-the-skin optical encoder is even envisioned that shines a light through the skin and fat and counts successive passes of a one or more reflective stripes on the rotatable frame 216 or magnets 217.
  • the external device may include an audio sensor to determine the current size of the restriction device 162. For example, the sensor may listen to the cycling sound of gearing, thus giving feedback information on the amount of total adjustment.
  • any of the materials of the restriction device 162, the implantable interface 164, the drive transmission 166 or even the external device interface 169 of the external device 168 can be made from radiopaque materials, so that the position, condition or alignment of the components may be seen during the initial surgical procedure, or during the subsequent adjustment procedures.
  • portions of the dynamically adjustable band 182 may be made radiopaque to allow the use of fluoroscopy to determine the dimension of the restrictive device 162.
  • two components on the drive transmission (one that is stationary and one that moves axially with rotation) may each be radiopaque so that the measurement of the distance between the two components on a scaled x-ray will give the current size of the restriction device.
  • one or more trocars are placed into the abdomen of the patient.
  • the abdominal cavity is insufflated, such as by using CO 2 , thus creating a space within which to perform the procedure.
  • Laparoscopic dissecting tools are placed through trocars and under the visualization of a laparoscope tissue is dissected near the junction of the stomach and the esophagus.
  • the restrictive device 162 is placed into the abdominal cavity.
  • the restrictive device 162 is placed into the abdominal cavity through one of the trocars, while in certain embodiments the restrictive device 162 is placed into the abdominal cavity through a tract made by inserting and removing a trocar.
  • the restrictive device 162 is laparoscopically placed around the desired section of the stomach and/or esophagus and secured.
  • the implantable interface 164 may be attached subcutaneously by suturing the interface 164 to the fascia.
  • the external device 168 is placed against the outer surface of the skin, with the external device interface 169 placed adjacent the implantable interface 164.
  • the external device 168 is operated so as to magnetically adjust the restrictive device 162 via the implantable interface 164.
  • FIGS. 34 and FIG. 35 illustrate an implantable interface 248 which is configured to allow non-invasive adjustment of the restriction device.
  • the implantable interface 248 comprises a housing 256 and a strain relief 254.
  • the housing 256 is preferably made from rigid, implant-grade biocompatible materials such as PEEK, titanium or polysulfone.
  • the strain relief is preferably made from elastomeric, implant-grade materials such as silicone, polyurethane or a silicone-urethane copolymer, such as Elast-eonTM.
  • the housing 256 may also be coated with an elastomeric material such as silicone, polyurethane or a silicone-urethane copolymer.
  • the implantable interface 248 is coupled to the drive transmission 202 of the restriction device (e.g., restriction device 230 of FIG. 42).
  • the drive transmission 202 comprises a drive shaft 250 and a sheath 252.
  • the housing 256 comprises a first magnet cover 258, a second magnet cover 260 and an articulation 262.
  • the strain relief 254 is coupled to the articulation 262, allowing the adjustment of an angle ( ⁇ ) for placement and securement to a patient.
  • FIG. 35 shows the angle ( ⁇ ) adjusted to about 45° while FIG. 34 shows the angle ( ⁇ ) adjusted to close to 0°. Other angles may be desired, for example 180°.
  • the housing 256 comprises a plurality of suture tabs 266 having suture holes 264, aiding in suturing the implantable interface 248 to the fascia.
  • the implantable interface 248 is attachable to and detachable from the drive transmission 202, allowing the restriction device 230 and the drive transmission 202 to be inserted together into the abdomen, for example through a trocar-made hole in the abdominal wall.
  • FIG. 36 illustrates the implantable interface 248 with the first magnet cover 258 removed.
  • a cylindrical magnet 270 is secured within a turret 268 which is capable of rotation.
  • the cylindrical magnet 270 is poled north-south across its diameter, as shown. Note, though two 180° sectors are shown, alternative poling, such as four 90° sectors, alternating north-south-north-south are conceived, for example by incorporating more than one magnet, as are other variations of sector angle and sector number.
  • First miter gear 272 is coupled to a shaft 276. Both cylindrical magnets 270 are coupled to the same shaft 276. When both cylindrical magnets 270 are rotated by an external device 278, external to the patient, it causes shaft 276 and first miter gear 272 to turn. First miter gear 272 is rotatably engaged with second miter gear 274, which therefore is forced to turn when first miter gear 272 turns in response to rotation of cylindrical magnets 270. Second miter gear 274 is coupled to drive shaft 250, and so the forced rotation of the second miter gear 274 causes the rotation of the drive shaft 250.
  • bevel gears are used in place of the miter gears, for example, wherein the second (or follower) gear has a larger number of teeth than the first gear, then less torque is required to rotate the shaft 276, and drive shaft 250 rotates at a slower rate.
  • the drive shaft 250 is capable of delivering torque. It can be made, for example, from a triple coil configuration, wherein the inner and outer coils are would in one direction and the middle coil is wound in the opposite direction.
  • the wires are made from 304 stainless steel or ELGILOY or NITINOL or other metallic or polymeric materials.
  • the drive shaft 250 can be made from a braided tubing (polymeric tubing with embedded braiding). This braiding can be 304 stainless steel, ELGILOY, NITINOL, KEVLAR or other metallic or polymeric materials.
  • the triple coil type drive shaft and the braided tube type drive shaft can both also be made with a core wire or rod in the center, for increased strength properties.
  • the drive shaft 250 can be made of a single wire, for example a .010" to .030" NITINOL wire.
  • NITINOL in any of the drive shaft configurations, especially in its superelastic state, makes for a more kink resistant drive shaft.
  • FIG. 37B illustrates the implantable interface 248 implanted within the abdominal wall 288 of a patient.
  • the implantable interface 248 is implanted beneath the skin 280 and the subcutaneous fat 282 and is secured to the fascia 284 covering the muscle 286 by suture 290 or other means.
  • the body forms a fibrous capsule around the implantable interface 248.
  • the implantable interface 248 is shown in FIG. 37B in a preferred configuration, with the strain relief 254 extending through the fascia 284 and muscle 286.
  • an external device 278 is placed on the skin surface opposite the implantable interface 248.
  • the external device comprises an external device housing 292 having a flattened surface 296 for placement on the skin 280.
  • the surface for placement on the skin 280 can be contoured to match that of the abdomen.
  • the external device 278 is held in place using a handle 294.
  • the external device is clamped to the patient or held in place by means other than the attending operator's hands.
  • Batteries 300 power a motor 298 which is operated via a switch 301.
  • the switch 301 has three settings: an off setting, an operation of the motor in one rotational direction and an operation of the motor in the opposite rotational direction.
  • the motor 298 rotates a motor pulley 302, which then drives a cylinder 304 by means of a belt 308 and a cylinder pulley 306. It is conceived that other means of operation are all within the scope of causing rotation of the cylinder 304.
  • Attached to the cylinder are four drive magnets 310, shown in FIG. 38.
  • the drive magnets are poled as shown (through their thickness) so that alternating north-south faces are seen as the cylinder rotates.
  • Beneath each drive magnet 310 is a back iron 312.
  • the drive magnets are made from rare earth magnetic materials, such as Neodymium-Iron-Boron (Nd-Fe-B), which have exceptionally high coercive strengths.
  • the Nd-Fe-B magnets are enclosed within a stainless steel casing or a plating to protect the corrosive Nd-Fe-B material from the environment inside the body.
  • other magnetic materials including SmCo5 (Samarium Cobalt) or AINiCo (Aluminum Nickel Cobalt).
  • Iron Platinum (Fe-Pt) may be used. Iron platinum magnets achieve a high level of magnetism without the risk of corrosion, and may possibly preclude the need to encapsulate.
  • the permanent magnets used on the implantable interface may be replaced by magnetically responsive materials such as iron-cobalt-vanadium alloy (also known as HIPERCO).
  • the back iron 312 is preferably made from steel (AISI 1018) and may be coated, for example with Parylene, but the back iron 312 can also be made of stainless-steel.
  • the back iron 312 preferably measures about half the thickness of the drive magnet.
  • the back iron serves to force most of the magnetic field in direction A, creating improved coupling with the cylindrical magnets 270 of the implantable interface 248.
  • FIG. 40 An alternative embodiment is shown in FIG. 40.
  • this single magnet implantable interface 322 there is only one cylindrical magnet 270, giving the implantable interface 322 an "L" shape instead of a "T" shape.
  • the benefit is that this configuration can be secured within the abdominal wall of the patient with a smaller "footprint", and thus with less bother to the patient, either cosmetic or comfort related.
  • FIG. 41 demonstrates this configuration.
  • An alternative single magnet implantable interface 324 is illustrated in FIG. 41 in place within the abdominal wall 288.
  • An additional feature of this alternative embodiment is a planetary gearbox 326, which can change the gear ratio to lessen the torque requirement and/or lower the rotational speed, without addition diameter to the housing.
  • the sheath 252 of the drive transmission 202 is preferably made with a coil reinforced configuration.
  • the inner layer is polyethylene, polypropylene, nylon, polyurethane, PTFE, FEP, PFA, ETFE or other relatively low friction polymers.
  • the coil is made from stainless steel, ELGILOY, NITINOL, MP35N and serves to maintain a round inner diameter, and keep sheath 252 from kinking. This is important because the drive shaft 250 should in turn be free to rotate inside the sheath, even as sheath takes a curved configuration in the body over the life of the implant, due to patient movement.
  • the entire outer surface of the restriction device 230, drive transmission 202 and implantable interface 248 are preferably made from implantable biocompatible materials, such as silicone, polyurethane or a silicone-urethane copolymer, such as Elast-eonTM.
  • the outer surface may be made more lubricious via the embedding of Parylene.
  • the external device may also include a torque meter that measures the torque during adjustment in order to determine whether the magnets are engaged, and thus is able to count rotations, and thus, the degree of adjustment of the restriction.
  • the external device may also use electromagnets in order to generate the magnetic fields which will couple with the implantable interface magnets.
  • the magnets of the implantable interface 248 may also have back irons in order to tailor the magnetic fields.
  • the back iron may be steel (AISI1018) with Parylene coating, nickel and gold coating or other coating to assure biocompatibility.
  • FIG. 42 illustrates an alternative embodiment of the restriction device 230 having a sliding section.
  • a belt 336 is attached permanently at the first attachment portion 338.
  • the belt 336 has grooves 340 which are engaged by a worm 342 which is turned by a drive shaft 344, for example, a magnetically driven drive shaft.
  • the grooves 340 of the belt 336 are engaged by the threads of the worm 342, causing the perimeter of the belt 336 to either increase or decrease.
  • This causes a female section 348 to slide over a male section 346 to either increase or decrease the inner diameter of the restriction device 230.
  • An advantage of this configuration is that the restriction device 230 does not need to be made of compressible materials, such as foam.
  • FIG. 43 illustrates an alternative embodiment of an implantable interface 400.
  • a drive transmission 202 comprising a drive shaft 250 and a sheath 252 is coupleable to the implantable interface 400.
  • the implantable interface 400 comprises a housing 402 a flexible strain relief 404 and a magnetically driven rotational assembly 406.
  • the magnetically driven rotational assembly 406 comprises a turret 408 and four magnets 410.
  • the turret 408 includes a keyed orifice 412, for example in the shape of a hexagon, which can be engaged by a corresponding male shape, for example a hex 418 at the end of the drive shaft 250 (see FIG. 44).
  • the turret 408 also serves to hold the magnets 410 in their preferred configuration. Note that other numbers of magnets may be used, for example six instead of four. In the configuration illustrated, the magnets a poled through their thickness and oriented in an alternating manner (north-south-north-south) so that they are presented at the top face 414 to couple with a driving magnet or magnetic array in an external device (not pictured).
  • FIG. 44 illustrates the drive shaft 250 and the sheath 252 prior to being coupled to the turret 408 of the implantable interface 400.
  • the sheath 252 has wings 416 which are inserted into the flexible strain relief 404 and locked into the wing lock 424 (see FIG. 45), while the hex 418 is inserted into the keyed orifice 412.
  • the shape does not have to be a hexagon, and can be any keyable or friction engageable shape.
  • FIG. 45 illustrates a cross- section of the implantable interface 400 after it has been sutured into a patient and after several weeks have passed, wherein the body has grown a fibrous capsule 426 around the implantable interface 400.
  • the implantable interface 400 has been secured to the fascia 284 covering the muscle 286 by use of suture 290.
  • the implantable interface 400 was originally inserted through an incision 428 and into a tunnel 430 between the skin 280 and fat 282 and the fascia 284 and muscle 286.
  • the suturing is done through suture holes 422 in suture tabs 420. If necessary, the implantable interface 400 may be subsequently removed from the drive transmission 202 and replaced by another implantable interface of the same design or of a different design.
  • FIG. 46 illustrates an external device 472 for driving the implantable interface 400 of FIGS. 43-45.
  • External device 472 comprises a head 474, a handle 476 and an articulation 478 that allows adjustment of the angle of the head 474 in relation to the handle 476.
  • front face 480 is placed against skin 280, opposite implantable interface 400.
  • driving magnets 482 are arrayed on turret 484 in staggered (north-south-north-south) orientation.
  • the turret 484 can be rotated within a housing 486 of head 474.
  • Back iron 488 is approximately 50% of the thickness of each of the driving magnets 482.
  • Back iron is a flat ring disk made from steel 1018, with an inner diameter matching the inner arc and an outer . . . f , t ... . t . , ⁇ y ⁇ u> a mree position switch controlling the operation of a motor which is either off, rotating clockwise or rotating counter-clockwise.
  • the motor controls the rotation of the turret 484.
  • the back iron 488 serves to orient the magnetic fields so that they are optimized in the direction of the implantable interface 400, and thus maximize magnetic coupling.
  • the outer diameter of the magnet/back iron assembly is approximately 150% that of the diameter of the magnetically driven rotational assembly 406 of the implantable interface 400.
  • the larger diameter of the magnet/back iron assembly in relation to the magnetically driven rotational assembly 406 allows for sufficient magnetic coupling, even if the external device 472 is not perfectly centered and angularly oriented in relation to the implantable interface 400.
  • the spacing 492 between the driving magnets 482, also minimizes attraction between each of the adjacent magnets which may be antagonistic to the extent of coupling between the external device 472 and the implantable interface 400.
  • An exemplary spacing is 5° to 15°. It should be noted that at maximum torque transfer, the poles of the driving magnets 482 are not perfectly aligned with the opposite poles of the magnets 410, but rather there is a nominal angular offset
  • FIGS. 47-49 An alternative securing mechanism for an implantable interface 432 is illustrated in FIGS. 47-49.
  • securing implantable couplers for example injection ports for hydraulic gastric bands, using suture inserted through suture holes, can be time consuming and can sometimes lead to a port that is not evenly sutured at every suture location. This can lead to flippage of the port.
  • An improvement for securement of both ports for hydraulic gastric bands, ports for other purposes or for the implantable interfaces described within the scope of this invention is illustrated in FIG. 47.
  • the implantable interface 432 comprises a central portion 434, which may include a diaphragm (in the case of an injection port) or a magnetic assembly (in the case of a magnetically driven interface).
  • the implantable interface 432 also comprises an outer portion 436 which includes keyholes 438 and rotatable coils 440.
  • the rotatable coils 440 are rotated by placing a driver into one of the keyholes 438 and turning it.
  • the rotatable coils 440 are connected to a driven head, for example a hex head, and the driver can be a matching hex head.
  • the interface surface 442 is placed on top of the fascia and a slight force is placed on the implantable interface 432.
  • a driver is placed into one of the keyholes 438 and into the hex head which is attached to one of the rotatable coils 440.
  • the tip 444 of the rotatable coils 440 is sharp, so that it easily imbeds in the fascia. As the rotatable coil 440 is turned clockwise, the tip 444 embeds deeper and deeper into the fascia. All rotatable coils 440 can be secured into the fascia separately, or a gearing system, such as a planetary gearing system, can be used so that only one keyhole 438 is necessary, and allows the tightening of all rotatable coils 440 in unison.
  • FIG. 48 illustrates the implantable interface 432 with the coils 440 retracted
  • FIG. 49 illustrates the implantable interface 432 with the rotatable coils 440 tightened.
  • the rotatable coils 440 may be axially free within the keyholes, so that only the circumferential engagement into the fascia causes them to advance axially (like a wood screw).
  • the rotatable coils 440 may be within a tapped structure within the keyholes 438 so that the turning of the rotatable coils 440 by the driver causes a specific axial engagement with each turn (as the tip 444 moves circumferential Iy it is also forced axially at a specific rate). If it is desired to remove the implantable interface 432, the rotatable coils 440, can be turned counterclockwise to remove them from the fascia.
  • the rotatable coils 440 be contactable by an electrosurgical device, in order to heat the tissue surrounding the rotatable coils 440, in order to promote local scarring and better hold the rotatable coils 440 in place. Because the securement of the rotatable coils is most important in the first several weeks (for example two weeks to six weeks), and in various applications is less important after this period (when the fibrous capsule has formed over the implantable interface 432), it is conceived that the rotatable coils 440 may be detachable, for example in the cases wherein easy removal of the implantable interface 432 is desired. Another way of achieving this is by making the rotatable coils 440 from a material that is biodegradable or bioabsorbable and will disappear in a time period after the important several weeks. An example of such material is magnesium.
  • FIG. 50 illustrates an alternative embodiment to the implantable interface using a resonance method to make the drive cable 250 rotate.
  • the resonance mechanism 446 comprises a frame 448, a circular ratchet plate 450, a first resonance beam 452, a second resonance beam 454, a first pawl 456, a second pawl 458, a first magnet 460 and a second magnet 462.
  • the first magnet 460 and the second magnet 462 are attached respectively to the first resonance beam 452 and the second resonance beam 454.
  • the two resonance beams are attached to the frame 448 at one end by use of a clamp 464.
  • An external device having a rotating magnet or a pistoning magnet is operated using a specific repeating frequency that is identical to the resonating frequency of the first resonance beam 452.
  • the external device consisting of a rotating magnet
  • the repetitive attraction and repulsion of the first magnet 460 causes the first resonance beam 452 to oscillate in direction (D) at an amplitude (A). If this frequency of the rotating magnet is increased or decreased, the first resonance beam 452 will not oscillate at its resonant frequency, and therefore will resist the development of sufficient amplitude (A).
  • second resonance beam 454 has a resonance frequency of 180 Hz, it will not sufficiently oscillate when the external magnet is rotated at 100 Hz.
  • a first pawl 456 attached to the first resonance beam 452 engages and moves ratchets 466 of the circular ratchet plate 450, causing the plate to turn, for example .010" tangentially with each cycle.
  • the disk will turn (100 /sec)(.010")/3.14" or about one turn every three seconds.
  • the resonance activated rotation of the circular ratchet plate 450 causes gearing 468 to engage and thus turns shaft 470 to which is attached drive shaft 250. If this first direction of rotation corresponds to the compression of the restriction device, then the relaxation of the restriction device can be achieved by operating the external device so that the magnet rotates at 180 Hz, which is the resonant frequency of the second resonance beam 454. Now the second resonance beam 454 will oscillate at 180 Hz at an amplitude of A', causing a second pawl 458 to engage and move circular ratchet plate 450 in the opposite direction, thus causing the drive shaft 250 to turn in the opposite direction, and to relax the restriction device.
  • a single resonance beam structure centered on the frame, can be used that allows the single beam to pivot to one side or the other of the circular ratchet plate (depending on the direction of rotation of the external magnet).
  • the beam pivots to one side of the circular ratchet plate and causes the ratchet plate to turn in a second direction.
  • the beam pivots to the opposite side of the circular ratchet plate and causes the ratchet plate to turn in a fourth direction, opposite of the second direction.
  • the implantable interface using the resonance mechanism can be implanted so that it touches a bone structure so that an external vibrator placed close to the bone (for example the rib) will cause the resonance of the beams at the selected frequencies.
  • FIG. 51 illustrates a system 1400 for driving an internally located driven magnet 1402 of an implanted device 1403 via an external device 1406 using a feedback mechanism .
  • One or more implanted driven magnets 1402 are coupled magnetically through the skin 1404 of a patient 1408 to one or more external drive magnets 1410.
  • a rotation or movement of the external drive magnets 1410 causes an equal rotation of the driven magnets 1402.
  • Turning the driven magnets 1402 in one direction 1412 causes a restriction device 1414 to close while turning the driven magnets 1402 in the opposite direction causes the restriction device 1414 to open. Changes to the restriction device 1414 diameter are directly proportional to the number of turns by the one or more drive magnets 1410.
  • the drive magnets 1410 are rotated by the external device 1406, which has an electric gear motor 1416 which is controlled by a programmable logic controller (PLC) 1418.
  • the PLC 1418 outputs an analog signal 1420 to a motor drive circuit 1422 which is proportional to the motor speed desired.
  • the PLC 1418 receives an analog signal 1424 from the motor drive circuit 1422 that is proportional to the current draw of the motor.
  • the gear motor's 1416 current consumption is proportional to its output torque.
  • An electronic torque sensor may be used for this purpose.
  • the PLC 1418 receives a pulsed input signal 1426 from an encoder 1428 that indicates the angular position of the drive magnets 1410.
  • the PLC 1418 controls a spring loaded braking system 1430 that automatically stops the drive magnet 1410 if there is a loss of electrical power or other emergency.
  • a slip clutch 1432 is included between the gear motor 1416 and the drive magnet 1410 to prevent the gear motor 1416 from over torqueing the driven magnet 1402 and potentially damaging the implanted device 1403.
  • the PLC 1418 has a built in screen 1434 to display messages and a keypad 1436 for entering data. External push button switches and indicator lights may be incorporated for user comfort and ease of use.
  • the motor current (output torque) is monitored continuously whenever the device is turning. If the motor current exceeds the maximum allowable current (based on safety requirements of the device components and/or patient tissue) the gear motor 1416 is stopped and the brake 1430 is applied. This can be done both in software and hardware.
  • the mechanical slip clutch 1432 also prevents over torqueing of the device.
  • An exemplary threshold torque is 3.0 ounce-inches.
  • Each patient will have a number that corresponds to the diameter of their restriction. A fully open device will have a number such as 2.80cm for its internal diameter and a fully closed device will have a number such as 1.50cm.
  • This number can be stored on an electronic memory card 1438 that the patient 1408 carries.
  • the PLC 1418 can read the current number from the memory card 1438 and update the number after adjustment.
  • the patient's number can be recorded manually in the patient's chart and kept at the physician's office or printed on an information card that the patient carries. Alternatively, the information can be stored on and read from an RFID chip implanted in the patient.
  • the patient's number is first entered into the PLC 1418 so it knows the patient's starting point. If the patient's records are completely lost, the system can always fully open the restriction device 1414 (a known starting point). The number of turns to fully open the restriction device 1414 can be counted and the device can then be returned to the same restriction position.
  • a physician may adjust the restriction device 1414 several ways.
  • An absolute move to a new restriction diameter may be entered directly.
  • a patient 1408 currently at 2.00cm diameter may need to be adjusted to 1.80cm diameter.
  • the physician simply enters the new diameter and presses a 'GO' button.
  • the physician may prefer a relative (incremental) move from the current diameter.
  • Each press of a button will cause the device to open or close a fixed amount, say 0.20cm of restriction diameter, or 0.02 cm.
  • buttons which open/close the restriction device 1414 as long as the button is held.
  • the PLC 1418 slowly ramps up the speed of the gear motor 1416 while monitoring the motor current (torque).
  • a known minimum drive torque must be present for verification that the magnetic coupling to the restriction device is locked and not slipping.
  • the minimum torque value can be a curve that is stored in the PLC 1418 that is based on the current restriction device 1414 diameter, the direction of movement (opening/closing), even the model number or serial number of the restriction device.
  • FIGS. 52, 53, and 54 illustrate an alternative embodiment of a restriction device 800 having a first attachment portion 802 and a second attachment portion 804.
  • First attachment portion 802 comprises a tab 806 having an indentation 808 and a molded end piece 810 having a end grasping fin 812.
  • the restriction device 800 also comprises a constrictable section 814 made up of deformable segments.
  • the restriction device 800 also comprises a drive extension 818 which houses the actuating mechanism 820, seen in FIGS. 56-58.
  • the drive transmission is not shown, but extends from end 822 of drive extension 818.
  • End 822 of drive extension 818 comprises drive grasping fins 826.
  • Second attachment portion 804 comprises latching mechanism 824, which is described in more detail in FIGS. 58-62.
  • a grasper is placed through the tunnel made in the pars flaccida approach and the first attachment portion 802 is grasped by tab 806, as the first attachment portion 802 of the restriction device 800 is pulled through the tunnel.
  • the laparoscopic grasper pulls by grasping the end grasping fin 812.
  • the laparoscopic grasper pulls by grasping the entire thickness of the restriction device 800 at the first attachment portion 802.
  • each of the laparoscopic graspers may be placed through its own 5 mm trocar.
  • the tab 806 is then inserted into the latching mechanism 824 of the second attachment portion 804, and the first attachment portion 802 and the second attachment portion 804 are latched together.
  • the process can be reversed in a similar manner to unlatch.
  • FIG. 55 shows the first attachment portion 802 and the second attachment portion 804 latched together in this manner.
  • FIG. 58-62 illustrate the various steps of latching and unlatching, and are shown with the retention member 830 removed, for purposes of clarity.
  • FIG. 58 shows the tab 806 as it is being inserted.
  • FIG. 59 shows the tab 806 after it has been slid past the spring lock 832.
  • the spring lock 832 is angled so that it easily flexes while the tab 806 is slid by it during latching. However, the spring lock 832 will not allow the tab 806 to be unlatched as shown in FIG. 60.
  • the extreme edge of the spring lock 832 catches the edge inside the indentation 808 of the tab 806 at retention point 834.
  • Retention member 830 (not shown in FIG. 56) assures that the tab 806 is forced against the spring lock 832.
  • the slide 828 In order to unlatch, the slide 828 is grasped at wall 836 between depression 838 and the rest of slide 828, and is forced in direction (d), as shown in FIG. 61. Or the tip of a grasper or other surgical tool can be placed into the depression 838 to move the slide 828. This causes slide 828 to move over spring lock 832, forcing it down and covering it. This also releases the spring lock 832, from its locking arrangement with the tab 806. Tab 806 is now free and the first attachment portion 802 is unlatched from second attachment portion 804. Instead of a depression 838, alternatively, the slide 828 may have a fin or gripping surface. [00221] The actuation of the restriction device 800 is shown in sectional view in FIG. 56 and in FIG.
  • Restriction device 800 comprises a housing 842 having an outer wall 848, an inner surface 844 and an inner wall 846.
  • a belt 840 resides within an internal cavity 850.
  • the belt 840 may include the tab 806 at the first attachment portion 802, or the tab 806 may be a separate entity.
  • the belt 840 is coupled to a nut 852, for example, by means of a curved retaining portion 854 at the extreme end of the belt 840.
  • Rotation of drive shaft 856 turns coupling 858 which then turns screw 860.
  • Screw 860 can be made from a number of materials, including stainless steel, titanium, NITINOL, nylon or other metallic or polymeric materials.
  • the screw 860 has a matching female thread and is preferably a different material than the screw 860, to reduce static or dynamic friction.
  • nut 852 is made from bronze, acetal (Delrin), nylon, PEEK, stainless steel or other metallic or polymeric materials.
  • the screw 860 turns, the nut 852 moves axially.
  • the drive shaft 856 is turned clockwise (for example via magnetic coupling between an external device and an implantable interface)
  • the nut 852 moves in direction (a), as shown in FIG. 56. This tightens the belt 840, and thus constricts the restriction device 800.
  • a counter-clockwise rotation of the drive shaft 856 causes the nut to move in direction (b), thus loosening the belt 840, and lessening the constriction of the restriction device 800.
  • the screw 860 is held in tension by coupling 858 and bearing 862.
  • Bearing 862 may be, for example, a ball bearing constructed of ceramic, glass or sapphire.
  • the other elements of the actuating mechanism 820 can be made of MRI safe materials, such as many of those mentioned. This eliminates the possibility of movement of the restriction device 800 in the patient during an MRI scan, or heating of the restriction device 800, or interference or artifact on the image being created in a body area near the restriction device 800.
  • the belt 840 may be made of metallic materials or polymeric materials. For example, PET with a thickness of .005" to .015". NITINOL, with a thickness of .003" to .007". Nylon, with a thickness of .010" to .020". PVC, with a thickness of .012" to .024".
  • the belt 840 may also be made of stainless steel.
  • the multiple deformable segments 816 allow for a controlled constriction of the interior of the restriction device 800 as the device is constricted.
  • FIG. 63 illustrates a magnetic slip clutch 902 for use with an implantable interface 900.
  • Drive shaft 904 is coupled to hub 910.
  • Four clutch magnets 914 are coupled to hub 910 so that hub 910, clutch magnets 914, and drive shaft 904 rotate in unison.
  • Sheath 906 and flexible strain relief 908 are non-rotationally coupled to housing 916 of implantable interface 900.
  • Driven magnets 912 rotate together based on magnetic coupling between the drive magnets or electromagnets of an external device. The only coupling between the driven magnets 912 and the drive shaft 904 is via the magnetic coupling of each individual clutch magnet 914 to each individual driven magnet 912.
  • FIG. 64 illustrates an implantable obesity control system 1000 according to another embodiment of the invention.
  • the implantable obesity control system 1000 includes a restriction device 1002, an implantable interface 1010, and a drive transmission 1020.
  • the restriction device 1002 includes an adjustable body portion 1004 that changes the size and/or shape in response to the driving action of the implantable interface 1010 and coupled drive transmission 1020 (explained in detail below).
  • the adjustable body portion 1004 may include a flexible jacket 1006 that is shaped in an undulating or wavy-shape as illustrated in FIG. 64.
  • the flexible jacket 1006 may be formed from a biocompatible polymer such as, for instance, polyurethane silicone or a silicone-urethane copolymer, such as ELAST-EON.
  • An optional tab 1008 or the like may be secured to an exterior portion of the flexible jacket 1006 and used to hold or manipulate the restriction device 1002 during, for instance, placement and/or adjustment of the restriction device 1002.
  • the restriction device 1002 includes a connector 1012 that is used to secure the flexible jacket 1006 in the circular or looped configuration as illustrated in FIG. 64.
  • the connector 1012 includes a proximal portion 1014 that links the flexible jacket 1006 to the proximal aspects of the system 1000.
  • the proximal direction refers to a direction or location that is disposed toward or closer to the implantable interface 1010.
  • the distal direction refers to a direction or location that is disposed away from the implantable interface 1010.
  • the connector 1012 further includes a distal portion 1016 secured to a distal end of the flexible jacket 1006 that is configured to engage with the proximal portion 1014 of the connector 1012.
  • the distal portion 1016 of the connector 1012 includes a groove or recess 1018 that is dimensioned to receive the proximal portion 1014 of the connector 1012.
  • the proximal portion 1014 can be locked or fixedly secured with respect to the distal portion 1016 through the use of one or more tabs, detents, locking members and the like (described in more detail below).
  • the proximal portion 1014 and the distal portion 1016 of the connector 1012 may be unlocked to thereby open the flexible jacket 1006 from the circular or looped configuration as illustrated in FIG. 64
  • the system 1000 includes a drive transmission 1020 that, in one aspect of the invention, is used to translate rotational movement of a magnetic element (not shown in FIG. 64) contained in an implantable interface 1010 into linear movement of an actuator (not shown in FIG. 64) that adjusts the dimensions or configuration of an internal opening formed in the restriction device 1002.
  • FIG. 64 illustrates a housing portion 1022 that includes an interior aspect that contains the mechanical transmission elements for effectuating the translation of rotational movement into linear movement.
  • the housing portion 1022 is connected to an distal sheath or cover 1024.
  • the sheath 1024 includes a lumen therein (not seen in FIG.
  • the sheath 1024 may be formed from a spiral-wound wire (e.g., NITINOL) that is coated or covered on the exterior with a polymer tube or flexible coating (e.g., polyurethane).
  • the interior may also be optionally coated with a lubricious polymer coating (e.g., PTFE) to reduce frictional engagement with the moving components of the drive transmission 1020.
  • a proximal Iy located sheath or cover 1026 couples the housing portion 1022 to the implantable interface 1010.
  • the proximally located sheath 1026 also includes a lumen therein configured for receiving a rotational drive member such as drive cable or the like.
  • the proximally located sheath 1026 may be made of the same construction as described above with respect to the distal sheath 1024.
  • the proximal and distal sheaths/covers 1026, 1024 substantially prevent bodily fluids or the like from entering the housing portion 1022, implantable interface 1010, and the mechanical transmission elements contained in the sheaths/covers 1024, 1026.
  • FIG. 65 illustrates a cross-sectional view of the restriction device 1002.
  • the flexible jacket 1006 contains an inner lumen or recess 1028.
  • An actuating member 1030 is located within this lumen or recess 1028 and is fixedly secured at one end to the distal portion 1016 of the connector 1012.
  • the actuating member 1030 may include a filament, wire, tape, or other elongate structure.
  • the actuating member 1030 may include NITINOL wire having an outer diameter of around .0012 inches.
  • the actuating member 1030 may be secured to the distal portion 1016 of the connector 1012 using an adhesive, crimp or friction fit, weld, or anchor.
  • a stainless steel lug 1031 is bonded to the distal end of the NITINOL actuating member which is used to anchor the distal end of the actuating member in place.
  • a series of ribs 1032 are located within the jacket recess 1028.
  • the ribs 1032 are preferably spaced periodically about the recess 1028 with substantially constant spacing between at least some of the ribs 1032.
  • the location of the ribs 1032 are located in the radially inward portions of the undulating or wavy flexible jacket 1006.
  • the ribs 1032 advantageously assist the adjustable body 1004 to change its shape in a substantially uniform manner without any kinking or buckling of the material forming the flexible jacket 1006.
  • the actuating member 1030 passes over an outer portion of each rib 1032.
  • each rib 1032 may be used to properly orient and maintain contact between the actuating member 1030 and each rib 1032.
  • the actuating member 1030 is secured at one end to the distal portion 1016 of the connector 1012.
  • the actuating member 1030 then passes through the flexible jacket 1006 and out the proximal portion 1014 of the connector 1012.
  • the actuating member 1030 continues onward in the proximal direction until it reaches the housing 1022 (shown in FIG. 64).
  • the actuating member 1030 may be serially attached to an extension spring or analogous mechanism, that allows the constriction of the restriction device 1002 to open a limited amount during an acute event, such as violent vomiting, thus serving as a safety feature to protect the tissue of the patient's stomach or esophagus.
  • the actuating member 1030 may be attached at one of its two ends via a spring whose spring constant is chosen to coincide with the pressure seen during significantly violent vomiting, for example greater than 200 mm Hg. Because this pressure is higher than the upper pressure commonly seen in normal gastrointestinal tract mechanics (120 mm Hg), a mechanism of this nature will not inadvertently allow patients to easily gorge on food.
  • FIG. 66 illustrates a top down view of the connector 1012 with the proximal portion 1014 of the connector 1012 being in a locked configuration with respect to the distal portion 1016 of the connector 1012.
  • the distal portion 1016 of the connector 1012 includes a recess 1018 dimensioned to receive the proximal portion 1014 of the connector 1012.
  • the recess 1018 and/or proximal portion 1014 may be configured in a keyed arrangement such that the proximal connector portion 1014 may only be inserted into the distal portion 1016 of the connector 1012 in a correct orientation.
  • the distal connector portion 1016 includes a biased locking member 1036 that is affixed at one end to a surface of the recess 1018 of the distal connector portion 1016.
  • the biased locking member 1036 includes a free end 1038 that is used as a locking surface to retain the proximal and distal connector portions 1014, 1016 in a locked configuration.
  • the biased locking member 1036 may be made of a material (e.g., biocompatible polymer, metal, etc.) that naturally is biased to position the free end 1038 away from the surface of the recess 1018.
  • the proximal connector portion 1014 includes an indent or groove that has an engagement surface 1040 that contacts the biased free end 1038 of the locking member 1036. For example, if the distal connector portion 1016 were moved in the direction of arrow A, the free end 1038 of the biased locking member 1036 would contact the engagement surface 1040 and thus prevent the unlocking of the proximal and distal connectors 1014, 1016. [00232] Still referring to FIG.
  • a filament 1042 is secured to the biased locking member and terminates outside the connector 1012 via a passageway 1044 located in the distal connector portion 1016.
  • the passageway 1044 may include a hole or groove through which the filament 1042 can pass.
  • the filament 1042 may be made from, for example, suture filament or other biocompatible material.
  • the filament 1042 may be looped as is shown in FIG. 66 or it may be have one or more strands.
  • An exemplary material for the filament 1042 is monofilament polypropylene.
  • the filament 1042 may be made sufficiently long to pass along all or a portion of the length of the restriction device 1002, 1102 to terminate at or near the implantable interface 1010, 1 104.
  • a separate lumen may be used to hold the filament 1042 along the length of the restriction device 1002, 1102 and terminate at a location that is subcutaneous.
  • the restriction device 1002, 1 102 can be detached from the gastrointestinal tract (e.g., stomach) without completely removing the device 1002, 1 102 which can be done at a later time if need be.
  • the end of the filament 1042 is exposed and can be pulled proximally so as to detach the restriction device 1002, 1 102 from the site of interest.
  • the incision is closed with suture, and a determination can be made later whether the entire device 1002, 1102 needs to be removed via surgery, or if it can later be salvaged and laparoscopically reattached.
  • FIG. 67 illustrates a perspective cross-sectional view of the housing portion 1022 and proximal/distal covers 1026, 1024.
  • the housing portion 1022 includes end caps 1023 A, 1023B that seal the internal portions of the housing from the external environment.
  • a drive cable 1050 is located within the central lumen of the proximal sheath 1026.
  • the drive cable 1050 may be formed from, for example, the drive shaft 190 of FIG. 26 for improved torque response and kink resistance. For instance, NITINOL wire wound in a manner described in relation with FIG. 26, with the drive cable 1050 having an outer diameter of around .0057 inches may be used.
  • the drive cable 1050 is secured to a lead screw 1052 located in the housing portion 1022.
  • the drive cable 1050 may be secured to the lead screw 1052 using coupler 1054 which may include a section of tubing having different ID for insertion of the lead screw 1052 and drive cable 1050.
  • the section of tubing 1054 may be crimped or welded to the drive cable 1050 and lead screw 1052 to fixedly secure the drive cable 1050 and lead screw 1052 to one another.
  • the lead screw 1052 is rotationally held within the housing 1022 via two ball bearings 1056 mounted on opposing ends of the housing 1022.
  • the lead screw 1052 is rotational about the long axis of the housing 1022. Rotation of the drive cable 1050 thus results in rotation of the lead screw 1052.
  • the lead screw 1052 may be formed from a 300 series stainless steel 0-80 (or 2-120) lead screw.
  • a nut 1058 is rotationally mounted on the lead screw 1052 and is used to translate rotational movement into linear movement.
  • the nut 1058 may be made from, for example, brass and include an offset threaded hole 1059 for receiving the lead screw 1052. Rotation of the lead screw 1052 about its rotation axis thus causes the nut 1058 to move axially within the housing 1022.
  • the nut 1058 is bonded or otherwise affixed to the actuating member 1030.
  • the end of the NITINOL wire may pass through a hole or aperture 1061 formed in the nut 1058.
  • a plurality (e.g. four) of set screws may be threaded into holes or apertures 1063 to mechanically bind the actuating member 1030 to the nut 1058.
  • FIG. 68 illustrates a cross-sectional view of the implantable interface 1010 according to another aspect of the invention.
  • the implantable interface 1010 includes a housing 1062 in which is mounted a permanent magnet 1064.
  • the permanent magnet 1064 may be formed from, for example, a rare earth magnet such as Neodymium-Iron-Boron (NdFeB).
  • the permanent magnet 1064 is rod or cylindrical ly-shaped and is diametrically magnetized (poles are perpendicular the long axis of the permanent magnet 1064).
  • aluminum plates or axles 1066 are bonded to either end of the permanent magnet 1064.
  • the axles 1066 are dimensioned to fit within the inner races of ball bearings 1068 which are mounted at opposing ends of the housing 1062.
  • the permanent magnet 1064 is rotationally mounted within the housing 1062.
  • the housing 1062 is formed from a non-magnetic material (e.g., plastic, polymer, titanium or aluminum) and is substantially sealed from the external environment so as to prevent bodily fluids and other materials from entering the interior space, for example, with a silicone dip-coating.
  • the proximal end of the drive cable sheath 1026 (which is omitted from FIG. 68 for sake of clarity) may have a quick disconnect feature so that the drive cable 1050 and/or implantable interface 1010 may be rapidly changed.
  • the proximal end of the drive cable sheath 1026 includes a flanged end portion 1027 that is dimensioned to abut a sheath retaining nut 1046 that engages with mating threads 1048 located at one end of the housing 1062.
  • the flanged end portion 1027 and the retaining nut 1046 are permanently secured to the drive cable sheath 1026.
  • the retaining nut 1046 is preferably rotationally secured and the flanged end portion 1027 is sealingly secured.
  • the flanged end portion 1027 is inserted through a seal 1065 such as a compressible o-ring, which is nested within the housing 1062.
  • the o-ring 1065 substantially seals the interface between drive cable sheath 1026 and the housing 1062 of the implantable interface 1010.
  • one axle 1066 includes a recess 1070, for example, in the shape of a hexagon or the like (female connector) that receives a correspondingly shaped keyed end 1072 of the drive cable 1050 (male connector) as illustrated in FIG. 69.
  • FIG. 69 illustrates the proximal end of the drive cable 1050 cable including the keyed portion 1072.
  • the implantable interface 1010 is initially connected to the drive cable 1050 by inserting the keyed portion 1072 into the corresponding recess 1070 located in the axle 1066.
  • FIG. 70 illustrates an implantable obesity control system 1 100 according to another embodiment of the invention and includes a restriction device 1102, an implantable interface 1104, and a drive transmission 1 106.
  • the implantable obesity control system 1 100 is similar to that illustrated in FIG.
  • This embodiment thus uses a direct connection between the lead screw 1 1 12 and the permanent magnet 1 118 (as shown in FIG. 71). There is no need for a separate drive cable 1050 or other transmission means between the permanent magnet and the lead screw 1052. This embodiment is advantageous because of the reduced number of components and the small, compact nature of the overall device.
  • FIG. 71 illustrates a cross-sectional view of the two housings 1 108, 1 1 10.
  • Housing 1 108 includes lead screw 1 1 12, nut 1 1 14, and ball bearings 1 1 16 and may be sealed at the distal end via end cap 1 109.
  • the actuating member (not shown in FIG. 71) described above is secured to the nut 1 1 14 in via a receiving lumen 1 1 15.
  • Set screws (not shown) may be used to mechanically engage the actuating member via a plurality of threaded apertures 1 117.
  • the remaining housing 1 1 10 includes the permanent magnet 1 1 18 in addition an aluminum axle or spindle 1 120 that is mounted to one end of the magnet 1 1 18.
  • the proximal end of the lead screw 1 1 12 may have a keyed portion (e.g., hexagonal-shaped tip or end) that fits within a correspondingly-shaped recess or the like (not shown) in the axle 1 120 so that the implantable interface 1 104 may be quickly changed.
  • both housings 1 108, 1 1 10 could be replaced to exchange or change-out the implantable interface 1 104.
  • only a single bearing 1 1 16 is needed to rotationally secure the magnet 1 1 18 within the housing 1 1 10. The amount of torque on the opposing end of the magnet 1 1 18 is relatively low so there is no need for an additional bearing within the housing 1 1 10.
  • a second bearing (not shown) can be used.
  • the lead screw 1 1 12 and magnet 1 1 18 are arranged serially in this configuration, but alternatively they could be arranged in parallel, for example, wherein the magnet 1 1 18 imparts rotation to the lead screw 1 1 12 via a pair of spur gears.
  • the parallel arrangement allows for a shorter overall length of the assembly in relation to the serial arrangement, however the serial arrangement allows for a thinner, narrower assembly.
  • the appropriate arrangement can be chosen depending upon the desired clinical factors. For example, if the implantable interface is to be implanted in an area that undergoes a large amount of bending, the shorter, parallel arrangement may be preferred.
  • FIG. 72 illustrates an external magnetic driver 1 130 according to one aspect of the invention.
  • the external magnetic driver 1 130 may be used to externally impart rotational motion or "drive” a permanent magnet (e.g., magnets 1064, 1 1 18) located within an implantable interface (e.g., interfaces 1010, 1104).
  • the external magnetic driver 1 130 includes a motor 1 132 that is used to impart rotational movement to two permanent magnets 1 134, 1 136.
  • the motor 1 132 may include, for example, a DC powered motor or servo that is powered via one or more batteries (not shown) integrally contained within the external magnetic driver 1 130. Alternatively, the motor 1 132 may be powered via a power cord or the like to an external power source.
  • the external power source may include one or more batteries or even an alternating current source that is converted to DC.
  • the two permanent magnets 1 134, 1 136 are preferably cylindrically-shaped permanent magnets.
  • the permanent magnets may be made from, for example, a rare earth magnet material such as Neodymium-Iron-Boron (NdFeB) although other rare earth magnets.
  • NdFeB Neodymium-Iron-Boron
  • each magnet 1 134, 1 136 may have a length of around 1.5 inches and a diameter of around 1.0 to 3.5 inches. Both magnets 1 134, 1 136 are diametrically magnetized (poles are perpendicular the long axis of each permanent magnet 1134, 1 136).
  • the magnets 1 134, 1 136 may be contained within a non-magnetic cover or housing 1 137.
  • the magnets 1 134, 1 136 are able to rotate within the stationary housing 1 137 that separates the magnets 1 134, 1 136 from the external environment.
  • the housing 1 137 is rigid and relatively thin walled at least at the portion directly covering the permanent magnets 1134, 1 136, in order to minimize the gap between the permanent magnets 1 134, 1 136 and the internal magnet 1064.
  • the permanent magnets 1 134, 1 136 are rotationally mounted between opposing bases members 1 138, 1 140.
  • Each magnet 1 134, 1 136 may include axles or spindles 1142, 1144 mounted on opposing axial faces of each magnet 1134, 1136.
  • the axles 1142, 1 144 may be mounted in respective bearings (not shown) that are mounted in the base members 1 138, 1 140.
  • driven pulleys 1 150 are mounted on one set of axles 1 142 and 1 144.
  • the driven pulleys 1150 may optionally include grooves or teeth 1 152 that are used to engage with corresponding grooves or teeth 1 156 (partially illustrated in FIG. 73) contained within a drive belt (indicated by path 1 154).
  • the external magnetic driver 1130 includes a drive transmission 1160 that includes the two driven pulleys 1 150 along with a plurality of pulleys 1162a, 1 162b, 1 162c and rollers 1 164a, 1 164b, 1 164c on which the drive belt 1 154 is mounted.
  • the pulleys 1 162a, 1162b, 1162c may optionally include grooves or teeth 1166 used for gripping corresponding grooves or teeth 1 156 of the drive belt 1 154.
  • Pulleys 1162a, 1 162b, 1 162c and rollers 1 164a, 1 164b, 1 164c may be mounted on respective bearings (not shown). As seen in FIG.
  • pulley 1162b is mechanically coupled to the drive shaft (not shown) of the motor 1 132.
  • the pulley 1 162b may be mounted directly to the drive shaft or, alternatively, may be coupled through appropriate gearing.
  • One roller 1 164b is mounted on a biased arm 1170 and thus provides tension to the belt 1 154.
  • the various pulleys 1 150, 1162a, 1162b, 1162c and rollers 1 164a, 1 164b, 1 164c along with the drive belt 1 154 may be contained within a cover or housing 1 172 that is mounted to the base 1 138 (as seen in FIG. 74).
  • rotational movement of the pulley 1 162b causes the drive belt 1 154 to move around the various pulleys 1 150, 1 162a, 1 162b, 1 162c and rollers 1 164a, 1 164b, 1 164c.
  • rotation movement of the motor 1 132 is translated into rotational movement of the two permanent magnets 1134, 1136 via the drive transmission 1 160.
  • the base members 1 138, 1 140 are cut so as to form a recess 1174 that is located between the two magnets 1 134, 1 136.
  • the external magnetic driver 1130 is pressed against the skin of a patient, or against the clothing which covers the skin (e.g., the external driver 1 130 may be used through clothing so the patient may not need to undress).
  • the recess 1 174 allows skin as well as the underlying tissue to gather or compress within the recessed region 1 174. This advantageously reduces the overall distance between the external drive magnets 1 134, 1 136 and the magnet 1064, 1 1 18 contained within the implantable interface 1010, 1 104. By reducing the distance, this means that the externally located magnets 1134, 1136 and/or the internal magnet (e.g., 1064, 1118) may be made smaller.
  • the external magnetic driver 1130 preferably includes an encoder 1 175 that is used to accurately and precisely measure the degree of movement (e.g., rotational) of the external magnets 1 134, 1 136.
  • an encoder 1175 is mounted on the base member 1 138 and includes a light source 1 176 and a light receiver 1 178.
  • the light source 1 176 may includes a LED which is pointed or directed toward pulley 1 162c.
  • the light receiver 1 178 may be directed toward the pulley 1 162c.
  • the pulley 1 162c includes a number of reflective markers 1177 regularly spaced about the periphery of the pulley 1162c.
  • the digital on/off signal generated by the light receiver 1178 can then be used to determine the rotational speed and displacement of the external magnets 1 134, 1136.
  • FIGS. 75A, 75B, 75C, and 75D illustrate the progression of the external magnets 1 134, 1 136 and the internal magnet 1064 that is located within the implantable interface 1010 during use.
  • Internal magnet 1064 is shown for illustration purposes. It should be understood that the internal magnet may also include, for example, internal magnet 1 1 18 that is located within the implantable interface 1104 according to that alternative embodiment.
  • FIGS. 75 A, 75B, 75C, and 75D illustrate the external magnetic driver 1 130 being disposed against the external surface of the patient's skin 1 180. The external magnetic driver 1 130 is placed against the skin 1 180 in this manner to remotely rotate the internal magnet 1064.
  • the external magnetic driver 1 130 may be pressed down on the patient's skin 1180 with some degree of force such that skin and other tissue such as the underlying layer of fat 1 182 are pressed or forced into the recess 1 174 of the external magnetic driver 1 130.
  • the implantable interface e.g., 1010, 1 104 which contains the internal magnet 1064 (which is contained in a housing 1062 not shown in FIGS.
  • FIGS. 75A, 75B, 75C, and 75D are secured to the patient in an artificially created opening or passageway formed in or adjacent to the fascia layer 1 184 separating the layer of fat 1 182 from underlying abdominal muscle tissue 1 186. Underneath the abdominal muscle tissue 1 186 is the peritoneum 1 188.
  • the implantable interface 1 104 is secured to the patient via a clamp, sutures, screws, retaining members, or the like.
  • FIGS. 75A, 75B, 75C, and 75D omit these elements for sake of clarity to just show the magnetic orientation of the internal magnet 1064 as it undergoes a full rotation in response to movement of the permanent magnets 1 134, 1 136 of the external magnetic driver 1 130.
  • the internal magnet 1064 is shown being oriented with respect to the two permanent magnets 1 134, 1 136 via an angle ⁇ .
  • This angle ⁇ may depend on a number of factors including, for instance, the separation distance between the two permanent magnets 1 134, 1 136, the location or depth of where the implantable interface 1 104 is located, the degree of force at which the external magnetic driver 1 130 is pushed against the patient's skin. Generally, the angle ⁇ should be at or around 90° to achieve maximum drivability (e.g., torque).
  • FIG. 75A illustrates the initial position of the two permanent magnets 1 134, 1 136 and the internal magnet 1064.
  • FIG. 75A This represents the initial or starting location (e.g., 0° position as indicated).
  • the particular orientation of the two permanent magnets 1 134, 1 136 and the internal magnet 1064 will vary and not likely will have the starting orientation as illustrated in FIG. 75A.
  • the two permanent magnets 1 134, 1 136 are oriented with their poles in an N-S/S-N arrangement.
  • the internal magnet 1064 is, however, oriented generally perpendicular to the poles of the two permanent magnets 1 134, 1136.
  • 75B illustrates the orientation of the two permanent magnets 1 134, 1 136 and the internal magnet 1064 after the two permanent magnets 1 134, 1136 have rotated through 90°.
  • the two permanent magnets 1134, 1 136 rotate in the direction of arrow A (e.g., clockwise) while the internal magnet 1064 rotates in the opposite direction (e.g., counter clockwise) represented by arrow B.
  • the two permanent magnets 1 134, 1 136 may rotate in the counter clockwise direction while the internal magnet 1064 may rotate in the clockwise direction.
  • Rotation of the two permanent magnets 1 134, 1136 and the internal magnet 1064 continues as represented by the 180° and 270° orientations as illustrated in FIGS. 75C and 75D.
  • the permanent magnets 1 134, 1 136 may be driven to rotate the internal magnet 1064 through one or more full rotations in either direction to tighten or loosen the restriction device 1002 as needed.
  • the permanent magnets 1134, 1136 may be driven to rotate the internal magnet 1064 through a partial rotation as well (e.g., 1/4, 1/8, 1/16, etc.).
  • the use of two magnets 1 134, 1136 is preferred over a single external magnet because the driven magnet (e.g., 1064, 1118) may not be oriented perfectly at the start of rotation, so one external magnet 1 134, 1 136 may not be able to deliver its maximum torque, which depends on the orientation of the internal driven magnet (e.g., 1064, 1 1 18) to some degree. However, when two (2) external magnets (1 134, 1 136) are used, one of the two 1 134 or 1 136 will have an orientation relative to the internal driven magnet (e.g., 1064, 1 1 18) that is better or more optimal than the other. In addition, the torques imparted by each external magnet 1 134, 1 136 are additive.
  • the sliding, internal magnet may be driven via one or more externally-located permanent/electromagnets that slides or moves laterally (or moves the magnetic field) in a similar back-and-forth manner. Rotational movement of the externally-located magnetic element(s) may also be used to drive the internal magnet.
  • permanent magnets may be located on a pivoting member that pivots back and forth (like a teeter-totter) about a pivot point.
  • a first permanent magnet having a North pole oriented in a first direction may be located at one end of the pivoting member while a permanent magnet having a South pole oriented in the first direction is located at the other end of the pivoting member.
  • a ratchet-type device may be used to translate the pivoting movement into linear movement that can actuate or adjust the restriction device 1002, 1102.
  • the first and second internally-located permanent magnets may be driven by one or more externally located magnetic elements (either permanent or electromagnets). External motion of the electric field by linear or even rotational movement may be used to the drive the pivoting member.
  • FIG. 76 illustrates a system 1076 according to one aspect of the invention for driving the external magnetic driver 1 130.
  • FIG. 76 illustrates the external magnetic driver 1130 pressed against the surface of a patient 1077 (torso shown in cross-section).
  • the implantable interface 1010 located within the body cavity along with the adjustable body 1004 are illustrated.
  • the permanent magnet e.g., the driven magnet
  • the permanent magnet that is located within the implantable interface 1010 located inside the patient 1077 is magnetically coupled through the patient's skin and other tissue to the two external magnets 1 134, 1 136 located in the external magnetic driver 1 130.
  • one rotation of the external magnets 1134, 1136 causes a corresponding single rotation of the driven magnet (e.g., magnets 1064 or 1 1 18) located within the implantable interface (e.g., 1010, 1 104).
  • the motor 1 132 of the external magnetic driver 1 130 is controlled via a motor control circuit 1078 operatively connected to a programmable logic controller (PLC) 1080.
  • PLC programmable logic controller
  • the PLC 1080 may also select the rotational direction of the motor 1 132 (i.e., forward or reverse).
  • the PLC 1080 receives an input signal from a shaft encoder 1082 that is used to identify with high precision and accuracy the exact relative position of the external magnets 1 134, 1136.
  • the shaft encoder 1082 may be an encoder 1 175 as described above.
  • the signal is a pulsed, two channel quadrature signal that represents the angular position of the external magnets 1 134, 1 136.
  • the PLC 1080 may include a built in screen or display 1081 that can display messages, warnings, and the like.
  • the PLC 1080 may optionally include a keyboard 1083 or other input device for entering data.
  • the PLC 1080 may be incorporated directly into the external magnetic driver 1 130 or it may be a separate component that is electrically connected to the main external magnetic driver 1130.
  • a sensor 1084 is incorporated into the external magnetic driver 1 130 that is able to sense or determine the rotational or angular position of the driven magnet 1064, 1 1 18.
  • the sensor 1084 may acquire positional information using, for example, sound waves, ultrasonic waves, light, radiation, or even changes or perturbations in the electromagnetic field between the driven magnet 1064, 1118 and the external magnets 1 134, 1 136.
  • the sensor 1084 may detect photons or light that is reflected from the driven magnet 1064, 1 1 18 or a coupled structure (e.g., rotor) that is attached thereto.
  • light may be passed through the patient's skin and other tissue at wavelength(s) conducive for passage through tissue.
  • Portions of the driven magnet 1064, 1 1 18 or associated structure may include a reflective surface that reflects light back outside the patient as the driven magnet 1064, 1 1 18 moves. The reflected light can then be detected by the sensor 1084 which may include, for example, a photodetector or the like.
  • the senor 1084 may operate on the Hall effect, wherein two additional magnets are located within the implantable assembly.
  • the additional magnets move axially in relation to each other as the driven assembly rotates and therefore as the restriction device constricts or loosens, allowing the determination of the current size of the restriction device.
  • the sensor 1084 is a microphone disposed on the external magnetic driver 1 130.
  • the microphone sensor 1084 may be disposed in the recessed portion 1174 of the external magnetic driver 1130.
  • the output of the microphone sensor 1084 is directed to a signal processing circuit 1086 that amplifies and filters the detected acoustic signal.
  • the acoustic signal may include a "click" or other noise that is periodically generated by rotation of the driven magnet 1064, 1 118.
  • the driven magnet 1064, 1118 may click every time a full rotation is made. The pitch of the click may different depending on the direction of rotation.
  • each patient will have a number or indicia that corresponds to the current diameter or size of their restriction device 1002, 1 102.
  • a fully open restriction device 1002, 1 102 may have a diameter or size of around 2.90 cm while a fully closed device 1002, 1 102 may have a diameter or size of around 1.20 cm. This number can be stored on a storage device 1088 (as shown in FIG.
  • a RFID tag 1088 implanted either as part of the system or separately may be disposed inside the patient (e.g., subcutaneously or as part of the device) and can be read and written via an antenna 1090 to update the current size of the restriction device 1002, 1 102.
  • the PLC 1080 has the ability to read the current number corresponding to the diameter or size of the restriction device 1002, 1 102 from the storage device 1088.
  • the PLC 1080 may also be able to write the adjusted or more updated current diameter or size of the restriction device 1002, 1 102 to the storage device 1088.
  • the current size may recorded manually in the patient's medical records (e.g., chart, card or electronic patient record) that is then viewed and altered, as appropriate, each time the patient visits his or her physician.
  • the patient therefore, carries their medical record with them, and if, for example, they are in another country and need to be adjusted, the RPID tag 1088 has all of the information needed.
  • the RFID tag 1088 may be used as a security device.
  • the RFID tag 1088 may be used to allow only physicians to adjust the restriction device (1002, 1 102) and not patients.
  • the RFID tag 1088 may be used to allow only certain models or makes of restriction devices to be adjusted by a specific model or serial number of external magnetic driver 1130.
  • the current size or diameter of the restriction device 1002, 1 102 is input into the PLC 1080. This may be done automatically or through manual input via, for instance, the keyboard 1083 that is associated with the PLC 1080.
  • the PLC 1080 thus knows the patient's starting point. If the patient's records are lost, the PLC 1080 may be programmed to fully open the restriction device 1002, 1102 which is, of course, a known starting point. The number of turns required to meet the fully open position may be counted by the PLC 1080 and the restriction device 1002, 1102 can then be returned to the same restriction point.
  • the external magnetic driver 1 130 is commanded to make an adjustment.
  • the PLC 1080 configures the proper direction for the motor 1 132 and starts rotation of the motor 1 132.
  • the encoder 1082 is able to continuously monitor the shaft position of the motor directly, as is shown in FIG. 76, or through another shaft or surface that is mechanically coupled to the motor 1 132.
  • the encoder 1082 may read the position of markings 1 177 located on the exterior of a pulley 1162c like that disclosed in FIG. 72. Every rotation or partial rotation of the motor 1 132 can then be counted and used to calculate the adjusted or new size of the restriction device 1002, 1 102.
  • the sensor 1084 which may include a microphone sensor 1084, may be monitored continuously. For example, every rotation of the motor 1 132 should generate the appropriate number and pitch of clicks generated by rotation of the permanent magnet inside the implant 1010 (or implant 1 104). If the motor 1 132 turns a full revolution but no clicks are sensed, the magnetic coupling may have been lost and an error message may be displayed to the operator on the display 1081 of the PLC 1080. Similarly, an error message may be displayed on the display 1081 if the sensor 1084 acquires the wrong pitch of the auditory signal (e.g., the sensor 1084 detects a loosening pitch but the external magnetic driver 1 130 was configured to tighten). [00266] FIG.
  • the mount 1200 may be used to secure a variety of implantable apparatuses beyond the implantable interfaces discussed herein. This includes, for example, injection ports and other implantable interfaces usable with, for example, a gastric restriction device.
  • the mount 1200 includes a base 1202 having a plurality of holes 1204 dimensioned for passage of fasteners 1210 (shown in FIGS. 78, 79A, 79B, 79D, 79E, 80, 81, 82).
  • the mount 1200 also includes a receiving portion 1206 that is dimensioned to receive the implantable interface 1010. As seen in FIG.
  • the receiving portion 1206 is shaped in a hemi-cylindrical manner configured to receive the cylindrical shape of the implantable interface 1010.
  • the receiving portion 1206 may be dimensioned such that the implantable interface 1010 forms a friction or snap- fit within the mount 1200.
  • the implantable interface 1010 prior to fastening the mount 1200 to the patient's tissue, the implantable interface 1010 is secured to the mount 1200.
  • the implantable interface 1010 may be inserted or slid into the receiving portion 1206 after the mount 1200 is secured to the patient.
  • the mount 1200 may be configured as the implantable interface itself (as shown in FIG. 82).
  • FIG. 78 illustrates a fastening tool or instrument 1220 that is used to rapidly and securely affix the mount 1200 to the patient's tissue.
  • the fastening tool 1220 includes an elongate shaft 1222 with a proximally mounted knob 1224.
  • a grip or handle 1226 is located on the elongate shaft 1222 and is used by the physician to grasp the fastening tool 1220 during the placement process.
  • the distal end of the fastening tool 1220 includes a driving element 1228 that contains a recess or socket 1230 for holding the mount 1200.
  • Fastening tool 1220 is used to drive a plurality of fasteners 1210 through respective holes 1204 in the base 1202 to fixedly secure the mount 1200 to the patient's tissue.
  • rotational movement of the knob 1224 turns a central sun gear that, in turn, drives a series of outer gears within the fastening tool 1220 to rotate the individual fasteners 1210.
  • Rotational movement of the knob 1224 also moves the driving element 1228 in the direction of arrow A to either extend or retract the driving element 1228 depending on direction of rotation of the knob 1224.
  • FIG. 79A illustrates a side view of the driving element 1228 holding the mount 1200 and illustrating the fasteners 1210 in the fully deployed (e.g., extended) position.
  • FIG. 79B illustrates a cross-sectional view taken along the line B-B' of FIG. 79A.
  • FIG. 79C illustrates a cross-sectional view taken along the line C-C of FIG. 79A.
  • the driving element 1228 generally includes a lower base or interface 1232 on which are mounted a central gear 1236 and a plurality of outer gears 1238 (four are illustrated in FIG. 79C. Rotation of the central gear 1236 thus causes each of the four outer gears 1238 to rotate as well.
  • FIG. 79C illustrates a central gear 1236 and a plurality of outer gears 1238 (four are illustrated in FIG. 79C. Rotation of the central gear 1236 thus causes each of the four outer gears 1238 to rotate as well.
  • each of the outer gears 1238 is coupled to a corresponding shaft or driver 1240 (shown in phantom) that has as distal end configured for engaging with the fasteners 1210.
  • the distal end of the driver 1240 may include a keyed portion (e.g., hexagonally-shaped end) that mates with a correspondingly-shaped recess (e.g., hex-shaped recess) in the fastener 1210.
  • the drivers 1240 are thus rotationally mounted within the base 1232. Rotation of the central gear 1236 turns the outer gears 1238 which then turns the corresponding drivers 1240.
  • Each driver 1240 is mounted within a barrel or tube 1252 (also shown in phantom) having a lumen therein dimensioned for passage of the driver 1240.
  • the barrels or tubes 1252 may be machined, drilled, or molded within the base portion 1232 of the driving element 1228.
  • FIG. 80 illustrates a partially exploded view showing the drivers 1240 disposed within respective barrels 1252.
  • a plate 1242 is mounted above the central gear 1236 and outer gears 1238 and is used as a bearing surface that is used to move the base 1232 up or down as the knob 1224 is turned.
  • a hub 1244 is located above the plate 1242 and is coupled to the central gear 1236.
  • the hub 1244 includes a hole or recess 1246 for receiving a drive shaft 1250 (as seen in FIG. 80).
  • the drive shaft 1250 may be fixedly secured to the hub 1244 using a set screw (not shown) that is inserted into the hub 1244 via aperture 1248.
  • the driving element 1230 includes an upper housing 1234 that provides clearance for the base 1232 to move axially as the knob 1224 is turned. This allows for controlled delivery into the fascia.
  • FIG. 80 illustrates a partially exploded view of the distal end of the fastening tool 1220.
  • FIG. 80 illustrates four fasteners 1210 mounted at the end of each driver 1240. The four fasteners 1210 would pass through respective holes 1204 in the mount 1200 (as shown in FIG. 77). It should be noted that in one alternative embodiment the fasteners 1210 may be permanently, rotationally secured in the mount 1200.
  • FIG. 81 illustrates a perspective view of a fastener 1210.
  • the fastener 1210 may include a head 1212 portion along with a coil portion 1214.
  • the head 1212 may be formed separately and bonded to the coil 1214 or the head 1212 and coil 1214 may be formed in an integrated manner.
  • the head 1212 and coil 1214 may be formed from a biocompatible metallic material such as stainless steel, NITINOL, or the like. It may be preferred that a non-magnetic material like NITINOL or Titanium is used for all of the portions of the fastener 1210, so that there is no effect by any of the magnets, for example, during the adjustment procedure. While FIG.
  • the 81 illustrates a single coil 1214 originating from the head 1212, in other embodiments, there may be multiple, nested coils 1214 with different pitches affixed or otherwise mounted to a single head 1212.
  • the additional coils 1214 may impart added anchoring ability.
  • the coil 1214 may turn in the clockwise direction as illustrated in FIG. 81 or, alternatively, the coil 1214 may turn in the counter-clockwise direction.
  • the coil 1214 may include a sharpened tip or end 1215 to aid in penetrating the tissue. A simple beveled tip is ideal. If the tip is too sharp, it can cause the patient more pain.
  • the head 1212 preferably includes a recess 1216 that is dimensioned to interface with the distal end of the drivers 1240.
  • the recess 1216 is hexagonally-shaped which can then receive the hexagonally-shaped distal end of the drivers 1240.
  • the fastener 1210 may have a coil length of 4mm or less.
  • the wire forming the coil 1214 may have a diameter of around .020 inches and the coil 1214 may have an OD of around .100 inches and ID of around .060 inches.
  • the diameter of the head 1212 is around .150 inches.
  • the fasteners 1210 are pre-loaded into the fastening tool 1220 prior to use.
  • the mount 1200 may also be pre-loaded into the fastening tool 1220.
  • the mount 1200 may be loaded manually by the physician or surgeon prior to use.
  • the fasteners 1210 may include a number retention means so that the fasteners 1210 do not prematurely fall out of the fastening tool 1220.
  • the ends of the drivers 1240 may include a bump, detent, or tab that locks into the recess 1216 of the fastener head 1212.
  • an adhesive or the like may be used temporarily secure the fastener 1210 to the end of the drivers 1240.
  • an elastomeric membrane, ring or washer may be interposed between the fastener head 1212 and the barrel 1252 to provide a friction fit between the two to prevent premature release.
  • the mount 1200 may be affixed to the internal or external wall of the patient's abdomen as described in more detail below.
  • FIG. 82 illustrates a perspective view of a mount 1300 that is used to hold or otherwise secure a cylindrically-shaped permanent magnet 1302.
  • the permanent magnet 1302 is the "driven" magnet that is rotationally housed within the implantable interface (e.g, implantable interfaces 1010 and 1 104).
  • the mount 1300 includes an acoustic or sonic indicator housing 1304 that contains a magnetic ball 1306.
  • the interior of the housing 1304 includes a groove or track 1305 dimensioned to permit movement of the magnetic ball 1306 (e.g., rolling motion).
  • other magnetic structures capable of movement within the housing 1304 may also be used.
  • a roller or cylinder may be used in place of the magnetic ball 1306. Still referring to FIG.
  • first and second impact surfaces 1308, 1310 are disposed on opposing ends of the track 1305.
  • the first and second impact surfaces 1308, 1310 may include a plate, tine(s), or other projection that prohibits or stops movement of the magnetic ball 1306.
  • the mount 1300 is secured to the fascia by one or more helical fasteners 1312.
  • sutures or other fasteners may also be used to fixedly secure the mount 1300 to the patient.
  • the mount 1300 may also include a resonance chamber for amplifying the sound created by the magnetic ball 1306 and the first and second impact surfaces 1308, 1310.
  • the sonic indicator housing 1304 itself may made from an appropriate material and/or have an appropriate wall thickness or chamber size, so that it acts as the resonance chamber itself.
  • Another manner of creating a resonance chamber is by securing the mount 1300 to a more resonant portion of the body, for example a bony structure such as the sternum.
  • the mount 1300 may be secured to the fascia covering the sternum via the subcutaneous securement method, or it may be attached to the intra-abdominal wall, behind the sternum, or it may be attached to the sternum directly via bone screws or the like.
  • the mount 1200 depicted in FIG. 77 may be configured to act as a resonant structure.
  • FIGS. 83 through 98 schematically illustrate the acoustic indicator housing 1304 and driven magnet 1302 as the driven magnet 1302 is rotated in both the clockwise directions (arrow A) and counter-clockwise directions (arrow B).
  • the mount 1300 is used to create an acoustic signal (e.g., a click) that can be used to count rotational movement of the driven magnet 1302 and also determine its rotational direction.
  • An acoustic signal i.e., sound
  • FIGS. 83-90 illustrate rotation of the driven magnet 1302 in the clockwise direction (arrow A) while FIGS. 91-98 illustrate rotation of the driven magnet
  • the magnetic ball 1306 strikes the first impact surface 1308 two times (2x) per full rotation, with the first impact surface 1308 producing sound with a first amplitude and/or frequency.
  • the magnetic ball 1306 strikes the second impact surface 1310 two times (2x) per full rotation, with the second impact surface 1310 producing sound with a second amplitude and/or frequency.
  • the first impact surface 1308 is thinner than the second impact surface 1310, and thus, the first impact surface 1308 is configured to resonate at a higher frequency than the second impact surface 1310.
  • the difference in frequency can be achieved by making the first impact surface 1308 from a different material than the second impact surface 1310.
  • the amplitude of acoustic signal generated by the magnetic ball 1306 hitting the first and second impact surfaces 1308, 1310 may be used to discriminate rotational direction. For example, clockwise rotation may produce a relatively loud click while counter-clockwise rotation may produce a relatively quiet click.
  • the magnetic ball 1306 is made from a magnetic material, for example 400 series stainless steel.
  • the magnetic ball 1306 is attracted to both the south pole 1314 of the driven magnet 1302 and the north pole 1316 of the driven magnet 1302.
  • the driven magnet 1302 begins to rotate in the clockwise direction (arrow A).
  • the starting point of the magnetic ball 1306 is adjacent to the north pole 1316 of the magnet 1302.
  • the magnetic ball 1306 follows the north pole 1316. This continues until, as shown in FIG. 85, the magnetic ball 1306 is stopped by the second impact surface 1310. Now, as seen in FIG.
  • the magnetic ball 1306 is trapped against the second impact surface 1310, while the driven magnet 1302 continues to rotate.
  • the magnetic ball 1306 may roll at this point, but it is forced against the second impact surface 1310 by its attraction to the north pole 1316 of the magnet 1302, until the south pole 1314 becomes substantially closer to the magnetic ball 1306 as shown in FIG. 87, at which point the magnetic ball 1306 accelerates towards the first impact surface 1308 in the direction of arrow ⁇ , thereby hitting it (as seen in FIG. 88) and creating an acoustic signal or sound having a greater intensity than when the magnetic ball 1306 was stopped by the second impact surface 1310.
  • the magnetic ball 1306 follows the south pole 1314 of the driven magnet 1302 as seen in FIG. 89, and continues to follow the south pole 1314 until the magnetic ball 1306 is stopped by the second impact surface 1310 as seen in FIG. 90.
  • FIGS. 91 -98 illustrate the acoustic mechanism being activated by counterclockwise rotation of the driven magnet 1302.
  • the first impact surface 1308 serves to stop the magnetic ball 1306, and the magnetic ball 1306 accelerates and impacts the second impact surface 1310, creating a different acoustic signal.
  • the different acoustic signal may include a louder signal or a signal with a different frequency (e.g., pitch).
  • the driven magnet 1302 begins to rotate in the counter-clockwise direction (arrow B). As illustrated, the starting point of the magnetic ball 1306 is adjacent the south pole 1314 of the magnet 1302. As seen in FIG.
  • the magnetic ball 1306 follows the south pole 1314. This continues until, as shown in FIG. 93, the magnetic ball 1306 is stopped by the first impact surface 1308. As seen in FIG. 93, the magnetic ball 1306 is trapped against the first impact surface 1308, while the driven magnet 1302 continues to rotate. The magnetic ball 1306 may roll at this point, but it is forced against the first impact surface 1308 by its attraction to the south pole 1314 of the magnet 1302, until the north pole 1316 becomes closer to the magnetic ball 1306 as shown in FIG. 94, at which point the magnetic ball 1306 accelerates towards the second impact plate 1310 in the direction of arrow ⁇ , thereby hitting it (as seen in FIG.
  • each turn of the magnet 1302 creates two (2) relatively loud strikes, which can be detected by a non-invasive, external device comprising a sonic sensor, for example, a microphone (e.g., sensor 1084 in FIG. 76).
  • a non-invasive, external device comprising a sonic sensor, for example, a microphone (e.g., sensor 1084 in FIG. 76).
  • each turn represents 1/80 of an inch in the change of circumference, and thus each half turn represents 1/160 of an inch, or .00625".
  • a 0-80 lead screw e.g., 1052, 1 1 12
  • each half turn represents 1/160 of an inch, or .00625".
  • PI diametrical change of the restriction device (1002, 1 102) per half turn, or 0.05 mm. This is even less than the expected precision needed for operation, which is believed to be around 0.2 mm.
  • the mount 1300 thus provides a relatively simple, low-cost device in which the direction of the rotation (i.e., increasing diameter vs. decreasing diameter) can be automatically identified. Further, the mount 1300 is able to determine the exact number of half rotations in each direction.
  • the mount 1300 may be operatively integrated with a programmable logic controller (PLC) such as the PLC 1080 described herein.
  • PLC programmable logic controller
  • the PLC 1080 is be able to identify the direction of rotation via the frequency of sound, and then change the direction of rotation if this is not the desired direction.
  • the PLC 1080 is also able to count the number of half rotations until amount of restriction is achieved. If there is any slip between the magnets 1134, 1 136 of the external device 1 130 and the driven magnet 1302, the PLC 1080 will not detect the acoustic signal and thus will not count these as rotations.
  • FIG. 99 illustrates the sound 1320 detected from counter-clockwise rotation of the magnet 1302 and FIG. 100 illustrates the sound 1324 detected from clockwise rotation.
  • the acoustic "clicks" 1320 and 1324 look very similar to each other.
  • the frequency spectrum for the clicks one is able to discern differences between clockwise and counter-clockwise rotation of the magnet 1302.
  • FIG. 101 the frequency spectrum for the counter-clockwise rotation is centered at about 14 kHz
  • the spectrum for clockwise rotation (FIG. 102) is centered at about 18 kHz. This shift or change in center frequency can be used as a basis for determining the absolute rotational direction of the magnet 1302.
  • Gastric restriction-based devices for obesity control are all currently placed with their interface portion located subcutaneously.
  • Hydraulic-based gastric restriction devices have injection ports that are relatively large, and the method of placing these devices is usually one of the two following methods.
  • the first method involves placing the entire device, with the exception of the port, through a 15 mm trocar into the insufflated abdominal cavity.
  • the second method involves placing and then removing a 12 mm trocar and then placing the restriction device (without the port) into the abdominal cavity through the remaining tract in the tissue.
  • the 12 mm trocar is then replaced in order to maintain insufflation pressure.
  • a 12 mm trocar may have an OD that is greater than 12 mm but the trocar is still referred to as a "12 mm trocar.”
  • the present obesity control system has a comparatively small overall cross-sectional diameter throughout its entire length, and the device has the option of being placed with the implantable interface located either in a subcutaneous position, or the entire device can be placed completely intra-abdominal Iy. In either configuration, the relatively large incision heretofore required for the injection ports is not necessary. Because the entire device can fit down a 12 mm trocar, this incision is not required. The reason for the smaller overall cross-section diameter is multifold.
  • FIG. 103 illustrates a sagittal (i.e., lateral) section of an obese patient 1500 prior to laparoscopic implantation of the inventive obesity control system.
  • the abdominal cavity 1510 is located between the abdominal wall 1512 and the spine 1508. It should be noted that many of the major organs are not depicted for clarity sake.
  • the stomach 1506 can be seen beneath the liver 1504.
  • the sternum 1502 and diaphragm 1503 are also depicted, as is the naval 1514.
  • FIG. 104 a 12 mm trocar 1516 is placed through the abdominal wall 1512, for example above the navel 1514, so that the tip of the trocar 1516 extends into the abdominal cavity 1510. Insufflation is then created, for example by injecting CO 2 through a Luer connection in the trocar 1516 at a pressure of 15 mm Hg. Insufflation of the body cavity allows for enough separation, such that other trocars may be safely placed and organs can be better identified. As seen in FIG.
  • the inventive obesity control system 1518 including restriction device 1520, implantable interface 1524 and drive transmission 1522 can be completely placed through the 12 mm trocar 1516 with the use of a 5 mm grasper 1532, which comprises a grasping tip 1530, a shaft 1526 and a handle 1528.
  • the restriction device 1520 is grasped by the grasping tip 1530 of the 5 mm grasper 1532 and the obesity control system is placed into the abdominal cavity 1510.
  • the shaft 1526 of the 5 mm grasper 1532 can be placed in parallel with the restriction device 1520 and drive transmission 1522, until the restriction device 1520 is located completely within the abdominal cavity 1510.
  • the 5 mm grasper 1532 is then manipulated at the handle 1528 so that the grasping tip 1530 releases the restriction device 1520.
  • the 5 mm grasper 1532 is then removed, and can be used to help push the implantable interface 1524 completely through the 12 mm trocar 1516.
  • the implantable interface 1524 is depicted with foldable wings 1534 through which suture or other fasteners (such as helical coils) may be placed.
  • FIG. 106 depicts an alternative method of placing the obesity control system into the abdominal cavity.
  • the implantable interface 1524 is placed first, for example by pushing it through the 12 mm trocar 1516 with the 5 mm grasper 1532.
  • the 5 mm grasper 1532 is then used to place the obesity control system into the abdominal cavity 1510 by manipulation of the drive transmission 1522 through the 12 mm trocar 1516.
  • FIG. 107 depicts the obesity control system in position to be placed completely intra-abdominal Iy in the patient 1500, with the implantable interface located in the lower abdominal area.
  • FIG. 108 also depicts the obesity control system in position to be placed completely intra-abdominally, behind the lower portion of the sternum, and area known as xiphoid. Intra-abdominal placement has many advantages.
  • FIG. 109 demonstrates the configuration of an obesity control system that is placed when using the subcutaneous attachment of the implantable interface 1524.
  • FIG. 1 10 depicts the obesity control system after it has been completely secured in the subcutaneous method.
  • First and second sutures 1542, 1544 close the skin over the implantable interface 1524.
  • the implantable interface 1524 has been attached to the fascia 1536 with helical screws 1540.
  • FIG. 1 1 1 depicts the use of a suture passer 1546 having an actuator handle 1550 and a grasping tip 1552 configured for securing suture 1548.
  • the suture 1548 is grasped by the grasping tip 1552 via manipulation of the actuator handle 1550.
  • the suture 1548 is then passed through a small opening in the skin (e.g., a trocar hole), and the sharp grasping tip 1552 of the suture passer 1546 is forced through the remaining abdominal wall and through a hole in the foldable wing 1534 of the implantable interface 1524 (as seen in FIG. 1 12).
  • the implantable interface 1524 can be held stationary by using a separate grasper (not pictured).
  • the suture 1548 is released, once it has passed through the hole in the foldable wing 1534 and into the abdominal cavity 1510.
  • the suture passer 1546 is then removed and the suture is left in place as seen in FIG. 1 13.
  • the suture passer 1546 is then inserted through the abdominal wall at another site and through another hole of a second foldable wing 1534.
  • the suture 1548 is now grasped in the inside by the grasping tip 1552, as depicted in FIG. 1 14. This newly grasped end of the suture is then pulled back through the hole in the second foldable wing 1534 and then pulled out through the abdominal wall.
  • the suture passes 1546 is now released from the suture 1548 via manipulation of the actuator handle 1550.
  • the suture 1548 now loops into and out of the abdominal cavity and secures the implantable interface 1524 through two foldable wings 1534, as seen in FIG. 1 15. This may be repeated with other pieces of suture, for example if the implantable interface 1524 has four foldable wings 1534 instead of two.
  • the suture 1548 is then tied off in a knot 1554, to secure the implantable interface 1524 within the abdominal cavity, and the skin is closed with more suture 1556.
  • FIG. 117 describes an alternative method of performing implantation and securement of an obesity control system, using a single trocar 1558. Trocars, unfortunately, can leave scars on the skin and can also cause port-surgical pain.
  • FIG. 1 17 depicts the single site as having been chosen through the naval 1514 general area although, as explained above, other site locations may also be used.
  • the single trocar 1558 has three (3) 5 mm lumens 1560, 1562, 1564.
  • a 5 mm laparoscope 1566 is placed through lumen 1562.
  • the laparoscope 1566 comprises a distal end 1570 and a proximal end 1568, including a camera.
  • a 5 mm grasper 1572 having a grasping tip 1576 and a manipulating handle 1574 is placed through lumen 1564 and into abdominal cavity 1510.
  • the grasping tip 1576 of the 5 mm grasper 1572 carries a liver retraction magnet 1580 having clamp 1578 secured thereto.
  • the 5 mm grasper 1572 is configured to grasp the clamp 1578 in a manner so that when the clamp 1578 and magnet 1580 are delivered to the liver 1504, the clamp 1578 is open. [00299] While viewing on laparoscopy, the clamp 1578 is released by the 5 mm grasper 1572, causing it to engage the liver 1504, securing the magnet 1580 to the liver 1504.
  • the 5 mm grasper 1572 may also be used to retract the liver 1504 so that it is out-of-the-way from the surgical procedure in the area of the upper stomach.
  • An external magnet 1582 having a handle 1584 is placed on the outside of the upper abdomen and an attraction force, shown be field 1586 in FIG. 1 19, maintains the external magnet 1582 and the magnet 1580 together.
  • the liver 1504 is now retracted and the 5 mm grasper 1572 can be removed completely, or used for other purposes.
  • the single trocar 1558 is removed and the obesity control system is inserted through the tract made by the trocar 1558.
  • the jaws 1590 of a forceps 1588 are used to grip the obesity control system as it is inserted into the abdominal cavity 1510.
  • the trocar 1558 is replaced and the remaining portion of the implant procedure can be viewed through the laparoscope 1566 as seen in FIG. 121, while ports 1560 and 1564 are used for the placement of various instruments.
  • the creation of a tunnel for example in the pars flaccida method, can be performed with an articulating dissection tool.
  • FIG. 122 An alternative apparatus is shown in FIG. 122, and is configured to be placed through one of the ports of the trocar 1558.
  • the gastric restriction device 1602 is shown in- place around the stomach 1600, creating a small pouch 1610 just below esophagus 1604.
  • the wall of an upper portion 1606 and a lower portion 1608 adjacent the gastric restriction device 1602 are to be secured to each other.
  • a tool 1618 having a shaft 1612 and a handle 1622 grips a releasable clip 1614.
  • the tool 1618 is inserted through a port of the trocar 1558 and the releasable clip 1614 is advanced to close proximity of the upper portion 1606 and lower portion 1608.
  • Proximal grip 1616 is secured to the lower portion 1608 by manipulating first trigger 1624.
  • the lower portion 1608 is then manipulated close to the upper portion 1606 and then distal grip 1617 is secured to upper portion 1606 by manipulating second trigger 1626.
  • the releasable clip 1614 is released at separation point 1628 by pressing release button 1620.
  • the tool 1618 can be torqued as needed, and also, an articulation 1630 can be controlled by slide 1632 on the handle 1622. This allows the desired orientation to be achieved at each step.
  • a second releasable clip may be attached to the tool 1618 (or a different tool) and a parallel attachment can be made.
  • the entire gastric restriction device may be withdrawn from the patient via the trocar 1516, 1558.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Obesity (AREA)
  • Nursing (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Urology & Nephrology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Transplantation (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

An adjustable medical system includes an adjustable implant having an adjustable portion configured to the change dimension or orientation of an internal portion of a mammal and a driven portion comprising a magnetically responsive element configured for rotation about an axis of rotation. The system further includes an external adjustment device configured to magnetically couple to the driven portion from a location external to the mammal, the external adjustment device comprising a first permanent magnet configured for rotation about a first axis and a second permanent magnet configured for rotation about a second axis different from the first axis. Cooperative rotation of the first permanent magnet about the first axis and rotation of the second permanent magnet about the second axis result in rotation of the magnetically responsive element about its axis of rotation.

Description

ADJUSTABLE IMPLANT SYSTEM
Field of the Invention
[0001] The field of the invention generally relates to medical devices for accessing and controlling dimensions of body lumens and cavities along a mammalian alimentary canal, including devices for treating obesity and gastroesophageal reflux disease (GERD).
Background of the Invention
[0002] Obesity is a common disease of unknown etiology. It is a chronic, multifactorial disease that develops from an integration of genetic, environmental, social, behavioral, physiological, metabolic, neuron-endocrine and psychological elements. This disease is considered a cause or co-morbidity to such conditions as GERD, high blood pressure, elevated cholesterol, diabetes, sleep apnea, mobility and orthopedic deterioration, and other consequences, including those limiting social and self image and those affecting the ability to perform certain everyday tasks. Since traditional weight loss techniques, such as diet, drugs, exercise, etc., are frequently ineffective with many of these patients, surgery is often the only viable alternative.
[0003] Body Mass Index (BMI) is the most common method used to define the obese patient. This measurement is obtained by taking a persons weight in Kilograms (Kg) and dividing by the square of height in meters. Based on policies set forth by the United States National Institutes of Health (NIH), BMI is used to characterize the degree of excess weight. These categories are listed in Table 1 listed below. Presently, based on current NIH policy, only those people with a BMI of 35 or greater qualify for surgical intervention.
Table 1
Table 1 - Risk of Associated Disease According to BMI and Waist Size
Figure imgf000003_0001
[0004] In the United States, more than 30% of the population is obese as defined in Table 1, including men, women, and children. There are more than 15 million Americans (5.5%) who are morbidly obese. The number of obese children is growing at an alarmingly fast rate. Surgical treatments for obesity continue to be a strong focus of research due to their high level of effectiveness although no treatment is considered ideal. It is well-established in the medical literature that obesity adversely affects general health, and can result in reduced quality of life and reduced lifespan. It is now well-accepted that obesity is associated with increased risk of cardiovascular disease, diabetes and other health issues. In contrast, animal studies show that longevity is increased in lean subjects (Weindruch, R. & Walford, R.L., 1988. The Retardation of Aging and Disease by Dietary Restriction, Thomas, Springfield, IL; Spindler, S.R., 2003, in Anti-Aging Therapy for Plastic Surgery, eds. Kinney, B. & Carraway, J., Quality Medical, St. Louis, MO). Much work continues to be needed before a widely acceptable solution can be expected. [0005] Surgical weight loss (bariatric) procedures are designed to restrict weight gain by either limiting caloric intake by restricting effective stomach size or by malabsorption, which is reducing the intestine's ability to absorb nutrition. Many surgeons offer their patients a combined procedure that includes a restrictive and malabsorption material. These procedures are irreversible and rely on a surgeon's judgment to estimate the final size of the new restrictive stomach as well as the remaining small intestine length to provide adequate nutrition for optimal weight loss and management for the patient's lifetime.
[0006] Presently, bariatric procedures can be performed by open or laparoscopic surgery. Open surgery typically requires a ten day hospitalization and a prolonged recovery period with a commensurate loss of productivity. Laparoscopic procedures have reduced in-hospital stay to three days, followed by a three week at-home recovery. These procedures can even be performed as an outpatient procedure. Laparoscopic procedures have reduced cost considerably, making the minimally invasive laparoscopic procedure available to more patients. In 2000, there were 30,000 bariatric procedures performed, while in 2003, over 90,000 procedures were reported. [0007] One common obesity surgery is the Roux-en-Y gastric bypass (often known only as a "gastric bypass"). During this type of operation, the surgeon permanently changes the shape of the stomach by surgically reducing (cutting or stapling) its size to create an egg- sized gastric pouch or "new stomach." The rest of the stomach is then divided and separated from this new stomach pouch, greatly reducing the amount of food that can be consumed after surgery. In addition to reducing the actual size of the stomach, a significant portion of the digestive tract is bypassed and the new stomach pouch is reconnected directly to the bypassed segment of small intestine. This operation, therefore, is both a restrictive and malabsorptive procedure, because it limits the amount of food that one can eat and the amount of calories and nutrition that are absorbed or digested by the body. Once completed, gastric bypass surgery is essentially irreversible. Some of the major risks associated with the Roux-en-Y Gastric Bypass procedure include bleeding, infection, pulmonary embolus, anastomotic stricture or leak, anemia, ulcer, hernia, gastric distention, bowel obstruction and death. [0008] Another common obesity surgery is known as vertical banded gastroplasty ("VBG"), or "stomach stapling." In a gastroplasty procedure, the surgeon staples the upper stomach to create a small, thumb-sized stomach pouch, reducing the quantity of food that the stomach can hold to about 1-2 ounces. The outlet of this pouch is then restricted by a band that significantly slows the emptying of the pouch to the lower part of the stomach. Aside from the creation of a small stomach pouch, there is no other significant change made to the gastrointestinal tract. So while the amount of food the stomach can contain is reduced, the stomach continues to digest nutrients and calories in a normal way. This procedure is purely restrictive; there is no malabsorptive effect. Following this operation, many patients have reported feeling full but not satisfied after eating a small amount of food. As a result, some patients have attempted to get around this effect by eating more or by eating gradually all day long. These practices can result in vomiting, tearing of the staple line, or simply reduced weight loss. Major risks associated with VBG include: unsatisfactory weight loss or weight regain, vomiting, band erosion, band slippage, breakdown of staple line, anastomotic leak, and intestinal obstruction. [0009] A third procedure, the Duodenal Switch, is less common. It is a modification of the biliopancreatic diversion or "Scopinaro procedure." While this procedure is considered by many to be the most powerful weight loss operation currently available, it is also accompanied by significant long-term nutritional deficiencies in some patients. Many surgeons have stopped performing this procedure due to the serious associated nutritional risks. [0010] In the Duodenal Switch procedure, the surgeon removes about 80% of the stomach, leaving a very small new stomach pouch. The beginning portion of the small intestine is then removed, and the severed end portions of the small intestine are connected to one another near the end of the small intestine and the beginning of the large intestine or colon. Through this procedure a large portion of the intestinal tract is bypassed so that the digestive enzymes (bile and pancreatic juices) are diverted away from the food stream until very late in the passage through the intestine. The effect of this procedure is that only a small portion of the total calories that are consumed are actually digested or absorbed. This irreversible procedure, therefore, is both restrictive (the capacity of the stomach is greatly reduced) and malabsorptive (the digestive tract is shortened, severely limiting absorption of calories and nutrition). Because of the very significant malabsorptive material of this operation, patients must strictly adhere to dietary instructions including taking daily vitamin supplements, consuming sufficient protein and limiting fat intake. Some patients also experience frequent large bowel movements, which have a strong odor. The major risks associated with the Duodenal Switch are: bleeding, infection, pulmonary embolus, loss of too much weight, vitamin deficiency, protein malnutrition, anastomotic leak or stricture, bowel obstruction, hernia, nausea/vomiting, heartburn, food intolerances, kidney stone or gallstone formation, severe diarrhea and death. [0011] One relatively new and less invasive form of bariatric surgery is Adjustable Gastric Banding. Through this procedure the surgeon places a band around an upper part of the stomach to divide the stomach into two parts, including a small pouch in the upper part of the stomach. The small upper stomach pouch can only hold a small amount of food. The remainder of the stomach lies below the band. The two parts are connected by means of a small opening called a stoma. Risks associated with Gastric Banding are significantly less than other forms of bariatric surgery, since this surgery does not involve opening of the gastric cavity. There is no cutting, stapling or bypassing.
[0012] It has been found that the volume of the small upper stomach pouch above the band increases in size up to ten times after operation. Therefore the pouch volume during surgery needs to be very small, approximately 7 ml. To enable the patient to feed the stomach with sufficient nutrition immediately after an operation considering such a small gastric pouch, the stoma initially needs to be relatively large and later needs to be substantially reduced, as the pouch volume increases. To be able to achieve a significant range of adjustment of the band, the cavity in the band has to be relatively large and is defined by a thin flexible wall, normally made of silicone material. Furthermore, the size of the stoma opening has to be gradually reduced during the first year after surgery as the gastric pouch increases in size. Reduction of the stoma opening is commonly achieved by adding liquid to the cavity of the band via an injection port to expand the band radially inwardly. [0013] A great disadvantage of repeatedly injecting liquid via the injection port is the increased risk of the patient getting an infection in the body area surrounding the injection port. If such an infection occurs the injection port has to be surgically removed from the patient. Moreover, such an infection might be spread along the tube interconnecting the injection port and the band to the stomach, causing even more serious complications. Thus, the stomach might be infected where it is in contact with the band, which might result in the band migrating (eroding) through the wall of the stomach. Also, it is uncomfortable for the patient when the necessary, often many, post-operation adjustments of the stoma opening are carried out using a relatively large injection needle penetrating the skin of the patient into the injection port. [0014] It may happen that the patient swallows pieces of food too large to pass through the restricted stoma opening. If that occurs the patient has to visit a doctor who can remove the food pieces, if the band design so permits, by withdrawing some liquid from the band to enlarge the stoma opening to allow the food pieces to pass the stoma. The doctor then has to add liquid to the band in order to regain the restricted stoma opening. Again, these measures require the use of an injection needle penetrating the skin of the patient, which is painful and uncomfortable for the patient, and can sometimes be the cause of infection, thus risking the long-term viability of the implant. The adjustment of the band can be inconsistent. For example, if some air is inadvertently injected with the liquid (sterile saline), it can cause some compressibility to the pressurization media and take away some of the "one-to-one" feel when pressurizing and depressurizing. [0015] The LAP-BAND Adjustable Gastric Banding System (Inamed) is a product used in the Adjustable Gastric Banding procedure. The LAP-BAND system, includes a silicone band, which is essentially an annular-shaped balloon. The surgeon places the silicone band around the upper part of the stomach. The LAP-BAND system further includes a port that is placed under the skin, and tubing that provides fluid communication between the port and the band. A physician can inflate the band by injecting a fluid (such as saline) into the band through the port. As the band inflates, the size of the stoma shrinks, thus further limiting the rate at which food can pass from the upper stomach pouch to the lower part of the stomach. The physician can also deflate the band, and thereby increase the size of the stoma, by withdrawing the fluid from the band through the port. The physician inflates and deflates the band by piercing the port, through the skin, with a long, non-coring needle. There is often ambiguous feedback to the physician between the amount injected and the restriction the patient feels during the adjustment procedure, such as when swallowing a bolus of liquid to test the stoma. In addition, a change of as little as 0.5 ml or less can sometimes make a difference between too much restriction and the correct amount of restriction. [0016] The lower esophageal sphincter (LES) is a ring of increased thickness in the circular, smooth muscle layer of the esophagus. At rest, the lower esophageal sphincter maintains a high-pressure zone between 15 and 30 millimeters (mm) Hg above intragastric pressures. The lower esophageal sphincter relaxes before the esophagus contracts, and allows food to pass through to the stomach. After food passes into the stomach, the sphincter constricts to prevent the contents from regurgitating into the esophagus. The resting tone of the LES is maintained by myogenic (muscular) and neurogenic (nerve) mechanisms. The release of acetylcholine by nerves maintains or increases lower esophageal sphincter tone. It is also affected by different reflex mechanisms, physiological alterations, and ingested substances. The release of nitric oxide by nerves relaxes the lower esophageal sphincter in response to swallowing, although transient lower esophageal sphincter relaxations may also manifest independently of swallowing. This relaxation is often associated with transient gastroesophageal reflux in normal people. [0017] Gastroesophageal reflux disease, commonly known as GERD, results from incompetence of the lower esophageal sphincter, located just above the stomach in the lower part of the esophagus. Acidic stomach fluids may flow retrograde across the incompetent lower esophageal sphincter into the esophagus. The esophagus, unlike the stomach, is not capable of handling highly acidic contents so the condition results in the symptoms of heartburn, chest pain, cough, difficulty swallowing, or regurgitation. These episodes can ultimately lead to injury of the esophagus, oral cavity, the trachea, and other pulmonary structures.
[0018] Evidence indicates that up to 36% of otherwise healthy Americans suffer from heartburn at least once a month, and that 7% experience heartburn as often as once a day. It has been estimated that approximately 1 -2% of the adult population suffers from GERD, based on objective measures such as endoscopic or histological examinations. The incidence of GERD increases markedly after the age of 40, and it is not uncommon for patients experiencing symptoms to wait years before seeking medical treatment, even though mild cases can be successfully treated with lifestyle modifications and pharmaceutical therapy. For patients, who are resistant, or refractory, to pharmaceutical therapy or lifestyle changes, surgical repair of the lower esophageal sphincter is an option.
[0019] The most common surgical repair, called fundoplication surgery, generally involves manipulating the diaphragm, wrapping the upper portion of the stomach, the fundus, around the lower esophageal sphincter, thus tightening the sphincter, and reducing the circumference of the sphincter so as to eliminate the incompetence. The hiatus, or opening in the diaphragm is reduced in size and secured with 2 to 3 sutures to prevent the fundoplication from migrating into the chest cavity. The repair can be attempted through open surgery, laparoscopic surgery, or an endoscopic, or endoluminal, approach by way of the throat and the esophagus. The open surgical repair procedure, most commonly a Nissen fundoplication, is effective but entails a substantial insult to the abdominal tissues, a risk of anesthesia-related iatrogenic injury, a 7 to 10 day hospital stay, and a 6 to 12 week recovery time, at home. The open surgical procedure is performed through a large incision in the middle of the abdomen, extending from just below the ribs to the umbilicus (belly button). [0020] Endoscopic techniques for the treatment of GERD have been developed. Laparoscopic repair of GERD has the promise of a high success rate, currently 90% or greater, and a relatively short recovery period due to minimal tissue trauma. Laparoscopic Nissen fundoplication procedures have reduced the hospital stay to an average of 3 days with a 3-week recovery period at home. [0021] Another type of laparoscopic procedure involves the application of radio-frequency waves to the lower part of the esophagus just above the sphincter. The waves cause damage to the tissue beneath the esophageal lining and a scar (fibrosis) forms. The scar shrinks and pulls on the surrounding tissue, thereby tightening the sphincter and the area above it. These radio-frequency waves can also be used to create a controlled neurogenic defect, which may negate inappropriate relaxation of the LES. [0022] A third type of endoscopic treatment involves the injection of material or devices into the esophageal wall in the area of the lower esophageal sphincter. This increases the pressure in the lower esophageal sphincter and prevents reflux. [0023] One laparoscopic technique that appears to show promise for GERD therapy involves approaching the esophageal sphincter from the outside, using laparoscopic surgical techniques, and performing a circumference reducing tightening of the sphincter by placement of an adjustable band such that it surrounds the sphincter. However, this procedure still requires surgery, which is more invasive than if an endogastric transluminal procedure were performed through the lumen of the esophagus or stomach, such as via the mouth. Furthermore, the necessity to provide for future adjustment in the band also requires some surgical access and this adjustment would be more easily made via a transluminal approach.
[0024] For both treatment of obesity and GERD, gastric banding has proven to be a desirable treatment option. However, despite the advantages provided by gastric banding methods, they nonetheless suffer from drawbacks that limit the realization of the full potential of this therapeutic approach. For example, slippage may occur if a gastric band is adjusted too tight, or too loose, depending on the situation and the type of slippage. Slippage can also occur in response to vomiting, as occurs when a patient eats more food that can be comfortably accommodated in the upper pouch. During slippage, the size of the upper pouch may grow, causing the patient to be able to consume a larger amount of food before feeling full, thus lowering the effectiveness of the gastric band. On the other hand, erosion may occur if the gastric band is adjusted or secured too tightly. In either case detecting slippage or reducing the risk of erosion may be accomplished by adjusting the device to provide a proper flow rate. [0025] Furthermore, current methods of adjusting gastric bands and restriction devices require invasive procedures. For example, one method requires penetration of the abdomen with a needle in order to withdraw or inject a solution from a subcutaneous access port that is connected to a tube that in turn regulates the inflation of the gastric band. Infection and patient discomfort and pain are related to the use of the needle required to fill the gastric band with saline. As a result, non-invasively adjustable gastric bands have been proposed, some of which seek to provide a correct reading of the inner diameter of the gastric band at all times. However, because the wall thickness of the stomach is not uniform from patient to patient, the actual inner diameter of the stomach at the stoma opening will be unknown. Thus the size of the opening of the band is at best an approximation of the stomal opening that connects the smaller upper pouch and the remainder of the stomach.
[0026] As a result, in order to properly adjust a gastric band some method of measuring flow through the device or otherwise related the luminal aperture of the alimentary canal at the side of the band is needed. Current methods typically make use of radiological procedures such as X-ray fluoroscopy of barium sulfate suspensions. However, the use of X- ray procedures in a significant number of patients is highly undesirable. The majority of gastric banding patients undergoing therapy to treat obesity are women of child-bearing age. The first few weeks of pregnancy, when a mother may be unaware she is pregnant, is an especially critical time of fetal development, and exposure to X-rays is to be avoided if at all possible. In addition, while fluoroscopy can monitor flow of a radio-opaque material such as barium sulfate, it is not particularly well suited to provide accurate information about the size of the band aperture, the size of the lumen in the alimentary canal where the band is placed, or whether the band is causing secondary problems such as erosion of the gastric wall. Thus it would be desirable to have a gastric banding system that included a non-invasive means of adjusting and monitoring band function in the patient that improves on the prior art methods. Summary of the Invention
[0027] In a first embodiment of the invention, a gastrointestinal implant system includes an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal. The implant system further includes an implantable interface including a first driving element, the first driving element being moveable and operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to movement of the first driving element. The system also includes an external adjustment device having a second driving element configured to non-invasively engage the first driving element of the implantable interface from a location external to the mammal. In the system, actuation of the second driving element of the external adjustment device produces movement in the first driving element of the implantable interface and results in a change in the dimension or configuration of the contact surface. [0028] In another embodiment of the invention, a gastrointestinal implant system includes an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal. The system includes an implantable interface including a driving element, the driving element being moveable and operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to movement of the driving element. Movement of the driving element is effectuated by application of a moving magnetic field originating external to the mammal.
[0029] In another embodiment of the invention, a gastrointestinal implant includes an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal. The implant includes an actuator configured to change the dimension or configuration of the contact surface in response to rotational movement of an implantable interface operatively coupled to the actuator via a drive transmission. The drive transmission includes a rotatable lead screw having mounted thereon a nut affixed to an end of the actuator. In this embodiment, an external adjustment device is configured to non-invasively couple to the implantable interface from a location external to the mammal. Rotational movement of the implantable interface results in a change in the dimension or configuration of the contact surface. [0030] In still another embodiment, a gastrointestinal implant system includes an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal. The system includes an implantable interface including a moveable magnetic element, the moveable magnetic element being operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to movement of the moveable magnetic element of the implantable interface. The system further includes an external adjustment device having at least one moveable magnetic element configured to magnetically engage the moveable magnetic element of the implantable interface from a location external to the mammal. When the at least one moveable magnetic element of the external adjustment device is magnetically engaged with the moveable magnetic element of the implantable interface, movement of the at least one moveable magnetic element of the external adjustment device produces corresponding movement in the moveable magnetic element of the implantable interface and results in a change in the dimension or configuration of the contact surface. [0031] In yet another embodiment, a gastrointestinal implant system that is configured to be implanted within a mammal includes an external drive assembly including at least one external magnet, the external drive assembly having a plurality of alternating magnetic poles rotationally arranged about an axis of rotation. The system further includes an internal drive assembly including at least one internal magnet, the internal drive assembly having a plurality of alternating magnetic poles rotationally arranged about an axis of rotation. The at least one external magnet and the at least one internal magnet are adapted for magnetic coupling and wherein rotation of the at least one external magnet in a first direction results in a corresponding rotation of the at least one internal magnet in a second direction. [0032] In another embodiment, a gastrointestinal implant system includes a restrictive band configured to at least partially engage a surface of a gastrointestinal tract of a mammal, the restrictive band having a first configuration and a second configuration, wherein the second configuration constricts the gastrointestinal tract more than does the first configuration. The system further includes an actuation element at least partially disposed on or in the restrictive band, wherein actuation of the actuation element results in movement of the restrictive band from the first configuration to the second configuration. The system further includes an implantable interface containing a first magnetic assembly coupled to the actuation element, the implantable interface being configured for implantation within the mammal. An external adjustment device containing a second magnetic assembly is part of the functioning system, wherein movement of the second magnetic assembly causes movement of the first magnetic assembly and actuation of the actuation element. [0033] In still another aspect of the invention, a gastrointestinal implant device includes an adjustable restriction device having a flexible adjustable body including a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal, the flexible adjustable body including a moveable actuator anchored at a distal end to the flexible adjustable body, the moveable actuator being disposed within the flexible adjustable body about a plurality of ribs.
[0034] In yet another aspect of the invention, a method of treating obesity in a mammal includes providing an adjustable restriction device configured for at least partially engaging a surface of a gastrointestinal tract of a mammal, the adjustable restriction device including an implantable interface comprising a first moveable driving element, the first moveable driving element being operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the adjustable restriction device in response to movement of the first moveable driving element. An external adjustment device external to an abdominal region of the mammal is provided, the external adjustment device having a second moveable driving element configured to non-invasively engage the first moveable driving element of the implantable interface from a location external to the mammal. The first moveable driving element of the implantable interface is moved by moving the second moveable driving element of the external adjustment device. [0035] In another embodiment of the invention, a method of treating obesity in a mammal includes providing an adjustable restriction device configured for at least partially engaging a surface of a gastrointestinal tract of a mammal, the adjustable restriction device including an implantable interface including a moveable magnetic element, the moveable magnetic element being operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the adjustable restriction device in response to movement of the moveable magnetic element of the implantable interface. An external adjustment device external to an abdominal region of the mammal is provided, the external adjustment device having at least one moveable magnetic element configured to magnetically engage the moveable magnetic element of the implantable interface from a location external to the mammal. The moveable magnetic element of the implantable interface is moved by moving the at least one moveable magnetic element of the external adjustment device.
[0036] The at least one magnetic element of the external adjustment device may be magnetically coupled to the at least one magnetic element of the implantable interface via various faces of the two magnetic elements. These may include, for instance, facing axial or end surfaces (e.g., ends of a cylinder or sector-shaped element) as well as radial surfaces
(e.g., circumferential surface of a cylindrical-shaped element).
Brief Description of the Drawings [0037] FIG. 1 illustrates a patient's torso showing the locations for placement of trocars and various other tools during a laparoscopic procedure for implantation of an obesity control system.
[0038] FIG. 2 illustrates a side view of a trocar with an obturator removed.
[0039] FIG. 3 illustrates a side view of a trocar with an obturator in place. [0040] FIG. 4 illustrates an inflatable laparoscopic obesity control system according to the prior art.
[0041] FIG. 5 illustrates a prior art laparoscopic obesity control system after being locked around the stomach.
[0042] FIG. 6 illustrates a prior art laparoscopic obesity control system after being secured by suturing the stomach around a portion of the inflatable ring.
[0043] FIG. 7 illustrates the inflatable ring of a prior art inflatable obesity control system in a non-pressurized state.
[0044] FIG. 8 illustrates the inflatable ring of a prior art inflatable obesity control system with an additional 2 ml injected. [0045] FIG. 9 illustrates the inflatable ring of a prior art inflatable obesity control system with an additional 4 ml injected.
[0046] FIG. 10 illustrates an implantable obesity control system in accordance with one embodiment.
[0047] FIG. 1 1 illustrates a distal section of the obesity control system in a straightened configuration (solid lines), for example, for placement into the abdominal cavity.
[0048] FIG. 12 illustrates a restriction device of the obesity control system just prior to being attached.
[0049] FIG. 13 illustrates the restriction device after being attached.
[0050] FIG. 14 illustrates the restriction device after being trimmed of its attachment leash.
[0051] FIG. 15 illustrates an alternative embodiment of a restriction device.
[0052] FIG. 16 illustrates a cross-sectional view of the outer shell or housing of the restriction device of FIG. 15. [0053] FIG. 17 illustrates another cross-sectional view of the outer shell or housing of the restriction device of FIG. 15.
[0054] FIG. 18 illustrates a cross-sectional view of the restriction device taken through line 18-18'of FIG. 15. [0055] FIG. 19 illustrates a detailed perspective view of the restriction device of FIG. 15.
[0056] FIG. 20 illustrates a perspective view of an implantable obesity control system according to one embodiment.
[0057] FIG. 21 illustrates a perspective view of an external device for use with the implantable obesity control system of the type illustrated in FIG. 20 according to another embodiment.
[0058] FIG. 22 illustrates a perspective view of the external device of FIG. 21 together with the implantable obesity control system of FIG. 20.
[0059] FIG. 23 illustrates a plan view of the restriction device portion of the implantable obesity control system of the type illustrated FIG. 20. [0060] FIG. 24 illustrates a cross-sectional view of the restriction device portion of the implantable obesity control system illustrated in FIG. 23.
[0061] FIG. 25 illustrates a perspective view of an inner section of the restriction device portion of the implantable obesity control system of FIG. 20 according to one embodiment.
[0062] FIG. 26 illustrates a perspective view of the drive shaft portion of the implantable obesity control system of FIG. 20. Portions of the exterior or outer windings making up the complete drive shaft have been removed for clarity purposes.
[0063] FIG. 27 illustrates a perspective view of a sheath portion of the implantable obesity control system of FIG. 20.
[0064] FIG. 28 illustrates a perspective view of the drive shaft portion which connects to the implantable interface of the implantable obesity control system of FIG. 20 according to one embodiment.
[0065] FIG. 29 illustrates a perspective view of the attachment portion of the implantable interface of the implantable obesity control system of FIG. 20 according to one embodiment.
[0066] FIG. 30 illustrates a perspective top view of the implantable interface portion of the implantable obesity control system of FIG. 20.
[0067] FIG. 31 illustrates a perspective bottom view of the implantable interface portion of the implantable obesity control system of FIG. 20.
[0068] FIG. 32 illustrates a top down plan view of the implantable interface portion of
FIGS. 30 and 31. [0069] FIG. 33 illustrates a perspective view of a RFID chip disposed near or adjacent to an implantable interface portion of an implantable obesity control system of the type illustrated in FIG. 20.
[0070] FIG. 34 illustrates an implantable interface according to one embodiment which utilizes cylindrical magnets.
[0071] FIG. 35 illustrates the implantable interface of FIG. 34 after having been rotationally adjusted for custom fit in the patient.
[0072] FIG. 36 illustrates the implantable interface of FIGS. 34 and 35 with a portion removed in order to show the orientation of the poles on one of the cylindrical-shaped magnets.
[0073] FIG. 37A illustrates the internal drive mechanism of the implantable interface of
FIGS. 34-36.
[0074] FIG. 37B illustrates the implantable interface implanted within a patient while being adjusted by an external device. [0075] FIG. 38 illustrates the implantable interface situated adjacent or near an external device. FIG. 38 thus represents the relative location between the implantable interface and the external device after the implantable interface has been implanted in a patient.
[0076] FIG. 39 illustrates a detail view of the cylinder/magnet assembly of the external device and the implantable interface. The external device is shown oriented at an angle with respect to the implantable interface.
[0077] FIG. 40 illustrates an alternative embodiment of the implantable interface utilizing only one cylindrical magnet.
[0078] FIG. 41 illustrates an implantable interface secured to the fascia of a patient.
[0079] FIG. 42 illustrates an alternative embodiment of the restriction device having a sliding portion.
[0080] FIG. 43 illustrates an alternative embodiment of an implantable interface for magnetic coupling.
[0081] FIG. 44 illustrates a top view of the implantable interface of FIG. 43.
[0082] FIG. 45 illustrates a cross-sectional view of FIG. 43 taken along line 45-45', with the implantable interface sutured to the fascia and after several weeks of implantation.
[0083] FIG. 46 illustrates a perspective view of an external driver according to one embodiment.
[0084] FIG. 47 illustrates one alternative embodiment of an implantable interface. [0085] FIG. 48 illustrates the implantable interface of FIG. 47 prior to engagement or deployment of the rotatable coils.
[0086] FIG. 49 illustrates an alternative embodiment of an implantable interface after engagement of the rotatable coils. [0087] FIG. 50 illustrates various internal parts (without the housing) of an alternative embodiment of an implantable interface which uses resonance to turn or rotate a drive shaft.
[0088] FIG. 51 illustrates a system for driving an internally located driven magnet via an external device using a feedback mechanism.
[0089] FIG. 52 illustrates a plan view of an alternative embodiment of a gastric restriction device.
[0090] FIG. 53 illustrates a perspective view of an alternative embodiment of a gastric restriction device illustrated in FIG. 52.
[0091] FIG. 54 illustrates a perspective view of one end of an un-latched gastric restriction device. [0092] FIG. 55 illustrates a detailed perspective view of a latching mechanism used for a gastric restriction device according to one embodiment.
[0093] FIG. 56 illustrates a cross-sectional view of a gastric restriction device according to one embodiment.
[0094] FIG. 57 illustrates a gastric restriction device with a portion removed to show detail of the actuating elements.
[0095] FIG. 58 illustrates a perspective view of a latching mechanism for the gastric restriction device according to one embodiment.
[0096] FIG. 59 illustrates another perspective view of the latching mechanism of FIG. 58.
[0097] FIG. 60 illustrates another perspective view of the latching mechanism of FIG. 58. [0098] FIG. 61 illustrates another perspective view of the latching mechanism of FIG. 58.
[0099] FIG. 62 illustrates another perspective view of the latching mechanism of FIG. 58.
[00100] FIG. 63 illustrates a magnetic slip clutch for use with an implantable interface according to one embodiment.
[00101] FIG. 64 illustrates a perspective view of an implantable obesity control system according to another embodiment.
[00102] FIG. 65 illustrates a cross-sectional view of the distal end portion of the obesity control system illustrated in FIG. 64.
[00103] FIG. 66 is a plan view illustrating a connector used to connect or couple two ends or portions of a restriction device according to one embodiment. [00104] FIG. 67 illustrates a perspective cross-sectional view of the housing portion of the drive transmission and proximal/distal covers encapsulating or sealing the same according to one embodiment.
[00105] FIG. 68 illustrates a cross-sectional view of the implantable interface according to another embodiment.
[00106] FIG. 69 illustrates a perspective view of a distal end of a drive cable according to one embodiment.
[00107] FIG. 70 illustrates a perspective view of an implantable obesity control system according to another embodiment. [00108] FIG. 71 illustrates a cross-sectional view of a proximal portion of the implantable obesity control system of FIG. 70.
[00109] FIG. 72 illustrates a perspective view of an external magnetic driver according to one embodiment. The outer housing or cover is removed to illustrate the various aspects of the external magnetic driver. [00110] FIG. 73 illustrates a side or end view of the external magnetic driver of FIG. 72.
[00111] FIG. 74 illustrates a perspective view of an external magnetic driver of FIG. 72 with the outer housing or cover in place.
[00112] FIG. 75A illustrates a cross-sectional representation of the external magnetic driver being positioned on a patient's skin. FIG. 75A illustrates the permanent magnet of the implantable interface in the 0° position.
[00113] FIG. 75B illustrates a cross-sectional representation of the external magnetic driver being positioned on a patient's skin. FIG. 75B illustrates the permanent magnet of the implantable interface in the 90° position.
[00114] FIG. 75C illustrates a cross-sectional representation of the external magnetic driver being positioned on a patient's skin. FIG. 75C illustrates the permanent magnet of the implantable interface in the 180° position.
[00115] FIG. 75D illustrates a cross-sectional representation of the external magnetic driver being positioned on a patient's skin. FIG. 75D illustrates the permanent magnet of the implantable interface in the 270° position. [00116] FIG. 76 schematically illustrates a system for driving the external magnetic driver according to one embodiment.
[00117] FIG. 77 illustrates a perspective view of a mount used to secure an implantable interface to a patient according to one embodiment. [00118] FIG. 78 illustrates a fastening tool used to secure a mount of the type illustrated in
FIG. 77 to a patient according to one embodiment.
[00119] FIG. 79A illustrates a side view of a driving element portion of a fastening tool according to one embodiment. [00120] FIG. 79B illustrates an end view of a mount being loaded into a socket positioned in the base of the driving element. The view is taken along the line B-B' of FIG. 79A.
[00121] FIG. 79C an end view of the central gear and four outer gears as viewed along the line C-COfFIG. 79A.
[00122] FIG. 79D illustrates a perspective view of the base portion of the driving element portion of the fastening tool.
[00123] FIG. 79E illustrates a bottom perspective view of the driving element portion of the fastening tool.
[00124] FIG. 80 illustrates an exploded perspective view of the distal end of the fastening tool according to one embodiment. The base portion is omitted for clarity purposes. [00125] FIG. 81 illustrates a perspective view of a fastener according to one embodiment.
[00126] FIG. 82 illustrates a perspective view of a mount and associated acoustic or sonic indicator housing that contains a magnetic ball.
[00127] FIGS. 83-90 illustrate cross-sectional views of the driven magnet along with the acoustic or sonic indicator housing illustrating the rotational orientation of the magnet and the magnetic ball. Various states are illustrated as the magnet rotates in the clockwise direction.
[00128] FIGS. 91-98 illustrate cross-sectional views of the driven magnet along with the acoustic or sonic indicator housing illustrating the rotational orientation of the magnet and the magnetic ball. Various states are illustrated as the magnet rotates in the counter-clockwise direction. [00129] FIG. 99 illustrates the acoustic signal as a function of time of a coupler having an acoustic or sonic housing that contains a magnetic ball. Peaks are seen every /4 rotation of the driven magnet in the counter-clockwise direction.
[00130] FIG. 100 illustrates the acoustic signal as a function of time of a coupler having an acoustic or sonic housing that contains a magnetic ball. Peaks are seen every 1A rotation of the driven magnet in the clockwise direction.
[00131] FIG. 101 illustrates the frequency response of the coupler of the type illustrated in
FIG. 82 during counter-clockwise rotation of the driven magnet.
[00132] FIG. 102 illustrates the frequency response of the coupler of the type illustrated in
FIG. 82 during clockwise rotation of the driven magnet. [00133] FIGS. 103-122 illustrate sagittal (i.e., lateral) sectional views of an obese patient illustrating various embodiments of laparoscopic implantation of an obesity control system.
Detailed Description of the Illustrated Embodiments [00134] FIG. 1 illustrates the abdomen 4 of a patient 2. The navel 6 and the ribline 5 are shown for reference. In typical laparoscopic surgeries for placement of gastric restriction systems, a 12 mm trocar (or a larger trocar) is placed at first site 8. FIGS. 2 and 3 illustrate a trocar 18 of this type. This trocar 18 is placed prior to insufflation (inflation of the abdominal cavity by pressurized gas, such as carbon dioxide), so for safety purposes, often a trocar with an optically clear tip 20 is used. A scope (such as a 5 mm laparoscope) is inserted inside the tip 20 and can view the separation of tissue layers and the safe entrance into the abdominal cavity. Alternatively, instead of using the trocar tip 20 to separate the tissue, an incision can first be made in the skin followed by finger dissection into the abdominal cavity. The trocar 18 is then placed through the tract made by the finger dissection. After insertion of the trocar 18 , pressurized CO2 is injected into the abdominal cavity by attaching the pressure line to a luer 22 on the trocar 18. The pressure is maintained whether the trocar 18 has an obturator 26 in place, as in FIG. 3, or has no obturator 26, as in FIG. 2, by the use of a trocar valve 28. The pressure inside the abdominal cavity can be maintained even after detaching the pressure line by closing a luer valve 24. [00135] Once insufflation is achieved, for example at a pressure of 10 to 20 mm Hg, other trocars can be placed at additional sites 10, 12, 14, 16. The trocars placed at sites 10, 14 and 16 are typically 5 mm trocars. Site 10 is located just below xiphoid process 29 of the sternum. The 5 mm trocar placed at site 10 is removed and replaced with a liver retractor, which allows easier access and visualization of the upper portion of the stomach, and easier dissection of the surrounding features. Sites 12, 14 and 16 are used for the variety of laparoscopic grasping, cutting, electrosurgical, and manipulating instruments, which are usually placed through the trocars, with the obturators removed. Sites 8 and 12 are often used for placement of laparoscopes through the respective trocars, for example 10 mm or 5 mm laparoscopes. A 5 mm, 10mm, or 12 mm trocar, for example can be used in site 12, depending on the size of laparoscope desired. Many variations of this trocar placement are commonly used. This description is only relates to one particular method. [00136] FIG. 4 illustrates a prior art inflatable obesity control system 30. Inflatable ring 32 is closed around the upper portion of the stomach, using general techniques described in, for example, Ren et al., Laparoscopic Adjustable Gastric Banding: Surgical Technique, Journal of Laparoendoscopic & Advanced Surgical Techniques, Vol. 13, No. 4, 2003, which is incorporated by reference as if set forth fully herein. The most common current technique is known as the pars flaccida technique, which is described in the above-noted publication. The inflatable ring 32 is attached to itself around the stomach using a locking mechanism 34. The orientation of the inflatable band after attachment is illustrated in FIG. 5. The stomach 50 includes a fundus 52 and a lesser curvature 54. The attached inflatable ring 32 forms a small upper pouch 48 in the stomach 50, separated by a smaller diameter stoma (not visible) underneath the attached inflatable ring 32. As shown in FIG. 6, a portion of the wall of the upper pouch is sutured to the wall of the remainder of the stomach 50 with suture 56. [00137] Returning to FIG. 4, port 36 is implanted at a subcutaneous site and sutured to fascia (the sheath of tissue covering muscle) by the use of suture holes 40. The port 36 is attached to the inflatable ring 32 by an inflation tube 42. The inflation tube 42 provides a communication means between the port 36 and the inflatable ring 32 of the gastric restriction device. The proximal end 44 of the inflation tube 42 is forced over a metal barb (not shown) which is integral with an extension 38 of the port 36. This can be a difficult and time consuming portion of the procedure. Subsequent to the implantation surgery, the inflatable ring 32 can be inflated or deflated by the injection of sterile saline through the port 36 by use of a syringe attached to a non-coring needle. The needle punctures the skin and subcutaneous fat and is guided through the septum 46 of the port 36. [00138] Depending on the amount of restriction of the stomach desired, the inflatable ring 32 can be adjusted so that the patient feels full after eating a small amount of food. FIG. 7 illustrates the inflatable ring 32 in its non-pressurized state. Typically during the implantation procedure, the inflatable obesity control system 30 is primed with enough saline to fill its dead space volume while removing the air. It is left at ambient pressure (and not pressurized) usually for the first several weeks while the patient heals and the body forms a fibrous capsule over portions where the implanted device interfaces with the stomach. After this healing period, the inflatable obesity control system 30 is filled with saline as described, causing balloon 58 to distend inward radially, creating a smaller diameter stoma. FIG. 8 illustrates the inflatable obesity control system 30 inflated with an additional 2 ml of saline (beyond the initial priming volume). FIG. 9 illustrates the inflatable obesity control system 30 inflated with an additional 4 ml of saline (beyond the initial priming volume). [00139] FIG. 10 illustrates an implantable obesity control system 60 comprising a restriction device 62, an implantable interface 64 and a drive transmission 66. During an initial surgical procedure, the restriction device 62 is implanted in the patient so that it creates a stoma opening and controllably restricts the size of this opening between an upper pouch and the remainder of the stomach. The restriction device 62 comprises a body portion 88, a first attachment portion 68 and a second attachment portion 70. The implantable interface 64 comprises a main body 72 and an extension 74 which are coupled to each other by an articulation 76. The articulation 76 allows adjustment of an angle 86 between the main body 72 and the extension74 , for optimized implantation within the patient's anatomy. An exemplary angle is 45°. The drive transmission 66 has a distal end 82 and a proximal end 84. The implantable interface 64 can be attached, detached and reattached to the drive transmission 66 by coupling or decoupling an implantable interface attachment portion 78 and a drive shaft attachment portion 80. Referring now to FIG. 11 , when the first attachment portion 68 and the second attachment portion 70 of the restriction device 62 are not attached to each other, the body portion 88 can be oriented in a linear or substantially linear shape that may be placed into the abdominal cavity through the inner lumen of the trocar 18, or any other type of cannula, for example, a 12 mm or 15 mm trocar 18. [00140] Alternatively, the restriction device 62 may be placed through the tract made after a trocar, cannula, sheath, dilator, needle or other puncturing device, cutting, spreading or dissecting device is placed, then removed. For example, a 10 mm or 12 mm trocar 18. The restriction device 62 may also be placed through a direct incision. For example, an incision is made through the skin, and then finger dissection is used to create the tract through fat, fascia, muscle and other connective tissue. A leash 90 is adjacent the first attachment portion 68 of the restriction device 62 and can be used to aid the insertion of the restriction device 62 . For example, forceps or graspers are used to grip the restriction device 62 and insert it through the trocar 18 or the tract, for example, at first site 8. For example, 5 mm laparoscopic graspers or Rochester-Pean forceps. The first attachment portion 68, may be chosen as the grasping point. Alternatively, the leash 90 may be chosen as the grasping point. For example, the leash 90 may be grasped at a flattened portion 92, which conforms to the jaws of the grasper or forceps. The flattened portion 92 has ribs 94 which resist slipping of the grasping instrument. [00141] After the restriction device 62 is placed into the abdominal cavity, the leash 90 is grasped. The restriction device 62 is then attached, as shown in FIGS. 12, 13 and 14. FIG. 12 illustrates the restriction device 62 prior to attachment around the stomach. Leash 90 is inserted through a hole 96 , from the internal diameter side 102 towards the external diameter side 104. Leash 90 includes a tapered barb 98 which is larger in diameter than the hole 96 and a spaced portion 100. After being inserted through hole, and removing slack, leash 90 is pulled, for example with a laparoscopic grasper, while traction is applied to second attachment portion 70, until barb 98 is forced through hole 96. Because an elastomeric material is used to construct leash 90 and second attachment portion 70, temporary deformation occurs, allowing the parts to lock together, and forming the restriction device 62 into a closed configuration, as can be seen in FIG. 13.
[00142] Laparoscopic cutters are now used to trim off leash 90, close to barb 98. FIG. 14 illustrates the restriction device 62 after the trimming of leash 90. It can be seen that in the prior art obesity control system shown in FIG. 4, the entire length of the inflation tube 42 must be inserted into the abdominal cavity because the proximal end 44 of the inflation tube 42 needs to be located laparoscopically and then inserted through an opening in the locking mechanism 34 in order to lock the inflatable ring 32. In the inventive embodiment, the drive transmission 66 need not be inserted completely, because the first attachment portion 68 and second attachment portion 70 are all that need be manipulated in order to lock the restriction device 62 together. Likewise, the drive transmission proximal end 84 does not need to be located within the abdominal cavity prior to the locking step.
[00143] FIG. 15 illustrates a restriction device 106 having an external perimeter 154 and a dynamic surface 152, which is allowed to constrict via a circumferential bellows 150. In FIG. 16, a better view of the dynamic surface 152 is visible in the cross-section. Interspersed between the thin walled portion 155 are ribs 156 that extend the majority of the width. The ribs 156 serve to reduce the contact area of a belt or band that is tightened to restrict the dynamic surface 152 to a smaller diameter, and thus to lower the tensile requirement to constrict the restriction device 106. The ribs 156 are made from the same material as the thin walled portion 155. The material can be a foam, for example, a polyurethane foam, which allows for compression, and also allows the inner diameter of the restriction device 106 to expand sufficiently, in the case of high stress, for example the high stress due to vomiting. Alternatively, the ribs 156 are made of a rigid metallic or polymeric material that is attached or embedded to the thin walled portion 155. In this manner, the diameter of the dynamic surface 152 can be compressed by using only a flexible rod that is pulled in tension. As the rod tightens, it creates a radial force on the ribs 156, causing a wider diameter portion to restrict. This is especially advantageous because now the extension portion 157 can be of smaller dimensions, because it only need accommodate a rod and not a wide belt. [00144] A cross-section of the restriction device 106 showing more detail of the circumferential bellows 150 is illustrated in FIG. 17. It can be seen that a bias force in the form of tension from a belt or a rod will act on the dynamic surface 152 causing it to compress the diameter. The extra wall contained in the bellows 150 allows this to occur without requiring the material to have to substantially stretch, and therefore, allows this restriction to take place with a lower tension or torque requirement. Also shown in FIG. 17 is seam 158, which can aid in the manufacturing process. The outer shell of the restriction device 106 is molded with this seam open, and then during manufacture, the internal workings, such as the belt, are placed inside. Finally, an outer layer, such as a silicone dip, is covered around the assembly.
[00145] Returning to FIG. 15, a drive transmission 108 couples the restriction device 106 with an implantable interface. The restriction device 106 has a first attachment portion 1 10 and a second attachment portion 1 12 which can be connected together, for example, around a body lumen such as the stomach. The first attachment portion 1 10 and the second attachment portion 1 12 may also be disconnected from each other and reconnected to each other. During the implantation surgery, it is a benefit to be able to easily disconnect the first attachment portion 1 10 and the second attachment portion 1 12, for example, in the case of mis- positioning. It is also desirable to be able to easily disconnect the first attachment portion 110 and the second attachment portion 1 12 at a later period of time, for example in the case of a restriction device that requires emergent removal, for example, due to slippage, erosion or other reasons. The reversible attachment mechanism comprises a leash 1 14 having a flattened portion 1 16 which can be easily gripped by laparoscopic instruments, such as a grasper. Ribs 118 aid in engaging a grasper jaw that has teeth.
[00146] Following the pars flaccida technique described in the Ren et al. publication, a grasper is placed through the tunnel. The grasper is used to grasp gripping surface 120 which may also include ribs 122 for tooth engagement. The first attachment portion 110 is then pulled through the tunnel by the grasper, allowing the restriction device 106 to encircle the stomach or the area at the junction of the esophagus and stomach. The grasper is now used to stabilize the first attachment portion, by means of either an external gripping surface 128 (both sides of the restriction device 106), an extended gripping surface 130, or an indented gripping surface 132. While stabilizing the restriction device 106 using one of these gripping methods, another grasper is used to grasp the leash 1 14, for example at the flattened portion 1 16. The tip 134 of the leash 114 is inserted through an entry hole 124 until the tip 134 exits through an exit hole 126. As can be seen in FIG. 18 and FIG. 19, the leash 1 14 comprises a male snap 142, which is configured to lock into a female snap 144 inside the first attachment portion 1 10. The grasper that was used to insert the leash 1 14 through the first attachment portion 1 10 is now used to pull the leash 1 14 out the exit hole 126, and pull it taut until internally, and the male snap 142 is forced into the female snap 144. A base portion 146 of the leash 1 14 is able to elastomerically stretch to allow this locking to take place, but also to assure that a first face 138 presses up tightly against a second face 140. [00147] It should be noted that the elastomeric property of the base portion 146, also allows a certain amount of compliance to the restriction device 106, which, for example, allows the restricted diameter of the restriction device 106 to temporarily open up during high stress events, such as vomiting, thus protecting the stomach from slippage or erosion. If the position of the restriction device 106 is considered acceptable, the tip 134 of the leash 114 is inserted by the grasper into a slack insertion hole 148, so that the slack of the leash is stored out of the way. If it is desired for any reason to disconnect the first attachment portion 1 10 from the second attachment portion 1 12, the grasper is used to grasp the leash 1 14 at the exit hole 126, where it remains accessible. By pulling to the side with the grasper, the leash 114 can be decoupled from the first attachment portion 1 10 by pulling it our of a split region 136. Split region 136 can be inherent, or it can alternatively be peel-away. Because the relevant portions of the first attachment portion 1 10 are desirably made from elastomeric materials, there is sufficient compliance to allow multiple disconnections and reconnections. Alternative to the method of connecting the restriction device and placing the slack of the leash 1 14 into the slack insertion hole 148, instead, laparoscopic cutters can be used to cut the slack portion of the leash 1 14. For example, by cutting the leash 1 14 at the exit hole 126 and removing the excess portion with laparoscopic graspers.
[00148] FIG. 20 illustrates an implantable obesity control system 160 in accordance with an embodiment of the present invention. The implantable obesity control system 160 comprises a restriction device 162, an implantable interface 164 and a drive transmission 166. During an initial surgical procedure, the restriction device 162 is implanted in the patient so that it creates a stoma and controllably restricts the size of an opening between the stoma and the remainder of the stomach. For example, the restriction device 162 is laparoscopically placed into the abdominal cavity and configured in a position surrounding the stomach. The restriction device 162 is placed through a trocar, or alternatively is placed though the opening created after a trocar is inserted and then removed. The restriction device 162 may be implanted in a patient such that a contact surface of the restriction device 162 at least partially engages a surface of the gastrointestinal tract, such as the stomach and/or the esophagus of the patient. For example, the restriction device 162 may contact, touch, attach to, affix to, fasten to, access, penetrate (partially or completely) or otherwise engage the surface of the stomach and/or the esophagus. [00149] During this initial procedure, the implantable interface 164 is placed subcutaneously at a site that may be subsequently accessed using an external device (168 in FIG. 21) but that does not interfere with the patient's mobility. Some example sites that may be used include below the collar bone, above the navel, and below the ribs. [00150] FIGS. 21 and 22 illustrate an external device 168 for use with the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention. During a follow-up procedure, the restriction device 162 may be adjusted using the external device 168 without the need for penetrating the skin or entering any of the body's natural orifices. The external device interface 169 of the external device 168 is first placed adjacent the implantable interface 164, and the restriction device 162 may then be adjusted via the interaction of the external device interface 169 with the implantable interface 164 to its desired size or configuration (e.g., FIG. 22). In certain embodiments, the external device interface 169 may be manipulated by rotation about an axis using a motor device. In certain embodiments, the external device interface 169 may be manually rotated about an axis in order to adjust the size or configuration of the restriction device 162. Although in certain embodiments the restriction device 162 may be used to restrict the esophagus or stomach for the treatment of obesity, in other embodiments the device 162 can be used for other restriction applications, such as gastro-esophageal reflux disease (GERD), artificial sphincters (e.g. anus or urethra), annuloplasty, and full or partial occlusion of blood vessels, such as the pulmonary artery, or blood vessels supplying a cancerous area.
[00151] The external device 168 comprises the aforementioned external device interface 169 which in certain embodiments has one plane of free movement via a pivot 170. In addition, the external device 168 may comprise a base 171 having a handle 172. In certain embodiments, the external device 168 may be battery operated, as illustrated in FIG. 21, while in certain embodiments the external device 168 may be powered from external electricity and may include a power cord. In certain embodiments, the external device 168 may be configured to use batteries that may be rechargeable. The batteries may reside within the base 171 of the external device 168 and may be held in place by the battery cover 173. Buttons 174 near the handle 172 are thumb operated and include generic symbols for "off," "clockwise rotation" and "counter-clockwise rotation," or "off," "tighten," and "loosen." A display 175 allows the physician or health professional performing the adjustment procedure to visualize the current size or configuration of the restriction device 162. For example, the diameter, circumference, setting number (e.g. "1" through "10") or cross-sectional area of the restriction device 162 may be visualized. In addition, the display may also show patient information, such as procedure dates, the patient's name, or other statistics.
[00152] FIG. 23 illustrates the restriction device portion of the implantable obesity control system of FIG. 20 in accordance with an embodiment of the present invention. The body portion 176 of the restriction device 162 comprises two attachment portions 177 and 178. When the attachment portions 177 and 178 are not attached to each other, the body portion 176 may conform to a linear shape that may be placed into the abdominal cavity though the inner lumen of a cannula. For example, the restriction device 162 is configured so that it will dimensionally fit through the internal diameter of a 15 mm or 12 mm trocar 18. It is also configured so that it will dimensionally fit through the tract made by insertion and removal of a 10 mm or 12 mm trocar 18. The restriction device 162 may be placed through a tract made after a trocar, cannula, sheath, dilator, needle or other puncturing device is placed and then removed. The restriction device 162 may also be placed through a direct incision. When the body portion 176 is oriented around the stomach or esophagus, the attachment portions 177 and 178 are joined, creating a substantially encircling configuration. Although the body forms a substantially circular shape when joined using both attachment portions 177 and 178, in other embodiments the body may form a shape that is substantially oval, square, triangular or another shape when both attachment portions 177 and 178 are joined. [00153] In certain embodiments, the body portion 176 may comprise a biocompatible material such as silicone or polyurethane. In certain embodiments, the external surface of the biocompatible material can be further altered in order to increase biocompatibility. In certain embodiments, a biocompatible material may be used to completely encapsulate a material that is not known to be biocompatible. The body portion 176 may also have holes (not illustrated) configured for the attachment of sutures, so that the restriction device 162 may be secured to the body. For example, the restriction device 162 may be attached to the stomach using sutures. Alternatively, in certain embodiments, the restriction device 162 may have grooves or hooks configured for the securing of suture material. This allows the restriction device 162 to be easily secured to the stomach wall in order to prevent slippage of the device or prolapse of the stomach. [00154] In certain embodiments, the attachment portions 177 and 178 may be made from the same material as the body portion 176. The attachment portions 177 and 178 may be made from various polymeric or metallic materials. The attachment portions 177 and 178 may be laparoscopically detached, or a section of material adjacent to the attachment portions 177 and 178 may be laparoscopically severed if removal of the restriction device 162 is ever necessitated.
[00155] FIG. 24 illustrates a cross section of the restriction device portion 162 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention. The body portion 176 comprises an outer housing 179, a central cavity 180 and an inner distensible member 181. A dynamically adjustable band 182 resides between the housing 179 and the inner distensible member 181. The dynamically adjustable band 182 comprises a secured end 183 and a movable end 184. The secured end 183 may be coupled to the body portion 176 using any fastening method, including insert molding, overmolding, adhesive bonding, thermal bonding, or mechanical attachment. The movable end 184 is capable of moving to either increase or decrease the operative contact length of the dynamically adjustable band 182. This change in the operative contact length serves to act upon the inner distensible member 181, causing it to increase or decrease its effective perimeter, which allows for the dynamic adjustment of the size or shape of the opening between the stoma and the stomach.
[00156] The inner distensible member 181 is configured to cushion the wall of the stomach from any high stress concentrations imposed by the dynamically adjustable band 182, as well as minimize any pinching or folding of the stomach wall by the movement of the dynamically adjustable band 182. Alternatively, the central cavity 180 may be pre-inflated with an incompressible material, such as silicone oil, in order to create further cushioning. If pre- inflated, this also creates the desirable situation that if there were to be break in any structure, the restriction device 162 would not draw in a large amount of body fluid. [00157] FIG. 25 illustrates an inner section of the restriction device portion of the implantable obesity control system of FIG. 20 in accordance with an embodiment of the present invention. The dynamically adjustable band 182 can comprise a variety of materials such as stainless steel, ELGILOY, superelastic NITINOL, polyester and Nylon (for example Nylon 6/6) that allow a small thickness with high tensile strength. It can alternatively be made from a metallic or high-strength KEVLAR mesh material encapsulated in a polymeric material. The dynamically adjustable band 182 is configured with grooves 185 that allow engagement by a worm gear (186 in FIG. 24). The worm gear 186 is housed within a gear housing 187 comprising an upper housing 188 and a lower housing 189. [00158] The drive transmission 166 is configured to turn the worm gear 186 in either rotational direction. For example, the drive transmission 166 may turn the worm gear 186 in the clockwise direction to tighten the band 182 and in the counter-clockwise direction to loosen the band 182. The drive transmission 166 comprises a drive shaft 190 which turns inside a sheath 191.
[00159] In certain embodiments, the drive transmission 166 may be permanently attached to the restriction device 162 and the implantable interface 164, or it may be configured attach to and detach from the restriction device 162, the implantable interface 164, or both the restriction device 162 and the implantable interface 164. For example, although the drive transmission 166 may be permanently attached to the restriction device 162, the drive transmission 166 may be temporarily attachable to and detachable from the implantable interface 164. In the case of a malfunctioning implantable interface 164, the implantable interface 164 may be replaced, while leaving the restriction device 162 and the drive transmission 166 in place. The new implantable interface 164 can then be attached to the drive transmission 166. The implantable interface 164 may thus be replaced without the need for placement of laparoscopic trocars. [00160] In certain other embodiments, the drive transmission 166 may be attachable to and detachable from both the restriction device 162 and the implantable interface 164. The implantable obesity control system 160 may thus use two or more drive transmissions 166 of differing lengths. The appropriate length drive transmission 166 may be chosen based on what best fits the anatomy of the patient in addition to the chosen surgical configuration. Additionally, if a drive transmission 166 fails while the implantable obesity control system 160 is in use, then a replacement drive transmission 166 may be attached laparoscopically to the restriction device 162 and the broken drive transmission may be removed. [00161] FIG. 26 illustrates the drive shaft 190 portion of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention. The drive shaft 190 comprises an inner coil 192, a middle coil 193, and an outer coil 194. In certain embodiments, all three of the coils 192, 193, 194 are wound with multi-filars of wire 195. The direction of winding for the outer coil 194 and the inner coil 192 are the same, while the middle coil 193 is wound in the opposite direction. This three layer configuration allows for torque transmission in either direction. For example, when the drive shaft 190 is turned in one direction, the outer coil 194 compresses and the middle coil 193 expands, causing them to support one another. When the drive shaft 190 is turned in the opposite direction, the middle coil 193 compresses and the inner coil 192 expands, causing them to support each other.
[00162] In certain embodiments, the wires 195 are made from spring tempered 304V stainless steel of diameters ranging from .003" to .015," but can also be made from a variety of materials, including ELGILOY, NITINOL and other metals. By making the drive shaft 190 from NITINOL or other supereleastic materials, the drive shaft can be made resistant to kinking, which may occur during the implantation procedure. In certain embodiments, the wires 195 have a diameter of, for example, .008." The three coils may be connected to each other at the ends using any conventional joining technique, such as welding, brazing, soldering, adhesive, or epoxy. In certain other embodiments, the drive shaft 190 can be made from a braid reinforced polymeric tube or rod. In yet further embodiments, the drive shaft 190 can be made from a multi-link transmission shaft. In other embodiments, the drive shaft 190 may be made from a metallic tube that has been laser machined in a way that creates a mechanically linked pseudo-spiral pattern. In another embodiment, the drive shaft 190 may simply be made from a single wire, for example a superelastic or NITINOL wire. [00163] FIG. 27 illustrates the sheath 191 portion of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention. The sheath 191 , which houses the drive shaft 190, may comprise a composite configuration, including an inner layer 196, braiding 197, an intermediate layer 198 and an outer layer 199. The inner layer 196 comprises a material with high lubricity, such as a fluoropolymer. Sample fluoropolymers include polytetrafluoroethylene (PTFE) and ethylene tetraflurorethylene (ETFE). The use of high lubricity materials may reduce friction between the stationary sheath 191 and the turning drive shaft 190. [00164] The braiding 197 supplies mechanical strength though tension, compression and/or torsion and maintains the sheath 191 in a round cross-section as the sheath 191 is placed in a flexed configuration. The braiding material may comprise 304 stainless steel, ELGILOY, MP35N, L-605 or a high strength polymeric material such as KEVLAR. Alternatively, the braiding 197 can be replaced by a metallic coil made from any of the aforementioned materials. For example, a NITINOL coil which serves to resist kinking of the sheath.
[00165] The intermediate layer 198 comprises a material that encapsulates the braiding 197 and gives mechanical characteristics to the sheath 191, such as stiffness or torsional rigidity. For example, the intermediate layer 198 may be of a low enough rigidity that the sheath 191 is able to curve and comfortably fit within the patient, but of a high enough rigidity that the sheath 191 is not able to bend into a small bend radius that would cause failure of the drive shaft 190. The intermediate layer 198 may also comprise a material that allows adherence between the inner layer 196 and the outer layer 199. The outer layer 199 comprises a biocompatible material such as silicone, polyurethane or ETFE. [00166] FIG. 28 illustrates the drive shaft 190 portion which connects to the attachment portion (209 in FIG. 29) of the implantable interface 164 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention. FIG. 29 illustrates the attachment portion 207 of the implantable interface 164 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention.
[00167] In embodiments of the system 160 with an attachable/detachable implantable interface 164 configuration, the end of the drive shaft 190 includes a keyed element 200 including a raised portion 201 and an undercut portion 202. The keyed element 200 may also include a first lead in 203 and a second lead in 204. The end of the sheath 191 includes a barb 206. The attachment portion 207 of the implantable interface 164 as shown in FIG. 29 comprises a keyhole 208 and a dynamic snap 209. The dynamic snap 209 has an interior ramp 210 , a mechanical detent 21 1 and relieved area 212 having a reverse ramp 213. The implantable interface 164 may also contain an elastic orifice (214 in FIG. 30). [00168] During attachment, the first lead in 203 is guided through the interior ramp 210 and the raised portion 201 is forced through the dynamic snap 209, flexing it outward until the raised portion 201 reaches the relieved area 212. Also during attachment the keyed element 200 engages in the keyhole 208. This attachment allows for axial securement and rotational communication between the implantable interface and the drive shaft. Similarly, during attachment, the barb 206 engages with the internal diameter of the elastic orifice 214 to create a hermetic seal to protect the inner workings of the connection from the body fluids. During detachment, the keyed element 200 is removed from the keyhole 208, as the second lead in 204 of the raised portion 201 is guided through the reverse ramp 213 and the interior ramp 210. The elastic orifice 214 is also pulled off of the barb 206 during this detachment process. In certain embodiments, the attachment and detachment can both be performed using laparoscopic grasping and manipulating tools because of the attachable/detachable configuration between the drive transmission 166 and the restriction device 162. In certain embodiments, either the second lead in 204 or the reverse ramp 213 (or both) may be eliminated from the design if a permanent attachment is desired. [00169] FIG. 30 illustrates a front view of the implantable interface 164 portion of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention. The implantable interface 164 comprises an interface housing 215 and a rotatable frame 216. The interface housing 215 includes suture tabs 223 for securing the implantable interface 164 to a patient. For example, the suture tabs 223 may be used to secure the implantable interface 164 to fascia covering muscular layers beneath the skin and fat of a patient.
[00170] The rotatable frame 216 contains several permanent magnets 217. The permanent magnets 217 are configured to magnetically engage a complimentary configuration on the external device interface 169 of the external device 168 of FIGS. 21 and 22 above. The permanent magnets 217 of the implantable interface 164 and the external device 168 are configured to create the maximum attraction to each other while also inhibiting the rotational slippage between the rotating portions of each component. This is achieved by using permanent magnets 217 which are shaped as wedges or sectors, and are oriented so that each consecutive permanent magnet 217 faces an opposite direction. For example, in one embodiment, the magnets 217 may be arranged in a north-south-north-south alternating configuration. The sector shape makes the best use of a minimum amount of space in the assembly. The rotatable frame 216 holds the permanent magnets 217 securely, even though many strong attractive and repulsive forces exist between each of the permanent magnets 217 of a single assembly. In certain embodiments, the magnet material comprises rare earth magnet materials, such as Neodymium-Iron-Boron (Nd-Fe-B), which have exceptionally high coercive strengths. In certain embodiments, the individual Nd-Fe-B magnets are enclosed within a stainless steel casing or various layers of nickel, gold or copper plating to protect the corrosive Nd-Fe-B material from the environment inside the body. In certain embodiments, other magnetic materials may be used, including SmCo5 (Samarium Cobalt) or AlNiCo (Aluminum Nickel Cobalt). In certain embodiments, Iron Platinum (Fe-Pt) may be used. Iron platinum magnets achieve a high level of magnetism without the risk of corrosion, and may possibly preclude the need to encapsulate. In certain embodiments, the permanent magnets 217 on the implantable interface may be replaced by magnetically responsive materials such as Vanadium Permendur (also known as Hiperco).
[00171] In certain embodiments, the rotatable frame 216 of the implantable interface 164 is caused to rotate via the rotation of the magnets on the external device interface 169 of the external device 168. In certain embodiments, the magnets on the external device are on a rotatable frame with the magnets themselves having a higher magnetism than those on the implantable interface 164. For example, the magnets on the external device 168 may also be permanent magnets of the same sector shape as the implantable interface 164, but may be of a much larger thickness or diameter. In other embodiments, the external device 168 may incorporate one or more electromagnets instead of permanent magnets. It can be appreciated that the implantable device has relatively few components and does not include a motor or electronics, thus creating a simpler, less costly, more reliable device with a higher likelihood of functioning many years after implantation.
[00172] FIG. 31 illustrates a rear view of the implantable interface portion 164 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention. The rotatable frame 216 of the implantable interface 164 is coupled to a first bevel gear 218 which then causes the rotation of a second bevel gear 219. The second bevel gear 219 is coupled to the drive shaft 190 (either permanently or by the attachable/detachable method described earlier). A gear ratio of less than 1 :1 may be used (e.g. 1 :3) in order to slow the rotation of the drive shaft 190, and to increase the torque delivery to the worm gear 186 of the restriction device 162. In order to ensure that the restriction device 162 is only adjusted when desired, the rotatable frame 216 is forced against a clutch 221 by a spring (222 in FIG. 30). The clutch 221 frictionally holds the rotatable frame 216 so that no rotational movement can occur, for example, during patient movement or exercise. The magnetic engagement between the magnets of the external device interface 169 of the external device 168 and the permanent magnets 217 of the implantable interface 164 forces the rotatable frame 216 to move axially towards the external device 168, compressing the spring 222 and releasing a clutch interface 224 of the rotatable frame 216 from the clutch 221. [00173] FIG. 32 illustrates a direct front view of the implantable interface 164 portion of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention. The rotatable frame 216 has a square orifice 226 which is able to slide axially over a square cross-section hub 225, without allowing rotation between the two parts. Thus, when the external device 168 is in place, i.e., with the external device interface 169 adjacent the implantable interface 164, the rotatable frame 216 is magnetically pulled off of the clutch 221 and thus there is free rotation of the rotatable frame 216 caused by the rotation of the corresponding mechanism of the external device 168. The clutch 221 and the clutch interface 224 can be of several possible configurations so that they may engage each other, concave/convex, plate, cone, toothed, etc. FIG. 33 illustrates a radio frequency identification (RFID) chip 220 near the implantable interface portion 164 of the implantable obesity control system 160 of FIG. 20 in accordance with an embodiment of the present invention. An RFID (radio frequency identification) chip 220 may be implanted in a patient during the implantation of the implantable obesity control system 160. In certain embodiments, the RFID chip 220 may be implanted subcutaneously in a known location, such as a location near the implantable interface 164. In other embodiments, the RFID chip 220 may be located within the implantable interface 164. Upon the implantation of the restriction device 162, the external device 168 stores patient information on the RFID chip 220, including the current size of the restriction device 162, the amount adjusted, the serial number of the restriction device 162, the date of the procedure, patient name, flow rate of a test fluid through the stoma, and identification. With respect to flow rate measurements and various sensors, reference is made to U.S. Provisional Patent Application No. 60/880,080 filed on January 1 1, 2007 which is incorporated by reference as if set forth fully herein. This application includes fully external sensors for detecting flow through the gastrointestinal lumen as well as sensors integral or incorporated with the gastric band for detecting flow through the gastrointestinal lumen, and other characteristics.
[00174] During subsequent adjustment procedures, the external device 168 may read the RFID chip 220 to determine information related to the patient, such as the current size of the restriction device 162. At the end of the adjustment procedure, the external device 168 may store updated patient information, including the size of the restriction device 162, to the RFID chip 220. An RFID antenna (not shown) in the external device 168 may be used to power the RFID chip in order facilitate the read and write functions.
[00175] Several techniques may be used to determine the current size of the restriction device 162. In certain embodiments, the size may be determined indirectly by the number of rotations of the rotatable assembly of the external device 168. In certain embodiments, the size may be determined by the number of rotations of the rotatable frame 216 of the implantable interface 164, by the number of rotations of any one of the gears or shafts of the implantable interface 164, or by the number of rotations of the restriction device 162 itself. In certain embodiments, a feedback mechanism, such as a Hall effect device (two additional magnets that move axially in relation to each other as drive shaft rotates and therefore as the restriction device constricts or loosens), may be used to determine the current size of the restriction device 162. In certain embodiments, an optical encoder feedback mechanism may be used by placing an optical encoder in the gear box of either the external device 168, the restriction device 162 or the implantable interface 164. A through-the-skin optical encoder is even envisioned that shines a light through the skin and fat and counts successive passes of a one or more reflective stripes on the rotatable frame 216 or magnets 217. In certain embodiments, the external device may include an audio sensor to determine the current size of the restriction device 162. For example, the sensor may listen to the cycling sound of gearing, thus giving feedback information on the amount of total adjustment. [00176] Any of the materials of the restriction device 162, the implantable interface 164, the drive transmission 166 or even the external device interface 169 of the external device 168 can be made from radiopaque materials, so that the position, condition or alignment of the components may be seen during the initial surgical procedure, or during the subsequent adjustment procedures. For example, portions of the dynamically adjustable band 182 may be made radiopaque to allow the use of fluoroscopy to determine the dimension of the restrictive device 162. Alternatively, two components on the drive transmission (one that is stationary and one that moves axially with rotation) may each be radiopaque so that the measurement of the distance between the two components on a scaled x-ray will give the current size of the restriction device.
[00177] In the initial surgical implantation of some embodiments, one or more trocars are placed into the abdomen of the patient. The abdominal cavity is insufflated, such as by using CO2, thus creating a space within which to perform the procedure. Laparoscopic dissecting tools are placed through trocars and under the visualization of a laparoscope tissue is dissected near the junction of the stomach and the esophagus. The restrictive device 162 is placed into the abdominal cavity. In certain embodiments, the restrictive device 162 is placed into the abdominal cavity through one of the trocars, while in certain embodiments the restrictive device 162 is placed into the abdominal cavity through a tract made by inserting and removing a trocar. The restrictive device 162 is laparoscopically placed around the desired section of the stomach and/or esophagus and secured. The implantable interface 164 may be attached subcutaneously by suturing the interface 164 to the fascia. [00178] In the adjustment procedure, the external device 168 is placed against the outer surface of the skin, with the external device interface 169 placed adjacent the implantable interface 164. The external device 168 is operated so as to magnetically adjust the restrictive device 162 via the implantable interface 164.
[00179] FIGS. 34 and FIG. 35 illustrate an implantable interface 248 which is configured to allow non-invasive adjustment of the restriction device. Externally, the implantable interface 248 comprises a housing 256 and a strain relief 254. The housing 256 is preferably made from rigid, implant-grade biocompatible materials such as PEEK, titanium or polysulfone. The strain relief is preferably made from elastomeric, implant-grade materials such as silicone, polyurethane or a silicone-urethane copolymer, such as Elast-eon™. The housing 256 may also be coated with an elastomeric material such as silicone, polyurethane or a silicone-urethane copolymer. The implantable interface 248 is coupled to the drive transmission 202 of the restriction device (e.g., restriction device 230 of FIG. 42). The drive transmission 202 comprises a drive shaft 250 and a sheath 252. The housing 256 comprises a first magnet cover 258, a second magnet cover 260 and an articulation 262. The strain relief 254 is coupled to the articulation 262, allowing the adjustment of an angle (α) for placement and securement to a patient. FIG. 35 shows the angle (α) adjusted to about 45° while FIG. 34 shows the angle (α) adjusted to close to 0°. Other angles may be desired, for example 180°. In addition, the housing 256 comprises a plurality of suture tabs 266 having suture holes 264, aiding in suturing the implantable interface 248 to the fascia.
[00180] The implantable interface 248 is attachable to and detachable from the drive transmission 202, allowing the restriction device 230 and the drive transmission 202 to be inserted together into the abdomen, for example through a trocar-made hole in the abdominal wall. FIG. 36 illustrates the implantable interface 248 with the first magnet cover 258 removed. A cylindrical magnet 270 is secured within a turret 268 which is capable of rotation. The cylindrical magnet 270 is poled north-south across its diameter, as shown. Note, though two 180° sectors are shown, alternative poling, such as four 90° sectors, alternating north-south-north-south are conceived, for example by incorporating more than one magnet, as are other variations of sector angle and sector number. [00181] Turning to FIG. 37A, rotation is imparted to the drive shaft 250 by means of a gearing arrangement. First miter gear 272 is coupled to a shaft 276. Both cylindrical magnets 270 are coupled to the same shaft 276. When both cylindrical magnets 270 are rotated by an external device 278, external to the patient, it causes shaft 276 and first miter gear 272 to turn. First miter gear 272 is rotatably engaged with second miter gear 274, which therefore is forced to turn when first miter gear 272 turns in response to rotation of cylindrical magnets 270. Second miter gear 274 is coupled to drive shaft 250, and so the forced rotation of the second miter gear 274 causes the rotation of the drive shaft 250. If bevel gears are used in place of the miter gears, for example, wherein the second (or follower) gear has a larger number of teeth than the first gear, then less torque is required to rotate the shaft 276, and drive shaft 250 rotates at a slower rate.
[00182] The drive shaft 250 is capable of delivering torque. It can be made, for example, from a triple coil configuration, wherein the inner and outer coils are would in one direction and the middle coil is wound in the opposite direction. The wires are made from 304 stainless steel or ELGILOY or NITINOL or other metallic or polymeric materials. Alternatively, the drive shaft 250 can be made from a braided tubing (polymeric tubing with embedded braiding). This braiding can be 304 stainless steel, ELGILOY, NITINOL, KEVLAR or other metallic or polymeric materials. The triple coil type drive shaft and the braided tube type drive shaft can both also be made with a core wire or rod in the center, for increased strength properties. If the designs allows for low enough torque of the drive shaft, the drive shaft 250 can be made of a single wire, for example a .010" to .030" NITINOL wire. Using NITINOL in any of the drive shaft configurations, especially in its superelastic state, makes for a more kink resistant drive shaft.
[00183] FIG. 37B illustrates the implantable interface 248 implanted within the abdominal wall 288 of a patient. The implantable interface 248 is implanted beneath the skin 280 and the subcutaneous fat 282 and is secured to the fascia 284 covering the muscle 286 by suture 290 or other means. Within a number of weeks after implantation of the implantable interface 248, the body forms a fibrous capsule around the implantable interface 248. The implantable interface 248 is shown in FIG. 37B in a preferred configuration, with the strain relief 254 extending through the fascia 284 and muscle 286. In order to non-invasively adjust the constriction amount of the restriction device 230, an external device 278 is placed on the skin surface opposite the implantable interface 248. The external device comprises an external device housing 292 having a flattened surface 296 for placement on the skin 280. [00184] Alternatively, the surface for placement on the skin 280 can be contoured to match that of the abdomen. The external device 278 is held in place using a handle 294. Alternatively, the external device is clamped to the patient or held in place by means other than the attending operator's hands. Batteries 300 power a motor 298 which is operated via a switch 301. For example, the switch 301 has three settings: an off setting, an operation of the motor in one rotational direction and an operation of the motor in the opposite rotational direction. The motor 298 rotates a motor pulley 302, which then drives a cylinder 304 by means of a belt 308 and a cylinder pulley 306. It is conceived that other means of operation are all within the scope of causing rotation of the cylinder 304. Attached to the cylinder are four drive magnets 310, shown in FIG. 38. The drive magnets are poled as shown (through their thickness) so that alternating north-south faces are seen as the cylinder rotates. [00185] Beneath each drive magnet 310 is a back iron 312. In certain embodiments, the drive magnets are made from rare earth magnetic materials, such as Neodymium-Iron-Boron (Nd-Fe-B), which have exceptionally high coercive strengths. In certain embodiments, the Nd-Fe-B magnets are enclosed within a stainless steel casing or a plating to protect the corrosive Nd-Fe-B material from the environment inside the body. In certain embodiments, other magnetic materials may be used, including SmCo5 (Samarium Cobalt) or AINiCo (Aluminum Nickel Cobalt). In certain embodiments, Iron Platinum (Fe-Pt) may be used. Iron platinum magnets achieve a high level of magnetism without the risk of corrosion, and may possibly preclude the need to encapsulate. In certain embodiments, the permanent magnets used on the implantable interface may be replaced by magnetically responsive materials such as iron-cobalt-vanadium alloy (also known as HIPERCO). [00186] The back iron 312 is preferably made from steel (AISI 1018) and may be coated, for example with Parylene, but the back iron 312 can also be made of stainless-steel. The back iron 312 preferably measures about half the thickness of the drive magnet. The back iron serves to force most of the magnetic field in direction A, creating improved coupling with the cylindrical magnets 270 of the implantable interface 248. When the switch 301 is operated to turn the cylinder 304, and thus drive magnets 310 and back irons 312 in a first rotational direction 314, magnetic coupling causes the cylindrical magnets 270 of the implantable interface 248 to turn in a second rotational direction 316. When the switch 301 is operated to turn the cylinder 304, and thus drive magnets 310 and back irons 312 in a third rotational direction 318, the cylindrical magnets 270 of the implantable interface 248 are forced to turn in a fourth rotational direction 320. It can be seen that the components in this embodiment behave like magnetic gearing, with the drive and driven "gears" engaged by magnetic attraction and repulsion.
[00187] The combination of the relatively large width of the drive magnets 310, and the effectiveness of back irons 312 to selectively shape the magnetic fields improves the coupling with the cylindrical magnets 270 of the implantable interface 248 so that even a non-ideal orientation of the implantable interface 248 in relation to the flattened surface 296 of the external device 278, as shown by angle β in FIG. 39, can still allow for acceptable coupling, and thus adjustment of the restriction device 230. Likewise, length d from the end of the external device 278 to the end of the implantable interface 248 can vary quite a bit while still allowing for good coupling. This is important, because the contours of the human body to not always allow for perfect parallel alignment, and because the implantable interface 248 cannot be seen through the skin 280 and fat 282, and thus the true optimum alignment cannot always be surmised.
[00188] An alternative embodiment is shown in FIG. 40. In this single magnet implantable interface 322, there is only one cylindrical magnet 270, giving the implantable interface 322 an "L" shape instead of a "T" shape. The benefit is that this configuration can be secured within the abdominal wall of the patient with a smaller "footprint", and thus with less bother to the patient, either cosmetic or comfort related. FIG. 41 demonstrates this configuration. An alternative single magnet implantable interface 324 is illustrated in FIG. 41 in place within the abdominal wall 288. An additional feature of this alternative embodiment is a planetary gearbox 326, which can change the gear ratio to lessen the torque requirement and/or lower the rotational speed, without addition diameter to the housing. [00189] The sheath 252 of the drive transmission 202 is preferably made with a coil reinforced configuration. For example, the inner layer is polyethylene, polypropylene, nylon, polyurethane, PTFE, FEP, PFA, ETFE or other relatively low friction polymers. The coil is made from stainless steel, ELGILOY, NITINOL, MP35N and serves to maintain a round inner diameter, and keep sheath 252 from kinking. This is important because the drive shaft 250 should in turn be free to rotate inside the sheath, even as sheath takes a curved configuration in the body over the life of the implant, due to patient movement. The entire outer surface of the restriction device 230, drive transmission 202 and implantable interface 248 are preferably made from implantable biocompatible materials, such as silicone, polyurethane or a silicone-urethane copolymer, such as Elast-eon™. The outer surface may be made more lubricious via the embedding of Parylene. [00190] The external device may also include a torque meter that measures the torque during adjustment in order to determine whether the magnets are engaged, and thus is able to count rotations, and thus, the degree of adjustment of the restriction. The external device may also use electromagnets in order to generate the magnetic fields which will couple with the implantable interface magnets. Alternatively, the magnets of the implantable interface 248 may also have back irons in order to tailor the magnetic fields. The back iron may be steel (AISI1018) with Parylene coating, nickel and gold coating or other coating to assure biocompatibility.
[00191] FIG. 42 illustrates an alternative embodiment of the restriction device 230 having a sliding section. A belt 336 is attached permanently at the first attachment portion 338. The belt 336 has grooves 340 which are engaged by a worm 342 which is turned by a drive shaft 344, for example, a magnetically driven drive shaft. At the worm 342 turns, the grooves 340 of the belt 336 are engaged by the threads of the worm 342, causing the perimeter of the belt 336 to either increase or decrease. This causes a female section 348 to slide over a male section 346 to either increase or decrease the inner diameter of the restriction device 230. An advantage of this configuration is that the restriction device 230 does not need to be made of compressible materials, such as foam. In this type of design, the emergent relief of stress, for example due to violent vomiting, can be controlled by a semi-compliant relationship between the attachment between the first attachment portion 338 and a second attachment portion 350. [00192] FIG. 43 illustrates an alternative embodiment of an implantable interface 400. A drive transmission 202, comprising a drive shaft 250 and a sheath 252 is coupleable to the implantable interface 400. The implantable interface 400 comprises a housing 402 a flexible strain relief 404 and a magnetically driven rotational assembly 406. The magnetically driven rotational assembly 406 comprises a turret 408 and four magnets 410. The turret 408 includes a keyed orifice 412, for example in the shape of a hexagon, which can be engaged by a corresponding male shape, for example a hex 418 at the end of the drive shaft 250 (see FIG. 44). The turret 408 also serves to hold the magnets 410 in their preferred configuration. Note that other numbers of magnets may be used, for example six instead of four. In the configuration illustrated, the magnets a poled through their thickness and oriented in an alternating manner (north-south-north-south) so that they are presented at the top face 414 to couple with a driving magnet or magnetic array in an external device (not pictured).
[00193] The external device couples with the magnets 410, causing the turret 408 to turn, and in turn causing the drive shaft 250 to turn, thus allowing for adjustment of the restriction device. FIG. 44 illustrates the drive shaft 250 and the sheath 252 prior to being coupled to the turret 408 of the implantable interface 400. The sheath 252 has wings 416 which are inserted into the flexible strain relief 404 and locked into the wing lock 424 (see FIG. 45), while the hex 418 is inserted into the keyed orifice 412. The shape does not have to be a hexagon, and can be any keyable or friction engageable shape. FIG. 45 illustrates a cross- section of the implantable interface 400 after it has been sutured into a patient and after several weeks have passed, wherein the body has grown a fibrous capsule 426 around the implantable interface 400. The implantable interface 400 has been secured to the fascia 284 covering the muscle 286 by use of suture 290. The implantable interface 400 was originally inserted through an incision 428 and into a tunnel 430 between the skin 280 and fat 282 and the fascia 284 and muscle 286. The suturing is done through suture holes 422 in suture tabs 420. If necessary, the implantable interface 400 may be subsequently removed from the drive transmission 202 and replaced by another implantable interface of the same design or of a different design.
[00194] FIG. 46 illustrates an external device 472 for driving the implantable interface 400 of FIGS. 43-45. External device 472 comprises a head 474, a handle 476 and an articulation 478 that allows adjustment of the angle of the head 474 in relation to the handle 476. In use, front face 480 is placed against skin 280, opposite implantable interface 400. Four driving magnets 482 are arrayed on turret 484 in staggered (north-south-north-south) orientation. The turret 484 can be rotated within a housing 486 of head 474. Back iron 488 is approximately 50% of the thickness of each of the driving magnets 482. Back iron is a flat ring disk made from steel 1018, with an inner diameter matching the inner arc and an outer . . .f , t ... . t. , πyυ u> a mree position switch controlling the operation of a motor which is either off, rotating clockwise or rotating counter-clockwise. The motor controls the rotation of the turret 484. The back iron 488 serves to orient the magnetic fields so that they are optimized in the direction of the implantable interface 400, and thus maximize magnetic coupling. The outer diameter of the magnet/back iron assembly is approximately 150% that of the diameter of the magnetically driven rotational assembly 406 of the implantable interface 400. The larger diameter of the magnet/back iron assembly in relation to the magnetically driven rotational assembly 406 allows for sufficient magnetic coupling, even if the external device 472 is not perfectly centered and angularly oriented in relation to the implantable interface 400. The spacing 492 between the driving magnets 482, also minimizes attraction between each of the adjacent magnets which may be antagonistic to the extent of coupling between the external device 472 and the implantable interface 400. An exemplary spacing is 5° to 15°. It should be noted that at maximum torque transfer, the poles of the driving magnets 482 are not perfectly aligned with the opposite poles of the magnets 410, but rather there is a nominal angular offset
[00195] An alternative securing mechanism for an implantable interface 432 is illustrated in FIGS. 47-49. Currently, securing implantable couplers, for example injection ports for hydraulic gastric bands, using suture inserted through suture holes, can be time consuming and can sometimes lead to a port that is not evenly sutured at every suture location. This can lead to flippage of the port. An improvement for securement of both ports for hydraulic gastric bands, ports for other purposes or for the implantable interfaces described within the scope of this invention is illustrated in FIG. 47. The implantable interface 432 comprises a central portion 434, which may include a diaphragm (in the case of an injection port) or a magnetic assembly (in the case of a magnetically driven interface). The implantable interface 432 also comprises an outer portion 436 which includes keyholes 438 and rotatable coils 440. The rotatable coils 440 are rotated by placing a driver into one of the keyholes 438 and turning it. The rotatable coils 440 are connected to a driven head, for example a hex head, and the driver can be a matching hex head. For attachment to the fascia, the interface surface 442 is placed on top of the fascia and a slight force is placed on the implantable interface 432. A driver is placed into one of the keyholes 438 and into the hex head which is attached to one of the rotatable coils 440. The tip 444 of the rotatable coils 440 is sharp, so that it easily imbeds in the fascia. As the rotatable coil 440 is turned clockwise, the tip 444 embeds deeper and deeper into the fascia. All rotatable coils 440 can be secured into the fascia separately, or a gearing system, such as a planetary gearing system, can be used so that only one keyhole 438 is necessary, and allows the tightening of all rotatable coils 440 in unison. FIG. 48 illustrates the implantable interface 432 with the coils 440 retracted and FIG. 49 illustrates the implantable interface 432 with the rotatable coils 440 tightened. The rotatable coils 440 may be axially free within the keyholes, so that only the circumferential engagement into the fascia causes them to advance axially (like a wood screw). Alternatively, the rotatable coils 440 may be within a tapped structure within the keyholes 438 so that the turning of the rotatable coils 440 by the driver causes a specific axial engagement with each turn (as the tip 444 moves circumferential Iy it is also forced axially at a specific rate). If it is desired to remove the implantable interface 432, the rotatable coils 440, can be turned counterclockwise to remove them from the fascia.
[00196] Alternative improvements include the following. It may be desired that after securement, the rotatable coils 440 be contactable by an electrosurgical device, in order to heat the tissue surrounding the rotatable coils 440, in order to promote local scarring and better hold the rotatable coils 440 in place. Because the securement of the rotatable coils is most important in the first several weeks (for example two weeks to six weeks), and in various applications is less important after this period (when the fibrous capsule has formed over the implantable interface 432), it is conceived that the rotatable coils 440 may be detachable, for example in the cases wherein easy removal of the implantable interface 432 is desired. Another way of achieving this is by making the rotatable coils 440 from a material that is biodegradable or bioabsorbable and will disappear in a time period after the important several weeks. An example of such material is magnesium.
[00197] FIG. 50 illustrates an alternative embodiment to the implantable interface using a resonance method to make the drive cable 250 rotate. In FIG. 50, an outer housing is not shown, in order to better display the detail of the internal workings. The resonance mechanism 446 comprises a frame 448, a circular ratchet plate 450, a first resonance beam 452, a second resonance beam 454, a first pawl 456, a second pawl 458, a first magnet 460 and a second magnet 462. The first magnet 460 and the second magnet 462 are attached respectively to the first resonance beam 452 and the second resonance beam 454. The two resonance beams are attached to the frame 448 at one end by use of a clamp 464. An external device having a rotating magnet or a pistoning magnet is operated using a specific repeating frequency that is identical to the resonating frequency of the first resonance beam 452. For example, the external device, consisting of a rotating magnet, is rotated at a frequency of 100 Hz, the resonance frequency of the first resonance beam 452. At this frequency, the repetitive attraction and repulsion of the first magnet 460 causes the first resonance beam 452 to oscillate in direction (D) at an amplitude (A). If this frequency of the rotating magnet is increased or decreased, the first resonance beam 452 will not oscillate at its resonant frequency, and therefore will resist the development of sufficient amplitude (A). [00198] Likewise, because second resonance beam 454 has a resonance frequency of 180 Hz, it will not sufficiently oscillate when the external magnet is rotated at 100 Hz. As the first resonance beam 452 oscillates at 100 Hz and amplitude (A), a first pawl 456 attached to the first resonance beam 452 engages and moves ratchets 466 of the circular ratchet plate 450, causing the plate to turn, for example .010" tangentially with each cycle. For example, if the pawl is at a diametrical location of the circular ratchet plate 450 that is 1", then the disk will turn (100 /sec)(.010")/3.14" or about one turn every three seconds. The resonance activated rotation of the circular ratchet plate 450 causes gearing 468 to engage and thus turns shaft 470 to which is attached drive shaft 250. If this first direction of rotation corresponds to the compression of the restriction device, then the relaxation of the restriction device can be achieved by operating the external device so that the magnet rotates at 180 Hz, which is the resonant frequency of the second resonance beam 454. Now the second resonance beam 454 will oscillate at 180 Hz at an amplitude of A', causing a second pawl 458 to engage and move circular ratchet plate 450 in the opposite direction, thus causing the drive shaft 250 to turn in the opposite direction, and to relax the restriction device. [00199] Alternatively, a single resonance beam structure, centered on the frame, can be used that allows the single beam to pivot to one side or the other of the circular ratchet plate (depending on the direction of rotation of the external magnet). Thus, when the external magnet is rotated in a first direction, the beam pivots to one side of the circular ratchet plate and causes the ratchet plate to turn in a second direction. When the external magnet is rotated in a third direction, opposite of the first direction, the beam pivots to the opposite side of the circular ratchet plate and causes the ratchet plate to turn in a fourth direction, opposite of the second direction.
[00200] It should be noted that on all of the magnetically-aided resonance beam designs, the oscillation of the beam is very insensitive to the location of the external magnet, making it easy for the attending physician or medical personnel to perform the adjustment of the restriction device, without too much concern for finding the correct placement of the external device.
[00201] Instead of using implanted magnets, the implantable interface using the resonance mechanism (but no magnets) can be implanted so that it touches a bone structure so that an external vibrator placed close to the bone (for example the rib) will cause the resonance of the beams at the selected frequencies.
[00202] FIG. 51 illustrates a system 1400 for driving an internally located driven magnet 1402 of an implanted device 1403 via an external device 1406 using a feedback mechanism . One or more implanted driven magnets 1402 are coupled magnetically through the skin 1404 of a patient 1408 to one or more external drive magnets 1410. A rotation or movement of the external drive magnets 1410 causes an equal rotation of the driven magnets 1402. Turning the driven magnets 1402 in one direction 1412 causes a restriction device 1414 to close while turning the driven magnets 1402 in the opposite direction causes the restriction device 1414 to open. Changes to the restriction device 1414 diameter are directly proportional to the number of turns by the one or more drive magnets 1410.
[00203 J The drive magnets 1410 are rotated by the external device 1406, which has an electric gear motor 1416 which is controlled by a programmable logic controller (PLC) 1418. The PLC 1418 outputs an analog signal 1420 to a motor drive circuit 1422 which is proportional to the motor speed desired. The PLC 1418 receives an analog signal 1424 from the motor drive circuit 1422 that is proportional to the current draw of the motor. The gear motor's 1416 current consumption is proportional to its output torque. An electronic torque sensor may be used for this purpose. [00204] The PLC 1418 receives a pulsed input signal 1426 from an encoder 1428 that indicates the angular position of the drive magnets 1410. The PLC 1418 controls a spring loaded braking system 1430 that automatically stops the drive magnet 1410 if there is a loss of electrical power or other emergency.
[00205] A slip clutch 1432 is included between the gear motor 1416 and the drive magnet 1410 to prevent the gear motor 1416 from over torqueing the driven magnet 1402 and potentially damaging the implanted device 1403.
[00206] The PLC 1418 has a built in screen 1434 to display messages and a keypad 1436 for entering data. External push button switches and indicator lights may be incorporated for user comfort and ease of use. [00207] The motor current (output torque) is monitored continuously whenever the device is turning. If the motor current exceeds the maximum allowable current (based on safety requirements of the device components and/or patient tissue) the gear motor 1416 is stopped and the brake 1430 is applied. This can be done both in software and hardware. The mechanical slip clutch 1432 also prevents over torqueing of the device. An exemplary threshold torque is 3.0 ounce-inches. [00208] Each patient will have a number that corresponds to the diameter of their restriction. A fully open device will have a number such as 2.80cm for its internal diameter and a fully closed device will have a number such as 1.50cm.
[00209] This number can be stored on an electronic memory card 1438 that the patient 1408 carries. The PLC 1418 can read the current number from the memory card 1438 and update the number after adjustment. The patient's number can be recorded manually in the patient's chart and kept at the physician's office or printed on an information card that the patient carries. Alternatively, the information can be stored on and read from an RFID chip implanted in the patient. [00210] The patient's number is first entered into the PLC 1418 so it knows the patient's starting point. If the patient's records are completely lost, the system can always fully open the restriction device 1414 (a known starting point). The number of turns to fully open the restriction device 1414 can be counted and the device can then be returned to the same restriction position. [00211] A physician may adjust the restriction device 1414 several ways. An absolute move to a new restriction diameter may be entered directly. For example, a patient 1408 currently at 2.00cm diameter may need to be adjusted to 1.80cm diameter. The physician simply enters the new diameter and presses a 'GO' button. The physician may prefer a relative (incremental) move from the current diameter. Each press of a button will cause the device to open or close a fixed amount, say 0.20cm of restriction diameter, or 0.02 cm.
Finally, there may be provided open and close buttons which open/close the restriction device 1414 as long as the button is held.
[00212] Once the external device 1406 is commanded to move, the PLC 1418 slowly ramps up the speed of the gear motor 1416 while monitoring the motor current (torque). A known minimum drive torque must be present for verification that the magnetic coupling to the restriction device is locked and not slipping. The minimum torque value can be a curve that is stored in the PLC 1418 that is based on the current restriction device 1414 diameter, the direction of movement (opening/closing), even the model number or serial number of the restriction device. [00213] Also, if a sudden torque reversal is detected by the PLC 1418, a slip has occurred. As the like magnet poles (North-North & South-South) which are repelling slip past each other, they are attracted to the adjacent opposite poles (North-South & South-North). This causes a momentary reversal of drive torque. This torque reversal can be detected by the PLC 1418. If a slip occurs, the PLC 1418 can subtract the appropriate amount from the move. If too many consecutive slips occur, the PLC 1418 can stop and display a message. [00214] As the drive magnet 1410 rotates, revolutions and fractions of revolutions are counted by the PLC 1418 and converted to changes in the restriction. Once the move is complete, the PLC 1418 stops the gear motor 1416 and applies the brake 1430.
[00215] The feedback mechanism mentioned in the prior paragraphs is applicable to the external device 472 of FIG. 46, and any other type of magnetic drive, for example an external device that drives the implantable interface using a rotating turret containing electromagnets (instead of the permanent magnets presented previously). [00216] Any of the compatible configurations of a) restriction device, b) drive transmission c) implantable interface and d) external device are conceived to be combinable as alternative embodiments to those presented. In addition, the compression of the restriction device can be achieved by any of the designs and methods by using a rotating drive shaft, or by a tension/compression member. In other words, rotation can be done only to proximal assemblies or assemblies within the implantable interface, which then, through gearing, cause longitudinal shortening or lengthening of a wire or cable, which pulls tension on a belt or rod to cause the restriction device to compress or expand (decrease or increase in inner diameter). [00217] FIGS. 52, 53, and 54 illustrate an alternative embodiment of a restriction device 800 having a first attachment portion 802 and a second attachment portion 804. First attachment portion 802 comprises a tab 806 having an indentation 808 and a molded end piece 810 having a end grasping fin 812. The restriction device 800 also comprises a constrictable section 814 made up of deformable segments. The restriction device 800 also comprises a drive extension 818 which houses the actuating mechanism 820, seen in FIGS. 56-58. In FIGS. 52 and 53, the drive transmission is not shown, but extends from end 822 of drive extension 818. End 822 of drive extension 818 comprises drive grasping fins 826. Second attachment portion 804 comprises latching mechanism 824, which is described in more detail in FIGS. 58-62.
[00218] A grasper is placed through the tunnel made in the pars flaccida approach and the first attachment portion 802 is grasped by tab 806, as the first attachment portion 802 of the restriction device 800 is pulled through the tunnel. Alternatively, the laparoscopic grasper pulls by grasping the end grasping fin 812. Alternatively, the laparoscopic grasper pulls by grasping the entire thickness of the restriction device 800 at the first attachment portion 802. Once the restriction device 800 is straddling the tunnel, the first attachment portion 802 is grasped on the end grasping fin 812 by the grasper (or on the entire thickness of the restriction device 800), and the restriction device 800 is stabilized, for example by grasping the drive extension 818 by a second grasper. In this procedure, each of the laparoscopic graspers may be placed through its own 5 mm trocar. The tab 806 is then inserted into the latching mechanism 824 of the second attachment portion 804, and the first attachment portion 802 and the second attachment portion 804 are latched together. In addition, the process can be reversed in a similar manner to unlatch.
[00219] The latching and unlatching procedure is described in reference to FIG. 55 as well as FIGS. 58-62. In order to clearly show the latching mechanism 824, the molded end piece 810 and the rest of the first attachment portion 802 are not shown, and are visually cut from the tab 806 at line (1). Latching mechanism 824 comprises the tab 806, a slide 828, a retention member 830 and a spring lock 832. To latch the first attachment portion 802 to the second attachment portion 804, the tab 806 is inserted into the retention member 830 until the indentation 808 slides over the spring lock 832. FIG. 55 shows the first attachment portion 802 and the second attachment portion 804 latched together in this manner. [00220] FIGS. 58-62 illustrate the various steps of latching and unlatching, and are shown with the retention member 830 removed, for purposes of clarity. FIG. 58 shows the tab 806 as it is being inserted. FIG. 59 shows the tab 806 after it has been slid past the spring lock 832. The spring lock 832 is angled so that it easily flexes while the tab 806 is slid by it during latching. However, the spring lock 832 will not allow the tab 806 to be unlatched as shown in FIG. 60. The extreme edge of the spring lock 832 catches the edge inside the indentation 808 of the tab 806 at retention point 834. Retention member 830 (not shown in FIG. 56) assures that the tab 806 is forced against the spring lock 832. In order to unlatch, the slide 828 is grasped at wall 836 between depression 838 and the rest of slide 828, and is forced in direction (d), as shown in FIG. 61. Or the tip of a grasper or other surgical tool can be placed into the depression 838 to move the slide 828. This causes slide 828 to move over spring lock 832, forcing it down and covering it. This also releases the spring lock 832, from its locking arrangement with the tab 806. Tab 806 is now free and the first attachment portion 802 is unlatched from second attachment portion 804. Instead of a depression 838, alternatively, the slide 828 may have a fin or gripping surface. [00221] The actuation of the restriction device 800 is shown in sectional view in FIG. 56 and in FIG. 57 (with drive extension 818 removed for clarity). Restriction device 800 comprises a housing 842 having an outer wall 848, an inner surface 844 and an inner wall 846. A belt 840 resides within an internal cavity 850. The belt 840 may include the tab 806 at the first attachment portion 802, or the tab 806 may be a separate entity. The belt 840 is coupled to a nut 852, for example, by means of a curved retaining portion 854 at the extreme end of the belt 840. Rotation of drive shaft 856 turns coupling 858 which then turns screw 860. Screw 860 can be made from a number of materials, including stainless steel, titanium, NITINOL, nylon or other metallic or polymeric materials. An exemplary size for the screw is 0-80 UNF, though the screw 860 may be larger or smaller. The nut 852 has a matching female thread and is preferably a different material than the screw 860, to reduce static or dynamic friction. For example, nut 852 is made from bronze, acetal (Delrin), nylon, PEEK, stainless steel or other metallic or polymeric materials. [00222] As the screw 860 turns, the nut 852 moves axially. For example, when the drive shaft 856 is turned clockwise (for example via magnetic coupling between an external device and an implantable interface), the nut 852 moves in direction (a), as shown in FIG. 56. This tightens the belt 840, and thus constricts the restriction device 800. A counter-clockwise rotation of the drive shaft 856, causes the nut to move in direction (b), thus loosening the belt 840, and lessening the constriction of the restriction device 800. The screw 860 is held in tension by coupling 858 and bearing 862. Bearing 862 may be, for example, a ball bearing constructed of ceramic, glass or sapphire. The use of the fine threaded screw 860 and nut 852 assembly to controllably apply the tension on the belt 840 greatly reduces the amount of torque required to turn the drive shaft 856, and thus, in a magnetically driven system, minimizes the required size of the implanted magnet. [00223] As in the ball bearing constructed of ceramic, glass, or sapphire, the other elements of the actuating mechanism 820 can be made of MRI safe materials, such as many of those mentioned. This eliminates the possibility of movement of the restriction device 800 in the patient during an MRI scan, or heating of the restriction device 800, or interference or artifact on the image being created in a body area near the restriction device 800. The belt 840 may be made of metallic materials or polymeric materials. For example, PET with a thickness of .005" to .015". NITINOL, with a thickness of .003" to .007". Nylon, with a thickness of .010" to .020". PVC, with a thickness of .012" to .024". The belt 840 may also be made of stainless steel. Returning now to FIG. 52 and FIG. 53, the multiple deformable segments 816 allow for a controlled constriction of the interior of the restriction device 800 as the device is constricted.
[00224] FIG. 63 illustrates a magnetic slip clutch 902 for use with an implantable interface 900. Drive shaft 904 is coupled to hub 910. Four clutch magnets 914 are coupled to hub 910 so that hub 910, clutch magnets 914, and drive shaft 904 rotate in unison. Sheath 906 and flexible strain relief 908 are non-rotationally coupled to housing 916 of implantable interface 900. Driven magnets 912 rotate together based on magnetic coupling between the drive magnets or electromagnets of an external device. The only coupling between the driven magnets 912 and the drive shaft 904 is via the magnetic coupling of each individual clutch magnet 914 to each individual driven magnet 912. Gap (g) is chosen so that at a maximum desired torque, the torque overcomes the magnetic attraction and the driven magnets 912 slip in relation to the clutch magnets. Slippage protects against over-torqueing, which could cause failure of the components of the device. For example the drive shaft 904. [00225] FIG. 64 illustrates an implantable obesity control system 1000 according to another embodiment of the invention. The implantable obesity control system 1000 includes a restriction device 1002, an implantable interface 1010, and a drive transmission 1020. The restriction device 1002 includes an adjustable body portion 1004 that changes the size and/or shape in response to the driving action of the implantable interface 1010 and coupled drive transmission 1020 (explained in detail below). The adjustable body portion 1004 may include a flexible jacket 1006 that is shaped in an undulating or wavy-shape as illustrated in FIG. 64. The flexible jacket 1006 may be formed from a biocompatible polymer such as, for instance, polyurethane silicone or a silicone-urethane copolymer, such as ELAST-EON. An optional tab 1008 or the like may be secured to an exterior portion of the flexible jacket 1006 and used to hold or manipulate the restriction device 1002 during, for instance, placement and/or adjustment of the restriction device 1002. [00226] Still referring to FIG. 64, the restriction device 1002 includes a connector 1012 that is used to secure the flexible jacket 1006 in the circular or looped configuration as illustrated in FIG. 64. The connector 1012 includes a proximal portion 1014 that links the flexible jacket 1006 to the proximal aspects of the system 1000. As used herein, the proximal direction refers to a direction or location that is disposed toward or closer to the implantable interface 1010. Conversely, the distal direction refers to a direction or location that is disposed away from the implantable interface 1010. The connector 1012 further includes a distal portion 1016 secured to a distal end of the flexible jacket 1006 that is configured to engage with the proximal portion 1014 of the connector 1012. In one aspect, the distal portion 1016 of the connector 1012 includes a groove or recess 1018 that is dimensioned to receive the proximal portion 1014 of the connector 1012. Preferably, the proximal portion 1014 can be locked or fixedly secured with respect to the distal portion 1016 through the use of one or more tabs, detents, locking members and the like (described in more detail below). In one aspect, as described in more detail below, the proximal portion 1014 and the distal portion 1016 of the connector 1012 may be unlocked to thereby open the flexible jacket 1006 from the circular or looped configuration as illustrated in FIG. 64
[00227] Still referring to FIG. 64, the system 1000 includes a drive transmission 1020 that, in one aspect of the invention, is used to translate rotational movement of a magnetic element (not shown in FIG. 64) contained in an implantable interface 1010 into linear movement of an actuator (not shown in FIG. 64) that adjusts the dimensions or configuration of an internal opening formed in the restriction device 1002. FIG. 64 illustrates a housing portion 1022 that includes an interior aspect that contains the mechanical transmission elements for effectuating the translation of rotational movement into linear movement. The housing portion 1022 is connected to an distal sheath or cover 1024. The sheath 1024 includes a lumen therein (not seen in FIG. 64) for holding the linear driven actuator that is used to alter the dimensions and shape of the internal opening formed in the restriction device 1002. The sheath 1024 may be formed from a spiral-wound wire (e.g., NITINOL) that is coated or covered on the exterior with a polymer tube or flexible coating (e.g., polyurethane). The interior may also be optionally coated with a lubricious polymer coating (e.g., PTFE) to reduce frictional engagement with the moving components of the drive transmission 1020. As seen in FIG. 64, a proximal Iy located sheath or cover 1026 couples the housing portion 1022 to the implantable interface 1010. The proximally located sheath 1026 also includes a lumen therein configured for receiving a rotational drive member such as drive cable or the like. The proximally located sheath 1026 may be made of the same construction as described above with respect to the distal sheath 1024. Preferably, the proximal and distal sheaths/covers 1026, 1024 substantially prevent bodily fluids or the like from entering the housing portion 1022, implantable interface 1010, and the mechanical transmission elements contained in the sheaths/covers 1024, 1026. [00228] FIG. 65 illustrates a cross-sectional view of the restriction device 1002. As seen in FIG. 65, the flexible jacket 1006 contains an inner lumen or recess 1028. An actuating member 1030 is located within this lumen or recess 1028 and is fixedly secured at one end to the distal portion 1016 of the connector 1012. The actuating member 1030 may include a filament, wire, tape, or other elongate structure. For example, in one aspect of the invention, the actuating member 1030 may include NITINOL wire having an outer diameter of around .0012 inches. The actuating member 1030 may be secured to the distal portion 1016 of the connector 1012 using an adhesive, crimp or friction fit, weld, or anchor. For example, in FIG. 65, a stainless steel lug 1031 is bonded to the distal end of the NITINOL actuating member which is used to anchor the distal end of the actuating member in place. [00229] Still referring to FIG. 65, a series of ribs 1032 are located within the jacket recess 1028. The ribs 1032 are preferably spaced periodically about the recess 1028 with substantially constant spacing between at least some of the ribs 1032. In addition, the location of the ribs 1032 are located in the radially inward portions of the undulating or wavy flexible jacket 1006. The ribs 1032 advantageously assist the adjustable body 1004 to change its shape in a substantially uniform manner without any kinking or buckling of the material forming the flexible jacket 1006. As seen in FIG. 65, the actuating member 1030 passes over an outer portion of each rib 1032. Optionally, a groove, hole, or the like located in each rib 1032 (not shown) may be used to properly orient and maintain contact between the actuating member 1030 and each rib 1032. As partially seen in FIG. 65, the actuating member 1030 is secured at one end to the distal portion 1016 of the connector 1012. The actuating member 1030 then passes through the flexible jacket 1006 and out the proximal portion 1014 of the connector 1012. The actuating member 1030 continues onward in the proximal direction until it reaches the housing 1022 (shown in FIG. 64). Alternatively, the actuating member 1030 may be serially attached to an extension spring or analogous mechanism, that allows the constriction of the restriction device 1002 to open a limited amount during an acute event, such as violent vomiting, thus serving as a safety feature to protect the tissue of the patient's stomach or esophagus. For example, the actuating member 1030 may be attached at one of its two ends via a spring whose spring constant is chosen to coincide with the pressure seen during significantly violent vomiting, for example greater than 200 mm Hg. Because this pressure is higher than the upper pressure commonly seen in normal gastrointestinal tract mechanics (120 mm Hg), a mechanism of this nature will not inadvertently allow patients to easily gorge on food. The length of the spring can be chosen to correspond to the total amount of diametrical relief that is desired during an acute violent vomiting event. [00230] FIG. 66 illustrates a top down view of the connector 1012 with the proximal portion 1014 of the connector 1012 being in a locked configuration with respect to the distal portion 1016 of the connector 1012. As seen in FIG. 66, the distal portion 1016 of the connector 1012 includes a recess 1018 dimensioned to receive the proximal portion 1014 of the connector 1012. The recess 1018 and/or proximal portion 1014 may be configured in a keyed arrangement such that the proximal connector portion 1014 may only be inserted into the distal portion 1016 of the connector 1012 in a correct orientation. FIG. 66, for example, illustrates a keyed portion 1034 in the form of a raised surface that enables the correct orientation between the distal and proximal connector portions 1014, 1016. [00231] Still referring to FIG. 66, the distal connector portion 1016 includes a biased locking member 1036 that is affixed at one end to a surface of the recess 1018 of the distal connector portion 1016. The biased locking member 1036 includes a free end 1038 that is used as a locking surface to retain the proximal and distal connector portions 1014, 1016 in a locked configuration. The biased locking member 1036 may be made of a material (e.g., biocompatible polymer, metal, etc.) that naturally is biased to position the free end 1038 away from the surface of the recess 1018. In order to achieve the locking arrangement, the proximal connector portion 1014 includes an indent or groove that has an engagement surface 1040 that contacts the biased free end 1038 of the locking member 1036. For example, if the distal connector portion 1016 were moved in the direction of arrow A, the free end 1038 of the biased locking member 1036 would contact the engagement surface 1040 and thus prevent the unlocking of the proximal and distal connectors 1014, 1016. [00232] Still referring to FIG. 66, a filament 1042 is secured to the biased locking member and terminates outside the connector 1012 via a passageway 1044 located in the distal connector portion 1016. The passageway 1044 may include a hole or groove through which the filament 1042 can pass. The filament 1042 may be made from, for example, suture filament or other biocompatible material. The filament 1042 may be looped as is shown in FIG. 66 or it may be have one or more strands. An exemplary material for the filament 1042 is monofilament polypropylene. [00233] In one aspect, the filament 1042 may be made sufficiently long to pass along all or a portion of the length of the restriction device 1002, 1102 to terminate at or near the implantable interface 1010, 1 104. For example, a separate lumen (not shown) may be used to hold the filament 1042 along the length of the restriction device 1002, 1102 and terminate at a location that is subcutaneous. If there is an emergency situation, the restriction device 1002, 1 102 can be detached from the gastrointestinal tract (e.g., stomach) without completely removing the device 1002, 1 102 which can be done at a later time if need be. In this aspect of the invention, with a simple incision, the end of the filament 1042 is exposed and can be pulled proximally so as to detach the restriction device 1002, 1 102 from the site of interest. One the emergency situation ends, the incision is closed with suture, and a determination can be made later whether the entire device 1002, 1102 needs to be removed via surgery, or if it can later be salvaged and laparoscopically reattached.
[00234] FIG. 67 illustrates a perspective cross-sectional view of the housing portion 1022 and proximal/distal covers 1026, 1024. The housing portion 1022 includes end caps 1023 A, 1023B that seal the internal portions of the housing from the external environment. As seen in FIG. 67, a drive cable 1050 is located within the central lumen of the proximal sheath 1026. The drive cable 1050 may be formed from, for example, the drive shaft 190 of FIG. 26 for improved torque response and kink resistance. For instance, NITINOL wire wound in a manner described in relation with FIG. 26, with the drive cable 1050 having an outer diameter of around .0057 inches may be used. Of course, other metallic wires such as stainless steel or ELGILOY may also be used. Still referring to FIG. 67, the drive cable 1050 is secured to a lead screw 1052 located in the housing portion 1022. The drive cable 1050 may be secured to the lead screw 1052 using coupler 1054 which may include a section of tubing having different ID for insertion of the lead screw 1052 and drive cable 1050. The section of tubing 1054 may be crimped or welded to the drive cable 1050 and lead screw 1052 to fixedly secure the drive cable 1050 and lead screw 1052 to one another. [00235] Still referring to FIG. 67, the lead screw 1052 is rotationally held within the housing 1022 via two ball bearings 1056 mounted on opposing ends of the housing 1022. In this regard, the lead screw 1052 is rotational about the long axis of the housing 1022. Rotation of the drive cable 1050 thus results in rotation of the lead screw 1052. The lead screw 1052 may be formed from a 300 series stainless steel 0-80 (or 2-120) lead screw. A nut 1058 is rotationally mounted on the lead screw 1052 and is used to translate rotational movement into linear movement. The nut 1058 may be made from, for example, brass and include an offset threaded hole 1059 for receiving the lead screw 1052. Rotation of the lead screw 1052 about its rotation axis thus causes the nut 1058 to move axially within the housing 1022. The nut 1058 is bonded or otherwise affixed to the actuating member 1030. When the actuating member 1030 is NITINOL wire, the end of the NITINOL wire may pass through a hole or aperture 1061 formed in the nut 1058. A plurality (e.g. four) of set screws (not shown) may be threaded into holes or apertures 1063 to mechanically bind the actuating member 1030 to the nut 1058.
[00236] FIG. 68 illustrates a cross-sectional view of the implantable interface 1010 according to another aspect of the invention. The implantable interface 1010 includes a housing 1062 in which is mounted a permanent magnet 1064. The permanent magnet 1064 may be formed from, for example, a rare earth magnet such as Neodymium-Iron-Boron (NdFeB). The permanent magnet 1064 is rod or cylindrical ly-shaped and is diametrically magnetized (poles are perpendicular the long axis of the permanent magnet 1064). As seen in FIG. 68, aluminum plates or axles 1066 are bonded to either end of the permanent magnet 1064. The axles 1066 are dimensioned to fit within the inner races of ball bearings 1068 which are mounted at opposing ends of the housing 1062. In this regard, the permanent magnet 1064 is rotationally mounted within the housing 1062. The housing 1062 is formed from a non-magnetic material (e.g., plastic, polymer, titanium or aluminum) and is substantially sealed from the external environment so as to prevent bodily fluids and other materials from entering the interior space, for example, with a silicone dip-coating. [00237] Still referring to FIG. 68, the proximal end of the drive cable sheath 1026 (which is omitted from FIG. 68 for sake of clarity) may have a quick disconnect feature so that the drive cable 1050 and/or implantable interface 1010 may be rapidly changed. In one aspect, the proximal end of the drive cable sheath 1026 includes a flanged end portion 1027 that is dimensioned to abut a sheath retaining nut 1046 that engages with mating threads 1048 located at one end of the housing 1062. The flanged end portion 1027 and the retaining nut 1046 are permanently secured to the drive cable sheath 1026. The retaining nut 1046 is preferably rotationally secured and the flanged end portion 1027 is sealingly secured. The flanged end portion 1027 is inserted through a seal 1065 such as a compressible o-ring, which is nested within the housing 1062. The o-ring 1065 substantially seals the interface between drive cable sheath 1026 and the housing 1062 of the implantable interface 1010.
[00238] Still referring to FIG. 68, one axle 1066 includes a recess 1070, for example, in the shape of a hexagon or the like (female connector) that receives a correspondingly shaped keyed end 1072 of the drive cable 1050 (male connector) as illustrated in FIG. 69. FIG. 69 illustrates the proximal end of the drive cable 1050 cable including the keyed portion 1072. With reference to FIGS. 68 and 69, the implantable interface 1010 is initially connected to the drive cable 1050 by inserting the keyed portion 1072 into the corresponding recess 1070 located in the axle 1066. The sheath retaining nut 1046 can then be threaded and tightened, allowing the seal 1065 and the flanged end portion 1027 to form a sealed engagement between the drive cable sheath 1026 and the implantable interface 1010. To de-couple the implantable interface 1010 a user unscrews the sheath retaining nut 1046 completely and withdraws the drive cable sheath 1026. In this regard, a new drive cable 1050 and/or implantable interface 1010 may be exchanged or changed as appropriate. [00239] FIG. 70 illustrates an implantable obesity control system 1 100 according to another embodiment of the invention and includes a restriction device 1102, an implantable interface 1104, and a drive transmission 1 106. The implantable obesity control system 1 100 is similar to that illustrated in FIG. 64 with the exception that the drive cable 1050 has been omitted. This embodiment thus uses a direct connection between the lead screw 1 1 12 and the permanent magnet 1 118 (as shown in FIG. 71). There is no need for a separate drive cable 1050 or other transmission means between the permanent magnet and the lead screw 1052. This embodiment is advantageous because of the reduced number of components and the small, compact nature of the overall device.
[00240] FIG. 71 illustrates a cross-sectional view of the two housings 1 108, 1 1 10. Housing 1 108 includes lead screw 1 1 12, nut 1 1 14, and ball bearings 1 1 16 and may be sealed at the distal end via end cap 1 109. The actuating member (not shown in FIG. 71) described above is secured to the nut 1 1 14 in via a receiving lumen 1 1 15. Set screws (not shown) may be used to mechanically engage the actuating member via a plurality of threaded apertures 1 117. The remaining housing 1 1 10 includes the permanent magnet 1 1 18 in addition an aluminum axle or spindle 1 120 that is mounted to one end of the magnet 1 1 18. The proximal end of the lead screw 1 1 12 may have a keyed portion (e.g., hexagonal-shaped tip or end) that fits within a correspondingly-shaped recess or the like (not shown) in the axle 1 120 so that the implantable interface 1 104 may be quickly changed. Alternatively, both housings 1 108, 1 1 10 could be replaced to exchange or change-out the implantable interface 1 104. It should be noted that only a single bearing 1 1 16 is needed to rotationally secure the magnet 1 1 18 within the housing 1 1 10. The amount of torque on the opposing end of the magnet 1 1 18 is relatively low so there is no need for an additional bearing within the housing 1 1 10. In configurations in which there is a greater torque (i.e., moment) on the opposing end of the magnet 1 1 18, a second bearing (not shown) can be used. The lead screw 1 1 12 and magnet 1 1 18 are arranged serially in this configuration, but alternatively they could be arranged in parallel, for example, wherein the magnet 1 1 18 imparts rotation to the lead screw 1 1 12 via a pair of spur gears.
The parallel arrangement allows for a shorter overall length of the assembly in relation to the serial arrangement, however the serial arrangement allows for a thinner, narrower assembly. The appropriate arrangement can be chosen depending upon the desired clinical factors. For example, if the implantable interface is to be implanted in an area that undergoes a large amount of bending, the shorter, parallel arrangement may be preferred.
[00241] FIG. 72 illustrates an external magnetic driver 1 130 according to one aspect of the invention. The external magnetic driver 1 130 may be used to externally impart rotational motion or "drive" a permanent magnet (e.g., magnets 1064, 1 1 18) located within an implantable interface (e.g., interfaces 1010, 1104). The external magnetic driver 1 130 includes a motor 1 132 that is used to impart rotational movement to two permanent magnets 1 134, 1 136. The motor 1 132 may include, for example, a DC powered motor or servo that is powered via one or more batteries (not shown) integrally contained within the external magnetic driver 1 130. Alternatively, the motor 1 132 may be powered via a power cord or the like to an external power source. For example, the external power source may include one or more batteries or even an alternating current source that is converted to DC. [00242] Still referring to FIG. 72, the two permanent magnets 1 134, 1 136 are preferably cylindrically-shaped permanent magnets. The permanent magnets may be made from, for example, a rare earth magnet material such as Neodymium-Iron-Boron (NdFeB) although other rare earth magnets. For example, each magnet 1 134, 1 136 may have a length of around 1.5 inches and a diameter of around 1.0 to 3.5 inches. Both magnets 1 134, 1 136 are diametrically magnetized (poles are perpendicular the long axis of each permanent magnet 1134, 1 136). The magnets 1 134, 1 136 may be contained within a non-magnetic cover or housing 1 137. In this regard, the magnets 1 134, 1 136 are able to rotate within the stationary housing 1 137 that separates the magnets 1 134, 1 136 from the external environment. Preferably, the housing 1 137 is rigid and relatively thin walled at least at the portion directly covering the permanent magnets 1134, 1 136, in order to minimize the gap between the permanent magnets 1 134, 1 136 and the internal magnet 1064. [00243] As seen in FIG. 72, the permanent magnets 1 134, 1 136 are rotationally mounted between opposing bases members 1 138, 1 140. Each magnet 1 134, 1 136 may include axles or spindles 1142, 1144 mounted on opposing axial faces of each magnet 1134, 1136. The axles 1142, 1 144 may be mounted in respective bearings (not shown) that are mounted in the base members 1 138, 1 140. As seen in FIG. 72, driven pulleys 1 150 are mounted on one set of axles 1 142 and 1 144. The driven pulleys 1150 may optionally include grooves or teeth 1 152 that are used to engage with corresponding grooves or teeth 1 156 (partially illustrated in FIG. 73) contained within a drive belt (indicated by path 1 154).
[00244] Still referring to FIG. 72, the external magnetic driver 1130 includes a drive transmission 1160 that includes the two driven pulleys 1 150 along with a plurality of pulleys 1162a, 1 162b, 1 162c and rollers 1 164a, 1 164b, 1 164c on which the drive belt 1 154 is mounted. The pulleys 1 162a, 1162b, 1162c may optionally include grooves or teeth 1166 used for gripping corresponding grooves or teeth 1 156 of the drive belt 1 154. Pulleys 1162a, 1 162b, 1 162c and rollers 1 164a, 1 164b, 1 164c may be mounted on respective bearings (not shown). As seen in FIG. 72, pulley 1162b is mechanically coupled to the drive shaft (not shown) of the motor 1 132. The pulley 1 162b may be mounted directly to the drive shaft or, alternatively, may be coupled through appropriate gearing. One roller 1 164b is mounted on a biased arm 1170 and thus provides tension to the belt 1 154. The various pulleys 1 150, 1162a, 1162b, 1162c and rollers 1 164a, 1 164b, 1 164c along with the drive belt 1 154 may be contained within a cover or housing 1 172 that is mounted to the base 1 138 (as seen in FIG. 74).
[00245] As seen in FIGS. 72 and 73, rotational movement of the pulley 1 162b causes the drive belt 1 154 to move around the various pulleys 1 150, 1 162a, 1 162b, 1 162c and rollers 1 164a, 1 164b, 1 164c. In this regard, rotation movement of the motor 1 132 is translated into rotational movement of the two permanent magnets 1134, 1136 via the drive transmission 1 160. In one aspect of the invention, the base members 1 138, 1 140 are cut so as to form a recess 1174 that is located between the two magnets 1 134, 1 136. During use, the external magnetic driver 1130 is pressed against the skin of a patient, or against the clothing which covers the skin (e.g., the external driver 1 130 may be used through clothing so the patient may not need to undress). The recess 1 174 allows skin as well as the underlying tissue to gather or compress within the recessed region 1 174. This advantageously reduces the overall distance between the external drive magnets 1 134, 1 136 and the magnet 1064, 1 1 18 contained within the implantable interface 1010, 1 104. By reducing the distance, this means that the externally located magnets 1134, 1136 and/or the internal magnet (e.g., 1064, 1118) may be made smaller.
[00246] Still referring to FIGS. 72 and 73, the external magnetic driver 1130 preferably includes an encoder 1 175 that is used to accurately and precisely measure the degree of movement (e.g., rotational) of the external magnets 1 134, 1 136. In one embodiment, an encoder 1175 is mounted on the base member 1 138 and includes a light source 1 176 and a light receiver 1 178. The light source 1 176 may includes a LED which is pointed or directed toward pulley 1 162c. Similarly, the light receiver 1 178 may be directed toward the pulley 1 162c. The pulley 1 162c includes a number of reflective markers 1177 regularly spaced about the periphery of the pulley 1162c. Depending on the rotational orientation of the pulley 1 162c, light is either reflected or not reflected back onto the light receiver 1 178. The digital on/off signal generated by the light receiver 1178 can then be used to determine the rotational speed and displacement of the external magnets 1 134, 1136.
[00247] FIGS. 75A, 75B, 75C, and 75D illustrate the progression of the external magnets 1 134, 1 136 and the internal magnet 1064 that is located within the implantable interface 1010 during use. Internal magnet 1064 is shown for illustration purposes. It should be understood that the internal magnet may also include, for example, internal magnet 1 1 18 that is located within the implantable interface 1104 according to that alternative embodiment. FIGS. 75 A, 75B, 75C, and 75D illustrate the external magnetic driver 1 130 being disposed against the external surface of the patient's skin 1 180. The external magnetic driver 1 130 is placed against the skin 1 180 in this manner to remotely rotate the internal magnet 1064. As explained herein, rotation of the internal magnet 1064 is translated into linear motion via the drive transmission 1020 to controllable adjust the stoma or opening in the restriction device 1002 mounted about a body lumen, such as, the patient's stomach. [00248] As seen in FIGS. 75 A, 75B, 75C, and 75D, the external magnetic driver 1 130 may be pressed down on the patient's skin 1180 with some degree of force such that skin and other tissue such as the underlying layer of fat 1 182 are pressed or forced into the recess 1 174 of the external magnetic driver 1 130. The implantable interface (e.g., 1010, 1 104) which contains the internal magnet 1064 (which is contained in a housing 1062 not shown in FIGS. 75A, 75B, 75C, and 75D) is secured to the patient in an artificially created opening or passageway formed in or adjacent to the fascia layer 1 184 separating the layer of fat 1 182 from underlying abdominal muscle tissue 1 186. Underneath the abdominal muscle tissue 1 186 is the peritoneum 1 188. Typically, as explained herein, the implantable interface 1 104 is secured to the patient via a clamp, sutures, screws, retaining members, or the like. FIGS. 75A, 75B, 75C, and 75D omit these elements for sake of clarity to just show the magnetic orientation of the internal magnet 1064 as it undergoes a full rotation in response to movement of the permanent magnets 1 134, 1 136 of the external magnetic driver 1 130. [00249] With reference to FIG. 75 A, the internal magnet 1064 is shown being oriented with respect to the two permanent magnets 1 134, 1 136 via an angle θ. This angle θ may depend on a number of factors including, for instance, the separation distance between the two permanent magnets 1 134, 1 136, the location or depth of where the implantable interface 1 104 is located, the degree of force at which the external magnetic driver 1 130 is pushed against the patient's skin. Generally, the angle θ should be at or around 90° to achieve maximum drivability (e.g., torque). [00250] FIG. 75A illustrates the initial position of the two permanent magnets 1 134, 1 136 and the internal magnet 1064. This represents the initial or starting location (e.g., 0° position as indicated). Of course, it should be understood that, during actual use, the particular orientation of the two permanent magnets 1 134, 1 136 and the internal magnet 1064 will vary and not likely will have the starting orientation as illustrated in FIG. 75A. In the starting location illustrated in FIG. 75 A, the two permanent magnets 1 134, 1 136 are oriented with their poles in an N-S/S-N arrangement. The internal magnet 1064 is, however, oriented generally perpendicular to the poles of the two permanent magnets 1 134, 1136. [00251] FIG. 75B illustrates the orientation of the two permanent magnets 1 134, 1 136 and the internal magnet 1064 after the two permanent magnets 1 134, 1136 have rotated through 90°. The two permanent magnets 1134, 1 136 rotate in the direction of arrow A (e.g., clockwise) while the internal magnet 1064 rotates in the opposite direction (e.g., counter clockwise) represented by arrow B. It should be understood that the two permanent magnets 1 134, 1 136 may rotate in the counter clockwise direction while the internal magnet 1064 may rotate in the clockwise direction. Rotation of the two permanent magnets 1 134, 1136 and the internal magnet 1064 continues as represented by the 180° and 270° orientations as illustrated in FIGS. 75C and 75D. Rotation continues until the starting position (0°) is reached again. [00252] During operation of the external magnetic driver 1 130, the permanent magnets 1 134, 1 136 may be driven to rotate the internal magnet 1064 through one or more full rotations in either direction to tighten or loosen the restriction device 1002 as needed. Of course, the permanent magnets 1134, 1136 may be driven to rotate the internal magnet 1064 through a partial rotation as well (e.g., 1/4, 1/8, 1/16, etc.). The use of two magnets 1 134, 1136 is preferred over a single external magnet because the driven magnet (e.g., 1064, 1118) may not be oriented perfectly at the start of rotation, so one external magnet 1 134, 1 136 may not be able to deliver its maximum torque, which depends on the orientation of the internal driven magnet (e.g., 1064, 1 1 18) to some degree. However, when two (2) external magnets (1 134, 1 136) are used, one of the two 1 134 or 1 136 will have an orientation relative to the internal driven magnet (e.g., 1064, 1 1 18) that is better or more optimal than the other. In addition, the torques imparted by each external magnet 1 134, 1 136 are additive. [00253] While the external magnetic driver 1 130 and implantable interface 1010, 1 104 have generally been described as functioning using rotational movement of driving elements (i.e., magnetic elements) it should be understood that non-rotational movement can also be used to drive or adjust the restriction device 1002, 1 102. For example, linear or sliding motion back-and-forth may also be used to adjust the restriction device 1002, 1102. In this regard, a single magnet located internal to the patient that slides back-and-forth on a slide or other base can be used to adjust the restriction device 1002, 1 102 using a ratchet-type device. The sliding, internal magnet may be driven via one or more externally-located permanent/electromagnets that slides or moves laterally (or moves the magnetic field) in a similar back-and-forth manner. Rotational movement of the externally-located magnetic element(s) may also be used to drive the internal magnet.
[00254] In still another alternative, permanent magnets may be located on a pivoting member that pivots back and forth (like a teeter-totter) about a pivot point. For example, a first permanent magnet having a North pole oriented in a first direction may be located at one end of the pivoting member while a permanent magnet having a South pole oriented in the first direction is located at the other end of the pivoting member. A ratchet-type device may be used to translate the pivoting movement into linear movement that can actuate or adjust the restriction device 1002, 1102. The first and second internally-located permanent magnets may be driven by one or more externally located magnetic elements (either permanent or electromagnets). External motion of the electric field by linear or even rotational movement may be used to the drive the pivoting member.
[00255] While certain embodiments of the gastric restriction systems discussed herein have been described as using a restriction device that is coupled to a separate implantable interface via a drive transmission, it should be understood that the various components could be integrated into a single device. For example, a single restriction device may include or be closely associated with the constituent components of the implantable interface and drive transmission. This, of course, would reduce the overall length of the device by integrating these components into a single device which may be placed around, for instance, the stomach of the patient. [00256] FIG. 76 illustrates a system 1076 according to one aspect of the invention for driving the external magnetic driver 1 130. FIG. 76 illustrates the external magnetic driver 1130 pressed against the surface of a patient 1077 (torso shown in cross-section). The implantable interface 1010 located within the body cavity along with the adjustable body 1004 are illustrated. The permanent magnet (e.g., the driven magnet) that is located within the implantable interface 1010 located inside the patient 1077 is magnetically coupled through the patient's skin and other tissue to the two external magnets 1 134, 1 136 located in the external magnetic driver 1 130. As explained herein, one rotation of the external magnets 1134, 1136 causes a corresponding single rotation of the driven magnet (e.g., magnets 1064 or 1 1 18) located within the implantable interface (e.g., 1010, 1 104). Turning the driven magnet 1064, 1 1 18 in one direction causes the restriction device (e.g., 1002, 1 102) to close while turning in the opposite direction causes the restriction device (e.g., 1002, 1 102) to open. Changes to the opening or stoma in the restriction device 1002, 1 102 are directly proportional to the number of turns of the driven magnet 1064, 1118. [00257] The motor 1 132 of the external magnetic driver 1 130 is controlled via a motor control circuit 1078 operatively connected to a programmable logic controller (PLC) 1080. The PLC 1080 outputs an analog signal to the motor control circuit 1078 that is proportional to the desired speed of the motor 1 132. The PLC 1080 may also select the rotational direction of the motor 1 132 (i.e., forward or reverse). In one aspect, the PLC 1080 receives an input signal from a shaft encoder 1082 that is used to identify with high precision and accuracy the exact relative position of the external magnets 1 134, 1136. For example, the shaft encoder 1082 may be an encoder 1 175 as described above. In one embodiment, the signal is a pulsed, two channel quadrature signal that represents the angular position of the external magnets 1 134, 1 136. The PLC 1080 may include a built in screen or display 1081 that can display messages, warnings, and the like. The PLC 1080 may optionally include a keyboard 1083 or other input device for entering data. The PLC 1080 may be incorporated directly into the external magnetic driver 1 130 or it may be a separate component that is electrically connected to the main external magnetic driver 1130. [00258] In one aspect of the invention, a sensor 1084 is incorporated into the external magnetic driver 1 130 that is able to sense or determine the rotational or angular position of the driven magnet 1064, 1 1 18. The sensor 1084 may acquire positional information using, for example, sound waves, ultrasonic waves, light, radiation, or even changes or perturbations in the electromagnetic field between the driven magnet 1064, 1118 and the external magnets 1 134, 1 136. For example, the sensor 1084 may detect photons or light that is reflected from the driven magnet 1064, 1 1 18 or a coupled structure (e.g., rotor) that is attached thereto. For example, light may be passed through the patient's skin and other tissue at wavelength(s) conducive for passage through tissue. Portions of the driven magnet 1064, 1 1 18 or associated structure may include a reflective surface that reflects light back outside the patient as the driven magnet 1064, 1 1 18 moves. The reflected light can then be detected by the sensor 1084 which may include, for example, a photodetector or the like.
[00259] In another aspect, the sensor 1084 may operate on the Hall effect, wherein two additional magnets are located within the implantable assembly. The additional magnets move axially in relation to each other as the driven assembly rotates and therefore as the restriction device constricts or loosens, allowing the determination of the current size of the restriction device.
[00260] In the embodiment of FIG. 76, the sensor 1084 is a microphone disposed on the external magnetic driver 1 130. For instance, the microphone sensor 1084 may be disposed in the recessed portion 1174 of the external magnetic driver 1130. The output of the microphone sensor 1084 is directed to a signal processing circuit 1086 that amplifies and filters the detected acoustic signal. In this regard, the acoustic signal may include a "click" or other noise that is periodically generated by rotation of the driven magnet 1064, 1 118. For example, the driven magnet 1064, 1118 may click every time a full rotation is made. The pitch of the click may different depending on the direction of rotation. For example, rotation in one direction (e.g., tightening) may produce a low pitch while rotation in the other direction (e.g., loosening) may produce a higher pitch signal (or vice versa). The amplified and filtered signal from the signal processing circuit 1086 can then pass to the PLC 1080. [00261] During operation of the system 1076, each patient will have a number or indicia that corresponds to the current diameter or size of their restriction device 1002, 1 102. For example, a fully open restriction device 1002, 1 102 may have a diameter or size of around 2.90 cm while a fully closed device 1002, 1 102 may have a diameter or size of around 1.20 cm. This number can be stored on a storage device 1088 (as shown in FIG. 76) that is carried by the patient (e.g., memory card, magnetic card, or the like) or is integrally formed with the implantable system (e.g., systems 1000, 1 100). For example, a RFID tag 1088 implanted either as part of the system or separately may be disposed inside the patient (e.g., subcutaneously or as part of the device) and can be read and written via an antenna 1090 to update the current size of the restriction device 1002, 1 102. In one aspect, the PLC 1080 has the ability to read the current number corresponding to the diameter or size of the restriction device 1002, 1 102 from the storage device 1088. The PLC 1080 may also be able to write the adjusted or more updated current diameter or size of the restriction device 1002, 1 102 to the storage device 1088. Of course, the current size may recorded manually in the patient's medical records (e.g., chart, card or electronic patient record) that is then viewed and altered, as appropriate, each time the patient visits his or her physician. [00262] The patient, therefore, carries their medical record with them, and if, for example, they are in another country and need to be adjusted, the RPID tag 1088 has all of the information needed. Additionally, the RFID tag 1088 may be used as a security device. For example, the RFID tag 1088 may be used to allow only physicians to adjust the restriction device (1002, 1 102) and not patients. Alternatively, the RFID tag 1088 may be used to allow only certain models or makes of restriction devices to be adjusted by a specific model or serial number of external magnetic driver 1130.
[00263] In one aspect, the current size or diameter of the restriction device 1002, 1 102 is input into the PLC 1080. This may be done automatically or through manual input via, for instance, the keyboard 1083 that is associated with the PLC 1080. The PLC 1080 thus knows the patient's starting point. If the patient's records are lost, the PLC 1080 may be programmed to fully open the restriction device 1002, 1102 which is, of course, a known starting point. The number of turns required to meet the fully open position may be counted by the PLC 1080 and the restriction device 1002, 1102 can then be returned to the same restriction point. [00264] The external magnetic driver 1 130 is commanded to make an adjustment. This may be accomplished via a pre-set command entered into the PLC 1080 (e.g., reduce size of restriction device 1002, 1 102 by .5 cm). The PLC 1080 configures the proper direction for the motor 1 132 and starts rotation of the motor 1 132. As the motor 1 132 spins, the encoder 1082 is able to continuously monitor the shaft position of the motor directly, as is shown in FIG. 76, or through another shaft or surface that is mechanically coupled to the motor 1 132. For example, the encoder 1082 may read the position of markings 1 177 located on the exterior of a pulley 1162c like that disclosed in FIG. 72. Every rotation or partial rotation of the motor 1 132 can then be counted and used to calculate the adjusted or new size of the restriction device 1002, 1 102.
[00265] The sensor 1084, which may include a microphone sensor 1084, may be monitored continuously. For example, every rotation of the motor 1 132 should generate the appropriate number and pitch of clicks generated by rotation of the permanent magnet inside the implant 1010 (or implant 1 104). If the motor 1 132 turns a full revolution but no clicks are sensed, the magnetic coupling may have been lost and an error message may be displayed to the operator on the display 1081 of the PLC 1080. Similarly, an error message may be displayed on the display 1081 if the sensor 1084 acquires the wrong pitch of the auditory signal (e.g., the sensor 1084 detects a loosening pitch but the external magnetic driver 1 130 was configured to tighten). [00266] FIG. 77 illustrates a mount 1200 according to one aspect of the invention that is used to secure the implantable interface 1010 (or implantable interface 1 104) to the patient. The mount 1200 may be used to secure a variety of implantable apparatuses beyond the implantable interfaces discussed herein. This includes, for example, injection ports and other implantable interfaces usable with, for example, a gastric restriction device. The mount 1200 includes a base 1202 having a plurality of holes 1204 dimensioned for passage of fasteners 1210 (shown in FIGS. 78, 79A, 79B, 79D, 79E, 80, 81, 82). The mount 1200 also includes a receiving portion 1206 that is dimensioned to receive the implantable interface 1010. As seen in FIG. 77, the receiving portion 1206 is shaped in a hemi-cylindrical manner configured to receive the cylindrical shape of the implantable interface 1010. The receiving portion 1206 may be dimensioned such that the implantable interface 1010 forms a friction or snap- fit within the mount 1200. For example, in one aspect of the invention, prior to fastening the mount 1200 to the patient's tissue, the implantable interface 1010 is secured to the mount 1200. Of course, in an alternative aspect, the implantable interface 1010 may be inserted or slid into the receiving portion 1206 after the mount 1200 is secured to the patient. In another alternative configuration, the mount 1200 may be configured as the implantable interface itself (as shown in FIG. 82).
[00267] FIG. 78 illustrates a fastening tool or instrument 1220 that is used to rapidly and securely affix the mount 1200 to the patient's tissue. The fastening tool 1220 includes an elongate shaft 1222 with a proximally mounted knob 1224. A grip or handle 1226 is located on the elongate shaft 1222 and is used by the physician to grasp the fastening tool 1220 during the placement process. The distal end of the fastening tool 1220 includes a driving element 1228 that contains a recess or socket 1230 for holding the mount 1200. Fastening tool 1220 is used to drive a plurality of fasteners 1210 through respective holes 1204 in the base 1202 to fixedly secure the mount 1200 to the patient's tissue. As explained in more detail herein, rotational movement of the knob 1224 turns a central sun gear that, in turn, drives a series of outer gears within the fastening tool 1220 to rotate the individual fasteners 1210. Rotational movement of the knob 1224 also moves the driving element 1228 in the direction of arrow A to either extend or retract the driving element 1228 depending on direction of rotation of the knob 1224.
[00268] FIG. 79A illustrates a side view of the driving element 1228 holding the mount 1200 and illustrating the fasteners 1210 in the fully deployed (e.g., extended) position. FIG. 79B illustrates a cross-sectional view taken along the line B-B' of FIG. 79A. FIG. 79C illustrates a cross-sectional view taken along the line C-C of FIG. 79A. The driving element 1228 generally includes a lower base or interface 1232 on which are mounted a central gear 1236 and a plurality of outer gears 1238 (four are illustrated in FIG. 79C. Rotation of the central gear 1236 thus causes each of the four outer gears 1238 to rotate as well. [00269] FIG. 79D illustrates a perspective view of the base 1232 portion of the driving element 1228. As seen in FIG. 79D each of the outer gears 1238 is coupled to a corresponding shaft or driver 1240 (shown in phantom) that has as distal end configured for engaging with the fasteners 1210. For example, the distal end of the driver 1240 may include a keyed portion (e.g., hexagonally-shaped end) that mates with a correspondingly-shaped recess (e.g., hex-shaped recess) in the fastener 1210. The drivers 1240 are thus rotationally mounted within the base 1232. Rotation of the central gear 1236 turns the outer gears 1238 which then turns the corresponding drivers 1240. Each driver 1240 is mounted within a barrel or tube 1252 (also shown in phantom) having a lumen therein dimensioned for passage of the driver 1240. The barrels or tubes 1252 may be machined, drilled, or molded within the base portion 1232 of the driving element 1228. FIG. 80 illustrates a partially exploded view showing the drivers 1240 disposed within respective barrels 1252. [00270] Referring back to FIG. 79D, a plate 1242 is mounted above the central gear 1236 and outer gears 1238 and is used as a bearing surface that is used to move the base 1232 up or down as the knob 1224 is turned. A hub 1244 is located above the plate 1242 and is coupled to the central gear 1236. Rotation of the hub 1244 thus results in rotation of the central gear 1236. The hub 1244 includes a hole or recess 1246 for receiving a drive shaft 1250 (as seen in FIG. 80). The drive shaft 1250 may be fixedly secured to the hub 1244 using a set screw (not shown) that is inserted into the hub 1244 via aperture 1248. As seen in FIG. 79E, the driving element 1230 includes an upper housing 1234 that provides clearance for the base 1232 to move axially as the knob 1224 is turned. This allows for controlled delivery into the fascia.
[00271] As an alternative to the central gear 1236 which turns the outer gears 1238, the central gear 1236 may be omitted and an outer ring gear (not shown) having internal teeth may be used to engage and rotate the outer gears 1238. The advantage of this embodiment is that, as the physician turns the knob 1224 clockwise, the fasteners 1210 turn clockwise. With the central sun gear 1236, the fasteners 1210 have to be made left-hand wound and they turn counter-clockwise when the physician tightens the knob 1224 in the clockwise direction. The advantage of the central gear 1236 is that it requires less torque for the physician to turn the knob 1224. [00272] FIG. 80 illustrates a partially exploded view of the distal end of the fastening tool 1220. In the assembled configuration, the drive shaft 1250 rotates in response to rotational movement of the proximally located knob 1224. In addition, the drive shaft 1250 moves axially within the length of the shaft 1222 in response to rotation of the knob 1224. Each fastener 1210 is thus moveable axially in the direction of arrow A and rotationally in the direction of arrow B. FIG. 80 illustrates four fasteners 1210 mounted at the end of each driver 1240. The four fasteners 1210 would pass through respective holes 1204 in the mount 1200 (as shown in FIG. 77). It should be noted that in one alternative embodiment the fasteners 1210 may be permanently, rotationally secured in the mount 1200. [00273] FIG. 81 illustrates a perspective view of a fastener 1210. The fastener 1210 may include a head 1212 portion along with a coil portion 1214. The head 1212 may be formed separately and bonded to the coil 1214 or the head 1212 and coil 1214 may be formed in an integrated manner. The head 1212 and coil 1214 may be formed from a biocompatible metallic material such as stainless steel, NITINOL, or the like. It may be preferred that a non-magnetic material like NITINOL or Titanium is used for all of the portions of the fastener 1210, so that there is no effect by any of the magnets, for example, during the adjustment procedure. While FIG. 81 illustrates a single coil 1214 originating from the head 1212, in other embodiments, there may be multiple, nested coils 1214 with different pitches affixed or otherwise mounted to a single head 1212. The additional coils 1214 may impart added anchoring ability. During securing, the coil 1214 may turn in the clockwise direction as illustrated in FIG. 81 or, alternatively, the coil 1214 may turn in the counter-clockwise direction. The coil 1214 may include a sharpened tip or end 1215 to aid in penetrating the tissue. A simple beveled tip is ideal. If the tip is too sharp, it can cause the patient more pain. The head 1212 preferably includes a recess 1216 that is dimensioned to interface with the distal end of the drivers 1240. For example, as illustrated in FIG. 81, the recess 1216 is hexagonally-shaped which can then receive the hexagonally-shaped distal end of the drivers 1240. The fastener 1210 may have a coil length of 4mm or less. In addition, the wire forming the coil 1214 may have a diameter of around .020 inches and the coil 1214 may have an OD of around .100 inches and ID of around .060 inches. The diameter of the head 1212 is around .150 inches. [00274] In one aspect of the invention, the fasteners 1210 are pre-loaded into the fastening tool 1220 prior to use. In addition, the mount 1200 may also be pre-loaded into the fastening tool 1220. In an alternate aspect, however, the mount 1200 may be loaded manually by the physician or surgeon prior to use. The fasteners 1210 may include a number retention means so that the fasteners 1210 do not prematurely fall out of the fastening tool 1220. For example, the ends of the drivers 1240 may include a bump, detent, or tab that locks into the recess 1216 of the fastener head 1212. Alternatively, an adhesive or the like may be used temporarily secure the fastener 1210 to the end of the drivers 1240. In still another alternative, an elastomeric membrane, ring or washer may be interposed between the fastener head 1212 and the barrel 1252 to provide a friction fit between the two to prevent premature release. It should be noted that the mount 1200 may be affixed to the internal or external wall of the patient's abdomen as described in more detail below.
[00275] FIG. 82 illustrates a perspective view of a mount 1300 that is used to hold or otherwise secure a cylindrically-shaped permanent magnet 1302. The permanent magnet 1302 is the "driven" magnet that is rotationally housed within the implantable interface (e.g, implantable interfaces 1010 and 1 104). The mount 1300 includes an acoustic or sonic indicator housing 1304 that contains a magnetic ball 1306. The interior of the housing 1304 includes a groove or track 1305 dimensioned to permit movement of the magnetic ball 1306 (e.g., rolling motion). It is also contemplated that other magnetic structures capable of movement within the housing 1304 may also be used. For example, a roller or cylinder may be used in place of the magnetic ball 1306. Still referring to FIG. 82, first and second impact surfaces 1308, 1310 are disposed on opposing ends of the track 1305. The first and second impact surfaces 1308, 1310 may include a plate, tine(s), or other projection that prohibits or stops movement of the magnetic ball 1306. In one aspect, the mount 1300 is secured to the fascia by one or more helical fasteners 1312. Of course, sutures or other fasteners may also be used to fixedly secure the mount 1300 to the patient.
[00276] The mount 1300 may also include a resonance chamber for amplifying the sound created by the magnetic ball 1306 and the first and second impact surfaces 1308, 1310. For example, the sonic indicator housing 1304 itself may made from an appropriate material and/or have an appropriate wall thickness or chamber size, so that it acts as the resonance chamber itself. Another manner of creating a resonance chamber is by securing the mount 1300 to a more resonant portion of the body, for example a bony structure such as the sternum. The mount 1300 may be secured to the fascia covering the sternum via the subcutaneous securement method, or it may be attached to the intra-abdominal wall, behind the sternum, or it may be attached to the sternum directly via bone screws or the like.
Alternatively, the mount 1200 depicted in FIG. 77 may be configured to act as a resonant structure.
[00277] FIGS. 83 through 98 schematically illustrate the acoustic indicator housing 1304 and driven magnet 1302 as the driven magnet 1302 is rotated in both the clockwise directions (arrow A) and counter-clockwise directions (arrow B). The mount 1300 is used to create an acoustic signal (e.g., a click) that can be used to count rotational movement of the driven magnet 1302 and also determine its rotational direction. An acoustic signal (i.e., sound) is generated when the magnetic ball 1306 strikes either the first impact surface 1308 or the second impact surface 1310. FIGS. 83-90 illustrate rotation of the driven magnet 1302 in the clockwise direction (arrow A) while FIGS. 91-98 illustrate rotation of the driven magnet
1302 in the counter-clockwise direction (arrow B). When the driven magnet 1302 is rotated in the clockwise direction, the magnetic ball 1306 strikes the first impact surface 1308 two times (2x) per full rotation, with the first impact surface 1308 producing sound with a first amplitude and/or frequency. When the driven magnet 1302 is rotated in the counter- clockwise direction, the magnetic ball 1306 strikes the second impact surface 1310 two times (2x) per full rotation, with the second impact surface 1310 producing sound with a second amplitude and/or frequency.
[00278] As illustrated in FIGS. 83-98, the first impact surface 1308 is thinner than the second impact surface 1310, and thus, the first impact surface 1308 is configured to resonate at a higher frequency than the second impact surface 1310. Alternatively, the difference in frequency can be achieved by making the first impact surface 1308 from a different material than the second impact surface 1310. Alternatively, the amplitude of acoustic signal generated by the magnetic ball 1306 hitting the first and second impact surfaces 1308, 1310 may be used to discriminate rotational direction. For example, clockwise rotation may produce a relatively loud click while counter-clockwise rotation may produce a relatively quiet click.
[00279] The magnetic ball 1306 is made from a magnetic material, for example 400 series stainless steel. The magnetic ball 1306 is attracted to both the south pole 1314 of the driven magnet 1302 and the north pole 1316 of the driven magnet 1302. As seen in FIG. 83, the driven magnet 1302 begins to rotate in the clockwise direction (arrow A). As pictured, the starting point of the magnetic ball 1306 is adjacent to the north pole 1316 of the magnet 1302. As seen in FIG. 84, as the magnet 1302 rotates, the magnetic ball 1306 follows the north pole 1316. This continues until, as shown in FIG. 85, the magnetic ball 1306 is stopped by the second impact surface 1310. Now, as seen in FIG. 86, the magnetic ball 1306 is trapped against the second impact surface 1310, while the driven magnet 1302 continues to rotate. The magnetic ball 1306 may roll at this point, but it is forced against the second impact surface 1310 by its attraction to the north pole 1316 of the magnet 1302, until the south pole 1314 becomes substantially closer to the magnetic ball 1306 as shown in FIG. 87, at which point the magnetic ball 1306 accelerates towards the first impact surface 1308 in the direction of arrow α, thereby hitting it (as seen in FIG. 88) and creating an acoustic signal or sound having a greater intensity than when the magnetic ball 1306 was stopped by the second impact surface 1310. Now, as the driven magnet 1302 continues to turn, the magnetic ball 1306 follows the south pole 1314 of the driven magnet 1302 as seen in FIG. 89, and continues to follow the south pole 1314 until the magnetic ball 1306 is stopped by the second impact surface 1310 as seen in FIG. 90.
[00280] FIGS. 91 -98 illustrate the acoustic mechanism being activated by counterclockwise rotation of the driven magnet 1302. In this process, the first impact surface 1308 serves to stop the magnetic ball 1306, and the magnetic ball 1306 accelerates and impacts the second impact surface 1310, creating a different acoustic signal. For example, the different acoustic signal may include a louder signal or a signal with a different frequency (e.g., pitch). In FIG. 91 , the driven magnet 1302 begins to rotate in the counter-clockwise direction (arrow B). As illustrated, the starting point of the magnetic ball 1306 is adjacent the south pole 1314 of the magnet 1302. As seen in FIG. 92, as the magnet 1302 rotates, the magnetic ball 1306 follows the south pole 1314. This continues until, as shown in FIG. 93, the magnetic ball 1306 is stopped by the first impact surface 1308. As seen in FIG. 93, the magnetic ball 1306 is trapped against the first impact surface 1308, while the driven magnet 1302 continues to rotate. The magnetic ball 1306 may roll at this point, but it is forced against the first impact surface 1308 by its attraction to the south pole 1314 of the magnet 1302, until the north pole 1316 becomes closer to the magnetic ball 1306 as shown in FIG. 94, at which point the magnetic ball 1306 accelerates towards the second impact plate 1310 in the direction of arrow β, thereby hitting it (as seen in FIG. 95) and creating an acoustic signal or sound having a greater intensity than when the magnetic ball 1306 was stopped by the first impact surface 1308. Now, as the magnet 1302 continues to turn, the magnetic ball 1306 follows the north pole 1316 of the magnet 1302 as seen in FIG. 97, and continues to follow the north pole 1316 until the magnetic ball 1306 is stopped by the first impact surface 1308 as illustrated in FIG. 98. [00281] It can be appreciated that each turn of the magnet 1302 creates two (2) relatively loud strikes, which can be detected by a non-invasive, external device comprising a sonic sensor, for example, a microphone (e.g., sensor 1084 in FIG. 76). If, for example, the magnet 1302 is turning a 0-80 lead screw (e.g., 1052, 1 1 12) to tighten the restriction device (1002, 1 102), then each turn represents 1/80 of an inch in the change of circumference, and thus each half turn represents 1/160 of an inch, or .00625". By dividing by PI this represents .002" diametrical change of the restriction device (1002, 1 102) per half turn, or 0.05 mm. This is even less than the expected precision needed for operation, which is believed to be around 0.2 mm.
[00282] It can also be appreciated that the acoustic signal or sound made by the strike due to the acceleration of the magnetic ball 1306 against the first impact surface 1308 during clockwise rotation of the magnet 1302 will contain a different frequency spectrum than the acoustic signal or sound made by the strike due to the acceleration of the magnetic ball 1306 against the second impact surface 1310 during counter-clockwise rotation of the magnet 1302. The mount 1300 thus provides a relatively simple, low-cost device in which the direction of the rotation (i.e., increasing diameter vs. decreasing diameter) can be automatically identified. Further, the mount 1300 is able to determine the exact number of half rotations in each direction.
[00283] The mount 1300 may be operatively integrated with a programmable logic controller (PLC) such as the PLC 1080 described herein. In this regard, the exact diameter of the restriction device 1002, 1102 can be determined. The PLC 1080 is be able to identify the direction of rotation via the frequency of sound, and then change the direction of rotation if this is not the desired direction. The PLC 1080 is also able to count the number of half rotations until amount of restriction is achieved. If there is any slip between the magnets 1134, 1 136 of the external device 1 130 and the driven magnet 1302, the PLC 1080 will not detect the acoustic signal and thus will not count these as rotations.
[00284] When the mount 1300 is implanted in a patient, the physician may be unaware of its orientation. Because of this, it is not known by the physician which direction of rotation of the external device magnets will cause tightening and which will cause loosening. The PLC 1080, however, will be able to immediately identify the correct direction of rotation by the detected frequency.
[00285] For example, FIG. 99 illustrates the sound 1320 detected from counter-clockwise rotation of the magnet 1302 and FIG. 100 illustrates the sound 1324 detected from clockwise rotation. There may be additional background acoustic signals or noise 1328 created by, for example, the sound of the motor 1 132 of the external device 1 130. In both rotation directions, the acoustic "clicks" 1320 and 1324 look very similar to each other. However, by analyzing the frequency spectrum of the clicks, one is able to discern differences between clockwise and counter-clockwise rotation of the magnet 1302. As seen in FIG. 101, the frequency spectrum for the counter-clockwise rotation is centered at about 14 kHz, while the spectrum for clockwise rotation (FIG. 102) is centered at about 18 kHz. This shift or change in center frequency can be used as a basis for determining the absolute rotational direction of the magnet 1302.
[00286] Gastric restriction-based devices for obesity control are all currently placed with their interface portion located subcutaneously. Hydraulic-based gastric restriction devices have injection ports that are relatively large, and the method of placing these devices is usually one of the two following methods. The first method involves placing the entire device, with the exception of the port, through a 15 mm trocar into the insufflated abdominal cavity. The second method involves placing and then removing a 12 mm trocar and then placing the restriction device (without the port) into the abdominal cavity through the remaining tract in the tissue. In this second method, the 12 mm trocar is then replaced in order to maintain insufflation pressure. In both of these methods, however, an incision must be made in the skin near the trocar site in order to make a large enough passage through the skin for passage of the port. The fat is then separated from the fascia for a large enough area to allow the port to be secured to the fascia, usually with suture. The skin is then sutured to close the site. The various trocar sizes discussed herein refer to the commercial sizes of trocars used by physicians and surgeons. For example, a 12 mm trocar may have an OD that is greater than 12 mm but the trocar is still referred to as a "12 mm trocar." [00287] In contrast to existing systems, the present obesity control system has a comparatively small overall cross-sectional diameter throughout its entire length, and the device has the option of being placed with the implantable interface located either in a subcutaneous position, or the entire device can be placed completely intra-abdominal Iy. In either configuration, the relatively large incision heretofore required for the injection ports is not necessary. Because the entire device can fit down a 12 mm trocar, this incision is not required. The reason for the smaller overall cross-section diameter is multifold. First, the restriction device is non-inflatable, and thus it is does not require the space in the cross- section for the annular inflation lumen, nor the thick walls of the inflatable area necessary for resisting the stress due to the inflation pressure. In addition, the size of the magnet required to impart the necessary torque is significantly smaller than the inflation ports that are used with the hydraulic restriction device designs. [00288] FIG. 103 illustrates a sagittal (i.e., lateral) section of an obese patient 1500 prior to laparoscopic implantation of the inventive obesity control system. The abdominal cavity 1510 is located between the abdominal wall 1512 and the spine 1508. It should be noted that many of the major organs are not depicted for clarity sake. The stomach 1506 can be seen beneath the liver 1504. The sternum 1502 and diaphragm 1503 are also depicted, as is the naval 1514.
[00289] In FIG. 104 a 12 mm trocar 1516 is placed through the abdominal wall 1512, for example above the navel 1514, so that the tip of the trocar 1516 extends into the abdominal cavity 1510. Insufflation is then created, for example by injecting CO2 through a Luer connection in the trocar 1516 at a pressure of 15 mm Hg. Insufflation of the body cavity allows for enough separation, such that other trocars may be safely placed and organs can be better identified. As seen in FIG. 105, the inventive obesity control system 1518, including restriction device 1520, implantable interface 1524 and drive transmission 1522 can be completely placed through the 12 mm trocar 1516 with the use of a 5 mm grasper 1532, which comprises a grasping tip 1530, a shaft 1526 and a handle 1528. The restriction device 1520 is grasped by the grasping tip 1530 of the 5 mm grasper 1532 and the obesity control system is placed into the abdominal cavity 1510.
[00290] Because of the small dimensions of the restriction device 1520 and drive transmission 1522, the shaft 1526 of the 5 mm grasper 1532 can be placed in parallel with the restriction device 1520 and drive transmission 1522, until the restriction device 1520 is located completely within the abdominal cavity 1510. The 5 mm grasper 1532 is then manipulated at the handle 1528 so that the grasping tip 1530 releases the restriction device 1520. The 5 mm grasper 1532 is then removed, and can be used to help push the implantable interface 1524 completely through the 12 mm trocar 1516. The implantable interface 1524 is depicted with foldable wings 1534 through which suture or other fasteners (such as helical coils) may be placed. The foldable nature of the wings 1534 allow the implantable interface 1524 to be placed completely through the trocar 1516. Alternatively, the implantable interface 1524 does not have foldable wings 1534, and instead has a separate bracket or mount which is configured for securing the implantable interface to the patient 1500. [00291] FIG. 106 depicts an alternative method of placing the obesity control system into the abdominal cavity. In this embodiment, the implantable interface 1524 is placed first, for example by pushing it through the 12 mm trocar 1516 with the 5 mm grasper 1532. The 5 mm grasper 1532 is then used to place the obesity control system into the abdominal cavity 1510 by manipulation of the drive transmission 1522 through the 12 mm trocar 1516. Once the obesity control system is placed in the abdominal cavity, the restriction device 1520 is placed around the stomach at the junction of the stomach and esophagus, and one or more gastrogastric sutures are placed to secure the stomach around the restriction device 1520. [00292] FIG. 107 depicts the obesity control system in position to be placed completely intra-abdominal Iy in the patient 1500, with the implantable interface located in the lower abdominal area. FIG. 108 also depicts the obesity control system in position to be placed completely intra-abdominally, behind the lower portion of the sternum, and area known as xiphoid. Intra-abdominal placement has many advantages.
[00293] First, the patient will not be able to feel or be bothered by the implantable interface 1524, as they sometimes are in subcutaneous placements. Second, by securing the entire device intra-abdominally there is less time wasted manipulating the skin, fat, and fascia at the entry site and thus, a lower risk of infection. Third, it is possible to place the device with little or no incision at the skin because, as explained below, the attachment of the implantable interface 1524 intra-abdominally does not require a large surface area for manipulation from the outside. [00294] FIG. 109 demonstrates the configuration of an obesity control system that is placed when using the subcutaneous attachment of the implantable interface 1524. A tunnel is made in order to expose the fascia 1536 which covers the muscle 1538, and to which the implantable interface 1524 is attached. FIG. 1 10 depicts the obesity control system after it has been completely secured in the subcutaneous method. First and second sutures 1542, 1544 close the skin over the implantable interface 1524. In FIG. 110, the implantable interface 1524 has been attached to the fascia 1536 with helical screws 1540. [00295] Returning to the embodiment that utilizes a completely intra-abdominal placement of the obesity control system, FIG. 1 1 1 depicts the use of a suture passer 1546 having an actuator handle 1550 and a grasping tip 1552 configured for securing suture 1548. The suture 1548 is grasped by the grasping tip 1552 via manipulation of the actuator handle 1550. The suture 1548 is then passed through a small opening in the skin (e.g., a trocar hole), and the sharp grasping tip 1552 of the suture passer 1546 is forced through the remaining abdominal wall and through a hole in the foldable wing 1534 of the implantable interface 1524 (as seen in FIG. 1 12).
[00296] The implantable interface 1524 can be held stationary by using a separate grasper (not pictured). The suture 1548 is released, once it has passed through the hole in the foldable wing 1534 and into the abdominal cavity 1510. The suture passer 1546 is then removed and the suture is left in place as seen in FIG. 1 13. The suture passer 1546 is then inserted through the abdominal wall at another site and through another hole of a second foldable wing 1534. The suture 1548 is now grasped in the inside by the grasping tip 1552, as depicted in FIG. 1 14. This newly grasped end of the suture is then pulled back through the hole in the second foldable wing 1534 and then pulled out through the abdominal wall. The suture passes 1546 is now released from the suture 1548 via manipulation of the actuator handle 1550. The suture 1548 now loops into and out of the abdominal cavity and secures the implantable interface 1524 through two foldable wings 1534, as seen in FIG. 1 15. This may be repeated with other pieces of suture, for example if the implantable interface 1524 has four foldable wings 1534 instead of two. As shown in FIG. 1 16, the suture 1548 is then tied off in a knot 1554, to secure the implantable interface 1524 within the abdominal cavity, and the skin is closed with more suture 1556.
[00297] In the above-described subcutaneous and intra-abdominal methods for implanting and securing an obesity control system, it is common for there to be several 5 mm trocars in addition to the one 12 mm trocar depicted. For example, a 5 mm trocar for placing a liver retractor, and two or more other 5 mm trocars through which various surgical tools are placed (e.g., graspers, cutters, and cautery tools). FIG. 117 describes an alternative method of performing implantation and securement of an obesity control system, using a single trocar 1558. Trocars, unfortunately, can leave scars on the skin and can also cause port-surgical pain. Having a single trocar and thus single site or access passageway through the skin, will cause less scarring and less post-surgical pain. In additional, while this site may be located anywhere on the skin of the body (e.g., the abdominal wall), it may also be placed in the naval 1514 area, so that the scar is not noticeable. In addition, the single site may be chosen within the rectum or vagina, so that the scar does not show. These two sites allow access into the abdominal cavity, as does an additional site through the mouth and stomach. FIG. 1 17 depicts the single site as having been chosen through the naval 1514 general area although, as explained above, other site locations may also be used.
[00298] The single trocar 1558 has three (3) 5 mm lumens 1560, 1562, 1564. Turning to FIG. 118, a 5 mm laparoscope 1566 is placed through lumen 1562. The laparoscope 1566 comprises a distal end 1570 and a proximal end 1568, including a camera. A 5 mm grasper 1572 having a grasping tip 1576 and a manipulating handle 1574 is placed through lumen 1564 and into abdominal cavity 1510. The grasping tip 1576 of the 5 mm grasper 1572 carries a liver retraction magnet 1580 having clamp 1578 secured thereto. The 5 mm grasper 1572 is configured to grasp the clamp 1578 in a manner so that when the clamp 1578 and magnet 1580 are delivered to the liver 1504, the clamp 1578 is open. [00299] While viewing on laparoscopy, the clamp 1578 is released by the 5 mm grasper 1572, causing it to engage the liver 1504, securing the magnet 1580 to the liver 1504. The 5 mm grasper 1572 may also be used to retract the liver 1504 so that it is out-of-the-way from the surgical procedure in the area of the upper stomach. An external magnet 1582 having a handle 1584 is placed on the outside of the upper abdomen and an attraction force, shown be field 1586 in FIG. 1 19, maintains the external magnet 1582 and the magnet 1580 together. The liver 1504 is now retracted and the 5 mm grasper 1572 can be removed completely, or used for other purposes.
[00300] Turning now to FIG. 120, the single trocar 1558 is removed and the obesity control system is inserted through the tract made by the trocar 1558. The jaws 1590 of a forceps 1588 are used to grip the obesity control system as it is inserted into the abdominal cavity 1510. Once the obesity control system is placed completely within the abdominal cavity 1510, the trocar 1558 is replaced and the remaining portion of the implant procedure can be viewed through the laparoscope 1566 as seen in FIG. 121, while ports 1560 and 1564 are used for the placement of various instruments. The creation of a tunnel, for example in the pars flaccida method, can be performed with an articulating dissection tool. The creation of gastrogastric attachment, typically made using suture in most gastric restriction device procedures, presents a challenge in this single trocar method, because of the absence of good separation between, for example, two graspers being used to suture the stomach wall in two places, around the restriction device. [00301] An alternative apparatus is shown in FIG. 122, and is configured to be placed through one of the ports of the trocar 1558. The gastric restriction device 1602 is shown in- place around the stomach 1600, creating a small pouch 1610 just below esophagus 1604. The wall of an upper portion 1606 and a lower portion 1608 adjacent the gastric restriction device 1602 are to be secured to each other. Instead of suturing the upper portion 1606 and the lower portion 1608 together, a tool 1618 having a shaft 1612 and a handle 1622 grips a releasable clip 1614. The tool 1618 is inserted through a port of the trocar 1558 and the releasable clip 1614 is advanced to close proximity of the upper portion 1606 and lower portion 1608. Proximal grip 1616 is secured to the lower portion 1608 by manipulating first trigger 1624. The lower portion 1608 is then manipulated close to the upper portion 1606 and then distal grip 1617 is secured to upper portion 1606 by manipulating second trigger 1626. The releasable clip 1614 is released at separation point 1628 by pressing release button 1620. The tool 1618 can be torqued as needed, and also, an articulation 1630 can be controlled by slide 1632 on the handle 1622. This allows the desired orientation to be achieved at each step. A second releasable clip may be attached to the tool 1618 (or a different tool) and a parallel attachment can be made.
[00302] It should be understood that in case of emergency, the entire gastric restriction device may be withdrawn from the patient via the trocar 1516, 1558. This includes a 12 mm trocar such as trocar 1516 in addition to a multi-lumen trocar 1558. [00303] While embodiments of the present invention have been shown and described, various modifications may be made without departing from the scope of the present invention. The invention, therefore, should not be limited, except to the following claims, and their equivalents.

Claims

What is claimed is:
1. An adjustable medical system comprising: an adjustable implant having an adjustable portion configured to change dimension or orientation of an internal portion of a mammal and a driven portion comprising a magnetically responsive element configured for rotation about an axis of rotation; an external adjustment device configured to magnetically couple to the driven portion from a location external to the mammal, the external adjustment device comprising a first permanent magnet configured for rotation about a first axis and a second permanent magnet configured for rotation about a second axis different from the first axis; and wherein cooperative rotation of the first permanent magnet about the first axis and rotation of the second permanent magnet about the second axis result in rotation of the magnetically responsive element about its axis of rotation.
2. The system of claim 1, wherein the adjustable implant comprises a restriction device.
3. The system or claim 2, wherein the restriction device is configured for at least partially engaging a surface of a gastrointestinal tract of a mammal.
4. The system of claim 1, wherein the system further comprises an implantable feedback device operatively coupled to the magnetically responsive element, the feedback device being configured to produce a signal that is indicative of information relating to the rotation of the magnetically responsive element about its axis of rotation.
5. The system of claim 1, wherein the magnetically responsive element comprises a substantially cylindrical magnet which is poled radially.
6. An adjustable medical system comprising: an adjustable implant having an adjustable portion configured to change dimension or orientation of an internal portion of a mammal and a driven portion comprising a magnetically responsive element configured for rotation about an axis of rotation; and an implantable feedback device operatively coupled to the magnetically responsive element, the feedback device being configured to produce a signal that is indicative of information relating to the rotation of the magnetically responsive element about its axis of rotation.
7. The system of claim 6, wherein the signal comprises acoustic energy.
8. The system of claim 7, wherein the magnetically responsive element comprises a magnet and wherein the implantable feedback device comprises a magnetic impact object and the acoustic energy is produced by contact of the magnetic impact object with an impact surface due to the attraction or repulsion between the magnetic impact object and the magnetically responsive element.
9. The system of claim 6, wherein the signal comprises light energy.
10. A gastrointestinal implant system, comprising: an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal; and an implantable interface including a magnetically responsive element configured for rotation about an axis of rotation, the magnetically responsive element being operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to movement of the magnetically responsive element of the implantable interface, wherein the magnetically responsive element comprises a cylindrical magnet which is poled radially.
11. The system of claim 10, further comprising: an external adjustment device configured to magnetically couple to the magnetically responsive element from a location external to the mammal, the external adjustment device comprising a first permanent magnet configured for rotation about a first axis and a second permanent magnet configured for rotation about a second axis; and wherein cooperative rotation of the first permanent magnet about the first axis and rotation of the second permanent magnet about the second axis result in rotation of the magnetically responsive element about its axis of rotation.
12. The system of claim 10, further comprising: an implantable feedback device operatively coupled to the magnetically responsive element, the feedback device being configured to produce a signal that is indicative of information relating to the rotation of the magnetically responsive element about its axis of rotation.
13. The system of claim 12, wherein the signal comprises acoustic energy.
14. A gastrointestinal implant system, comprising: an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal; an implantable interface including a magnetically responsive element configured for rotation about an axis of rotation, the magnetically responsive element being operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to movement of the magnetically responsive element of the implantable interface; and an external adjustment device configured to magnetically couple to the magnetically responsive element from a location external to the mammal, the external adjustment device comprising a first permanent magnet configured for rotation about a first axis, the external adjustment device further comprising a motor configured for rotating the first permanent magnet about its first axis.
15. The system of claim 14, further comprising: an implantable feedback device operatively coupled to the magnetically responsive element, the feedback device being configured to produce a signal that is indicative of information relating to the rotation of the magnetically responsive element about its axis of rotation.
16. The system of claim 15, wherein the signal comprises acoustic energy.
17. The system of claim 14, wherein the external adjustment device further comprises: a second permanent magnet configured for rotation about a second axis different from the first axis; and wherein cooperative rotation of the first permanent magnet about the first axis and rotation of the second permanent magnet about the second axis result in rotation of the magnetically responsive element about its axis of rotation.
18. The system of claim 14, wherein the actuator is spaced apart from the adjustable restriction device.
19. A gastrointestinal implant system comprising: a non-inflatable, adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal; an implantable interface operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to actuation of the implantable interface; an external adjustment device configured to non-invasively couple to the implantable interface from a location external to the mammal, thereby allowing for non-invasive adjustment of the contact surface; and wherein the non-inflatable, adjustable restriction device and the implantable interface are both configured to be fully operable when located completely within the abdominal cavity of the mammal.
20. The system of claim 19, wherein the implantable interface is further configured to operate when located subcutaneously and external to the abdominal cavity.
PCT/US2008/055039 2007-03-01 2008-02-26 Adjustable implant system WO2008109300A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP08730778.1A EP2114258B1 (en) 2007-03-01 2008-02-26 Adjustable implant system
EP14168308.6A EP2767265B1 (en) 2007-03-01 2008-02-26 Adjustable implant system
EP20214185.9A EP3808317A1 (en) 2007-03-01 2008-02-26 Adjustable implant system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US90462507P 2007-03-01 2007-03-01
US60/904,625 2007-03-01
US11/760,482 2007-06-08
US11/760,482 US7862502B2 (en) 2006-10-20 2007-06-08 Method and apparatus for adjusting a gastrointestinal restriction device

Publications (2)

Publication Number Publication Date
WO2008109300A2 true WO2008109300A2 (en) 2008-09-12
WO2008109300A3 WO2008109300A3 (en) 2009-12-30

Family

ID=39739021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/055039 WO2008109300A2 (en) 2007-03-01 2008-02-26 Adjustable implant system

Country Status (5)

Country Link
US (10) US7862502B2 (en)
EP (3) EP2114258B1 (en)
DK (1) DK2767265T3 (en)
ES (1) ES2845448T3 (en)
WO (1) WO2008109300A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992313A3 (en) * 2007-05-14 2008-12-03 Ethicon Endo-Surgery, Inc. Gastric band with engagement member
WO2010088481A1 (en) * 2009-01-30 2010-08-05 The Trustees Of Columbia University In The City Of New York Controllable magnetic source to fixture intracorporeal apparatus
WO2010096573A1 (en) * 2009-02-18 2010-08-26 Pavad Medical, Inc. Implant system for controlling airway passage
WO2010138593A1 (en) * 2009-05-28 2010-12-02 Pavad Medical, Inc. Implant system for controlling airway passage
WO2011153086A1 (en) * 2010-06-03 2011-12-08 Allergan, Inc. Magnetically coupled implantable pump system
WO2013143612A1 (en) * 2012-03-30 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for the treatment of metabolic disorders
US8568457B2 (en) 2009-12-01 2013-10-29 DePuy Synthes Products, LLC Non-fusion scoliosis expandable spinal rod
US8900118B2 (en) 2008-10-22 2014-12-02 Apollo Endosurgery, Inc. Dome and screw valves for remotely adjustable gastric banding systems
US8905915B2 (en) 2006-01-04 2014-12-09 Apollo Endosurgery, Inc. Self-regulating gastric band with pressure data processing
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
US8961567B2 (en) 2010-11-22 2015-02-24 DePuy Synthes Products, LLC Non-fusion scoliosis expandable spinal rod
US9192501B2 (en) 2010-04-30 2015-11-24 Apollo Endosurgery, Inc. Remotely powered remotely adjustable gastric band system
US9211207B2 (en) 2010-08-18 2015-12-15 Apollo Endosurgery, Inc. Power regulated implant
WO2020252188A1 (en) 2019-06-11 2020-12-17 Yves Moser External actuation device for adjustable implanted medical device

Families Citing this family (587)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464628B1 (en) * 1999-08-12 2002-10-15 Obtech Medical Ag Mechanical anal incontinence
US7300449B2 (en) * 1999-12-09 2007-11-27 Mische Hans A Methods and devices for the treatment of neurological and physiological disorders
EP1255513B1 (en) * 2000-02-14 2005-05-25 Potencia Medical AG Penile prosthesis
ATE324087T1 (en) 2000-02-14 2006-05-15 Potencia Medical Ag MALE IMPOTENCY PROSTHESIS DEVICE WITH WIRELESS POWER SUPPLY
US7695427B2 (en) * 2002-04-26 2010-04-13 Torax Medical, Inc. Methods and apparatus for treating body tissue sphincters and the like
US7338433B2 (en) 2002-08-13 2008-03-04 Allergan, Inc. Remotely adjustable gastric banding method
DE60331457D1 (en) * 2002-08-28 2010-04-08 Allergan Inc TEMPTING MAGNETIC BANDING DEVICE
US8758372B2 (en) 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
ES2349952T3 (en) 2002-08-29 2011-01-13 St. Jude Medical, Cardiology Division, Inc. IMPLANTABLE DEVICES FOR CONTROLLING THE INTERNAL CIRCUMFERENCE OF AN ANATOMICAL ORIFICE OR LUMEN.
US7901419B2 (en) * 2002-09-04 2011-03-08 Allergan, Inc. Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use
US7141071B2 (en) 2002-12-23 2006-11-28 Python Medical, Inc. Implantable digestive tract organ
US7037343B2 (en) 2002-12-23 2006-05-02 Python, Inc. Stomach prosthesis
AU2003901696A0 (en) 2003-04-09 2003-05-01 Cochlear Limited Implant magnet system
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
EP1656070B1 (en) * 2003-08-11 2009-09-23 Wilson-Cook Medical Inc. Surgical implant
AU2005208721B2 (en) 2004-01-23 2010-09-23 Boston Scientific Scimed, Inc. Releasably-securable one-piece adjustable gastric band
CA2559056A1 (en) * 2004-03-08 2005-09-22 Endoart S.A. Closure system for tubular organs
ES2368149T3 (en) * 2004-03-18 2011-11-14 Allergan, Inc. APPARATUS FOR ADJUSTMENT OF THE VOLUME OF INTRAGASTRIC BALLOONS.
US7955357B2 (en) 2004-07-02 2011-06-07 Ellipse Technologies, Inc. Expandable rod system to treat scoliosis and method of using the same
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8439915B2 (en) * 2004-09-29 2013-05-14 The Regents Of The University Of California Apparatus and methods for magnetic alteration of anatomical features
JP5149150B2 (en) * 2005-03-25 2013-02-20 ミトラル・ソリューションズ・インコーポレイテッド Method and apparatus for controlling the inner circumference of an anatomical orifice or lumen
US8251888B2 (en) 2005-04-13 2012-08-28 Mitchell Steven Roslin Artificial gastric valve
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7798954B2 (en) 2006-01-04 2010-09-21 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9101279B2 (en) 2006-02-15 2015-08-11 Virtual Video Reality By Ritchey, Llc Mobile user borne brain activity data and surrounding environment data correlation system
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
AU2007281553B2 (en) 2006-07-31 2013-09-19 Edwards Lifesciences Cardiaq Llc Sealable endovascular implants and methods for their use
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
FR2906453B1 (en) * 2006-10-03 2009-03-06 Arnaud Andre Soubeiran INTRA-BODY LIFTING DEVICE WITH PERMANENT MAGNET.
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
EP2111189B1 (en) 2007-01-03 2017-04-05 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
WO2008084477A2 (en) * 2007-01-08 2008-07-17 Yossi Gross In-situ filter
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US20080169333A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapler end effector with tapered distal end
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7669747B2 (en) 2007-03-15 2010-03-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US7841347B2 (en) * 2007-09-10 2010-11-30 Medigus Ltd. Method of performing surgical procedures on patients suffering from hiatal hernia
US8057472B2 (en) 2007-10-30 2011-11-15 Ellipse Technologies, Inc. Skeletal manipulation method
CA2749778C (en) * 2008-01-29 2021-06-15 Milux Holding S.A. A device, system and method for treating obesity
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US20090248148A1 (en) * 2008-03-25 2009-10-01 Ellipse Technologies, Inc. Systems and methods for adjusting an annuloplasty ring with an integrated magnetic drive
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
FR2929842B1 (en) * 2008-04-14 2011-09-30 Cie Euro Etude Rech Paroscopie GASTRIC RING WITH TILT POCKETS
US9023063B2 (en) * 2008-04-17 2015-05-05 Apollo Endosurgery, Inc. Implantable access port device having a safety cap
ES2537815T3 (en) 2008-04-17 2015-06-12 Apollo Endosurgery, Inc. Device with implantable access port and fixing system
CA2727001A1 (en) * 2008-06-11 2009-12-17 Allergan, Inc. Implantable pump system
US8211004B1 (en) * 2008-06-11 2012-07-03 Bandula Wijay Adjustable device for the treatment of female urinary incontinence
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8317677B2 (en) * 2008-10-06 2012-11-27 Allergan, Inc. Mechanical gastric band with cushions
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US20100094306A1 (en) * 2008-10-13 2010-04-15 Arvin Chang Spinal distraction system
US11241257B2 (en) 2008-10-13 2022-02-08 Nuvasive Specialized Orthopedics, Inc. Spinal distraction system
US8382756B2 (en) * 2008-11-10 2013-02-26 Ellipse Technologies, Inc. External adjustment device for distraction device
BRPI1007070A2 (en) 2009-01-22 2016-02-10 St Jude Medical Cardiology Div implantable device system.
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
BRPI1008667A2 (en) 2009-02-06 2016-03-08 Ethicom Endo Surgery Inc improvement of the operated surgical stapler
US20100201526A1 (en) * 2009-02-06 2010-08-12 Marjan Hafezi Pregnancy Belt
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8197490B2 (en) 2009-02-23 2012-06-12 Ellipse Technologies, Inc. Non-invasive adjustable distraction system
US9622792B2 (en) 2009-04-29 2017-04-18 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
EP2424583A2 (en) * 2009-05-01 2012-03-07 Allergan, Inc. Laparoscopic gastric band with active agents
US20110184229A1 (en) * 2009-05-01 2011-07-28 Allergan, Inc. Laparoscopic gastric band with active agents
US8827134B2 (en) * 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
US10952836B2 (en) * 2009-07-17 2021-03-23 Peter Forsell Vaginal operation method for the treatment of urinary incontinence in women
US9949812B2 (en) * 2009-07-17 2018-04-24 Peter Forsell Vaginal operation method for the treatment of anal incontinence in women
US8708979B2 (en) 2009-08-26 2014-04-29 Apollo Endosurgery, Inc. Implantable coupling device
US8715158B2 (en) * 2009-08-26 2014-05-06 Apollo Endosurgery, Inc. Implantable bottom exit port
US8506532B2 (en) * 2009-08-26 2013-08-13 Allergan, Inc. System including access port and applicator tool
US8814914B2 (en) * 2009-08-28 2014-08-26 Zimmer Spine, Inc. Fusion method and pedicle access tool
WO2011031400A2 (en) * 2009-08-28 2011-03-17 Allergan, Inc. Gastric band with electric stimulation
US20110137112A1 (en) * 2009-08-28 2011-06-09 Allergan, Inc. Gastric band with electric stimulation
JP5751642B2 (en) 2009-09-04 2015-07-22 エリプス テクノロジーズ, インク.Ellipse Technologies, Inc. Bone growth apparatus and method
US9649214B2 (en) * 2009-09-11 2017-05-16 Ethicon Endo-Surgery, Inc. Detachable antenna for remote band
US8523885B2 (en) * 2009-09-18 2013-09-03 Ethicon Endo-Surgery, Inc. Implantable restriction system with load monitor
US8617049B2 (en) * 2009-09-18 2013-12-31 Ethicon Endo-Surgery, Inc. Symmetrical drive system for an implantable restriction device
US9750629B2 (en) * 2009-09-18 2017-09-05 Ethicon Endo-Surgery, Inc. Implantable restriction system tension release mechanism
US10342689B2 (en) * 2009-10-29 2019-07-09 Peter Forsell Fastening device, implant device, locking method, and operation method
US20110125270A1 (en) * 2009-11-23 2011-05-26 David C Paul Prosthetic Spinal Disc Replacement
WO2011079222A2 (en) 2009-12-23 2011-06-30 Boston Scientific Scimed, Inc. Less traumatic method of delivery of mesh-based devices into human body
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US20110196195A1 (en) * 2010-02-05 2011-08-11 Allergan, Inc. Implantable subcutaneous access port
US8882728B2 (en) * 2010-02-10 2014-11-11 Apollo Endosurgery, Inc. Implantable injection port
US8678993B2 (en) * 2010-02-12 2014-03-25 Apollo Endosurgery, Inc. Remotely adjustable gastric banding system
US20110201874A1 (en) * 2010-02-12 2011-08-18 Allergan, Inc. Remotely adjustable gastric banding system
US8758221B2 (en) * 2010-02-24 2014-06-24 Apollo Endosurgery, Inc. Source reservoir with potential energy for remotely adjustable gastric banding system
US8840541B2 (en) 2010-02-25 2014-09-23 Apollo Endosurgery, Inc. Pressure sensing gastric banding system
US8764624B2 (en) 2010-02-25 2014-07-01 Apollo Endosurgery, Inc. Inductively powered remotely adjustable gastric banding system
US8777947B2 (en) 2010-03-19 2014-07-15 Smith & Nephew, Inc. Telescoping IM nail and actuating mechanism
US8939888B2 (en) 2010-04-28 2015-01-27 Apollo Endosurgery, Inc. Method and system for determining the pressure of a fluid in a syringe, an access port, a catheter, and a gastric band
US9028394B2 (en) * 2010-04-29 2015-05-12 Apollo Endosurgery, Inc. Self-adjusting mechanical gastric band
US9044298B2 (en) 2010-04-29 2015-06-02 Apollo Endosurgery, Inc. Self-adjusting gastric band
US20110270024A1 (en) 2010-04-29 2011-11-03 Allergan, Inc. Self-adjusting gastric band having various compliant components
US20110270021A1 (en) 2010-04-30 2011-11-03 Allergan, Inc. Electronically enhanced access port for a fluid filled implant
US8992415B2 (en) 2010-04-30 2015-03-31 Apollo Endosurgery, Inc. Implantable device to protect tubing from puncture
US8517915B2 (en) 2010-06-10 2013-08-27 Allergan, Inc. Remotely adjustable gastric banding system
US9248043B2 (en) 2010-06-30 2016-02-02 Ellipse Technologies, Inc. External adjustment device for distraction device
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
HUE051942T2 (en) 2010-08-05 2021-03-29 Taris Biomedical Llc Implantable drug delivery devices for genitourinary sites
US20120041258A1 (en) 2010-08-16 2012-02-16 Allergan, Inc. Implantable access port system
US8698373B2 (en) 2010-08-18 2014-04-15 Apollo Endosurgery, Inc. Pare piezo power with energy recovery
US20120059216A1 (en) 2010-09-07 2012-03-08 Allergan, Inc. Remotely adjustable gastric banding system
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US20120065460A1 (en) 2010-09-14 2012-03-15 Greg Nitka Implantable access port system
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9301755B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Compressible staple cartridge assembly
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8753363B2 (en) * 2011-01-18 2014-06-17 Gt Urological, Llc Vessel occlusive device and method of occluding a vessel
WO2012112396A2 (en) 2011-02-14 2012-08-23 Ellipse Technologies, Inc. Device and method for treating fractured bones
US9387013B1 (en) 2011-03-01 2016-07-12 Nuvasive, Inc. Posterior cervical fixation system
US9113883B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Collapsible anvil plate assemblies for circular surgical stapling devices
US8725435B2 (en) 2011-04-13 2014-05-13 Apollo Endosurgery, Inc. Syringe-based leak detection system
BR112013027794B1 (en) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE SET
US8821373B2 (en) 2011-05-10 2014-09-02 Apollo Endosurgery, Inc. Directionless (orientation independent) needle injection port
US9918742B2 (en) 2011-05-16 2018-03-20 Smith & Nephew, Inc. Measuring skeletal distraction
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US20130144325A1 (en) * 2011-06-02 2013-06-06 Ludwig A. Allegra Nasal dilator
CN103781429B (en) * 2011-06-03 2017-02-15 科斯班公司 Spinal correction system actuators
EP2554139A1 (en) * 2011-08-05 2013-02-06 Centre Hospitalier Universitaire Vaudois Actuating device for a surgical implant
US20130046153A1 (en) 2011-08-16 2013-02-21 Elwha LLC, a limited liability company of the State of Delaware Systematic distillation of status data relating to regimen compliance
US8801597B2 (en) 2011-08-25 2014-08-12 Apollo Endosurgery, Inc. Implantable access port with mesh attachment rivets
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US9199069B2 (en) 2011-10-20 2015-12-01 Apollo Endosurgery, Inc. Implantable injection port
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US10016220B2 (en) 2011-11-01 2018-07-10 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US8858421B2 (en) 2011-11-15 2014-10-14 Apollo Endosurgery, Inc. Interior needle stick guard stems for tubes
US9089395B2 (en) 2011-11-16 2015-07-28 Appolo Endosurgery, Inc. Pre-loaded septum for use with an access port
US8876694B2 (en) 2011-12-07 2014-11-04 Apollo Endosurgery, Inc. Tube connector with a guiding tip
US10016226B2 (en) 2011-12-12 2018-07-10 Children's Hospital Medical Center Of Akron Noninvasive device for adjusting fastener
PT2790600T (en) 2011-12-12 2017-07-21 Austen Bioinnovation Inst In Akron Noninvasive device for adjusting fastener
US8961394B2 (en) 2011-12-20 2015-02-24 Apollo Endosurgery, Inc. Self-sealing fluid joint for use with a gastric band
US20130172664A1 (en) * 2011-12-30 2013-07-04 DUALIS MedTech GmbH and Childrens Hospital Boston Dept. of Urology Device for supporting the emptying of the bladder of a patient and method for operating such a device
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
EP2816980B1 (en) * 2012-02-22 2018-07-25 Syntheon TAVR, LLC Actively controllable stent, stent graft and heart valve
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
BR112014024194B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc STAPLER CARTRIDGE SET FOR A SURGICAL STAPLER
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
US9078711B2 (en) 2012-06-06 2015-07-14 Ellipse Technologies, Inc. Devices and methods for detection of slippage of magnetic coupling in implantable medical devices
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US20130338714A1 (en) 2012-06-15 2013-12-19 Arvin Chang Magnetic implants with improved anatomical compatibility
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
RU2636861C2 (en) 2012-06-28 2017-11-28 Этикон Эндо-Серджери, Инк. Blocking of empty cassette with clips
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
GB2503668B (en) * 2012-07-03 2018-02-07 Univ Hospitals Of Leicester Nhs Trust Delivery apparatus
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9044281B2 (en) 2012-10-18 2015-06-02 Ellipse Technologies, Inc. Intramedullary implants for replacing lost bone
BR112015009446B1 (en) 2012-10-29 2021-07-20 Nuvasive Specialized Orthopedics, Inc. SYSTEM FOR CHANGING AN ANGLE OF A SUBJECT'S BONE
US9445816B2 (en) * 2012-12-17 2016-09-20 Ethicon Endo-Surgery, Llc Circular stapler with selectable motorized and manual control
US9298756B1 (en) 2013-02-25 2016-03-29 Mark Johnson Read/write RFID system for animals
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
RU2672520C2 (en) 2013-03-01 2018-11-15 Этикон Эндо-Серджери, Инк. Hingedly turnable surgical instruments with conducting ways for signal transfer
US9179938B2 (en) 2013-03-08 2015-11-10 Ellipse Technologies, Inc. Distraction devices and method of assembling the same
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US9615864B2 (en) 2013-05-31 2017-04-11 Rehabilitation Institute Of Chicago Limb lengthening system for residual limb
US10226242B2 (en) 2013-07-31 2019-03-12 Nuvasive Specialized Orthopedics, Inc. Noninvasively adjustable suture anchors
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US20150238118A1 (en) * 2014-02-27 2015-08-27 Biorasis, Inc. Detection of the spatial location of an implantable biosensing platform and method thereof
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6612256B2 (en) 2014-04-16 2019-11-27 エシコン エルエルシー Fastener cartridge with non-uniform fastener
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
CN111345867A (en) 2014-04-28 2020-06-30 诺威适骨科专科公司 Remote control device
JP2017514608A (en) 2014-05-05 2017-06-08 バイカリアス サージカル インク. Virtual reality surgical device
US10154935B1 (en) * 2014-05-27 2018-12-18 Bryan L. Ales Pressure bearing auricular hematoma appliance
WO2015190575A1 (en) * 2014-06-13 2015-12-17 テルモ株式会社 Medical device and treatment method
US10667931B2 (en) * 2014-07-20 2020-06-02 Restore Medical Ltd. Pulmonary artery implant apparatus and methods of use thereof
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
AU2015335766B2 (en) 2014-10-23 2020-01-30 Nuvasive Specialized Orthopedics, Inc. Remotely adjustable interactive bone reshaping implant
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
WO2016088130A1 (en) 2014-12-04 2016-06-09 Mazor Robotics Ltd. Shaper for vertebral fixation rods
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
JP6847341B2 (en) 2014-12-26 2021-03-24 ニューベイシブ スペシャライズド オーソペディックス,インコーポレイテッド Systems and methods for extension
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10492790B2 (en) * 2015-09-24 2019-12-03 Ethicon Llc Apparatus and method for cinching a straight staple line
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US20170086829A1 (en) 2015-09-30 2017-03-30 Ethicon Endo-Surgery, Llc Compressible adjunct with intermediate supporting structures
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
CN108135589B (en) 2015-10-16 2021-07-23 诺威适骨科专科公司 Adjustable device for treating gonitis
US10898221B2 (en) * 2015-10-30 2021-01-26 Terumo Kabushiki Kaisha Device handle for a medical device
AU2016368167B2 (en) * 2015-12-10 2021-04-22 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
WO2017139548A1 (en) 2016-02-10 2017-08-17 Nuvasive Specialized Orthopedics, Inc. Systems and methods for controlling multiple surgical variables
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11446063B2 (en) 2016-02-12 2022-09-20 Nuvasive, Inc. Post-operatively adjustable angled rod
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
WO2017139782A1 (en) 2016-02-12 2017-08-17 Nuvasive, Inc. Post-operatively adjustable angled rod
EP3413820B1 (en) 2016-02-12 2024-04-10 Nuvasive, Inc. Post-operatively adjustable spinal fixation devices
US10456172B2 (en) 2016-02-12 2019-10-29 Nuvasive, Inc. Magnetically actuateable rod insertion for minimally invasive surgery
US10151606B1 (en) 2016-02-24 2018-12-11 Ommo Technologies, Inc. Tracking position and movement using a magnetic field
US10888357B2 (en) 2016-02-29 2021-01-12 Warsaw Orthopedic, Inc. Spinal implant system and method
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
WO2017221257A1 (en) 2016-06-23 2017-12-28 Mazor Robotics Ltd. Minimally invasive intervertebral rod insertion
US11771434B2 (en) 2016-09-28 2023-10-03 Restore Medical Ltd. Artery medical apparatus and methods of use thereof
EP3537999A2 (en) 2016-11-09 2019-09-18 Children's Hospital Medical Center of Akron Distraction osteogenesis system
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
CN110114014B (en) 2016-12-21 2022-08-09 爱惜康有限责任公司 Surgical instrument system including end effector and firing assembly lockout
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168619A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
EP3579736B1 (en) 2017-02-09 2024-09-04 Vicarious Surgical Inc. Virtual reality surgical tools system
US11364132B2 (en) 2017-06-05 2022-06-21 Restore Medical Ltd. Double walled fixed length stent like apparatus and methods of use thereof
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
EP4442209A2 (en) 2017-06-30 2024-10-09 Regents of the University of California Magnetic devices and systems
RU2020106151A (en) * 2017-07-12 2021-08-12 Медикал Инновейшн Девелопмент ADJUSTABLE VASCULAR RING AND IMPLANTATION KIT WITH SUCH RING
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US10751165B2 (en) * 2017-12-12 2020-08-25 Mentor Worldwide Llc Adjustable implant
CN117731218A (en) 2017-09-14 2024-03-22 维卡瑞斯外科手术股份有限公司 Virtual reality surgical camera system
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
FR3073148B1 (en) 2017-11-07 2021-04-09 G C Tech PORTABLE DEVICE TO GENERATE LOW FREQUENCY SINUSOIDAL INDUCED ELECTRIC CURRENT
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11039898B2 (en) * 2018-02-08 2021-06-22 William T. MCCLELLAN MRI safe tissue expander port
WO2020014420A1 (en) * 2018-07-12 2020-01-16 Bionaut Labs Ltd. Magnetic propulsion mechanism for magnetic devices
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11207173B2 (en) * 2018-09-11 2021-12-28 Lucian Popescu Adaptive lower esophagus sphincter augmentation
US11097115B2 (en) * 2018-09-24 2021-08-24 Galvani Bioelectronics Limited Implantable pulse generator with suture holes and methods for implanting the same
EP3877046A4 (en) 2018-11-05 2022-11-23 Bionaut Labs Ltd. Magnetic propulsion system for magnetic devices
US11478347B2 (en) * 2018-12-17 2022-10-25 Cilag Gmbh International Sphincter sizing instrument
US20200254283A1 (en) 2019-02-07 2020-08-13 Nuvasive Specialized Orthopedics, Inc. Medical devices for ultrasonic therapy
US11589901B2 (en) 2019-02-08 2023-02-28 Nuvasive Specialized Orthopedics, Inc. External adjustment device
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11361176B2 (en) 2019-06-28 2022-06-14 Cilag Gmbh International Surgical RFID assemblies for compatibility detection
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11853835B2 (en) 2019-06-28 2023-12-26 Cilag Gmbh International RFID identification systems for surgical instruments
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US20210177566A1 (en) * 2020-02-22 2021-06-17 Pourya Shokri Artificial urethral sphincter
US11559385B2 (en) 2020-04-24 2023-01-24 Jt Godfrey, Llc Device for use with body tissue sphincters
US11628052B2 (en) 2020-05-13 2023-04-18 Jt Godfrey, Llc Device for use with body tissue sphincters
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US20220096128A1 (en) * 2020-09-25 2022-03-31 Nuvasive, Inc. Iliac crest displacement device and method
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
CN112826537A (en) * 2020-12-31 2021-05-25 上海爱声生物医疗科技有限公司 Endoscope ultrasonic microprobe
US11806054B2 (en) 2021-02-23 2023-11-07 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11737787B1 (en) 2021-05-27 2023-08-29 Nuvasive, Inc. Bone elongating devices and methods of use
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
AU2022325024A1 (en) 2021-08-03 2024-02-22 Nuvasive Specialized Orthopedics, Inc. Adjustable implant
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Family Cites Families (851)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1599538A (en) 1919-12-06 1926-09-14 Mintrop Ludger Geological testing method
US1749224A (en) 1928-12-29 1930-03-04 Hills Brothers Company Fruit holder
US2702031A (en) 1953-09-25 1955-02-15 Wenger Herman Leslie Method and apparatus for treatment of scoliosis
US3043206A (en) 1960-09-13 1962-07-10 Marvin E Fulton Tension-free film developing apparatus
US3111945A (en) 1961-01-05 1963-11-26 Solbrig Charles R Von Bone band and process of applying the same
US3377576A (en) 1965-05-03 1968-04-09 Metcom Inc Gallium-wetted movable electrode switch
US3397928A (en) 1965-11-08 1968-08-20 Edward M. Galle Seal means for drill bit bearings
SE344275B (en) 1966-02-10 1972-04-10 R Gruenert
US3372476A (en) 1967-04-05 1968-03-12 Amp Inc Method of making permanent connections between interfitting parts
FR1556730A (en) 1967-06-05 1969-02-07
US3866510A (en) 1967-06-05 1975-02-18 Carl B H Eibes Self-tapping threaded bushings
USRE28907E (en) 1967-06-05 1976-07-20 Self-tapping threaded bushings
US3512901A (en) 1967-07-28 1970-05-19 Carrier Corp Magnetically coupled pump with slip detection means
US3527220A (en) 1968-06-28 1970-09-08 Fairchild Hiller Corp Implantable drug administrator
FR2086747A5 (en) * 1970-04-07 1971-12-31 Cotton De Bennetot M
US3726279A (en) * 1970-10-08 1973-04-10 Carolina Medical Electronics I Hemostatic vascular cuff
US3810259A (en) * 1971-01-25 1974-05-14 Fairchild Industries Implantable urinary control apparatus
US3750194A (en) * 1971-03-16 1973-08-07 Fairchild Industries Apparatus and method for reversibly closing a natural or implanted body passage
US3817237A (en) * 1972-08-24 1974-06-18 Medtronic Inc Regulatory apparatus
US3840018A (en) 1973-01-31 1974-10-08 M Heifetz Clamp for occluding tubular conduits in the human body
DE2314573C2 (en) 1973-03-23 1986-12-18 Werner Dipl.-Ing. 8000 München Kraus Device for promoting healing processes
GB1467248A (en) 1973-07-30 1977-03-16 Horstmann Magnetics Ltd Electric motors
CH581988A5 (en) * 1974-04-09 1976-11-30 Messerschmitt Boelkow Blohm
US3900025A (en) 1974-04-24 1975-08-19 Jr Walter P Barnes Apparatus for distracting or compressing longitudinal bone segments
FI53062C (en) 1975-05-30 1978-02-10 Erkki Einari Nissinen
US4010758A (en) * 1975-09-03 1977-03-08 Medtronic, Inc. Bipolar body tissue electrode
US4068821A (en) 1976-09-13 1978-01-17 Acf Industries, Incorporated Valve seat ring having a corner groove to receive an elastic seal ring
SU715082A1 (en) * 1977-01-24 1980-02-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus
US4118805A (en) 1977-02-28 1978-10-10 Codman & Shurtleff, Inc. Artificial sphincter
CH625384B (en) * 1977-12-20 Ebauches Electroniques Sa STEP MOTOR NON-ROTATION DETECTION DEVICE FOR CLOCKWORK PART AND LOST STEPS CATCHING UP.
US4286584A (en) 1978-06-16 1981-09-01 Infusaid Corporation Septum locating apparatus
US4222374A (en) 1978-06-16 1980-09-16 Metal Bellows Corporation Septum locating apparatus
US4235246A (en) 1979-02-05 1980-11-25 Arco Medical Products Company Epicardial heart lead and assembly and method for optimal fixation of same for cardiac pacing
US4278927A (en) * 1979-03-05 1981-07-14 Northrop Corporation Axial gap permanent magnet motor
GB2049413B (en) 1979-05-16 1984-01-11 Uop Inc Vehicle seat mounting device
US4256094A (en) * 1979-06-18 1981-03-17 Kapp John P Arterial pressure control system
US4357946A (en) 1980-03-24 1982-11-09 Medtronic, Inc. Epicardial pacing lead with stylet controlled helical fixation screw
DE3035670A1 (en) * 1980-09-22 1982-04-29 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR INFUSING LIQUIDS IN HUMAN OR ANIMAL BODIES
US4386603A (en) 1981-03-23 1983-06-07 Mayfield Jack K Distraction device for spinal distraction systems
US4448191A (en) 1981-07-07 1984-05-15 Rodnyansky Lazar I Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature
FR2514250A1 (en) 1981-10-08 1983-04-15 Artus HANDPIECE WITH INTEGRATED MOTOR
FR2523232B1 (en) 1982-03-09 1985-09-20 Thomson Csf TELESCOPIC COLUMN WITH CYLINDRICAL TUBES
CH648723GA3 (en) * 1982-09-10 1985-04-15
DE3340596A1 (en) 1982-11-16 1984-05-24 Tokyo Electric Co., Ltd., Tokyo MATRIX PRINTER
IL67773A (en) * 1983-01-28 1985-02-28 Antebi E Tie for tying live tissue and an instrument for performing said tying operation
DE3306657C2 (en) 1983-02-25 1986-12-11 Fa. Heinrich C. Ulrich, 7900 Ulm Spine correction implant with a distraction rod
US4501266A (en) 1983-03-04 1985-02-26 Biomet, Inc. Knee distraction device
US4595007A (en) * 1983-03-14 1986-06-17 Ethicon, Inc. Split ring type tissue fastener
FR2551350B1 (en) * 1983-09-02 1985-10-25 Buffet Jacques FLUID INJECTION DEVICE, SUITABLE FOR IMPLANTATION
US4522501A (en) 1984-04-06 1985-06-11 Northern Telecom Limited Monitoring magnetically permeable particles in admixture with a fluid carrier
US4573454A (en) 1984-05-17 1986-03-04 Hoffman Gregory A Spinal fixation apparatus
SE448812B (en) 1985-02-01 1987-03-23 Astra Meditec Ab SURGICAL DEVICE FOR CONNECTING THE TAGS OF A PATIENT
DE8515687U1 (en) 1985-05-29 1985-10-24 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Distraction device for extension osteotomy
US4592339A (en) * 1985-06-12 1986-06-03 Mentor Corporation Gastric banding device
US4642257A (en) 1985-06-13 1987-02-10 Michael Chase Magnetic occluding device
US4696288A (en) 1985-08-14 1987-09-29 Kuzmak Lubomyr I Calibrating apparatus and method of using same for gastric banding surgery
WO1987007134A1 (en) 1986-05-30 1987-12-03 John Bumpus Distraction rods
US4700091A (en) * 1986-08-22 1987-10-13 Timex Corporation Bipolar stepping motor rotor with drive pinion and method of manufacture
SE460301B (en) 1986-10-15 1989-09-25 Sandvik Ab CUTTING ROD FOR STOCKING DRILLING MACHINE
US4760837A (en) * 1987-02-19 1988-08-02 Inamed Development Company Apparatus for verifying the position of needle tip within the injection reservoir of an implantable medical device
DE8704134U1 (en) 1987-03-19 1987-07-16 Zielke, Klaus, Dr.med., 3590 Bad Wildungen Implant designed as a distraction and compression rod
DE3711091A1 (en) 1987-04-02 1988-10-13 Kluger Patrick DEVICE FOR SETTING UP A SPINE WITH A DAMAGED SPINE
DE3728686A1 (en) 1987-08-27 1989-03-09 Draenert Klaus PREDICTABLE SURGICAL NETWORK
WO1989006940A1 (en) 1988-02-03 1989-08-10 Biomet, Inc. Variable length fixation device
US4940467A (en) 1988-02-03 1990-07-10 Tronzo Raymond G Variable length fixation device
FR2632514B1 (en) 1988-06-09 1990-10-12 Medinov Sarl PROGRESSIVE CENTRO-MEDULAR NAIL
US4998013A (en) 1988-12-27 1991-03-05 Hewlett-Packard Company Optical encoder with inactive photodetectors
US4904861A (en) * 1988-12-27 1990-02-27 Hewlett-Packard Company Optical encoder using sufficient inactive photodetectors to make leakage current equal throughout
US4973331A (en) * 1989-03-08 1990-11-27 Autogenesis Corporation Automatic compression-distraction-torsion method and apparatus
US5180380A (en) 1989-03-08 1993-01-19 Autogenesis Corporation Automatic compression-distraction-torsion method and apparatus
JPH0620466B2 (en) 1989-03-31 1994-03-23 有限会社田中医科器械製作所 Spinal column correction device
US5092889A (en) 1989-04-14 1992-03-03 Campbell Robert M Jr Expandable vertical prosthetic rib
US5053047A (en) 1989-05-16 1991-10-01 Inbae Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
US5222976A (en) 1989-05-16 1993-06-29 Inbae Yoon Suture devices particularly useful in endoscopic surgery
DE3921972C2 (en) 1989-07-04 1994-06-09 Rainer Dr Med Baumgart Intramedullary nail
US4978323A (en) 1989-08-10 1990-12-18 George Freedman System and method for preventing closure of passageways
US5176618A (en) 1989-08-10 1993-01-05 George Freedman System for preventing closure of passageways
IT1236172B (en) 1989-11-30 1993-01-11 Franco Mingozzi EXTERNAL FIXER FOR THE TREATMENT OF LONG BONE FRACTURES OF THE LIMBS.
US5142407A (en) 1989-12-22 1992-08-25 Donnelly Corporation Method of reducing leakage current in electrochemichromic solutions and solutions based thereon
SE464558B (en) 1990-03-22 1991-05-13 Hepar Ab IMPLANTABLE DEVICE FOR SUSPENSION OF A CHANNEL IN THE BODY OF A LIVE BEING
US5030235A (en) 1990-04-20 1991-07-09 Campbell Robert M Jr Prosthetic first rib
US5290289A (en) 1990-05-22 1994-03-01 Sanders Albert E Nitinol spinal instrumentation and method for surgically treating scoliosis
US5156605A (en) 1990-07-06 1992-10-20 Autogenesis Corporation Automatic internal compression-distraction-method and apparatus
US5074868A (en) 1990-08-03 1991-12-24 Inamed Development Company Reversible stoma-adjustable gastric band
US5133716A (en) 1990-11-07 1992-07-28 Codespi Corporation Device for correction of spinal deformities
US5226429A (en) * 1991-06-20 1993-07-13 Inamed Development Co. Laparoscopic gastric band and method
US5399168A (en) 1991-08-29 1995-03-21 C. R. Bard, Inc. Implantable plural fluid cavity port
US5360407A (en) 1991-08-29 1994-11-01 C. R. Bard, Inc. Implantable dual access port with tactile ridge for position sensing
JP3068683B2 (en) 1991-10-21 2000-07-24 マグネット製造株式会社 Non-magnetic metal separator
US5433721A (en) * 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
DE69325023T2 (en) 1992-06-08 2000-01-05 Robert M. Campbell Jun. INSTRUMENTATION FOR SEGMENTAL RIB SUPPORT
US5437266A (en) * 1992-07-02 1995-08-01 Mcpherson; William Coil screw surgical retractor
DE4221692A1 (en) 1992-07-02 1994-01-05 Siemens Ag Method and device for determining a mixture proportion of a gas mixture
US5676651A (en) 1992-08-06 1997-10-14 Electric Boat Corporation Surgically implantable pump arrangement and method for pumping body fluids
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5381943A (en) 1992-10-09 1995-01-17 Ethicon, Inc. Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
US5466261A (en) 1992-11-19 1995-11-14 Wright Medical Technology, Inc. Non-invasive expandable prosthesis for growing children
US5498262A (en) 1992-12-31 1996-03-12 Bryan; Donald W. Spinal fixation apparatus and method
US5306275A (en) 1992-12-31 1994-04-26 Bryan Donald W Lumbar spine fixation apparatus and method
US5336223A (en) 1993-02-04 1994-08-09 Rogers Charles L Telescoping spinal fixator
US5356424A (en) 1993-02-05 1994-10-18 American Cyanamid Co. Laparoscopic suturing device
US5429638A (en) 1993-02-12 1995-07-04 The Cleveland Clinic Foundation Bone transport and lengthening system
US5626579A (en) 1993-02-12 1997-05-06 The Cleveland Clinic Foundation Bone transport and lengthening system
US5536269A (en) 1993-02-18 1996-07-16 Genesis Orthopedics Bone and tissue lengthening device
US5449368A (en) 1993-02-18 1995-09-12 Kuzmak; Lubomyr I. Laparoscopic adjustable gastric banding device and method for implantation and removal thereof
US5356411A (en) 1993-02-18 1994-10-18 Spievack Alan R Bone transporter
US5516335A (en) 1993-03-24 1996-05-14 Hospital For Joint Diseases Orthopaedic Institute Intramedullary nail for femoral lengthening
US5364396A (en) 1993-03-29 1994-11-15 Robinson Randolph C Distraction method and apparatus
US5334202A (en) 1993-04-06 1994-08-02 Carter Michael A Portable bone distraction apparatus
US5527309A (en) 1993-04-21 1996-06-18 The Trustees Of Columbia University In The City Of New York Pelvo-femoral fixator
US5403322A (en) 1993-07-08 1995-04-04 Smith & Nephew Richards Inc. Drill guide and method for avoiding intramedullary nails in the placement of bone pins
FR2709246B1 (en) 1993-08-27 1995-09-29 Martin Jean Raymond Dynamic implanted spinal orthosis.
US5446261A (en) * 1993-10-26 1995-08-29 International Business Machines Corporation Solder application system using helix to control solder meniscus
US5518504A (en) 1993-12-28 1996-05-21 American Medical Systems, Inc. Implantable sphincter system utilizing lifting means
US5468030A (en) 1994-01-04 1995-11-21 Caterpillar Inc. Tube clamp and coupling
AU1011595A (en) 1994-01-13 1995-07-20 Ethicon Inc. Spiral surgical tack
US5762599A (en) * 1994-05-02 1998-06-09 Influence Medical Technologies, Ltd. Magnetically-coupled implantable medical devices
AU4089697A (en) 1994-05-25 1998-03-19 Roger P Jackson Apparatus and method for spinal fixation and correction of spinal deformities
US6649143B1 (en) 1994-07-01 2003-11-18 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
US7255851B2 (en) 1994-07-01 2007-08-14 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive localization of a light-emitting conjugate in a mammal
DE69507955T2 (en) * 1994-07-11 1999-08-12 Dacomed Corp., Minneapolis, Minn. PROSTHETIC LOCKING DEVICE
US5620445A (en) 1994-07-15 1997-04-15 Brosnahan; Robert Modular intramedullary nail
US5509888A (en) * 1994-07-26 1996-04-23 Conceptek Corporation Controller valve device and method
IT1268313B1 (en) 1994-07-28 1997-02-27 Orthofix Srl MECHANICAL EQUIPMENT FOR CENTERING BLIND HOLES FOR BONE SCREWS OF INTRAMIDOLLAR NAILS
US5582616A (en) 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
US5573012A (en) 1994-08-09 1996-11-12 The Regents Of The University Of California Body monitoring and imaging apparatus and method
US5549610A (en) 1994-10-31 1996-08-27 Smith & Nephew Richards Inc. Femoral intramedullary nail
ES2128109T3 (en) * 1994-11-16 1999-05-01 Arnaud Andre Soubeiran DEVICE TO MOVE TWO BODIES ONE WITH RESPECT TO THE OTHER.
US5874796A (en) 1995-02-10 1999-02-23 Petersen; Christian C. Permanent magnet D.C. motor having a radially-disposed working flux gap
US5659217A (en) * 1995-02-10 1997-08-19 Petersen; Christian C. Permanent magnet d.c. motor having a radially-disposed working flux gap
FR2730406B1 (en) 1995-02-13 1997-08-14 Medinov Sa IMPROVED LENGTHENING DEVICE FOR LONG BONES
US5662675A (en) * 1995-02-24 1997-09-02 Intervascular, Inc. Delivery catheter assembly
US5575790A (en) 1995-03-28 1996-11-19 Rensselaer Polytechnic Institute Shape memory alloy internal linear actuator for use in orthopedic correction
RU2140849C1 (en) * 1995-03-31 1999-11-10 Тойо Кохан Ко., Лтд. Manipulation method and robot intended for this method realization
US5536296A (en) 1995-05-03 1996-07-16 Alumax Inc. Process for treating molten aluminum with chlorine gas and sulfur hexafluoride to remove impurities
US5626613A (en) * 1995-05-04 1997-05-06 Arthrex, Inc. Corkscrew suture anchor and driver
US5628888A (en) 1996-03-28 1997-05-13 Rscecat, Usa, Inc. Apparatus for electrochemical treatment of water and/or water solutions
US5662683A (en) 1995-08-22 1997-09-02 Ortho Helix Limited Open helical organic tissue anchor and method of facilitating healing
JP3338944B2 (en) 1995-08-25 2002-10-28 有限会社田中医科器械製作所 Spinal deformity correction device
EP0769282B1 (en) * 1995-09-22 2000-05-03 Kirk Promotions Limited Device for reducing the food intake of a patient
US6102922A (en) * 1995-09-22 2000-08-15 Kirk Promotions Limited Surgical method and device for reducing the food intake of patient
EP0766263B1 (en) * 1995-09-29 2002-08-07 Kabushiki Kaisha Toshiba Control rod drive mechanism
DE69608968T2 (en) 1995-12-01 2001-02-01 Gurkan Altuna TELESCOPIC BONE PLATE FOR BONE EXTENSION THROUGH STRETCH OSTEOGENESIS
US5672177A (en) 1996-01-31 1997-09-30 The General Hospital Corporation Implantable bone distraction device
US5840070A (en) 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
WO1998050309A1 (en) 1996-03-27 1998-11-12 Bakhir Vitold M Apparatus for electrochemical treatment of water and/or water solutions
US5704938A (en) 1996-03-27 1998-01-06 Volunteers For Medical Engineering Implantable bone lengthening apparatus using a drive gear mechanism
US5985110A (en) 1996-03-28 1999-11-16 Bakhir; Vitold M. Apparatus for electrochemical treatment of water and/or water solutions
US5704939A (en) * 1996-04-09 1998-01-06 Justin; Daniel F. Intramedullary skeletal distractor and method
US5979456A (en) 1996-04-22 1999-11-09 Magovern; George J. Apparatus and method for reversibly reshaping a body part
US5954915A (en) * 1996-05-24 1999-09-21 Voorwood Company Surface finishing apparatus
KR20000016633A (en) 1996-06-17 2000-03-25 로버트 골든. Medical tube for insertion and detection within the body of a patient
US5700263A (en) 1996-06-17 1997-12-23 Schendel; Stephen A. Bone distraction apparatus
DE19626230A1 (en) 1996-06-29 1998-01-02 Inst Physikalische Hochtech Ev Device for determining the position of magnetic marker through Magen-Darm tract
US6835207B2 (en) 1996-07-22 2004-12-28 Fred Zacouto Skeletal implant
US6500110B1 (en) 1996-08-15 2002-12-31 Neotonus, Inc. Magnetic nerve stimulation seat device
US5810815A (en) 1996-09-20 1998-09-22 Morales; Jose A. Surgical apparatus for use in the treatment of spinal deformities
US5830221A (en) 1996-09-20 1998-11-03 United States Surgical Corporation Coil fastener applier
US6058323A (en) 1996-11-05 2000-05-02 Lemelson; Jerome System and method for treating select tissue in a living being
US5743910A (en) 1996-11-14 1998-04-28 Xomed Surgical Products, Inc. Orthopedic prosthesis removal instrument
DE19652608C1 (en) 1996-12-18 1998-08-27 Eska Implants Gmbh & Co Prophylaxis implant against fractures of osteoporotically affected bone segments
NL1004873C2 (en) 1996-12-23 1998-06-24 Univ Twente Device for moving two objects together.
DE19700225A1 (en) 1997-01-07 1998-07-09 Augustin Prof Dr Betz Distraction device for moving two parts of a bone apart
IT1293934B1 (en) 1997-01-21 1999-03-11 Orthofix Srl ENDOMIDOLLAR NAIL FOR THE TREATMENT OF HIP FRACTURES
US5997490A (en) 1997-02-12 1999-12-07 Exogen, Inc. Method and system for therapeutically treating bone fractures and osteoporosis
US5827286A (en) 1997-02-14 1998-10-27 Incavo; Stephen J. Incrementally adjustable tibial osteotomy fixation device and method
DE19708279C2 (en) 1997-02-28 1999-10-14 Rainer Baumgart Distraction system for a long bone
US6034296A (en) 1997-03-11 2000-03-07 Elvin; Niell Implantable bone strain telemetry sensing system and method
US6033412A (en) 1997-04-03 2000-03-07 Losken; H. Wolfgang Automated implantable bone distractor for incremental bone adjustment
FR2761876B1 (en) 1997-04-09 1999-08-06 Materiel Orthopedique En Abreg INSTRUMENTATION OF LUMBAR OSTEOSYNTHESIS FOR CORRECTION OF SPONDYLOLISTHESIS BY POSTERIOR PATHWAY
US5938669A (en) * 1997-05-07 1999-08-17 Klasamed S.A. Adjustable gastric banding device for contracting a patient's stomach
DE19751733A1 (en) 1997-06-09 1998-12-10 Arnold Dipl Ing Dr Med Pier Gastric band that can be used laparoscopically
GB9713018D0 (en) 1997-06-20 1997-08-27 Secr Defence Optical fibre bend sensor
EP0999748B1 (en) 1997-07-16 2003-03-26 Syngenta Limited Herbicidal compositions of tetrazolinone herbicides and antidotes therefor
US6545701B2 (en) * 1997-08-13 2003-04-08 Georgia Tech Research Corporation Panoramic digital camera system and method
DE19741757A1 (en) 1997-09-22 1999-03-25 Sachse Hans E Implantable hydraulic bone expansion device
US6138681A (en) 1997-10-13 2000-10-31 Light Sciences Limited Partnership Alignment of external medical device relative to implanted medical device
FR2769491B1 (en) * 1997-10-15 2000-01-07 Patrick Sangouard ADJUSTABLE ARTIFICIAL SPHINCTER WITH MAGNETIC CONTROL
DE19745654A1 (en) 1997-10-16 1999-04-22 Hans Peter Prof Dr Med Zenner Port for subcutaneous infusion
GB9723194D0 (en) 1997-11-03 1998-01-07 Isis Innovation Electromechanical transducer
FR2771280B1 (en) 1997-11-26 2001-01-26 Albert P Alby RESILIENT VERTEBRAL CONNECTION DEVICE
US5935127A (en) 1997-12-17 1999-08-10 Biomet, Inc. Apparatus and method for treatment of a fracture in a long bone
US6336929B1 (en) 1998-01-05 2002-01-08 Orthodyne, Inc. Intramedullary skeletal distractor and method
US6331744B1 (en) * 1998-02-10 2001-12-18 Light Sciences Corporation Contactless energy transfer apparatus
US5945762A (en) * 1998-02-10 1999-08-31 Light Sciences Limited Partnership Movable magnet transmitter for inducing electrical current in an implanted coil
US7468060B2 (en) * 1998-02-19 2008-12-23 Respiratory Diagnostic, Inc. Systems and methods for treating obesity and other gastrointestinal conditions
DE19807663A1 (en) * 1998-02-24 1999-09-09 Baur Connection means for releasably connecting a first component and a second component and method for releasing a connection of a first component and a second component
US6009837A (en) 1998-03-25 2000-01-04 Mcclasky; David R. Purple martin birdhouse and telescoping pole
US6343568B1 (en) 1998-03-25 2002-02-05 Mcclasky David R. Non-rotating telescoping pole
GB9806999D0 (en) 1998-04-02 1998-06-03 Univ Birmingham Distraction device
US6074341A (en) 1998-06-09 2000-06-13 Timm Medical Technologies, Inc. Vessel occlusive apparatus and method
US6283156B1 (en) 1998-06-17 2001-09-04 Halliburton Energy Services, Inc. Expandable O-ring seal, method of sealing and apparatus having such seals
DE29811479U1 (en) 1998-06-26 1998-09-03 orto MAQUET GmbH & Co. KG, 76437 Rastatt Plate arrangement for osteosynthesis
DE19829523A1 (en) 1998-07-02 2000-01-05 Michael Butsch Distraction device for moving apart a one- or two-part, possibly separate bone
US6126660A (en) 1998-07-29 2000-10-03 Sofamor Danek Holdings, Inc. Spinal compression and distraction devices and surgical methods
US6067991A (en) * 1998-08-13 2000-05-30 Forsell; Peter Mechanical food intake restriction device
US6210347B1 (en) * 1998-08-13 2001-04-03 Peter Forsell Remote control food intake restriction device
US6460543B1 (en) 1998-08-13 2002-10-08 Obtech Medical Ag Non-injection port food intake restriction device
FR2783153B1 (en) * 1998-09-14 2000-12-01 Jerome Dargent GASTRIC CONSTRICTION DEVICE
US6494879B2 (en) 1998-10-15 2002-12-17 Scimed Life Systems, Inc. Treating urinary retention
DE19856062A1 (en) 1998-12-04 2000-06-15 Wittenstein Gmbh & Co Kg Distraction device
US6139316A (en) 1999-01-26 2000-10-31 Sachdeva; Rohit C. L. Device for bone distraction and tooth movement
US6315784B1 (en) 1999-02-03 2001-11-13 Zarija Djurovic Surgical suturing unit
DE19906423A1 (en) 1999-02-16 2000-08-17 Wittenstein Gmbh & Co Kg Active marrow spike for drawing out sections of bone consists of two elements moving against each other and electrically operated driving element to supply spike with electrical energy via detachable plug-in element.
IL129032A (en) 1999-03-17 2006-12-31 Moshe Dudai Gastric band
US6162223A (en) 1999-04-09 2000-12-19 Smith & Nephew, Inc. Dynamic wrist fixation apparatus for early joint motion in distal radius fractures
US6325805B1 (en) 1999-04-23 2001-12-04 Sdgi Holdings, Inc. Shape memory alloy staple
US6299613B1 (en) 1999-04-23 2001-10-09 Sdgi Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
US6296643B1 (en) 1999-04-23 2001-10-02 Sdgi Holdings, Inc. Device for the correction of spinal deformities through vertebral body tethering without fusion
US7008425B2 (en) 1999-05-27 2006-03-07 Jonathan Phillips Pediatric intramedullary nail and method
FR2794357B1 (en) 1999-06-01 2001-09-14 Frederic Fortin DISTRACTION DEVICE FOR BONES OF CHILDREN HAVING HANGING AND ADJUSTMENT MEANS FOR TRACKING GROWTH
US6221074B1 (en) 1999-06-10 2001-04-24 Orthodyne, Inc. Femoral intramedullary rod system
US7018380B2 (en) 1999-06-10 2006-03-28 Cole J Dean Femoral intramedullary rod system
CN1264268C (en) 1999-06-21 2006-07-12 菲舍尔和佩克尔有限公司 Linear motor
US6358283B1 (en) 1999-06-21 2002-03-19 Hoegfors Christian Implantable device for lengthening and correcting malpositions of skeletal bones
DE60044531D1 (en) 1999-06-25 2010-07-22 Vahid Saadat TISSUE TREATMENT DEVICE
US7160312B2 (en) * 1999-06-25 2007-01-09 Usgi Medical, Inc. Implantable artificial partition and methods of use
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US20050192629A1 (en) * 1999-06-25 2005-09-01 Usgi Medical Inc. Methods and apparatus for creating and regulating a gastric stoma
US6587719B1 (en) * 1999-07-01 2003-07-01 Cyberonics, Inc. Treatment of obesity by bilateral vagus nerve stimulation
US6409175B1 (en) 1999-07-13 2002-06-25 Grant Prideco, Inc. Expandable joint connector
EP1072282A1 (en) 1999-07-19 2001-01-31 EndoArt S.A. Flow control device
AUPQ202699A0 (en) * 1999-08-04 1999-08-26 University Of Melbourne, The Prosthetic device for incontinence
FR2797181B1 (en) 1999-08-05 2002-05-03 Richard Cancel REMOTE GASTRIC BAND DEVICE FOR FORMING A RESTRICTED STOMA OPENING IN THE ESTOMAC
US6234956B1 (en) 1999-08-11 2001-05-22 Hongping He Magnetic actuation urethral valve
US6454699B1 (en) 2000-02-11 2002-09-24 Obtech Medical Ag Food intake restriction with controlled wireless energy supply
US6453907B1 (en) 1999-08-12 2002-09-24 Obtech Medical Ag Food intake restriction with energy transfer device
US6454698B1 (en) 1999-08-12 2002-09-24 Obtech Medical Ag Anal incontinence treatment with energy transfer device
DE60037435T2 (en) 1999-08-12 2008-12-04 Potencia Medical Ag Medical implant with wireless energy transmission
NZ516962A (en) * 1999-08-12 2003-09-26 Potencia Medical Ag Stoma opening forming apparatus
US6482145B1 (en) 2000-02-14 2002-11-19 Obtech Medical Ag Hydraulic anal incontinence treatment
US6464628B1 (en) 1999-08-12 2002-10-15 Obtech Medical Ag Mechanical anal incontinence
US6471635B1 (en) 2000-02-10 2002-10-29 Obtech Medical Ag Anal incontinence disease treatment with controlled wireless energy supply
US6454701B1 (en) 1999-08-12 2002-09-24 Obtech Medical Ag Heartburn and reflux disease treatment apparatus with energy transfer device
US6461292B1 (en) 1999-08-12 2002-10-08 Obtech Medical Ag Anal incontinence treatment with wireless energy supply
US6673079B1 (en) 1999-08-16 2004-01-06 Washington University Device for lengthening and reshaping bone by distraction osteogenesis
FR2799118B1 (en) 1999-10-01 2002-07-12 Medical Innovation Dev ADJUSTABLE GASTRIC IMPLANT
WO2001024697A1 (en) 1999-10-06 2001-04-12 Orthodyne, Inc. Device and method for measuring skeletal distraction
US6926719B2 (en) 1999-10-21 2005-08-09 Gary W. Sohngen Modular intramedullary nail
WO2001030245A1 (en) 1999-10-26 2001-05-03 H Randall Craig Helical suture instrument
US6573706B2 (en) 1999-11-18 2003-06-03 Intellijoint Systems Ltd. Method and apparatus for distance based detection of wear and the like in joints
US20030208212A1 (en) 1999-12-07 2003-11-06 Valerio Cigaina Removable gastric band
IT1315260B1 (en) 1999-12-07 2003-02-03 Valerio Cigaina REMOVABLE GASTRIC BANDAGE
FR2802407B1 (en) 1999-12-21 2002-12-13 Rc Medical DESERRABLE GASTROPLASTY RING
FR2802406B1 (en) 1999-12-21 2002-12-13 Rc Medical PNEUMATIC CLOSING GASTROPLASTY RING
US6702732B1 (en) 1999-12-22 2004-03-09 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
US6386083B1 (en) * 1999-12-23 2002-05-14 Ber-Fong Hwang Vertically movable foam sponge cutting apparatus
USD460184S1 (en) 2000-01-28 2002-07-09 Stephen A. Schendel Bone distraction device
US7296577B2 (en) 2000-01-31 2007-11-20 Edwards Lifescience Ag Transluminal mitral annuloplasty with active anchoring
US6527702B2 (en) 2000-02-01 2003-03-04 Abbeymoor Medical, Inc. Urinary flow control device and method
US6508820B2 (en) 2000-02-03 2003-01-21 Joel Patrick Bales Intramedullary interlock screw
US6454700B1 (en) 2000-02-09 2002-09-24 Obtech Medical Ag Heartburn and reflux disease treatment apparatus with wireless energy supply
DE60136183D1 (en) 2000-02-10 2008-11-27 Obtech Medical Ag CONTROLLED DEVICE FOR THE TREATMENT OF SODBRENCES AND ACIDES
US6470892B1 (en) 2000-02-10 2002-10-29 Obtech Medical Ag Mechanical heartburn and reflux treatment
ES2241780T3 (en) 2000-02-10 2005-11-01 Potencia Medical Ag MECHANICAL DEVICE FOR THE TREATMENT OF IMPOTENCE.
CA2398326C (en) 2000-02-10 2008-12-16 Surgical Development Ag Anal incontinence treatment apparatus with wireless energy supply
EP1253881B1 (en) 2000-02-10 2005-09-14 Potencia Medical AG Anal incontinence treatment with controlled wireless energy supply
US6463935B1 (en) 2000-02-10 2002-10-15 Obtech Medical Ag Controlled heartburn and reflux disease treatment
EP1284691B1 (en) * 2000-02-11 2006-12-20 Potencia Medical AG Urinary incontinence treatment apparatus
US6450946B1 (en) 2000-02-11 2002-09-17 Obtech Medical Ag Food intake restriction with wireless energy transfer
US6475136B1 (en) 2000-02-14 2002-11-05 Obtech Medical Ag Hydraulic heartburn and reflux treatment
AU2001232583A1 (en) 2000-02-14 2001-07-24 Potencia Medical Ag Hydraulic urinary incontinence treatment apparatus
US7601171B2 (en) 2003-10-23 2009-10-13 Trans1 Inc. Spinal motion preservation assemblies
US7938836B2 (en) 2003-10-23 2011-05-10 Trans1, Inc. Driver assembly for simultaneous axial delivery of spinal implants
US20070260270A1 (en) 2000-02-16 2007-11-08 Trans1 Inc. Cutter for preparing intervertebral disc space
US7776068B2 (en) 2003-10-23 2010-08-17 Trans1 Inc. Spinal motion preservation assemblies
FR2805451B1 (en) 2000-02-29 2002-04-19 Arnaud Andre Soubeiran IMPROVED DEVICE FOR MOVING TWO BODIES IN RELATION TO ONE ANOTHER, PARTICULARLY FOR REALIZING IMPLANTABLE SYSTEMS IN THE HUMAN BODY
US20030220644A1 (en) 2002-05-23 2003-11-27 Thelen Sarah L. Method and apparatus for reducing femoral fractures
JP2003526448A (en) 2000-03-10 2003-09-09 パラコー サージカル インコーポレイテッド Inflatable cardiac harness for treating congestive heart failure
US6423061B1 (en) 2000-03-14 2002-07-23 Amei Technologies Inc. High tibial osteotomy method and apparatus
US6309391B1 (en) 2000-03-15 2001-10-30 Sdgi Holding, Inc. Multidirectional pivoting bone screw and fixation system
GB0009107D0 (en) 2000-04-13 2000-05-31 Univ London Surgical distraction device
US6510345B1 (en) 2000-04-24 2003-01-21 Medtronic, Inc. System and method of bridging a transreceiver coil of an implantable medical device during non-communication periods
US7241300B2 (en) 2000-04-29 2007-07-10 Medtronic, Inc, Components, systems and methods for forming anastomoses using magnetism or other coupling means
US6802847B1 (en) 2000-04-29 2004-10-12 Ventrica, Inc. Devices and methods for forming magnetic anastomoses and ports in vessels
US7232449B2 (en) 2000-04-29 2007-06-19 Medtronic, Inc. Components, systems and methods for forming anastomoses using magnetism or other coupling means
US20020072758A1 (en) 2000-12-13 2002-06-13 Reo Michael L. Processes for producing anastomotic components having magnetic properties
US20050080439A1 (en) 2000-04-29 2005-04-14 Carson Dean F. Devices and methods for forming magnetic anastomoses and ports in vessels
US8518062B2 (en) 2000-04-29 2013-08-27 Medtronic, Inc. Devices and methods for forming magnetic anastomoses between vessels
US6656135B2 (en) 2000-05-01 2003-12-02 Southwest Research Institute Passive and wireless displacement measuring device
GB2363498B (en) * 2000-06-16 2005-06-01 Marconi Caswell Ltd Transponder device for generating a data bearing output
HU223454B1 (en) 2000-07-21 2004-07-28 László Bodó Strain-setting device for tendonrekonstruction or replacement and introductionspipe for implant a tension-adjusting device
US7114501B2 (en) 2000-08-14 2006-10-03 Spine Wave, Inc. Transverse cavity device and method
US6554831B1 (en) 2000-09-01 2003-04-29 Hopital Sainte-Justine Mobile dynamic system for treating spinal disorder
US6592515B2 (en) 2000-09-07 2003-07-15 Ams Research Corporation Implantable article and method
FR2813786B1 (en) * 2000-09-11 2003-03-14 Medical Innovation Dev METHOD AND DEVICE FOR CONTROLLING THE INFLATION OF AN INFLATABLE PROSTHETIC BODY AND PROSTHESIS USING THE SAME
US6432040B1 (en) * 2000-09-14 2002-08-13 Nizam N. Meah Implantable esophageal sphincter apparatus for gastroesophageal reflux disease and method
DE10142544B4 (en) 2000-09-15 2010-05-27 Heidelberger Druckmaschinen Ag Gear transmission stage with tensioning moment
US7527646B2 (en) 2000-09-20 2009-05-05 Ample Medical, Inc. Devices, systems, and methods for retaining a native heart valve leaflet
US20090287179A1 (en) 2003-10-01 2009-11-19 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US20050222489A1 (en) 2003-10-01 2005-10-06 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant
US7381220B2 (en) 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US8956407B2 (en) 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US8784482B2 (en) 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
US20080091264A1 (en) 2002-11-26 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
US6527701B1 (en) * 2000-09-29 2003-03-04 Precision Medical Devices, Inc. Body fluid flow control device
US7011621B2 (en) 2000-09-29 2006-03-14 Precision Medical Devices, Inc. Body fluid flow control method and device
US6537196B1 (en) 2000-10-24 2003-03-25 Stereotaxis, Inc. Magnet assembly with variable field directions and methods of magnetically navigating medical objects
DE10054236A1 (en) 2000-11-02 2002-07-25 Okin Ges Fuer Antriebstechnik telescopic arm
DE10055519A1 (en) 2000-11-09 2002-06-06 Wittenstein Gmbh & Co Kg distraction
US6582313B2 (en) 2000-12-22 2003-06-24 Delphi Technologies, Inc. Constant velocity stroking joint having recirculating spline balls
US6609025B2 (en) 2001-01-02 2003-08-19 Cyberonics, Inc. Treatment of obesity by bilateral sub-diaphragmatic nerve stimulation
JP3910020B2 (en) * 2001-03-08 2007-04-25 敏行 ▲高▼木 Artificial sphincter
GB0106588D0 (en) 2001-03-16 2001-05-09 Finsbury Dev Ltd Tissue distracter
US6802844B2 (en) 2001-03-26 2004-10-12 Nuvasive, Inc Spinal alignment apparatus and methods
SE523852C2 (en) 2001-04-10 2004-05-25 Azad Al-Najjar Heart prosthesis
US7787958B2 (en) 2001-04-13 2010-08-31 Greatbatch Ltd. RFID detection and identification system for implantable medical lead systems
US6565573B1 (en) 2001-04-16 2003-05-20 Smith & Nephew, Inc. Orthopedic screw and method of use
FR2823663B1 (en) 2001-04-18 2004-01-02 Cousin Biotech DEVICE FOR TREATING MORBID OBESITY
AU2002307477A1 (en) 2001-04-24 2002-11-05 Young D. Kim Magnetic pellets and system for assisting ventricular contraction
AU2002304270B2 (en) 2001-05-23 2006-11-02 Orthogon Technologies 2003 Ltd. Magnetically-actuable intramedullary device
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
EP1260188B1 (en) 2001-05-25 2014-09-17 Zimmer GmbH Femoral bone nail for implantation in the knee
US6558400B2 (en) 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
US7083629B2 (en) 2001-05-30 2006-08-01 Satiety, Inc. Overtube apparatus for insertion into a body
FR2825264B1 (en) 2001-06-01 2004-04-02 Surgical Diffusion GASTROPLASTY RING
US7041105B2 (en) 2001-06-06 2006-05-09 Sdgi Holdings, Inc. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US6511490B2 (en) * 2001-06-22 2003-01-28 Antoine Jean Henri Robert Gastric banding device and method
SE0102313D0 (en) 2001-06-28 2001-06-28 Obtech Medical Ag Intestine dysfunction treatment apparatus
CA2351978C (en) 2001-06-28 2006-03-14 Halliburton Energy Services, Inc. Drilling direction control device
FR2827756B1 (en) 2001-07-25 2005-01-14 Patrick Rat IMPROVED LAKES AND ASSOCIATED APPLICATORS USED IN ENDOSCOPIC SURGERY
US6627206B2 (en) 2001-07-25 2003-09-30 Greg A. Lloyd Method and apparatus for treating obesity and for delivering time-released medicaments
US6375682B1 (en) 2001-08-06 2002-04-23 Lewis W. Fleischmann Collapsible, rotatable and expandable spinal hydraulic prosthetic device
JP2003059558A (en) 2001-08-09 2003-02-28 Tokai Rika Co Ltd Connector for printed circuit board
WO2003020184A1 (en) 2001-09-05 2003-03-13 Potencia Medical Ag Stoma opening forming apparatus with connection device
WO2003032848A2 (en) 2001-10-19 2003-04-24 Baylor College Of Medicine Bone compression devices and systems and methods of contouring and using same
US20040172040A1 (en) 2001-10-19 2004-09-02 Heggeness Michael H. Bone compression devices and systems and methods of contouring and using same
US7194297B2 (en) 2001-11-13 2007-03-20 Boston Scientific Scimed, Inc. Impedance-matching apparatus and construction for intravascular device
WO2003041611A2 (en) 2001-11-14 2003-05-22 White Michael R Apparatus and methods for making intraoperative orthopedic measurements
DE10156316A1 (en) 2001-11-19 2003-06-05 Wittenstein Ag distraction
DE10158545B4 (en) 2001-11-29 2004-05-19 Gkn Driveline Deutschland Gmbh Longitudinal displacement unit with hollow profile pin
US7601156B2 (en) 2001-12-05 2009-10-13 Randolph C. Robinson Limb lengthener
US20030114731A1 (en) * 2001-12-14 2003-06-19 Cadeddu Jeffrey A. Magnetic positioning system for trocarless laparoscopic instruments
US6852113B2 (en) 2001-12-14 2005-02-08 Orthopaedic Designs, Llc Internal osteotomy fixation device
FR2834631B1 (en) * 2002-01-15 2004-10-22 Cie Euro Etude Rech Paroscopie GASTROPLASTY RING IN VARIABLE HARDNESS ELASTOMERIC MATERIAL
US20040019353A1 (en) 2002-02-01 2004-01-29 Freid James M. Spinal plate system for stabilizing a portion of a spine
US9101422B2 (en) 2002-02-01 2015-08-11 Zimmer Spine, Inc. Spinal plate system for stabilizing a portion of a spine
US7105029B2 (en) 2002-02-04 2006-09-12 Zimmer Spine, Inc. Skeletal fixation device with linear connection
US7678136B2 (en) 2002-02-04 2010-03-16 Spinal, Llc Spinal fixation assembly
FR2835734B1 (en) 2002-02-11 2004-10-29 Scient X CONNECTION SYSTEM BETWEEN A SPINAL ROD AND A CROSS BAR
US7163538B2 (en) 2002-02-13 2007-01-16 Cross Medical Products, Inc. Posterior rod system
US20040006342A1 (en) 2002-02-13 2004-01-08 Moti Altarac Posterior polyaxial plate system for the spine
UA75048C2 (en) 2002-02-18 2006-03-15 Товариство З Обмеженою Відповідальністю "Кримський Центр Травматології І Ортопедії Імені О.І. Блискунова-"Абас" Blyskunov's device for extending long bones
US6607363B1 (en) 2002-02-20 2003-08-19 Terumo Cardiovascular Systems Corporation Magnetic detent for rotatable knob
US7311690B2 (en) 2002-02-25 2007-12-25 Novashunt Ag Implantable fluid management system for the removal of excess fluid
US7011658B2 (en) 2002-03-04 2006-03-14 Sdgi Holdings, Inc. Devices and methods for spinal compression and distraction
EP1343112A1 (en) 2002-03-08 2003-09-10 EndoArt S.A. Implantable device
US20100168751A1 (en) 2002-03-19 2010-07-01 Anderson D Greg Method, Implant & Instruments for Percutaneous Expansion of the Spinal Canal
US6774624B2 (en) 2002-03-27 2004-08-10 Ge Medical Systems Global Technology Company, Llc Magnetic tracking system
DE60334897D1 (en) 2002-03-30 2010-12-23 Infinity Orthopaedics Co Ltd Medical Intervertebral Device
US6761503B2 (en) 2002-04-24 2004-07-13 Torque-Traction Technologies, Inc. Splined member for use in a slip joint and method of manufacturing the same
US7445010B2 (en) * 2003-01-29 2008-11-04 Torax Medical, Inc. Use of magnetic implants to treat issue structures
US6749556B2 (en) 2002-05-10 2004-06-15 Scimed Life Systems, Inc. Electroactive polymer based artificial sphincters and artificial muscle patches
US20030220643A1 (en) 2002-05-24 2003-11-27 Ferree Bret A. Devices to prevent spinal extension
FR2840193B1 (en) 2002-05-31 2005-02-11 Textile Hi Tec GASTRIC BAND
US20050165440A1 (en) * 2002-06-13 2005-07-28 Richard Cancel System for treating obesity and implant for a system of this type
US7175589B2 (en) 2002-07-02 2007-02-13 The Foundry Inc. Methods and devices for luminal and sphincter augmentation
US7357037B2 (en) 2002-07-10 2008-04-15 Orthodata Technologies Llc Strain sensing system
AU2003253846A1 (en) 2002-07-10 2004-01-23 Orthodata Technologies Llc Strain sensing system
US7060075B2 (en) 2002-07-18 2006-06-13 Biosense, Inc. Distal targeting of locking screws in intramedullary nails
US20040133219A1 (en) * 2002-07-29 2004-07-08 Peter Forsell Multi-material constriction device for forming stoma opening
FR2843538B1 (en) 2002-08-13 2005-08-12 Frederic Fortin DEVICE FOR DISTRACTING AND DAMPING ADJUSTABLE TO THE GROWTH OF THE RACHIS
WO2004014245A1 (en) 2002-08-13 2004-02-19 Inamed Medical Products Corporation Remotely adjustable gastric banding device and method
US7338433B2 (en) 2002-08-13 2008-03-04 Allergan, Inc. Remotely adjustable gastric banding method
EP1389453B1 (en) * 2002-08-16 2007-03-07 AMI Agency for Medical Innovations GmbH Band to produce an artificial reduction in the gastrointestinal tract
US6667725B1 (en) 2002-08-20 2003-12-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Radio frequency telemetry system for sensors and actuators
DE60331457D1 (en) * 2002-08-28 2010-04-08 Allergan Inc TEMPTING MAGNETIC BANDING DEVICE
US8758372B2 (en) 2002-08-29 2014-06-24 St. Jude Medical, Cardiology Division, Inc. Implantable devices for controlling the size and shape of an anatomical structure or lumen
ES2349952T3 (en) 2002-08-29 2011-01-13 St. Jude Medical, Cardiology Division, Inc. IMPLANTABLE DEVICES FOR CONTROLLING THE INTERNAL CIRCUMFERENCE OF AN ANATOMICAL ORIFICE OR LUMEN.
FR2843875B1 (en) 2002-08-30 2004-10-08 Arnaud Andre Soubeiran IMPLANTABLE DEVICE FOR TRANSFORMING ON DEMAND ALTERNATE COUPLES APPLIED BY MUSCLE FORCE BETWEEN TWO WORKPIECES IN A MOVEMENT OF TWO BODIES RELATIVELY TO ONE ANOTHER
ATE369820T1 (en) 2002-09-04 2007-09-15 Endoart Sa SURGICAL RING WITH REMOTE CONTROL DEVICE FOR REVERSIBLE DIAMETER CHANGES
US7901419B2 (en) * 2002-09-04 2011-03-08 Allergan, Inc. Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use
ATE378029T1 (en) * 2002-09-04 2007-11-15 Endoart Sa DEVICE FOR CLOSING SURGICAL RINGS
US7972346B2 (en) * 2002-09-04 2011-07-05 Allergan Medical S.A. Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use
AU2003270368A1 (en) 2002-09-06 2004-03-29 Apneon, Inc. Magnetic force devices, systems, and methods for resisting tissue collapse within the pharyngal conduit
US20070256693A1 (en) 2002-09-06 2007-11-08 Apneon, Inc. Devices, systems, and methods using magnetic force systems in or on soft palate tissue
US7216648B2 (en) 2002-09-06 2007-05-15 Apneon, Inc. Systems and methods for moving and/or restraining tissue in the upper respiratory system
US7845356B2 (en) 2002-09-06 2010-12-07 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20060289014A1 (en) 2002-09-06 2006-12-28 Apneon, Inc. Devices, systems, and methods using magnetic force systems in or on tissue in an airway
US20120312307A1 (en) 2002-09-06 2012-12-13 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20080066764A1 (en) 2002-09-06 2008-03-20 Apneon, Inc. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US7188627B2 (en) 2002-09-06 2007-03-13 Apneon, Inc. Magnetic force devices, systems, and methods for resisting tissue collapse within the pharyngeal conduit
US7441559B2 (en) 2002-09-06 2008-10-28 Koninklijke Philips Electronics N.V. Devices, systems, and methods to fixate tissue within the regions of body, such as the pharyngeal conduit
US8522790B2 (en) 2002-09-06 2013-09-03 Koninklijke Philips N.V. Stabilized magnetic force devices, systems and methods
US8074654B2 (en) 2002-09-06 2011-12-13 Koninklijke Philips Electronics N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US7360542B2 (en) 2002-09-06 2008-04-22 Apneon, Inc. Devices, systems, and methods to fixate tissue within the regions of body, such as the pharyngeal conduit
US8707959B2 (en) 2002-09-06 2014-04-29 Koninklijke Philips N.V. Implantable devices, systems, and methods for maintaining desired orientations in targeted tissue regions
US20060155347A1 (en) * 2002-09-20 2006-07-13 Potencia Medical Ag Harmless wireless energy transmission to implant
US20040055610A1 (en) 2002-09-25 2004-03-25 Peter Forsell Detection of implanted wireless energy receiving device
US20040064030A1 (en) * 2002-10-01 2004-04-01 Peter Forsell Detection of implanted injection port
EP1545343A2 (en) 2002-10-03 2005-06-29 Virginia Tech Intellectual Properties, Inc. Magnetic targeting device
US20100249782A1 (en) 2002-10-03 2010-09-30 Durham Alfred A Intramedullary nail targeting device
US7837669B2 (en) 2002-11-01 2010-11-23 Valentx, Inc. Devices and methods for endolumenal gastrointestinal bypass
US7794447B2 (en) * 2002-11-01 2010-09-14 Valentx, Inc. Gastrointestinal sleeve device and methods for treatment of morbid obesity
US9060844B2 (en) 2002-11-01 2015-06-23 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US6656194B1 (en) 2002-11-05 2003-12-02 Satiety, Inc. Magnetic anchoring devices
EP1560525B1 (en) * 2002-11-07 2009-01-14 NMT Medical, Inc. Patent foramen ovale (pfo) closure with magnetic force
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
EP1575654B1 (en) 2002-12-11 2009-03-18 Christoph Miethke GmbH & Co. KG Adjustable hydrocephalus valve
US6918910B2 (en) 2002-12-16 2005-07-19 John T. Smith Implantable distraction device
KR100498951B1 (en) 2003-01-02 2005-07-04 삼성전자주식회사 Method of Motion Estimation for Video Coding in MPEG-4/H.263 Standards
US7481224B2 (en) 2003-01-22 2009-01-27 Koninklijke Philips Electronics N.V. Magnetic force device, systems, and methods for resisting tissue collapse within the pharyngeal conduit
US6752754B1 (en) 2003-02-04 2004-06-22 Imagine Enterprise, Inc. Artificial rectum and related method
US7364589B2 (en) 2003-02-12 2008-04-29 Warsaw Orthopedic, Inc. Mobile bearing articulating disc
US20070043376A1 (en) 2003-02-21 2007-02-22 Osteobiologics, Inc. Bone and cartilage implant delivery device
US7618435B2 (en) 2003-03-04 2009-11-17 Nmt Medical, Inc. Magnetic attachment systems
US20040193266A1 (en) 2003-03-31 2004-09-30 Meyer Rudolf Xaver Expansible prosthesis and magnetic apparatus
IL155222A0 (en) 2003-04-03 2003-11-23 Hadasit Med Res Service An implant for treating idiopathic scoliosis and a method for using the same
US6961553B2 (en) 2003-04-11 2005-11-01 Motorola, Inc. Bidirectional distributed amplifier
DE10317776A1 (en) 2003-04-16 2004-11-04 Wittenstein Ag Device for lengthening bones or parts of bones
US7615068B2 (en) 2003-05-02 2009-11-10 Applied Spine Technologies, Inc. Mounting mechanisms for pedicle screws and related assemblies
US20050182400A1 (en) 2003-05-02 2005-08-18 Jeffrey White Spine stabilization systems, devices and methods
US8652175B2 (en) 2003-05-02 2014-02-18 Rachiotek, Llc Surgical implant devices and systems including a sheath member
US20050182401A1 (en) 2003-05-02 2005-08-18 Timm Jens P. Systems and methods for spine stabilization including a dynamic junction
US20050177164A1 (en) 2003-05-02 2005-08-11 Carmen Walters Pedicle screw devices, systems and methods having a preloaded set screw
KR20080057332A (en) 2003-05-02 2008-06-24 예일 유니버시티 Dynamic spine stabilizer
US7713287B2 (en) 2003-05-02 2010-05-11 Applied Spine Technologies, Inc. Dynamic spine stabilizer
US20050171543A1 (en) 2003-05-02 2005-08-04 Timm Jens P. Spine stabilization systems and associated devices, assemblies and methods
JP4391762B2 (en) 2003-05-08 2009-12-24 オリンパス株式会社 Surgical instrument
AT413475B (en) 2003-06-04 2006-03-15 Ami Gmbh DEVICE FOR GENERATING ARTIFICIAL FENCING IN THE GASTRO-INTESTINAL TRACT
US7862546B2 (en) 2003-06-16 2011-01-04 Ethicon Endo-Surgery, Inc. Subcutaneous self attaching injection port with integral moveable retention members
US7553298B2 (en) 2003-12-19 2009-06-30 Ethicon Endo-Surgery, Inc. Implantable medical device with cover and method
US20050131352A1 (en) * 2003-06-16 2005-06-16 Conlon Sean P. Subcutaneous injection port for applied fasteners
US8715243B2 (en) 2003-06-16 2014-05-06 Ethicon Endo-Surgery, Inc. Injection port applier with downward force actuation
US7561916B2 (en) 2005-06-24 2009-07-14 Ethicon Endo-Surgery, Inc. Implantable medical device with indicator
US7374557B2 (en) 2003-06-16 2008-05-20 Ethicon Endo-Surgery, Inc. Subcutaneous self attaching injection port with integral fasteners
US20060184240A1 (en) 2003-06-25 2006-08-17 Georgia Tech Research Corporation Annuloplasty chain
US7494459B2 (en) 2003-06-26 2009-02-24 Biophan Technologies, Inc. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
US7500944B2 (en) * 2003-06-27 2009-03-10 Ethicon Endo-Surgery, Inc. Implantable band with attachment mechanism
US7951067B2 (en) 2003-06-27 2011-05-31 Ethicon Endo-Surgery, Inc. Implantable band having improved attachment mechanism
US20050002984A1 (en) * 2003-06-27 2005-01-06 Byrum Randal T. Implantable band with attachment mechanism having dissimilar material properties
US7218232B2 (en) 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
CA2533020A1 (en) 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
US9498366B2 (en) * 2003-07-28 2016-11-22 Baronova, Inc. Devices and methods for pyloric anchoring
US8048169B2 (en) 2003-07-28 2011-11-01 Baronova, Inc. Pyloric valve obstructing devices and methods
US9700450B2 (en) 2003-07-28 2017-07-11 Baronova, Inc. Devices and methods for gastrointestinal stimulation
US20090259236A2 (en) 2003-07-28 2009-10-15 Baronova, Inc. Gastric retaining devices and methods
US7794476B2 (en) 2003-08-08 2010-09-14 Warsaw Orthopedic, Inc. Implants formed of shape memory polymeric material for spinal fixation
US8037871B2 (en) 2003-08-12 2011-10-18 Cameron International Corporation Seal assembly for a pressurized fuel feed system for an internal combustion engine
US7371244B2 (en) 2003-08-25 2008-05-13 Ethicon, Inc. Deployment apparatus for suture anchoring device
US7666184B2 (en) 2003-08-28 2010-02-23 Wittenstein Ag Planetary roll system, in particular for a device for extending bones
DE10340025A1 (en) 2003-08-28 2005-03-24 Wittenstein Ag Surgical device for bone extension, comprising planetary gear acting on outer sleeve serving as ring gear
WO2005023090A2 (en) 2003-09-04 2005-03-17 Texas Scottish Rite Hospital For Children Method for the correction of spinal deformities using rod-plates anterior system
EP1514518A1 (en) 2003-09-11 2005-03-16 SDGI Holdings, Inc. Impulsive percussion instruments for endplate preparation
US7762998B2 (en) 2003-09-15 2010-07-27 Allergan, Inc. Implantable device fastening system and methods of use
US8026729B2 (en) 2003-09-16 2011-09-27 Cardiomems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
US20050070937A1 (en) * 2003-09-30 2005-03-31 Jambor Kristin L. Segmented gastric band
US7255714B2 (en) 2003-09-30 2007-08-14 Michel H. Malek Vertically adjustable intervertebral disc prosthesis
US7485149B1 (en) 2003-10-06 2009-02-03 Biomet Manufacturing Corporation Method and apparatus for use of a non-invasive expandable implant
US20050090823A1 (en) 2003-10-28 2005-04-28 Bartimus Christopher S. Posterior fixation system
US20050261779A1 (en) 2003-11-17 2005-11-24 Meyer Rudolf X Expansible rod-type prosthesis and external magnetic apparatus
WO2005051292A2 (en) 2003-11-20 2005-06-09 Apneon, Inc. Devices systems, and methods to fixate tissue within the regions of the body, such as the pharyngeal conduit
US7775099B2 (en) 2003-11-20 2010-08-17 Schlumberger Technology Corporation Downhole tool sensor system and method
US7862586B2 (en) 2003-11-25 2011-01-04 Life Spine, Inc. Spinal stabilization systems
US7429259B2 (en) 2003-12-02 2008-09-30 Cadeddu Jeffrey A Surgical anchor and system
AU2004235622A1 (en) 2003-12-17 2005-07-07 Ethicon Endo-Surgery, Inc. Mechanically adjustable gastric band
US8162897B2 (en) * 2003-12-19 2012-04-24 Ethicon Endo-Surgery, Inc. Audible and tactile feedback
US7833228B1 (en) 2004-01-05 2010-11-16 Biomet Manufacturing Corp. Method and instrumentation for performing minimally invasive hip arthroplasty
JP4440939B2 (en) 2004-01-08 2010-03-24 スパイン・ウェイブ・インコーポレーテッド Apparatus and method for injecting flowable material into distracted tissue site
FR2865129B1 (en) 2004-01-16 2006-05-19 Medical Innovation Dev GASTRIC BELT
US20050159755A1 (en) 2004-01-21 2005-07-21 Odrich Ronald B. Bone growth via periosteal distraction
US20050159754A1 (en) 2004-01-21 2005-07-21 Odrich Ronald B. Periosteal distraction bone growth
AU2005208721B2 (en) 2004-01-23 2010-09-23 Boston Scientific Scimed, Inc. Releasably-securable one-piece adjustable gastric band
EP1670362B2 (en) 2004-01-23 2014-10-22 Apollo Endosurgery, Inc. Implantable device fastening system and methods of use
US8758355B2 (en) 2004-02-06 2014-06-24 Synvasive Technology, Inc. Dynamic knee balancer with pressure sensing
US7442196B2 (en) 2004-02-06 2008-10-28 Synvasive Technology, Inc. Dynamic knee balancer
US8002809B2 (en) 2004-02-10 2011-08-23 Atlas Spine, Inc. Dynamic cervical plate
US8328854B2 (en) 2004-02-10 2012-12-11 Atlas Spine, Inc. Cervical plate ratchet pedicle screws
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
US7458981B2 (en) 2004-03-09 2008-12-02 The Board Of Trustees Of The Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
US20050272976A1 (en) * 2004-03-15 2005-12-08 Olympus Corporation Endoscope insertion aiding device
US20050234448A1 (en) 2004-03-19 2005-10-20 Mccarthy James Implantable bone-lengthening device
DK1613388T3 (en) 2004-03-27 2008-03-25 Christoph Miethke Gmbh & Co Kg Adjustable hydrocephalus valve
US7909852B2 (en) 2004-03-31 2011-03-22 Depuy Spine Sarl Adjustable-angle spinal fixation element
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US7489495B2 (en) 2004-04-15 2009-02-10 Greatbatch-Sierra, Inc. Apparatus and process for reducing the susceptibility of active implantable medical devices to medical procedures such as magnetic resonance imaging
US7531002B2 (en) 2004-04-16 2009-05-12 Depuy Spine, Inc. Intervertebral disc with monitoring and adjusting capabilities
US7678139B2 (en) 2004-04-20 2010-03-16 Allez Spine, Llc Pedicle screw assembly
FR2869218B1 (en) 2004-04-21 2006-06-09 Europlak Sa GASTRIC CERCLING DEVICE OR MOTORIZED "GASTRIC RING" HAVING AT LEAST ONE RECEIVED ANTENNA FOR DELIVERY, REMOTE CONTROL AND DATA SENDING BY INDUCTION
US7763080B2 (en) 2004-04-30 2010-07-27 Depuy Products, Inc. Implant system with migration measurement capacity
US7333013B2 (en) 2004-05-07 2008-02-19 Berger J Lee Medical implant device with RFID tag and method of identification of device
US20080091059A1 (en) 2004-05-14 2008-04-17 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant having an adjustable bridge stop
US7314372B2 (en) 2004-05-19 2008-01-01 Orthovisage, Inc. System and method to bioengineer facial form in adults
US7909839B2 (en) 2004-05-26 2011-03-22 Bariatec Corporation Gastric bypass band and surgical method
US7351240B2 (en) 2004-05-28 2008-04-01 Ethicon Endo—Srugery, Inc. Thermodynamically driven reversible infuser pump for use as a remotely controlled gastric band
US7481763B2 (en) 2004-05-28 2009-01-27 Ethicon Endo-Surgery, Inc. Metal bellows position feedback for hydraulic control of an adjustable gastric band
US7390294B2 (en) 2004-05-28 2008-06-24 Ethicon Endo-Surgery, Inc. Piezo electrically driven bellows infuser for hydraulically controlling an adjustable gastric band
US7351198B2 (en) 2004-06-02 2008-04-01 Ethicon Endo-Surgery, Inc. Implantable adjustable sphincter system
CA2569605C (en) 2004-06-07 2013-09-10 Synthes (U.S.A.) Orthopaedic implant with sensors
US7243719B2 (en) 2004-06-07 2007-07-17 Pathfinder Energy Services, Inc. Control method for downhole steering tool
US7191007B2 (en) * 2004-06-24 2007-03-13 Ethicon Endo-Surgery, Inc Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics
US20070135913A1 (en) 2004-06-29 2007-06-14 Micardia Corporation Adjustable annuloplasty ring activation system
US7776091B2 (en) 2004-06-30 2010-08-17 Depuy Spine, Inc. Adjustable posterior spinal column positioner
US7481841B2 (en) 2004-06-30 2009-01-27 Depuy Products, Inc. Adjustable orthopaedic prosthesis and associated method
US7955357B2 (en) * 2004-07-02 2011-06-07 Ellipse Technologies, Inc. Expandable rod system to treat scoliosis and method of using the same
JP4977020B2 (en) 2004-07-08 2012-07-18 シェンバーガー,デボラ Strain monitoring system and apparatus
US7285087B2 (en) 2004-07-15 2007-10-23 Micardia Corporation Shape memory devices and methods for reshaping heart anatomy
WO2006019521A2 (en) 2004-07-15 2006-02-23 Micardia Corporation Shape memory devices and methods for reshaping heart anatomy
US7402134B2 (en) 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
US7875033B2 (en) 2004-07-19 2011-01-25 Synthes Usa, Llc Bone distraction apparatus
GB0417005D0 (en) 2004-07-29 2004-09-01 Finsbury Dev Ltd Auto-extensible device
US7611526B2 (en) 2004-08-03 2009-11-03 K Spine, Inc. Spinous process reinforcement device and method
US8114158B2 (en) 2004-08-03 2012-02-14 Kspine, Inc. Facet device and method
US20060036323A1 (en) 2004-08-03 2006-02-16 Carl Alan L Facet device and method
US7658753B2 (en) 2004-08-03 2010-02-09 K Spine, Inc. Device and method for correcting a spinal deformity
US20060036259A1 (en) 2004-08-03 2006-02-16 Carl Allen L Spine treatment devices and methods
US8986348B2 (en) 2004-08-09 2015-03-24 Si-Bone Inc. Systems and methods for the fusion of the sacral-iliac joint
US8414648B2 (en) 2004-08-09 2013-04-09 Si-Bone Inc. Apparatus, systems, and methods for achieving trans-iliac lumbar fusion
US8425570B2 (en) 2004-08-09 2013-04-23 Si-Bone Inc. Apparatus, systems, and methods for achieving anterior lumbar interbody fusion
US8470004B2 (en) 2004-08-09 2013-06-25 Si-Bone Inc. Apparatus, systems, and methods for stabilizing a spondylolisthesis
US8444693B2 (en) 2004-08-09 2013-05-21 Si-Bone Inc. Apparatus, systems, and methods for achieving lumbar facet fusion
US20060036251A1 (en) 2004-08-09 2006-02-16 Reiley Mark A Systems and methods for the fixation or fusion of bone
US9717537B2 (en) 2004-08-30 2017-08-01 Globus Medical, Inc. Device and method for treatment of spinal deformity
US7763053B2 (en) * 2004-08-30 2010-07-27 Gordon Jeffrey D Implant for correction of spinal deformity
US7255682B1 (en) 2004-09-09 2007-08-14 Bartol Jr Robert J Spot locator device
US7887566B2 (en) * 2004-09-16 2011-02-15 Hynes Richard A Intervertebral support device with bias adjustment and related methods
US7302858B2 (en) 2004-09-24 2007-12-04 Kevin Walsh MEMS capacitive cantilever strain sensor, devices, and formation methods
US7776061B2 (en) * 2004-09-28 2010-08-17 Garner Dean L Fluid adjustable band
US8142454B2 (en) 2004-09-29 2012-03-27 The Regents Of The University Of California, San Francisco Apparatus and method for magnetic alteration of anatomical features
US20060271107A1 (en) 2004-09-29 2006-11-30 Harrison Michael R Apparatus and methods for magnetic alteration of anatomical features
US8043290B2 (en) 2004-09-29 2011-10-25 The Regents Of The University Of California, San Francisco Apparatus and methods for magnetic alteration of deformities
US20060079897A1 (en) 2004-09-29 2006-04-13 Harrison Michael R Apparatus and methods for magnetic alteration of anatomical features
US8915915B2 (en) 2004-09-29 2014-12-23 The Regents Of The University Of California Apparatus and methods for magnetic alteration of anatomical features
US8439915B2 (en) 2004-09-29 2013-05-14 The Regents Of The University Of California Apparatus and methods for magnetic alteration of anatomical features
US8623036B2 (en) 2004-09-29 2014-01-07 The Regents Of The University Of California Magnamosis
US7559951B2 (en) 2004-09-30 2009-07-14 Depuy Products, Inc. Adjustable, remote-controllable orthopaedic prosthesis and associated method
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US8226690B2 (en) 2005-07-22 2012-07-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilization of bone structures
US20070239159A1 (en) 2005-07-22 2007-10-11 Vertiflex, Inc. Systems and methods for stabilization of bone structures
US8267969B2 (en) 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
EP1804728A2 (en) 2004-10-28 2007-07-11 Axial Biotech, Inc. Apparatus and method for concave scoliosis expansion
US7105968B2 (en) 2004-12-03 2006-09-12 Edward William Nissen Magnetic transmission
US20060136062A1 (en) 2004-12-17 2006-06-22 Dinello Alexandre Height-and angle-adjustable motion disc implant
US20060142767A1 (en) 2004-12-27 2006-06-29 Green Daniel W Orthopedic device and method for correcting angular bone deformity
US7879068B2 (en) * 2005-01-14 2011-02-01 Ethicon Endo-Surgery, Inc. Feedback sensing for a mechanical restrictive device
US7601162B2 (en) * 2005-01-14 2009-10-13 Ethicon Endo-Surgery, Inc. Actuator for an implantable band
US20060173238A1 (en) * 2005-01-31 2006-08-03 Starkebaum Warren L Dynamically controlled gastric occlusion device
US8496662B2 (en) 2005-01-31 2013-07-30 Arthrex, Inc. Method and apparatus for forming a wedge-like opening in a bone for an open wedge osteotomy
US7927357B2 (en) 2005-02-02 2011-04-19 Depuy Spine, Inc. Adjustable length implant
US7942908B2 (en) 2005-02-02 2011-05-17 Depuy Spine, Inc. Adjustable length implant
JP2008537898A (en) 2005-02-11 2008-10-02 ミカーディア コーポレーション Dynamically adjustable gastric implant and method for treating obesity using the same
US8096995B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8092459B2 (en) 2005-02-17 2012-01-10 Kyphon Sarl Percutaneous spinal implants and methods
US8034080B2 (en) 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US20070276372A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US7998174B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US20060184248A1 (en) 2005-02-17 2006-08-17 Edidin Avram A Percutaneous spinal implants and methods
US7927354B2 (en) 2005-02-17 2011-04-19 Kyphon Sarl Percutaneous spinal implants and methods
US8038698B2 (en) 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
US7988709B2 (en) 2005-02-17 2011-08-02 Kyphon Sarl Percutaneous spinal implants and methods
US20070276373A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US20070276493A1 (en) 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8057513B2 (en) 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US20060195102A1 (en) 2005-02-17 2006-08-31 Malandain Hugues F Apparatus and method for treatment of spinal conditions
US7993342B2 (en) 2005-02-17 2011-08-09 Kyphon Sarl Percutaneous spinal implants and methods
US8029567B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US8100943B2 (en) 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US20070055237A1 (en) 2005-02-17 2007-03-08 Edidin Avram A Percutaneous spinal implants and methods
JP4977038B2 (en) 2005-02-17 2012-07-18 カイフォン・ソシエテ・ア・レスポンサビリテ・リミテ Percutaneous spinal implant and method
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US7998208B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
WO2006090380A2 (en) 2005-02-22 2006-08-31 Orthogon Technologies 2003 Ltd. Device and method for vertebral column distraction and oscillation
WO2008024937A2 (en) 2006-08-23 2008-02-28 Pioneer Surgical Technology, Inc. Minimally invasive surgical system
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7699770B2 (en) 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
EP1861004A2 (en) 2005-03-02 2007-12-05 Osteometrix, LLC Noninvasive methods, apparatus, kits, and systems for intraoperative position and length determination
JP2006250178A (en) 2005-03-08 2006-09-21 Nsk Ltd Bearing unit for supporting wheel and method for manufacturing the same
US7189005B2 (en) 2005-03-14 2007-03-13 Borgwarner Inc. Bearing system for a turbocharger
US8864823B2 (en) 2005-03-25 2014-10-21 StJude Medical, Cardiology Division, Inc. Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen
JP5149150B2 (en) 2005-03-25 2013-02-20 ミトラル・ソリューションズ・インコーポレイテッド Method and apparatus for controlling the inner circumference of an anatomical orifice or lumen
JP4647365B2 (en) 2005-03-31 2011-03-09 日本シャーウッド株式会社 Medical connection device
DE202005009809U1 (en) 2005-03-31 2005-08-25 Stryker Trauma Gmbh Patient data transmission system for use with implant, has downlink between internal transmission and receiving units, and uplink between external transmission and receiving units controlling measurement and internal transmission units
WO2006108114A2 (en) 2005-04-01 2006-10-12 The Regents Of The University Of Colorado A graft fixation device and method
US20060235424A1 (en) 2005-04-01 2006-10-19 Foster-Miller, Inc. Implantable bone distraction device and method
WO2006107901A1 (en) 2005-04-04 2006-10-12 Micardia Corporation Dynamic reinforcement of the lower esophageal sphincter
US7708762B2 (en) 2005-04-08 2010-05-04 Warsaw Orthopedic, Inc. Systems, devices and methods for stabilization of the spinal column
US7704279B2 (en) 2005-04-12 2010-04-27 Moskowitz Mosheh T Bi-directional fixating transvertebral body screws, zero-profile horizontal intervertebral miniplates, expansile intervertebral body fusion devices, and posterior motion-calibrating interarticulating joint stapling device for spinal fusion
US7846188B2 (en) 2005-04-12 2010-12-07 Moskowitz Nathan C Bi-directional fixating transvertebral body screws, zero-profile horizontal intervertebral miniplates, total intervertebral body fusion devices, and posterior motion-calibrating interarticulating joint stapling device for spinal fusion
US7972363B2 (en) 2005-04-12 2011-07-05 Moskowitz Ahmnon D Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs and posterior cervical and lumbar interarticulating joint stapling guns and devices for spinal fusion
US8257370B2 (en) 2005-04-12 2012-09-04 Moskowitz Ahmnon D Posterior cervical and lumbar interarticulating joint staples, stapling guns, and devices for spinal fusion
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US20060235299A1 (en) 2005-04-13 2006-10-19 Martinelli Michael A Apparatus and method for intravascular imaging
US8251888B2 (en) 2005-04-13 2012-08-28 Mitchell Steven Roslin Artificial gastric valve
US20060241746A1 (en) 2005-04-21 2006-10-26 Emanuel Shaoulian Magnetic implants and methods for reshaping tissue
US7799080B2 (en) 2005-04-22 2010-09-21 Doty Keith L Spinal disc prosthesis and methods of use
US7361192B2 (en) 2005-04-22 2008-04-22 Doty Keith L Spinal disc prosthesis and methods of use
US7811328B2 (en) 2005-04-29 2010-10-12 Warsaw Orthopedic, Inc. System, device and methods for replacing the intervertebral disc with a magnetic or electromagnetic prosthesis
US7727141B2 (en) 2005-05-04 2010-06-01 Ethicon Endo-Surgery, Inc. Magnetic resonance imaging (MRI) safe remotely adjustable artifical sphincter
US20060249914A1 (en) 2005-05-06 2006-11-09 Dulin Robert D Enhanced reliability sealing system
US20070264605A1 (en) 2005-05-19 2007-11-15 Theodore Belfor System and method to bioengineer facial form in adults
US7390007B2 (en) 2005-06-06 2008-06-24 Ibis Tek, Llc Towbar system
US7867235B2 (en) 2005-06-14 2011-01-11 Fell Barry M System and method for joint restoration by extracapsular means
US7918844B2 (en) 2005-06-24 2011-04-05 Ethicon Endo-Surgery, Inc. Applier for implantable medical device
US7651483B2 (en) * 2005-06-24 2010-01-26 Ethicon Endo-Surgery, Inc. Injection port
IL176810A (en) 2005-07-12 2011-02-28 Intramed Systems Ltd Intramedullar distraction device with user actuated distraction
US7416528B2 (en) * 2005-07-15 2008-08-26 Ethicon Endo-Surgery, Inc. Latching device for gastric band
US7615001B2 (en) 2005-07-15 2009-11-10 Ethicon Endo-Surgery, Inc. Precurved gastric band
US20070015955A1 (en) * 2005-07-15 2007-01-18 Mark Tsonton Accordion-like gastric band
US8182411B2 (en) * 2005-07-15 2012-05-22 Ethicon Endo-Surgery, Inc. Gastric band with mating end profiles
US7367937B2 (en) * 2005-07-15 2008-05-06 Ethicon Endo-Surgey, Inc. Gastric band
US7364542B2 (en) 2005-07-15 2008-04-29 Ethicon Endo-Surgery, Inc. Gastric band suture tab extender
US8298133B2 (en) 2005-07-15 2012-10-30 Ethicon Endo-Surgery, Inc. Gastric band composed of different hardness materials
US8523865B2 (en) 2005-07-22 2013-09-03 Exactech, Inc. Tissue splitter
CN101511305B (en) * 2005-07-26 2012-05-30 梅纳赫姆·P·韦斯 Extending intrabody capsule
US7353747B2 (en) * 2005-07-28 2008-04-08 Ethicon Endo-Surgery, Inc. Electroactive polymer-based pump
US7766815B2 (en) * 2005-07-28 2010-08-03 Ethicon Endo-Surgery, Inc. Electroactive polymer actuated gastric band
WO2007015239A2 (en) 2005-08-01 2007-02-08 Orthogon Technologies 2003 Ltd. An implantable magnetically activated actuator
US20070031131A1 (en) * 2005-08-04 2007-02-08 Mountain Engineering Ii, Inc. System for measuring the position of an electric motor
JP5258153B2 (en) 2005-08-17 2013-08-07 柴田科学株式会社 Organic synthesizer
AU2006282828B2 (en) 2005-08-23 2013-01-31 Smith & Nephew, Inc Telemetric orthopaedic implant
WO2007024990A2 (en) 2005-08-23 2007-03-01 Kim Richard C Expandable implant device with interchangeable spacer
US20070055368A1 (en) 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
DE102005045070A1 (en) 2005-09-21 2007-04-05 Siemens Ag Femur implant, comprises magnetically operated mechanism for moving holding elements
US9028550B2 (en) 2005-09-26 2015-05-12 Coalign Innovations, Inc. Selectively expanding spine cage with enhanced bone graft infusion
US8070813B2 (en) 2005-09-26 2011-12-06 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for vertebral body replacement
US7985256B2 (en) 2005-09-26 2011-07-26 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for enhanced spinal fusion
US20070123989A1 (en) 2005-10-21 2007-05-31 Synthes (U.S.A.) Method and instruments to treat spondylolisthesis by an anterior minimally invasive approach of the spine
FR2892617B1 (en) 2005-11-02 2008-09-26 Frederic Fortin DAMPING DISPLACEMENT DEVICE AND CORRECTION ADJUSTABLE TO THE GROWTH OF THE RACHIS
DE602006006394D1 (en) 2005-11-16 2009-06-04 Micardia Corp Magnetic attachment of a catheter to an implant
WO2007061890A2 (en) 2005-11-17 2007-05-31 Calypso Medical Technologies, Inc. Apparatus and methods for using an electromagnetic transponder in orthopedic procedures
US20070173837A1 (en) 2005-11-18 2007-07-26 William Marsh Rice University Bone fixation and dynamization devices and methods
US8494805B2 (en) 2005-11-28 2013-07-23 Orthosensor Method and system for assessing orthopedic alignment using tracking sensors
US7749224B2 (en) 2005-12-08 2010-07-06 Ebi, Llc Foot plate fixation
US8043206B2 (en) 2006-01-04 2011-10-25 Allergan, Inc. Self-regulating gastric band with pressure data processing
EP1968510B1 (en) 2006-01-04 2013-05-22 Allergan, Inc. Self-regulating gastric band
US7798954B2 (en) 2006-01-04 2010-09-21 Allergan, Inc. Hydraulic gastric band with collapsible reservoir
WO2007081986A2 (en) 2006-01-10 2007-07-19 Life Spine, Inc. Pedicle screw constructs and spinal rod attachment assemblies
US20070179493A1 (en) 2006-01-13 2007-08-02 Kim Richard C Magnetic spinal implant device
WO2007089739A2 (en) 2006-01-27 2007-08-09 Stryker Corporation Low pressure delivery system and method for delivering a solid and liquid mixture into a target site for medical treatment
US7776075B2 (en) 2006-01-31 2010-08-17 Warsaw Orthopedic, Inc. Expandable spinal rods and methods of use
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US8241293B2 (en) 2006-02-27 2012-08-14 Biomet Manufacturing Corp. Patient specific high tibia osteotomy
US8323290B2 (en) 2006-03-03 2012-12-04 Biomet Manufacturing Corp. Tensor for use in surgical navigation
US7431692B2 (en) 2006-03-09 2008-10-07 Edwards Lifesciences Corporation Apparatus, system, and method for applying and adjusting a tensioning element to a hollow body organ
US20070213751A1 (en) 2006-03-13 2007-09-13 Scirica Paul A Transdermal magnetic coupling gastric banding
US20090110998A1 (en) 2006-03-30 2009-04-30 Fujifilm Corporation Solid electrolyte membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
AU2007234790A1 (en) 2006-04-06 2007-10-18 Synthes Gmbh Remotely adjustable tissue displacement device
US8298240B2 (en) 2006-04-06 2012-10-30 Synthes (Usa) Remotely adjustable tissue displacement device
US20070255088A1 (en) 2006-04-11 2007-11-01 Jacobson Andrew D Implantable, magnetic actuator
AU2007238092A1 (en) 2006-04-12 2007-10-25 Spinalmotion, Inc. Posterior spinal device and method
WO2007130382A2 (en) 2006-04-29 2007-11-15 Board Of Regents, The University Of Texas System Devices for use in transluminal and endoluminal surgery
US7708779B2 (en) 2006-05-01 2010-05-04 Warsaw Orthopedic, Inc. Expandable intervertebral spacers and methods of use
FR2900563B1 (en) 2006-05-05 2008-08-08 Frederic Fortin ADJUSTABLE SCOLIOSIS RECTIFIER DEVICE
US8147517B2 (en) 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
US20070276369A1 (en) 2006-05-26 2007-11-29 Sdgi Holdings, Inc. In vivo-customizable implant
US7727143B2 (en) * 2006-05-31 2010-06-01 Allergan, Inc. Locator system for implanted access port with RFID tag
US7780590B2 (en) 2006-05-31 2010-08-24 Allergan, Inc. Method for locating an implanted fluid access port
US20070288024A1 (en) 2006-06-06 2007-12-13 Sohrab Gollogly Bone fixation
WO2007146075A2 (en) 2006-06-07 2007-12-21 Cherik Bulkes Analog signal transition detector
FR2901991B1 (en) 2006-06-13 2021-07-09 Arnaud Andre Soubeiran INTRACORPAL EXTENSION DEVICE MOUNTED IN TENSILE SCREW
CA2936752A1 (en) 2006-06-22 2007-12-27 Ams Research Corporation Adjustable tension incontinence sling assemblies
US20100179601A1 (en) 2006-06-29 2010-07-15 Jung Edward K Y Threadless position augmenting mechanism
US20080033431A1 (en) 2006-06-29 2008-02-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Position augmenting mechanism
US8241292B2 (en) 2006-06-30 2012-08-14 Howmedica Osteonics Corp. High tibial osteotomy system
GB0613240D0 (en) 2006-07-04 2006-08-09 Univ Birmingham Distraction device
US20080015577A1 (en) 2006-07-11 2008-01-17 Alexander Loeb Spinal Correction Device
US8475499B2 (en) 2006-07-14 2013-07-02 DePuy Synthes Products, LLC. Rod to rod connectors and methods of adjusting the length of a spinal rod construct
US20080021456A1 (en) 2006-07-21 2008-01-24 Depuy Spine, Inc. Sacral or iliac cross connector
US20080021455A1 (en) 2006-07-21 2008-01-24 Depuy Spine, Inc. Articulating Sacral or Iliac Connector
US20080021454A1 (en) 2006-07-21 2008-01-24 Depuy Spine, Inc. Sacral or iliac connector
US20080051784A1 (en) 2006-08-03 2008-02-28 Sohrab Gollogly Bone repositioning apparatus and methodology
WO2008015679A2 (en) 2006-08-03 2008-02-07 Intellimedi Ltd. System and method for monitoring displacements of in vivo objects
US8403958B2 (en) 2006-08-21 2013-03-26 Warsaw Orthopedic, Inc. System and method for correcting spinal deformity
US20080086128A1 (en) 2006-09-07 2008-04-10 David Warren Lewis Method and apparatus for treatment of scoliosis
US8685091B2 (en) 2006-09-29 2014-04-01 DePuy Synthes Products, LLC System, method, and device for monitoring orthopaedic implant data over a cellular network
FR2906453B1 (en) 2006-10-03 2009-03-06 Arnaud Andre Soubeiran INTRA-BODY LIFTING DEVICE WITH PERMANENT MAGNET.
US20080090694A1 (en) * 2006-10-13 2008-04-17 Magnetic Torque International, Ltd. Torque transfer system, method of using the same, method of fabricating the same, and apparatus for monitoring the same
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
US20100145462A1 (en) 2006-10-24 2010-06-10 Trans1 Inc. Preformed membranes for use in intervertebral disc spaces
US8043299B2 (en) 2006-11-06 2011-10-25 Janet Conway Internal bone transport
US20080108995A1 (en) 2006-11-06 2008-05-08 Janet Conway Internal bone transport
CA2568078C (en) 2006-11-14 2014-03-18 Unifor S.P.A. Telescopic table support
US20140163664A1 (en) 2006-11-21 2014-06-12 David S. Goldsmith Integrated system for the ballistic and nonballistic infixion and retrieval of implants with or without drug targeting
US20100286791A1 (en) 2006-11-21 2010-11-11 Goldsmith David S Integrated system for the ballistic and nonballistic infixion and retrieval of implants
US7793583B2 (en) 2006-12-06 2010-09-14 Schaeffler Kg Mechanical tappet in particular for a fuel pump of an internal combustion engine
US20080177319A1 (en) 2006-12-09 2008-07-24 Helmut Schwab Expansion Rod, Self-Adjusting
DE102006059225A1 (en) 2006-12-13 2008-06-26 Wittenstein Ag Medical device for determining the position of intracorporeal implants
US20080167685A1 (en) 2007-01-05 2008-07-10 Warsaw Orthopedic, Inc. System and Method For Percutanously Curing An Implantable Device
US20080177326A1 (en) 2007-01-19 2008-07-24 Matthew Thompson Orthosis to correct spinal deformities
US8435268B2 (en) 2007-01-19 2013-05-07 Reduction Technologies, Inc. Systems, devices and methods for the correction of spinal deformities
US8523866B2 (en) 2007-02-09 2013-09-03 Christopher G. Sidebotham Modular tapered hollow reamer for medical applications
US20080255615A1 (en) 2007-03-27 2008-10-16 Warsaw Orthopedic, Inc. Treatments for Correcting Spinal Deformities
US8469908B2 (en) 2007-04-06 2013-06-25 Wilson T. Asfora Analgesic implant device and system
US7611540B2 (en) 2007-05-01 2009-11-03 Moximed, Inc. Extra-articular implantable mechanical energy absorbing systems and implantation method
US20080275567A1 (en) 2007-05-01 2008-11-06 Exploramed Nc4, Inc. Extra-Articular Implantable Mechanical Energy Absorbing Systems
US8100967B2 (en) 2007-05-01 2012-01-24 Moximed, Inc. Adjustable absorber designs for implantable device
US9907645B2 (en) 2007-05-01 2018-03-06 Moximed, Inc. Adjustable absorber designs for implantable device
US8709090B2 (en) 2007-05-01 2014-04-29 Moximed, Inc. Adjustable absorber designs for implantable device
US8123805B2 (en) 2007-05-01 2012-02-28 Moximed, Inc. Adjustable absorber designs for implantable device
US20080272928A1 (en) 2007-05-03 2008-11-06 Shuster Gary S Signaling light with motion-sensing light control circuit
WO2008140756A2 (en) 2007-05-09 2008-11-20 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
FR2916622B1 (en) 2007-05-28 2009-09-04 Arnaud Andre Soubeiran IMPLANTABLE DISTRACTOR WITH MODIFIABLE LENGTH WITHOUT REOPERATION IN J-SHAPE
AU2008262019B2 (en) 2007-06-06 2013-01-24 K2M, Inc. Medical device and method to correct deformity
US8366628B2 (en) 2007-06-07 2013-02-05 Kenergy, Inc. Signal sensing in an implanted apparatus with an internal reference
US7753915B1 (en) 2007-06-14 2010-07-13 August Eksler Bi-directional bone length adjustment system
CA2694437C (en) 2007-07-26 2016-09-06 Glenn R. Buttermann Segmental orthopedic device for spinal elongation and for treatment of scoliosis
US9204908B2 (en) 2007-07-26 2015-12-08 Dynamic Spine, Llc Segmental orthopedic device for spinal elongation and for treatment of scoliosis
US20090076597A1 (en) 2007-09-19 2009-03-19 Jonathan Micheal Dahlgren System for mechanical adjustment of medical implants
US20090082815A1 (en) 2007-09-20 2009-03-26 Zimmer Gmbh Spinal stabilization system with transition member
US9015057B2 (en) 2007-09-25 2015-04-21 Neosync, Inc. Systems and methods for controlling and billing neuro-EEG synchronization therapy
US8177789B2 (en) 2007-10-01 2012-05-15 The General Hospital Corporation Distraction osteogenesis methods and devices
US20090088803A1 (en) 2007-10-01 2009-04-02 Warsaw Orthopedic, Inc. Flexible members for correcting spinal deformities
US20090093890A1 (en) 2007-10-04 2009-04-09 Daniel Gelbart Precise control of orthopedic actuators
US20090093820A1 (en) 2007-10-09 2009-04-09 Warsaw Orthopedic, Inc. Adjustable spinal stabilization systems
US20090192514A1 (en) 2007-10-09 2009-07-30 Feinberg Stephen E Implantable distraction osteogenesis device and methods of using same
CA2702764C (en) 2007-10-31 2016-06-28 Wright Medical Technology, Inc. Orthopedic device
DE102007053362B4 (en) 2007-11-06 2014-06-05 Universität Rostock Magnetically stored artificial joint
US8241331B2 (en) 2007-11-08 2012-08-14 Spine21 Ltd. Spinal implant having a post-operative adjustable dimension
US7983763B2 (en) 2007-11-20 2011-07-19 Greatbatch Ltd. Implanted lead sleeve having RFID tag
AU2008340276B2 (en) 2007-12-21 2014-08-07 Microvention, Inc. System and method for locating detachment zone of a detachable implant
US20090171356A1 (en) 2008-01-02 2009-07-02 International Business Machines Corporation Bone Repositioning Apparatus and System
US20090177203A1 (en) 2008-01-04 2009-07-09 Inbone Technologies, Inc. Devices, systems and methods for re-alignment of bone
US8092499B1 (en) 2008-01-11 2012-01-10 Roth Herbert J Skeletal flexible/rigid rod for treating skeletal curvature
US8425608B2 (en) 2008-01-18 2013-04-23 Warsaw Orthopedic, Inc. Lordotic expanding vertebral body spacer
AU2009209045B2 (en) 2008-02-01 2014-09-18 Smith & Nephew, Inc. System and method for communicating with an implant
EP2244644A1 (en) 2008-02-07 2010-11-03 K2M, Inc. Automatic lengthening bone fixation device
FI123247B (en) 2008-03-19 2013-01-15 Aalto Korkeakoulusaeaetioe Intracorporeal bone distribution device
EP2265164A4 (en) 2008-04-01 2013-10-02 Cardiomems Inc Strain monitoring system and apparatus
KR101045933B1 (en) 2008-05-02 2011-07-01 김가브리엘민 Calibration device
US8211149B2 (en) 2008-05-12 2012-07-03 Warsaw Orthopedic Elongated members with expansion chambers for treating bony members
WO2009146377A1 (en) 2008-05-28 2009-12-03 Kerflin Orthopedic Innovations, Llc Fluid-powered elongation instrumentation for correcting orthopedic deformities
EP2140816B1 (en) 2008-07-01 2016-02-10 Baxano, Inc. Access and tissue modification systems
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
WO2010005467A2 (en) 2008-07-09 2010-01-14 Micropoint Bioscience Inc Analytical cartridge with fluid flow control
EP2339976B1 (en) 2008-07-09 2016-03-16 Icon Orthopaedic Concepts, LLC Ankle arthrodesis nail and outrigger assembly
JP5602735B2 (en) 2008-08-15 2014-10-08 アーオー テクノロジー アクチエンゲゼルシャフト Bone anchor
US20100057127A1 (en) 2008-08-26 2010-03-04 Mcguire Brian Expandable Laminoplasty Fixation System
CN102123657B (en) 2008-09-02 2014-12-03 克里斯琴.M.帕特利兹咨询有限责任公司 Biomems sensor and apparatuses and methods thereof
DE102008050233A1 (en) 2008-10-02 2010-04-08 Copf jun., Franz, Dr. Instrument for measuring the distraction pressure between vertebral bodies
WO2010042767A1 (en) 2008-10-11 2010-04-15 Anthem Orthopaedics Van, Llc Intramedullary rod with pivotable and fixed fasteners and method for using same
US7987241B2 (en) 2008-10-15 2011-07-26 Xerox Corporation Sharing EIP service applications across a fleet of multi-function document reproduction devices in a peer-aware network
US8095317B2 (en) 2008-10-22 2012-01-10 Gyrodata, Incorporated Downhole surveying utilizing multiple measurements
US20100100185A1 (en) 2008-10-22 2010-04-22 Warsaw Orthopedic, Inc. Intervertebral Disc Prosthesis Having Viscoelastic Properties
US8623056B2 (en) 2008-10-23 2014-01-07 Linares Medical Devices, Llc Support insert associated with spinal vertebrae
US20100106193A1 (en) 2008-10-27 2010-04-29 Barry Mark A System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions in patients requiring the accomodation of spinal column growth or elongation
US20100106192A1 (en) 2008-10-27 2010-04-29 Barry Mark A System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation condition in patients requiring the accomodation of spinal column growth or elongation
JP2012507340A (en) 2008-10-31 2012-03-29 ミルックス・ホールディング・エスエイ Device and method for manipulating bone accommodation using wireless transmission of energy
US20100114103A1 (en) 2008-11-06 2010-05-06 The Regents Of The University Of California Apparatus and methods for alteration of anatomical features
US8828058B2 (en) 2008-11-11 2014-09-09 Kspine, Inc. Growth directed vertebral fixation system with distractible connector(s) and apical control
EG25692A (en) 2008-11-11 2012-05-20 Hazem Bayoumi Elsebaie Self expandable vertebral instrumentation system with apical deformity control
US8147549B2 (en) 2008-11-24 2012-04-03 Warsaw Orthopedic, Inc. Orthopedic implant with sensor communications antenna and associated diagnostics measuring, monitoring, and response system
US8043338B2 (en) 2008-12-03 2011-10-25 Zimmer Spine, Inc. Adjustable assembly for correcting spinal abnormalities
US20100137872A1 (en) 2008-12-03 2010-06-03 Linvatec Corporation Drill guide for cruciate ligament repair
US8133280B2 (en) 2008-12-19 2012-03-13 Depuy Spine, Inc. Methods and devices for expanding a spinal canal
US8556911B2 (en) 2009-01-27 2013-10-15 Vishal M. Mehta Arthroscopic tunnel guide for rotator cuff repair
WO2010088621A1 (en) 2009-02-02 2010-08-05 Simpirica Spine, Inc. Sacral tether anchor and methods of use
WO2010094032A2 (en) 2009-02-16 2010-08-19 Aoi Medical Inc. Trauma nail accumulator
DE102009011661A1 (en) 2009-03-04 2010-09-09 Wittenstein Ag growing prosthesis
WO2010104935A1 (en) 2009-03-10 2010-09-16 Simpirica Spine, Inc. Surgical tether apparatus and methods of use
WO2010104975A1 (en) 2009-03-10 2010-09-16 Simpirica Spine, Inc. Surgical tether apparatus and methods of use
EP2405840B1 (en) 2009-03-10 2024-02-21 Empirical Spine, Inc. Surgical tether apparatus
US8357183B2 (en) 2009-03-26 2013-01-22 Kspine, Inc. Semi-constrained anchoring system
US8668719B2 (en) 2009-03-30 2014-03-11 Simpirica Spine, Inc. Methods and apparatus for improving shear loading capacity of a spinal segment
US20100256626A1 (en) 2009-04-02 2010-10-07 Avedro, Inc. Eye therapy system
US8762308B2 (en) 2009-04-08 2014-06-24 Virginia Commonwealth University Combining predictive capabilities of Transcranial Doppler (TCD) with Electrocardiogram (ECG) to predict hemorrhagic shock
US9095436B2 (en) 2009-04-14 2015-08-04 The Invention Science Fund I, Llc Adjustable orthopedic implant and method for treating an orthopedic condition in a subject
US20100318129A1 (en) 2009-06-16 2010-12-16 Kspine, Inc. Deformity alignment system with reactive force balancing
US8394124B2 (en) 2009-06-18 2013-03-12 The University Of Toledo Unidirectional rotatory pedicle screw and spinal deformity correction device for correction of spinal deformity in growing children
FR2947170B1 (en) 2009-06-24 2011-07-22 Jean Marc Guichet ELONGATION NUTS FOR LONG OR SIMILAR BONES
US8105360B1 (en) 2009-07-16 2012-01-31 Orthonex LLC Device for dynamic stabilization of the spine
EP2464300B1 (en) 2009-08-13 2014-08-27 Cork Institute Of Technology Intramedullary nails for long bone fracture setting
US9668868B2 (en) 2009-08-27 2017-06-06 Cotera, Inc. Apparatus and methods for treatment of patellofemoral conditions
US9278004B2 (en) 2009-08-27 2016-03-08 Cotera, Inc. Method and apparatus for altering biomechanics of the articular joints
US9795410B2 (en) 2009-08-27 2017-10-24 Cotera, Inc. Method and apparatus for force redistribution in articular joints
WO2014040013A1 (en) 2012-09-10 2014-03-13 Cotera, Inc. Method and apparatus for treating canine cruciate ligament disease
US8657856B2 (en) 2009-08-28 2014-02-25 Pioneer Surgical Technology, Inc. Size transition spinal rod
GB0915382D0 (en) 2009-09-03 2009-10-07 Dalmatic As Expansion devices
US20110057756A1 (en) 2009-09-04 2011-03-10 Electron Energy Corporation Rare Earth Composite Magnets with Increased Resistivity
FR2949662B1 (en) 2009-09-09 2011-09-30 Arnaud Soubeiran INTRA-BODY DEVICE FOR MOVING TISSUE
US9168071B2 (en) 2009-09-15 2015-10-27 K2M, Inc. Growth modulation system
PL215752B1 (en) 2009-09-28 2014-01-31 Lfc Spolka Z Ograniczona Odpowiedzialnoscia Equipment for surgical vertebra movement
MX2009010782A (en) 2009-10-05 2010-05-03 Ruben Fernando Sayago Remote control hydraulic internal distractor for correcting backbone deformities or for lengthening of long human bones.
US20110098748A1 (en) 2009-10-26 2011-04-28 Warsaw Orthopedic, Inc. Adjustable vertebral rod system and methods of use
US8211151B2 (en) 2009-10-30 2012-07-03 Warsaw Orthopedic Devices and methods for dynamic spinal stabilization and correction of spinal deformities
US8470003B2 (en) 2009-10-30 2013-06-25 DePuy Synthes Products, LLC Laminoplasty plates and methods of expanding the spinal canal
US8870959B2 (en) 2009-11-24 2014-10-28 Spine21 Ltd. Spinal fusion cage having post-operative adjustable dimensions
BR112012012541B1 (en) 2009-11-25 2020-03-24 Spine21 Ltd. Spinal implant
BR112012013107A2 (en) 2009-12-01 2019-09-24 Synthes Gmbh expandable spinal stem of unfused scoliosis.
US8506569B2 (en) 2009-12-31 2013-08-13 DePuy Synthes Products, LLC Reciprocating rasps for use in an orthopaedic surgical procedure
US8556901B2 (en) 2009-12-31 2013-10-15 DePuy Synthes Products, LLC Reciprocating rasps for use in an orthopaedic surgical procedure
US8585740B1 (en) 2010-01-12 2013-11-19 AMB Surgical, LLC Automated growing rod device
US8632547B2 (en) 2010-02-26 2014-01-21 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US8758347B2 (en) 2010-03-19 2014-06-24 Nextremity Solutions, Inc. Dynamic bone plate
EP2547274B1 (en) 2010-03-19 2021-06-30 Smith & Nephew, Inc. Telescoping im nail and actuating mechanism
US8777947B2 (en) 2010-03-19 2014-07-15 Smith & Nephew, Inc. Telescoping IM nail and actuating mechanism
FR2957776B1 (en) 2010-03-23 2013-02-15 Arnaud Andre Soubeiran DEVICE FOR MOVING TISSUES INSIDE THE ORGANISM, ESPECIALLY BONE TISSUES, WITH FIXED TRACTION SCREWS AND ROTATING NUT
WO2011119873A2 (en) 2010-03-24 2011-09-29 Board Of Regents Of The University Of Texas System Ultrasound guided automated wireless distraction osteogenesis
GB201006173D0 (en) 2010-04-14 2010-06-02 Depuy Ireland A distractor
US20110284014A1 (en) 2010-05-19 2011-11-24 The Board Of Regents Of The University Of Texas System Medical Devices That Include Removable Magnet Units and Related Methods
FI123991B (en) 2010-05-24 2014-01-31 Synoste Oy Intrinsic treatment device
US8641723B2 (en) 2010-06-03 2014-02-04 Orthonex LLC Skeletal adjustment device
CN103200887B (en) 2010-06-07 2015-08-26 卡波菲克斯整形有限公司 Composite material bone implant
FR2960766B1 (en) 2010-06-07 2012-06-15 Tornier Sa MODULAR PROSTHESIS AND SURGICAL KIT COMPRISING AT LEAST ONE SUCH MODULAR PROSTHESIS
US8771272B2 (en) 2010-06-18 2014-07-08 Kettering University Easily implantable and stable nail-fastener for skeletal fixation and method
US8287540B2 (en) 2010-06-18 2012-10-16 Kettering University Easily implantable and stable nail-fastener for skeletal fixation and method
FR2961386B1 (en) 2010-06-21 2012-07-27 Arnaud Soubeiran INTRA-MEDALLIC DEVICE FOR THE RELATIVE MOVEMENT OF TWO LOCKED BONE PORTIONS BY THE MEDULLARY CHANNEL.
US20120019342A1 (en) 2010-07-21 2012-01-26 Alexander Gabay Magnets made from nanoflake precursors
US20120019341A1 (en) 2010-07-21 2012-01-26 Alexandr Gabay Composite permanent magnets made from nanoflakes and powders
US20120271353A1 (en) 2010-08-16 2012-10-25 Mark Barry System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions in patients requiring the accomodation of spinal column growth or elongation
DE102010047738A1 (en) 2010-08-26 2012-03-01 Wittenstein Ag Actuator for scoliosis correction
US20120088953A1 (en) 2010-10-08 2012-04-12 Jerry King Fractured Bone Treatment Methods And Fractured Bone Treatment Assemblies
US8282671B2 (en) 2010-10-25 2012-10-09 Orthonex Smart device for non-invasive skeletal adjustment
US20120109207A1 (en) 2010-10-29 2012-05-03 Warsaw Orthopedic, Inc. Enhanced Interfacial Conformance for a Composite Rod for Spinal Implant Systems with Higher Modulus Core and Lower Modulus Polymeric Sleeve
CN103298423B (en) 2010-11-22 2016-10-05 斯恩蒂斯有限公司 The inflatable rods of non-fused skoliosis
US8636771B2 (en) 2010-11-29 2014-01-28 Life Spine, Inc. Spinal implants for lumbar vertebra to sacrum fixation
DE202010018144U1 (en) 2010-12-10 2014-05-06 Celgen Ag Universal Disarctor for Bone Regeneration
WO2012083101A1 (en) 2010-12-17 2012-06-21 Synthes Usa, Llc Methods and systems for minimally invasive posterior arch expansion
US9168076B2 (en) 2011-01-25 2015-10-27 Bridging Medical, Llc Bone compression screw
US8585595B2 (en) 2011-01-27 2013-11-19 Biomet Manufacturing, Llc Method and apparatus for aligning bone screw holes
US8486076B2 (en) 2011-01-28 2013-07-16 DePuy Synthes Products, LLC Oscillating rasp for use in an orthopaedic surgical procedure
US9782206B2 (en) 2011-02-08 2017-10-10 Stryker European Holdings I, Llc Implant system for bone fixation
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
PL218347B1 (en) 2011-05-12 2014-11-28 Lfc Spółka Z Ograniczoną Odpowiedzialnością Intervertebral implant for positioning of adjacent vertebrae
US9918742B2 (en) 2011-05-16 2018-03-20 Smith & Nephew, Inc. Measuring skeletal distraction
WO2012159106A2 (en) 2011-05-19 2012-11-22 Northwestern University Ph responsive self-healing hydrogels formed by boronate-catechol complexation
CN103781429B (en) 2011-06-03 2017-02-15 科斯班公司 Spinal correction system actuators
JP6073875B2 (en) 2011-06-22 2017-02-01 シンセス・ゲーエムベーハーSynthes GmbH Bone maneuvering assembly with position tracking system
EP2723252B1 (en) 2011-06-27 2017-02-08 University of Cape Town An endoprosthesis
US20130013066A1 (en) 2011-07-06 2013-01-10 Moximed, Inc. Methods and Devices for Joint Load Control During Healing of Joint Tissue
WO2013006830A1 (en) 2011-07-07 2013-01-10 Samy Abdou Devices and methods to prevent or limit spondlylolisthesis and other aberrant movements of the vertebral bones
US8636770B2 (en) 2011-08-08 2014-01-28 Zimmer Spine, Inc. Bone anchoring device
DE102011053638A1 (en) 2011-09-15 2013-03-21 Wittenstein Ag Mark Nagel
US8920422B2 (en) 2011-09-16 2014-12-30 Stryker Trauma Gmbh Method for tibial nail insertion
US8968402B2 (en) 2011-10-18 2015-03-03 Arthrocare Corporation ACL implants, instruments, and methods
CA2853077A1 (en) 2011-10-21 2013-04-25 Innovative Surgical Designs, Inc. Surgical implants for percutaneous lengthening of spinal pedicles to correct spinal stenosis
US9022917B2 (en) 2012-07-16 2015-05-05 Sophono, Inc. Magnetic spacer systems, devices, components and methods for bone conduction hearing aids
US10016226B2 (en) 2011-12-12 2018-07-10 Children's Hospital Medical Center Of Akron Noninvasive device for adjusting fastener
PT2790600T (en) 2011-12-12 2017-07-21 Austen Bioinnovation Inst In Akron Noninvasive device for adjusting fastener
US8617220B2 (en) 2012-01-04 2013-12-31 Warsaw Orthopedic, Inc. System and method for correction of a spinal disorder
US9848894B2 (en) 2012-01-05 2017-12-26 Pivot Medical, Inc. Flexible drill bit and angled drill guide for use with the same
EP2811895A4 (en) 2012-02-07 2015-10-21 Io Surgical Llc Sensor system, implantable sensor and method for remote sensing of a stimulus in vivo
US20140052134A1 (en) 2012-02-08 2014-02-20 Bruce Orisek Limb lengthening apparatus and methods
US9561062B2 (en) 2012-03-19 2017-02-07 Alphatec Spine, Inc. Spondylolisthesis reduction system
US20130253587A1 (en) 2012-03-20 2013-09-26 Warsaw Orthopedic, Inc. Spinal systems and methods for correction of spinal disorders
US9339197B2 (en) 2012-03-26 2016-05-17 Medtronic, Inc. Intravascular implantable medical device introduction
US8870881B2 (en) 2012-04-06 2014-10-28 Warsaw Orthopedic, Inc. Spinal correction system and method
US8945188B2 (en) 2012-04-06 2015-02-03 William Alan Rezach Spinal correction system and method
US9364267B2 (en) 2012-04-17 2016-06-14 Aurora Spine, Inc. Dynamic and non-dynamic interspinous fusion implant and bone growth stimulation system
WO2013181358A1 (en) 2012-05-30 2013-12-05 Acumed Llc Articulated intramedullary nail
US20130325071A1 (en) 2012-05-30 2013-12-05 Marcin Niemiec Aligning Vertebral Bodies
US9393123B2 (en) 2012-07-17 2016-07-19 Clemson University Research Foundation Lockable implants
US20140058450A1 (en) 2012-08-22 2014-02-27 Warsaw Orthopedic, Inc. Spinal correction system and method
US9339300B2 (en) 2012-11-05 2016-05-17 University of Medical Center of Johannes Guten University Mainz Dynamic stabilizing device for bones
US8790409B2 (en) 2012-12-07 2014-07-29 Cochlear Limited Securable implantable component
WO2014150786A1 (en) 2013-03-15 2014-09-25 Moximed, Inc. Implantation approach and instrumentality for an energy absorbing system
US9439797B2 (en) 2013-04-08 2016-09-13 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
US10137024B2 (en) 2013-04-08 2018-11-27 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
US20140358150A1 (en) 2013-05-29 2014-12-04 Children's National Medical Center Surgical distraction device with external activation
WO2015057814A1 (en) 2013-10-15 2015-04-23 XpandOrtho, Inc. Actuated positioning device for arthroplasty and methods of use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2114258A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8905915B2 (en) 2006-01-04 2014-12-09 Apollo Endosurgery, Inc. Self-regulating gastric band with pressure data processing
EP1992313A3 (en) * 2007-05-14 2008-12-03 Ethicon Endo-Surgery, Inc. Gastric band with engagement member
US8900118B2 (en) 2008-10-22 2014-12-02 Apollo Endosurgery, Inc. Dome and screw valves for remotely adjustable gastric banding systems
WO2010088481A1 (en) * 2009-01-30 2010-08-05 The Trustees Of Columbia University In The City Of New York Controllable magnetic source to fixture intracorporeal apparatus
WO2010096573A1 (en) * 2009-02-18 2010-08-26 Pavad Medical, Inc. Implant system for controlling airway passage
WO2010138593A1 (en) * 2009-05-28 2010-12-02 Pavad Medical, Inc. Implant system for controlling airway passage
US10548638B2 (en) 2009-12-01 2020-02-04 DePuy Synthes Products, Inc. Non-fusion scoliosis expandable spinal rod
US8568457B2 (en) 2009-12-01 2013-10-29 DePuy Synthes Products, LLC Non-fusion scoliosis expandable spinal rod
US9282997B2 (en) 2009-12-01 2016-03-15 DePuy Synthes Products, Inc. Non-fusion scoliosis expandable spinal rod
US9192501B2 (en) 2010-04-30 2015-11-24 Apollo Endosurgery, Inc. Remotely powered remotely adjustable gastric band system
WO2011153086A1 (en) * 2010-06-03 2011-12-08 Allergan, Inc. Magnetically coupled implantable pump system
US9226840B2 (en) 2010-06-03 2016-01-05 Apollo Endosurgery, Inc. Magnetically coupled implantable pump system and method
US9211207B2 (en) 2010-08-18 2015-12-15 Apollo Endosurgery, Inc. Power regulated implant
US8961393B2 (en) 2010-11-15 2015-02-24 Apollo Endosurgery, Inc. Gastric band devices and drive systems
US8961567B2 (en) 2010-11-22 2015-02-24 DePuy Synthes Products, LLC Non-fusion scoliosis expandable spinal rod
US11660124B2 (en) 2010-11-22 2023-05-30 DePuy Synthes Products, Inc. Non-fusion scoliosis expandable spinal rod
US9861390B2 (en) 2010-11-22 2018-01-09 DePuy Synthes Products, Inc. Non-fusion scoliosis expandable spinal rod
US10507042B2 (en) 2010-11-22 2019-12-17 DePuy Synthes Products, Inc. Non-fusion scoliosis expandable spinal rod
WO2013143612A1 (en) * 2012-03-30 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for the treatment of metabolic disorders
US9750660B2 (en) 2012-03-30 2017-09-05 Ethicon Endo-Surgery, Inc. Devices and methods for the treatment of metabolic disorders
WO2020252188A1 (en) 2019-06-11 2020-12-17 Yves Moser External actuation device for adjustable implanted medical device
EP3962382A4 (en) * 2019-06-11 2023-06-14 Yves Moser External actuation device for adjustable implanted medical device
US11717369B2 (en) 2019-06-11 2023-08-08 Yves MOSER External actuation device for adjustable implanted medical device

Also Published As

Publication number Publication date
US11234849B2 (en) 2022-02-01
US8808163B2 (en) 2014-08-19
US8715159B2 (en) 2014-05-06
US9271857B2 (en) 2016-03-01
ES2845448T3 (en) 2021-07-26
EP3808317A1 (en) 2021-04-21
US20110237861A1 (en) 2011-09-29
US20080097487A1 (en) 2008-04-24
US20090062825A1 (en) 2009-03-05
US20130035544A1 (en) 2013-02-07
DK2767265T3 (en) 2021-02-01
US20150196409A1 (en) 2015-07-16
EP2114258A4 (en) 2012-07-25
US20190000656A1 (en) 2019-01-03
US20160038324A1 (en) 2016-02-11
US11672684B2 (en) 2023-06-13
US20220142801A1 (en) 2022-05-12
US7981025B2 (en) 2011-07-19
WO2008109300A3 (en) 2009-12-30
US20150011860A1 (en) 2015-01-08
US10039661B2 (en) 2018-08-07
EP2114258B1 (en) 2014-06-25
EP2114258A2 (en) 2009-11-11
EP2767265B1 (en) 2021-01-06
US20230310191A1 (en) 2023-10-05
US9526650B2 (en) 2016-12-27
EP2767265A1 (en) 2014-08-20
US7862502B2 (en) 2011-01-04

Similar Documents

Publication Publication Date Title
US11672684B2 (en) Adjustable implant and method of use
US8246533B2 (en) Implant system with resonant-driven actuator
US7901419B2 (en) Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use
AU2005293288B2 (en) Telemetrically controlled band for regulating functioning of a body organ or duct, and methods of making, implantation and use
US20070185374A1 (en) Two-way adjustable implant
US8523885B2 (en) Implantable restriction system with load monitor
AU2010295621A1 (en) Implantable restriction system tension release mechanism
AU2010295623A1 (en) Tissue interface for implantable restriction system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08730778

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008730778

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE