WO2008107509A1 - Method for modifying the inflorescence architecture of plants - Google Patents

Method for modifying the inflorescence architecture of plants Download PDF

Info

Publication number
WO2008107509A1
WO2008107509A1 PCT/ES2008/070043 ES2008070043W WO2008107509A1 WO 2008107509 A1 WO2008107509 A1 WO 2008107509A1 ES 2008070043 W ES2008070043 W ES 2008070043W WO 2008107509 A1 WO2008107509 A1 WO 2008107509A1
Authority
WO
WIPO (PCT)
Prior art keywords
plants
gene
plant
transgenic
branches
Prior art date
Application number
PCT/ES2008/070043
Other languages
Spanish (es)
French (fr)
Inventor
Luís Antonio CAÑAS CLEMENTE
Mónica MEDINA HERRANZ
Edelín Marta ROQUE MESA
Lourdes Castellblanque Soriano
Benito Pineda Chaza
Begoña GARCIA-SOGO
Vicente Moreno Ferrero
José Pío BELTRAN PORTER
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2008107509A1 publication Critical patent/WO2008107509A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8231Male-specific, e.g. anther, tapetum, pollen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility

Definitions

  • the invention relates, in general, to a method for modifying the architecture of the inflorescence of plants, and, in particular, to a method for obtaining transgenic plants that have an architecture of their inflorescence modified with respect to Ia of the corresponding wild plants, based on the use of a construct comprising a cytotoxic gene under the control of a specific anther promoter.
  • the transgenic plants show an architecture of their inflorescence more complex and with greater number of branches than the corresponding wild plants. These branches initiate and develop a greater number of floral meristems than the wild ones.
  • Plant architecture this is its three-dimensional organization, is a characteristic under strict genetic control by what is specific to each plant species (Reinhardt, D. & Kuhlemeier, C. (2002). Plant architecture. EMBO reports 3: 846-851). However, some modification of the basic structural pattern can occur due to environmental conditions such as light, temperature, humidity or nutritional status of plants.
  • the architecture of the aerial part of the plants is defined by the pattern of distribution of the leaves along the stem or phyloxis, the determination of the apical meristems of the stem, and by the branching patterns of the vegetative parts and the parts reproductive, this last factor also called architecture of the inflorescence. Plants produce lateral branches from the meristems that begin in the armpits of the leaves. The branching pattern is conditioned by the filotactic pattern of the plant stem. In many plants, the initiation of axillary meristems is initially suppressed by the apical meristem, a phenomenon called apical dominance.
  • the floral transition affects the architecture of the plant in several ways since there are usually changes in the phyloxis in addition to those that affect the destination and the identity of the meristems.
  • Many plants have an apical meristem of the stem that is undetermined, that is, it remains active throughout the life of the plant by first differentiating leaves and then flowers. This growth pattern is called monopodial and is characteristic of Arabidopsis or Antirrhinum.
  • the pattern of monopodial growth in Arabidopsis is established in different stages: first, type 1 vegetative metamers are formed, formed by very short internodes, a leaf and a yolk, which are organized in the form of a rosette; and in the second place, and after a floral transition, the main stem of the inflorescence is composed at the beginning of type 2 metamers, which have elongated internodes, a caulinar leaf and a bud, and then by type 3 metamers that contain intermediate length internodes. and a floral bud.
  • the axillary meristems are detected in the stem, first in the axillae of the caulinary leaves and later in those of the rosettes, once the floral transition has occurred.
  • axillary meristems form inflorescent lateral stems with a monopodial development pattern (Alvarez et al., (1992). Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant Journal 2: 103-116).
  • Terminal flower a gene affecting inflorescence development in Arabidopsis thaliana. Plant Journal 2: 103-116.
  • the formation of axillary meristems in Arabidopsis is controlled, in part, by three R2R3 genes of the Myb family called RAX genes ⁇ REGULATORS OF AXILAR MERISTEMES) that are homologs of the Blind gene of Solanum licopersicon (Müller et al. (2006). homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Ce // 18: 586-597).
  • the meristem apical forms a terminal flower when the floral transition occurs, from here, tobacco, for example, initiates several symposia branches that they consist of a leaf or bract, a new sypodial meristem and a terminal flower, while in tomato only two sypodial meristems of which the lower form three leaves before blooming are started while the upper one divides successively forming a terminal flower each time and a new symposium meristem.
  • Petunia only one sympodial branch is initiated, which forms two leaves and a new sympodial meristem (Huber, KA (1980). ).
  • orthologous genes of CLAVATA1 from Arabidopsis have been characterized in rice and corn that contribute to the establishment of the architecture of the inflorescence in said species as well as various genes that affect the vegetative and reproductive branching patterns in Arabidopsis ⁇ LAS), tomato ⁇ LS and BL), rice ⁇ MOC1) or corn ⁇ BIF2) (Wang, Y. & Li, J. (2006). Genes controlling plant architecture. Current Opinion in Biotechnology 17: 1-7).
  • the RAMOSA 3 gene that codes for the trehalose-6-phosphate phosphatase enzyme and which is expressed in discrete domains near axillary meristems has been characterized.
  • the RAMOSA 3 gene could control the branching pattern of corn inflorescences by modifying a sugar signal that would reach axillary meristems (Satoh-Nagasawa et al., (2006).
  • a trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441 : 227-230).
  • MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3 / 4 to produce a carotenoid-derived branch-inhibiting hormone.
  • GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for Gibberellin Nature 437: 693-698).
  • the ablation of anthers produced by genetic transformation with cytotoxic genes that are expressed only in the anthers, using specific promoters of some staminal tissue has allowed to obtain andro-sterile transgenic plants and transgenic plants with restored androfertility in species of agronomic importance such as Corn, rapeseed or wheat.
  • the genetic ablation is based on the induction of cell death by means of the expression of any enzyme that is capable of destroying the cellular integrity such as proteases, lipases and RNases.
  • RNA from a gene that confers tolerance to a herbicide.
  • the effect of the "antisense” RNA is to eliminate the chemical resistance specifically in pollen, so that the application of the herbicide produces its destruction. This method converts a herbicide into a gametocide.
  • the promoter of the TA29 tobacco gene specific to tapetum, was used to direct the expression of two RNases (Aspergillus oryzae T1 RNAse and Bacillus amyloliquefaciens barnase) in tobacco and Brassica napus.
  • the obtained andro-sterile transgenic anthers lacked tapetum and their pollen sacs did not produce microspores or pollen grains.
  • the floriculture industry strives to achieve new and different varieties of ornamental plants with improved characteristics ranging from resistance to pathogens.
  • diseases to the modification of the architecture of the plant including the floral architecture (altered inflorescences) or modifications in the color and in the number of flowers.
  • the classic improvement techniques are aimed at crossing plants with desirable characteristics to obtain hybrids that incorporate these characteristics, or the use of hormones to alter the phenotype of the plant.
  • recombinant DNA technology has become the alternative strategy to classical improvement to develop plants with an altered phenotype and have certain improved characteristics.
  • the present invention is aimed at solving the need of the ornamental plants sector to have plants with complex inflorescent architectures that add value due to their attractiveness or the improvement of production costs.
  • the invention relates to a process for the production of transgenic plants with an architecture of its modified inflorescence with respect to that presented by the corresponding wild plant which, among other stages, comprises transforming a susceptible plant cell or tissue if transformed with a gene construct comprising a cytotoxic gene under the control of the promoter of the PsENDI gene, or a fragment thereof capable of specifically regulating the gene expression of said cytotoxic gene in anthers.
  • the transgenic plants obtained by the process of the present invention having the additional advantage that they do not produce horizontal dispersion of genes by not generating neither pollen nor seeds, so that its authorization of use at field level would not be a difficulty.
  • the invention relates to a transgenic plant obtainable by the method described in the present invention that has an architecture of its modified inflorescence compared to that of the corresponding wild plant.
  • said transgenic plant has a complex, different architecture, with greater number of branches and branches of greater order, all of them capable of producing flowers, than the wild plant.
  • a process for producing flowers which comprises cultivating a transgenic plant obtained according to the procedure described above under conditions that allow flowering and flower development.
  • Figure 1 shows the schematic representation of the construction pBI-END1 :: barnasa-barstar and the starting construction pBI101-F3.
  • Plasmid PB1101 consists of the constitutive promoter of nopaline synthetase (nos-pro) fused to the nptll gene that confers resistance to kanamycin, the uidA gene that encodes the enzyme D-glucuronidase (GUS) and the polyadenylation signal of the nopaline synthetase gene (nos-ter) at the 3 'ends of both genes.
  • the uidA gene has been replaced by the fragment that contains the barnasa-barstar genes.
  • Figure 2 shows photographs of wild Arabidopsis thaliana plants (Figure 2A) and transgenic A. thaliana plants obtained according to the procedure described in the present invention ( Figure 2B).
  • Figure 2C shows the flowers present in the wild Arabidopsis plants (left flower) and the flowers shown in the transgenic Arabidopsis plants (right flower).
  • two Arabidopsis plants are shown: one transgenic obtained by the method of the invention (right) and another wild (left).
  • the transgenic plants show a greater development than the wild ones, a greater number of branches and a greater number of flowers when compared with the wild ones.
  • FIGS. 2D and 2E show the longitudinal dissection of a wildflower and a transgenic flower, respectively. In the wild flower the presence of normal anthers is observed while in the transgenic anthers are undeveloped.
  • Figure 3 shows transgenic Nicotiana tabacum plants obtained according to the method of the invention and wild N. tabacum plants.
  • Figure 3A shows a wild plant (left) against two transgenic plants according to the method of the invention
  • Figure 3B shows a detail of the branches of a transgenic plant of N.
  • Figure 3C shows the corresponding wild plant.
  • the transgenic plants show a greater development than the wild ones, a greater number of branches and a greater number of flowers when compared with the wild ones.
  • Figure 3D can be seen how the flowers of wild plants fertilize and produce fruits (capsules) stopping their growth (left), while the transgenic ones do not produce fruits and continue to produce flowers that are senescent on the branches without fertilizing.
  • Figures 4A and 4B show an anther of a complete N. tabacum wild plant and a cross section of one of its pollen sacs respectively observed by scanning electron microscopy (SEM). You can see how it contains pollen grains in its inside.
  • Figures 4C and 4D a transgenic anther of N. tabacum is shown showing its collapsed pollen sacs and a cross section of one of them showing that there are no pollen grains inside respectively.
  • Figure 5 shows the nucleotide sequence of the 5 'region of the PsENDL pea gene.
  • the possible regulatory elements within the sequence are represented in different colors depending on the type of regulatory element.
  • Figures 6A and 6B show the number of branches produced in wild plants against transgenic plants (A) and the number of flowers produced in wild plants against transgenic plants (B). In both graphs the number 1 corresponds to wild plants and the number 2 to transgenic plants.
  • Figures 7A and 7B show a representative diagram of the number of branches produced in wild plants (A) and in transgenic plants (B) of A. thaliana.
  • Figures 8A and 8B show a representative diagram of the number of flowers produced in wild plants (A) and in transgenic plants (B) of A. thaliana.
  • the invention relates to a method for obtaining a transgenic plant with an architecture of its modified inflorescence with respect to that presented by the wild plant (wt), which comprises: (a) transforming a plant cell or tissue capable of being transformed with a gene construct comprising:
  • a first nucleic acid sequence comprising the nucleotide sequence of the promoter of the PsENDI gene, or a fragment thereof capable of specifically regulating the gene expression of a second nucleic acid sequence in anthers
  • a second nucleic acid sequence comprising the nucleotide sequence of a cytotoxic gene, or a functional fragment thereof, under the control of said first nucleic acid sequence, to produce a transformed plant cell or tissue
  • stage (b) regenerate said transformed cell or plant tissue in stage (a) to produce a transgenic plant, and (c) select the transgenic plants of stage (b) that exhibit an architecture of its modified inflorescence compared to that presented The corresponding wild plant.
  • a transgenic plant with an architecture of its modified inflorescence with respect to that presented by the wild plant refers to a transgenic plant capable of developing a more complex branching pattern, which produces a greater number of branches and branches of greater order, all of them capable of producing flowers, than the corresponding wild plant (wt) thanks to the incorporation into its genome of the gene construction described in the present invention; in general, said transgenic plant with an architecture of its modified inflorescence has a more complex branching pattern and is the producer of a greater number of branches and Branches of greater order, all of them producing flowers, than the corresponding wild plant.
  • transgenic plant is not only capable of producing a greater number of branches than the corresponding wild plant, but said transgenic plants have an increase in the number of flowers produced and in their half-life with respect to wild plants. While wild plants senesce at three months, transgenic plants have been running for six months. In general, said transgenic plant has a three-dimensional structure that provides a more colorful appearance.
  • a plant of interest is genetically manipulated to contain and stably and consistently express a phenotype that is not normally present in wild plants. Said phenotype consists of a greater number of branches and branches of greater order, all of them capable of producing flowers, and of flowers than the wild plant.
  • said plant is an ornamental plant.
  • Illustrative, non-limiting examples of said plants of interest susceptible to being genetically manipulated according to the invention to obtain transgenic plants with an architecture of their inflorescence modified with respect to that presented by the wild plant include plants belonging to the Aeschynantus genera; Canna; Column; Anemone; Azalea; Begonia; Calceolaria; Camellia; Dianthus; Freessia; Gerbera; Hibiscus; Hypoestes; Kalanchoe; Nicotiana; Pelargonium; Petunia; Pr ⁇ kmula; Rannunculus; Rhipsalidopsis; Pink; Saintpaulia; Sinningia-gloxinia; Streptocarpus; Tigridia; Verbena; and Zinnia.
  • the method of the invention comprises the preparation of a gene construct comprising (i) a first nucleic acid sequence comprising the nucleotide sequence of the promoter of the PsENDI gene, or a fragment thereof capable of specifically regulating the gene expression of a gene. second nucleic acid sequence in anthers, and (ii) a second nucleic acid sequence comprising the nucleotide sequence of a cytotoxic gene, or a functional fragment thereof, under the control of said first nucleic acid sequence.
  • the promoter of the pea PsENDI gene (Pisum sativum L), hereinafter pEND1, is a promoter capable of directing the specific expression in anther in early stages of plant development as described and evidenced in the WO patent application 07/013088. Indeed, the in situ hybridization assays described in said patent application confirmed the specificity of the expression of the PsENDI gene in the tissues of the pea anther, in particular, in the tissues that make up the pollen sacs of the anthers, during the different stages of its development.
  • the pEND1 present in the gene construct comprises the nucleotide sequence shown from nucleotide -2,736 to nucleotide -6 of the nucleotide sequence shown in Figure 5, which constitutes the complete sequence of said promoter.
  • the gene construct used to transform plant cells or tissues comprises a fragment of pEND1 comprising, at least, the nucleotide sequence comprised from nucleotide -366 to nucleotide -6 of the nucleotide sequence shown in Figure. 5.
  • the previously defined pEND1 fragment maintains the regulatory capacity of the specific expression in anther and is capable of directing the specific expression of anther in early stages of plant development.
  • the pEND1 can be obtained by conventional methods from a pea plant (Pisum sativum L.) or from a host organism transformed with a DNA sequence comprising said promoter, as mentioned in WO 01/073088.
  • the fragments of pEND1 that maintain the regulatory capacity of the specific expression in anther can be obtained, based on the information provided, by conventional methods, for example, from the pEND1, making the appropriate deletions.
  • the tests described in Example 1 of WO 01/073088 can be performed.
  • the gene construct used to transform plant cells or tissues comprises, in addition to pEND1 or a functional fragment thereof, that is, capable of regulating the specific expression in anther, a cytotoxic gene, operably linked to said promoter or functional fragment thereof.
  • cytotoxic gene includes any gene that encodes a protein or enzymatic activity that causes cell death in the tissue where it is expressed, for example, a gene that encodes a protein or enzymatic activity that causes the ablation of the anther.
  • Ia diphtheria toxin A (DTA) produced naturally by Corynebacterium diphteriae, Pseudomonas aeruginosa exotoxin A, Aspergillus oryzae ribonuclease T, Bacillus amyloliquefaciens barnase, etc.
  • DTA Ia diphtheria toxin A
  • Pseudomonas aeruginosa exotoxin A Aspergillus oryzae ribonuclease T
  • Bacillus amyloliquefaciens barnase etc.
  • the genes encoding said proteins can be used as cytotoxic genes in the gene construction described herein for the implementation of the present invention.
  • said cytotoxic gene that is expressed in anther because it is under the control of pEND1 is the barnase gene, a Bacillus amyloliquefaciens ribonuclease [Mariani et al., (1990), cited at supra ] that causes the complete ablation of the anther, from very early stages of its development, preventing the formation of pollen therein, thus giving rise to an andro-sterile plant. Additional examples of cytotoxic genes are cited in European patent application EP 412006 as well as in patent application WO 01/073088, the contents of which are incorporated by reference to the present description.
  • the gene construct used to transform plant cells or tissues by the process of the invention can be obtained by conventional methods using widely known techniques [Sambrook, J., et al, 2001. Molecular cloning:... A Laboratory Manual, 3rd ed, Coid Spring Harbor Laboratory Press, NY, VoI. 1-3]. Said gene construct may also contain, operatively linked, regulatory elements of the expression, for example, sequences of termination of transcription, enhancer sequences of transcription and / or translation, etc.
  • the gene construct used to transform plant cells or tissues according to the method of the invention can be inserted into the genome of a plant cell or tissue by any appropriate method to obtain transformed plant cells and tissues. Such methods may involve, for example, the use of liposomes, electroporation, diffusion, particle bombardment, microinjection, gene bullets ("gene gun"), chemical compounds that increase free DNA uptake, for example, coprecipitation with calcium phosphate, viral vectors, etc.
  • Appropriate vectors for plant transformation include those derived from the Ti plasmid of Agrobacter ⁇ um tumefaciens, such as those described in EP 120516.
  • transformation vectors derived from the Ti or Ri plasmids of Agrobacter ⁇ um can be used to insert Ia gene construction in plant cells and tissues.
  • said gene construct is introduced, by means of the vacuum infiltration protocol.
  • the gene construction described herein can be used to transform any cell or plant tissue that can be transformed.
  • said cell or plant tissue belongs to an ornamental type plant.
  • the term "ornamental plant” includes any plant grown for its generally aesthetic value. Between such aesthetic values include visually appealing characters such as colorful, colorful or scented flowers or inflorescences.
  • Illustrative, non-limiting examples of such ornamental plants include plants belonging to the Aeschynantus genera; Canna; Column; Anemone; Azalea; Begonia; Calceolaria; Camellia; Dianthus; Freessia; Gerbera; Hibiscus; Hypoestes; Kalanchoe; Nicotiana; Pelargonium; Petunia; Pr ⁇ kmula; Rannunculus; Rhipsalidopsis; Pink; Saintpaulia; Sinningia-gloxinia; Streptocarpus; Tigridia; Verbena; and Zinnia.
  • transgenic plants with improved ornamental value which have a greater number of branches and branches of greater order, all those branches having the ability to produce flowers, regardless of their number.
  • the gene construct can be incorporated into a vector that includes a prokaryotic replicon, that is, a DNA sequence capable of directing the autonomous replication and maintaining the extrachromosomally recombinant DNA molecule when introduced into a prokaryotic host cell, such as a bacterium. Said replicons are known in the art.
  • said prokaryotic replicon also includes a gene whose expression confers a selective advantage, such as resistance to a drug (drug), to the transformed host cell.
  • bacterial genes that confer resistance to drugs include those that confer resistance to ampicillin, tetracycline, etc.
  • the neomycin phosphotransferase gene has the advantage that it is expressed in both eukaryotic and prokaryotic cells.
  • the vectors that include a prokaryotic replicon also include, in general, restriction sites for the insertion of the gene construct used for the implementation of the process of the invention. These vectors are known (US 6,268,552).
  • the expression vectors capable of expressing a recombinant DNA sequence in plant cells and capable of directing the stable integration into the genome of the host plant cell are vectors derived from the Ti plasmid of A. tumefaciens and several other known expression systems operating in plants (see, for example, WO 87/00551).
  • the method of the invention to obtain transgenic plants with an architecture of its modified inflorescence with respect to that presented by the corresponding wild plant comprises the introduction, in a cell or in a tissue of a plant, of the gene construction previously defined to produce a cell or a transformed plant tissue and generating a transgenic plant with an architecture of its modified inflorescence compared to that presented by the wild plant by regeneration of said cell or transformed plant tissue, wherein said transgenic plant with a modified inflorescence architecture with respect to The one that presents the wild plant produces a greater number of branches and branches of greater order, all of them producing flowers, than the corresponding wild plant as well as a greater number of flowers than the wild plant when grown under conditions that allow flowering and development. from the flowers.
  • the transgenic plant with an architecture of its modified inflorescence thus obtained has a more complex branching pattern and is not only capable of producing greater number of branches than the corresponding wild plant, but also that these branches are capable of producing flowers and the plant It has a half-life superior to that of wild plants.
  • the introduction of said gene construction to transform plant material and generate a transgenic plant can be carried out, as previously mentioned, by any means known in the state of the art, including, but not limited to, the transfer of DNA. mediated by A. tumefaciens, preferably with an unarmed T-DNA vector, electroporation, direct DNA transfer, particle bombardment, etc.
  • the systems and agents for introducing and selecting markers to check the presence of heterologous DNA in cells and / or plant tissues are well known.
  • the genetic markers that allow the selection of heterologous DNA in plant cells are genes that confer antibiotic resistance, for example, kanamycin, hygromycin, gentamicin, etc.
  • the marker allows the selection of successfully transformed plants that grow in a medium containing the corresponding antibiotic because they carry the appropriate resistance gene.
  • the present invention allows flowers to be obtained without having to apply hormones (gibberellins, auxins, cytokinins, etc.) or agrochemicals.
  • hormones gibberellins, auxins, cytokinins, etc.
  • an added advantage of the procedure of Ia The invention is that it allows to obtain not only more showy plants but also to increase the production of cut flowers, with which a reduction in production costs is achieved.
  • the transgenic plants thus obtained have a longer half-life of several months compared to wild plants.
  • the process provided by this invention supposes the additional possibility that the plants thus obtained have dominant androsterility.
  • One of the advantages of the process provided by this invention is that it offers the possibility of having andro-sterile flower-producing plants, with a greater number of branches and branches of greater order, all capable of producing flowers, than the wild plant, with the that the unwanted horizontal transfer of genes is avoided by not producing pollen or seeds, which is especially relevant in their authorization of use at the field level, since the horizontal transfer of genes is one of the major concerns of environmental groups and part of the citizens that today oppose the cultivation of transgenic plants.
  • the availability of andro-sterile plant genotypes may be relevant to avoid pollen contamination in urban areas or decrease the production of pollen allergens.
  • the plant species used in the example of the present invention are shown in Table 1.
  • Samples of the plant tissues used in the present invention for the extraction of nucleic acids were collected directly from the plant, frozen in liquid nitrogen and stored at -8O 0 C until later use. Samples destined for microscopy studies were fixed for further processing.
  • Arabidopsis plants were grown in phytotrons under controlled photoperiod and temperature growth conditions.
  • the temperature was 21 0 C and the illumination came from cold white fluorescent tubes with an intensity of 150 ⁇ E m "2 s " 2 (Sylvania Standard F58W / 133-T8).
  • the plants were grown under conditions of inductive photoperiod, which were 16 hours of light and 8 hours of darkness (long day, DL) and non-inductive photoperiod that were 8 hours of light and 16 hours of darkness (short day, DC).
  • the seeds were sown in alveoli or in pots depending on the subsequent use of the plants generated.
  • the seeds were sown in 6.5 * 6.5 * 5 cm plastic cells for long-day or short-day crops in a mixture of peat: perlite: vermiculite (1: 1: 1). They were placed in trays inside culture chambers and irrigated with immersion with Hoagland solution number 1 supplemented with trace elements. After planting, the trays were covered with plastic to maintain moisture and avoid contamination with other seeds from nearby plants. They were kept in darkness at 4 0 C for 3 days in order to synchronize the germination and after those days they were transferred to cabins.
  • Planting in pots was carried out in plastic pots of 11 cm in diameter, for DL or DC cultures and the same process was performed as for planting in alveoli.
  • the seeds were sown in 6.5 x 6.5 x 5 cm plastic cells in a mixture of peat: perlite: vermiculite (1: 1: 1). They were placed in trays in culture chambers and irrigated by immersion in a Hoagland solution number 1 supplemented with trace elements (Hewitt,
  • the seeds were sterilized by immersion for 3 minutes in a 70% (v / v) ethanol solution and 0.005% Triton X-100. During this time, the seeds were mixed with the previous solution by moving the tube containing them. Subsequently, the solution was removed and 96% ethanol was added with stirring for 1 minute. Immediately afterwards the seeds with the ethanol were placed on sterile filter paper until they dried.
  • the sterilized seeds (approximately 30 mg of seeds) were uniformly distributed in 15 cm diameter Petri dishes containing selection medium with kanamycin [2.2 g / l of MS salts (Murashige culture medium) and Skoog) (Duchefa), 20 g / l sucrose, 0.1 g / l MONTH (morpholinoethane sulfonic acid) pH 5.9, 0.6% agar (Pronadisa), 50 mg / l kanamycin, 300 mg / l timentin ].
  • the boxes with the seeds were stored for three days at 4 0 C in the dark after which they were moved to an in vitro culture cabin. After 7-10 days of planting the transformants that were distinguished by their green and elongated root, they were transplanted with the help of tweezers to plastic cells.
  • Tobacco plants from in vitro culture were individually grown in 13 cm diameter plastic pots containing a previously sterilized peat mix: vermiculite (1: 1), in a greenhouse cabin under controlled conditions and with a temperature of 24 0 C during the day and 18 0 C during the night.
  • Natural light is supplemented with artificial light using 400 W mercury vapor lamps [Phillips HDK / 400 HPI ®, N], to maintain a long day photoperiod.
  • Irrigation consisted of Hoagland solution number 1 provided by an automated drip irrigation system for 2 minutes, 4 times a day
  • the in vitro culture of snuff was performed in booths with constant temperature of 25 0 C under photoperiod conditions long (16 hours light and 8 hours dark) day, with a light intensity of 90 ⁇ E m "2 s" 2 supplied by fluorescent tubes of light type Grolux 36W (Sylvania).
  • Kanamycin-resistant plants (primary transformants, T1) whose cultivation had begun in Petri dishes, were subsequently transplanted into plastic alveoli of 6.5 x 6.5 x 5 cm with a mixture of peat: vermiculite (1: 1) . These crops remained covered with a transparent plastic, in which holes were gradually made in order to avoid excessive water condensation for 9 days. After the acclimatization period, the seedlings were transplanted into individual pots, where they were grown in greenhouse cabins under controlled temperature and photoperiod conditions. 2. Cultivation of microorganisms
  • microorganisms used in the example of the present invention are shown in Table 2.
  • the medium used for the growth of microorganisms was: - LB medium (Luria-Bertani medium): 1% tryptone, 0.5% yeast extract, 1% NaCI, pH 7.0.
  • LB medium Lia-Bertani medium
  • tryptone 0.5% yeast extract
  • NaCI 1% NaCI
  • pH 7.0 pH 7.0
  • the solid medium was solidified by the addition of 1.5% agar (Pronadisa).
  • Cloning was done in different plasmids depending on the origin of the DNA fragments and the required purposes.
  • PCR products polymerase chain reaction
  • pGEM-T Easy Promega
  • Plasmid pBI101 [Vancanneyt, G., et al., (1990). Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. VoI 220 (2): 245-50] was used to obtain transgenic Arabidopsis and tobacco plants through the transformation with Agrobacter ⁇ um tumefaciens. This plasmid contains the nptll gene that offers resistance to kanamycin and the ⁇ -glucuronidase gene that allowed to perform histochemical analysis of the transformed plants. Plasmid pBI101 was used to carry out the expression of the END1 :: barnase transgene in the two plants mentioned. 4. Enzymatic reactions
  • Ligation reactions were performed maintaining a molar ratio between vector and insert of 1: 2 in the case of plasmid pGEM-T Easy (Promega) and 1: 5 in the case of vector pBI101.
  • the final volume of the reactions was 10 or 20 ⁇ l. This volume included the vector / insert volume, 1 unit of phage T4 ligase DNA (Roche Molecular Materials).
  • ligation buffer (5 mM MgC ⁇ 1 mM DTT, 1 mM ATP, 66 mM Tris-HCI pH 7.5). The ligation reactions were carried out at 4 0 C overnight in the case of using the plasmid pGEM-T Easy and at 16 0 C overnight in the case of using pBI101.
  • the reaction was stopped with 2 ul of 0.5M EDTA per 100 ⁇ l total reaction volume, heating 20 min at 7O 0 C.
  • the solution was extracted twice with phenol / chloroform, precipitated with 1/10 v sodium acetate (NaOAc) 3 M pH 5.2, 2.5 v absolute ethanol (EtOH) and 1 ⁇ l of glycogen (Boehringer Mannheim) and the DNA precipitate was resuspended in a suitable volume (about 15 ⁇ l) and quantified by agarose gel electrophoresis.
  • PCR polymerase chain reaction
  • Plasmid DNA amplification reactions were carried out in a total volume of 50 ⁇ l, from 10-50 ng of template DNA, 1 ⁇ M of specific primers of the fragment to be amplified or of the plasmid where it was cloned, dN 4 TPs 200 ⁇ M, 50 mM KCI, MgCb
  • Tris-HCI pH 8.3 1.5 units of Thermus aquaticus polymerase (Taq polymerase, Roche Molecular Biochemicals).
  • the PCR reaction was carried out using the Ribo 1 and Inhi 2 primers (Table 3). These reactions were carried out in a total volume of 20 ⁇ l, from 50-100 ng of genomic DNA, 0.6 ⁇ M of specific primers, dN 4 TPs 200 ⁇ M, 50 mM KCI, 1.5 mM MgCl 2 , 10 mM Tris-HCI pH 8.3, 2.5 units of Thermus aquaticus polymerase (Taq polymerase, Roche Molecular Biochemicals).
  • the reactions were run in a Perkin Elmer 2400 at the following conditions: 1 cycle at 94 0 C 2 minutes; 30 cycles of 94 0 C 30 s; banding temperature (T) in degrees Celsius for 30 s; 72 0 CT ex t minutes, and 1 final cycle at 72 0 C for 10 minutes.
  • T banding temperature
  • the banding temperature was estimated as a function of the temperature Tm (estimated melting temperature) of the primers used (Table 3); the extension time used It depended on the length of the fragment to be amplified; In general, 1 minute was used for each kb of expected product.
  • the italicized sequences correspond to the nucleotides that are not part of the template DNA, and of them, the underlined ones, correspond to the restriction targets introduced to subclone the cDNAs in the corresponding plasmids.
  • the sequencing of cloned DNA fragments was carried out according to the enzyme sequencing protocol developed by Sanger et al., (Sanger, F., Nicklen, S., Coulso, AR 1977. DNA sequencing with chain termination inhibitors. PNAS. USA 74, 5463-5467) automatically in a sequencer "ABI PRISM 377" (Perkin Elmer).
  • the DNA extracted according to the protocol of isolation and purification of plasmid DNA from the QIAGEN-tiplOO system described in section 5.1 was brought to a concentration of 0.2 ⁇ g / ⁇ l, and amplified with Ampli Taq DNA polymerase in the presence of ddNTPs, each marked with a different fluorophore (Perkin Elmer).
  • the primers of the plasmid vector pGEM-T Easy, T7 and SP6 were used.
  • the alkaline lysis method was used as described in Sambrook, J., et al., (1989) [cited at supra], starting from a 3 ml culture grown during a night in liquid medium LB supplemented with the corresponding antibiotic.
  • Medium or large-scale plasmid DNA preparations were made from cultures, grown overnight in 100 ml or 500 ml of liquid medium LB supplemented with antibiotic, according to the method of extraction and purification of plasmid DNA from the systems of Qiagen Plasmid Midi Kit (Qiagen tip-100 columns) and Qiagen Plasmid Maxi Kit (Qiagen tip-500 columns), respectively, following the manufacturer's instructions.
  • the cell pellet was resuspended in 100 ⁇ l of solution I (50 mM glucose; 50 mM Tris-HCI (pH 8.0); 10 mM EDTA) after which 200 Dl of Il solution (NaOH) was added 0.2 N, 1% SDS) and mixed by quickly inverting the tube. Subsequently, solution III (60 ml of 5 M KAc; 11.5 ml of glacial acetic acid; 28.5 ml of water) was added and mixed using the vortex. After 5 minutes on ice, the sample was centrifuged at 12,000 rpm for 5 minutes at 4 0 C.
  • solution I 50 mM glucose; 50 mM Tris-HCI (pH 8.0); 10 mM EDTA
  • 200 Dl of Il solution NaOH
  • solution III 60 ml of 5 M KAc; 11.5 ml of glacial acetic acid; 28.5 ml of water
  • the selection of bacterial recombinants was carried out by sowing the bacterial cells transformed into plates with LB medium supplemented with the antibiotic to which the plasmid under study conferred resistance, and in the event that the plasmid allowed the selection by color, added 40 ⁇ l (25 mg / ml) of IPTG and 25 ⁇ l (20 mg / ml) of X-GaI to the solid culture medium.
  • antibiotics used for the selection of bacterial recombinants and the concentration at which they were used appear in Table 4. Table 4. Antibiotics used and their concentrations
  • Figure 1 the pBI101-F3 construction [described in patent application WO 01/73088] ( Figure 1) was started.
  • This construction contained 2,731 bp of the promoter region of the PsENDI gene isolated from the screening of a genomic pea library. The region comprised from fragment -2,736 to nucleotide -6 of the 5 'region, the first nucleotide of the previously isolated cDNA (clone 162) from a pea flower cDNA library [Gómez, MD, et. al., (2004).
  • the pea END1 promoter drives anther-specific gene expression in different plant species. VoI plant. 219: 967-981].
  • the -2,736A6 fragment of the promoter region of the PsENDI gene was fused to the uidA gene encoding the enzyme ⁇ -glucuronidase (GUS), (Gómez et al., 2004) [cited at supra].
  • GUS ⁇ -glucuronidase
  • This gene was released with the restriction enzymes BamHI and Sacl and the fragment corresponding to plasmid pBI101 plus the promoter of the PsENDI gene was extracted from the agarose gel.
  • the barnasa-barstar fragment previously cloned into the BamHI site of plasmid pBluescript KS (+) (Stratagene), was amplified using the primers Ribo 1 and Inhi 2 [Table 3]. With the first one, the cutting site for the BamHI enzyme of the original clone at the ATG level of barnase is maintained, and with the latter a cutting site for Sacl is created at the level of the stop codon of the barstar gene.
  • the fragment product of the PCR reaction was ligated to the pGEM-T Easy vector (Promega), and subsequently released with the enzymes BamHI and Sacl. This insert was cloned into the site created by these same enzymes in the pBI-END1 construct, thus creating the pBI-END1 :: barnasa-barstar construct ( Figure 1).
  • a tube was inoculated with 10 ml of LB medium, containing 100 ⁇ g / ml of rifampicin and 50 ⁇ g / ml of kanamycin, from a glycerinated with strain C58 pMP90 of A tumefaciens (Koncz and Schell, 1986) [cited at supra] carrier of the constructions of interest. This was incubated place overnight in the dark at 28 0 C with agitation of 200 rpm.
  • the pots were inverted and placed in a lunch box containing 200 ml of the Agrobacterium suspension in the middle of infiltration, so that not only the floral apexes but also the rosette leaves were submerged in the liquid .
  • the assembly was placed in a vacuum hood connected to a pump (EDWARDS RV3 pump, 110-120 / 220-240V, 50-60 Hz, single phase A652-01-903) and subjected to vacuum for 30 minutes in the high position vacuum and flow under "position I" (final total pressure: 3 x 10 ⁇ 2 mbar, 3 Pa). The time began to count when the suspension of Agrobacter ⁇ um began to bubble.
  • the plants were removed from the hood and dried slightly, draining them on a piece of absorbent paper.
  • the plants treated in this way were covered with plastic bags and returned to the cultivation booths where they were allowed to continue growing under the conditions described in section 1.1.
  • During the 2-3 days following the infiltration holes were made in the bags, in order to acclimatize the plants to the usual humidity conditions, until these were definitively eliminated.
  • the plants were grown to obtain mature seeds.
  • the siliques of transformed plants were mature seeds were collected, stored in cellophane bags and incubated in an oven at 37 0 C for at least a week.
  • the primary transformants Ti
  • the seeds from individual Ti plants were sterilized, planted in 15 cm diameter Petri dishes with kanamycin selection medium and grown in in vitro culture cabins. After 7-10 days from planting, the transformants were clearly identifiable by their green color and their developed roots; at that time they were transplanted into alveoli (6.5 X 6.5 x 5 cm) with a peat mixture: vermiculite: perlite (1: 1: 1) and transferred to a phytotron for cultivation under the conditions described in the section 1.1.
  • the phenotype of the population corresponding to the first (Ti) and second generation (T 2 ) of plants transformed with the construction was analyzed pBI-END1 :: barnasa-barstar.
  • the plants were photographed with a Nikon F-601 M camera, coupled to an MZ8 (Leica) magnifying glass.
  • the anthers of the END1 : barnasa plants were fixed and observed by SEM (scanning electron microscopy) and optical microscopy.
  • a segregation analysis of the andro-sterile phenotype was performed to determine the index of the transgene segregation for 4 independent transgenic lines based on the proportion of sterile plants versus fertile plants obtained. For this, the seeds coming from the crossing of independent Ti lines with wild plants were sown in individual alveoli for each one. The phenotype of the resulting plants was observed in terms of morphology of the anthers and fruit formation to quantify the percentage of sterility of the germinated plants.
  • Nicotiana tabacum plants were carried out following the method described by Horsh, R. B., et al., (1984). Inheritance of functional foreign genes in plants. Science VoI 223: 496-498, with the modifications proposed by Fisher and Guiltinan (1995) [Fisher, D. K., Guiltinan, J., (1995). Rapid, efficient production of homocygous transgenic tobaceous plants with Agrobacterium tumefaciens: a seed to seed protocol. Plant Mol. Biol. Rep. VoI. 13: 278-289].
  • a tube was inoculated with 5 ml of LB medium, 10 mM MgSO 4 , 100 ⁇ g / ml rifampin and 50 ⁇ g / ml kanamycin from a glycerinated with the strain LBA4404 of A. tumefaciens carrying the construction of interest. This place overnight incubated in the dark at 28 0 C with agitation of 200 rpm.
  • MSSABCK regeneration and selection medium MSSABCK regeneration and selection medium
  • MSS medium with 0.2 mg / l IAA (indole acetic acid), 2.2 mg / l 6-BAP, 400 mg / l carbenicillin (to inhibit the growth of Agrobacterium) and 130 mg / l kanamycin (to select the growth of cells that would have incorporated T-DNA)].
  • the plates with the explants were incubated in booths in vitro culture at 25 0 C, under conditions of long - day photoperiod (I see 1.2.2.), And every 7-10 days were changed to new boxes with the same medium.
  • the regenerated shoots (one of each explant, to ensure that independent transformation events were selected) that were appearing were cut avoiding the callus and transferred to bottles 6 cm in diameter by 9.5 cm high with rooting medium MSSACK ( solid MSS medium with 0.2 mg / l of IAA, 200 mg / l of carbenicillin and 130 mg / l of kanamycin). From each rooted outbreak, two internodes were isolated, each with a leaf, which was transferred to MSSABCK medium bottles, from which two were regenerated whole plants.
  • the phenotypic analysis of the first generation (Ti) of END1 :: barnasa plants was carried out by analyzing the morphology of the anthers of these plants by means of photographs taken with a Nikon F-601 M camera, coupled to a magnifying glass MZ8 (Leica) and by observing the anthers through SEM and optical microscopy.
  • Vegetable samples were introduced in 4% p-formaldehyde (w / v) in 1XPBS pH 7.0 immediately after collection. Subsequently, they were subjected to two or three vacuum pulses of 3 minutes each, the fixative solution was changed to a fresh one and they were kept overnight at 4 0 C. After the tissue fixation process they were washed with 1XPBS and dehydrated to absolute ethanol by a series of successive 30-minute washes at 4 0 C in increasing ethanol solutions (15%, 30%, 50%, 70%, 85%, 96%, 100%). From this point on, the samples underwent a different process depending on whether they were included in paraffin (Paraplast Plus, Sigma), resin (Historesin, Leica) or used to be analyzed by scanning electron microscopy. 9.2 Critical point and sample analysis
  • the samples stored in 100% ethanol were dried with liquid CO2 in a Polaron E300 critical point dryer, mounted on metal slides with activated carbon adhesive tape on which they were oriented and dissected conveniently. After assembly, the samples were coated with 200 nm gold-palladium particle shading, under an ionized argon atmosphere in a Sputter Coater SCD005 (BALTEC).
  • the images were obtained by means of the Autobeam program of the ISIS platform (Oxford Instruments), with a scanning speed of 200 s per image, in a JEOL JSM-5410 scanning electron microscope operating under the conditions of 10 kV microanalysis and distance of 25 mm work.
  • transgenic flowers do not show anthers (Figure 2C, right flower) and if we remove sepals and petals we can observe hook-shaped structures instead of the pollen sacs of the anther and a very short filament compared to that of the control stamens ( Figure 2E).
  • Transgenic plants continue to develop and produce branches and flowers (Figure 2C right) while control plants enter senescence and their fruits open to release the seeds inside (Figure 2C left). The half-life of these plants increased three months compared to the control.
  • the transgenic plants generated showed, as in the previous case, the same characteristics in terms of development and flowering:
  • the flowers present in the control plants have normal anthers with pollen inside ( Figure 4A and 4B) and the filament of the yarn has its normal length.
  • the transgenic flowers show deformed and necrotic anthers with abundant trichomes covering their collapsed pollen sacs, which do not show pollen inside ( Figure 4C and 4D).
  • Table 5 shows that the percentage of germination shown for the six lines studied (Bi, B 2 , B 3 , B 8 , Bi 4 , B 2 o) ranges between 30-100%, while the germination percentage of Wild seeds is 88.88%.
  • Table 8A Total values, average values and standard deviations of the number of branches and number of flowers for the andro-sterile plants of the transgenic lines. Wt: wild plants, TR: transgenic plants
  • Table 8 B Total values, average values and standard deviations of the number of branches and number of flowers for the wild plants studied
  • the number of branches produced by plants with an andro-sterile phenotype is approximately 8 times higher than in wild plants, since, while in these the average value of branches obtained is 36 branches, in transgenic plants, the average value of branches obtained is 288.
  • a greater number of branch orders is observed (tertiary and quaternary branches are obtained) while in the wild plants only primary and secondary branches are observed ( Figures 7A and 7B).
  • Figures 8A and 8B Regarding the number of flowers (Tables 8A and 8B), in andro-sterile plants it is observed that the number of flowers is approximately 4.5 times higher than in wild plants ( Figures 8A and 8B).
  • transgenic plants In transgenic plants, lateral meristems remain active for longer than in wild plants; thus, while wild plants are able to live for three months, transgenic plants remain alive in the greenhouse for twice as long (six months).

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Reproductive Health (AREA)
  • Pregnancy & Childbirth (AREA)
  • Physiology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention relates to a method for modifying the inflorescence architecture of plants, comprising: the transformation of plant material with a gene construction containing a cytotoxic gene under the control of the PsEND1 pea anther-specific gene promoter; the regeneration of the plants; and the selection of the transgenic plants that exhibit a modified inflorescence architecture compared to that of the corresponding wild plant. The resulting transgenic plant exhibits a more complex branching pattern with a greater number of branches and higher order branches, all of which are flowering. The invention is suitable for use in agriculture, particularly in the production of ornamental plants

Description

PROCEDIMIENTO PARA MODIFICAR LA ARQUITECTURA DE LA INFLORESCENCIA DE LAS PLANTAS PROCEDURE TO MODIFY THE ARCHITECTURE OF THE INFLORESCENCE OF PLANTS
CAMPO DE LA INVENCIÓN La invención se relaciona, en general, con un procedimiento para modificar Ia arquitectura de Ia inflorescencia de las plantas, y, en particular, con un procedimiento para obtener plantas transgénicas que presentan una arquitectura de su inflorescencia modificada con respecto a Ia de las plantas silvestres correspondientes, basado en el empleo de una construcción que comprende un gen citotóxico bajo el control de un promotor específico de anteras. Las plantas transgénicas muestran una arquitectura de su inflorescencia más compleja y con mayor número de ramas que las plantas silvestres correspondientes. Dichas ramas inician y desarrollan un mayor número de meristemos florales que las silvestres.FIELD OF THE INVENTION The invention relates, in general, to a method for modifying the architecture of the inflorescence of plants, and, in particular, to a method for obtaining transgenic plants that have an architecture of their inflorescence modified with respect to Ia of the corresponding wild plants, based on the use of a construct comprising a cytotoxic gene under the control of a specific anther promoter. The transgenic plants show an architecture of their inflorescence more complex and with greater number of branches than the corresponding wild plants. These branches initiate and develop a greater number of floral meristems than the wild ones.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
La arquitectura de las plantas, esto es su organización tridimensional, es una característica sometida a estricto control genético por Io que es específica de cada especie vegetal (Reinhardt, D. & Kuhlemeier, C. (2002). Plant architecture. EMBO reports 3:846-851 ). No obstante, se puede producir alguna modificación del patrón estructural básico por efecto de condiciones ambientales tales como Ia luz, Ia temperatura, Ia humedad o el estado nutricional de las plantas.Plant architecture, this is its three-dimensional organization, is a characteristic under strict genetic control by what is specific to each plant species (Reinhardt, D. & Kuhlemeier, C. (2002). Plant architecture. EMBO reports 3: 846-851). However, some modification of the basic structural pattern can occur due to environmental conditions such as light, temperature, humidity or nutritional status of plants.
La arquitectura de Ia parte aérea de las plantas viene definida por el patrón de distribución de las hojas a Io largo del tallo o filotaxis, Ia determinación de los meristemos apicales del tallo, y por los patrones de ramificación de las partes vegetativas y de las partes reproductivas, este último factor también denominado arquitectura de Ia inflorescencia. Las plantas producen ramas laterales a partir de los meristemos que se inician en las axilas de las hojas. El patrón de ramificación está condicionado por el patrón filotáctico del tallo de Ia planta. En muchas plantas, Ia iniciación de los meristemos axilares está, inicialmente, suprimida por el meristemo apical, fenómeno que se denomina dominancia apical. En el caso del maíz se sabe que Ia dominancia apical está mediada principalmente por el gen TEOSINTE BRANCHED1 (Doebley et al., (1997). The evolution of apical dominance in maize. Nature 386:485-488). De hecho en el muíante tb1 se desarrollan todos los meristemos axilares dando lugar a plantas muy ramificadas que muestran una arquitectura vegetativa nueva. Sin embargo, Ia estructura de Ia inflorescencia en cada una de las ramas que se desarrollan en el muíante no muestra proliferaciones florales, Io que sugiere que Ia arquiíecíura de Ia parle vegetativa y Ia arquitectura de Ia inflorescencia de las plantas están reguladas de forma diferente.The architecture of the aerial part of the plants is defined by the pattern of distribution of the leaves along the stem or phyloxis, the determination of the apical meristems of the stem, and by the branching patterns of the vegetative parts and the parts reproductive, this last factor also called architecture of the inflorescence. Plants produce lateral branches from the meristems that begin in the armpits of the leaves. The branching pattern is conditioned by the filotactic pattern of the plant stem. In many plants, the initiation of axillary meristems is initially suppressed by the apical meristem, a phenomenon called apical dominance. In the case of corn, it is known that the apical dominance is mediated mainly by the TEOSINTE BRANCHED1 gene (Doebley et al., (1997). The evolution of apical dominance in maize. Nature 386: 485-488). In fact, in the tb1 mutant, all axillary meristems develop, giving rise to highly branched plants that show a new vegetative architecture. However, the structure of the inflorescence in each one of the branches that develop in the mutant does not show floral proliferations, which suggests that the archiyecure of the vegetative parle and the architecture of the inflorescence of the plants are regulated differently.
A nivel genético también están descritas mutaciones, tales como lateral supressor en tomate, que dan lugar a Ia supresión de los meristemos axilares y que se pone de manifiesto por Ia producción de plantas de tomate sin ramas laterales (Schumacher et al., (1999). The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Nati. Acad.Sci.USA 96:290-295).At the genetic level, mutations are also described, such as lateral suppressor in tomato, which give rise to the suppression of axillary meristems and which is evidenced by the production of tomato plants without lateral branches (Schumacher et al., (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Nati. Acad.Sci.USA 96: 290-295).
La transición floral afecta a Ia arquitectura de Ia planta de varias formas ya que se suelen producir cambios en Ia filotaxis además de los que afectan al destino y a Ia identidad de los meristemos. Muchas plantas tienen un meristemo apical del tallo que es indeterminado, esto es, permanece activo durante toda Ia vida de Ia planta diferenciando primero hojas y luego flores. Este patrón de crecimiento se denomina monopodial y es el característico de Arabidopsis o Antirrhinum. El patrón de crecimiento monopodial en Arabidopsis se establece en distintas etapas: primero se forman metámeros vegetativos de tipo 1 , formados por entrenudos muy cortos, una hoja y una yema, que se organizan en forma de roseta; y en segundo lugar, y previa transición floral, el tallo principal de Ia inflorescencia se compone al principio de metámeros de tipo 2, que tienen entrenudos alargados, una hoja caulinar y una yema, y después por metámeros tipo 3 que contienen entrenudos de longitud intermedia y una yema floral. Los meristemos axilares se detectan en el tallo, primero en las axilas de las hojas caulinares y posteriormente en las de las rosetas, una vez producida Ia transición floral. Dichos meristemos axilares forman tallos laterales inflorescentes con un patrón de desarrollo también monopodial (Alvarez et al., (1992). Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant Journal 2:103-116). Así, el número de meristemos axilares tiene un gran impacto y condiciona Ia arquitectura de Ia planta. La formación de meristemos axilares en Arabidopsis está controlada, en parte, por tres genes R2R3 de Ia familia Myb denominados genes RAX {REGULADORES DE MERISTEMOS AXILARES) que son homólogos del gen Blind de Solanum licopersicon (Müller et al., (2006). Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Ce// 18:586-597).The floral transition affects the architecture of the plant in several ways since there are usually changes in the phyloxis in addition to those that affect the destination and the identity of the meristems. Many plants have an apical meristem of the stem that is undetermined, that is, it remains active throughout the life of the plant by first differentiating leaves and then flowers. This growth pattern is called monopodial and is characteristic of Arabidopsis or Antirrhinum. The pattern of monopodial growth in Arabidopsis is established in different stages: first, type 1 vegetative metamers are formed, formed by very short internodes, a leaf and a yolk, which are organized in the form of a rosette; and in the second place, and after a floral transition, the main stem of the inflorescence is composed at the beginning of type 2 metamers, which have elongated internodes, a caulinar leaf and a bud, and then by type 3 metamers that contain intermediate length internodes. and a floral bud. The axillary meristems are detected in the stem, first in the axillae of the caulinary leaves and later in those of the rosettes, once the floral transition has occurred. Such axillary meristems form inflorescent lateral stems with a monopodial development pattern (Alvarez et al., (1992). Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant Journal 2: 103-116). Thus, the number of axillary meristems has a great impact and conditions the architecture of the plant. The formation of axillary meristems in Arabidopsis is controlled, in part, by three R2R3 genes of the Myb family called RAX genes {REGULATORS OF AXILAR MERISTEMES) that are homologs of the Blind gene of Solanum licopersicon (Müller et al. (2006). homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Ce // 18: 586-597).
Otras plantas como las que pertenecen a Ia familia de las Solanaceae, caso del tomate, tienen un desarrollo determinado o simpodial, esto es el meristemo apical termina formando una flor y el desarrollo continúa a partir de los meristemos laterales (Schmitz, G. & Theres, K. (1999). Genetic control of branching in Arabidopsis and tomato. Curr. Opin. Plant Biol, 2:51-559. En las Solanaceae, Ia arquitectura de las inflorescencias muestra mucha diversidad entre las especies. En general, el meristemo apical forma una flor terminal cuando se produce Ia transición floral. A partir de aquí, el tabaco, por ejemplo, inicia varias ramas simpodiales que consisten en una hoja o bráctea, un meristemo simpodial nuevo y una flor terminal, mientras que en tomate se inician sólo dos meristemos simpodiales de los cuales el inferior forma tres hojas antes de florecer mientras que el superior se divide sucesivamente formando cada vez una flor terminal y un meristemo simpodial nuevo. Por su parte, en Ia petunia se inicia sólo una rama simpodial, Ia cual forma dos hojas y un meristemo simpodial nuevo (Huber, K.A. (1980). Morphologische und entwicklunggsgeschichtliche Untersuchungen an Blüten und Blütenstánden von Solanaceae und von Nolana paradoxa Lindl. (Nolanaceae). Dissertationes Botanicae 55: 1-252).Other plants such as those belonging to the Solanaceae family, in the case of tomato, have a specific or symposium development, this is the apical meristem ends up forming a flower and the development continues from the lateral meristems (Schmitz, G. & Theres , K. (1999) Genetic control of branching in Arabidopsis and tomato Curr. Opin. Plant Biol, 2: 51-559 In the Solanaceae, the architecture of the inflorescences shows a lot of diversity among the species. In general, the meristem apical forms a terminal flower when the floral transition occurs, from here, tobacco, for example, initiates several symposia branches that they consist of a leaf or bract, a new sypodial meristem and a terminal flower, while in tomato only two sypodial meristems of which the lower form three leaves before blooming are started while the upper one divides successively forming a terminal flower each time and a new symposium meristem. On the other hand, in Petunia only one sympodial branch is initiated, which forms two leaves and a new sympodial meristem (Huber, KA (1980). ). Dissertationes Botanicae 55: 1-252).
El análisis genético y molecular del control de Ia morfología de las inflorescencias ha desvelado algunas claves que determinan su arquitectura. En Arabidopsis se han caracterizado los genes REV, KNAT1 y ERECTA que son esenciales para determinar Ia arquitectura de Ia inflorescencia (Otsuga et al., (2001 ). REVOLUTA regulates meristem initiation at lateral positions. Plant Journal 25:223-236; Douglas et al., (2002). KNAT1 and ERECTA regúlate inflorescence architecture in Arabidopsis. Plant CeII 14:547-558; Venglat et al., (2002). The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc. Nati. Acad. Sci. USA 131 :1491-1591). También se han caracterizado en arroz y maíz genes ortólogos de CLAVATA1 de Arabidopsis que contribuyen al establecimiento de Ia arquitectura de Ia inflorescencia en dichas especies así como diversos genes que afectan a los patrones de ramificación vegetativos y reproductivos en Arabidopsis {LAS), tomate {LS y BL), arroz {MOC1) o maíz {BIF2) (Wang, Y. & Li, J. (2006). Genes controlling plant architecture. Current Opinión in Biotechnology 17:1 -7).The genetic and molecular analysis of the control of the morphology of the inflorescences has revealed some keys that determine its architecture. In Arabidopsis the genes REV, KNAT1 and ERECTA have been characterized that are essential to determine the architecture of the inflorescence (Otsuga et al., (2001). REVOLUTA regulates meristem initiation at lateral positions. Plant Journal 25: 223-236; Douglas et al., (2002). KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. Plant CeII 14: 547-558; Venglat et al., (2002). The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proc. Nati Acad. Sci. USA 131: 1491-1591). Also orthologous genes of CLAVATA1 from Arabidopsis have been characterized in rice and corn that contribute to the establishment of the architecture of the inflorescence in said species as well as various genes that affect the vegetative and reproductive branching patterns in Arabidopsis {LAS), tomato {LS and BL), rice {MOC1) or corn {BIF2) (Wang, Y. & Li, J. (2006). Genes controlling plant architecture. Current Opinion in Biotechnology 17: 1-7).
Recientemente, se han aislado varios genes que controlan Ia arquitectura de Ia inflorescencia en maíz (Vollbrecht et al., (2005). Architecture of floral branch systems in maize and related grasses. Nature 436:1119-1126). En plantas de cosecha, Ia arquitectura de Ia inflorescencia puede condicionar Ia producción de semillas y Ia adecuación de Ia estrategia de recolección. En maíz, el patrón de ramificación de Ia inflorescencia parece estar controlado por los genes RAMOSA (Bortiri et al., (2006). Ramosa2 Encodes a LATERAL ORGAN BOUNDARY domain proteinthat determines the fate of stem cells in branch meristems of maize. Plant CeI1 18:574-585). Recientemente, se ha caracterizado el gen RAMOSA 3 que codifica para el enzima trealosa-6-fosfato fosfatasa y que se expresa en dominios discretos cercanos a los meristemos axilares. El gen RAMOSA 3 podría controlar el patrón de ramificación de las inflorescencias del maíz modificando una señal de azúcar que alcanzaría a los meristemos axilares (Satoh-Nagasawa et al., (2006). A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441 : 227-230). Estas hipótesis podrían constituir bases científicas de futuras aplicaciones biotecnológicas.Recently, several genes that control the architecture of the inflorescence in corn have been isolated (Vollbrecht et al., (2005). Architecture of floral branch systems in maize and related grasses. Nature 436: 1119-1126). In crop plants, the architecture of the inflorescence can condition the production of seeds and the adequacy of the harvesting strategy. In corn, the branching pattern of the inflorescence seems to be controlled by the RAMOSA genes (Bortiri et al., (2006). Ramosa2 Encodes to LATERAL ORGAN BOUNDARY domain proteinthat determines the fate of stem cells in branch meristems of maize. Plant CeI1 18 : 574-585). Recently, the RAMOSA 3 gene that codes for the trehalose-6-phosphate phosphatase enzyme and which is expressed in discrete domains near axillary meristems has been characterized. The RAMOSA 3 gene could control the branching pattern of corn inflorescences by modifying a sugar signal that would reach axillary meristems (Satoh-Nagasawa et al., (2006). A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441 : 227-230). These hypotheses could constitute scientific bases of future biotechnological applications.
En conclusión, se sabe que Ia estructura tridimensional de las plantas está regulada a distintos niveles mediante procesos como Ia filotaxis, dominancia apical, determinación de meristemos y crecimiento diferencial de los tallos y de los órganos laterales. Mediante el análisis genético se han identificado proteínas reguladoras que controlan Ia identidad y determinación de los meristemos (Wang & Li, 2006, citado at supra). También se ha descrito Ia implicación de las hormonas vegetales en el control de Ia arquitectura de las plantas (Kuhlemeier, C. & Reinhardt, D. (2001). Auxin and phyllotaxis. Trends Plant Sci. 6:187-189; Schmitz & Theres, 1999, citado at supra; Booker et al., (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev.Cell 8: 443- 449; Ashikari et al., (2005). Cytokinin oxidase regulates rice grain production. Science 309:741-745; Ueguchi-Tanaka et al., (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693-698). No obstante, queda pendiente el establecer cómo interaccionan las proteínas reguladoras y las hormonas para acercarse a Ia comprensión sobre cómo el control del crecimiento a nivel celular conduce al establecimiento de Ia arquitectura de Ia planta genéticamente determinada (Woodward et al., (2005). Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol. 139:192-203). Más lejana aparece Ia posibilidad de utilizar estos conocimientos para alterar Ia arquitectura de las inflorescencias de manera que se puedan diseñar plantas de cosecha u ornamentales con características mejoradas (Wang & Li, 2006, citado at supra).In conclusion, it is known that the three-dimensional structure of plants is regulated at different levels through processes such as phyloxis, apical dominance, determination of meristems and differential growth of stems and lateral organs. Through genetic analysis, regulatory proteins have been identified that control the identity and determination of meristems (Wang & Li, 2006, cited at supra). The involvement of plant hormones in the control of plant architecture has also been described (Kuhlemeier, C. & Reinhardt, D. (2001). Auxin and phyllotaxis. Trends Plant Sci. 6: 187-189; Schmitz & Theres , 1999, cited at supra; Booker et al., (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3 / 4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 8: 443-449; Ashikari et al., (2005). Cytokinin oxidase regulates rice grain production. Science 309: 741-745; Ueguchi-Tanaka et al., (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for Gibberellin Nature 437: 693-698). However, it is still pending to establish how regulatory proteins and hormones interact to approach the understanding of how growth control at the cellular level leads to the establishment of the architecture of the genetically determined plant (Woodward et al., (2005). Interaction of auxin and ERECTA in elaborating Arabidopsis inflorescence architecture revealed by the activation tagging of a new member of the YUCCA family putative flavin monooxygenases. Plant Physiol. 139: 192-203). Further away is the possibility of using this knowledge to alter the architecture of the inflorescences so that harvest or ornamental plants with improved characteristics can be designed (Wang & Li, 2006, cited at supra).
Por otra parte, Ia disponibilidad de genotipos de plantas androestériles es crucial para Ia obtención de semillas híbridas y abre Ia posibilidad del manejo de las plantas de forma más respetuosa con el medio ambiente. En algunos cultivos, el uso de plantas androestériles evitaría Ia contaminación por polen o Ia transferencia horizontal de genes entre especies compatibles. En trabajos previos se han desarrollado herramientas biotecnológicas para Ia producción de plantas androestériles de interés agronómico mediante el uso de Ia región promotora del gen PsENDI de guisante (Pisum sativum L.) para dirigir Ia expresión de agentes citotóxicos específicamente a los tejidos estructurales de las anteras (WO 01/73088).On the other hand, the availability of genotypes of andro-sterile plants is crucial for obtaining hybrid seeds and opens up the possibility of plant management in a more environmentally friendly way. In some crops, the use of andro-sterile plants would prevent pollen contamination or horizontal gene transfer between compatible species. In previous work, biotechnological tools have been developed for the production of andro-sterile plants of agronomic interest through the use of the promoter region of the pea PsENDI gene (Pisum sativum L.) to direct the expression of cytotoxic agents specifically to the structural tissues of the anthers (WO 01/73088).
La ablación de anteras producida mediante transformación genética con genes citotóxicos que se expresan únicamente en las anteras, utilizando promotores específicos de algún tejido estaminal (como Ia región promotora del gen PsENDI citada anteriormente) ha permitido obtener plantas transgénicas androestériles y plantas transgénicas con androfertilidad restaurada en especies de importancia agronómica como maíz, colza o trigo. La ablación genética se basa en Ia inducción de Ia muerte celular mediante Ia expresión de cualquier enzima que sea capaz de destruir Ia integridad celular como proteasas, lipasas y ARNasas. Los mismos resultados se pueden obtener expresando sustancias tóxicas para las células, por ejemplo, péptidos que inactivan los ribosomas como Ia cadena A de Ia toxina (DT-A) de Corynebacterium diphtheria. También es posible Ia ablación de flores completas en plantas transgénicas en las que el gen que codifica DT-A se expresa bajo el control del promotor del gen LEAFY (Nilsson, O., et al. (1998). Genetic ablation of flowers in transgenic Arabidopsis. Plant J. VoI. 15(6):799-804). Se han desarrollado métodos que no destruyen el tejido directamente, sino que dan lugar a células susceptibles a agentes ablativos específicos. Un ejemplo de esta estrategia es el uso de ARN "antisentido" de un gen que confiere tolerancia a un herbicida. El efecto del ARN "antisentido" es eliminar Ia resistencia química de forma específica en polen, para que Ia aplicación del herbicida produzca Ia destrucción del mismo. Este método convierte a un herbicida en un gametocida.The ablation of anthers produced by genetic transformation with cytotoxic genes that are expressed only in the anthers, using specific promoters of some staminal tissue (such as the promoter region of the PsENDI gene mentioned above) has allowed to obtain andro-sterile transgenic plants and transgenic plants with restored androfertility in species of agronomic importance such as Corn, rapeseed or wheat. The genetic ablation is based on the induction of cell death by means of the expression of any enzyme that is capable of destroying the cellular integrity such as proteases, lipases and RNases. The same results can be obtained by expressing substances toxic to cells, for example, peptides that inactivate ribosomes such as the A chain of the toxin (DT-A) of Corynebacterium diphtheria. It is also possible the ablation of complete flowers in transgenic plants in which the gene encoding DT-A is expressed under the control of the promoter of the LEAFY gene (Nilsson, O., et al. (1998). Genetic ablation of flowers in transgenic Arabidopsis Plant J. VoI. 15 (6): 799-804). Methods have been developed that do not destroy tissue directly, but instead give rise to cells susceptible to specific ablative agents. An example of this strategy is the use of "antisense" RNA from a gene that confers tolerance to a herbicide. The effect of the "antisense" RNA is to eliminate the chemical resistance specifically in pollen, so that the application of the herbicide produces its destruction. This method converts a herbicide into a gametocide.
La primera estrategia de ablación diseñada para producir androesterilidad fue propuesta por Mariani en 1990 (Mariani, C, et al. (1990). Induction of male sterility by a chimaeric ribonuclease gene. Nature. VoI. 347:737-741).The first ablation strategy designed to produce androsterility was proposed by Mariani in 1990 (Mariani, C, et al. (1990). Induction of male sterility by a chimaeric ribonuclease gene. Nature. VoI. 347: 737-741).
El promotor del gen TA29 de tabaco, específico de tapetum, se usó para dirigir Ia expresión de dos ARNasas (ARNasa T1 de Aspergillus oryzae y barnasa de Bacillus amyloliquefaciens) en tabaco y Brassica napus. Las anteras transgénicas androestériles que se obtuvieron carecían de tapetum y sus sacos polínicos no producían microsporas ni granos de polen.The promoter of the TA29 tobacco gene, specific to tapetum, was used to direct the expression of two RNases (Aspergillus oryzae T1 RNAse and Bacillus amyloliquefaciens barnase) in tobacco and Brassica napus. The obtained andro-sterile transgenic anthers lacked tapetum and their pollen sacs did not produce microspores or pollen grains.
Por otro lado, Ia industria de Ia floricultura se esfuerza por conseguir nuevas y diferentes variedades de plantas ornamentales con características mejoradas que van desde Ia resistencia a patógenos / enfermedades a Ia modificación de Ia arquitectura de Ia planta, incluyendo Ia arquitectura floral (inflorescencias alteradas) o modificaciones en el color y en el número de flores. Las técnicas clásicas de mejora van dirigidas al cruce de plantas con características deseables para obtener híbridos que incorporen dichas características, o al empleo de hormonas para alterar el fenotipo de Ia planta. Sin embargo, Ia tecnología del ADN recombinante se ha convertido en Ia estrategia alternativa a Ia mejora clásica para desarrollar plantas con un fenotipo alterado y que presenten determinadas características mejoradas. En Ia solicitud de patente WO 02/45486, se emplean secuencias genéticas capaces de alterar el fenotipo de las plantas cuando dichas secuencias son incorporadas al genoma; en Ia patente norteamericana US 6.025.544, las plantas son modificadas genéticamente con secuencias de ácido nucleico que codifican para proteínas capaces de alterar el comportamiento floral; e incluso se puede llegar a alterar el color de las flores introduciendo secuencias de ADN que interfieran en Ia ruta de los pigmentos florales, tal como se describe en Ia solicitud de patente WO 94/28140, o alterar Ia arquitectura floral de las plantas de cultivo para generar plantas transgénicas más productivas (WO 02/079463). Todos estos esfuerzos están dirigidos a Ia producción de plantas transgénicas que exhiban unas características físicas deseables y apreciadas en Ia industria de Ia floricultura que incremente el valor de mercado de las plantas en Ia industria de las plantas ornamentales.On the other hand, the floriculture industry strives to achieve new and different varieties of ornamental plants with improved characteristics ranging from resistance to pathogens. diseases to the modification of the architecture of the plant, including the floral architecture (altered inflorescences) or modifications in the color and in the number of flowers. The classic improvement techniques are aimed at crossing plants with desirable characteristics to obtain hybrids that incorporate these characteristics, or the use of hormones to alter the phenotype of the plant. However, recombinant DNA technology has become the alternative strategy to classical improvement to develop plants with an altered phenotype and have certain improved characteristics. In patent application WO 02/45486, genetic sequences capable of altering the phenotype of plants are used when said sequences are incorporated into the genome; in US Patent 6,025,544, plants are genetically modified with nucleic acid sequences that code for proteins capable of altering floral behavior; and it is even possible to alter the color of the flowers by introducing DNA sequences that interfere in the route of the floral pigments, as described in the patent application WO 94/28140, or alter the floral architecture of the crop plants to generate more productive transgenic plants (WO 02/079463). All these efforts are directed to the production of transgenic plants that exhibit desirable physical characteristics and appreciated in the floriculture industry that increases the market value of the plants in the ornamental plant industry.
Dada Ia complejidad de factores genéticos que intervienen en Ia determinación de Ia estructura tridimensional de las inflorescencias, los inventores se propusieron estudiar el posible efecto del bloqueo del desarrollo floral normal mediante Ia ablación biotecnológica de las anteras de las flores sobre el patrón de ramificación de las mismas. COMPENDIO DE LA INVENCIÓNGiven the complexity of genetic factors involved in the determination of the three-dimensional structure of the inflorescences, the inventors set out to study the possible effect of blocking normal floral development through the biotechnological ablation of the anthers of the flowers on the branching pattern of the same. SUMMARY OF THE INVENTION
La presente invención va dirigida a solventar Ia necesidad del sector de las plantas ornamentales de disponer de plantas con arquitecturas inflorescentes complejas que supongan un valor añadido por su vistosidad o por Ia mejora de los costes de producción.The present invention is aimed at solving the need of the ornamental plants sector to have plants with complex inflorescent architectures that add value due to their attractiveness or the improvement of production costs.
El empleo de Ia técnicas de ADN recombinante para obtener plantas transgénicas con unas características deseables mejoradas es un recurso utilizado habitualmente en el estado de Ia técnica y conocido por el experto en Ia materia.The use of recombinant DNA techniques to obtain transgenic plants with improved desirable characteristics is a resource commonly used in the state of the art and known to the person skilled in the art.
Ensayos previos realizados por los inventores utilizando unas construcciones génicas basadas en Ia expresión de un gen citotóxico bajo el control de un promotor específico de anteras, tal como el promotor del gen PsENDI de guisante, o un fragmento funcional del mismo, para obtener plantas androestériles, pusieron de manifiesto que las plantas que poseían androesterilidad presentaban una mayor complejidad en Ia estructura tridimensional de las inflorescencias. La modificación de Ia arquitectura de las inflorescencias en las plantas transgénicas parecía conllevar un aumento de Ia producción en el número de flores. Para comprobar que dicho fenómeno no era producto del azar, se procedió a transformar plantas de interés científico/agronómico, tales como Arabidopsis thaliana y Nicotiana tabacum, con una construcción génica que contenía un gen citotóxico que produce androesterilidad. Los resultados obtenidos con A. thaliana y N. tabacum demostraron que Ia construcción génica empleada puede utilizarse en Ia obtención de plantas con una arquitectura de su inflorescencia modificada, de tal forma que se produce un aumento de Ia complejidad del patrón de ramificación de las plantas que conlleva a su vez un aumento en el número de ramas. Así, tal como se pone de manifiesto en el Ejemplo que acompaña a esta descripción, mientras que las plantas silvestres de A. thaliana cv. Columbia empleadas en los experimentos muestran un patrón de ramificación en el que a partir del tallo principal se derivan ramas de primer orden y de éstas se derivan ramas de segundo orden tanto en las axilas de las hojas de roseta como en las de las hojas caulinares, en las plantas transgénicas se producen ramificaciones de primer, segundo, tercer y cuarto orden, tanto desde las axilas de las hojas de roseta como desde las de las hojas caulinares, como puede observarse esquemáticamente en los diagramas de las Figuras 7A y 7B.Previous tests carried out by the inventors using gene constructs based on the expression of a cytotoxic gene under the control of a specific anther promoter, such as the promoter of the pea PsENDI gene, or a functional fragment thereof, to obtain andro-sterile plants, They showed that the plants that possessed androsterility had a greater complexity in the three-dimensional structure of the inflorescences. The modification of the architecture of the inflorescences in the transgenic plants seemed to lead to an increase in the production in the number of flowers. To verify that this phenomenon was not a product of chance, we proceeded to transform plants of scientific / agronomic interest, such as Arabidopsis thaliana and Nicotiana tabacum, with a gene construct that contained a cytotoxic gene that produces androsterility. The results obtained with A. thaliana and N. tabacum demonstrated that the gene construction used can be used in obtaining plants with an architecture of their modified inflorescence, so that there is an increase in the complexity of the pattern of branching of plants which in turn leads to an increase in the number of branches. Thus, as shown in the Example that accompanies this description, while the wild plants of A. thaliana cv. Columbia used in the experiments show a branching pattern in which from the main stem branches of the first order are derived and from these branches of the second order are derived both in the armpits of the rosette leaves and in those of the caulinary leaves, In transgenic plants, first, second, third and fourth order ramifications occur, both from the armpits of the rosette leaves and from those of the caulinary leaves, as can be seen schematically in the diagrams of Figures 7A and 7B.
Por tanto, en un aspecto, Ia invención se relaciona con un procedimiento para Ia producción de plantas transgénicas con una arquitectura de su inflorescencia modificada respecto de Ia que presenta Ia planta silvestre correspondiente que, entre otras etapas, comprende transformar una célula o tejido vegetal susceptible de ser transformado con una construcción génica que comprende un gen citotóxico bajo el control del promotor del gen PsENDI, o un fragmento del mismo con capacidad de regular específicamente Ia expresión génica de dicho gen citotóxico en anteras.Therefore, in one aspect, the invention relates to a process for the production of transgenic plants with an architecture of its modified inflorescence with respect to that presented by the corresponding wild plant which, among other stages, comprises transforming a susceptible plant cell or tissue if transformed with a gene construct comprising a cytotoxic gene under the control of the promoter of the PsENDI gene, or a fragment thereof capable of specifically regulating the gene expression of said cytotoxic gene in anthers.
Además de obtener plantas más vistosas y con una reducción de los costes de producción de flores cortadas, las plantas transgénicas obtenidas por el procedimiento de Ia presente invención, al ser androestériles, tienen Ia ventaja adicional de que no producen dispersión horizontal de genes al no generar ni polen ni semillas, con Io que su autorización de uso a nivel de campo no supondría una dificultad.In addition to obtaining more colorful plants and with a reduction in the production costs of cut flowers, the transgenic plants obtained by the process of the present invention, being andro-sterile, have the additional advantage that they do not produce horizontal dispersion of genes by not generating neither pollen nor seeds, so that its authorization of use at field level would not be a difficulty.
Por tanto, en otro aspecto, Ia invención se relaciona con una planta transgénica obtenible por el procedimiento descrito en Ia presente invención que presenta una arquitectura de su inflorescencia modificada en comparación con Ia de Ia planta silvestre correspondiente. En una realización particular, dicha planta transgénica presenta una arquitectura compleja, distinta, con mayor número de ramas y ramas de mayor orden, todas ellas capaces de producir flores, que Ia planta silvestre.Therefore, in another aspect, the invention relates to a transgenic plant obtainable by the method described in the present invention that has an architecture of its modified inflorescence compared to that of the corresponding wild plant. In a particular embodiment, said transgenic plant has a complex, different architecture, with greater number of branches and branches of greater order, all of them capable of producing flowers, than the wild plant.
Además, en otro aspecto de Ia invención, se describe un procedimiento para producir flores que comprende cultivar una planta transgénica obtenida según el procedimiento anteriormente descrito bajo condiciones que permitan Ia floración y el desarrollo de flores.In addition, in another aspect of the invention, a process for producing flowers is described which comprises cultivating a transgenic plant obtained according to the procedure described above under conditions that allow flowering and flower development.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
La Figura 1 muestra Ia representación esquemática de Ia construcción pBI- END1 ::barnasa-barstar y Ia construcción de partida pBI101-F3. El plásmido PB1101 consta del promotor constitutivo de Ia nopalina sintetasa (nos-pro) fusionado al gen nptll que confiere resistencia a kanamicina, el gen uidA que codifica Ia enzima D-glucuronidasa (GUS) y Ia señal de poliadenilación del gen de Ia nopalina sintetasa (nos-ter) en los extremos 3' de ambos genes. En Ia construcción pBI101-END1 ::barnasa-barstar el gen uidA ha sido sustituido por el fragmento que contiene los genes barnasa-barstar. La utilización combinada de ambos genes se hace para evitar Ia acción citotóxica del gen barnasa en los microorganismos utilizados como vectores (Agrobacterium) ya que en dichos organismos Ia expresión del gen barstar (inhibidor de Ia barnasa) se realiza sin dificultad. Sin embargo, dicho gen no se expresa en Ia planta.Figure 1 shows the schematic representation of the construction pBI-END1 :: barnasa-barstar and the starting construction pBI101-F3. Plasmid PB1101 consists of the constitutive promoter of nopaline synthetase (nos-pro) fused to the nptll gene that confers resistance to kanamycin, the uidA gene that encodes the enzyme D-glucuronidase (GUS) and the polyadenylation signal of the nopaline synthetase gene (nos-ter) at the 3 'ends of both genes. In the construction pBI101-END1 :: barnasa-barstar the uidA gene has been replaced by the fragment that contains the barnasa-barstar genes. The combined use of both genes is done to avoid the cytotoxic action of the barnase gene in the microorganisms used as vectors (Agrobacterium) since in said organisms the expression of the barstar gene (barnase inhibitor) is carried out without difficulty. However, said gene is not expressed in the plant.
La Figura 2 muestra fotografías de plantas de Arabidopsis thaliana silvestres (Figura 2A) y plantas de A. thaliana transgénicas obtenidas según el procedimiento descrito en Ia presente invención (Figura 2B). Por otro lado, en Ia esquina superior derecha de Ia Figura 2C se muestran las flores presentes en las plantas de Arabidopsis silvestres (flor izquierda) y las flores mostradas en Ia plantas de Arabidopsis transgénicas (flor derecha). En el resto de Ia Figura 2C, se muestran dos plantas de Arabidopsis: una transgénica obtenida por el procedimiento de Ia invención (derecha) y otra silvestre (izquierda). Las plantas transgénicas muestran un mayor desarrollo que las silvestres, un mayor número de ramificaciones y un número mayor de flores cuando se comparan con las silvestres. Las flores de las plantas silvestres se fecundan y producen frutos (silicuas) deteniendo su crecimiento, mientras que las transgénicas no producen frutos y continúan produciendo flores. Las Figuras 2D y 2E muestran Ia disección longitudinal de una flor silvestre y una transgénica, respectivamente. En Ia flor silvestre se observa Ia presencia de anteras normales mientras que en Ia transgénica las anteras están sin desarrollar.Figure 2 shows photographs of wild Arabidopsis thaliana plants (Figure 2A) and transgenic A. thaliana plants obtained according to the procedure described in the present invention (Figure 2B). On the other hand, in the upper right corner of Figure 2C the flowers present in the wild Arabidopsis plants (left flower) and the flowers shown in the transgenic Arabidopsis plants (right flower). In the rest of Figure 2C, two Arabidopsis plants are shown: one transgenic obtained by the method of the invention (right) and another wild (left). The transgenic plants show a greater development than the wild ones, a greater number of branches and a greater number of flowers when compared with the wild ones. The flowers of the wild plants fertilize and produce fruits (silicuas) stopping their growth, while the transgenic ones do not produce fruits and continue to produce flowers. Figures 2D and 2E show the longitudinal dissection of a wildflower and a transgenic flower, respectively. In the wild flower the presence of normal anthers is observed while in the transgenic anthers are undeveloped.
La Figura 3 muestras plantas de Nicotiana tabacum transgénicas obtenidas según el procedimiento de Ia invención y plantas de N. tabacum silvestres. En Ia Figura 3A se muestra una planta silvestre (izquierda) frente a dos plantas transgénicas según el procedimiento de Ia invenciónFigure 3 shows transgenic Nicotiana tabacum plants obtained according to the method of the invention and wild N. tabacum plants. Figure 3A shows a wild plant (left) against two transgenic plants according to the method of the invention
(centro y derecha). La Figura 3B muestra un detalle de las ramas de una planta transgénica de N. tabacum y Ia Figura 3C muestra Ia correspondiente planta silvestre. Las plantas transgénicas muestran un mayor desarrollo que las silvestres, un mayor número de ramificaciones y un número mayor de flores cuando se comparan con las silvestres. En Ia(center and right). Figure 3B shows a detail of the branches of a transgenic plant of N. tabacum and Figure 3C shows the corresponding wild plant. The transgenic plants show a greater development than the wild ones, a greater number of branches and a greater number of flowers when compared with the wild ones. In Ia
Figura 3D se puede observar cómo las flores de las plantas silvestres se fecundan y producen frutos (cápsulas) deteniendo su crecimiento (izquierda), mientras que las transgénicas no producen frutos y continúan produciendo flores que van senesciendo sobre las ramas sin fecundarse.Figure 3D can be seen how the flowers of wild plants fertilize and produce fruits (capsules) stopping their growth (left), while the transgenic ones do not produce fruits and continue to produce flowers that are senescent on the branches without fertilizing.
Las Figuras 4A y 4B muestran una antera de una planta silvestre de N. tabacum completa y una sección transversal de uno de sus sacos polínicos respectivamente observadas mediante microscopía electrónica de barrido (SEM). Se observa cómo contiene granos de polen en su interior. En las Figuras 4C y 4D se muestra una antera transgénica de N. tabacum mostrando sus sacos polínicos colapsados y una sección transversal de uno de ellos mostrando que no existen granos de polen en su interior respectivamente.Figures 4A and 4B show an anther of a complete N. tabacum wild plant and a cross section of one of its pollen sacs respectively observed by scanning electron microscopy (SEM). You can see how it contains pollen grains in its inside. In Figures 4C and 4D a transgenic anther of N. tabacum is shown showing its collapsed pollen sacs and a cross section of one of them showing that there are no pollen grains inside respectively.
La Figura 5 muestra Ia secuencia de nucleótidos de Ia región 5' del gen de guisante PsENDL Los posibles elementos reguladores dentro de Ia secuencia aparecen representados en diferentes colores en función del tipo de elemento regulador.Figure 5 shows the nucleotide sequence of the 5 'region of the PsENDL pea gene. The possible regulatory elements within the sequence are represented in different colors depending on the type of regulatory element.
Las Figuras 6A y 6B muestran el número de ramas producidas en las plantas silvestres frente a las transgénicas (A) y el número de flores producidas en las plantas silvestres frente a las plantas transgénicas (B). En ambas gráficas el número 1 corresponde a plantas silvestres y el número 2 a plantas transgénicas.Figures 6A and 6B show the number of branches produced in wild plants against transgenic plants (A) and the number of flowers produced in wild plants against transgenic plants (B). In both graphs the number 1 corresponds to wild plants and the number 2 to transgenic plants.
Las Figuras 7A y 7B muestran un diagrama representativo del número de ramificaciones producidas en las plantas silvestres (A) y en las plantas transgénicas (B) de A. thaliana.Figures 7A and 7B show a representative diagram of the number of branches produced in wild plants (A) and in transgenic plants (B) of A. thaliana.
Las Figuras 8A y 8B muestran un diagrama representativo del número de flores producidas en las plantas silvestres (A) y en las plantas transgénicas (B) de A. thaliana.Figures 8A and 8B show a representative diagram of the number of flowers produced in wild plants (A) and in transgenic plants (B) of A. thaliana.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
En un aspecto, Ia invención se relaciona con un procedimiento para obtener una planta transgénica con una arquitectura de su inflorescencia modificada respecto de Ia que presenta Ia planta silvestre (wt), que comprende: (a) transformar una célula o tejido vegetal susceptible de ser transformado con una construcción génica que comprende:In one aspect, the invention relates to a method for obtaining a transgenic plant with an architecture of its modified inflorescence with respect to that presented by the wild plant (wt), which comprises: (a) transforming a plant cell or tissue capable of being transformed with a gene construct comprising:
(i) una primera secuencia de ácido nucleico que comprende Ia secuencia de nucleótidos del promotor del gen PsENDI , o un fragmento del mismo con capacidad de regular específicamente Ia expresión génica de una segunda secuencia de ácido nucleico en anteras, y(i) a first nucleic acid sequence comprising the nucleotide sequence of the promoter of the PsENDI gene, or a fragment thereof capable of specifically regulating the gene expression of a second nucleic acid sequence in anthers, and
(ii) una segunda secuencia de ácido nucleico que comprende Ia secuencia de nucleótidos de un gen citotóxico, o un fragmento funcional del mismo, bajo el control de dicha primera secuencia de ácido nucleico, para producir una célula o tejido vegetal transformado,(ii) a second nucleic acid sequence comprising the nucleotide sequence of a cytotoxic gene, or a functional fragment thereof, under the control of said first nucleic acid sequence, to produce a transformed plant cell or tissue,
(b) regenerar dicha célula o tejido vegetal transformado en Ia etapa (a) para producir una planta transgénica, y (c) seleccionar las plantas transgénicas de Ia etapa (b) que exhiban una arquitectura de su inflorescencia modificada en comparación con Ia que presenta Ia correspondiente planta silvestre.(b) regenerate said transformed cell or plant tissue in stage (a) to produce a transgenic plant, and (c) select the transgenic plants of stage (b) that exhibit an architecture of its modified inflorescence compared to that presented The corresponding wild plant.
Tal como se utiliza en esta descripción, una "planta transgénica con una arquitectura de su inflorescencia modificada" respecto de Ia que presenta Ia planta silvestre se refiere a una planta transgénica capacitada para desarrollar un patrón de ramificación más complejo, que produce un mayor número de ramas y ramas de mayor orden, todas ellas capaces de producir flores, que Ia planta silvestre (wt) correspondiente gracias a Ia incorporación en su genoma de Ia construcción génica descrita en Ia presente invención; en general, dicha planta transgénica con una arquitectura de su inflorescencia modificada presenta un patrón de ramificación más complejo y es productora de mayor número de ramas y ramas de mayor orden, todas ellas productoras de flores, que Ia planta silvestre correspondiente. Asimismo, dicha planta transgénica no sólo es capaz de producir mayor número de ramas que Ia correspondiente planta silvestre, sino que dichas plantas transgénicas presentan un aumento en el número de flores producidas y en su vida media con respecto a las plantas silvestres. Mientras que las plantas silvestres senescen a los tres meses, las plantas transgénicas Io hacen transcurridos seis meses. En general, dicha planta transgénica posee una estructura tridimensional que Ie proporciona una apariencia más vistosa. En esta invención, una planta de interés es manipulada genéticamente para contener y expresar de forma estable y consistente un fenotipo que normalmente no está presente en las plantas silvestres. Dicho fenotipo consiste en un mayor número de ramas y ramas de mayor orden, todas ellas capaces de producir flores, y de flores que Ia planta silvestre.As used in this description, a "transgenic plant with an architecture of its modified inflorescence" with respect to that presented by the wild plant refers to a transgenic plant capable of developing a more complex branching pattern, which produces a greater number of branches and branches of greater order, all of them capable of producing flowers, than the corresponding wild plant (wt) thanks to the incorporation into its genome of the gene construction described in the present invention; in general, said transgenic plant with an architecture of its modified inflorescence has a more complex branching pattern and is the producer of a greater number of branches and Branches of greater order, all of them producing flowers, than the corresponding wild plant. Likewise, said transgenic plant is not only capable of producing a greater number of branches than the corresponding wild plant, but said transgenic plants have an increase in the number of flowers produced and in their half-life with respect to wild plants. While wild plants senesce at three months, transgenic plants have been running for six months. In general, said transgenic plant has a three-dimensional structure that provides a more colorful appearance. In this invention, a plant of interest is genetically manipulated to contain and stably and consistently express a phenotype that is not normally present in wild plants. Said phenotype consists of a greater number of branches and branches of greater order, all of them capable of producing flowers, and of flowers than the wild plant.
Aunque prácticamente cualquier planta de interés puede ser manipulada genéticamente según Ia invención para obtener plantas transgénicas con una arquitectura de su inflorescencia modificada respecto de Ia que presenta Ia planta silvestre; en una realización particular, dicha planta es una planta ornamental. Ejemplos ilustrativos, no limitativos, de dichas plantas de interés susceptibles de ser manipuladas genéticamente según Ia invención para obtener plantas transgénicas con una arquitectura de su inflorescencia modificada respecto de Ia que presenta Ia planta silvestre, incluyen plantas pertenecientes a los géneros Aeschynantus; Canna; Columnea; Anemone; Azalea; Begonia; Calceolaria; Camelia; Dianthus; Freessia; Gerbera; Hibiscus; Hypoestes; Kalanchoe; Nicotiana; Pelargonium; Petunia; Príkmula; Rannunculus; Rhipsalidopsis; Rosa; Saintpaulia; Sinningia-gloxinia; Streptocarpus; Tigridia; Verbena; y Zinnia. El procedimiento de Ia invención comprende Ia preparación de una construcción génica que comprende (i) una primera secuencia de ácido nucleico que comprende Ia secuencia de nucleótidos del promotor del gen PsENDI, o un fragmento del mismo con capacidad de regular específicamente Ia expresión génica de una segunda secuencia de ácido nucleico en anteras, y (ii) una segunda secuencia de ácido nucleico que comprende Ia secuencia de nucleótidos de un gen citotóxico, o un fragmento funcional del mismo, bajo el control de dicha primera secuencia de ácido nucleico.Although practically any plant of interest can be genetically manipulated according to the invention to obtain transgenic plants with an architecture of its modified inflorescence with respect to that presented by the wild plant; In a particular embodiment, said plant is an ornamental plant. Illustrative, non-limiting examples of said plants of interest susceptible to being genetically manipulated according to the invention to obtain transgenic plants with an architecture of their inflorescence modified with respect to that presented by the wild plant, include plants belonging to the Aeschynantus genera; Canna; Column; Anemone; Azalea; Begonia; Calceolaria; Camellia; Dianthus; Freessia; Gerbera; Hibiscus; Hypoestes; Kalanchoe; Nicotiana; Pelargonium; Petunia; Príkmula; Rannunculus; Rhipsalidopsis; Pink; Saintpaulia; Sinningia-gloxinia; Streptocarpus; Tigridia; Verbena; and Zinnia. The method of the invention comprises the preparation of a gene construct comprising (i) a first nucleic acid sequence comprising the nucleotide sequence of the promoter of the PsENDI gene, or a fragment thereof capable of specifically regulating the gene expression of a gene. second nucleic acid sequence in anthers, and (ii) a second nucleic acid sequence comprising the nucleotide sequence of a cytotoxic gene, or a functional fragment thereof, under the control of said first nucleic acid sequence.
El promotor del gen PsENDI de guisante (Pisum sativum L), en adelante pEND1 , es un promotor capaz de dirigir Ia expresión específica en antera en estadios tempranos del desarrollo de Ia planta tal como se describe y pone de manifiesto en Ia solicitud de patente WO 01/073088. Efectivamente, los ensayos de hibridación in situ descritos en dicha solicitud de patente confirmaron Ia especificidad de Ia expresión del gen PsENDI en los tejidos de Ia antera del guisante, en particular, en los tejidos que conforman los sacos polínicos de las anteras, durante los diferentes estadios de su desarrollo. Su expresión comenzaba en estadios muy tempranos del desarrollo (diferenciación de primordios comunes en pétalos y estambres) y continuaba hasta Ia dehiscencia de Ia antera, expresándose exclusivamente en Ia epidermis, tejido conectivo, capa intermedia y endotecio. No se detectó expresión del gen ni en el tejido nutritivo {tapetum) ni en el germinal (polen). Asimismo, los ensayos realizados con otros órganos florales, otras partes de Ia planta (tallo, hojas, raíces, etc.) o con semillas (cotiledones) resultaron negativos. Por tanto, el empleo de dicho promotor permite producir plantas transgénicas que expresen específicamente en Ia antera cualquier gen que se encuentre bajo su control. La secuencia completa de nucleótidos del pEND1 (región 5' del gen PsENDI) se muestra en dicha solicitud de patente WO 01/073088 (SEQ ID NO: 1 ), así como en Ia Figura 5 que acompaña a esta descripción.The promoter of the pea PsENDI gene (Pisum sativum L), hereinafter pEND1, is a promoter capable of directing the specific expression in anther in early stages of plant development as described and evidenced in the WO patent application 07/013088. Indeed, the in situ hybridization assays described in said patent application confirmed the specificity of the expression of the PsENDI gene in the tissues of the pea anther, in particular, in the tissues that make up the pollen sacs of the anthers, during the different stages of its development. Its expression began in very early stages of development (differentiation of common primordia in petals and stamens) and continued until the dehiscence of the anther, expressing itself exclusively in the epidermis, connective tissue, intermediate layer and endothelium. No expression of the gene was detected in the nutritive tissue {tapetum) or in the germinal (pollen). Likewise, the tests carried out with other floral organs, other parts of the plant (stem, leaves, roots, etc.) or with seeds (cotyledons) were negative. Therefore, the use of said promoter allows to produce transgenic plants that specifically express in the anther any gene that is under its control. The complete nucleotide sequence of pEND1 (5 'region of the PsENDI gene) is shown in said patent application WO 01/073088 (SEQ ID NO: 1), as well as in Figure 5 that accompanies this description.
En una realización particular, el pEND1 presente en Ia construcción génica comprende Ia secuencia de nucleótidos mostrada comprendida desde el nucleótido -2.736 hasta el nucleótido -6 de Ia secuencia de nucleótidos mostrada en Ia Figura 5, que constituye Ia secuencia completa de dicho promotor.In a particular embodiment, the pEND1 present in the gene construct comprises the nucleotide sequence shown from nucleotide -2,736 to nucleotide -6 of the nucleotide sequence shown in Figure 5, which constitutes the complete sequence of said promoter.
En otra realización particular, Ia construcción génica utilizada para transformar células o tejidos vegetales comprende un fragmento de pEND1 que comprende, al menos, Ia secuencia de nucleótidos comprendida desde el nucleótido -366 hasta el nucleótido -6 de Ia secuencia de nucleótidos mostrada en Ia Figura 5. El fragmento de pEND1 previamente definido mantiene Ia capacidad reguladora de Ia expresión específica en antera y es capaz de dirigir Ia expresión específica de antera en estadios tempranos del desarrollo de Ia planta.In another particular embodiment, the gene construct used to transform plant cells or tissues comprises a fragment of pEND1 comprising, at least, the nucleotide sequence comprised from nucleotide -366 to nucleotide -6 of the nucleotide sequence shown in Figure. 5. The previously defined pEND1 fragment maintains the regulatory capacity of the specific expression in anther and is capable of directing the specific expression of anther in early stages of plant development.
El pEND1 puede obtenerse por métodos convencionales a partir de una planta de guisante (Pisum sativum L.) o bien a partir de un organismo hospedador transformado con una secuencia de ADN que comprende dicho promotor, tal como se menciona en WO 01/073088. Asimismo, los fragmentos de pEND1 que mantienen Ia capacidad reguladora de Ia expresión específica en antera pueden obtenerse, en base a Ia información facilitada, por métodos convencionales, por ejemplo, a partir del pEND1 , efectuando las delecciones apropiadas. Para comprobar si un fragmento de pEND1 mantiene Ia capacidad reguladora de Ia expresión específica en antera se pueden realizar los ensayos descritos en el Ejemplo 1 de WO 01/073088. La construcción génica utilizada para transformar células o tejidos vegetales comprende, además del pEND1 o un fragmento funcional del mismo, es decir, capaz de regular Ia expresión específica en antera, un gen citotóxico, operativamente unido a dicho promotor o fragmento funcional del mismo.The pEND1 can be obtained by conventional methods from a pea plant (Pisum sativum L.) or from a host organism transformed with a DNA sequence comprising said promoter, as mentioned in WO 01/073088. Likewise, the fragments of pEND1 that maintain the regulatory capacity of the specific expression in anther can be obtained, based on the information provided, by conventional methods, for example, from the pEND1, making the appropriate deletions. To test if a fragment of pEND1 maintains the regulatory capacity of the specific expression in the anther, the tests described in Example 1 of WO 01/073088 can be performed. The gene construct used to transform plant cells or tissues comprises, in addition to pEND1 or a functional fragment thereof, that is, capable of regulating the specific expression in anther, a cytotoxic gene, operably linked to said promoter or functional fragment thereof.
Tal como se utiliza en esta descripción, el término "gen citotóxico" incluye a cualquier gen que codifica una proteína o actividad enzimática que causa Ia muerte celular en el tejido donde se expresa, por ejemplo, un gen que codifica una proteína o actividad enzimática que provoca Ia ablación de Ia antera.As used in this description, the term "cytotoxic gene" includes any gene that encodes a protein or enzymatic activity that causes cell death in the tissue where it is expressed, for example, a gene that encodes a protein or enzymatic activity that causes the ablation of the anther.
En plantas se han usado diversas proteínas que producen muerte celular, por ejemplo, Ia toxina A de Ia difteria (DTA) producida naturalmente por Corynebacterium diphteriae, Ia exotoxina A de Pseudomonas aeruginosa, Ia ribonucleasa T de Aspergillus oryzae, Ia barnasa de Bacillus amyloliquefaciens, etc. Los genes que codifican dichas proteínas pueden ser utilizados como genes citotóxicos en Ia construcción génica aquí descrita para Ia puesta en práctica de Ia presente invención.Various plants that produce cell death have been used in plants, for example, Ia diphtheria toxin A (DTA) produced naturally by Corynebacterium diphteriae, Pseudomonas aeruginosa exotoxin A, Aspergillus oryzae ribonuclease T, Bacillus amyloliquefaciens barnase, etc. The genes encoding said proteins can be used as cytotoxic genes in the gene construction described herein for the implementation of the present invention.
No obstante, en una realización particular, dicho gen citotóxico que se expresa en antera debido a que está bajo el control de pEND1 es el gen de Ia barnasa, una ribonucleasa de Bacillus amyloliquefaciens [Mariani et al., (1990), citado at supra] que provoca Ia ablación completa de Ia antera, desde estadios muy tempranos de su desarrollo, impidiendo Ia formación del polen en las mismas, dando lugar de este modo a una planta androestéril. Ejemplos adicionales de genes citotóxicos se citan en Ia solicitud de patente europea EP 412006 así como en Ia solicitud de patente WO 01/073088, cuyos contenidos se incorporan por referencia a Ia presente descripción. La construcción génica utilizada para transformar células o tejidos vegetales según el procedimiento de Ia invención puede obtenerse por métodos convencionales utilizando técnicas ampliamente conocidas [Sambrook, J., et al., 2001. Molecular cloning: a Laboratory Manual, 3rd ed., CoId Spring Harbor Laboratory Press, N.Y., VoI. 1-3]. Dicha construcción génica también puede contener, operativamente enlazados, unos elementos reguladores de Ia expresión, por ejemplo, secuencias de terminación de Ia transcripción, secuencias potenciadoras de Ia transcripción y/o traducción, etc.However, in a particular embodiment, said cytotoxic gene that is expressed in anther because it is under the control of pEND1 is the barnase gene, a Bacillus amyloliquefaciens ribonuclease [Mariani et al., (1990), cited at supra ] that causes the complete ablation of the anther, from very early stages of its development, preventing the formation of pollen therein, thus giving rise to an andro-sterile plant. Additional examples of cytotoxic genes are cited in European patent application EP 412006 as well as in patent application WO 01/073088, the contents of which are incorporated by reference to the present description. The gene construct used to transform plant cells or tissues by the process of the invention can be obtained by conventional methods using widely known techniques [Sambrook, J., et al, 2001. Molecular cloning:.. A Laboratory Manual, 3rd ed, Coid Spring Harbor Laboratory Press, NY, VoI. 1-3]. Said gene construct may also contain, operatively linked, regulatory elements of the expression, for example, sequences of termination of transcription, enhancer sequences of transcription and / or translation, etc.
La construcción génica utilizada para transformar células o tejidos vegetales según el procedimiento de Ia invención puede ser insertada en el genoma de una célula o tejido vegetal por cualquier método apropiado para obtener células y tejidos vegetales transformados. Dichos métodos pueden implicar, por ejemplo, el empleo de liposomas, electroporación, difusión, bombardeo de partículas, microinyección, balas génicas ("gene gun"), compuestos químicos que incrementan Ia captación de ADN libre, por ejemplo, coprecipitación con fosfato calcico, vectores virales, etc. Vectores apropiados para Ia transformación de plantas incluyen aquellos derivados del plásmido Ti de Agrobacteríum tumefaciens, tales como los descritos en EP 120516. Además, de los vectores de transformación derivados de los plásmidos Ti o Ri de Agrobacteríum, se pueden utilizar métodos alternativos para insertar Ia construcción génica en células y tejidos vegetales. En una realización particular, dicha construcción génica es introducida, mediante el protocolo de infiltración a vacío.The gene construct used to transform plant cells or tissues according to the method of the invention can be inserted into the genome of a plant cell or tissue by any appropriate method to obtain transformed plant cells and tissues. Such methods may involve, for example, the use of liposomes, electroporation, diffusion, particle bombardment, microinjection, gene bullets ("gene gun"), chemical compounds that increase free DNA uptake, for example, coprecipitation with calcium phosphate, viral vectors, etc. Appropriate vectors for plant transformation include those derived from the Ti plasmid of Agrobacteríum tumefaciens, such as those described in EP 120516. In addition, from the transformation vectors derived from the Ti or Ri plasmids of Agrobacteríum, alternative methods can be used to insert Ia gene construction in plant cells and tissues. In a particular embodiment, said gene construct is introduced, by means of the vacuum infiltration protocol.
La construcción génica aquí descrita puede emplearse para transformar cualquier célula o tejido vegetal susceptible de ser transformado. En una realización particular, dicha célula o tejido vegetal pertenece a una planta de tipo ornamental. Tal como aquí se utiliza, el término "planta ornamental" incluye a toda planta cultivada por su valor generalmente estético. Entre dichos valores estéticos se incluyen caracteres visualmente atrayentes tales como flores o inflorescencias vistosas, coloridas o perfumadas. Ejemplos ilustrativos, no limitativos, de dichas plantas ornamentales incluyen plantas pertenecientes a los géneros Aeschynantus; Canna; Columnea; Anemone; Azalea; Begonia; Calceolaria; Camelia; Dianthus; Freessia; Gerbera; Hibiscus; Hypoestes; Kalanchoe; Nicotiana; Pelargonium; Petunia; Príkmula; Rannunculus; Rhipsalidopsis; Rosa; Saintpaulia; Sinningia-gloxinia; Streptocarpus; Tigridia; Verbena; y Zinnia. De acuerdo con Ia presente invención es posible obtener plantas transgénicas con valor ornamental mejorado, que presentan un mayor número de ramas y ramas de mayor orden, teniendo todas esas ramas Ia capacidad para producir flores, independientemente de su número.The gene construction described herein can be used to transform any cell or plant tissue that can be transformed. In a particular embodiment, said cell or plant tissue belongs to an ornamental type plant. As used herein, the term "ornamental plant" includes any plant grown for its generally aesthetic value. Between such aesthetic values include visually appealing characters such as colorful, colorful or scented flowers or inflorescences. Illustrative, non-limiting examples of such ornamental plants include plants belonging to the Aeschynantus genera; Canna; Column; Anemone; Azalea; Begonia; Calceolaria; Camellia; Dianthus; Freessia; Gerbera; Hibiscus; Hypoestes; Kalanchoe; Nicotiana; Pelargonium; Petunia; Príkmula; Rannunculus; Rhipsalidopsis; Pink; Saintpaulia; Sinningia-gloxinia; Streptocarpus; Tigridia; Verbena; and Zinnia. In accordance with the present invention it is possible to obtain transgenic plants with improved ornamental value, which have a greater number of branches and branches of greater order, all those branches having the ability to produce flowers, regardless of their number.
La construcción génica puede estar incorporada en un vector que incluya un replicón procariótico, es decir, una secuencia de ADN capaz de dirigir Ia replicación autónoma y mantener Ia molécula de ADN recombinante extracromosómicamente cuando se introduce en una célula hospedadora procariota, tal como una bacteria. Dichos replicones son conocidos en Ia técnica. En una realización preferida, dicho replicón procariótico incluye, además un gen cuya expresión confiere una ventaja selectiva, tal como resistencia a una droga (fármaco), a Ia célula hospedadora transformada. Ejemplos ilustrativos de genes bacterianos que confieren resistencia a drogas incluyen aquellos que confieren resistencia a ampicilina, tetracilina, etc. El gen de Ia neomicina fosfotransferasa tiene Ia ventaja de que es expresado tanto en células eucarióticas como procarióticas. Los vectores que incluyen un replicón procariótico incluyen, además, generalmente, unos sitios de restricción para Ia inserción de Ia construcción génica utilizada para Ia puesta en práctica del procedimiento de Ia invención. Estos vectores son conocidos (US 6.268.552). Entre los vectores de expresión capaces de expresar una secuencia de ADN recombinante en células vegetales y capaces de dirigir Ia integración estable en el genoma de Ia célula vegetal hospedadora se encuentran los vectores derivados del plásmido Ti de A. tumefaciens y varios otros sistemas de expresión conocidos que funcionan en plantas (véase, por ejemplo, WO 87/00551 ).The gene construct can be incorporated into a vector that includes a prokaryotic replicon, that is, a DNA sequence capable of directing the autonomous replication and maintaining the extrachromosomally recombinant DNA molecule when introduced into a prokaryotic host cell, such as a bacterium. Said replicons are known in the art. In a preferred embodiment, said prokaryotic replicon also includes a gene whose expression confers a selective advantage, such as resistance to a drug (drug), to the transformed host cell. Illustrative examples of bacterial genes that confer resistance to drugs include those that confer resistance to ampicillin, tetracycline, etc. The neomycin phosphotransferase gene has the advantage that it is expressed in both eukaryotic and prokaryotic cells. The vectors that include a prokaryotic replicon also include, in general, restriction sites for the insertion of the gene construct used for the implementation of the process of the invention. These vectors are known (US 6,268,552). Among the expression vectors capable of expressing a recombinant DNA sequence in plant cells and capable of directing the stable integration into the genome of the host plant cell are vectors derived from the Ti plasmid of A. tumefaciens and several other known expression systems operating in plants (see, for example, WO 87/00551).
El procedimiento de Ia invención para obtener plantas transgénicas con una arquitectura de su inflorescencia modificada respecto de Ia que presenta Ia planta silvestre correspondiente comprende Ia introducción, en una célula o en un tejido de una planta, de Ia construcción génica previamente definida para producir una célula o un tejido vegetal transformado y generar una planta transgénica con una arquitectura de su inflorescencia modificada en comparación con Ia que presenta Ia planta silvestre mediante regeneración de dicha célula o tejido vegetal transformado, en donde dicha planta transgénica con una arquitectura de su inflorescencia modificada respecto de Ia que presenta Ia planta silvestre produce mayor número de ramas y ramas de mayor orden, todas ellas productoras de flores, que Ia planta silvestre correspondiente así como un mayor número de flores que Ia planta silvestre cuando se crece bajo condiciones que permiten Ia floración y desarrollo de las flores. La planta transgénica con una arquitectura de su inflorescencia modificada así obtenida presenta un patrón de ramificación más complejo y no sólo es capaz de producir mayor número de ramas que Ia correspondiente planta silvestre, sino que, además dichas ramas son capaces de producir flores y Ia planta presenta una vida media superior a Ia de las plantas silvestres.The method of the invention to obtain transgenic plants with an architecture of its modified inflorescence with respect to that presented by the corresponding wild plant comprises the introduction, in a cell or in a tissue of a plant, of the gene construction previously defined to produce a cell or a transformed plant tissue and generating a transgenic plant with an architecture of its modified inflorescence compared to that presented by the wild plant by regeneration of said cell or transformed plant tissue, wherein said transgenic plant with a modified inflorescence architecture with respect to The one that presents the wild plant produces a greater number of branches and branches of greater order, all of them producing flowers, than the corresponding wild plant as well as a greater number of flowers than the wild plant when grown under conditions that allow flowering and development. from the flowers. The transgenic plant with an architecture of its modified inflorescence thus obtained has a more complex branching pattern and is not only capable of producing greater number of branches than the corresponding wild plant, but also that these branches are capable of producing flowers and the plant It has a half-life superior to that of wild plants.
La introducción de dicha construcción génica para transformar material vegetal y generar una planta transgénica puede llevarse a cabo, tal como se ha mencionado previamente, por cualquier medio conocido en el estado de Ia técnica, incluyendo, pero sin limitarse, a Ia transferencia de ADN mediada por A. tumefaciens, preferiblemente con un vector T-DNA desarmado, electroporación, transferencia directa de ADN, bombardeo de partículas, etc.The introduction of said gene construction to transform plant material and generate a transgenic plant can be carried out, as previously mentioned, by any means known in the state of the art, including, but not limited to, the transfer of DNA. mediated by A. tumefaciens, preferably with an unarmed T-DNA vector, electroporation, direct DNA transfer, particle bombardment, etc.
Las técnicas para cultivar las células y tejidos vegetales transformados y regenerar las plantas transgénicas con una arquitectura de su inflorescencia modificada respecto de Ia que presenta Ia planta silvestre son bien conocidas en el estado de Ia técnica al igual que las condiciones de cultivo y crecimiento de dichas plantas transgénicas con el fin de producir un mayor número de flores.The techniques to cultivate the transformed plant cells and tissues and regenerate the transgenic plants with an architecture of their modified inflorescence with respect to that presented by the wild plant are well known in the state of the art as well as the conditions of cultivation and growth of said transgenic plants in order to produce a greater number of flowers.
Asimismo, los sistemas y agentes para introducir y seleccionar marcadores para comprobar Ia presencia de ADN heterólogo en células y/o tejidos vegetales son bien conocidos. Entre los marcadores genéticos que permiten Ia selección de ADN heterólogo en células vegetales se encuentran los genes que confieren resistencia a antibióticos, por ejemplo, kanamicina, higromicina, gentamicina, etc. El marcador permite Ia selección de las plantas transformadas satisfactoriamente que crecen en un medio que contiene el antibiótico correspondiente porque llevan el gen de resistencia apropiado.Also, the systems and agents for introducing and selecting markers to check the presence of heterologous DNA in cells and / or plant tissues are well known. Among the genetic markers that allow the selection of heterologous DNA in plant cells are genes that confer antibiotic resistance, for example, kanamycin, hygromycin, gentamicin, etc. The marker allows the selection of successfully transformed plants that grow in a medium containing the corresponding antibiotic because they carry the appropriate resistance gene.
Muchas de las técnicas útiles para llevar a cabo Ia invención son convencionales y conocidas por los técnicos en biotecnología vegetal. A modo ilustrativo, tales técnicas convencionales se recogen en Sambrook et al. (2001 ) [citado at supra] y Maniatis, T., et al., (1982). Molecular cloning: a laboratory manual. CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY.Many of the techniques useful for carrying out the invention are conventional and known to plant biotechnology technicians. By way of illustration, such conventional techniques are collected in Sambrook et al. (2001) [cited at supra] and Maniatis, T., et al., (1982). Molecular cloning: a laboratory manual. CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY.
La presente invención permite obtener flores sin necesidad de tener que aplicar hormonas (giberelinas, auxinas, citoquininas, etc.) o productos agroquímicos. Por otro lado, una ventaja añadida del procedimiento de Ia invención radica en que permite obtener plantas no sólo más vistosas sino también incrementar Ia producción de flores cortadas, con Io que se consigue una reducción de los costes de producción. Asimismo, las plantas transgénicas así obtenidas poseen una mayor vida media de varios meses con respecto a las plantas silvestres.The present invention allows flowers to be obtained without having to apply hormones (gibberellins, auxins, cytokinins, etc.) or agrochemicals. On the other hand, an added advantage of the procedure of Ia The invention is that it allows to obtain not only more showy plants but also to increase the production of cut flowers, with which a reduction in production costs is achieved. Likewise, the transgenic plants thus obtained have a longer half-life of several months compared to wild plants.
El procedimiento proporcionado por esta invención supone Ia posibilidad adicional de que las plantas así obtenidas presenten androesterilidad en forma dominante. Una de las ventajas del procedimiento proporcionado por esta invención radica en que ofrece Ia posibilidad de disponer de plantas androestériles productoras de flores, con mayor número de ramas y ramas de mayor orden, capaces todas ellas de producir flores, que Ia planta silvestre, con Io que se evita Ia transferencia horizontal indeseada de genes al no producir ni polen ni semillas, Io que es especialmente relevante en su autorización de uso a nivel de campo, pues Ia transferencia horizontal de genes supone una de las preocupaciones mayores de los grupos ecologistas y de parte de los ciudadanos que hoy en día se oponen a los cultivos de plantas transgénicas. Por otro lado, Ia disponibilidad de genotipos androestériles de plantas puede ser relevante para evitar Ia contaminación por polen en áreas urbanas o disminuir Ia producción de alérgenos polínicos.The process provided by this invention supposes the additional possibility that the plants thus obtained have dominant androsterility. One of the advantages of the process provided by this invention is that it offers the possibility of having andro-sterile flower-producing plants, with a greater number of branches and branches of greater order, all capable of producing flowers, than the wild plant, with the that the unwanted horizontal transfer of genes is avoided by not producing pollen or seeds, which is especially relevant in their authorization of use at the field level, since the horizontal transfer of genes is one of the major concerns of environmental groups and part of the citizens that today oppose the cultivation of transgenic plants. On the other hand, the availability of andro-sterile plant genotypes may be relevant to avoid pollen contamination in urban areas or decrease the production of pollen allergens.
EJEMPLOEXAMPLE
Obtención de plantas de A. thaliana v N. tabacum con una arquitectura de su inflorescencia modificada respecto de Ia especie silvestre mediante Ia ablación específica de anteras con el gen barnasa controlada por el promotor del gen PsENDI de guisante I. MATERIALES Y MÉTODOSObtaining plants of A. thaliana v N. tabacum with an architecture of its modified inflorescence with respect to the wild species by means of the specific ablation of anthers with the barnase gene controlled by the promoter of the pea PsENDI gene I. MATERIALS AND METHODS
1. Cultivo de plantas en cámara e invernadero1. Cultivation of plants in a chamber and greenhouse
Las especies vegetales empleadas en el ejemplo de Ia presente invención se muestran en Ia Tabla 1.The plant species used in the example of the present invention are shown in Table 1.
Tabla 1. Plantas utilizadas en esta invención y su usoTable 1. Plants used in this invention and their use
Planta Variedad /ecotipo UsoPlant Variety / ecotype Use
Arabidopsis thaliana Columbia (Col)Arabidopsis thaliana Columbia (Col)
Expresión del transgén Nicotiana tabacum cv. Petite Havana SR1 END1 ::barnasaExpression of the Nicotiana tabacum cv. Petite Havana SR1 END1 :: barnasa
Las muestras de los tejidos vegetales utilizadas en Ia presente invención para Ia extracción de ácidos nucleicos se recogieron directamente de Ia planta, se congelaron en nitrógeno líquido y se almacenaron a -8O0C hasta su posterior utilización. Las muestras destinadas a estudios de microscopía se fijaron para ser procesadas posteriormente.Samples of the plant tissues used in the present invention for the extraction of nucleic acids were collected directly from the plant, frozen in liquid nitrogen and stored at -8O 0 C until later use. Samples destined for microscopy studies were fixed for further processing.
1.1 Cultivo de A. thaliana1.1 Cultivation of A. thaliana
1.1.1 Cultivo en alveolos y macetas1.1.1 Cultivation in alveoli and pots
Las plantas de Arabidopsis se cultivaron en fitotrones bajo condiciones de crecimiento controladas de fotoperiodo y temperatura. La temperatura fue de 210C y Ia iluminación procedía de tubos fluorescentes de luz blanca fría con una intensidad de 150 μE m"2 s"2 (Sylvania Standard F58W/133-T8). Las plantas se cultivaron bajo condiciones de fotoperiodo inductivo, que eran 16 horas de luz y 8 horas de oscuridad (día largo, DL) y de fotoperiodo no inductivo que fueron 8 horas de luz y 16 horas de oscuridad (día corto, DC).Arabidopsis plants were grown in phytotrons under controlled photoperiod and temperature growth conditions. The temperature was 21 0 C and the illumination came from cold white fluorescent tubes with an intensity of 150 μE m "2 s " 2 (Sylvania Standard F58W / 133-T8). The plants were grown under conditions of inductive photoperiod, which were 16 hours of light and 8 hours of darkness (long day, DL) and non-inductive photoperiod that were 8 hours of light and 16 hours of darkness (short day, DC).
Las semillas se sembraron en alvéolos o en macetas dependiendo del posterior uso de las plantas generadas. Las semillas se sembraron en alvéolos de plástico de 6,5 * 6,5 * 5 cm para cultivos de día largo o día corto en una mezcla de turba: perlita: vermiculita (1 :1 :1 ). Se colocaron en bandejas dentro de cámaras de cultivo y se regaron por inmersión con solución de Hoagland número 1 suplementada con oligoelementos. Tras Ia siembra, las bandejas se cubrieron con plástico para mantener Ia humedad y evitar contaminaciones con otras semillas procedentes de plantas próximas. Se mantuvieron en oscuridad a 40C durante 3 días a fin de sincronizar Ia germinación y al cabo de esos días se pasaron a cabinas.The seeds were sown in alveoli or in pots depending on the subsequent use of the plants generated. The seeds were sown in 6.5 * 6.5 * 5 cm plastic cells for long-day or short-day crops in a mixture of peat: perlite: vermiculite (1: 1: 1). They were placed in trays inside culture chambers and irrigated with immersion with Hoagland solution number 1 supplemented with trace elements. After planting, the trays were covered with plastic to maintain moisture and avoid contamination with other seeds from nearby plants. They were kept in darkness at 4 0 C for 3 days in order to synchronize the germination and after those days they were transferred to cabins.
Al aparecer el primer par de hojas aproximadamente o ver condensación en el plástico que las recubría, se agujereó el mismo en distintos puntos de Ia bandeja que fueron incrementándose hasta que se eliminó el plástico por completo al cabo de tres días.When the first pair of sheets appeared approximately or see condensation in the plastic that covered them, it was drilled in different points of the tray that were increasing until the plastic was completely removed after three days.
La siembra en macetas se llevó a cabo en macetas de plástico de 11 cm de diámetro, para cultivos de DL o DC y se realizó el mismo proceso que para Ia siembra en alvéolos.Planting in pots was carried out in plastic pots of 11 cm in diameter, for DL or DC cultures and the same process was performed as for planting in alveoli.
Para Ia evaluación del número de flores producidas en relación con las producidas por una planta sin transformar Se sembraron un total de 78 semillas de Arabidopsis thaliana; 18 de las cuales pertenecían al ecotipo silvestre Columbia y, las 60 restantes eran semillas resultantes del cruce de líneas independientes END1 r.barnasa con plantas de genotipo silvestre.For the evaluation of the number of flowers produced in relation to those produced by an unprocessed plant A total of 78 Arabidopsis thaliana seeds were sown; 18 of which belonged to the wild Columbia ecotype and the remaining 60 were seeds resulting from the crossing of independent END1 r.barnasa lines with wild genotype plants.
Las semillas fueron sembradas en alveolos de plástico de 6,5 x 6,5 x 5 cm en una mezcla de turba: perlita: vermiculita (1 :1 :1 ). Se colocaron en bandejas dentro de cámaras de cultivo y se regaron por inmersión en una solución de Hoagland número 1 suplementada con oligoelementos (Hewitt,The seeds were sown in 6.5 x 6.5 x 5 cm plastic cells in a mixture of peat: perlite: vermiculite (1: 1: 1). They were placed in trays in culture chambers and irrigated by immersion in a Hoagland solution number 1 supplemented with trace elements (Hewitt,
Y. M. 1966. Sand and water culture methods used in the study of plant nutrition. Farnham Royal, Bucks. Commonwealth Agricultural Bureaux.). Tras Ia siembra, las bandejas se cubrieron con plástico para mantener Ia humedad. Se mantuvieron en oscuridad a 40C durante 72 horas a fin de sincronizar Ia germinación y al cabo de esos días se pasaron a cabinas. Al aparecer el primer par de hojas, se agujereó el plástico que recubría las bandejas y, terminó eliminándose por completo al cabo de tres días. Las plantas de Arabidopsis se cultivaron en fitotrones bajo condiciones de crecimiento controladas de fotoperiodo y temperatura. La temperatura fue de 210C y Ia iluminación procedía de tubos fluorescentes de luz blanca fría con una intensidad de 150 μE m"2 s"2. Las plantas se cultivaron bajo condiciones de fotoperiodo inductivo, que eran 16 horas de luz y 8 horas de oscuridad (día largo, DL).YM 1966. Sand and water culture methods used in the study of plant nutrition. Farnham Royal, Bucks. Commonwealth Agricultural Bureaux.). After planting, the trays were covered with plastic to maintain moisture. They were kept in darkness at 4 0 C for 72 hours in order to synchronize the germination and after those days they were transferred to cabins. When the first pair of sheets appeared, the plastic covering the trays was bored and ended up being completely removed after three days. Arabidopsis plants were grown in phytotrons under controlled photoperiod and temperature growth conditions. The temperature was 21 0 C and the illumination came from cold white light fluorescent tubes with an intensity of 150 μE m "2 s " 2 . The plants were grown under inductive photoperiod conditions, which were 16 hours of light and 8 hours of darkness (long day, DL).
1.1.2 Cultivo en cajas Petri1.1.2 Petri dish cultivation
El cultivo in vitro de Arabidopsis en cajas Petri, se realizó en cabinas con temperatura constante de 250C bajo condiciones de día largo (DL). La luz fue suministrada por tubos fluorescentes de tipo Grolux 36 W (Sylvania) con una intensidad de 90 μE m"2 s"2.The in vitro cultivation of Arabidopsis in Petri dishes, was conducted in cabins with a constant temperature of 25 0 C under long day (LD). The light was supplied by Grolux 36 W (Sylvania) fluorescent tubes with an intensity of 90 μE m "2 s " 2 .
Las semillas se esterilizaron por inmersión durante 3 minutos en una solución de etanol 70% (v/v) y 0,005% Tritón X-100. Durante este tiempo, las semillas se mezclaron con Ia solución anterior moviendo el tubo que las contenía. Posteriormente, se eliminó Ia solución y se añadió etanol 96% agitando durante 1 minuto. Inmediatamente después las semillas con el etanol se colocaron en papel de filtro estéril hasta que se secaron. Para Ia selección de transformantes primarios, las semillas esterilizadas (30 mg de semillas aproximadamente) se repartieron uniformemente en cajas Petri de 15 cm de diámetro que contenían medio de selección con kanamicina [2,2 g/l de sales MS (medio de cultivo Murashige y Skoog) (Duchefa), 20 g/l sacarosa, 0,1 g/l MES (ácido morfolinoetano sulfónico) pH 5,9, 0,6% agar (Pronadisa), 50 mg/l kanamicina, 300 mg/l timentina]. Las cajas con las semillas se almacenaron durante tres días a 40C en oscuridad tras los cuales se trasladaron a una cabina de cultivo in vitro. Al cabo de 7-10 días de Ia siembra de los transformantes que se distinguían por su color verde y raíz elongada, se transplantaron con ayuda de pinzas a alvéolos de plástico.The seeds were sterilized by immersion for 3 minutes in a 70% (v / v) ethanol solution and 0.005% Triton X-100. During this time, the seeds were mixed with the previous solution by moving the tube containing them. Subsequently, the solution was removed and 96% ethanol was added with stirring for 1 minute. Immediately afterwards the seeds with the ethanol were placed on sterile filter paper until they dried. For the selection of primary transformants, the sterilized seeds (approximately 30 mg of seeds) were uniformly distributed in 15 cm diameter Petri dishes containing selection medium with kanamycin [2.2 g / l of MS salts (Murashige culture medium) and Skoog) (Duchefa), 20 g / l sucrose, 0.1 g / l MONTH (morpholinoethane sulfonic acid) pH 5.9, 0.6% agar (Pronadisa), 50 mg / l kanamycin, 300 mg / l timentin ]. The boxes with the seeds were stored for three days at 4 0 C in the dark after which they were moved to an in vitro culture cabin. After 7-10 days of planting the transformants that were distinguished by their green and elongated root, they were transplanted with the help of tweezers to plastic cells.
1.2 Cultivo de N. tabacum 1.2.1 Cultivo en macetas1.2 Cultivation of N. tabacum 1.2.1 Cultivation in pots
Las plantas de tabaco provenientes del cultivo in vitro se cultivaron individualmente en macetas de plástico de 13 cm de diámetro que contenían una mezcla de turba:vermiculita (1 :1) previamente esterilizada, en una cabina de invernadero bajo condiciones controladas y con una temperatura de 240C durante el día y 180C durante Ia noche. La luz natural se suplemento con luz artificial mediante lámparas de vapor de mercurio de 400 W [Phillips HDK/ 400 HPI ®, N], para mantener un fotoperiodo de día largo. El riego consistió en solución de Hoagland número 1 aportada mediante un sistema de riego por goteo automatizado durante 2 minutos, 4 veces al díaTobacco plants from in vitro culture were individually grown in 13 cm diameter plastic pots containing a previously sterilized peat mix: vermiculite (1: 1), in a greenhouse cabin under controlled conditions and with a temperature of 24 0 C during the day and 18 0 C during the night. Natural light is supplemented with artificial light using 400 W mercury vapor lamps [Phillips HDK / 400 HPI ®, N], to maintain a long day photoperiod. Irrigation consisted of Hoagland solution number 1 provided by an automated drip irrigation system for 2 minutes, 4 times a day
1.2.2 Cultivo en cajas Petri1.2.2 Petri dish cultivation
El cultivo in vitro de tabaco se realizó en cabinas con temperatura constante de 250C, bajo condiciones de fotoperiodo de día largo (16 horas de luz y 8 horas de oscuridad), con una intensidad de luz de 90 μE m"2 s"2 suministrada por tubos fluorescentes de luz tipo Grolux 36W (Sylvania).The in vitro culture of snuff was performed in booths with constant temperature of 25 0 C under photoperiod conditions long (16 hours light and 8 hours dark) day, with a light intensity of 90 μE m "2 s" 2 supplied by fluorescent tubes of light type Grolux 36W (Sylvania).
Las plantas resistentes a kanamicina (transformantes primarios, T1 ) cuyo cultivo se había iniciado en cajas Petri, fueron posteriormente transplantadas a alvéolos de plástico de 6,5 x 6,5 x 5 cm con una mezcla de turba:vermiculita (1 :1 ). Estos cultivos permanecieron cubiertos con un plástico transparente, en el que progresivamente se fueron haciendo agujeros a fin de evitar una excesiva condensación de agua durante 9 días. Tras el período de aclimatación, las plántulas se transplantaron a macetas individuales, donde se cultivaron en cabinas de invernadero bajo condiciones controladas de temperatura y fotoperiodo. 2. Cultivo de microoganismosKanamycin-resistant plants (primary transformants, T1) whose cultivation had begun in Petri dishes, were subsequently transplanted into plastic alveoli of 6.5 x 6.5 x 5 cm with a mixture of peat: vermiculite (1: 1) . These crops remained covered with a transparent plastic, in which holes were gradually made in order to avoid excessive water condensation for 9 days. After the acclimatization period, the seedlings were transplanted into individual pots, where they were grown in greenhouse cabins under controlled temperature and photoperiod conditions. 2. Cultivation of microorganisms
Los microorganismos empleados en el ejemplo de Ia presente invención se muestran en Ia Tabla 2.The microorganisms used in the example of the present invention are shown in Table 2.
Tabla 2. Cepas bacterianas utilizadas en Ia presente invenciónTable 2. Bacterial strains used in the present invention
Cepa Referencia / origen UsoStrain Reference / origin Use
DH5α (E.coli) Hanahan (1983) Transformación de bacteriasDH5α (E.coli) Hanahan (1983) Transformation of bacteria
C58 pMP90 (A. Koncz y Schell (1986) Transformación de plantas tumefaciens) LBA4404 (A. Hoekema et a/ (1983). Transformación de plantas tumefaciens)C58 pMP90 (A. Koncz and Schell (1986) Transformation of tumefaciens plants) LBA4404 (A. Hoekema et a / (1983). Transformation of tumefaciens plants)
- Hananhan, D. (1983). Studies of transformation of Escherichia coli. J. Mol. Biol. VoI. 166: 557-560. - Koncz, C, Schell, J. (1986). The promoter of TL-DNA gene 5 controls tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. VoI. 204: 383-396.- Hananhan, D. (1983). Studies of transformation of Escherichia coli. J. Mol. Biol. VoI. 166: 557-560. - Koncz, C, Schell, J. (1986). The promoter of TL-DNA gene 5 controls tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. VoI 204: 383-396.
- Hoekema, A., et al., (1993). A binary plant vector strategy based on separation of vir and T región oí Agrobacterium tumefaciens Ti-plasmid. Nature. VoI. 303: 179-180.- Hoekema, A., et al., (1993). A binary plant vector strategy based on separation of vir and T region I heard Agrobacterium tumefaciens Ti-plasmid. Nature VoI 303: 179-180.
2.1 Condiciones de cultivo de microorganismos2.1 Cultivation conditions of microorganisms
Los cultivos líquidos de bacterias de E. coli y A. tumefaciens se incubaron durante toda Ia noche a 370C y 280C respectivamente con agitación de 200 rpm. Los cultivos de E. coli y A. tumefaciens en cajas con medio sólido se incubaron toda Ia noche en estufa a 370C y tres días a 280C respectivamente.Liquid cultures of bacteria E. coli and A. tumefaciens incubated place overnight at 37 0 C and 28 0 C respectively with stirring of 200 rpm. Cultures of E. coli and A. tumefaciens in boxes with solid medium were incubated place overnight in an oven at 37 0 C and three days at 28 0 C respectively.
2.2 Medio de cultivo de microorganismos2.2 Microorganism culture medium
El medio utilizado para el crecimiento de los microorganismos fue: - Medio LB (medio Luria-Bertani): 1 % triptona, 0,5% extracto de levadura, 1 % NaCI, pH 7,0. Cuando se utilizó el medio sólido, éste se solidificaba mediante Ia adición de 1 ,5% de agar (Pronadisa).The medium used for the growth of microorganisms was: - LB medium (Luria-Bertani medium): 1% tryptone, 0.5% yeast extract, 1% NaCI, pH 7.0. When the solid medium was used, it was solidified by the addition of 1.5% agar (Pronadisa).
3. Manipulación de ácidos nucleicos 3.1 Clonación3. Nucleic acid manipulation 3.1 Cloning
Las clonaciones se hicieron en diferentes plásmidos en función de Ia procedencia de los fragmentos de ADN y de los fines requeridos.Cloning was done in different plasmids depending on the origin of the DNA fragments and the required purposes.
1. Los productos de PCR (reacción en cadena de Ia polimerasa) se clonaron en el plásmido pGEM-T Easy (Promega), que contiene un sitio de clonación específico para productos de PCR con una adenina libre en los extremos 3'.1. The PCR products (polymerase chain reaction) were cloned into the plasmid pGEM-T Easy (Promega), which contains a specific cloning site for PCR products with a free adenine at the 3 'ends.
2. El plásmido pBI101 [Vancanneyt, G., et al., (1990). Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. VoI. 220(2):245-50] fue empleado para Ia obtención de plantas transgénicas de Arabidopsis y tabaco mediante Ia transformación con Agrobacteríum tumefaciens. Este plásmido contiene el gen nptll que ofrece resistencia a Ia kanamicina y el gen de Ia β- glucuronidasa que permitió realizar análisis histoquímico de las plantas transformadas. El plásmido pBI101 se utilizó llevar a cabo Ia expresión del transgén END1 :: barnasa en las dos plantas citadas. 4. Reacciones enzimáticas2. Plasmid pBI101 [Vancanneyt, G., et al., (1990). Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. VoI 220 (2): 245-50] was used to obtain transgenic Arabidopsis and tobacco plants through the transformation with Agrobacteríum tumefaciens. This plasmid contains the nptll gene that offers resistance to kanamycin and the β-glucuronidase gene that allowed to perform histochemical analysis of the transformed plants. Plasmid pBI101 was used to carry out the expression of the END1 :: barnase transgene in the two plants mentioned. 4. Enzymatic reactions
4.1 Reacciones de ligación4.1 Ligation reactions
Las reacciones de ligación se realizaron manteniendo una proporción molar entre vector e inserto de 1 :2 en el caso del plásmido pGEM-T Easy (Promega) y de 1 :5 en el caso del vector pBI101. El volumen final de las reacciones fue de 10 o 20 μl. Este volumen incluía el volumen de vector/inserto, 1 unidad de ADN ligasa del fago T4 (Roche MolecularLigation reactions were performed maintaining a molar ratio between vector and insert of 1: 2 in the case of plasmid pGEM-T Easy (Promega) and 1: 5 in the case of vector pBI101. The final volume of the reactions was 10 or 20 μl. This volume included the vector / insert volume, 1 unit of phage T4 ligase DNA (Roche Molecular
Biochemicals) y el tampón de ligación (MgC^ 5 mM, DTT 1 mM, ATP 1 mM, Tris-HCI 66 mM pH 7,5). Las reacciones de ligación se realizaron a 40C durante toda Ia noche en el caso de utilizar el plásmido pGEM-T Easy y a 160C durante toda Ia noche en el caso de utilizar pBI101.Biochemicals) and ligation buffer (5 mM MgC ^ 1 mM DTT, 1 mM ATP, 66 mM Tris-HCI pH 7.5). The ligation reactions were carried out at 4 0 C overnight in the case of using the plasmid pGEM-T Easy and at 16 0 C overnight in the case of using pBI101.
4.2 Digestión con enzimas de restricción4.2 Digestion with restriction enzymes
Para cada enzima de restricción se utilizó el tampón y las condiciones recomendadas por las distintas casas comerciales. Las digestiones se llevaron a cabo en tubos de 1 ,5 mi con 5-10 u/μg ADN, durante al menos 3 horas a Ia temperatura óptima para cada enzima.The buffer and the conditions recommended by the different commercial houses were used for each restriction enzyme. Digestions were carried out in 1.5 ml tubes with 5-10 u / μg DNA, for at least 3 hours at the optimum temperature for each enzyme.
4.3 Defosforilación de extremos cohesivos (5' protuberantes) Las reacciones de desfosforilación se realizaron con fosfatasa alcalina de intestino de ternera (CIP, Boehringer Mannheim). Las reacciones se llevaron a cabo mezclando 5 μg de vector plasmídico linearizado, 10 μl de tampón 10x (0,5 M Tris-HCI, EDTA 1 mM, pH 8,5), CIP 0,5 u/μg ADN y H2O hasta completar un volumen de 100 μl. La mezcla se incubó 30 minutos a 370C, añadiendo nuevamente 0,5 u/μg ADN CIP tras ese tiempo e incubando de nuevo 30 minutos a 370C. La reacción se paró con 2 μl de EDTA 0,5 M por cada 100 μl de volumen total de reacción, calentando 20 min a 7O0C. La solución se extrajo 2 veces con fenol/cloroformo, se precipitó con 1/10 v acetato sódico (NaOAc) 3 M pH 5,2, 2,5 v etanol (EtOH) absoluto y 1 μl de glicógeno (Boehringer Mannheim) y el precipitado de ADN se resuspendió en un volumen adecuado (unos 15 μl) procediendo a su cuantificación mediante electroforesis en gel de agarosa.4.3 Dephosphorylation of cohesive ends (5 'protuberant) Dephosphorylation reactions were performed with alkaline phosphatase from calf intestine (CIP, Boehringer Mannheim). The reactions were carried out by mixing 5 μg of linearized plasmid vector, 10 μl of 10x buffer (0.5 M Tris-HCI, 1 mM EDTA, pH 8.5), CIP 0.5 u / μg DNA and H2O until complete a volume of 100 μl. The mixture was incubated 30 minutes at 37 0 C, adding again 0.5 u / ug DNA CIP after that time and incubating again for 30 minutes at 37 0 C. The reaction was stopped with 2 ul of 0.5M EDTA per 100 μl total reaction volume, heating 20 min at 7O 0 C. The solution was extracted twice with phenol / chloroform, precipitated with 1/10 v sodium acetate (NaOAc) 3 M pH 5.2, 2.5 v absolute ethanol (EtOH) and 1 μl of glycogen (Boehringer Mannheim) and the DNA precipitate was resuspended in a suitable volume (about 15 μl) and quantified by agarose gel electrophoresis.
4.4 Amplificación de ADN por reacción en cadena de Ia polimerasa (PCR)4.4 DNA amplification by polymerase chain reaction (PCR)
Se utilizó Ia reacción en cadena de Ia polimerasa (PCR) para amplificar fragmentos de ADN que posteriormente serán ligados a los vectores plasmídicos.The polymerase chain reaction (PCR) was used to amplify DNA fragments that will later be linked to the plasmid vectors.
Las reacciones de amplificación de ADN plasmídico, se llevaron a cabo en un volumen total de 50 μl, a partir de 10-50 ng de ADN molde, 1 μM de cebadores específicos del fragmento a amplificar o del plásmido donde éste se encontraba clonado, dN4TPs 200 μM, KCI 50 mM, MgCbPlasmid DNA amplification reactions were carried out in a total volume of 50 μl, from 10-50 ng of template DNA, 1 μM of specific primers of the fragment to be amplified or of the plasmid where it was cloned, dN 4 TPs 200 μM, 50 mM KCI, MgCb
1.5 mM, Tris-HCI 10 mM pH 8,3 y 2,5 unidades de polimerasa de Thermus aquaticus (Taq polimerasa, Roche Molecular Biochemicals).1.5 mM, 10 mM Tris-HCI pH 8.3 and 2.5 units of Thermus aquaticus polymerase (Taq polymerase, Roche Molecular Biochemicals).
Para Ia amplificación del fragmento que contenía los genes barnasa y barstar insertados en el genoma de plantas transgénicas, se llevó a cabo Ia reacción de PCR usando los cebadores Ribo 1 e Inhi 2 (Tabla 3). Estas reacciones se llevaron a cabo en un volumen total de 20 μl, a partir de 50- 100 ng de ADN genómico, 0,6 μM de cebadores específicos, dN4TPs 200 μM, KCI 50 mM, MgCI2 1 ,5 mM, Tris-HCI 10 mM pH 8,3, 2,5 unidades de polimerasa de Thermus aquaticus (Taq polimerasa, Roche Molecular Biochemicals). Las reacciones se desarrollaron en un termociclador Perkin Elmer 2400 en las siguientes condiciones: 1 ciclo a 940C 2 minutos; 30 ciclos de 940C 30 s; temperatura de anillamiento (T) en grados centígrados durante 30 s; 720C Text minutos, y 1 ciclo final a 720C durante 10 minutos. En cada reacción Ia temperatura de anillamiento se estimó en función de Ia temperatura Tm (temperatura de fusión estimada) de los cebadores empleados (Tabla 3); el tiempo de extensión utilizado dependía de Ia longitud del fragmento a amplificar; en general se utilizó 1 minuto por cada kb de producto esperado.For the amplification of the fragment containing the barnase and barstar genes inserted in the genome of transgenic plants, the PCR reaction was carried out using the Ribo 1 and Inhi 2 primers (Table 3). These reactions were carried out in a total volume of 20 μl, from 50-100 ng of genomic DNA, 0.6 μM of specific primers, dN 4 TPs 200 μM, 50 mM KCI, 1.5 mM MgCl 2 , 10 mM Tris-HCI pH 8.3, 2.5 units of Thermus aquaticus polymerase (Taq polymerase, Roche Molecular Biochemicals). The reactions were run in a Perkin Elmer 2400 at the following conditions: 1 cycle at 94 0 C 2 minutes; 30 cycles of 94 0 C 30 s; banding temperature (T) in degrees Celsius for 30 s; 72 0 CT ex t minutes, and 1 final cycle at 72 0 C for 10 minutes. In each reaction, the banding temperature was estimated as a function of the temperature Tm (estimated melting temperature) of the primers used (Table 3); the extension time used It depended on the length of the fragment to be amplified; In general, 1 minute was used for each kb of expected product.
Tabla 3. Cebadores empleados en las amplificaciones por PCR y reacciones de secuenciación llevadas a cabo en este trabajoTable 3. Primers used in PCR amplifications and sequencing reactions carried out in this work.
Cebador Secuencia (5'-> 3') [SEQ ID NO] ADN molde PosiciónPrimer Sequence (5 '-> 3') [SEQ ID NO] Template DNA Position
Ribo 1 TA GGA TCCCGACC ATGGC AC AGGTT ATC [21 Fragmento bamasa - barstar -\2→ 15Ribo 1 TA GGA TCCCGACC ATGGC AC AGGTT ATC [21 Bamasa fragment - barstar - \ 2 → 15
Inhi 2 GCGΛGCrcTTAAGAAAGTTGATGGTGATG [3] Fragmento barnasa - barstar 876→ 847Inhi 2 GCGΛGCrcTTAAGAAAGTTGATGGTGATG [3] Barnase fragment - barstar 876 → 847
T7 GTAATACGACTCACTATAGGGC [4] pGEM- T Easy (Promega) 3016→2099T7 GTAATACGACTCACTATAGGGC [4] pGEM- T Easy (Promega) 3016 → 2099
SP6 GATTTAGGTGACACTATAGAATAC [S] pGEM- T Easy (Promega) 158→136SP6 GATTTAGGTGACACTATAGAATAC [S] pGEM- T Easy (Promega) 158 → 136
Las secuencias en cursiva corresponden a los nucleótidos que no forman parte del ADN molde, y de ellas, las subrayadas, corresponden a las dianas de restricción introducidas para subclonar los ADNc en los plásmidos correspondientes.The italicized sequences correspond to the nucleotides that are not part of the template DNA, and of them, the underlined ones, correspond to the restriction targets introduced to subclone the cDNAs in the corresponding plasmids.
4.5 Purificación de fragmentos de ADN a partir de geles de agarosa4.5 Purification of DNA fragments from agarose gels
Tras separar las muestras de ADN mediante electroforesis en geles de agarosa/TBE (Tris-Borato: 0,045 M tris-borato; EDTA (sal disódica del ácido etilen diamino tetracético) 1 mM) las bandas de interés se cortaron del gel con una cuchilla y el ADN contenido en las mismas se purificó mediante el sistema QIAquick GeI Extraction Kit (Qiagen), siguiendo las recomendaciones del fabricante. La extracción y purificación de los fragmentos de ADN por este método se basa en Ia solubilización de Ia agarosa y Ia adsorción selectiva de los ácidos nucleicos en una membrana de silicagel, en presencia de una elevada concentración de sal. La elución del ADN se llevó a cabo en Tris-HCI 10 mM pH 8. 4.6 SecuenciaciónAfter separating the DNA samples by electrophoresis in agarose / TBE gels (Tris-Borate: 0.045 M tris-borate; EDTA (disodium salt of ethylene diamine tetraacetic acid) 1 mM) the bands of interest were cut from the gel with a knife and The DNA contained therein was purified using the QIAquick GeI Extraction Kit (Qiagen) system, following the manufacturer's recommendations. The extraction and purification of the DNA fragments by this method is based on the solubilization of the agarose and the selective adsorption of the nucleic acids on a silica gel membrane, in the presence of a high salt concentration. DNA elution was carried out in 10 mM Tris-HCI pH 8. 4.6 Sequencing
La secuenciación de fragmentos de ADN clonados se llevó a cabo según el protocolo de secuenciación enzimática desarrollado por Sanger et al., (Sanger, F., Nicklen, S., Coulso, A. R. 1977. DNA sequencing with chain termination inhibitors. PNAS. USA. 74, 5463-5467) de modo automático en un secuenciador "ABI PRISM 377" (Perkin Elmer). Para ello, el ADN extraído según el protocolo de aislamiento y purificación de ADN plasmídico del sistema QIAGEN-tiplOO descrito en el apartado 5.1 se llevó a una concentración de 0,2 μg/μl, y se amplificó con Ampli Taq ADN polimerasa en presencia de ddNTPs, cada uno de ellos marcado con un fluoróforo diferente (Perkin Elmer). Se utilizaron los cebadores propios del vector plasmídico pGEM- T Easy, T7 y SP6 .The sequencing of cloned DNA fragments was carried out according to the enzyme sequencing protocol developed by Sanger et al., (Sanger, F., Nicklen, S., Coulso, AR 1977. DNA sequencing with chain termination inhibitors. PNAS. USA 74, 5463-5467) automatically in a sequencer "ABI PRISM 377" (Perkin Elmer). For this, the DNA extracted according to the protocol of isolation and purification of plasmid DNA from the QIAGEN-tiplOO system described in section 5.1 was brought to a concentration of 0.2 μg / μl, and amplified with Ampli Taq DNA polymerase in the presence of ddNTPs, each marked with a different fluorophore (Perkin Elmer). The primers of the plasmid vector pGEM-T Easy, T7 and SP6 were used.
5. Aislamiento y purificación de ácidos nucleicos5. Isolation and purification of nucleic acids
5.1 Aislamiento de ADN plasmídico en Escherichia coli5.1 Isolation of plasmid DNA in Escherichia coli
Para las preparaciones de ADN plasmídico a pequeña escala se utilizó el método de Ia lisis alcalina tal como se describe en Sambrook, J., et al., (1989) [citado at supra], partiendo de un cultivo de 3 mi crecido durante una noche en medio líquido LB suplementado con el correspondiente antibiótico. Las preparaciones de ADN plasmídico a media o gran escala, se realizaron a partir de cultivos, crecidos durante una noche en 100 mi ó 500 mi de medio líquido LB suplementado con antibiótico, según el procedimiento de extracción y purificación de ADN plasmídico de los sistemas de Qiagen Plasmid Midi Kit (columnas Qiagen tip-100) y Qiagen Plasmid Maxi Kit (columnas Qiagen tip-500), respectivamente, siguiendo las instrucciones del fabricante.For the small-scale plasmid DNA preparations, the alkaline lysis method was used as described in Sambrook, J., et al., (1989) [cited at supra], starting from a 3 ml culture grown during a night in liquid medium LB supplemented with the corresponding antibiotic. Medium or large-scale plasmid DNA preparations were made from cultures, grown overnight in 100 ml or 500 ml of liquid medium LB supplemented with antibiotic, according to the method of extraction and purification of plasmid DNA from the systems of Qiagen Plasmid Midi Kit (Qiagen tip-100 columns) and Qiagen Plasmid Maxi Kit (Qiagen tip-500 columns), respectively, following the manufacturer's instructions.
5.2 Aislamiento de ADN plasmídico de Agrobacterium tumefaciens Para las preparaciones a pequeña escala de ADN plasmídico de Agrobacterium se utilizó el método de Ia lisis alcalina descrito por Sambrook, J., et al., (1989) [citado at supra] con ligeras modificaciones. Se partía de un cultivo de 3 mi, crecido durante una noche en medio líquido LB suplementado con 50 μg/μl kanamicina. Tras centrifugar el cultivo, el sedimento de células se resuspendió en 100 μl de solución I (glucosa 50 mM; Tris-HCI 50 mM (pH 8,0); EDTA 10 mM) tras Io cual se añadieron 200 Dl de solución Il (NaOH 0,2 N, 1% SDS) y se mezcló invirtiendo el tubo rápidamente. Posteriormente se añadió Ia solución III (60 mi de KAc 5 M; 11 ,5 mi de ácido acético glacial; 28,5 mi de agua) y se mezcló usando el vortex. Tras 5 minutos en hielo se procedió a centrifugar Ia muestra a 12.000 rpm durante 5 minutos a 40C. Al sobrenadante resultante de Ia centrifugación se Ie añadieron 900 Dl de etanol absoluto y se incubó 30 minutos a -8O0C. Tras centrifugar a 12.000 rpm, 5 minutos a temperatura ambiente, el precipitado se lavó con etanol 70%, se secó y se resuspendió en 25 μl de TE (Tris-HCI 10 mM pH 8, EDTA 1 mM).5.2 Isolation of Agrobacterium tumefaciens plasmid DNA For the small-scale preparations of Agrobacterium plasmid DNA, the alkaline lysis method described by Sambrook, J., et al., (1989) [cited at supra] with slight modifications. It was based on a 3 ml culture, grown overnight in LB liquid medium supplemented with 50 μg / μl kanamycin. After centrifuging the culture, the cell pellet was resuspended in 100 μl of solution I (50 mM glucose; 50 mM Tris-HCI (pH 8.0); 10 mM EDTA) after which 200 Dl of Il solution (NaOH) was added 0.2 N, 1% SDS) and mixed by quickly inverting the tube. Subsequently, solution III (60 ml of 5 M KAc; 11.5 ml of glacial acetic acid; 28.5 ml of water) was added and mixed using the vortex. After 5 minutes on ice, the sample was centrifuged at 12,000 rpm for 5 minutes at 4 0 C. To the supernatant resulting from the centrifugation 900 Dl of absolute ethanol was added and incubated 30 minutes at -8O 0 C. After centrifuging at 12,000 rpm, 5 minutes at room temperature, the precipitate was washed with 70% ethanol, dried and resuspended in 25 μl of TE (10 mM Tris-HCI pH 8, 1 mM EDTA).
La pureza de Ia preparación de ADN obtenida por este procedimiento no fue suficientemente alta como para realizar un análisis de restricción del plásmido. Para solventar este problema, una alícuota de 1 μl de esta preparación de ADN se utilizó para transformar E. coli. De uno de los clones transformantes de E. coli obtenidos de ese modo, se hizo una nueva preparación de ADN plasmídico que se empleó en los análisis pertinentes.The purity of the DNA preparation obtained by this procedure was not high enough to perform a restriction analysis of the plasmid. To solve this problem, a 1 μl aliquot of this DNA preparation was used to transform E. coli. From one of the transforming clones of E. coli thus obtained, a new plasmid DNA preparation was made which was used in the relevant analyzes.
6. Transformación de bacterias Las cepas que se emplearon en las transformaciones fueron Ia DH5α de Escherichia coli y las cepas Agrobacterium tumefaciens C58 pMP90 (Koncz y Schell, 1986) y LBA4404 (Hoekma et al., 1983) [ambas citadas at supra]. 6.1 Preparación de células competentes y transformación por electroporación6. Transformation of bacteria The strains that were used in the transformations were the DH5α of Escherichia coli and the Agrobacterium tumefaciens C58 pMP90 (Koncz and Schell, 1986) and LBA4404 (Hoekma et al., 1983) [both cited at supra] strains. 6.1 Preparation of competent cells and transformation by electroporation
La preparación de células competentes para su transformación mediante electroporación se llevó acabo según los protocolos descritos en el catálogo Pulse controller, Accesory for bacterial and fungal electro- transformation (BioRad), en el caso de E. coli, y según Wen-jun, S., y Forde, B. G., (1989). Efficient transformation of Agrobacterium spp. By high voltage electroporation. Nucleic Acid Res. VoI. 17: 4415, en el caso de A. tumefaciens.The preparation of competent cells for transformation by electroporation was carried out according to the protocols described in the Pulse controller, Accessory for bacterial and fungal electro-transformation (BioRad) catalog, in the case of E. coli, and according to Wen-jun, S ., and Forde, BG, (1989). Efficient transformation of Agrobacterium spp. By high voltage electroporation. Nucleic Acid Res. VoI. 17: 4415, in the case of A. tumefaciens.
Tras descongelar en hielo una alícuota de 40 μl de células competentes preparadas mediante sucesivos lavados de glicerol, se añadió 1 μl de vector transformante. La mezcla se introdujo en una cubeta de 0,1 cm de separación entre electrodos (BioRad), previamente enfriada en hielo, y se sometió a un pulso eléctrico con un aparato Gene Pulser ™ (BioRad). Las condiciones de electroporación fueron 200 Ω, 25 μF y 1 ,8 kV, para E. coli, y 400 Ω, 25 μF y 1 ,8 kV, para A. tumefaciens. Después del pulso eléctrico se adicionó 1 mi de LB y se incubó 1 hora a 370C y a 200 rpm para E. coli, y 3 horas a 280C y a 200 rpm para A.tumefaciens.After thawing an aliquot of 40 μl of competent cells prepared by successive glycerol washes on ice, 1 μl of transformant vector was added. The mixture was placed in a 0.1 cm electrode separation cuvette (BioRad), previously cooled in ice, and subjected to an electric pulse with a Gene Pulser ™ apparatus (BioRad). The electroporation conditions were 200 Ω, 25 μF and 1, 8 kV, for E. coli, and 400 Ω, 25 μF and 1, 8 kV, for A. tumefaciens. After the electric pulse was added 1 ml of LB and incubated 1 hour at 37 0 C and 200 rpm for E. coli, and 3 hours at 28 0 C and 200 rpm for A. tumefaciens.
6.2 Selección de recombinantes bacterianos6.2 Selection of bacterial recombinants
La selección de recombinantes bacterianos se llevó a cabo mediante Ia siembra de las células bacterianas transformadas en placas con medio LB suplementado con el antibiótico al cual confería resistencia el plásmido en estudio, y en el caso de que el plásmido permitiese Ia selección por color, se añadía 40 μl (25 mg/ml) de IPTG y 25 μl (20 mg/ml) de X-GaI al medio de cultivo sólido.The selection of bacterial recombinants was carried out by sowing the bacterial cells transformed into plates with LB medium supplemented with the antibiotic to which the plasmid under study conferred resistance, and in the event that the plasmid allowed the selection by color, added 40 μl (25 mg / ml) of IPTG and 25 μl (20 mg / ml) of X-GaI to the solid culture medium.
Los antibióticos utilizados para Ia selección de recombinantes bacterianos y Ia concentración a Ia que fueron usados, aparecen en Ia Tabla 4. Tabla 4. Antibióticos utilizados y sus concentracionesThe antibiotics used for the selection of bacterial recombinants and the concentration at which they were used appear in Table 4. Table 4. Antibiotics used and their concentrations
Antibiótico ConcentraciónAntibiotic Concentration
Ampicilina 100 μg/μl para E. coli.Ampicillin 100 μg / μl for E. coli.
Kanamicina 25 μg/μl para E. coli.Kanamycin 25 μg / μl for E. coli.
50 μg/μl para A. tumefaciens.50 μg / μl for A. tumefaciens.
7. Diseño de Ia construcción pBI-END1 ::barnasa-barstar7. Design of the construction pBI-END1 :: barnasa-barstar
Para ensayar si Ia expresión del gen citotóxico barnasa en aquellos tejidos de Ia antera donde END1 es activo, era capaz de producir androesterilidad en plantas transgénicas de Arabidopsis y tabaco, se realizó Ia construcción pBI-END1 ::barnasa-barstar.To test whether the expression of the cytotoxic barnase gene in those tissues of the anther where END1 is active, was capable of producing androsterility in transgenic Arabidopsis and tobacco plants, the construction pBI-END1 :: barnasa-barstar was performed.
Para ello se partió de Ia construcción pBI101-F3 [descrito en Ia solicitud de patente WO 01/73088] (Figura 1 ). Esta construcción contenía 2.731 pb de Ia región promotora de del gen PsENDI aislada del rastreo de una genoteca genómica de guisante. La región comprendía desde el fragmento -2.736 hasta el nucleótido -6 de Ia región 5', tomándose como nucleótido +1 el primer nucleótido del ADNc aislado previamente (clon 162) de una genoteca de ADNc de flores de guisante [Gómez, M. D., et al., (2004). The pea END1 promoter drives anther-specific gene expression in different plant species. Planta VoI. 219: 967-981]. El fragmento -2.736A6 de Ia región promotora del gen PsENDI estaba fusionado al gen uidA que codifica Ia enzima β-glucuronidasa (GUS), (Gómez et al., 2004) [citado at supra]. Este gen fue liberado con las enzimas de restricción BamHI y Sacl y el fragmento correspondiente al plásmido pBI101 más el promotor del gen PsENDI fue extraído del gel de agarosa.For this, the pBI101-F3 construction [described in patent application WO 01/73088] (Figure 1) was started. This construction contained 2,731 bp of the promoter region of the PsENDI gene isolated from the screening of a genomic pea library. The region comprised from fragment -2,736 to nucleotide -6 of the 5 'region, the first nucleotide of the previously isolated cDNA (clone 162) from a pea flower cDNA library [Gómez, MD, et. al., (2004). The pea END1 promoter drives anther-specific gene expression in different plant species. VoI plant. 219: 967-981]. The -2,736A6 fragment of the promoter region of the PsENDI gene was fused to the uidA gene encoding the enzyme β-glucuronidase (GUS), (Gómez et al., 2004) [cited at supra]. This gene was released with the restriction enzymes BamHI and Sacl and the fragment corresponding to plasmid pBI101 plus the promoter of the PsENDI gene was extracted from the agarose gel.
El fragmento barnasa-barstar previamente clonado en el sitio BamHI del plásmido pBluescript KS (+) (Stratagene), fue amplificado utilizando los cebadores Ribo 1 e Inhi 2 [Tabla 3]. Con el primero se mantiene el sitio de corte para Ia enzima BamHI del clon original a nivel del ATG de Ia barnasa, y con el último se crea un sitio de corte para Sacl a nivel del codón de parada del gen barstar. El fragmento producto de Ia reacción de PCR, se ligó al vector pGEM-T Easy (Promega), y se liberó posteriormente con las enzimas BamHI y Sacl. Este inserto fue clonado en el sitio que crearon estas mismas enzimas en Ia construcción pBI-END1 , creándose así Ia construcción pBI-END1 :: barnasa-barstar (Figura 1).The barnasa-barstar fragment previously cloned into the BamHI site of plasmid pBluescript KS (+) (Stratagene), was amplified using the primers Ribo 1 and Inhi 2 [Table 3]. With the first one, the cutting site for the BamHI enzyme of the original clone at the ATG level of barnase is maintained, and with the latter a cutting site for Sacl is created at the level of the stop codon of the barstar gene. The fragment product of the PCR reaction was ligated to the pGEM-T Easy vector (Promega), and subsequently released with the enzymes BamHI and Sacl. This insert was cloned into the site created by these same enzymes in the pBI-END1 construct, thus creating the pBI-END1 :: barnasa-barstar construct (Figure 1).
8. Transformación y análisis de las plantas transgénicas8. Transformation and analysis of transgenic plants
8.1 Transformación de Arabidopsis thaliana y análisis de las plantas transgénicas8.1 Transformation of Arabidopsis thaliana and analysis of transgenic plants
Para Ia transformación de plantas transgénicas de Arabidopsis thaliana se ha utilizado Ia planta silvestre del ecotipo Columbia (Col). La transformación se realizó siguiendo el protocolo de infiltración al vacío descrito por Bechtold (Bechtold, N., et al., (1993). In planta Agrobacterium- mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris, Life Sci. VoI. 316:1194-1199). Aproximadamente 60 semillas de Arabidopsis se cultivaron en macetas de 11 cm de diámetro. Transcurridas unas 2 semanas desde Ia siembra, se eliminaron algunas plantas con el fin de facilitar el crecimiento homogéneo y adecuado de Ia población. Una vez las plantas habían producido el escapo floral, cuando Ia última hoja caulinar se había separado unos 2-3 cm del ápice de Ia inflorescencia principal (altura de las plantas de 9 a 11 cm), éste se decapitó para eliminar Ia dominancia apical e inducir así Ia proliferación de las inflorescencias laterales. El tiempo aproximado que transcurría desde Ia siembra hasta Ia decapitación era aproximadamente un mes y 5-6 días. Una vez decapitadas, las plantas se cultivaron unos 4 días más antes de Ia infiltración. Tres días antes de Ia infiltración (día -3), se inoculó un tubo con 10 mi de medio LB, conteniendo 100 μg/ml de rifampicina y 50 μg/ml de kanamicina, a partir de un glicerinado con Ia cepa C58 pMP90 de A. tumefaciens (Koncz y Schell, 1986) [citado at supra] portadora de las construcciones de interés. Este se incubó durante toda Ia noche en oscuridad a 280C con agitación de 200 rpm. Al cabo de este tiempo (día -2), se inoculó un matraz con 600 mi de medio LB con kanamicina (50 μg/ml) con los 10 mi del precultivo anterior y se incubó en las mismas condiciones durante 48 horas. El día de Ia infiltración (día 0) el cultivo se recogió por centrifugación y el sedimento con las bacterias se resuspendió en 200 mi de medio de infiltración (2,2 g/l sales MS (Duchefa), 5% sacarosa, 1 mg/l 6-BAP (citoquina 6 benzil amino purina), 100 mg/l MES, pH 5,9). Antes de Ia infiltración, se les quitaron a las plantas todas las silicuas fertilizadas así como las flores abiertas. Para Ia infiltración a vacío, las macetas se invertían y se introducían en una fiambrera que contenía los 200 mi de Ia suspensión de Agrobacteríum en medio de infiltración, de manera que no sólo los ápices florales sino también las hojas de roseta quedaban sumergidos en el líquido. El montaje se colocaba en una campana de vacío conectada a una bomba (Bomba EDWARDS RV3, 110-120/220- 240V, 50-60 Hz, monofásica A652-01-903) y se sometía a vacío durante 30 minutos en posición de alto vacío y caudal bajo "posición I" (presión total final: 3 x 10~2 mbar, 3 Pa). El tiempo se empezaba a contar cuando Ia suspensión de Agrobacteríum comenzaba a burbujear. Pasado el tiempo de infiltración se sacaban las plantas de Ia campana y se secaban ligeramente, escurriéndolas sobre un trozo de papel absorbente. Las plantas así tratadas se cubrían con bolsas de plástico y se devolvían a las cabinas de cultivo donde se les permitía que continuaran creciendo bajo las condiciones descritas en el apartado 1.1. Durante los 2-3 días siguientes a Ia infiltración se iban haciendo agujeros en las bolsas, con el fin de aclimatar las plantas a las condiciones de humedad habituales, hasta que éstas se eliminaban definitivamente. Las plantas se cultivaron hasta obtener semillas maduras.For the transformation of transgenic plants of Arabidopsis thaliana, the wild plant of the ecotype Columbia (Col) has been used. The transformation was performed following the vacuum infiltration protocol described by Bechtold (Bechtold, N., et al., (1993). In Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad. Sci. Paris, Life Sci. VoI. 316: 1194-1199). Approximately 60 Arabidopsis seeds were grown in 11 cm diameter pots. After about 2 weeks from planting, some plants were removed in order to facilitate the homogeneous and adequate growth of the population. Once the plants had produced the floral escape, when the last caulinar leaf had separated about 2-3 cm from the apex of the main inflorescence (plant height 9 to 11 cm), it was decapitated to eliminate the apical dominance and thus induce the proliferation of lateral inflorescences. The approximate time that elapsed from planting to decapitation was approximately one month and 5-6 days. Once decapitated, the plants were grown about 4 more days before infiltration. Three days before the infiltration (day -3), a tube was inoculated with 10 ml of LB medium, containing 100 μg / ml of rifampicin and 50 μg / ml of kanamycin, from a glycerinated with strain C58 pMP90 of A tumefaciens (Koncz and Schell, 1986) [cited at supra] carrier of the constructions of interest. This was incubated place overnight in the dark at 28 0 C with agitation of 200 rpm. After this time (day -2), a flask was inoculated with 600 ml of LB medium with kanamycin (50 μg / ml) with 10 ml of the previous preculture and incubated under the same conditions for 48 hours. On the day of the infiltration (day 0) the culture was collected by centrifugation and the sediment with the bacteria was resuspended in 200 ml of infiltration medium (2.2 g / l MS salts (Duchefa), 5% sucrose, 1 mg / l 6-BAP (cytokine 6 benzyl amino purine), 100 mg / l MONTH, pH 5.9). Before infiltration, all fertilized silicones were removed from the plants as well as the open flowers. For vacuum infiltration, the pots were inverted and placed in a lunch box containing 200 ml of the Agrobacterium suspension in the middle of infiltration, so that not only the floral apexes but also the rosette leaves were submerged in the liquid . The assembly was placed in a vacuum hood connected to a pump (EDWARDS RV3 pump, 110-120 / 220-240V, 50-60 Hz, single phase A652-01-903) and subjected to vacuum for 30 minutes in the high position vacuum and flow under "position I" (final total pressure: 3 x 10 ~ 2 mbar, 3 Pa). The time began to count when the suspension of Agrobacteríum began to bubble. After the infiltration time, the plants were removed from the hood and dried slightly, draining them on a piece of absorbent paper. The plants treated in this way were covered with plastic bags and returned to the cultivation booths where they were allowed to continue growing under the conditions described in section 1.1. During the 2-3 days following the infiltration holes were made in the bags, in order to acclimatize the plants to the usual humidity conditions, until these were definitively eliminated. The plants were grown to obtain mature seeds.
Alternativamente a Ia transformación de plantas de Arabidopsis thaliana con el método de Bechtold et al., (1993) [citado at supra], en algunas ocasiones se utilizó una versión modificada de este método basado en Ia utilización del detergente Silwet L.77 (LEHLE SEEDS). En el momento de Ia infiltración, las plantas se mantienen sumergidas durante 8 s en Ia suspensión de Agrobacterium en medio de infiltración a Ia que se Ie había adicionado dicho detergente hasta una concentración final de 0,05%; inmediatamente después, se les sometía a un pulso de vacío de 1 minuto utilizando las mismas condiciones que el procedimiento anterior. El tratamiento de las plantas antes y después de Ia infiltración, así como Ia preparación de los cultivos de Agrobacterium, fueron iguales al tratamiento descrito en el procedimiento anterior.Alternatively to the transformation of Arabidopsis thaliana plants with the method of Bechtold et al., (1993) [cited at supra], on some occasions a modified version of this method was used based on the use of Silwet L.77 detergent (LEHLE SEEDS). At the time of the infiltration, the plants are kept submerged for 8 s in the Agrobacterium suspension in the middle of infiltration to which said detergent had been added to a final concentration of 0.05%; immediately after, they were subjected to a 1 minute vacuum pulse using the same conditions as the previous procedure. The treatment of the plants before and after the infiltration, as well as the preparation of the Agrobacterium cultures, were the same as the treatment described in the previous procedure.
Cuando las silicuas de las plantas transformadas estuvieron maduras se recogieron las semillas, se guardaron en bolsas de celofán y se incubaron en una estufa a 370C durante al menos una semana. Para Ia selección de los transformantes primarios (Ti), las semillas procedentes de plantas individuales Ti se esterilizaron, se sembraron en cajas Petri de 15 cm de diámetro con medio de selección con kanamicina y se cultivaron en cabinas de cultivo in vitro. Después de 7-10 días desde Ia siembra, los transformantes eran claramente identificables por su color verde y sus raíces desarrolladas; en ese momento se transplantaron a alvéolos (6,5 X 6,5 x 5 cm) con una mezcla turba:vermiculita:perlita (1 :1 :1 ) y se trasladaron a un fitotrón para su cultivo bajo las condiciones descritas en el apartado 1.1.When the siliques of transformed plants were mature seeds were collected, stored in cellophane bags and incubated in an oven at 37 0 C for at least a week. For the selection of the primary transformants (Ti), the seeds from individual Ti plants were sterilized, planted in 15 cm diameter Petri dishes with kanamycin selection medium and grown in in vitro culture cabins. After 7-10 days from planting, the transformants were clearly identifiable by their green color and their developed roots; at that time they were transplanted into alveoli (6.5 X 6.5 x 5 cm) with a peat mixture: vermiculite: perlite (1: 1: 1) and transferred to a phytotron for cultivation under the conditions described in the section 1.1.
Se analizó el fenotipo de Ia población correspondiente a Ia primera (Ti) y segunda generación (T2) de plantas transformadas con Ia construcción pBI-END1 ::barnasa-barstar. Las plantas se fotografiaron con una cámara Nikon F-601 M, acoplada a una lupa MZ8 (Leica). Las anteras de las plantas END1 ::barnasa fueron fijadas y observadas por SEM (microscopía electrónica de barrido) y microscopía óptica. Para el análisis fenotípico de dichas plantas END1 ::barnasa de Ia generación T2, se realizó un análisis de segregación del fenotipo androestéril para determinar el índice de Ia segregación del transgén para 4 líneas transgénicas independientes en función de Ia proporción de plantas estériles frente a plantas fértiles obtenidas. Para ello, las semillas provenientes del cruce de líneas independientes Ti con plantas silvestres, se sembraron en alvéolos individuales para cada una. Se observó el fenotipo de las plantas resultantes en cuanto a morfología de las anteras y formación de frutos para cuantificar el porcentaje de esterilidad de las plantas germinadas.The phenotype of the population corresponding to the first (Ti) and second generation (T 2 ) of plants transformed with the construction was analyzed pBI-END1 :: barnasa-barstar. The plants were photographed with a Nikon F-601 M camera, coupled to an MZ8 (Leica) magnifying glass. The anthers of the END1 :: barnasa plants were fixed and observed by SEM (scanning electron microscopy) and optical microscopy. For the phenotypic analysis of said END1 :: barnasa plants of the T 2 generation, a segregation analysis of the andro-sterile phenotype was performed to determine the index of the transgene segregation for 4 independent transgenic lines based on the proportion of sterile plants versus fertile plants obtained. For this, the seeds coming from the crossing of independent Ti lines with wild plants were sown in individual alveoli for each one. The phenotype of the resulting plants was observed in terms of morphology of the anthers and fruit formation to quantify the percentage of sterility of the germinated plants.
8.2. Transformación de Nicotiana tabacum y análisis fenotípico de las plantas transformadas8.2. Nicotiana tabacum transformation and phenotypic analysis of transformed plants
La transformación de plantas de Nicotiana tabacum se realizó siguiendo el método descrito por Horsh, R. B., et al., (1984). Inheritance of functional foreign genes in plants. Science. VoI. 223: 496-498, con las modificaciones propuestas por Fisher y Guiltinan (1995) [Fisher, D. K., Guiltinan, J., (1995). Rapid, efficient production of homocygous transgenic tobáceo plants with Agrobacterium tumefaciens: a seed to seed protocol. Plant Mol. Biol. Rep. VoI. 13: 278-289].The transformation of Nicotiana tabacum plants was carried out following the method described by Horsh, R. B., et al., (1984). Inheritance of functional foreign genes in plants. Science VoI 223: 496-498, with the modifications proposed by Fisher and Guiltinan (1995) [Fisher, D. K., Guiltinan, J., (1995). Rapid, efficient production of homocygous transgenic tobaceous plants with Agrobacterium tumefaciens: a seed to seed protocol. Plant Mol. Biol. Rep. VoI. 13: 278-289].
Se inoculó un tubo con 5 mi de medio LB, 10 mM MgSO4, 100 μg/ml rifampicina y 50 μg/ml kanamicina a partir de un glicerinado con Ia cepa LBA4404 de A. tumefaciens portadora de Ia construcción de interés. Éste se incubó toda Ia noche en oscuridad a 280C con agitación de 200 rpm. Al cabo de este tiempo, alícuotas de 500 μl de ese cultivo se utilizaron para inocular dos matraces de 250 mi con 50 mi de medio LB, 10 mM MgSO4 y 50 μg/ml kanamicina que se incubaron en las mismas condiciones hasta que Ia DOβoo alcanzó un valor comprendido entre 0,5-0,6. El cultivo resultante se recogió por centrifugación y el sedimento con las bacterias se resuspendió en Ia mitad de volumen de medio MSS líquido [4,4 g/l sales MS (Duchefa), 2% sacarosa, 100 mg/l MES, pH 5,9].A tube was inoculated with 5 ml of LB medium, 10 mM MgSO 4 , 100 μg / ml rifampin and 50 μg / ml kanamycin from a glycerinated with the strain LBA4404 of A. tumefaciens carrying the construction of interest. This place overnight incubated in the dark at 28 0 C with agitation of 200 rpm. After this time, 500 μl aliquots of that culture were used to inoculate two 250 ml flasks with 50 ml of LB medium, 10 mM MgSO 4 and 50 μg / ml kanamycin that were incubated under the same conditions until that the DOβoo reached a value between 0.5-0.6. The resulting culture was collected by centrifugation and the sediment with the bacteria was resuspended in half the volume of liquid MSS medium [4.4 g / l MS salts (Duchefa), 2% sucrose, 100 mg / l MONTH, pH 5, 9].
Secciones de hoja de Nicotiana tabacum cv. Petite Havana SR1 de 1 cm2, provenientes de plantas jóvenes (aproximadamente 4 semanas) propagadas en medio sólido MSS a partir de entrenudos, se sumergieron en Ia suspensión de Agrobacterium, dispuesta en una caja Petri de 9 cm de diámetro durante 10 minutos. A continuación, los discos foliares se sacaron de Ia suspensión de Agrobacterium, se escurrieron, se colocaron con el envés hacia arriba sobre medio sólido MSS (3,5 g/l phytagel) y se cocultivaron durante tres días a 250C en oscuridad para facilitar Ia infección por Agrobacterium. Tras el cocultivo los discos foliares infectados se transfirieron a cajas con medio de regeneración y selección MSSABCK [medio MSS con 0,2 mg/l IAA (ácido indol acético), 2,2 mg/l 6-BAP, 400 mg/l carbenicilina (para inhibir el crecimiento del Agrobacterium) y 130 mg/l kanamicina (para seleccionar el crecimiento de las células que hubieran incorporado el ADN-T)].Leaf sections of Nicotiana tabacum cv. Petite Havana SR1 of 1 cm 2 , from young plants (approximately 4 weeks) propagated in solid MSS medium from internodes, were immersed in the Agrobacterium suspension, arranged in a 9 cm diameter Petri dish for 10 minutes. Then leaf discs were removed from the suspension of Agrobacterium, drained, placed abaxial side up on solid medium MSS (3.5g / l phytagel) and cocultured for three days at 25 0 C in darkness for Facilitate Agrobacterium infection. After coculturing the infected leaf disks were transferred to boxes with MSSABCK regeneration and selection medium [MSS medium with 0.2 mg / l IAA (indole acetic acid), 2.2 mg / l 6-BAP, 400 mg / l carbenicillin (to inhibit the growth of Agrobacterium) and 130 mg / l kanamycin (to select the growth of cells that would have incorporated T-DNA)].
Las placas con los explantes se incubaron en cabinas de cultivo in vitro a 250C, bajo condiciones de fotoperiodo de día largo (ver apartado 1.2.2.), y cada 7-10 días se cambiaron a nuevas cajas con el mismo medio. Los brotes regenerados (uno de cada explante, para asegurar que se seleccionaban sucesos de transformación independientes) que iban apareciendo se cortaban evitando el callo y se transferían a frascos de 6 cm de diámetro por 9,5 cm de altura con medio de enraizamiento MSSACK (medio MSS sólido con 0,2 mg/l de IAA, 200 mg/l de carbenicilina y 130 mg/l de kanamicina). De cada brote enraizado, se aislaban dos entrenudos, cada uno con una hoja, que se transferían a frascos de medio MSSABCK, a partir de los cuales se regeneraban dos plantas completas. Una de ellas se utilizó para mantener una réplica en cultivo in vitro, mientras que Ia otra, una vez enraizada, se transfería a tierra. Para ello, los brotes enraizados se extrajeron de los frascos, se les eliminó los restos de medio de las raíces, se transplantaron a macetas de 13 cm de diámetro con una mezcla de turba:vermiculita (1 :1 ) y se trasladaron al invernadero, donde se cultivaron bajo las condiciones descritas en el apartado 1.2.1. El análisis fenotípico de Ia primera generación (Ti) de plantas END1 ::barnasa se llevó a cabo mediante del análisis de Ia morfología de las anteras de estas plantas por medio de fotografías realizadas con una cámara Nikon F-601 M, acoplada a una lupa MZ8 (Leica) y mediante Ia observación de las anteras a través de SEM y microscopía óptica.The plates with the explants were incubated in booths in vitro culture at 25 0 C, under conditions of long - day photoperiod (I see 1.2.2.), And every 7-10 days were changed to new boxes with the same medium. The regenerated shoots (one of each explant, to ensure that independent transformation events were selected) that were appearing were cut avoiding the callus and transferred to bottles 6 cm in diameter by 9.5 cm high with rooting medium MSSACK ( solid MSS medium with 0.2 mg / l of IAA, 200 mg / l of carbenicillin and 130 mg / l of kanamycin). From each rooted outbreak, two internodes were isolated, each with a leaf, which was transferred to MSSABCK medium bottles, from which two were regenerated whole plants. One of them was used to maintain a replica in vitro culture, while the other, once rooted, was transferred to land. To do this, the rooted shoots were removed from the jars, the remains of the roots were removed from the roots, transplanted into pots of 13 cm in diameter with a mixture of peat: vermiculite (1: 1) and moved to the greenhouse, where they were grown under the conditions described in section 1.2.1. The phenotypic analysis of the first generation (Ti) of END1 :: barnasa plants was carried out by analyzing the morphology of the anthers of these plants by means of photographs taken with a Nikon F-601 M camera, coupled to a magnifying glass MZ8 (Leica) and by observing the anthers through SEM and optical microscopy.
9. Preparación de muestras vegetales para microscopía electrónica de barrido (SEM)9. Preparation of plant samples for scanning electron microscopy (SEM)
9.1 Fijación9.1 Fixation
Las muestras vegetales se introdujeron en p-formaldehído al 4% (p/v) en 1XPBS pH 7,0 inmediatamente después de su recolección. Posteriormente, fueron sometidas a dos o tres pulsos de vacío de 3 minutos cada uno, se les cambió Ia solución fijadora por una fresca y se mantuvieron en ella durante toda Ia noche a 40C. Tras el proceso de fijación de los tejidos se lavaron con 1XPBS y se deshidrataron hasta etanol absoluto mediante una serie de lavados sucesivos de 30 minutos a 40C en soluciones crecientes de etanol (15%, 30%, 50%, 70%, 85%, 96%, 100%). A partir de este punto, las muestras sufrieron un proceso distinto en función si fueron incluidas en parafina (Paraplast Plus, Sigma), resina (Historesin, Leica) o usadas para ser analizadas por microscopía electrónica de barrido. 9.2 Punto crítico y análisis de las muestrasVegetable samples were introduced in 4% p-formaldehyde (w / v) in 1XPBS pH 7.0 immediately after collection. Subsequently, they were subjected to two or three vacuum pulses of 3 minutes each, the fixative solution was changed to a fresh one and they were kept overnight at 4 0 C. After the tissue fixation process they were washed with 1XPBS and dehydrated to absolute ethanol by a series of successive 30-minute washes at 4 0 C in increasing ethanol solutions (15%, 30%, 50%, 70%, 85%, 96%, 100%). From this point on, the samples underwent a different process depending on whether they were included in paraffin (Paraplast Plus, Sigma), resin (Historesin, Leica) or used to be analyzed by scanning electron microscopy. 9.2 Critical point and sample analysis
Las muestras almacenadas en etanol del 100%, se desecaron con CO2 líquido en un aparato secador de punto crítico Polaron E300, se montaron en portaobjetos metálicos con cinta adhesiva de carbono activado sobre los que fueron orientadas y diseccionados convenientemente. Después del montaje, las muestras fueron recubiertas con un sombreado de partículas de oro-paladio de 200 nm, en atmósfera de argón ionizado en un Sputter Coater SCD005 (BALTEC).The samples stored in 100% ethanol, were dried with liquid CO2 in a Polaron E300 critical point dryer, mounted on metal slides with activated carbon adhesive tape on which they were oriented and dissected conveniently. After assembly, the samples were coated with 200 nm gold-palladium particle shading, under an ionized argon atmosphere in a Sputter Coater SCD005 (BALTEC).
Las imágenes se obtuvieron mediante el programa Autobeam de Ia plataforma ISIS (Oxford Instruments), con una velocidad de barrido de 200 s por imagen, en un microscopio electrónico de barrido JEOL JSM-5410 operando bajo las condiciones de microanálisis de 10 kV y distancia de trabajo de 25 mm.The images were obtained by means of the Autobeam program of the ISIS platform (Oxford Instruments), with a scanning speed of 200 s per image, in a JEOL JSM-5410 scanning electron microscope operating under the conditions of 10 kV microanalysis and distance of 25 mm work.
II. RESULTADOSII. RESULTS
La característica más importante de las plantas androestériles de Arabidopsis thaliana y de Nicotiana tabacum obtenidas utilizando Ia tecnología anteriormente descrita, es el aumento de Ia complejidad del patrón de ramificación de sus inflorescencias que además del cambio en Ia vistosidad de las plantas conlleva Ia producción continuada de flores en comparación con una planta silvestre control, así como el alargamiento de su vida media. De hecho como se describe más arriba, los patrones de desarrollo de las inflorescencias de las plantas están determinados genéticamente aunque sujetos a Ia acción de factores ambientales. En Arabidopsis dicho patrón es de los definidos como monopodiales, tanto en su tallo principal como en las ramas laterales. La ablación biotecnológica de las anteras en Arabidopsis interfiere fuertemente el complejo sistema de control genético de Ia arquitectura de Ia inflorescencia, Io que se pone de manifiesto porque, aunque el patrón de desarrollo del tallo principal es monopodial, se retrasa en el tiempo el agotamiento de Ia producción de meristemos florales y el patrón de desarrollo de las ramas laterales de Ia inflorescencia adquiere características simpodiales, ya que se producen ramas inflorescentes de hasta cuarto orden tanto en las ramas adyacentes a las hojas de roseta como a las adyacentes a las hojas caulinares. Una posible explicación a este fenómeno sería el hecho de que mientras que las plantas silvestres producen un determinado número de ramas y de flores que tras su fecundación producen los correspondientes frutos, en las plantas androestériles al no producirse frutos no se produce alguna sustancia que debería interferir con el sistema genético y de señalización que controla Ia proliferación de los meristemos axilares. Las plantas transgénicas continuarían produciendo flores sin cesar, ya que Ia sacarosa u otras moléculas señalizadoras circulante en las mismas sigue llegando a los meristemos inflorescentes al no desviarse su uso hacia el desarrollo de los frutos producidos. De este modo, las inflorescencias de las plantas androestériles continuarían con un crecimiento indeterminado al no producirse una inhibición de este fenómeno por algún tipo de señalización procedente de los frutos en desarrollo (Hensel, L. L., et al., (1994). The fate of inflorescence meristems is controlled by developing fruits in Arabidopsis. Plant Physiol. VoI. 106: 863-876).The most important characteristic of the andro-sterile plants of Arabidopsis thaliana and Nicotiana tabacum obtained using the technology described above, is the increase in the complexity of the branching pattern of their inflorescences that in addition to the change in the sight of the plants entails the continuous production of Flowers compared to a wild control plant, as well as lengthening its half-life. In fact, as described above, the patterns of development of the inflorescences of plants are genetically determined although subject to the action of environmental factors. In Arabidopsis this pattern is defined as monopodial, both in its main stem and in the lateral branches. The biotechnological ablation of the anthers in Arabidopsis strongly interferes with the complex system of genetic control of the inflorescence architecture, which is evident because, although the pattern of development of the main stem is monopodial, the depletion of the production of floral meristems is delayed in time and the development pattern of the lateral branches of the inflorescence acquires symposial characteristics, since inflorescent branches of up to fourth order are produced both in the branches adjacent to the leaves of rosette as adjacent to the caulinarian leaves. A possible explanation for this phenomenon would be the fact that while the wild plants produce a certain number of branches and flowers that after their fertilization produce the corresponding fruits, in the andro-sterile plants when fruits are not produced, no substance is produced that should interfere with the genetic and signaling system that controls the proliferation of axillary meristems. The transgenic plants would continue to produce flowers incessantly, since the sucrose or other signaling molecules circulating in them continue to reach the inflorescent meristems as their use is not diverted towards the development of the fruits produced. In this way, the inflorescences of the andro-sterile plants would continue with an undetermined growth as there was no inhibition of this phenomenon by some type of signaling from the developing fruits (Hensel, LL, et al., (1994). The fate of inflorescence meristems is controlled by developing fruits in Arabidopsis. Plant Physiol. VoI. 106: 863-876).
1. Plantas androestériles de Arabidopsis thaliana1. Andro-sterile plants of Arabidopsis thaliana
Las plantas transgénicas generadas mostraron desde Ia transición floral una serie de características que las diferenciaban de las plantas control:The generated transgenic plants showed from the floral transition a series of characteristics that differentiated them from the control plants:
Mientras que en las plantas control (Figura 2A) las flores se fecundaban y producían frutos (silicuas) normales, en las transgénicas al no producirse fecundación por Ia ablación de las anteras, las flores entraban en senescencia y en los pedicelos de las flores sólo permanecían los carpelos sin fecundar (Figura 2B). - Las flores presentes en las plantas control (WT) poseen anteras normales con polen en su interior (Figura 2C, flor izquierda) y el filamento del estambre posee su longitud normal (Figura 2D). Las flores transgénicas no muestran anteras (Figura 2C, flor derecha) y si quitamos sépalos y pétalos podemos observar unas estructuras en forma de gancho en lugar de los sacos polínicos de Ia antera y un filamento muy corto en comparación con el de los estambres control (Figura 2E).While in the control plants (Figure 2A) the flowers fertilized and produced normal fruits (silicones), in the transgenic ones when fertilization was not produced by the ablation of the anthers, the flowers entered into senescence and in the pedicels of the flowers they only remained the unfertilized carpels (Figure 2B). - The flowers present in the control plants (WT) have normal anthers with pollen inside (Figure 2C, left flower) and the filament of the yarn has its normal length (Figure 2D). The transgenic flowers do not show anthers (Figure 2C, right flower) and if we remove sepals and petals we can observe hook-shaped structures instead of the pollen sacs of the anther and a very short filament compared to that of the control stamens ( Figure 2E).
Las plantas transgénicas continúan desarrollándose y produciendo ramas y flores (Figura 2C derecha) mientras que las plantas control entran en senescencia y sus frutos se abren para liberar las semillas de su interior (Figura 2C izquierda). La vida media de estas plantas aumentó tres meses con respecto al control.Transgenic plants continue to develop and produce branches and flowers (Figure 2C right) while control plants enter senescence and their fruits open to release the seeds inside (Figure 2C left). The half-life of these plants increased three months compared to the control.
2. Plantas androestériles de Nicotiana tabacum2. Andro-sterile plants of Nicotiana tabacum
Las plantas transgénicas generadas mostraron, al igual que en el caso anterior, las mismas características en cuanto a desarrollo y floración:The transgenic plants generated showed, as in the previous case, the same characteristics in terms of development and flowering:
- Mientras que en las plantas control (Figura 3A izquierda) las flores se fecundaban y producían frutos (cápsulas) normales, en las transgénicas al no producirse fecundación por Ia ablación de las anteras, las flores entraban en senescencia y en los pedicelos de las flores permanecían las flores sin fecundar (Figura 3A centro y derecha). Muchas veces las flores senescentes permanecen sobre los tallos que se alargan continuamente al producirse flores en sus meristemos inflorescentes. En Ia figura 3D se puede observar una de estas ramas florales en comparación con una de una planta control que ha producido un número determinado de flores, se han fecundado y producido cápsulas con semillas en su interior. - Las plantas transgénicas continúan desarrollándose y produciendo ramas y flores (Figura 3B) mientras que las plantas control entran en senescencia y sus frutos (cápsulas) se abren para liberar las semillas de su interior (Figura 3C). Algunas plantas estuvieron produciendo ramas y flores durante más de un año.- While in the control plants (Figure 3A left) the flowers fertilized and produced normal fruits (capsules), in the transgenic ones when fertilization was not produced by the ablation of the anthers, the flowers entered senescence and in the pedicels of the flowers the flowers remained unfertilized (Figure 3A center and right). Many times senescent flowers remain on stems that continuously lengthen when flowers are produced in their inflorescent meristems. In Figure 3D one of these floral branches can be observed in comparison with one of a control plant that has produced a certain number of flowers, capsules with seeds have been fertilized and produced inside. - Transgenic plants continue to develop and produce branches and flowers (Figure 3B) while control plants enter senescence and their fruits (capsules) open to release the seeds inside (Figure 3C). Some plants were producing branches and flowers for more than a year.
Las flores presentes en las plantas control (WT) poseen anteras normales con polen en su interior (Figura 4A y 4B) y el filamento del estambre posee su longitud normal. Las flores transgénicas muestran anteras deformes y necrosadas con abundantes tricomas recubriendo sus sacos polínicos colapsados, los cuales no muestran polen en su interior (Figura 4C y 4D).The flowers present in the control plants (WT) have normal anthers with pollen inside (Figure 4A and 4B) and the filament of the yarn has its normal length. The transgenic flowers show deformed and necrotic anthers with abundant trichomes covering their collapsed pollen sacs, which do not show pollen inside (Figure 4C and 4D).
3. Evaluación del número total de ramas producidas por las plantas androestériles de Arabidops/s thaliana en relación con una planta normal.3. Evaluation of the total number of branches produced by andro-sterile Arabidops / s thaliana plants in relation to a normal plant.
En Ia Tabla 5 se observa que el porcentaje de germinación mostrado para las seis líneas estudiadas (Bi, B2, B3, B8, Bi4, B2o) oscila entre 30-100%, mientras que el porcentaje de germinación de las semillas silvestres es de 88,88%.Table 5 shows that the percentage of germination shown for the six lines studied (Bi, B 2 , B 3 , B 8 , Bi 4 , B 2 o) ranges between 30-100%, while the germination percentage of Wild seeds is 88.88%.
Posteriormente se seleccionaron, de las semillas germinadas, las plantas que mostraban un fenotipo androestéril, eliminando las plantas con fenotipo silvestre. En Ia última columna de Ia Tabla 5 se indica el número de plantas con fenotipo androestéril que se evaluaron de cada uno de los cruzamientos empleados. Tabla 5. Análisis de Ia germinación de plantas de Arabidopsis END1::barnasa y número de plantas con fenotipo androestérilSubsequently, plants that showed an andro-sterile phenotype were selected from the germinated seeds, eliminating the plants with wild phenotype. In the last column of Table 5, the number of plants with an andro-sterile phenotype that were evaluated for each of the crosses used is indicated. Table 5. Analysis of the germination of Arabidopsis END1 plants :: barnase and number of plants with andro-sterile phenotype
Figure imgf000049_0001
Figure imgf000049_0001
Se calculó el número de ramas y se determinó su orden y el número de flores totales así como los valores medios de ambos parámetros, tanto para las plantas silvestres como para todas las plantas androestériles de cada uno de los cruzamientos independientes END1::barnasa. Para éstas últimas, el valor medio de ambos parámetros se ha calculado realizando el promedio de las medias obtenidas para cada uno de los cruces evaluados. Dichos resultados están reflejados en Ia Tabla 6 (A y B), Tabla 7 y Figuras 6A y 6B.The number of branches was calculated and their order and the number of total flowers were determined as well as the average values of both parameters, both for wild plants and for all andro-sterile plants of each of the independent crosses END1 :: barnasa. For the latter, the average value of both parameters has been calculated by averaging the means obtained for each of the crossings evaluated. Said results are reflected in Table 6 (A and B), Table 7 and Figures 6A and 6B.
Tabla 6A. Número y complejidad de las ramas de las plantas silvestres evaluadasTable 6A Number and complexity of wild plant branches evaluated
Figure imgf000049_0002
Tabla 6B. Número y complejidad de las ramas de las plantas transgénicas evaluadas
Figure imgf000049_0002
Table 6B Number and complexity of the branches of the transgenic plants evaluated
Figure imgf000050_0001
Figure imgf000050_0002
Figure imgf000050_0003
Figure imgf000050_0001
Figure imgf000050_0002
Figure imgf000050_0003
En las Tablas 6A y 6B se puede observar que las plantas silvestres del cultivar Columbia empleado en este estudio producen un total de 36 ramas y que estas ramas corresponden a ramas de primer y de segundo orden producidas en las axilas de las hojas de roseta y en las de las caulinares. Sin embargo, las plantas transgénicas muestran una modificación drástica de su arquitectura ya que producen ramas de primer, segundo, tercer y cuarto orden tanto en las axilas de las hojas de roseta como en las de las caulinares. Se observa un aumento drástico en el número de ramas, 288 en las transgénicas frente a 36 en las silvestres. Dicho aumento se produce en el número de ramas de todos los órdenes. En las Tablas 7A y 7B se puede observar que Ia modificación drástica del número y orden de las ramas que caracterizan Ia nueva arquitectura de Ia inflorescencia de las plantas transgénicas conlleva que dichas ramas son capaces de desarrollar un mayor número de flores. Así, mientras que el número de flores totales de las plantas silvestres del cultivar Columbia es de 659, el de las correspondientes plantas transgénicas resultó ser de 3.001. Además, se observa que se producen aumentos en Ia capacidad de desarrollar flores en las ramas de todos los órdenesIn Tables 6A and 6B it can be seen that the wild plants of the Columbia cultivar used in this study produce a total of 36 branches and that these branches correspond to first and second order branches produced in the armpits of the rosette leaves and in those of the caulinares. However, the transgenic plants show a drastic modification of their architecture since they produce first, second, third and fourth order branches both in the armpits of the rosette leaves and in those of the caulinares. There is a dramatic increase in the number of branches, 288 in the transgenic versus 36 in the wild. This increase occurs in the number of branches of all orders. In Tables 7A and 7B it can be observed that the drastic modification of the number and order of the branches that characterize the new architecture of the inflorescence of the transgenic plants implies that said branches are capable of developing a greater number of flowers. Thus, while the number of total flowers of the wild plants of the Columbia cultivar is 659, that of the corresponding transgenic plants was 3,001. In addition, it is observed that there are increases in the ability to develop flowers in the branches of all orders
Tabla 7A. Número de flores de las ramas de las plantas silvestres evaluadasTable 7A Number of flowers of wild plant branches evaluated
Figure imgf000051_0001
Figure imgf000051_0001
Tabla 7B. Número de flores de las ramas de las plantas transgénicas evaluadasTable 7B Number of flowers of the branches of the transgenic plants evaluated
Figure imgf000051_0002
Figure imgf000052_0001
Figure imgf000051_0002
Figure imgf000052_0001
Tabla 8A. Valores totales, valores medios y desviaciones estándar del número de ramas y número de flores para las plantas androestériles de las líneas transgénicas. Wt: plantas silvestres, TR: plantas transgénicasTable 8A Total values, average values and standard deviations of the number of branches and number of flowers for the andro-sterile plants of the transgenic lines. Wt: wild plants, TR: transgenic plants
Figure imgf000053_0002
Figure imgf000053_0002
Total 246 2938Total 246 2938
Figure imgf000053_0001
Tabla 8 B. Valores totales, valores medios y desviaciones estándar del número de ramas y número de flores para las plantas silvestres estudiadas
Figure imgf000053_0001
Table 8 B. Total values, average values and standard deviations of the number of branches and number of flowers for the wild plants studied
Figure imgf000054_0001
Figure imgf000054_0001
Resumiendo Io anterior:Summing up the previous:
El número de ramificaciones producido por las plantas con fenotipo androestéril es aproximadamente 8 veces mayor que en las plantas silvestres, ya que, mientras que en éstas el valor medio de ramificaciones obtenido es de 36 ramas, en las plantas transgénicas, el valor medio de ramificaciones obtenido es de 288. En las plantas androestériles se observa un mayor número de órdenes de ramificaciones (llegando a obtenerse ramificaciones terciarias y cuaternarias) mientras que en las plantas silvestres sólo se observan ramificaciones primarias y secundarias (Figuras 7A y 7B). En Io que respecta al número de flores (Tablas 8A y 8B), en las plantas androestériles se observa que el número de flores es, aproximadamente 4,5 veces mayor que en las plantas silvestres (Figuras 8A y 8B). Aunque no se quiere estar vinculado a ninguna teoría, este hecho podría explicarse mediante los siguientes aspectos:The number of branches produced by plants with an andro-sterile phenotype is approximately 8 times higher than in wild plants, since, while in these the average value of branches obtained is 36 branches, in transgenic plants, the average value of branches obtained is 288. In the andro-sterile plants, a greater number of branch orders is observed (tertiary and quaternary branches are obtained) while in the wild plants only primary and secondary branches are observed (Figures 7A and 7B). Regarding the number of flowers (Tables 8A and 8B), in andro-sterile plants it is observed that the number of flowers is approximately 4.5 times higher than in wild plants (Figures 8A and 8B). Although you do not want to be linked to any theory, this fact could be explained by the following aspects:
1. Al no producirse frutos en las plantas androestériles no se produce alguna sustancia que debería interferir con el sistema genético y de señalización que controla Ia proliferación de los meristemos axilares.1. When no fruits are produced in andro-sterile plants, no substance is produced that should interfere with the genetic and signaling system that controls the proliferation of axillary meristems.
2. En las plantas transgénicas los meristemos laterales se mantienen activos durante más tiempo que en las plantas silvestres; así pues, mientras que las plantas silvestres son capaces de vivir durante tres meses, las plantas transgénicas se mantienen vivas en el invernadero durante el doble de tiempo (seis meses).2. In transgenic plants, lateral meristems remain active for longer than in wild plants; thus, while wild plants are able to live for three months, transgenic plants remain alive in the greenhouse for twice as long (six months).
3. Una posible explicación parcial a este fenómeno podría basarse en Ia hipótesis de que en las plantas transgénicas no existe el consumo de sacarosa (energía) destinado en una planta silvestre al desarrollo de los frutos tras Ia fecundación. Dicha energía es utilizada por Ia planta transgénica para soportar más ramificaciones e inflorescencias, aumentando con ello su desarrollo y el número total de flores producidas. 3. A possible partial explanation for this phenomenon could be based on the hypothesis that in the transgenic plants there is no consumption of sucrose (energy) destined in a wild plant for fruit development after fertilization. Said energy is used by the transgenic plant to withstand more ramifications and inflorescences, thereby increasing its development and the total number of flowers produced.

Claims

REIVINDICACIONES
1. Un procedimiento para obtener una planta transgénica con una arquitectura de su inflorescencia modificada respecto de Ia que presenta Ia planta silvestre (wt) y que comprende:1. A procedure for obtaining a transgenic plant with an architecture of its modified inflorescence with respect to that presented by the wild plant (wt) and comprising:
(a) transformar una célula o tejido vegetal susceptible de ser transformado con una construcción génica que comprende:(a) transforming a plant cell or tissue capable of being transformed with a gene construct comprising:
(i) una primera secuencia de ácido nucleico que comprende Ia secuencia de nucleótidos del promotor del gen PsENDI , o un fragmento del mismo con capacidad de regular específicamente Ia expresión génica de una segunda secuencia de ácido nucleico en anteras, y(i) a first nucleic acid sequence comprising the nucleotide sequence of the promoter of the PsENDI gene, or a fragment thereof capable of specifically regulating the gene expression of a second nucleic acid sequence in anthers, and
(ü) una segunda secuencia de ácido nucleico que comprende Ia secuencia de nucleótidos de un gen citotóxico, o un fragmento funcional del mismo, bajo el control de dicha primera secuencia de ácido nucleico, para producir una célula o tejido vegetal transformado,(ü) a second nucleic acid sequence comprising the nucleotide sequence of a cytotoxic gene, or a functional fragment thereof, under the control of said first nucleic acid sequence, to produce a transformed plant cell or tissue,
(b) regenerar dicha célula o tejido vegetal transformado en Ia etapa (a) para producir una planta transgénica, y (c) seleccionar las plantas transgénicas de Ia etapa (b) que exhiban una arquitectura de su inflorescencia modificada en comparación con Ia que presenta Ia correspondiente planta silvestre.(b) regenerate said transformed cell or plant tissue in stage (a) to produce a transgenic plant, and (c) select the transgenic plants of stage (b) that exhibit an architecture of its modified inflorescence compared to that presented The corresponding wild plant.
2. Procedimiento según Ia reivindicación 1 , en donde dicha primera secuencia de ácido nucleico comprende el promotor del gen PsENDI de guisante (Pisum sativum L). 2. Method according to claim 1, wherein said first nucleic acid sequence comprises the promoter of the pea PsENDI gene (Pisum sativum L).
3. Procedimiento según Ia reivindicación 1 , en donde dicha primera secuencia de ácido nucleico comprende Ia secuencia de nucleótidos comprendida desde el nucleótido -2.736 hasta el nucleótido -6 de Ia secuencia de nucleótidos mostrada en Ia Figura 5.3. Method according to claim 1, wherein said first nucleic acid sequence comprises the nucleotide sequence comprised from nucleotide -2,736 to nucleotide -6 of the nucleotide sequence shown in Figure 5.
4. Procedimiento según Ia reivindicación 1 , en donde dicha primera secuencia de ácido nucleico comprende Ia secuencia de nucleótidos comprendida desde el nucleótido - 366 hasta el nucleótido -6 de Ia secuencia de nucleótidos mostrada en Ia Figura 5.4. Method according to claim 1, wherein said first nucleic acid sequence comprises the nucleotide sequence comprised from nucleotide -366 to nucleotide -6 of the nucleotide sequence shown in Figure 5.
5. Procedimiento según Ia reivindicación 1 , en donde dicha segunda secuencia de ácido nucleico comprende un gen citotóxico que provoca androesterilidad en plantas o un fragmento del mismo con capacidad para provocar androesterilidad cuando se expresa en anteras.5. Method according to claim 1, wherein said second nucleic acid sequence comprises a cytotoxic gene that causes androsterility in plants or a fragment thereof capable of causing androsterility when expressed in anthers.
6. Procedimiento según Ia reivindicación 1 ó 5, en donde el gen citotóxico es un gen que codifica una actividad ribonucleasa o un gen que codifica una proteína que causa Ia muerte celular en el tejido donde se expresa.6. Method according to claim 1 or 5, wherein the cytotoxic gene is a gene that encodes a ribonuclease activity or a gene that encodes a protein that causes cell death in the tissue where it is expressed.
7. Procedimiento según Ia reivindicación 6, en donde el gen citotóxico se selecciona entre el gen de Ia barnasa, el gen que codifica para Ia toxina A de Ia difteria (DTA) producida naturalmente por Corynebacterium diphteríae, el gen que codifica para Ia exotoxina A de Pseudomonas aeruginosa, el gen que codifica Ia ribonucleasa T de Aspergillus oryzae y el gen que codifica Ia barnasa de Bacillus amyloliquefaciens.7. Method according to claim 6, wherein the cytotoxic gene is selected from the barnase gene, the gene encoding the toxin A of diphtheria (DTA) produced naturally by Corynebacterium diphteriae, the gene that codes for the exotoxin A of Pseudomonas aeruginosa, the gene that encodes the ribonuclease T of Aspergillus oryzae and the gene that encodes the barnase of Bacillus amyloliquefaciens.
8. Una planta transgénica obtenible según el procedimiento de cualquiera de las reivindicaciones 1 a 7, que presenta una arquitectura compleja, distinta, con un mayor número de ramas y de mayor orden, todas ellas capaces de producir flores, que Ia de Ia planta silvestre (wt).8. A transgenic plant obtainable according to the procedure of any of claims 1 to 7, which has a complex, different architecture, with a greater number of branches and of greater order, all of them capable of producing flowers, than that of the wild plant (wt).
9. Un procedimiento para producir flores que comprende cultivar una planta transgénica obtenida según el procedimiento de cualquiera de las reivindicaciones 1 a 7, o una planta transgénica según Ia reivindicación 8, bajo condiciones que permitan Ia floración y el desarrollo de las flores. 9. A process for producing flowers comprising cultivating a transgenic plant obtained according to the method of any one of claims 1 to 7, or a transgenic plant according to claim 8, under conditions that allow flowering and flower development.
PCT/ES2008/070043 2007-03-08 2008-03-07 Method for modifying the inflorescence architecture of plants WO2008107509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200700618 2007-03-08
ES200700618A ES2319842B1 (en) 2007-03-08 2007-03-08 PROCEDURE TO MODIFY THE ARCHITECTURE OF THE INFLORESCENCE OF THE PLANTS.

Publications (1)

Publication Number Publication Date
WO2008107509A1 true WO2008107509A1 (en) 2008-09-12

Family

ID=39737827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070043 WO2008107509A1 (en) 2007-03-08 2008-03-07 Method for modifying the inflorescence architecture of plants

Country Status (2)

Country Link
ES (1) ES2319842B1 (en)
WO (1) WO2008107509A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472642B2 (en) 2015-02-05 2019-11-12 British American Tobacco (Investments) Limited Method for the reduction of tobacco-specific nitrosamines or their precursors in tobacco plants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073088A1 (en) * 2000-03-31 2001-10-04 Consejo Superior De Investigaciones Cientificas Sequence regulating the anther-specific expression of a gene and its use in the production of androsterile plants and hybrid seeds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073088A1 (en) * 2000-03-31 2001-10-04 Consejo Superior De Investigaciones Cientificas Sequence regulating the anther-specific expression of a gene and its use in the production of androsterile plants and hybrid seeds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BELTRAN, J. P .: "La ingeniería genética de las plantas cultivadas, clave para mejorar la nutrición y la salud humanas.", ANALES DE LA REAL ACADEMIA NACIONAL DE FARMACIA., vol. 71, no. 3, 2005, pages 587 - 608, XP003023726, ISSN: 1697-428X *
ROQUE, E. ET AL.: "The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation.", PLANT CELL REPORTS., vol. 26, no. 3, March 2007 (2007-03-01), pages 313 - 325, XP019490249, ISSN: 1432-203X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10472642B2 (en) 2015-02-05 2019-11-12 British American Tobacco (Investments) Limited Method for the reduction of tobacco-specific nitrosamines or their precursors in tobacco plants

Also Published As

Publication number Publication date
ES2319842A1 (en) 2009-05-12
ES2319842B1 (en) 2010-02-16

Similar Documents

Publication Publication Date Title
US20120084890A1 (en) Regulatory sequences for expressing gene products in plant reproductive tissue
Chumakov et al. Agrobacterium-mediated in planta transformation of maize via pistil filaments
BR112020026640A2 (en) METHODS FOR SELECTING TRANSFORMED PLANTS
US20220170033A1 (en) Plant explant transformation
JP2006325588A (en) Method for producing plant modified to induce dedifferentiation, plant obtained thereby and use thereof
US9145563B2 (en) Transgenic plant having increased biomass and improved environmental stress resistance, and process for production thereof
JP3761628B2 (en) Plant promoters and their use
ES2319842B1 (en) PROCEDURE TO MODIFY THE ARCHITECTURE OF THE INFLORESCENCE OF THE PLANTS.
CN104004075B (en) A kind of blunt squama is purple to carry on the back tongue bHLH transcription factors and its expressing gene and application
WO2006095034A1 (en) Parthenocarpic tomatoes and production method thereof
JP3357907B2 (en) Method for shortening inflorescence internode by introducing gene of Petunia transcription factor PetSPL2
CN111961675B (en) Clonotus sinensis-free Clinopodium polycephalum closed flower gene CsCly and application thereof
KR101437606B1 (en) Promoter from brassica and plant transformed with the same
CN110747196A (en) Tissue-specific promoter JcTM6 gene promoter expressed in plant flowers and application thereof
WO2011114920A1 (en) Environmental stress-resistant plant and method for breeding same
Li et al. Analysis of transgenic tobacco with overexpression of Arabidopsis WUSCHEL gene
EP2339008A1 (en) Basal transcription factors silencing to induce recoverable male sterility in plants
CN113528533B (en) Limonium bicolor gene LbRSG and application thereof
KR101677067B1 (en) Seedspecific promoter derived from Oryza sativa and use thereof
JP4179217B2 (en) NOVEL VECTOR AND METHOD FOR PRODUCING PLANT TRANSFORMANT USING THIS VECTOR
JP2006191906A (en) Plant-transforming vector
CN110904110B (en) Application of OsHAP3C gene expression reduction in rice variety with shortened heading period and prolonged growth period
KR101444215B1 (en) BrSTY1 PROMOTER FROM BRASSICA AND PLANT TRANSFORMED WITH THE SAME
KR101680281B1 (en) Promoter expressing specifically in root tissue
CN117904192A (en) Transgenic universal vector pCamT-ARuby without antibiotic screening and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08718479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08718479

Country of ref document: EP

Kind code of ref document: A1