WO2008107404A1 - Dispositif et procede d'injection de fluide dans un lit fluidite rotatif - Google Patents

Dispositif et procede d'injection de fluide dans un lit fluidite rotatif Download PDF

Info

Publication number
WO2008107404A1
WO2008107404A1 PCT/EP2008/052522 EP2008052522W WO2008107404A1 WO 2008107404 A1 WO2008107404 A1 WO 2008107404A1 EP 2008052522 W EP2008052522 W EP 2008052522W WO 2008107404 A1 WO2008107404 A1 WO 2008107404A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
circular wall
circular
solid particles
fluids
Prior art date
Application number
PCT/EP2008/052522
Other languages
English (en)
Inventor
Axel De Broqueville
Original Assignee
Total Petrochemicals Research Feluy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP07103440A external-priority patent/EP1967261A1/fr
Priority claimed from EP07118908A external-priority patent/EP2050493A1/fr
Application filed by Total Petrochemicals Research Feluy filed Critical Total Petrochemicals Research Feluy
Publication of WO2008107404A1 publication Critical patent/WO2008107404A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/14Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moving in free vortex flow apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/36Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed through which there is an essentially horizontal flow of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/386Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only internally, i.e. the particles rotate within the vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates

Definitions

  • the present invention relates to a rotating fluidized bed device comprising a fluid injection device regularly distributed along the circular wall of the fluidized bed device.
  • the present invention also relates to a fluid injection method through a rotating fluidized bed supported by a circular wall, fixed or rotary, with fluid injectors evenly distributed along said circular wall.
  • the solid particles when the fluid is injected by long longitudinal slots distributed uniformly along the cylindrical wall of the reactor from a uniform pressure feed chamber, the solid particles generally tend, during the filling phase of the reactor , ie before forming a fluidized bed of sufficient thickness, to concentrate preferentially along one or both transverse walls of the reactor or along rapidly rotating longitudinal zones, the fluid passing through preferentially between these areas.
  • This inhomogeneous distribution of solid particles may persist in certain circumstances because it generates an inhomogeneous distribution of fluid flows along the longitudinal slots, which amplifies or maintains the inhomogeneous distribution of the solid particles.
  • the fluid leaves preferentially through the openings or portions of openings where the pressure of the solids is the lowest and expels solid particles from these areas to areas where the solid particles accumulate and thus inhibit the passage of fluid.
  • the fluid thus spawns one or more preferential passages or channels through the solid particles and prevents the formation of a homogeneous fluidized bed.
  • the solid particles are concentrated in annular slices rotating along the wall of the reactor, they are driven and supported by annular fluid vortices. This phenomenon of annular concentration of solid particles resulting in the "annular channelization" of the fluid flow is known as the "Tornado effect" obtained by injecting the fluid into injectors distributed along annular slices or helically along the cylindrical wall of a reactor. This process is described in US Patent 3,768,172 of October 30, 1973.
  • baffles forcing the flow of solids in front of the fluid injectors such as helical propellers used in the application WO 2005/099887 filed in the name of the same inventor or using a rotary stack, as is described in the patent application EP 06008351.6 filed by Total Petrochemical Research Feluy on 21-04-2006 in the name of the same inventor, or by increasing the pressure drop across the fluid injectors, for example using porous walls.
  • the pressure drop being proportional to the flow rate of the fluid, it is necessary to have a significant pressure drop across the porous wall to be able to homogenize the fluid flows and therefore a significant energy consumption, when the centrifugal pressure of the solids on the circular wall is high.
  • the present invention relates to a rotating fluidized bed device comprising a fluid injection device to significantly reduce the "channelization" problems described above.
  • the invention relates to a rotary fluidized bed device comprising: a reactor comprising at least one circular chamber, a feed device and a device for discharging solid particles (10) into and from said circular chamber, a device for supplying one or more fluids (2), gaseous or liquid, disposed around the circular wall (1) of said circular chamber, said device comprising fluid injectors distributed around said circular wall (1) of which the orientation has a component tangential to said circular wall, for injecting said one or more fluids (2) into said circular chamber along said circular wall (1) in a direction having a component tangential to said circular wall, thereby permitting rotating said solid particles along said circular wall, and an evacuation device preferably a central evacuation device, from or fluids, characterized in that said fluid injectors comprise passages comprising one or more constrictions non-aerodynamically widening and generating a turbulent flow of the fluid or fluids, thus making it possible to control the distribution of the fluids. flow of said fluid or fluids along said circular wall and to improve the fluidization and homogen
  • the present invention relates to a cylindrical rotating fluidized bed device.
  • cylindrical rotating fluidized bed refers to a relatively uniform fluidized bed running along the circular wall of a circular chamber, traversed radially by the fluid which is injected in thin layers along said circular wall and whose solid particles revolve around it. of a central axis by describing circular trajectories mainly located in transverse planes, as opposed to “toroidal rotating fluidized beds", in which the solid particles are concentrated and rotate inside one or more tori by describing helical trajectories, the said toroid (s) containing the majority of said solid particles being supported by the fluid vortex (s) rotating around said central axis along the said toroid (s).
  • Thin films means layers whose thickness near the circular wall is at least an order of magnitude smaller than the mean distance between the circular wall and the central axis, said thin layers being expand as they move away from the so-called circular wall.
  • said device for discharging the fluid or fluids preferably also called “central evacuation device” in the present invention, comprises a central chimney passing longitudinally or penetrating inside said circular chamber, the wall of said central chimney comprising at least one outlet opening for discharging centrally, through said central chimney, the fluid or mixture of fluids of said circular chamber.
  • the outlet openings comprise passages comprising one or more constrictions that widen non-aerodynamically in order to generate turbulence.
  • said device for supplying one or more fluids comprises a fluid supply chamber surrounding said circular wall.
  • the injectors comprise passages with narrowing (part whose section is narrow) widening abruptly, non-aerodynamically, which allow during the use of the device, the generation of vortices, preferably of small dimensions with respect to the thickness of the fluidized bed, before the fluid or fluids passing through these passages come into contact with the solid particles, in order to generate a pressure drop approximately proportional to the square of the flow rate of the fluid or fluids making it possible to better control the distribution of the flows of said fluid or fluids; said circular wall and turbulence for improving the fluidization and homogeneity of said rotating fluidized bed.
  • non-aerodynamic is used in the present invention as a synonym for "generating a turbulent fluid flow”.
  • a “non-aerodynamically widening throttle” or a “suddenly widening throttle” are used in the present invention as synonyms and therefore refer to a throttle allowing said fluid or fluids to flow non-aerodynamically so to generate turbulence.
  • non-aerodynamic widening or “non-aerodynamic expansion” are used in the present invention as synonyms and refer to expansion or expansion allowing the fluid (s) flowing through such expansion or expansion to flow from non-aerodynamic way and generate turbulence.
  • the expansion of the fluid being non-aerodynamic, with turbulence generation the pressure drop of the fluid through these constrictions is approximately proportional to the square of the flow of fluids passing through these passages. Controlling the local flow rates of these fluid streams can be achieved by means of a relatively small pressure drop and the turbulence contributes to improving the fluidization of the solid particles and the homogeneity of the fluidized bed.
  • Expansion by a factor of preferably at least two with a pressure drop of at least one tenth and preferably one fifth of the mean centrifugal pressure of the solid particles on the circular wall avoids or reduces the problems of "channeling" and substantially improve the homogeneity of the fluidized bed.
  • the fluid injector comprises a passage through which the fluid enters the injector.
  • Said passage comprises one or more constrictions.
  • the invention provides a device, in which the ratio between the output section of the injectors of said fluid or fluids and the section of said constrictions is at least equal to 2.
  • the passage is narrow or narrows gradually to then expand suddenly, non-aerodynamically (exemplified in a non-limiting manner in Figures 1, 2 and 3).
  • the injector may also comprise a passage with more or less constant dimensions, in which or in front of which one or more blocks or obstacles are provided, forming one or more constrictions (exemplified in a non-limiting manner in FIGS. and 6).
  • the inlet of the injector may also be partially covered by rings (exemplified in a non-limiting manner in FIG. 5). More particularly, according to a particular embodiment, the invention relates to a device, wherein said constrictions are obtained using longitudinal and / or transverse obstruction elements.
  • obstruction elements may be constituted by the structural shape of said circular wall.
  • said obstruction elements comprise longitudinal blocks placed inside said passages.
  • said obstruction elements comprise transverse blocks placed inside said passages and dividing the passages into a succession of transverse constrictions.
  • the longitudinal lengths of the transverse blocks are equal to or greater than the length of the constrictions.
  • said obstruction elements comprise helical rings or coils which helical rings or coils are applied against and outside or inside said circular wall and partially cover the opening of said passages.
  • the present invention also provides, in another embodiment, a rotating fluidized bed device, wherein said circular wall is formed by a succession of contiguous plates and which wall is provided with surfaces, separating two contiguous plates, which surfaces are grooved transversely forming a succession of narrow passages and elements of obstructions.
  • the present invention also relates to a method of injecting fluid into a rotating fluidized bed device of solid particles rotating along a circular wall, significantly reducing the "channeling" problems described herein.
  • the method comprising injecting the fluid in a direction having a component tangential to the circular wall of said device through injection slits comprising narrowing abruptly, non-aerodynamically, to generate a pressure loss. and turbulence before the fluid meets said solid particles.
  • the method thus makes it possible to improve the distribution of the fluid flows along said circular wall and the fluidization and homogeneity of said rotating fluidized bed.
  • the invention thus provides a method of injecting fluid into a rotating fluidized bed device of solid particles rotating along a circular wall, the method comprising injecting the fluid in a direction having a component tangential to said circular wall. through injection slits comprising narrowing strangulations abruptly, non-aerodynamically, and generating turbulence before the fluid meets said solid particles.
  • the present invention also relates to methods for catalytic polymerization, combustion, gasification, classification, drying, impregnation, coating or other treatments of solid particles suspended in the rotating fluidized bed, or cracking, dehydrogenation or other catalytic transformation of fluids using this device.
  • Figure 1 shows a cross section of an example of passage or injection opening with a longitudinal constriction.
  • Figure 2 shows the schematic cross section of a polygonal circular wall traversed by fluid injection slits provided with constrictions according to a particular embodiment of the invention.
  • FIG. 3 is an enlargement of one of the slots shown in Figure 2 to better visualize the formation of vortices during use of the device according to a particular embodiment of the invention.
  • FIG. 4 represents the schematic axonometric projection of a longitudinal slot section provided with transverse restrictions in a circular wall of a device according to one particular embodiment of the invention.
  • FIG. 5 represents a schematic axonometric projection illustrating another way of arranging the transverse restrictions at the level of the injectors of a fluid injection device according to one particular embodiment of the invention.
  • FIG. 6 represents a schematic axonometric projection illustrating an example of both longitudinal and transverse restriction according to a particular embodiment of the invention.
  • Figure 7 shows the schematic cross section of a rotating fluidized bed device according to a particular embodiment of the invention.
  • FIG. 8 shows a schematic cross section of a corrugated circular wall formed of adjacent plates whose inner surfaces (100), (100 '), (100 "), ... have a progressive concave curvature, in a particular embodiment of the invention.
  • the device according to the present invention comprises an outer circular wall provided with injection openings through which a fluid can be injected into an annular chamber which can be fed with solid particles and whose inner circular wall is provided with outlet openings through which the fluid can be evacuated.
  • the injection openings comprise passages provided with constrictions (portion whose section is narrow) that widens suddenly, non-aerodynamically, and generates a turbulent flow of the fluid or fluids which make it possible use of the device, the generation of small vortices.
  • the orientation of the injection openings has a component tangential to said circular wall.
  • fluid injector refers to a passage or opening of injection through the circular wall through which a fluid can penetrate inside the circular or annular chamber, for example when it is maintained at pressure lower than the external pressure of said passage.
  • This passage or injection opening may have any shape, for example a cylindrical tube or polygonal section. It is preferably elongate in the longitudinal direction (perpendicular to the plane of rotation). In this case we speak of "injection slot”.
  • Passage The words "passage”,
  • injection opening or "injection slot” are used in some embodiments of the present invention as synonyms.
  • the fluid injector includes an inlet and an outlet.
  • the choke is the part of the passage between the entrance and the exit, whose section is minimum.
  • the inlet section is larger than that of the throttle. In this case it is preferable that this section varies gradually from the entrance to the throttling, but it is not essential. It is not necessary either that the inlet section be larger than the section of the constriction.
  • the outlet section is larger than the section of the constriction and there is an area where this section increases non-aerodynamically, that is to say with turbulence generation.
  • circular chamber or “reaction chamber” are used in some embodiments of the present invention as synonymous and refer to a chamber within the reactor defined by a circular wall and lateral sides.
  • the circular reaction chamber may be an annular chamber.
  • annular chamber refers to a chamber delimited by two concentric circular walls and lateral sides.
  • the inner circular wall defines an inner circular chamber which may be called the fluid discharge chamber or central chimney.
  • the annular chamber is a circular chamber crossed by a central chimney.
  • central chimney refers to a device for centrally evacuate the fluid or fluids of said circular chamber.
  • the central word means that this device is not in direct contact with the outer circular wall of said circular chamber.
  • the central chimney does not necessarily have to pass through the circular chamber, it can simply penetrate inside it (in this case the circular chamber is not an annular chamber).
  • the central chimney is connected to a motor that can rotate it.
  • the term "circular wall” indicates the outer circular wall of the circular reaction chamber.
  • the outer circular wall is a closed wall provided with injection openings, along which can be rotated, the plane of rotation can be horizontal, vertical or inclined.
  • said circular wall is connected to a motor that can rotate it.
  • the circular wall may be generally cylindrical, elliptical, conical or polygonal or have another shape with various curvatures may include concave portions.
  • its inner surface may be polygonal or wavy and its general shape may be elliptical or even have the shape of a banana.
  • its inner surface comprises planar portions separating two consecutive fluid injectors. Its cross section does not have to be constant. For example, it can gradually decrease.
  • the surface separating two consecutive fluid injectors comprises at least one part whose curvature is concave.
  • the polygonal shape allows easy realization by assembling flat elements contiguous to each other and a tangential fluid injection to the downstream portion of the injectors
  • This surface can also have a concave curvature, giving a wavy appearance to the inner surface of the circular wall.
  • the fluid injectors are preferably located at the end of the concave curvature of the upstream surface in order to reduce and better distribute the concentration of the solids upstream of the injectors.
  • the polygonal shape makes it possible to obtain the same result, if the surface upstream of the injectors is folded to give it a concave shape, that is to say with an internal angle of more than 180 °.
  • the shape is chosen according to the desired results. For example if the shape of the surface upstream of the injectors is convex, the pressure of the solid particles before coming into contact with the fluid injected downstream is higher than the pressure along a concave surface and the energy expended the fluid in the fluidized bed increases as the pressure of the solid particles on the fluid jets increases.
  • the fluid is supplied by a supply device which may include a fluid supply chamber surrounding the annular reaction chamber.
  • the location of the injectors is chosen according to the results that one wishes to obtain. For example, if the shape of the inner surface of the outer wall has a gradually varying curvature, as in an ellipse, or is corrugated, the result is areas where the pressure of the solid particles on this surface is higher (where the curvature is strong and convex) or weaker (where it is weak or concave), and therefore the location of the injectors in one or the other zone will influence the amount of energy that is conferred to the solid particles.
  • feed chamber refers to a chamber surrounding the circular or annular chamber and where the pressure can be maintained above the pressure of the central stack.
  • the feed chamber may be of any shape and is not essential. It may for example be replaced by a fluid dispenser comprising a set of tubes each connected to one or more fluid injectors, or simply be replaced by a suction device connected to the central chimney. In the latter case, the fluid that is injected into the annular chamber is simply the fluid surrounding the annular chamber, for example the ambient air for drying applications or the external liquid, for example the water of a basin in which the circular chamber is immersed.
  • the circular chamber comprises an outer circular wall and an inner circular wall (defining the central chimney).
  • the outer and inner circular walls are fixed.
  • the outer circular wall is fixed and the inner circular wall is connected to a motor that can rotate it (rotary chimney).
  • the two outer and inner circular walls are connected to a motor that can turn them together (rotary annular chamber).
  • the injection openings make it possible to inject the fluid in a direction whose main component is tangential and preferably greater than twice the radial or longitudinal component (which is equivalent to an angle less than or equal to 30 ° with the tangent to the circular wall on the side downstream of said fluid injection openings).
  • the device according to the present invention is characterized in that the injection openings comprise a constriction, the section of which is preferably less than half of the exit section (that is to say from the entrance to the circular chamber).
  • the device according to the present invention is characterized in that the passage of the constriction to the outlet section, that is to say the enlargement of the opening is brutally done, that is to say with an expansion angle greater than 60 °, preferably in the range of 90 ° +/- 15 °, along a sharp edge, that is to say with a radius of curvature is small (preferably at least 5 times smaller) than the width of the opening.
  • the injection openings are preferably regularly distributed, that is to say that any portion of the annular chamber having a length (longitudinal dimension) equal to half the mean distance between the two circular walls (which corresponds to more or less than the normal thickness of the fluidized bed) contains a sufficient number of injection openings so that the distance between two consecutive injection openings is less than or equal to the mean radius of the outer circular wall, and preferably less twice the average distance between the two circular walls.
  • the preferred minimum number of injection openings therefore depends on the average radius of the inner circular wall or the central chimney.
  • the distance separating said injectors is less than or equal to the average radius of said circular wall. According to a particular embodiment, it is at least 6, if this radius mean is equal to half the average radius of the outer circular wall, but it can be much higher if this average radius is close to the radius of the outer wall.
  • the device according to the present invention is characterized in that the said outlet opening (s) (or openings) are such that the sum of their sections is less than twice the sum of the sections of the injection openings. This allows the output velocity of the fluid to be not significantly smaller than its input speed. This output speed can be much greater than the input speed.
  • the device according to the present invention is characterized in that the said outlet opening (s) are distributed in such a way that there are none along the lateral walls of the annular chamber on a preferably at least one fifth of the average distance between the two circular walls. This minimizes particle losses through these exit openings along the sidewalls.
  • the device according to the present invention is characterized in that the said outlet or openings are provided with similar restrictions to the injection openings.
  • the outlet openings therefore comprise a passage comprising one or more constrictions widening non-aerodynamically and generating a turbulent flow of the fluid or fluids.
  • the device according to the present invention is characterized in that the distance separating said outlet openings is less than or equal to the average radius of the inner circular wall (chimney wall).
  • the present invention consists in placing, inside the fluid injectors passing through the circular wall supporting a rotating fluidized bed, constrictions which widen suddenly, in a non-aerodynamic manner, and thus generate a loss of dynamic pressure and turbulence before the meeting of fluid and solids.
  • Restrictions can be formed using obstruction elements such as restrictions or blocks.
  • restriction is used interchangeably with the term "block”. These two terms are synonymous.
  • the fluid injectors are long longitudinal slits passing through the circular wall, these constrictions can be transverse, that is to say, dividing the flow of fluid into transverse slices, or be longitudinal, that is to say ie slimming the flow of fluid over the entire length of the slit. They can also be a combination of both types.
  • the ratio between the outlet section of the fluid injectors and the section of said constrictions is preferably at least equal to 2.
  • FIG. 1 shows the cross-section of an example of passage inside a fluid injection slit passing through the circular wall (1) of a circular chamber of a reactor, the passage comprising a longitudinal constriction, widening abruptly, non aerodynamically.
  • the fluid (2) comes from a feed chamber not shown in the figure, located outside the circular wall (1) and maintained at a pressure sufficient to inject into the interior of the circular chamber the desired amount of fluid.
  • the fluid is injected tangentially into the circular chamber by a longitudinal slot (or injection opening) (15), perpendicular to the plane of the figure and pierced through the circular wall (1).
  • This slot (15) comprises a DEE 'throat, of width (4) widening abruptly, that is to say not aerodynamically, to a width (5).
  • the DEE 'constriction is formed by the obstructing elements (20).
  • the constriction has a section that is less than half of the exit section (i.e., the inlet to the annular chamber of the fluidized bed device), the passage of the throat to the exit section, that is to say the widening of the opening being done abruptly, that is to say with an expansion angle (16) greater than 60 °, preferably in the interval 90 ° +/- 15 °, along a sharp edge, that is to say, whose radius of curvature is small (preferably at least 5 times smaller) with respect to the width of the constriction .
  • the fluid (2) is strongly accelerated within the DEE 'constriction, where it reaches a maximum speed, symbolized by the dimension of the arrow (6). It is then brutally slowed down at a speed (8), at the exit of the constriction, with the production of a strong turbulence, symbolized by the arrows (9), before entering the circular chamber and meeting there the solid particles, symbolized by the rounds (10), which rotate by sliding along the circular wall (1) in the direction of the arrows (1 1).
  • the pressure of the fluid drops inside the DEE 'constriction and if a small part of its kinetic energy is recovered in the form of pressure at the time of its exit from the neck, most of it is transformed into turbulence due to lack of aerodynamic expansion of the opening at the exit of the throttle.
  • the pressure drop is approximately proportional to the square of the velocity (6) of the fluid in the constriction and therefore proportional to the square of the ratio between the width (5) and the width (4).
  • the pressure drop is approximately 9 times greater than that which would have been obtained if there had been no throttling or if the profile the exit of the throttle had been aerodynamic (gradual variation of the section with rounded to avoid or minimize turbulence).
  • the pressure drop due to the injection of the fluid is also proportional to the square of the flow of the fluid passing in this place.
  • This flow rate of the fluid depends on the centrifugal pressure of the fluidized bed and therefore on the density, velocity and concentration of the solid particles passing in front of the opening AB of the fluid injection slit.
  • the flow rate of the fluid is maximum and therefore the pressure drop across the injector is maximum.
  • the pressure at the outlet of the fluid injector being higher in the areas facing a high concentration of solid particles, a portion of the fluid can move longitudinally, that is to say perpendicularly to the plane of the figure, along the injection slot, before meeting the solid particles and thus contribute to the "annular channelization" of the flow of the fluid.
  • the width (5) of the fluid injection slot times the average distance between the outlet of the neck (DE) and the front of solid particles (AB) is not not substantially and preferably less than twice as large as the section of the throat, or its width (4) times its length (perpendicular to the plane of the surface).
  • FIG. 2 shows the cross section of a polygonal circular wall (1) traversed by fluid injection slits (15) where the distances BC and EF of FIG. 1 have been reduced to zero and FIG. 3 is an enlargement one of these slots to better visualize the formation of vortices.
  • the stop D must be sharp or have a radius of curvature of one fifth less than the width (4) of the constriction. and that the angle D is less than 135 ° and preferably less than or equal to 120 °.
  • the expansion angle (16) is preferably greater than 60 °, preferably in the range of 90 ° +/- 15 °. To prevent the solid particles from encountering the fluid before the formation of vortices, it is desirable that the distance BD be at least equal to the width (4) of the constriction and that the angle B be less than 135 ° and preferably lower than or equal to 90 °.
  • the vortices being mainly in a transverse plane, they will contribute to the fluidization of solid particles mainly in transverse planes and thus reduce mainly the possibility of formation of longitudinal channels rotating.
  • FIG. 4 is the axonometric projection of a longitudinal slot section, of width (5), passing through the circular wall (1) of a circular chamber and provided with transverse restrictions or blocks (20) dividing the longitudinal slot into a succession transverse chokes or slices of the same width as the width (5) of the slit and of length (19) (in the longitudinal direction) and thus forcing the fluid to divide into transverse slices passing in the transverse chokes formed by these restrictions or blocks (20) before relaxing longitudinally with the formation of vortices (9) in front of the faces CDEF and C'D'E'F 'of these blocks which are recessed with respect to the surface AA'B'B which is the intersection of the longitudinal slot with the circular surface of the circular chamber.
  • the hatched surfaces (21) and (22) represent the visible sections, respectively transverse and longitudinal, of the section of the circular wall (1).
  • transverse restrictions increase the pressure drop across the fluid injection slots, reducing fluid flow variations along the slot, and generating turbulence that helps to fluidize the particles. solids and distribute them along the circular surface of the circular chamber.
  • the eddies being mainly directed in longitudinal directions, they mainly improve the longitudinal dispersion of the solid particles and therefore they mainly contribute to reducing the tendency to "annular channelization" of the flow of the fluid.
  • the longitudinal lengths (23) of these restrictions or transverse blocks may be greater or smaller. They are preferably at least equal to the longitudinal length (19) of the restrictions through which the fluid passes.
  • the removal of these restrictions or transverse blocks (20) determines the average distance separating the output of these constrictions from the fluid's meeting points with the solid particles.
  • FIG. 5 is an axonometric projection illustrating another way of arranging the transversal restrictions that become rings (30), whose surfaces have been hatched to better distinguish them from the circular wall (1).
  • the hatched surfaces (21) represent the transverse visible sections of the section of the circular wall (1). They are applied against and outside the circular wall (1) traversed longitudinally by long slots whose width and inclination have been intentionally exaggerated in order to be able to visualize the outer rings.
  • the constrictions (31) are the section between the rings (30) and the longitudinal slots.
  • the principle is the same, but this arrangement makes it easy to assemble the circular wall formed of longitudinal plates supported on the transverse sides of a circular cylindrical or polygonal chamber and separated by slots through which the fluid can be injected after being passed between the outer rings (30) surrounding the circular wall.
  • said obstruction elements comprise helical turns. Such helical turns may be applied against and outside said circular wall (1) to partially cover the opening of said passages.
  • the rings (cylindrical) (30) or helical turns, separated by transverse slots (31) may be inside the annular chamber.
  • the longitudinal plates forming the sections longitudinals of the circular wall (1) can bear against said cylindrical rings (30) or said helical turns.
  • Figure 6 illustrates an example of both longitudinal and transverse restriction. It is an axonometric projection of plates (1), (V), ... leaning on each other to form a polygonal circular wall.
  • the hatched surfaces (21) represent the transverse visible sections of the section of the polygonal circular wall formed by the plates (1 '), (1), ....
  • the outer ends (NM) of these plates are fixed against a cylindrical wall (39), whose cut edges (40) are hatched, which surrounds the polygonal circular wall and through which the fluid is fed.
  • the fluid supply tubes through the wall (39) are not shown in the figure.
  • the supply chambers (41) of the fluid are the spaces located between the wall (39) and the plates (1), (1 '), ...
  • the surface separating the two contiguous plates is grooved transversely to form channels (43), (43 '), ... and obstruction elements (44), (44'), ... constituting the constrictions by the fluid can penetrate inside the circular chamber.
  • the fluid leaving these channels (43), (43 '), ... relaxes both longitudinally and radially before meeting the solid particles which slide along the surfaces (1), (1'), .. of the polygonal circular wall, which promotes good dispersion and good fluidization of the solid particles in all directions, while transferring a tangential kinetic moment amount which rotates them along the circular wall.
  • the speeds (6) that the fluid can reach before being slowed by its expansion and before meeting the solid particles can be high and thus generate a pressure loss through this type of fluid injector which is the same order of magnitude than the pressure loss of the fluid through the fluidized bed, which ensures a relatively homogeneous distribution of the fluid along the circular wall.
  • FIG. 8 illustrates a variant of FIG. 6, where the plates (1), (1 '), ... are replaced by adjacent plates whose inner surfaces (100), (100'), (100 "), ... have a progressive concave curvature
  • the hatched surfaces (210), (210 '), (210 "), ... represent the cross-sectional visible sections of the circular wall section of corrugated inner surface (100), (100). '), (100 "), ....
  • the surface separating the adjacent plates is grooved transversely to form channels (430), (430 '), (430 "), ... constituting the constrictions by which the fluid (2) can penetrate.
  • the fluid (2) is strongly accelerated inside the channels (430), (430 '), (430 "), ... where it reaches a maximum speed, and it is then suddenly decelerated at a speed (8) at the output of the channels (430), (430 '), (430 "), ...
  • This corrugated shape of the surfaces (100), (100'), (100") , ... and the position of the grooves (430), (430 '), (430 "), ... downstream of the concave curvatures makes it possible to prevent the accumulation of the solid particles upstream of the injection slots. will tend to be distributed along a certain length of the fluid jet (2) in front of each exit.
  • the concave shape whose progressive curvature is maximum upstream and near the fluid injectors generates a centripetal force on the solid particles that slide along this surface.
  • This centripetal force partially compensates for the centrifugal pressure of the solid particles within the fluidized bed, thereby reducing the concentration of the solid particles upstream of the injectors. Therefore, the meeting between the concentrated streams of solid particles and the fluid jets moves downstream of the fluid injectors and is spread over a longer surface. It is therefore more progressive, which is favorable when the mechanical strength of the solid particles is a limiting constraint.
  • Polygonal surfaces may be preferred for their ease of manufacture.
  • FIG 7 shows the cross section of an exemplary device according to a particular embodiment of the invention.
  • This device comprises an annular chamber (55) delimited by an outer circular wall and an inner circular wall.
  • the outer circular wall of the reaction chamber is composed of a cylindrical outer wall (39) whose sectioned edges (40) are hatched, and which is lined by longitudinal plates (as in Figure 6) giving a polygonal shape to the inner surface of the outer circular wall.
  • the hatched surfaces (21) represent the transverse visible sections of the polygonal wall formed by the plates.
  • the cylindrical outer wall (39) is pierced with injection openings (420) (corresponding to the transverse slots (31) of FIG. 5) opening out into longitudinal slots (15) separating the longitudinal plates and expanding suddenly, following the longitudinal sectional surface (421) (corresponding to the longitudinal planes (42) of FIG. 6) forming 90 ° angles with the walls of the longitudinal slots (15).
  • the profile of these injection openings therefore comprises a constriction followed by a first sharp enlargement in the longitudinal direction (perpendicular to the plane of the figure) and then a second sudden enlargement in a transverse direction (mainly radial).
  • the cylindrical outer wall may also be composed of a succession of cylindrical rings (30) or helical turns, separated by transverse slots (31) (as in FIG. 5).
  • the succession of cylindrical rings (30) or helical turns, separated by transverse slots (31), can be inside the annular chamber (55).
  • the longitudinal plates giving a polygonal shape to the inner surface of the outer circular wall between said cylindrical rings (30) or helical turns are based on said succession of cylindrical rings (30) or turns helical, whose outer surface is polygonal.
  • the shape could be cylindrical and the assembly can be obtained from a cylindrical tube half pierced by openings (420) opening on slots (15).
  • the inner circular wall (delimiting a central chimney) is formed of curved longitudinal plates (61) spaced by slots or outlet openings (62) which have a narrow portion enlarging abruptly along the sides (63) and (66). . According to a preferred embodiment of this device, the inner circular wall can rotate in the direction of the arrow (65).
  • Solid particles (10), pushed by the fluid jets (120) rotating in the direction (11), are shown to illustrate the operation of the device. Strength Centrifugal pushes them towards the outer circular wall. They are slowed down and are concentrated upstream of the fluid jets (120) and are then accelerated and dispersed by these jets downstream of these jets. They therefore undergo alternately a phase of slowing down and compression followed by an acceleration and expansion phase, and therefore, if the solid particles are porous, these periodic pressure variations considerably improve the mass transfers between the fluid phase and the solid phase.
  • the fluid (60) is evacuated through the slots (62).
  • This feed chamber can be maintained at a pressure for injecting the fluid (2) in the annular chamber (55) through the openings (420).
  • fluid supply devices are possible.
  • a fluid dispenser connected to each or to sets of openings (420). It is also possible to dispense with the fluid supply device, for example if the fluid discharge device comprises a compressor or a pump for drawing in the surrounding fluid (for example air for a drying process or water for a water purification process) through the injection openings (420).
  • the fluid discharge device comprises a compressor or a pump for drawing in the surrounding fluid (for example air for a drying process or water for a water purification process) through the injection openings (420).
  • the outer circular wall and the inner circular wall are fixed.
  • the outer circular wall is fixed and the inner circular wall is rotatable.
  • the inner circular wall and the outer cylindrical wall are rotatable (rotary annular chamber), i.e. that the outer circular wall can rotate at the same time as said inner circular wall.
  • the device also comprises a device for feeding solid particles.
  • the particles can also be suspended in the fluid that is sucked by the slits (420).
  • the device also comprises an evacuation device (a central evacuation device) of the fluid by a central chimney, as well as means for sealing the assembly in case of rotation.
  • the non-aerodynamic constrictions through which the fluid must pass before encountering the solid particles may also be in fluid injectors which do not have the elongated shape of injection slots but which are tubes whose section may have any shape (round, square, trapezoidal, ...), inasmuch as their number is sufficient for the dimensions of the longitudinal inhomogeneities of the fluid flows along the surface circular are less than the thickness of the fluidized bed, and therefore the longitudinal distance separating these injection tubes is preferably less than the thickness of the fluidized bed.
  • the device according to the present invention allows the injection of fluid into a rotating fluidized bed rotating along a circular wall, fixed or rotary, by means of fluid injectors, distributed around said circular wall, to inject the or said fluids in a succession of layers along said circular wall and including constrictions, widening suddenly, non-aerodynamically, with turbulence generation before the encounter of said fluid or fluids with the solid particles of said rotating fluidized bed.
  • the present invention therefore also relates to a method for controlling the distribution of fluid flows and minimizing the channeling phenomena in a rotating fluidized bed of solid particles rotating along a circular wall, fixed or rotary, comprising the injection of said one or more fluids by means of fluid injectors distributed around said circular wall, said injectors comprising constrictions suddenly widening non-aerodynamically manner.
  • the method according to the present invention makes it possible, during the injection, to generate turbulences of small dimensions with respect to the thickness of the fluidized bed, before the fluid or fluids passing through these passages come into contact with the solid particles.
  • This generates a pressure drop that is approximately proportional to the square of the flow rate of the fluid or fluids at the level of the constrictions, making it possible to better control the distribution of the flows of the fluid or fluids along the said circular wall and the turbulence making it possible to improve the fluidization and the homogeneity of said rotating fluidized bed.
  • the turbulence consists of vortices of small dimensions with respect to the thickness of the fluidized bed.
  • the method comprises the step of injecting one or more fluids, in a circular chamber of a reactor, by means of fluid injectors, distributed around said circular wall, said injectors comprising throttles widening suddenly non-aerodynamically, generating a pressure drop proportional to the square of the fluid velocity in the constrictions.
  • the main component of the injection direction is tangential and preferably greater than twice the radial or longitudinal component.
  • the injection direction forms an acute angle, preferably an angle less than or equal to 30 ° with the tangent to the circular wall on the downstream side of said fluid injectors.
  • the injected fluid undergoes a non-aerodynamic expansion of a factor at least equal to two with a pressure drop at least equal to one-tenth of the mean pressure drop of the fluid through the fluidized bed, or alternatively, the fall of pressure is at least equal to one fifth of the average centrifugal pressure of the solid particles on the circular wall.
  • a device according to the present invention can advantageously be used in different methods. Therefore, the present invention also relates to methods for catalytic polymerization, combustion, gasification, classification, drying, impregnation, coating or other treatments of solid particles suspended in the rotating fluidized bed, or cracking, dehydrogenation or other catalytic transformations of fluids using this device.
  • the invention relates to a process for catalytic polymerization, combustion, gasification, impregnation, classification or drying or other treatments of solid particles in suspension in a rotating fluidized bed or catalytic fluid conversion passing through said rotating fluidized bed, characterized in that it comprises the step of injecting one or more fluids into a circular chamber of a reactor by means of fluid injectors distributed around said circular wall said injectors comprising non-aerodynamically widening throttles, generating a pressure drop approximately proportional to the square of the fluid velocity in the throttles.
  • the main component of the injection direction is tangential and preferably greater than twice the radial or longitudinal component.
  • the injection direction forms an acute angle, preferably an angle less than or equal to 30 ° with the tangent to the circular wall on the downstream side of said fluid injectors.
  • the present invention also relates to the use of a device described in the present invention in a method of catalytic polymerization, combustion, gasification, drying, impregnation or classification of solid particles.
  • the present invention also relates to the use of a device described in the present invention in a process for the catalytic conversion of a fluid or mixture of fluids passing through a rotating fluidized bed whose solid particles are catalysts.
  • the present invention also relates to the use of a device described in the present invention in a process for drying or extraction of volatile components of said solid particles.
  • a device according to the present invention may also be used in a process for impregnating or coating said solid particles. Examples EXAMPLE 1
  • a cylindrical reactor 24 cm in diameter and 115 mm long was supplied at atmospheric pressure by about 250 liters of air per second through 24 slits of about 2.3 mm in width passing through the cylindrical wall over its entire length. length and injecting the fluid (in this example a gas) in a mean direction forming an angle of 20 ° with the wall, at an average speed of about 40 m / sec.
  • the fluid in this example a gas
  • a reactor 54 cm in diameter, surrounded by a fluid distribution chamber maintained at constant pressure was simulated in two dimensions. It is fed through 36 injection slots 4 mm wide injecting air at an average speed of about 14m / sec, a flow rate of about 2 m 2 / sec. Polyethylene particles of 300 microns are introduced gradually. The average pressure drop through the air injection slots being very low, about 180 Pascal, compared to the average centrifugal pressure of the solid particles of about 1800 Pascal, we observe the formation of "rotating longitudinal channelization".
  • the injection slots are transformed:
  • the pressure drop before the introduction of solid particles is about 1400 Pascal and there is no formation of rotating channelization. It is possible to obtain a very dense fluidized bed, which is very stable and with practically no losses of solid particles by the central chimney.
  • the average speed of the solid particles is about 25% higher than the initial case, the average centrifugal pressure of the solid particles is about 3600 Pascal and the total pressure drop is about 6300 Pascal. The difference between the two is due to the energy that is transferred by the fluid to the solid particles to maintain them at a rotational speed of about 4.5 revolutions per second.

Abstract

La présente invention se rapporte à un dispositif à lit fluidifié rotatif de préférence cylindrique comprenant: un réacteur comprenant au moins une chambre circulaire, un dispositif d'alimentation et un dispositif d'évacuation de particules solides dans et de ladite chambre circulaire, un dispositif d'alimentation d'un ou plusieurs fluides, disposé autour de la paroi circulaire de ladite chambre circulaire, ledit dispositif comprenant des injecteurs de fluide répartis autour de ladite paroi circulaire permettant d'injecter le ou lesdits fluides le long de ladite paroi circulaire, et un dispositif d'évacuation du ou des fluides, caractérisé en ce que lesdits injecteurs de fluides comprennent des passages comprenant un ou plusieurs étranglements s'élargissant brutalement, de manière non aérodynamique, générant de la turbulence avant la rencontre du ou desdits fluides avec les particules solides du dit lit fluidifié rotatif.

Description

DISPOSITIF ET PROCEDE D 'INJECTION DE FLUIDE DANS UN LIT FLUIDITE ROTATIF
Domaine technique de l'invention
La présente invention se rapporte à un dispositif à lit fluidifié rotatif comprenant un dispositif d'injection de fluide régulièrement répartis le long de la paroi circulaire du dispositif à lit fluidifié. La présente invention se rapporte aussi à un procédé d'injection de fluide au travers d'un lit fluidifié rotatif supporté par une paroi circulaire, fixe ou rotative, avec des injecteurs de fluide régulièrement répartis le long de ladite paroi circulaire.
Arrière plan technologique de l'invention
Lorsqu'un fluide est injecté au travers d'injecteurs répartis uniformément le long de la paroi cylindrique d'un réacteur contenant des particules solides, en couches minces et tangentiellement à cette paroi et que le fluide est évacué centralement par des ouvertures réparties uniformément le long d'une cheminée centrale traversant le réacteur cylindrique le long de son axe de symétrie, les particules solides vont former un lit fluidifié rotatif cylindrique, plus ou moins homogène, traversé par ledit fluide tournant en une succession de couches minces le long de la paroi cylindrique du réacteur avant d'être évacué par la cheminée centrale, la force centrifuge empêchant lesdites particules solides d'être entraînées par le fluide dans ladite cheminée.
Toutefois, dans certaines circonstances, on peut observer la propension des particules solides à se concentrer dans des zones annulaires, le plus souvent à proximité des parois transversales, pour former des lits fluidifié rotatifs toroïdaux tels que ceux qui sont formés dans les procédés Tornado ou Torbed ou dans des zones longitudinales tournant rapidement, le fluide passant principalement entre ces zones.
Par exemple, lorsque le fluide est injecté par de longues fentes longitudinales réparties uniformément le long de la paroi cylindrique du réacteur à partir d'une chambre d'alimentation à pression uniforme, les particules solides ont généralement tendance, durant la phase de remplissage du réacteur, c'est-à-dire avant la formation d'un lit fluidifié d'une épaisseur suffisante, à se concentrer préférentiellement le long d'une ou des deux parois transversales du réacteur ou le long de zones longitudinales tournant rapidement, le fluide passant préférentiellement entre ces zones. Cette distribution inhomogène des particules solides peut persister dans certaines circonstances, car elle génère une distribution inhomogène des flux de fluide le long des fentes longitudinales, ce qui amplifie ou maintient la distribution inhomogène des particules solides. En effet, le fluide sort préférentiellement par les ouvertures ou portions d'ouvertures où la pression des solides est la plus faible et chasse les particules solides de ces zones vers les zones où les particules solides s'accumulent et donc inhibent le passage du fluide. Le fluide se fraye donc un ou des passages préférentiels ou chenaux au travers des particules solides et empêche la formation d'un lit fluidifié homogène. Lorsque les particules solides se concentrent en tranches annulaires tournant le long de la paroi du réacteur, elles sont chassées et supportées par des tourbillons annulaires de fluide. Ce phénomène de concentration annulaire des particules solides entraînant la "chenalisation annulaire" de l'écoulement du fluide est connu sous le nom de "Effet Tornade" obtenu en injectant le fluide dans des injecteurs répartis le long de tranches annulaires ou hélicoïdalement le long de la paroi cylindrique d'un réacteur. Ce procédé est décrit dans le brevet US 3,768,172 du 30 octobre 1973.
Lorsque les particules solides se concentrent le long de zones longitudinales pour former un ou plusieurs "bancs longitudinaux" de particules solides tournant rapidement le long de la paroi cylindrique du réacteur, mais moins vite que la vitesse moyenne de rotation des particules solides, le fluide sortant préférentiellement par les ouvertures situées dans les zones où il y a le moins de solides, c'est-à-dire entre les "bancs longitudinaux". La vitesse du fluide étant plus élevée le long des zones où il y a peu de solides, les particules solides arrachées par le fluide sur le devant d'un dit banc longitudinal sont accélérées et rattrapent l'arrière du banc suivant ou du même banc. Ainsi les bancs sont en permanence érodés par l'avant et reconstruits par l'arrière, ce qui explique qu'ils tournent plus lentement que les solides et le fluide se fraye un chenal tournant à la même vitesse que lesdits bancs longitudinaux. On peut parler de "chenalisation longitudinale rotative" de l'écoulement du fluide.
Ces inhomogénéités augmentent les pertes de particules solides par la cheminée centrale, diminuent la qualité du contact entre le fluide et les solides et donc les transferts de masse et d'énergie et élargissent la distribution du temps de séjour du fluide à l'intérieur du lit fluidifié.
Ces inhomogénéités apparaissent principalement lorsque le rapport entre la densité des solides et du fluide ou entre la longueur du réacteur et l'épaisseur du lit fluidifié est très grand. Elles sont dues ou entretenues par les variations locales de la pression centrifuge des particules solides sur la paroi cylindrique du réacteur. Celles-ci entraînent des variations de flux de fluide d'autant plus grandes que la chute de pression du fluide au travers des injecteurs est faible par rapport à ces variations de pression. Elles peuvent être évitées ou réduites à l'aide de déflecteurs forçant la circulation des solides devant les injecteurs de fluide comme des hélices hélicoïdales utilisées dans la demande WO 2005/099887 déposée au nom du même inventeur ou en utilisant une cheminée rotative, comme cela est décrit dans la demande de brevet EP 06008351.6 déposée par Total Petrochemical Research Feluy le 21-04-2006 au nom du même inventeur, ou en augmentant la chute de pression au travers des injecteurs de fluide, par exemple en utilisant des parois poreuses. Dans ce dernier cas, la chute de pression étant proportionnelle au débit du fluide, il faut une chute de pression significative au travers de la paroi poreuse pour pouvoir homogénéiser les flux de fluide et donc une consommation d'énergie importante, lorsque la pression centrifuge des solides sur la paroi circulaire est élevée.
Sommaire de l'invention
Dans un premier aspect, la présente invention se rapporte à un dispositif à lit fluidifié rotatif comprenant un dispositif d'injection de fluide permettant de réduire de manière significative les problèmes de "chenalisation" décrits ci-dessus.
En particulier, l'invention se rapporte à un dispositif à lit fluidifié rotatif comprenant : un réacteur comprenant au moins une chambre circulaire, un dispositif d'alimentation et un dispositif d'évacuation de particules solides (10) dans et de ladite chambre circulaire, un dispositif d'alimentation d'un ou plusieurs fluides (2), gazeux ou liquides, disposé autour de la paroi circulaire (1 ) de ladite chambre circulaire, ledit dispositif comprenant des injecteurs de fluide répartis autour de ladite paroi circulaire (1 ) dont l'orientation a une composante tangentielle à ladite paroi circulaire, permettant d'injecter le ou lesdits fluides (2) dans ladite chambre circulaire le long de ladite paroi circulaire (1 ) dans une direction ayant une composante tangentielle à ladite paroi circulaire, permettant ainsi de faire tourner lesdites particules solides le long de ladite paroi circulaire, et un dispositif d'évacuation de préférence un dispositif d'évacuation centrale, du ou des fluides, caractérisé en ce que lesdits injecteurs de fluides comprennent des passages comprenant un ou plusieurs étranglements s'élargissant de manière non aérodynamique et générant un écoulement turbulent du ou des fluides, permettant ainsi de contrôler la distribution des flux du ou desdits fluides le long de ladite paroi circulaire et d'améliorer la fluidisation et l'homogénéité dudit lit fluidifié rotatif.
Selon un mode de réalisation préféré, la présente invention se rapporte à un dispositif à lit fluidifié rotatif cylindrique. Le terme « lit fluidifié rotatif cylindrique » se réfère à un lit fluidifié relativement uniforme longeant la paroi circulaire d'une chambre circulaire, traversé radialement par le fluide qui est injecté en couches minces le long de ladite paroi circulaire et dont les particules solides tournent autour d'un axe central en décrivant des trajectoires circulaires principalement situées dans des plans transversaux, par opposition aux « lits fluidifiés rotatifs toroïdaux », dans lesquels les particules solides sont concentrées et tournent à l'intérieur d'un ou plusieurs tores en y décrivant des trajectoires hélicoïdales, le ou lesdits tores contenant la majorité des dites particules solides étant supportés par le ou les tourbillons de fluide tournant autour du dit axe central en longeant le ou les dits tores.
Par « couches minces » on entend des couches dont l'épaisseur à proximité de la paroi circulaire est au moins d'un ordre de grandeur plus petite que la distance moyenne entre la paroi circulaire et l'axe central, les dites couches minces pouvant s'élargir au fur et à mesure qu'elles s'éloignent de la dite paroi circulaire.
Selon un mode de réalisation particulier, ledit dispositif d'évacuation du ou des fluides, de préférence également dénommée « dispositif d'évacuation centrale » dans la présente invention, comprend une cheminée centrale traversant longitudinalement ou pénétrant à l'intérieur de ladite chambre circulaire, la paroi de ladite cheminée centrale comprenant au moins une ouverture de sortie permettant d'évacuer centralement, par ladite cheminée centrale, le fluide ou mélange de fluides de ladite chambre circulaire. Selon un mode de réalisation particulier, les ouvertures de sortie comprennent des passages comprenant un ou plusieurs étranglements qui s'élargissent de manière non aérodynamique afin de générer de la turbulence. Le dispositif d'alimentation et d'évacuation du ou des fluides permet de maintenir une différence de pression entre les injecteurs de fluide et la cheminée centrale.
Selon un mode de réalisation particulier, ledit dispositif d'alimentation d'un ou plusieurs fluides comprend une chambre d'alimentation de fluide entourant ladite paroi circulaire.
Selon la présente invention, les injecteurs comprennent des passages munis d'étranglements (partie dont la section est étroite) s'élargissant brutalement, de manière non aérodynamique, qui permettent lors de l'utilisation du dispositif, la génération de tourbillons, de préférence de petites dimensions par rapport à l'épaisseur du lit fluidifié, avant que le ou les fluides empruntant ces passages n'entrent en contact avec les particules solides, afin de générer une perte de charge approximativement proportionnelle au carré du débit du ou des fluides permettant de mieux contrôler la distribution des flux du ou desdits fluides le long de la dite paroi circulaire et de la turbulence permettant d'améliorer la fluidisation et l'homogénéité dudit lit fluidifié rotatif.
Le terme « non aérodynamique » est utilisé dans la présente invention comme synonyme pour « générant un écoulement de fluide turbulent».
Un «étranglement s'élargissant de manière non aérodynamique » ou un « étranglement s'élargissant brutalement » sont utilisés dans la présente invention comme synonymes et se réfèrent donc à un étranglement permettant que le ou les dits fluides s'écoulent de manière non aérodynamique afin de générer de la turbulence.
Les termes « élargissement non aérodynamique » ou « expansion non aérodynamique » sont utilisés dans la présente invention comme synonymes et se réfèrent à un élargissement ou une expansion permettant au(x) fluide(s) parcourant tel élargissement ou telle expansion de s'écouler de manière non aérodynamique et de générer de la turbulence.
Lors de la mise en œuvre du dispositif selon la présente invention, l'expansion du fluide étant non aérodynamique, avec génération de turbulence, la chute de pression du fluide au travers de ces étranglements est environ proportionnelle au carré des flux de fluides passant par ces passages. Le contrôle des débits locaux de ces flux de fluide peut être obtenu au moyen d'une chute de pression relativement petite et la turbulence contribue à améliorer la fluidisation des particules solides et l'homogénéité du lit fluidifié.
Une expansion d'un facteur de préférence au moins égal à deux avec une chute de pression au moins égale au dixième et de préférence au cinquième de la pression centrifuge moyenne des particules solides sur la paroi circulaire permet d'éviter ou de réduire les problèmes de "chenalisation" et d'améliorer substantiellement l'homogénéité du lit fluidifié.
Selon la présente invention, l'injecteur de fluide comprend un passage par lequel le fluide entre dans l'injecteur. Ledit passage comprend un ou plusieurs étranglements. Selon un mode de réalisation particulièrement préféré, l'invention prévoit un dispositif, dans lequel le rapport entre la section de sortie des injecteurs du ou desdits fluides et la section desdits étranglements est au moins égal à 2. Selon un mode de réalisation, le passage est étroit ou se rétrécit progressivement pour ensuite s'élargir brutalement, de manière non aérodynamique (exemplifiés de manière non-limitative aux figures 1 , 2 et 3).
Selon un mode de réalisation, l'injecteur peut également comprendre un passage à dimensions plus ou moins constantes, dans lequel ou devant lequel un ou des blocs ou obstacles sont pourvus, formant un ou plusieurs étranglements (exemplifiés de manière non-limitative aux figures 4 et 6).
Selon la présente invention, l'entrée de l'injecteur peut aussi être partiellement couverte par des anneaux (exemplifiés de manière non-limitative à la figure 5). Plus particulièrement, selon un mode de réalisation particulier, l'invention se rapporte à un dispositif, dans lequel lesdits étranglements sont obtenus à l'aide d'éléments d'obstruction longitudinaux et/ou transversaux.
Ces éléments d'obstruction peuvent être constitués par la forme structurelle de ladite paroi circulaire. Dans un autre mode de réalisation, les dits éléments d'obstruction comprennent des blocs longitudinaux placés à l'intérieur desdits passages.
Dans encore un autre mode de réalisation, lesdits éléments d'obstruction comprennent des blocs transversaux placés à l'intérieur desdits passages et divisant les passages en une succession d'étranglements transversaux. De préférence, dans un tel mode de réalisation, les longueurs longitudinales des blocs transversaux sont égales ou supérieures à la longueur des étranglements.
Dans un autre mode de réalisation, lesdits éléments d'obstruction comprennent des anneaux ou des spires hélicoïdales lesquels anneaux ou spires hélicoïdales sont appliqués contre et à l'extérieur ou à l'intérieur de ladite paroi circulaire et couvrent partiellement l'ouverture desdits passages.
La présente invention prévoit également, dans un autre mode de réalisation, un dispositif à lit fluidifié rotatif, dans lequel ladite paroi circulaire est formée par une succession de plaques accolées et laquelle paroi est pourvue de surfaces, séparant deux plaques accolées, lesquelles surfaces sont rainurées transversalement formant une succession de passages étroits et d'éléments d'obstructions.
La présente invention se rapporte également à un procédé d'injection de fluide dans un dispositif à lit fluidifié rotatif de particules solides tournant le long d'une paroi circulaire, permettant de réduire de manière significative les problèmes de "chenalisation" décrits ci- dessus , le procédé comprenant l'injection du fluide dans une direction ayant une composante tangentielle à la paroi circulaire dudit dispositif à travers des fentes d'injections comprenant des étranglements s'élargissant brutalement, de manière non aérodynamique, afin de générer une perte de pression et de la turbulence avant la rencontre du fluide et lesdites particules solides. Le procédé permet d'améliorer ainsi la distribution des flux de fluide le long de ladite paroi circulaire et la fluidisation et l'homogénéité dudit lit fluidifié rotatif. L'invention prévoit donc un procédé d'injection de fluide dans un dispositif à lit fluidifié rotatif de particules solides tournant le long d'une paroi circulaire, le procédé comprenant l'injection du fluide dans une direction ayant une composante tangentielle à ladite paroi circulaire à travers des fentes d'injections comprenant des étranglements s'élargissant brutalement, de manière non aérodynamique, et générant de la turbulence avant la rencontre du fluide et lesdites particules solides.
La présente invention se rapporte également à des procédés de polymérisation catalytique, de combustion, de gazéification, de classification, de séchage, d'imprégnation, d'enrobage ou d'autres traitements de particules solides en suspension dans le lit fluidifié rotatif, ou de craquage, de déshydrogénation ou d'autres transformation catalytique de fluides utilisant ce dispositif.
D'autres caractéristiques et exemples de dispositifs suivant la présente invention sont décrits ci-dessous de façon non limitative.
Brève description des dessins
La figure 1 montre une section transversale d'un exemple de passage ou ouverture d'injection avec un étranglement longitudinal.
La figure 2 montre la section transversale schématique d'une paroi circulaire polygonale traversée par des fentes d'injection de fluide pourvues d'étranglements selon un mode de réalisation particulier de l'invention.
La figure 3 est un agrandissement d'une des fentes illustrée dans la figure 2 afin de mieux visualiser la formation des tourbillons lors de l'utilisation du dispositif selon un mode de réalisation particulier de l'invention. La figure 4 représente la projection axonométrique schématique d'un tronçon de fente longitudinale pourvue de restrictions transversales dans une paroi circulaire d'un dispositif selon un mode de réalisation particulier de l'invention. La figure 5 représente une projection axonométrique schématique illustrant une autre façon de disposer les restrictions transversales au niveau des injecteurs d'un dispositif d'injection de fluide selon un mode de réalisation particulier de l'invention.
La figure 6 représente une projection axonométrique schématique illustrant un exemple de restriction à la fois longitudinal et transversal selon un mode de réalisation particulier de l'invention.
La figure 7 montre la coupe transversale schématique d'un dispositif à lit fluidifié rotatif selon un mode de réalisation particulier de l'invention.
La figure 8 représente une section transversale schématique d'une paroi circulaire de forme ondulée formée de plaques adjacentes dont les surfaces intérieures (100), (100'), (100"), ... ont une courbure concave progressive, selon un mode de réalisation particulier de l'invention.
Description détaillée
Selon un mode de réalisation préféré, le dispositif selon la présente invention comprend une paroi circulaire extérieure munie d'ouvertures d'injection par où un fluide peut être injecté dans une chambre annulaire qui peut être alimentée en particules solides et dont la paroi circulaire intérieure est munie d'ouvertures de sortie par où le fluide peut être évacué. Selon la présente invention, les ouvertures d'injection comprennent des passages munis d'étranglements (partie dont la section est étroite) s'élargissant brutalement, de manière non aérodynamique, et générant un écoulement turbulent du ou des fluides qui permettent lors de l'utilisation du dispositif, la génération de tourbillons de petites dimensions. L'orientation des ouvertures d'injection a une composante tangentielle à ladite paroi circulaire.
Le terme « injecteur de fluide » se réfère à un passage ou ouverture d'injection au travers de la paroi circulaire par où un fluide peut pénétrer à l'intérieur de la chambre circulaire ou annulaire, par exemple lorsque celle-ci est maintenue à une pression inférieure à la pression extérieure dudit passage. Ce passage ou ouverture d'injection peut avoir une forme quelconque, par exemple un tube cylindrique ou de section polygonale. Il est de préférence de forme allongée dans la direction longitudinale (perpendiculaire au plan de rotation). Dans ce cas on parle de « fente d'injection ». Les termes « passage »,
« ouverture d'injection » ou « fente d'injection » sont utilisés dans certains modes de réalisation de la présente invention comme synonymes.
L'injecteur de fluide comprend une entrée et une sortie. L'étranglement est la partie du passage située entre l'entrée et la sortie, dont la section est minimum. Normalement la section d'entrée est plus grande que celle de l'étranglement. Dans ce cas il est préférable que cette section varie progressivement de l'entrée jusqu'à l'étranglement, mais ce n'est pas indispensable. Il n'est pas indispensable non plus que la section d'entrée soit plus grande que la section de l'étranglement. Selon la présente invention, la section de sortie est plus grande que la section de l'étranglement et il y a une zone où cette section croit de manière non aérodynamique, c'est-à-dire avec génération de turbulence.
Les termes « chambre circulaire » ou « chambre de réaction » sont utilisés dans certains modes de réalisation de la présente invention comme synonymes et se réfèrent à une chambre à l'intérieur du réacteur délimitée par une paroi circulaire et des côtés latéraux. La chambre circulaire de réaction peut être une chambre annulaire.
Le terme « chambre annulaire » se réfère à une chambre délimitée par deux parois circulaires concentriques et des côtés latéraux. La paroi circulaire intérieure délimite une chambre circulaire intérieure qui peut être appelée la chambre d'évacuation des fluides ou cheminée centrale. La chambre annulaire est donc une chambre circulaire traversée par une cheminée centrale.
Le terme « cheminée centrale » se réfère à un dispositif permettant d'évacuer centralement le ou les fluides de ladite chambre circulaire. Le mot central signifie que ce dispositif n'est pas en contact direct avec la paroi circulaire extérieure de ladite chambre circulaire. La cheminée centrale ne doit pas nécessairement traverser la chambre circulaire, elle peut simplement pénétrer à l'intérieur de celle-ci (dans ce cas la chambre circulaire n'est pas une chambre annulaire). Selon un mode de réalisation particulier, la cheminée centrale est reliée à un moteur pouvant la faire tourner.
Le terme « paroi circulaire » indique la paroi circulaire extérieure de la chambre circulaire de réaction. Selon la présente invention la paroi circulaire extérieure est une paroi fermée pourvue d'ouvertures d'injection, le long de laquelle on peut tourner, le plan de rotation pouvant être horizontal, vertical ou incliné. Selon un mode de réalisation particulier, la dite paroi circulaire est reliée à un moteur pouvant la faire tourner. La paroi circulaire peut être de forme générale cylindrique, elliptique, conique ou polygonale ou avoir une autre forme avec des courbures diverses pouvant comprendre des parties concaves. Par exemple sa surface intérieure peut être polygonale ou ondulée et sa forme générale peut être elliptique ou même avoir la forme d'une banane. Par exemple sa surface intérieure comprend des parties planes séparant deux injecteurs de fluide consécutifs. Sa section transversale ne doit pas nécessairement être constante. Par exemple elle peut diminuer progressivement. Dans ce cas, si elle est cylindrique ou polygonale, on peut la définir comme formant un cône ou une pyramide tronquée. Selon un mode de réalisation particulier, la surface séparant deux injecteurs de fluide consécutifs comprend au moins une partie dont la courbure est concave.
La forme polygonale permet une réalisation aisée par assemblage d'éléments plats accolés les uns aux autres ainsi qu'une injection de fluide tangentielle à la partie située en aval des injecteurs Cette surface peut aussi avoir une courbure concave, ce qui donne un aspect ondulé à la surface intérieure de la paroi circulaire. Dans ce cas les injecteurs de fluide se trouvent préférentiellement à l'extrémité de la courbure concave de la surface située en amont afin de réduire et mieux répartir la concentration des solides en amont des injecteurs. La forme polygonale permet d'obtenir le même résultat, si la surface en amont des injecteurs est pliée pour lui donner une forme concave, c'est-à-dire avec un angle intérieur de plus de 180°.
La forme est choisie en fonction des résultats souhaités. Par exemple si la forme de la surface en amont des injecteurs est convexe, la pression des particules solides avant d'entrer en contact avec le fluide injecté en aval est plus élevée que la pression le long d'une surface concave et l'énergie dépensée par le fluide dans le lit fluidifié est d'autant plus élevée que la pression des particules solides sur les jets de fluide est élevée.
Le fluide est alimenté par un dispositif d'alimentation qui peut comprendre une chambre d'alimentation du fluide entourant la chambre annulaire de réaction. La localisation des injecteurs est choisie en fonction des résultats que l'on désire obtenir. Par exemple si la forme de la surface intérieure de la paroi extérieure a une courbure variant progressivement, comme dans une ellipse, ou est ondulée, il en résulte des zones où la pression des particules solides sur cette surface est plus élevée (là où la courbure est forte et convexe) ou plus faible (là où elle est faible ou concave), et donc la localisation des injecteurs dans l'une ou l'autre zone influencera la quantité d'énergie qui est conférée aux particules solides.
Le terme « chambre d'alimentation » (du ou des fluides) se réfère à une chambre entourant la chambre circulaire ou annulaire et où la pression peut être maintenue au- dessus de la pression de la cheminée centrale. Selon la présente invention, la chambre d'alimentation peut avoir une forme quelconque et elle n'est pas indispensable. Elle peut par exemple être remplacée par un distributeur de fluides comprenant un ensemble de tubes reliés chacun à un ou plusieurs injecteurs de fluide, ou tout simplement être remplacée par un dispositif d'aspiration relié à la cheminée centrale. Dans ce dernier cas, le fluide qui est injecté dans la chambre annulaire est tout simplement le fluide entourant la chambre annulaire, par exemple l'air ambiant pour les applications de séchage ou le liquide extérieur, par exemple l'eau d'un bassin dans lequel la chambre circulaire est plongée.
Selon un mode de réalisation de la présente invention, la chambre circulaire comprend une paroi circulaire extérieure et une paroi circulaire intérieure (définissant la cheminée centrale). Selon un mode de réalisation particulier, les parois circulaires extérieure et intérieure sont fixes. Selon un autre mode de réalisation particulier, la paroi circulaire extérieure est fixe et la paroi circulaire intérieure est reliée à un moteur pouvant la faire tourner (cheminée rotative). Selon un troisième mode de réalisation particulier, les deux parois circulaires extérieure et intérieure sont reliées à un moteur pouvant les faire tourner ensemble (chambre annulaire rotative).
Les ouvertures d'injection permettent d'injecter le fluide dans une direction dont la composante principale est tangentielle et de préférence supérieure au double de la composante radiale ou longitudinale (ce qui est équivalent à un angle inférieur ou égal à 30° avec la tangente à la paroi circulaire du côté situé en aval des dites ouvertures d'injection de fluide).
Selon un mode de réalisation particulier, le dispositif suivant la présente invention est caractérisé en ce que les ouvertures d'injection comprennent un étranglement, dont la section est de préférence inférieure à la moitié de la section de sortie (c'est-à-dire de l'entrée dans la chambre circulaire). Selon un mode de réalisation particulier, le dispositif suivant la présente invention est caractérisé en ce que le passage de l'étranglement à la section de sortie, c'est-à-dire l'élargissement de l'ouverture se fait brutalement, c'est-à-dire avec un angle d'expansion supérieur à 60°, de préférence dans l'intervalle de 90° +/- 15°, le long d'une arête vive, c'est-à-dire dont le rayon de courbure est petit (de préférence au moins 5 fois plus petit) par rapport à la largeur de l'ouverture. Les ouvertures d'injection sont de préférence régulièrement réparties, c'est-à-dire que toute tranche de la chambre annulaire d'une longueur (dimension longitudinale) égale à la moitié de la distance moyenne entre les deux parois circulaires (ce qui correspond plus ou moins à l'épaisseur normale du lit fluidifié) contienne un nombre suffisant d'ouvertures d'injection pour que la distance entre deux ouvertures d'injection consécutives soit inférieure ou égale au rayon moyen de la paroi circulaire extérieure, et de préférence inférieure au double de la distance moyenne entre les deux parois circulaires. Le nombre minimum préféré d'ouvertures d'injection dépend donc du rayon moyen de la paroi circulaire intérieure ou de la cheminée centrale. Selon un mode de réalisation particulier, la distance séparant lesdits injecteurs est inférieure ou égale au rayon moyen de ladite paroi circulaire. Selon un mode de réalisation particulier, il est d'au moins 6, si ce rayon moyen est égal à la moitié du rayon moyen de la paroi circulaire extérieure, mais il peut être beaucoup plus élevé si ce rayon moyen est proche du rayon de la paroi extérieure.
Selon un mode de réalisation particulier, le dispositif suivant la présente invention est caractérisé en ce que la ou les dites ouvertures de sortie (ou ouvertures d'évacuation) sont telles que la somme de leurs sections est inférieure au double de la somme des sections des ouvertures d'injection. Cela permet que la vitesse de sortie du fluide ne soit pas sensiblement plus petite que sa vitesse d'entrée. Cette vitesse de sortie peut être beaucoup plus grande que la vitesse d'entrée.
Selon un mode de réalisation particulier, le dispositif suivant la présente invention est caractérisé en ce que la ou les dites ouvertures de sortie sont réparties de telles sortes qu'il n'y en a pas le long des parois latérales de la chambre annulaire sur une longueur de préférence d'au moins un cinquième de la distance moyenne entre les deux parois circulaires. Cela permet de minimiser les pertes de particules par ces ouvertures de sortie le long des parois latérales. Selon un mode de réalisation particulier, le dispositif suivant la présente invention est caractérisé en ce que la ou les dites ouvertures de sortie sont pourvues d'étranglements similairement aux ouvertures d'injection. Les ouvertures de sortie comprennent donc un passage comprenant un ou plusieurs étranglements s'élargissant de manière non aérodynamique et générant un écoulement turbulent du ou des fluides. Selon un autre mode de réalisation particulier, le dispositif suivant la présente invention est caractérisé en ce que la distance séparant lesdites ouvertures de sortie est inférieure ou égale au rayon moyen de la paroi circulaire intérieure (paroi de la cheminée).
La présente invention consiste à placer, à l'intérieur des injecteurs de fluide traversant la paroi circulaire supportant un lit fluidifié rotatif, des étranglements s'élargissant brutalement, de manière non aérodynamique, et donc générant une perte de pression dynamique et de la turbulence avant la rencontre du fluide et des solides. Les étranglements peuvent être formés à l'aide d'éléments d'obstruction tels que des restrictions ou des blocs. Le terme « restriction » est utilisé de façon interchangeable avec le terme « bloc ». Ces deux termes sont synonymes. Dans la présente invention, lorsque les injecteurs de fluides sont de longues fentes longitudinales traversant la paroi circulaire, ces étranglements peuvent être transversaux, c'est-à-dire divisant le flux de fluide en tranches transversales, ou être longitudinaux, c'est-à-dire amincissant le flux de fluide sur toute la longueur de la fente. Ils peuvent aussi être une combinaison des deux types. Le rapport entre la section de sortie des injecteurs de fluide et la section desdits étranglements est de préférence au moins égal à 2.
La figure 1 montre la section transversale d'un exemple de passage à l'intérieur d'une fente d'injection de fluide traversant la paroi circulaire (1 ) d'une chambre circulaire d'un réacteur, le passage comprenant un étranglement longitudinal, s'élargissant brutalement, de manière non aérodynamique.
Le fluide (2) provient d'une chambre d'alimentation non représentée sur la figure, située à l'extérieur de la paroi circulaire (1 ) et maintenue à une pression suffisante pour injecter à l'intérieur de la chambre circulaire la quantité voulue de fluide. Le fluide est injecté tangentiellement dans la chambre circulaire par une fente longitudinale (ou ouverture d'injection) (15), perpendiculaire au plan de la figure et percée au travers de la paroi circulaire (1 ). Cette fente (15) comprend un étranglement D'DEE', de largeur (4) s'élargissant abruptement, c'est-à-dire de manière non aérodynamique, à une largeur (5). L'étranglement D'DEE' est formé par les éléments d'obstructions (20). De préférence, l'étranglement a une section qui est inférieure à la moitié de la section de sortie (c'est-à- dire de l'entrée dans la chambre annulaire du dispositif à lit fluidifié), le passage de l'étranglement à la section de sortie, c'est-à-dire l'élargissement de l'ouverture se faisant brutalement, c'est-à-dire avec un angle d'expansion (16) supérieur à 60°, de préférence dans l'intervalle de 90° +/- 15°, le long d'une arête vive, c'est-à-dire dont le rayon de courbure est petit (de préférence au moins 5 fois plus petit) par rapport à la largeur de l'étranglement.
Le fluide (2) est fortement accéléré à l'intérieur de l'étranglement D'DEE', où il atteint une vitesse maximum, symbolisée par la dimension de la flèche (6). Il est ensuite brutalement ralenti à une vitesse (8), à la sortie de l'étranglement, avec la production d'une forte turbulence, symbolisée par les flèches (9), avant de pénétrer dans la chambre circulaire et d'y rencontrer les particules solides, symbolisées par les ronds (10), qui tournent en glissant le long de la paroi circulaire (1 ) dans la direction des flèches (1 1 ).
La pression du fluide chute à l'intérieur de l'étranglement D'DEE' et si une petite partie de son énergie cinétique est récupérée sous forme de pression au moment de sa sortie du goulot, la plus grande partie est transformée en turbulence en raison du manque d'aérodynamisme de l'élargissement de l'ouverture à la sortie de l'étranglement. La chute de pression est approximativement proportionnelle au carré de la vitesse (6) du fluide dans l'étranglement et donc proportionnelle au carré du rapport entre la largeur (5) et la largeur (4). Ainsi pour un rapport égal à 3, la chute de pression est environ 9 fois plus grande que celle qui aurait été obtenue s'il n'y avait pas eu d'étranglement ou si le profil de la sortie de l'étranglement avait été aérodynamique (variation progressive de la section avec arrondis afin d'éviter ou de minimiser la turbulence).
La chute de pression due à l'injection du fluide est aussi proportionnelle au carré du débit du fluide passant en cet endroit. Ce débit du fluide dépend de la pression centrifuge du lit fluidifié et donc de la densité, de la vitesse et de la concentration des particules solides passant devant l'ouverture AB de la fente d'injection du fluide. Ainsi, dans les zones où il n'y a pas ou peu de particules solides devant l'ouverture AB, le débit du fluide est maximum et donc la chute de pression au travers de l'injecteur y est maximum.
Si une quantité importante de particules solides, symbolisées par les ronds (10) glissent rapidement dans la direction (11 ) le long de la paroi circulaire (1 ), elles vont rencontrer le flux de fluide sortant de la fente d'injection du fluide et constituer une barrière qui va en réduire le débit et donc sa vitesse (6) et donc la chute de pression et donc augmenter localement la pression de sortie du fluide à l'intérieur du réacteur, proportionnellement au carré des vitesses (une diminution de 30% du débit du fluide diminue la chute de pression de 50%).
Si cette augmentation de pression n'est pas négligeable par rapport à la pression centrifuge des particules solides sur la paroi circulaire, une quantité importante du fluide va traverser la barrière des solides en les accélérant et en les dispersant, donc en les fluidifiant, principalement dans une direction tangentielle (12). La fluidisation des particules solides est également améliorée par l'énergie du fluide contenue dans la turbulence (9), qui contribue à les disperser principalement radialement, mais aussi longitudinalement vers les zones contenant moins de solides.
La pression à la sortie de l'injecteur de fluide étant plus élevée dans les zones faisant face à une concentration importante de particules solides, une partie du fluide peut se déplacer longitudinalement, c'est-à-dire perpendiculairement au plan de la figure, le long de la fente d'injection, avant de rencontrer les particules solides et donc contribuer à la "chenalisation annulaire" de l'écoulement du fluide. Pour éviter que cette quantité de fluide soit importante, il est souhaitable que la largeur (5) de la fente d'injection de fluide fois la distance moyenne entre la sortie du goulot (DE) et le front de particules solides (AB) ne soit pas sensiblement et de préférence moins de deux fois plus grande que la section de l'étranglement, soit sa largeur (4) fois sa longueur (perpendiculaire au plan de la surface). Et si la longueur de la fente est très grande par rapport à l'épaisseur du lit fluidifié, il est également souhaitable d'y introduire des étranglements transversaux, (voir les figures de 4 à 6). La figure 2 montre la section transversale d'une paroi circulaire (1 ) polygonale traversée par des fentes d'injection de fluide (15) où les distances BC et EF de la figure 1 ont été réduites à zéro et la figure 3 est un agrandissement d'une de ces fentes afin de mieux visualiser la formation des tourbillons. Pour que la formation de tourbillons et donc la chute de pression au travers de l'injecteur soit significative il faut que l'arrête D soit vive ou ait un rayon de courbure d'un cinquième inférieur à la largeur (4) de l'étranglement et que l'angle D soit inférieur à 135° et de préférence inférieur ou égal à 120°. L'angle d'expansion (16) est de préférence supérieur à 60°, de préférence dans l'intervalle de 90° +/- 15°. Pour éviter que les particules solides rencontrent le fluide avant la formation de tourbillons il est souhaitable que la distance BD soit au moins égale à la largeur (4) de l'étranglement et que l'angle B soit inférieur à 135° et de préférence inférieur ou égal à 90°.
Les tourbillons étant principalement dans un plan transversal, ils vont contribuer à la fluidisation des particules solides principalement dans des plans transversaux et donc réduire principalement la possibilité de formation de chenaux longitudinaux rotatifs.
La possibilité qu'a le fluide de se déplacer longitudinalement le long des fentes d'injection avant la rencontre de particules solides réduit l'influence de ces types d'étranglement longitudinaux sur la "chenalisation annulaire" de l'écoulement du fluide.
La figure 4 est la projection axonométrique d'un tronçon de fente longitudinale, de largeur (5), traversant la paroi circulaire (1 ) d'une chambre circulaire et munie de restrictions transversales ou blocs (20) divisant la fente longitudinale en une succession d'étranglements transversaux ou tranches de même largeur que la largeur (5) la fente et de longueur (19) (dans le sens longitudinal) et donc forçant le fluide à se diviser en tranches transversales passant dans les étranglements transversaux formés par ces restrictions ou blocs (20) avant de se détendre longitudinalement avec la formation de tourbillons (9) devant les faces CDEF et C'D'E'F' de ces blocs qui sont en retrait par rapport à la surface AA'B'B qui est l'intersection de la fente longitudinale avec la surface circulaire de la chambre circulaire.
Les surfaces hachurées (21 ) et (22) représentent les sections visibles, respectivement transversales et longitudinales, du tronçon de la paroi circulaire (1 ).
Comme pour les restrictions longitudinales, les restrictions transversales augmentent la chute de pression au travers des fentes d'injection du fluide, ce qui réduit les variations de débit du fluide le long de la fente, et génère de la turbulence qui contribue à fluidifier les particules solides et à les répartir le long de la surface circulaire de la chambre circulaire. Toutefois les tourbillons étant principalement dirigés dans des directions longitudinales, ils améliorent principalement la dispersion longitudinale des particules solides et donc ils contribuent principalement à réduire la tendance à la "chenalisation annulaire" de l'écoulement du fluide. Les longueurs longitudinales (23) de ces restrictions ou blocs transversaux peuvent être plus ou moins grandes. Elles sont de préférence au moins égale à la longueur longitudinale (19) des étranglements par où passe le fluide. Le retrait de ces restrictions ou blocs transversaux (20) détermine la distance moyenne séparant la sortie de ces étranglements des points de rencontre du fluide avec les particules solides. Cette distance moyenne est de préférence inférieure à la longueur (23) de ces blocs transversaux (20) pour éviter un important déplacement longitudinal du fluide avant sa rencontre avec les solides et est de préférence au moins égale à la longueur (19) des étranglements pour que les tourbillons puissent se former avant la rencontre du fluide et des particules solides. La figure 5 est une projection axonométrique illustrant une autre façon de disposer les restrictions transversales qui deviennent des anneaux (30), dont les surfaces ont été hachurées pour mieux les distinguer de la paroi circulaire (1 ). Les surfaces hachurées (21 ) représentent les sections visibles transversales du tronçon de la paroi circulaire (1 ). Ils sont appliqués contre et à l'extérieur de la paroi circulaire (1 ) traversée longitudinalement par de longues fentes dont la largeur et l'inclinaison ont été intentionnellement exagérées afin de pouvoir visualiser les anneaux extérieurs. Les étranglements (31 ) sont la section entre les anneaux (30) et les fentes longitudinales. Le principe est le même, mais cette disposition permet d'assembler aisément la paroi circulaire formées de plaques longitudinales s'appuyant sur les côtés transversaux d'une chambre circulaire cylindrique ou polygonal et séparées par des fentes par où le fluide peut être injecté après être passé entre les anneaux extérieurs (30) entourant la paroi circulaire.
Selon un autre mode de réalisation, lesdits éléments d'obstruction comprennent des spires hélicoïdales. Telles spires hélicoïdales peuvent être appliquées contre et à l'extérieur de ladite paroi circulaire (1 ) afin de couvrir partiellement l'ouverture desdits passages.
Selon un autre mode de réalisation, les anneaux (cylindriques) (30) ou spires hélicoïdales, séparés par des fentes transversales (31 ) peuvent être à l'intérieur de la chambre annulaire. Selon ce mode de réalisation, les plaques longitudinales formant les tronçons longitudinaux de la paroi circulaire (1 ) peuvent s'appuyer contre lesdits anneaux cylindriques (30) ou les dites spires hélicoïdales.
Les restrictions transversales et longitudinales peuvent être combinées. Par exemple, la figure 6 illustre un exemple de restriction à la fois longitudinal et transversal. C'est une projection axonométrique de plaques (1 ), (V), ... s'appuyant les unes sur les autres afin de former une paroi circulaire polygonale. Les surfaces hachurées (21 ) représentent les sections visibles transversales du tronçon de la paroi circulaire polygonale formée par les plaques (1 '), (1 ), .... Les extrémités extérieures (NM) de ces plaques sont fixées contre une paroi cylindrique (39), dont les bords sectionnés (40) sont hachurés, qui entoure la paroi circulaire polygonale et par où le fluide est alimenté. Les tubes d'alimentation du fluide au travers de la paroi (39) ne sont pas montrés sur la figure. Les chambres d'alimentation (41 ) du fluide sont les espaces situés entre la paroi (39) et les plaques (1 ), (1 '),...
Les extrémités intérieures (BB') de ces plaques (1 ), (1'), ... sont tronquées pour former des plans longitudinaux (42), (42'), ... approximativement perpendiculaires aux plans des surfaces polygonales (1 ), (1 '), ....
La surface séparant les deux plaques accolées est rainurée transversalement afin de former des canaux (43), (43'), ... et des éléments d'obstruction (44), (44'), ... constituant les étranglements par où le fluide peut pénétrer à l'intérieur de la chambre circulaire. Le fluide en sortant de ces canaux (43), (43'), ... se détend à la fois longitudinalement et radialement avant de rencontrer les particules solides qui glissent le long des surfaces (1 ), (1 '), ... de la paroi circulaire polygonale, ce qui favorise une bonne dispersion et une bonne fluidisation des particules solides dans toutes les directions, tout en leur transférant une quantité de moment cinétique tangentiel qui les fait tourner le long de la paroi circulaire.
Les vitesses (6) importantes que le fluide peut atteindre avant d'être ralenti par son expansion et avant de rencontrer les particules solides peuvent être élevées et donc générer une perte de pression au travers de ce type d'injecteur de fluide qui est du même ordre de grandeur que la perte de pression du fluide au travers du lit fluidifié, ce qui assure une répartition relativement homogène du fluide le long de la paroi circulaire.
Il a été observé par expérimentation et par simulation qu'une chute de pression moyenne d'un dixième de la chute de pression du fluide au travers du lit fluidifié ou d'un cinquième de la pression centrifuge des particules solides sur la paroi circulaire obtenue à l'aide d'étranglements semblables à ceux qui sont décrites dans les figures de 1 à 6 et 8, réduisant localement la section des injecteurs de fluide, permettait d'éviter ou de réduire significativement le risque de la formation de chenaux annulaires ou longitudinaux rotatifs par où la majorité du fluide pouvait s'échapper.
La figure 8 illustre une variante de la figure 6, ou les plaques (1 ), (1 '), ... sont remplacées par des plaques adjacentes dont les surfaces intérieures (100), (100'), (100"),... ont une courbure concave progressive. Les surfaces hachurées (210), (210'), (210"),... représentent les sections visibles transversales du tronçon de la paroi circulaire de surface intérieure ondulée (100), (100'), (100"),....
Selon un mode de réalisation particulier, la surface séparant les plaques adjacentes est rainurée transversalement afin de former des canaux (430), (430'), (430"),... constituant les étranglements par où le fluide (2) peut pénétrer à l'intérieur de la chambre circulaire. Le fluide (2) est fortement accéléré à l'intérieur des canaux (430), (430'), (430"), ... où il atteint une vitesse maximum, et il est ensuite brutalement ralenti à une vitesse (8) à la sortie des canaux (430), (430'), (430"),... . Cette forme ondulée des surfaces (100), (100'), (100"), ...et la position des rainures (430), (430'), (430"), ... en aval des courbures concaves permet d'éviter l'accumulation des particules solides en amont des fentes d'injection. Elles auront tendance à se répartir le long d'une certaine longueur du jet de fluide (2) en face de chaque sortie.
En effet, la forme concave dont la courbure progressive est maximum en amont et à proximité des injecteurs de fluide génère une force centripète sur les particules solides qui glissent le long de cette surface. Cette force centripète compense partiellement la pression centrifuge des particules solides à l'intérieur du lit fluidifié, réduisant ainsi la concentration des particules solides en amont des injecteurs. Dès lors, la rencontre entre les flux concentrés de particules solides et les jets de fluide se déplace vers l'aval des injecteurs de fluide et se répartit sur une plus longue surface. Elle est donc plus progressive, ce qui est favorable lorsque la résistance mécanique des particules solides est une contrainte limitative.
Par contre, s'il est souhaitable de soumettre les particules solides à des variations brutales de pression, par exemple pour lutter contre des forces de cohésion ou favoriser les transferts de masse, une courbure convexe est préférable.
Les surfaces polygonales peuvent être préférées pour leur facilité de fabrication.
La figure 7 montre la section transversale d'un exemple de dispositif selon un mode de réalisation particulier de l'invention. Ce dispositif comprend une chambre annulaire (55) délimitée par une paroi circulaire extérieure et une paroi circulaire intérieure. La paroi circulaire extérieure de la chambre de réaction est composée d'une paroi extérieure cylindrique (39) dont les bords sectionnés (40) sont hachurés, et qui est tapissée par des plaques longitudinales (comme à la figure 6) donnant une forme polygonale à la surface intérieure de la paroi circulaire extérieure. Les surfaces hachurées (21 ) représentent les sections visibles transversales de la paroi polygonale formée par les plaques.
La paroi extérieure cylindrique (39) est percée d'ouvertures d'injection (420) (correspondant aux fentes transversales (31 ) de la figure 5) débouchant sur des fentes longitudinales (15) séparant les plaques longitudinales et s'élargissant brutalement, suivant la surface longitudinale de section (421 ) (correspondant aux plans longitudinaux (42) de la figure 6) formant des angles de 90° avec les parois des fentes longitudinales (15). Le profil de ces ouvertures d'injection comprend donc un étranglement suivi d'un premier élargissement brutal dans la direction longitudinale (perpendiculaire au plan de la figure) et ensuite d'un deuxième élargissement brutal dans une direction transversale (principalement radiale).
Selon un autre mode de réalisation, la paroi extérieure cylindrique peut aussi être composée d'une succession d'anneaux cylindriques (30) ou de spires hélicoïdales, séparés par des fentes transversales (31 ) (comme à la figure 5).
Selon un autre mode de réalisation, la succession d'anneaux cylindriques (30) ou de spires hélicoïdales, séparés par des fentes transversales (31 ), peut être à l'intérieur de la chambre annulaire (55). Selon ce mode de réalisation, les plaques longitudinales donnant une forme polygonale à la surface intérieure de la paroi circulaire extérieure entre les dits anneaux cylindriques (30) ou spires hélicoïdales, s'appuient sur la dite succession d'anneaux cylindriques (30) ou spires hélicoïdales, dont la surface extérieure est polygonale.
Selon un autre mode de réalisation non illustré, la forme pourrait être cylindrique et l'ensemble peut être obtenu à partir d'un tube cylindrique à moitié percé par des ouvertures (420) débouchant sur des fentes (15).
La paroi circulaire intérieure (délimitant une cheminée centrale) est formée de plaques longitudinales courbes (61 ) espacées par des fentes ou ouvertures de sortie (62) qui ont une partie étroite s'élargissant brutalement le long des côtés (63) et (66). Selon un mode de réalisation préféré de ce dispositif, la paroi circulaire intérieure peut tourner dans le sens de la flèche (65).
Des particules solides (10), poussées par les jets de fluide (120) les faisant tourner dans la direction (11 ), sont montrées pour illustrer le fonctionnement du dispositif. La force centrifuge les pousse vers la paroi circulaire extérieure. Elles sont ralenties et se concentrent en amont des jets de fluide (120) et elles sont ensuite accélérées et dispersées par ces jets en aval de ces jets. Elles subissent donc alternativement une phase de ralentissement et de compression suivie d'une phase d'accélération et de détente, et donc, si les particules solides sont poreuses, ces variations de pression périodiques améliorent considérablement les transferts de masse entre la phase fluide et la phase solide. Le fluide (60) est évacué par les fentes (62).
Une seconde paroi cylindrique extérieure (50) délimitant une chambre d'alimentation (53) pouvant être alimentée en fluide (51 ) par des tubes (52) complète le dispositif. Cette chambre d'alimentation peut être maintenue à une pression permettant d'injecter le fluide (2) dans la chambre annulaire (55) par les ouvertures (420).
D'autres dispositifs d'alimentation du fluide sont possibles. Par exemple un distributeur de fluide connecté à chaque ou à des ensembles d'ouvertures (420). Il est également possible de se passer du dispositif d'alimentation de fluide, par exemple si le dispositif d'évacuation du fluide comprend un compresseur ou une pompe permettant d'aspirer le fluide environnant (par exemple de l'air pour un procédé de séchage ou de l'eau pour un procédé de purification de l'eau) par les ouvertures d'injection (420).
Dans un premier mode de réalisation, la paroi circulaire extérieure et la paroi circulaire intérieure sont fixes. Dans un second mode de réalisation, la paroi circulaire extérieure est fixe et la paroi circulaire intérieure est rotative. Dans un troisième mode de réalisation, la paroi circulaire intérieure et la paroi extérieure cylindrique sont rotatives (chambre annulaire rotative) c.-à-d. que la paroi circulaire extérieure peut tourner en même temps que ladite paroi circulaire intérieure.
Le dispositif comprend aussi un dispositif d'alimentation de particules solides. Les particules peuvent aussi être en suspension dans le fluide qui est aspiré par les fentes (420).
Le dispositif comprend aussi un dispositif d'évacuation (un dispositif d 'évacuation centrale) du fluide par une cheminée centrale, ainsi que des moyens permettant d'assurer l'étanchéité de l'ensemble en cas de rotation. D'une manière générale selon la présente invention, les étranglements non aérodynamiques par où le fluide doit passer avant de rencontrer les particules solides peuvent aussi être dans des injecteurs de fluide qui n'ont pas la forme allongée de fentes d'injection mais qui sont des tubes dont la section peut avoir une forme quelconque (ronde, carrée, trapézoïdale,...), dans la mesure où leur nombre est suffisant pour que les dimensions des inhomogénéités longitudinales des flux de fluide le long de la surface circulaire soient inférieures à l'épaisseur du lit fluidifié, et donc que la distance longitudinale séparant ces tubes d'injection soit de préférence inférieure à l'épaisseur du lit fluidifié.
Le dispositif selon la présente invention permet l'injection de fluide dans un lit fluidifié rotatif tournant le long d'une paroi circulaire, fixe ou rotative, au moyen d'injecteurs de fluide, répartis autour de ladite paroi circulaire, permettant d'injecter le ou lesdits fluides en une succession de couches qui longent ladite paroi circulaire et comprenant des étranglements, s'élargissant brutalement, de manière non aérodynamique, avec génération de turbulence avant la rencontre du ou desdits fluides avec les particules solides dudit lit fluidifié rotatif.
La présente invention concerne donc aussi une procédé pour contrôler la distribution des flux de fluides et minimiser les phénomènes de chenalisation dans un lit fluidifié rotatif de particules solides tournant le long d'une paroi circulaire, fixe ou rotative, comprenant l'injection du ou desdits fluides au moyen d'injecteurs de fluide, répartis autour de la dite paroi circulaire, lesdits injecteurs comprenant des étranglements s'élargissant brutalement de manière non aérodynamique.
Le procédé selon la présente invention permet lors de l'injection de générer des turbulences de petites dimensions par rapport à l'épaisseur du lit fluidifié, avant que le ou les fluides empruntant ces passages n'entrent en contact avec les particules solides. Ceci génère une perte de charge approximativement proportionnelle au carré du débit du ou des fluides aux niveaux des étranglements permettant de mieux contrôler la distribution des flux du ou desdits fluides le long de la dite paroi circulaire et de la turbulence permettant d'améliorer la fluidisation et l'homogénéité dudit lit fluidifié rotatif. De préférence, la turbulence consiste en des tourbillons de petites dimensions par rapport à l'épaisseur du lit fluidifié.
Selon un mode de réalisation particulier, le procédé comprend l'étape qui consiste à injecter un ou des fluides, dans une chambre circulaire d'un réacteur, au moyen d'injecteurs de fluide, répartis autour de la dite paroi circulaire, lesdits injecteurs comprenant des étranglements s'élargissant brutalement de manière non aérodynamique, engendrant une chute de pression proportionnelle au carré de la vitesse du fluide dans les étranglements. Selon un mode de réalisation particulier du procédé, la composante principale de la direction d'injection est tangentielle et de préférence supérieure au double de la composante radiale ou longitudinale. De préférence, la direction d'injection forme un angle aigu, de préférence un angle inférieur ou égal à 30° avec la tangente à la paroi circulaire du côté situé en aval desdits injecteurs de fluide. De préférence, le fluide injecté subit une expansion non aérodynamique d'un facteur au moins égal à deux avec une chute de pression au moins égale au dixième de la chute de pression moyenne du fluide au travers du lit fluidifié, ou alternativement, la chute de pression est au moins égale au cinquième de la pression centrifuge moyenne des particules solides sur la paroi circulaire.
Un dispositif suivant la présente invention peut de manière avantageuse être utilisé dans différents procédés. C'est pourquoi la présente invention concerne aussi des procédés de polymérisation catalytique, de combustion, de gazéification, de classification, de séchage, d'imprégnation, d'enrobage ou d'autres traitements de particules solides en suspension dans le lit fluidifié rotatif, ou de craquage, de déshydrogénation ou d'autres transformations catalytiques de fluides utilisant ce dispositif.
Plus en particulier, l'invention se rapporte à un procédé de polymérisation catalytique, de combustion, de gazéification, d'imprégnation, de classification ou de séchage ou autres traitements de particules solides en suspension dans un lit fluidifié rotatif ou de transformation catalytique de fluides traversant le dit lit fluidifié rotatif, caractérisé en ce qu'il comprend I' étape qui consiste à injecter un ou des fluides, dans une chambre circulaire d'un réacteur, au moyen d'injecteurs de fluide, répartis autour de la dite paroi circulaire, lesdits injecteurs comprenant des étranglements s'élargissant de manière non aérodynamique, générant une chute de pression approximativement proportionnelle au carré de la vitesse du fluide dans les étranglements. Selon un mode de réalisation particulier du procédé, la composante principale de la direction d'injection est tangentielle et de préférence supérieure au double de la composante radiale ou longitudinale. De préférence, la direction d'injection forme un angle aigu, de préférence un angle inférieur ou égal à 30° avec la tangente à la paroi circulaire du côté situé en aval desdits injecteurs de fluide.
La présente invention se rapporte aussi à l'utilisation d'un dispositif décrit dans la présente invention dans un procédé de polymérisation catalytique, de combustion, de gazéification, de séchage, d'imprégnation ou de classification de particule solides. La présente invention concerne également l'utilisation d'un dispositif décrit dans la présente invention dans un procédé de transformation catalytique d'un fluide ou mélange de fluides traversant un lit fluidifié rotatif dont les particules solides sont des catalyseurs. La présente invention concerne aussi l'utilisation d'un dispositif décrit dans la présente invention dans un procédé de séchage ou d'extraction de composants volatils des dites particules solides. Un dispositif suivant la présente invention peut également être utilisé dans un procédé d'imprégnation ou d'enrobage des dites particules solides. Exemples EXEMPLE 1
Un réacteur cylindrique de 24 cm de diamètre et 115 mm de long a été alimenté à la pression atmosphérique par environ 250 litres d'air par seconde au travers de 24 fentes d'environ 2,3 mm de largeur traversant la paroi cylindrique sur toute sa longueur et injectant le fluide (dans le présent exemple un gaz) dans une direction moyenne formant un angle de 20° avec la paroi, à une vitesse moyenne d'environ 40 m/sec.
Lors de l'introduction progressive de particules solides d'environ 300 microns à l'intérieur du réacteur il a été observé que les particules se concentraient le long d'une ou des deux parois latérales du réacteur, ce qui favorisait leur perte par la cheminée centrale et empêchait la formation d'un lit fluidifié stable. La différence de pression le long de la surface cylindrique intérieure de la paroi du réacteur entre le côté où s'accumulaient les particules solides et le milieu du réacteur était de l'ordre de 1000 Pascals, ce qui indique que la grande majorité du gaz passait par le milieu du réacteur où la pression était plus faible et que le tourbillon formé par ce gaz tournant autour de la cheminée centrale supportait l'accumulation des particules solides le long des parois latérales et les faisait tourner en les empêchant de s'accumuler le long du milieu de la paroi cylindrique, la pression de ces particules sur les extrémités des fentes d'injection du gaz empêchant la sortie du gaz le long des parois latérales. La distribution du gaz devenait ainsi inhomogène en se concentrant dans la tranche annulaire au milieu du réacteur. On obtenait ainsi une circulation du gaz et des particules solides dans des tranches annulaires voisines comme dans les réacteurs de type "Tornado".
Quatre bandes adhésives de 18 mm de large on été disposées à l'extérieur de la paroi cylindrique du réacteur pour former des restrictions ou étranglements transversaux, du type décrit par la figure 5, où la vitesse moyenne du fluide était multipliée par 2,7 environ. Les particules solides ne se sont plus accumulées le long des parois latérales. Elles se sont réparties longitudinalement le long de la paroi cylindrique et la différence de pression entre le centre et les côtés a disparu, permettant ainsi la formation d'un lit fluidifié mince, relativement homogène et stable. EXEMPLE 2
Un réacteur de 54 cm de diamètre, entouré d'une chambre de distribution de fluide maintenue à pression constante a été simulé en 2 dimensions. Il est alimenté au travers de 36 fentes d'injection de 4 mm de large injectant de l'air à une vitesse moyenne d'environ 14m/sec, soit un débit d'environ 2 m2/sec. Des particules de polyéthylène de 300 microns y sont introduites progressivement. La chute de pression moyenne au travers des fentes d'injection d'air étant très faible, environ 180 Pascal, par rapport à la pression centrifuge moyenne des particules solides d'environ 1800 Pascal, on observe la formation de "chenalisation longitudinale rotative". Les fentes d'injection sont transformées :
1 - Réduction de leur largeur à 3 mm : la chute de pression moyenne au travers des fentes d'injection et la vitesse des particules solides augmentent, mais la "chenalisation rotative" ne diminue presque pas.
2 - Installation d'un étranglement de 1 ,6 mm de large suivi d'une expansion du type Venturi, avec un angle d'expansion d'environ 40°: la chute de pression avant l'introduction des particules solides dépasse les 1000 Pascal. Ensuite un lit fluidifié dense est formé: la vitesse des particules solides augmente de 40% environ par rapport au cas initial, générant une pression centrifuge moyenne des particules solides d'environ 4600 Pascal et une chute de pression totale d'environ 7000 Pascal. La différence est due à l'énergie dépensée par le fluide pour fluidifier le lit de particules solides et le maintenir à une vitesse de rotation d'environ 5 tours par seconde. La chenalisation rotative diminue fortement, mais ne disparaît pas.
3 - Installation d'un étranglement de 0,5 mm du type de la figure 2 ou 3: la chute de pression avant l'introduction des particules solides est d'environ 19 000 Pascal. La chute de pression totale monte à 24 000 Pascal après la formation d'un lit fluidifié très dense, très stable, homogène, sans perte de particules solides par la cheminée centrale, sans chenalisation rotative, avec une pression centrifuge moyenne d'environ 4800 Pascal et une vitesse moyenne des particules solides d'environ 50 % supérieure au cas initial.
4 - installation d'un étranglement de 1 ,25 mm, suivi d'une expansion brutale, avec un angle de 90°, du type de la figure 1 : la chute de pression avant l'introduction des particules solides est d'environ 1400 Pascal et il n'y a pas de formation de chenalisation rotative. On peut obtenir un lit fluidifié très dense, très stable et avec pratiquement pas de pertes de particules solides par la cheminée centrale. La vitesse moyenne des particules solides est d'environ 25% supérieure au cas initial, la pression centrifuge moyenne des particules solides est d'environ 3600 Pascal et la chute de pression totale est d'environ 6300 Pascal. La différence entre les deux est due à l'énergie qui est transférée par le fluide aux particules solides pour les maintenir à une vitesse de rotation d'environ 4,5 tours par seconde. Ce dernier cas montre qu'il n'est pas nécessaire d'avoir des chutes de pression dans les fentes d'injection aussi importantes que dans le cas 3 pour faire disparaître la chenalisation rotative, mais qu'il est nécessaire qu'elle soit suffisamment élevée, un peu plus de 20% de la chute de pression totale dans cet exemple, et l'influence favorable de la turbulence.
D'autres simulations, notamment avec des particules de verre de 70 microns ont été faites. Dans un cas, avec un nombre de fentes d'injection de fluide réduit à 18, une vitesse d'injection d'air de 28 m/s et avec des étranglements de type Venturi identiques à ceux du cas 2 ci-dessus, la chute de pression moyenne et au travers des fentes d'injection, d'environ 3800 Pa, a été suffisante pour former un lit fluidifié relativement homogène, tournant à environ 11 tours par seconde, sans chenalisation rotative, avec une pression centrifuge moyenne des solides de 44 000 Pa et une chute de pression totale au travers du lit fluidifié de 96 000 Pa, soit 25 fois la chute de pression moyenne dans les fentes d'injection.

Claims

Revendications
1. Dispositif à lit fluidifié rotatif comprenant : un réacteur comprenant au moins une chambre circulaire, un dispositif d'alimentation et un dispositif d'évacuation de particules solides (10) dans et de ladite chambre circulaire, un dispositif d'alimentation d'un ou plusieurs fluides (2), gazeux ou liquides, disposé autour de la paroi circulaire (1 ) de ladite chambre circulaire, ledit dispositif comprenant des injecteurs de fluide répartis autour de ladite paroi circulaire (1 ) dont l'orientation a une composante tangentielle à ladite paroi circulaire, permettant d'injecter le ou lesdits fluides (2) dans ladite chambre circulaire le long de ladite paroi circulaire dans une direction ayant une composante tangentielle à ladite paroi circulaire, et un dispositif d'évacuation du ou des fluides, caractérisé en ce que lesdits injecteurs de fluides comprennent des passages comprenant un ou plusieurs étranglements s'élargissant de manière non aérodynamique et générant un écoulement turbulent du ou des fluides permettant ainsi de contrôler la distribution des flux du ou desdits fluides le long de ladite paroi circulaire et d'améliorer la fluidisation et l'homogénéité dudit lit fluidifié rotatif.
2. Dispositif selon la revendication 1 , caractérisé en ce que ledit dispositif d'évacuation du ou des fluides comprend une cheminée centrale traversant longitudinalement ou pénétrant à l'intérieur de ladite chambre circulaire, la paroi de ladite cheminée centrale comprenant au moins une ouverture de sortie permettant d'évacuer centralement, par ladite cheminée centrale, le fluide ou mélange de fluides de ladite chambre circulaire.
3. Dispositif selon la revendication 2, dans lequel ladite au moins une ouverture de sortie comprend un passage comprenant un ou plusieurs étranglements qui s'élargit de manière non aérodynamique générant un écoulement turbulent du ou desdits fluides.
4. Dispositif selon la revendication 1 à 3, dans lequel lesdits étranglements sont obtenus à l'aide éléments d'obstruction (20) longitudinaux et/ou transversaux.
5. Dispositif selon l'une quelconque des revendications 1 à 4, dans lequel le rapport entre la section de sortie des injecteurs du ou desdits fluides et la section desdits étranglements est au moins égal à 2.
6. Dispositif selon l'une quelconque des revendications 4 ou 5, dans lequel lesdits éléments d'obstruction sont constitués par la forme structurelle de ladite paroi circulaire.
7. Dispositif selon l'une quelconque des revendications 4 ou 5, dans lequel lesdits éléments d'obstruction comprennent des blocs longitudinaux (20) placés à l'intérieur des passages.
8. Dispositif selon l'une quelconque des revendications 4 ou 5, dans lequel lesdits éléments d'obstruction comprennent des blocs transversaux (20) placés à l'intérieur des passages et divisant lesdits passages en une succession d'étranglements transversaux.
9. Dispositif selon la revendication 8, dans lequel les longueurs longitudinales (23) des blocs transversaux sont égales ou supérieures à la longueur longitudinale (19) des étranglements.
10. Dispositif selon l'une quelconque des revendications 4 ou 5, dans lequel lesdits éléments d'obstruction comprennent des anneaux (30) ou des spires hélicoïdales, lesquels anneaux ou spires hélicoïdales sont appliqués contre et à l'extérieur ou à l'intérieur de ladite paroi circulaire (1 ), et couvrent partiellement l'ouverture desdits passages.
1 1. Dispositif selon l'une quelconque des revendications 1 à 10, dans lequel ladite paroi circulaire (1 ) est formée par une succession de plaques accolées et laquelle paroi est pourvue de surfaces, séparant deux plaques accolées, lesquelles surfaces sont rainurées transversalement formant une succession de passages étroits (43) et d'éléments d'obstruction (44).
12. Dispositif selon l'une quelconque des revendications 1 à 1 1 , dans lequel l'élargissement non aérodynamique se fait avec un angle d'expansion supérieur à 60° le long d'une arête vive.
13. Dispositif selon l'une quelconque des revendications 1 à 12, dans lequel la distance séparant lesdits injecteurs est inférieure ou égale au rayon moyen de ladite paroi circulaire.
14. Dispositif suivant l'une quelconque des revendications 2 à 13, caractérisé en ce que la somme des sections des dites ouvertures de sortie est inférieure au double de la somme des sections de sortie desdits injecteurs de fluide.
15. Dispositif suivant l'une quelconque des revendications 2 à 14, caractérisé en ce que la distance séparant lesdites ouvertures de sortie est inférieure ou égale au rayon moyen de la paroi de ladite cheminée.
16. Dispositif suivant l'une quelconque des revendications 1 à 15, caractérisé en ce que les directions d'injection du ou des fluides par lesdits injecteurs forment un angle inférieur ou égal à 30° avec la tangente de ladite paroi circulaire du côté situé en aval desdits injecteurs de fluide.
17. Dispositif suivant l'une quelconque des revendications 1 à 16, caractérisé en ce que ladite paroi circulaire (1 ) est de forme générale cylindrique, elliptique, ou conique, ou sa surface intérieure comprend des parties planes séparant deux injecteurs de fluide consécutifs.
18. Dispositif suivant l'une quelconque des revendications 1 à 17, caractérisé en ce que la surface séparant deux injecteurs de fluide consécutifs comprend au moins une partie dont la courbure est concave.
19. Dispositif suivant l'une quelconque des revendications 2 à 18, caractérisé en ce que la dite cheminée centrale est reliée à un moteur pouvant la faire tourner.
20. Dispositif suivant l'une quelconque des revendications 1 à 19, caractérisé en ce que la dite paroi circulaire est reliée à un moteur pouvant la faire tourner.
21. Utilisation du dispositif selon l'une quelconque des revendications 1 à 20 dans un procédé de polymérisation catalytique, de combustion, de gazéification, de classification, de séchage, d'imprégnation, d'enrobage, ou de traitement de particules solides en suspension dans un lit fluidifié rotatif, ou dans un procédé de craquage, de déshydrogénation ou de transformation catalytique de fluides.
22. Procédé d'injection de fluide dans un dispositif à lit fluidifié rotatif de particules solides tournant le long d'une paroi circulaire, le procédé comprenant l'injection du fluide dans une direction ayant une composante tangentielle à ladite paroi circulaire à travers des fentes d'injections comprenant des étranglements s'élargissant brutalement, de manière non aérodynamique, afin de générer une chute de pression et de générer de la turbulence avant la rencontre du fluide et lesdites particules solides.
23. Procédé selon la revendication 22, caractérisé en ce que la composante principale de la direction d'injection est tangentielle et de préférence supérieure au double de la composante radiale ou longitudinale.
24. Procédé selon l'une quelconque des revendications 22 à 23, caractérisé en ce que la turbulence consiste en des tourbillons de petites dimensions par rapport à l'épaisseur du lit fluidifié.
25. Procédé selon l'une quelconque des revendications 22 à 24, caractérisé en ce que le fluide injecté subit une expansion non aérodynamique d'un facteur au moins égal à deux avec une chute de pression au moins égale au dixième de la chute pression moyenne du fluide au travers du lit fluidifié.
26. Procédé selon l'une quelconque des revendications 22 à 24, caractérisé en ce que le fluide injecté subit une chute de pression au moins égale au cinquième de la pression centrifuge moyenne des particules solides sur la paroi circulaire.
PCT/EP2008/052522 2007-03-02 2008-02-29 Dispositif et procede d'injection de fluide dans un lit fluidite rotatif WO2008107404A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP07103440A EP1967261A1 (fr) 2007-03-02 2007-03-02 Dispositif et procédé d'injection de fluide dans un lit fluidifié rotatif.
EP07103440.9 2007-03-02
EP07118902.1 2007-10-19
EP07118908A EP2050493A1 (fr) 2007-10-19 2007-10-19 Dispositif d'évacuation de fluide d'un réacteur à lit fluidifié rotatif avec refoulement des particules solides
EP07118902 2007-10-19
EP07118908.8 2007-10-19

Publications (1)

Publication Number Publication Date
WO2008107404A1 true WO2008107404A1 (fr) 2008-09-12

Family

ID=39277133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/052522 WO2008107404A1 (fr) 2007-03-02 2008-02-29 Dispositif et procede d'injection de fluide dans un lit fluidite rotatif

Country Status (1)

Country Link
WO (1) WO2008107404A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257657B2 (en) 2006-04-21 2012-09-04 Total Petrochemicals Research Feluy Device and method for injecting fluid into a rotating fluidized bed
CN102836676A (zh) * 2012-09-28 2012-12-26 神华集团有限责任公司 气固相催化反应器
WO2014065668A1 (fr) * 2012-10-26 2014-05-01 Friesland Brands B.V. Dispositif de chambre de turbulence et procédé de traitement des particules de poudre ou d'un précurseur de particules de poudre
CN110678253A (zh) * 2017-05-01 2020-01-10 法语天主教鲁汶大学 用于处理旋转流化床中的颗粒的设备
CN111288438A (zh) * 2020-03-26 2020-06-16 江苏大学 一种流化床燃烧炉和燃烧方法
CN111655364A (zh) * 2016-12-16 2020-09-11 埃姆皮瑞欧有限公司 具有环形喷动流化床的设备及其操作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099887A1 (fr) * 2004-04-14 2005-10-27 Axel De Broqueville Procede de polymerisation catalytique dans un lit fluidifie vertical rotatif
EP1652576A2 (fr) * 1998-09-18 2006-05-03 Mortimer Technology Holdings Limited Traitement des particules dans un réacteur à lit toroidal
WO2006064046A2 (fr) * 2004-12-15 2006-06-22 Axel De Broqueville Dispositif a lit fluidifie rotatif et procedes utilisant ce dispositif
WO2006063964A1 (fr) * 2004-12-15 2006-06-22 Axel De Broqueville Dispositif et procede a lit fluidifie rotatif dans une succession de chambres cylindriques
WO2006063965A1 (fr) * 2004-12-15 2006-06-22 Axel De Broqueville Dispositif d’injection de fluides a l’interieur d’un lit fluidifie rotatif
WO2007031573A1 (fr) * 2005-09-15 2007-03-22 Axel De Broqueville Dispositif d'injection de fluide en couches successives dans un lit fluidifie rotatif et procedes utilisant ce dispositif
WO2007122211A1 (fr) * 2006-04-21 2007-11-01 Total Petrochemicals Research Feluy Dispositif et procede d'injection de fluide dans un lit fluidifie rotatif

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1652576A2 (fr) * 1998-09-18 2006-05-03 Mortimer Technology Holdings Limited Traitement des particules dans un réacteur à lit toroidal
WO2005099887A1 (fr) * 2004-04-14 2005-10-27 Axel De Broqueville Procede de polymerisation catalytique dans un lit fluidifie vertical rotatif
WO2006064046A2 (fr) * 2004-12-15 2006-06-22 Axel De Broqueville Dispositif a lit fluidifie rotatif et procedes utilisant ce dispositif
WO2006063964A1 (fr) * 2004-12-15 2006-06-22 Axel De Broqueville Dispositif et procede a lit fluidifie rotatif dans une succession de chambres cylindriques
WO2006063965A1 (fr) * 2004-12-15 2006-06-22 Axel De Broqueville Dispositif d’injection de fluides a l’interieur d’un lit fluidifie rotatif
WO2007031573A1 (fr) * 2005-09-15 2007-03-22 Axel De Broqueville Dispositif d'injection de fluide en couches successives dans un lit fluidifie rotatif et procedes utilisant ce dispositif
WO2007122211A1 (fr) * 2006-04-21 2007-11-01 Total Petrochemicals Research Feluy Dispositif et procede d'injection de fluide dans un lit fluidifie rotatif

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257657B2 (en) 2006-04-21 2012-09-04 Total Petrochemicals Research Feluy Device and method for injecting fluid into a rotating fluidized bed
CN102836676B (zh) * 2012-09-28 2014-12-17 神华集团有限责任公司 气固相催化反应器
CN102836676A (zh) * 2012-09-28 2012-12-26 神华集团有限责任公司 气固相催化反应器
AU2013335366B8 (en) * 2012-10-26 2017-05-11 Friesland Brands B.V. A vortex chamber device, and method for treating powder particles or a powder particles precursor
CN104812474A (zh) * 2012-10-26 2015-07-29 菲仕兰品牌有限公司 涡流室装置及用于处理粉末颗粒或粉末颗粒前驱体的方法
US20150273421A1 (en) * 2012-10-26 2015-10-01 Friesland Brands B.V. Vortex chamber device, and method for treating powder particles or a powder particles precursor
CN104812474B (zh) * 2012-10-26 2017-03-08 菲仕兰品牌有限公司 涡流室装置及用于处理粉末颗粒或粉末颗粒前驱体的方法
AU2013335366A8 (en) * 2012-10-26 2017-05-11 Friesland Brands B.V. A vortex chamber device, and method for treating powder particles or a powder particles precursor
WO2014065668A1 (fr) * 2012-10-26 2014-05-01 Friesland Brands B.V. Dispositif de chambre de turbulence et procédé de traitement des particules de poudre ou d'un précurseur de particules de poudre
US9751064B2 (en) 2012-10-26 2017-09-05 Friesland Brands B.V. Vortex chamber device, and method for treating powder particles or a powder particles precursor
CN111655364A (zh) * 2016-12-16 2020-09-11 埃姆皮瑞欧有限公司 具有环形喷动流化床的设备及其操作方法
JP2021504136A (ja) * 2016-12-16 2021-02-15 シア“エンピリオ” 環状噴流流動層を備えた装置およびその操作方法
CN110678253A (zh) * 2017-05-01 2020-01-10 法语天主教鲁汶大学 用于处理旋转流化床中的颗粒的设备
CN110678253B (zh) * 2017-05-01 2022-04-08 法语天主教鲁汶大学 用于处理旋转流化床中的颗粒的设备
CN111288438A (zh) * 2020-03-26 2020-06-16 江苏大学 一种流化床燃烧炉和燃烧方法
CN111288438B (zh) * 2020-03-26 2021-09-24 江苏大学 一种流化床燃烧炉和燃烧方法

Similar Documents

Publication Publication Date Title
WO2008107404A1 (fr) Dispositif et procede d'injection de fluide dans un lit fluidite rotatif
CA2647272C (fr) Dispositif et procede d'injection de fluide dans un lit fluidifie rotatif
EP1846149A1 (fr) Dispositif d'injection de fluides a l'interieur d'un lit fluidifie rotatif
BE1016766A5 (fr) Dispositif d'injection de fluide en couches successives dans un lit fluidifie rotatif et procedes utilisant ce dispositif.
WO2006064046B1 (fr) Dispositif a lit fluidifie rotatif et procedes utilisant ce dispositif
EP0781929B1 (fr) Dispositif de pompage ou de compression d'un fluide polyphasique à aubage en tandem
EP3463607B1 (fr) Nouveau système de distribution ou de collecte périphérique pour un procédé de séparation en lit mobile simulé utilisant n-colonnes en série
FR2787838A1 (fr) Dispositif de pompage a jet
EP1967261A1 (fr) Dispositif et procédé d'injection de fluide dans un lit fluidifié rotatif.
EP2162207A2 (fr) Enceinte contenant un lit granulaire et une distribution d'une phase gazeuse et d'une phase liquide circulant en un écoulement ascendant dans cette enceinte.
FR2729585A1 (fr) Enceintes a lit mobile en ecoulement regularise
FR2835762A1 (fr) Dispositif de melange et d'homogeneisation destine a la production d'emulsions
EP3600647B1 (fr) Dispositif d'injection de charge ameliore pour une unite fcc
EP2050493A1 (fr) Dispositif d'évacuation de fluide d'un réacteur à lit fluidifié rotatif avec refoulement des particules solides
EP3447271B1 (fr) Système de chauffage pour tuyère secondaire convergente-divergente
EP3388128A1 (fr) Nouveau dessin des canaux de collecte et de distribution pour un procede de separation en lit mobile simule utilisant n-colonnes en serie
EP1847314A1 (fr) Lit fluidisé rotatif
EP3600646B1 (fr) Dispositif d'injection de charge d'une unite fcc a perte de charge limitee
FR2599093A1 (fr) Ejecteur a rotation induite
FR2461515A1 (fr) Dispositif de traitement d'au moins deux fluides comprenant un liquide, notamment pour la realisation d'emulsion de deux liquides non solubles l'un dans l'autre
EP3140032B1 (fr) Dispositif d'injection, notamment pour injecter une charge d'hydrocarbures dans une unité de raffinage.
EP0287462A2 (fr) Procédé et dispositif de séparation centrifuge d'un mélange de plusieurs phases
FR2912931A1 (fr) Dispositif pour separer des molecules et/ou particules dispersees dans un fluide
FR3058074A1 (fr) Dispositif de separation de particules solides en suspension dans un liquide et/ou de liquides de densites differentes, comprenant chacun au moins un moyen de creation et de maintien de vortex
FR2771028A1 (fr) Dispositif pour la separation des constituants d'un melange heterogene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08717298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08717298

Country of ref document: EP

Kind code of ref document: A1