WO2008107247A1 - Verfahren zur bestimmung einer abgasrückführmasse - Google Patents

Verfahren zur bestimmung einer abgasrückführmasse Download PDF

Info

Publication number
WO2008107247A1
WO2008107247A1 PCT/EP2008/051310 EP2008051310W WO2008107247A1 WO 2008107247 A1 WO2008107247 A1 WO 2008107247A1 EP 2008051310 W EP2008051310 W EP 2008051310W WO 2008107247 A1 WO2008107247 A1 WO 2008107247A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
air
mass flow
gas recirculation
measured
Prior art date
Application number
PCT/EP2008/051310
Other languages
English (en)
French (fr)
Inventor
Gunter Winkler
Stephan Tafel
Martin Rauscher
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2008107247A1 publication Critical patent/WO2008107247A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D2041/0067Determining the EGR temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention is based on a method for determining an exhaust gas mass recirculated in an exhaust gas recirculation device of an internal combustion engine per unit time according to the preamble of claim 1.
  • Exhaust gas recirculation devices are used to reduce the nitrogen oxide emissions in the exhaust gas of internal combustion engines.
  • the soot emissions increase with increasing exhaust gas recirculation only moderately, when a limit value or so-called soot limit, but very strong.
  • the erfmdungssiee method with the features of claim 1 has the advantage that the recirculated exhaust gas mass flow is measured directly and thus determined much more accurate.
  • the regulation of the exhaust gas recirculation valve can be performed so that the recirculated exhaust gas mass flow adjusted much larger and thus the nitrogen oxide emission can be further reduced without the limit for the sharply rising soot emission is achieved.
  • the pressure prevailing at the inlet and outlet of the exhaust gas recirculation valve is measured to record the thermodynamic change in state and the measured values are used to calculate the exhaust gas mass flow.
  • the opening stroke of the exhaust gas recirculation valve is measured directly on the valve, the instantaneous opening cross section determined with the measured opening stroke from the valve geometry and the instantaneous opening cross section of the valve included in the calculation of the exhaust gas mass flow.
  • the combustion air mass flow is measured in a known manner with an air mass meter, e.g. measured with a hot-film air mass meter, and with the measured combustion air mass flow from the exhaust gas recirculation rate of the exhaust gas mass flow is calculated.
  • the mixture of combustion air mass flow and exhaust gas mass flow is performed adiabatically and the
  • An adiabatic mixing section ie a mixing section, in the heat neither supplied to the gas nor heat is removed, for example, be prepared in that the mixing section is made of a plastic tube.
  • a turbulence generator is arranged in the mixing area or in the mixing section, which ensures a good turbulence of combustion air and exhaust gas.
  • FIG. 1 shows a schematic representation of an internal combustion engine with an exhaust gas recirculation device arranged on the high-pressure side and on the low-pressure side of an exhaust gas turbocharger
  • FIG. 2 shows a schematic sketch of the mixing point region of the exhaust gas recirculation devices in FIG. 1 for explaining the method according to the invention
  • FIG. 3 shows a similar view as in FIG. 1 with only one modified exhaust gas recirculation device on the high-pressure side of the turbocharger, FIG.
  • FIG. 4 shows a schematic sketch of the mixing point region of the exhaust gas recirculation device in FIG. 3 to explain the modified method.
  • FIG. 1 The schematically illustrated in Fig. 1 internal combustion engine 10 with four combustion cylinders, which may be a diesel engine, for example, has an intake track 11 through which the combustion cylinders of the internal combustion engine 10 combustion air is supplied.
  • an exhaust pipe 12 is connected, which open into a common exhaust line 13.
  • the turbine 141 of an exhaust gas turbocharger 14 is arranged, the compressor 142 is placed in the intake track 11.
  • the turbine 141 uses the energy contained in the exhaust gas to drive the compressor 142, which sucks fresh air and presses via a suction pipe 15 of the intake manifold 11 as combustion air in the combustion cylinder.
  • the turbine 141 of the exhaust-gas turbocharger is followed by an oxidation catalytic converter 16 and / or a diesel particulate filter in the exhaust-gas flow 13, by means of which after-treatment of the exhaust gas is carried out.
  • a charging air cooler 17 is arranged in the intake manifold 15 .
  • an exhaust gas recirculation device 20 is arranged in each case.
  • the exhaust gas recirculation device 20 on the high pressure side of the turbine 141 is located with an exhaust gas recirculation cooler 21 in a branch channel 18, which branches off from the exhaust line 13 before the turbine 141 and in the flow direction behind the loading air cooler 17 in the intake manifold 15 opens.
  • the exhaust gas recirculation device 20 on the low pressure side of the turbine 141 is located together with an exhaust gas recirculation cooler 21 in a branch channel 19, which branches off from the exhaust line 13 behind the oxidation catalyst 16 and opens in the intake manifold 13 before the compressor 142.
  • the exhaust gas recirculation cooler 21 may be arranged upstream or downstream of the exhaust gas recirculation device 20 in the flow direction.
  • Each exhaust gas recirculation device 20 has an exhaust gas recirculation valve 22 with a valve member 221 (FIG. 2) and an actuator 23 that actuates the valve member 221 of the exhaust gas recirculation valve 22 and that is actuated by an engine control unit 24.
  • the exhaust gas recirculation valve 22 is an electromagnetically controlled valve and the actuator 23 is an electromagnet whose
  • Opening stroke s of the valve member 221 (FIG. 2) determining exciter current in the engine control unit 24 is generated.
  • the respectively executed by the valve member 221 opening stroke s, which determines the current ⁇ ffhungs- or passage cross-section of the exhaust gas recirculation valve 22 is measured directly on the valve 22 and fed to the engine control unit 24 via a measuring line.
  • the opening stroke s of the exhaust gas recirculation valve 22 the exhaust gas flowing via the branch channel 18, branched off from the exhaust gas line 13 and mixed with the combustion air in the intake pipe 15, is set per unit time.
  • the exhaust gas mass recirculated to the internal combustion engine per unit time is regulated in the engine control unit 24 as a function of the operating state of the internal combustion engine 10 via the valve opening of the exhaust gas recirculation valve 22.
  • the determination of the exhaust gas mass recirculated per unit time ie the determination of the actual value of the exhaust gas mass flow, takes place in that the change in the thermodynamic state of the branched exhaust gas mass caused by valve passage is detected and from this the exhaust gas mass flow is calculated.
  • the pressure pi prevailing at the inlet of the exhaust gas recirculation valve 22 and the pressure p 2 prevailing at the outlet of the exhaust gas recirculation valve 22 are measured, and the measured values are used to calculate the exhaust gas mass flow m exhaust gas ( Fi ). 2 ) used.
  • the calculation of the exhaust gas mass flow rh exhaust gas is carried out according to
  • Eq. (1) is the flow rate coefficient ⁇ , A Ven tii the current opening cross-section of the exhaust gas recirculation valve 22, pi is the density of exhaust gas at valve inlet and ⁇ A b g as the Isentropenkoeff ⁇ zient of the exhaust gas, also called Addiabatenexponent or -koeff ⁇ zient.
  • the flow coefficient ⁇ is determined by measuring the exhaust gas recirculation valve 22 once and stored in the engine control unit 24 as a table.
  • Flow cross-section A is also determined by measuring the exhaust gas recirculation valve 22 and stored depending on the stroke s of the valve member 221 as a table in the engine control unit 24.
  • the current value of the opening cross section A is taken from the table based on the measured opening stroke s of the valve 22.
  • the isentropic coefficient ⁇ A b g as, which is defined as the ratio of the specific heat capacities at constant pressure c p and constant volume c v is determined in tabular form from the air ratio or the air ratio ⁇ and the exhaust gas temperature to be measured.
  • the exhaust gas mass diverted from the exhaust line 13 downstream of the oxidation catalytic converter 16 via the branch duct 19 and the combustion air flowing in the intake tract 11 is measured per unit time in the same manner as described above.
  • the processing of the measured values s, pi, p 2 supplied to the engine control unit 24 by this exhaust gas recirculation device 20 are processed in the engine control unit 24 separately from the measured values s, pi, p 2 of the exhaust gas recirculation device 20 on the high-pressure side of the turbocharger 14 and a corresponding control variable to the actuator 23 for correcting the opening stroke of the valve member 221 of the exhaust gas recirculation valve 22.
  • exhaust gas recirculation device 20 is identical in construction with the exhaust gas recirculation device 20 described above. It differs only by the method with which the actual via the exhaust gas recirculation valve 22 from the exhaust system 13 branched and the combustion air in the intake manifold 15 admixed exhaust mass per unit time is determined. As in the exhaust gas recirculation device 20 shown in FIG. 1 and 2, the change in the thermodynamic state of the branched exhaust gas mass caused by the valve passage is detected and from this the exhaust gas mass flow rh exhaust gas is determined (FIG. 4).
  • the temperature T A b gas at the valve inlet, the temperature T air of the combustion air before the mixing point and the temperature T mix the mixed air from exhaust gas and combustion air after the mixing point measured and from an exhaust gas recirculation rate ARR as the ratio of exhaust gas mass flow exhaust gas to the sum of Exhaust gas mass flow rh exhaust gas and
  • Combustion air mass flow is calculated rh air.
  • the calculation of the exhaust gas recirculation rate ARR from the measured values supplied to the engine control unit 24 takes place in accordance with FIG.
  • c p is the specific heat capacity of the respective gaseous medium (exhaust gas, air and mixed stream of exhaust gas and air) at constant pressure. These specific heat capacities c p are dependent on the temperature and the composition of the respective medium.
  • the specific heat capacity of the air c P, air t which is only dependent on the temperature, is stored in a table in the engine control unit 24 as a function of the temperature. Their current value is read out of the table with the measured temperature T air .
  • the specific heat capacity of the exhaust gas c P, A b g as is also stored in the engine control unit 24, depending on the temperature and the air ratio ⁇ .
  • the instantaneous value is taken from this table as a function of the measured temperature T A b g as and the measured air ratio ⁇ .
  • the specific heat capacity c P; mix of the mixed stream of combustion air and exhaust gas is composed of the c P; Luf t and the c P; A b g as weighted with the exhaust gas recirculation rate ARR, thus requiring the previously measured ARR, so that c P; mix can only be determined iteratively.
  • the combustion air drawn in via the intake manifold 15 is measured by means of an air mass meter 25 arranged in the intake tract 11.
  • Such an air mass meter known as a hot-film air mass meter is described by way of example in the cited prior art document on pages 424 and 425.
  • the measured combustion air mass flow rh air is supplied to the engine control unit 24, and in the engine control unit 24 from the calculated exhaust gas rate ARR and the combustion air mass flow m air of the exhaust gas mass flow rh exhaust gas according to
  • a manipulated variable is applied to the actuator 23 of the exhaust gas recirculation valve 22.
  • a turbulence generator 26 is arranged in the mixing section, which ensures a very good turbulence of the amount of exhaust gas mixed with the combustion air flow.
  • the mixing section is preferably designed as a plastic pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Es wird ein Verfahren zur Bestimmung einer in einer Abgasrückvorrichtung einer Brennkraftmaschine pro Zeiteinheit rückgeführten Abgasmasse angegeben, die mittels eines Abgasrückführventils (22) vom Abgas der Brennkraftmaschine abgezweigt und der über einen Ansaugtrakt der Brennkraftmaschine zugeführten Verbrennungsluft beigemischt wird. Für die direkte Messung des rückgeführten Abgasmassenstrom ( mAbgas ) wird die mit Ventildurchgang hervorgerufene Änderung des thermodynamischen Zustands der abgezweigten Abgasmasse erfasst und daraus der Abgasmassestrom ( mAbgas ) ermittelt. Vorzugsweise wird hierzu der am Ein- und Ausgang des Abgasrückführventils (22) herrschende Druck (p1, p2) gemessen und mit den Messwerten unter Einbeziehung des gemessenen Öffnungshubs (s) des Abgasrückführventils (22) der Abgasmassenstrom ( mAbgas ) berechnet.

Description

Beschreibung
Titel
Verfahren zur Bestimmung einer Abgasrückführmasse
Stand der Technik
Die Erfindung geht aus von einem Verfahren zur Bestimmung einer in einer Abgasrückführvorrichtung einer Brennkraftmaschine pro Zeiteinheit rückgeführten Abgasmasse nach dem Oberbegriff des Anspruchs 1.
Abgasrückführvorrichtungen dienen zur Absenkung der Stickoxid-Emissionen im Abgas von Brennkraftmaschinen. Dabei steigen die Rußemissionen mit steigender Abgasrückführung erst moderat, bei Überschreiten eines Grenzwerts oder sog. Rußgrenze, aber sehr stark an.
Bei einer bekannten Abgasrückführvorrichtung für Dieselmotoren („Dieselmotor- Management", Robert Bosch GmbH, 4. Auflage, Oktober 2004, Seite 330 bis 425, Fried. Vieweg und Sohn Verlag, Wiesbaden) wird eine bestimmte Abgasmenge auf der Hochdruckoder Niederdruckseite eines Abgasturboladers vom Abgas abgezweigt und der über den Ansaugtrackt des Motors angesaugten Verbrennungsluft zugeführt. Die rückgeführte Abgasmenge hängt von der Druckdifferenz zwischen dem Abgasgegendruck und dem Druck im Ansaugtrakt sowie der Stellung eines pneumatisch oder elektrisch betätigten Abgasrückführventils ab. Aufgrund der hohen Temperatur und des Schmutzanteils im Abgas erfolgt die Regelung des Abgasrückführventils nicht durch direkte Messung des rückgeführten Abgasstroms, sondern indirekt über einen Luftmassenmesser im Ansaugtrakt. Dessen Messwert wird im Motorsteuergerät mit dem theoretischen Luftbedarf des Motors verglichen, der seinerseits aus verschiedenen Kenndaten des Motors ermittelt wird. Je niedriger die tatsächlich gemessene Verbrennungsluftmasse im Vergleich zum theoretischen Luftbedarf ist, umso höher ist der rückgeführte Abgasanteil.
Da das Motorverhalten sich über die Laufzeit verändern kann und das Signal des Luftmassenmessers große Toleranzen aufweist, ist aufgrund der Empfindlichkeit der Rußemission ein relativ großer Sicherheitsabstand zur Rußgrenze zu wahren, so dass der rückgeführte Abgasmassenstrom nicht so groß eingestellt werden kann, wie dies zur Einhaltung der künftig zu erwartender, niedrigen Emissionsgrenzwerte notwendig wäre.
Offenbarung der Erfindung
Das erfmdungsgemäße Verfahren mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass der rückgeführte Abgasmassenstrom direkt gemessen und damit sehr viel genauer bestimmt wird. Damit kann die Regelung des Abgasrückführventils so durchgeführt werden, dass der rückgeführte Abgasmassenstrom sehr viel größer eingestellt und damit die Stickoxidemission weiter reduziert werden kann, ohne dass die Grenze für die stark ansteigende Rußemission erreicht wird.
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Verfahrens möglich.
Gemäß einer vorteilhaften Ausführungsform der Erfindung wird zur Erfassung der thermodynamischen Zustandsänderung der am Ein- und Ausgang des Abgasrückführventils herrschende Druck gemessen und die Messwerte zur Berechnung des Abgasmassenstroms herangezogen. Vorteilhaft wird dabei der Öffnungshub des Abgasrückführventils direkt am Ventil gemessen, mit dem gemessenen Öffnungshub aus der Ventilgeometrie der momentane Öffnungsquerschnitt bestimmt und der momentane Öffnungsquerschnitt des Ventils in die Berechnung des Abgasmassenstroms einbezogen.
Gemäß einer alternativen Ausführungsform des Verfahrens wird zur Erfassung der Änderung des thermodynamischen Zustands die Temperatur des Abgases am Ventileingang, die
Temperatur der Verbrennungsluft vor der Mischstelle von Verbrennungsluft und Abgas und die Temperatur der Mischung aus Abgas und Verbrennungsluft unmittelbar hinter der Mischstelle gemessen und daraus eine Abgasrückführrate als Verhältnis des Abgasmassenstroms zur Summe aus Abgasmassenstrom und Verbrennungsluftmassenstrom berechnet. Der Verbrennungsluftmassenstrom wird in bekannter Weise mit einem Luftmassenmesser, z.B. mit einem Heißfilm-Luftmassenmesser, gemessen, und mit dem gemessenen Verbrennungsluftmassenstrom wird aus der Abgasrückführrate der Abgasmassenstrom berechnet.
Gemäß einer vorteilhaften Ausführungsform der Erfindung wird die Mischung von Verbren- nungsluftmassenstrom und Abgasmassenstrom adiabat durchgeführt und die
Temperaturmessstellen für Verbrennungsluft und Mischluft in den adiabaten Mischbereich, also räumlich recht dicht zueinander gelegt. Eine adiabate Mischstrecke; d.h. eine Mischstrecke, in dem dem Gas weder Wärme zugeführt, noch Wärme entnommen wird, kann beispielsweise dadurch hergestellt werden, dass die Mischstrecke aus einem Kunststoffrohr gefertigt ist. Um eine gute Durchmischung von Verbrennungsluft und Abgas zu erreichen und sog. Strähnen mit stark unterschiedlichen Temperaturen zu vermeiden, ist im Mischbereich bzw. in der Mischstrecke ein Turbolenzgenerator angeordnet, der für eine gute Verwirbelung von Verbrennungsluft und Abgas sorgt.
Kurze Beschreibung der Zeichnungen
Die Erfindung ist anhand von in den Zeichnungen dargestellten Ausführungsbeispielen in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 eine schematische Darstellung einer Brennkraftmaschine mit einer auf der Hochdruckseite und einer auf der Niederdruckseite eines Abgasturboladers angeordneten Abgasrückführvorrichtung,
Fig. 2 eine Schemaskizze des Mischstellenbereichs der Abgasrückführvorrichtungen in Fig. 1 zur Erläuterung des erfindungsgemäßen Verfahrens,
Fig. 3 eine gleiche Darstellung wie in Fig. 1 mit nur einer modifizierten Abgasrückführvorrichtung auf der Hochdruckseite des Turboladers,
Fig. 4 eine Schemaskizze des Mischstellenbereichs der Abgasrückführvorrichtung in Fig. 3 zur Erläuterung des modifizierten Verfahrens.
Die in Fig. 1 schematisiert dargestellte Brennkraftmaschine 10 mit vier Verbrennungszylindern, die z.B. ein Dieselmotor sein kann, weist einen Ansaugtrackt 11 auf, über den den Verbrennungszylindern der Brennkraftmaschine 10 Verbrennungsluft zugeführt wird. An jedem Verbrennungszylinder ist ein Abgasrohr 12 angeschlossen, die in einem gemeinsamen Abgasstrang 13 münden. Im Abgasstrang 13 ist die Turbine 141 eines Abgasturboladers 14 angeordnet, dessen Verdichter 142 im Ansaugtrackt 11 platziert ist. Die Turbine 141 nutzt die im Abgas enthaltene Energie zum Antrieb des Verdichters 142, der Frischluft ansaugt und über ein Saugrohr 15 des Ansaugtrakts 11 als Verbrennungsluft in die Verbrennungszylinder drückt. Der Turbine 141 des Abgasturboladers ist im Abgasstrom 13 ein Oxidationskatalysator 16 und/oder ein Dieselpartikelfilter nachgeordnet, mittels derer eine Nachbehandlung des Abgases durchgeführt wird. Im Saugrohr 15 ist noch ein Lade luftkühler 17 angeordnet. Auf der Hochdruckseite der Turbine 141 des Turboladers 14 und auf der Niederdruckseite der Turbine 141 ist jeweils eine Abgasrückführvorrichtung 20 angeordnet. Die Abgasrückführvorrichtung 20 auf der Hochdruckseite der Turbine 141 liegt mit einem Abgasrückführkühler 21 in einem Abzweigkanal 18, der vor der Turbine 141 vom Abgasstrang 13 abzweigt und in Strömungsrichtung hinter dem Lade luftkühler 17 im Saugrohr 15 mündet. Die Abgasrückführvorrichtung 20 auf der Niederdruckseite der Turbine 141 liegt zusammen mit einem Abgasrückführkühler 21 in einem Abzweigkanal 19, der vom Abgasstrang 13 hinter dem Oxidationskatalysator 16 abzweigt und im Ansaugtrakt 13 vor dem Verdichter 142 mündet. In beiden Abzweigkanälen 18, 19 kann der Abgasrückführkühler 21 in Strömungsrichtung vor oder hinter der Abgasrückführvorrichtung 20 angeordnet sein.
Die beiden Abgasvorrichtungen 20 sind identisch ausgebildet. Jede Abgasrückführvorrichtung 20 weist ein Abgasrückführventil 22 mit einem Ventilglied 221 (Fig. 2) und einen das Ventilglied 221 des Abgasrückführventils 22 betätigenden Aktor 23 auf, der von einem Motorsteuergerät 24 angesteuert wird. Beispielhaft ist das Abgasrückführventil 22 ein elektromagnetisch gesteuertes Ventil und der Aktor 23 ein Elektromagnet, dessen den
Öffnungshub s des Ventilglieds 221 (Fig. 2) bestimmender Erregerstrom im Motorsteuergerät 24 generiert wird. Der jeweils vom Ventilglied 221 ausgeführte Öffnungshub s, der den momentanen Öffhungs- oder Durchlassquerschnitt des Abgasrückführventils 22 bestimmt, wird direkt am Ventil 22 gemessen und dem Motorsteuergerät 24 über eine Messleitung zugeführt. Mit dem Öffnungshub s des Abgasrückführventils 22 wird die über den Abzweigkanal 18 fließende, aus dem Abgasstrang 13 abgezweigte und in dem Saugrohr 15 der Verbrennungsluft beigemischte Abgasmasse pro Zeiteinheit eingestellt.
Die zur Brennkraftmaschine pro Zeiteinheit rückgeführte Abgasmasse wird im Motorsteuergerät 24 in Abhängigkeit vom Betriebszustand der Brennkraftmaschine 10 über die Ventilöffnung des Abgasrückführventils 22 geregelt. Hierzu ist es erforderlich, die tatsächliche Größe der über das Abgasrückführventil 22 der Verbrennungsluft zugemischten Abgasmasse pro Zeiteinheit zu bestimmen, die als Istwert in dem Regelkreis des Motorsteuergeräts 24 verarbeitet wird. Bei dem hier vorgestellten Verfahren erfolgt die Bestimmung der pro Zeiteinheit rückgeführten Abgasmasse, also die Bestimmung des Istwerts des Abgasmassenstroms, dadurch, dass die mit Ventildurchgang hervorgerufene Änderung des thermodynamischen Zustands der abgezweigten Abgasmasse erfasst und daraus der Abgasmassenstrom berechnet wird. Im einzelnen wird hierzu in der Abgasrückführvorrichtung 20 der Fig. 1 und 2 der am Eingang des Abgasrückführventils 22 herrschende Druck pi und der am Ausgang des Abgasrückführventils 22 herrschende Druck p2 gemessen, und die Messwerte werden zur Berechnung des Abgasmassenstroms m Abgas (Fi§- 2) herangezogen. Die Berechnung des Abgasmassenstroms rhAbgas erfolgt gemäß
K Abgas m P2
Abgas = μ • A /O„
Ventil (1)
K Abgas 1
Figure imgf000007_0001
In Gl. (1) ist μ der Durchflussbeiwert, AVentii der momentane Öffnungsquerschnitt des Abgasrückführventils 22, pi die Dichte des Abgases am Ventileingang und κAbgas der Isentropenkoeffϊzient des Abgases, auch Addiabatenexponent oder -koeffϊzient genannt. Der Durchflussbeiwert μ wird durch einmaliges Vermessen des Abgasrückführventils 22 ermittelt und in dem Motorsteuergerät 24 als Tabelle hinterlegt. Der Öffhungs- oder
Durchflussquerschnitt A wird ebenfalls durch Vermessen des Abgasrückführventils 22 ermittelt und abhängig vom Hub s des Ventilglieds 221 als Tabelle im Motorsteuergerät 24 abgelegt. Der aktuelle Wert des Öffnungsquerschnitts A wird anhand des gemessenen Öffnungshubs s des Ventils 22 aus der Tabelle entnommen. Der Isentropenkoeffizient κAbgas, der als Verhältnis der spezifischen Wärmekapazitäten bei konstantem Druck cp und konstantem Volumen cv definiert ist, wird aus dem Luftverhältnis oder der Luftzahl λ und der zu messenden Abgastemperatur tabellarisch bestimmt.
In der auf der Niederdruckseite des Turboladers 14 angeordneten Abgasrückführvorrichtung 20 wird die vom Abgasstrang 13 hinter dem Oxidationskatalysator 16 über den Abzweigkanal 19 abgezweigte und der im Ansaugtrakt 11 strömenden Verbrennungsluft zugemischte Abgasmasse pro Zeiteinheit in gleicher Weise gemessen, wie vorstehend beschrieben. Die Verarbeitung der von dieser Abgasrückführvorrichtung 20 dem Motorsteuergerät 24 zugeführten Messwerte s , pi , p2 werden im Motorsteuergerät 24 getrennt von den Messwerten s, pi, p2 der Abgasrückführvorrichtung 20 auf der Hochdruckseite des Turboladers 14 verarbeitet und eine entsprechende Stellgröße an den Aktor 23 zur Korrektur des Öffnungshubs des Ventilglieds 221 des Abgasrückführventils 22 gegeben.
Die in Fig. 3 in Verbindung mit der Brennkraftmaschine dargestellte, auf der Hochdruckseite des Turboladers 14 angeordnete Abgasrückführvorrichtung 20 ist im Aufbau identisch mit der zuvor beschriebenen Abgasrückführvorrichtung 20. Sie unterscheidet sich nur durch das Verfahren, mit dem die tatsächliche über das Abgasrückführventil 22 vom Abgasstrang 13 abgezweigte und der Verbrennungsluft im Saugrohr 15 zugemischte Abgasmasse pro Zeiteinheit bestimmt wird. Ebenso wie bei der Abgasrückführvorrichtung 20 gemäß Fig. 1 und 2 wird die mit Ventildurchgang hervorgerufene Änderung des thermodynamischen Zustands der abgezweigten Abgasmasse erfasst und daraus der Abgasmassenstrom rhAbgas ermittelt (Fig. 4).
Allerdings wird hierzu die Temperatur TAbgas am Ventileingang, die Temperatur TLuft der Verbrennungsluft vor der Mischstelle und die Temperatur Tmix der Mischluft aus Abgas und Verbrennungsluft nach der Mischstelle gemessen und daraus eine Abgasrückführrate ARR als Verhältnis des Abgasmassenstroms rhAbgas zur Summe aus Abgasmassenstrom rhAbgas und
Verbrennungsluftmassenstrom rhLuft berechnet. Die Berechnung der Abgasrückführrate ARR aus den dem Motorsteuergerät 24 zugeführten Messwerten erfolgt gemäß
ARR = p, mix mix Cp, Luft ' Luft
(2). c p, Abgas • T Abgas C p, Luft ' Luft
In Gl. (2) ist cp die spezifische Wärmekapazität des jeweiligen gasförmigen Mediums, (Abgas, Luft und Mischstrom aus Abgas und Luft) bei konstantem Druck ist. Diese spezifischen Wärmekapazitäten cp sind abhängig von der Temperatur und der Zusammensetzung des jeweiligen Mediums. Die spezifische Wärmekapazität der Luft cP;Luft, die nur abhängig von der Temperatur ist, ist tabellarisch im Motorsteuergerät 24 abhängig von der Temperatur abgelegt. Ihr aktueller Wert wird mit der gemessenen Temperatur TLuft aus der Tabelle ausgelesen. Die spezifische Wärmekapazität des Abgases cP;Abgas ist ebenfalls im Motorsteuergerät 24 abgespeichert, und zwar in Abhängigkeit von der Temperatur und der Luftzahl λ. Der momentane Wert wird abhängig von der gemessenen Temperatur TAbgas und der gemessenen Luftzahl λ aus dieser Tabelle entnommen. Die spezifische Wärmekapazität cP;mix des Mischstroms aus Verbrennungsluft und Abgas setzt sich zusammen aus der cP;Luft und der mit der Abgasrückführrate ARR gewichteten cP;Abgas- Deren Bestimmung benötigt somit die zuvor gemessenen ARR, so dass cP;mix nur iterativ bestimmt werden kann. Zur Gewinnung des Istwerts des Verbrennungsluftmassenstroms wird die über das Saugrohr 15 angesaugte Verbrennungsluft mittels eines im Ansaugtrakt 11 angeordneten Luftmassenmessers 25 gemessen. Ein solcher als Heißfilm-Luftmassenmesser bekannter Luftmassenmesser ist beispielhaft in dem eingangs zitierten, bekannten Dokument auf Seite 424 und 425 beschrieben. Der gemessene Verbrennungsluftmassenstrom rhLuft wird dem Motorsteuergerät 24 zugeführt, und im Motorsteuergerät 24 wird aus der berechneten Abgasrate ARR und dem Verbrennungsluftmassenstrom mLuft der Abgasmassenstrom rhAbgas gemäß
ARR bestimmt. Entsprechend der Regelabweichung dieses Istwerts des Abgasmassenstroms rhAbgas vom Sollwert des Abgasmassenstroms wird eine Stellgröße an den Aktor 23 des Abgasrückführventils 22 gelegt. Zur exakten Temperaturmessung wird dafür Sorge getragen, dass die Mischung der Verbrennungsluft und der rückgeführten Abgasmasse adiabatisch und weitgehend strähnenfrei erfolgt. Hierzu wird in der Mischstrecke ein Turbulenzgenerator 26 angeordnet, der für eine recht gute Verwirbelung der dem Verbrennungsluftstrom beigemischten Abgasmenge sorgt. Um im Mischbereich den gasformigen Medien weder Wärme zuzuführen, noch entnehmen, also eine weitgehend adiabatische Mischung der Medien sicherzustellen, wird die Mischstrecke vorzugsweise als Kunststoffrohr ausgeführt.

Claims

Ansprüche
1. Verfahren zur Bestimmung einer in einer Abgasrückführvorrichtung (20) einer Brennkraftmaschine (10) pro Zeiteinheit rückgeführten Abgasmasse, die mittels eines Abgasrückführventils (22) vom Abgas der Brennkraftmaschine (10) abgezweigt und der über einen Ansaugtrakt (11) der Brennkraftmaschine (10) angesaugten Verbrennungsluft beigemischt wird, dadurch gekennzeichnet, dass die mit Ventildurchgang hervorgerufene Änderung des thermodynamischen Zustands der abgezweigten Abgasmasse erfasst und daraus der Abgasmassestrom ( rhAbgas ) ermittelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der am Ein- und Ausgang des Abgasrückführventils (22) herrschende Druck (pb p2) gemessen und die Messwerte zur
Berechnung des Abgasmassenstroms ( rhAbgas ) herangezogen werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Öffnungshub (s) des Abgasrückführventils (22) gemessen und damit aus der Ventilgeometrie der momentane Öffnungsquerschnitt (A) des Abgasrückführventils (22) bestimmt wird und dass der momentane Öffnungsquerschnitt (A) des Abgasrückführventils (22) in die Berechnung des Abgasmassenstroms ( rhAbgas ) mit einbezogen wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Berechnung des
^bgasmassenstroms mAbgas gemäß
mAbgas = I1 ' A Ventil ' Λ/ '2p,p,
Figure imgf000010_0001
durchgeführt wird, wobei der Durchflussbeiwert μ durch Vermessen des Abgasrückführventils (22) bestimmt und abgespeichert worden ist, der durch Vermessen des Abgasrückführventils (22) bestimmte und abhängig vom Öffnungshub des Abgasrückführventils (22) tabellarisch abgespeicherte Öffnungsquerschnitt A anhand des gemessenen Öffnungshubs (s) des
Abgasrückführventils (22) der Tabelle entnommen wird, der Isentropenkoeffϊzient κAbgas mittels Luftzahl λ und Temperatur des Abgases aus einer abgespeicherten Tabelle ausgelesen wird und die Dichte pi des Abgases aus Temperatur und Druck des Abgases berechnet wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur (TAbgas) des Abgases am Eingang des Abgasrückführventils (22), die Temperatur (TLuft) der Verbrennungsluft vor der Mischstelle und die Temperatur (Tmix) der Mischluft aus Abgas und Verbrennungsluft nach der Mischstelle gemessen und daraus eine Abgasrate (ARR) als
Verhältnis des Abgasmassenstroms ( rhAbgas ) zur Summe aus Abgasmassenstrom ( rhAbgas ) und
Verbrennungsluftmassenstrom ( rhLuft ) berechnet wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Berechnung der Abgasrückführrate ARR gemäß
» j-j j-j c p, mix T mix - c p, Luft T Luft
ArvK —
Cp,Abgas ' -*" Abgas Cp, Luft ' * Luft durchgeführt wird, wobei die spezifische Wärmekapazität cP;Luft der Verbrennungsluft anhand der gemessenen Temperatur TLuft der Verbrennungsluft und die spezifische Wärmekapazität cp,Abgas des Abgases anhand der gemessenen Temperatur TAbgas des Abgases und der Luftzahl λ jeweils einer Tabelle entnommen werden und die spezifische Wärmekapazität cP;mix der Luft/Abgas-Mischung iterativ aus der cP;Luft und der mit der Abgasrückführrate ARR gewichteten cP;Abgas bestimmt wird.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Verbrennungsluftmassenstrom rhLuft gemessen und mit diesem aus der Abgasrückführrate
ARR der Abgasmassenstrom rhAbgas gemäß
ARR m% " mLuft ' 1 - ARR bestimmt wird.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die
Messung der Temperatur (Tmix) an der Mischstelle hinter einem vom Mischgas durchströmten Turbulenzgenerator (26) vorgenommen wird.
9. Verfahren nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Mischung von Verbrennungsluft und Abgas adiabatisch vorgenommen und die Temperaturmessstellen räumlich dicht beieinander angeordnet werden.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der Verbrennungsluftmassenstrom ( rhLuft ) mittels eines Luftmassenmessers (25) gemessen wird.
PCT/EP2008/051310 2007-03-05 2008-02-04 Verfahren zur bestimmung einer abgasrückführmasse WO2008107247A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007010501.2 2007-03-05
DE102007010501A DE102007010501A1 (de) 2007-03-05 2007-03-05 Verfahren zur Bestimmung einer Abgasrückführmasse

Publications (1)

Publication Number Publication Date
WO2008107247A1 true WO2008107247A1 (de) 2008-09-12

Family

ID=39332438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/051310 WO2008107247A1 (de) 2007-03-05 2008-02-04 Verfahren zur bestimmung einer abgasrückführmasse

Country Status (2)

Country Link
DE (1) DE102007010501A1 (de)
WO (1) WO2008107247A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121852A1 (de) * 2009-04-24 2010-10-28 Pierburg Gmbh Abgasrückführsystem für einen verbrennungsmotor
US9109522B2 (en) 2011-10-12 2015-08-18 IFP Energies Nouvelles Method of controlling an EGR valve integrated in an EGR circuit of a combustion engine
US20160076467A1 (en) * 2014-09-12 2016-03-17 Man Truck & Bus Ag Combustion Engine, In Particular Gas Engine, For a Vehicle, In Particular For a Commercial Vehicle
US9528455B2 (en) 2012-05-10 2016-12-27 Isuzu Motors Limited Internal combustion engine and control method therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2426340A1 (de) * 2010-09-01 2012-03-07 International Engine Intellectual Property Verfahren und Vorrichtung zum Schutz vor Verrussung eines Abgasrückführungsventils
FR2965016B1 (fr) * 2010-09-22 2012-08-31 Valeo Sys Controle Moteur Sas Procede de determination du debit d'air entrant dans le collecteur d'admission d'un moteur a combustion interne, et dispositif associe.
US8731803B2 (en) * 2011-07-20 2014-05-20 GM Global Technology Operations LLC System and method to estimate intake charge temperature for internal combustion engines
FR3040479B1 (fr) * 2015-08-27 2019-03-22 Valeo Systemes De Controle Moteur Echangeur de chaleur
DE102017209277A1 (de) * 2017-06-01 2018-12-06 Robert Bosch Gmbh Verfahren zum Ermitteln eines Gasanteils in einem Brennraum einer Brennkraft-maschine
WO2019214821A1 (en) * 2018-05-09 2019-11-14 Toyota Motor Europe An egr flow determination method, an egr rate error determination method, a control method for an internal combustion engine, and an internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3220832A1 (de) * 1982-06-03 1983-12-08 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur bestimmung der abgasrueckfuehrrate (arf-r) bei brennkraftmaschinen
WO2001075287A1 (en) * 2000-03-31 2001-10-11 Detroit Diesel Corporation System and method for measuring recirculated exhaust gas flow in a compression-ignition engine
EP1288469A2 (de) * 2001-09-04 2003-03-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Abgasrückführungssteuergerät und Abgasrückführungssteuerungsverfahren
WO2004055343A1 (en) * 2002-12-17 2004-07-01 Toyota Jidosha Kabushiki Kaisha Apparatus for calculating amount of recirculated exhaust gas for internal combustion engine
FR2901312A1 (fr) * 2006-05-17 2007-11-23 Renault Sas Procede pour estimer le taux d'egr dans un moteur a combustion interne et moteur equipe pour mettre en oeuvre ce procede

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3220832A1 (de) * 1982-06-03 1983-12-08 Robert Bosch Gmbh, 7000 Stuttgart Verfahren und vorrichtung zur bestimmung der abgasrueckfuehrrate (arf-r) bei brennkraftmaschinen
WO2001075287A1 (en) * 2000-03-31 2001-10-11 Detroit Diesel Corporation System and method for measuring recirculated exhaust gas flow in a compression-ignition engine
EP1288469A2 (de) * 2001-09-04 2003-03-05 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Abgasrückführungssteuergerät und Abgasrückführungssteuerungsverfahren
WO2004055343A1 (en) * 2002-12-17 2004-07-01 Toyota Jidosha Kabushiki Kaisha Apparatus for calculating amount of recirculated exhaust gas for internal combustion engine
FR2901312A1 (fr) * 2006-05-17 2007-11-23 Renault Sas Procede pour estimer le taux d'egr dans un moteur a combustion interne et moteur equipe pour mettre en oeuvre ce procede

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121852A1 (de) * 2009-04-24 2010-10-28 Pierburg Gmbh Abgasrückführsystem für einen verbrennungsmotor
US9109522B2 (en) 2011-10-12 2015-08-18 IFP Energies Nouvelles Method of controlling an EGR valve integrated in an EGR circuit of a combustion engine
US9528455B2 (en) 2012-05-10 2016-12-27 Isuzu Motors Limited Internal combustion engine and control method therefor
US20160076467A1 (en) * 2014-09-12 2016-03-17 Man Truck & Bus Ag Combustion Engine, In Particular Gas Engine, For a Vehicle, In Particular For a Commercial Vehicle
US10436130B2 (en) * 2014-09-12 2019-10-08 Man Truck & Bus Ag Combustion engine, in particular gas engine, for a vehicle, in particular for a commercial vehicle

Also Published As

Publication number Publication date
DE102007010501A1 (de) 2008-09-11

Similar Documents

Publication Publication Date Title
WO2008107247A1 (de) Verfahren zur bestimmung einer abgasrückführmasse
EP0896139B1 (de) Verfahren zum Betrieb einer Brennkraftmaschine
EP2092185B1 (de) Brennkraftmaschine mit abgasrückführung
DE112008000132T5 (de) Sekundärluftsystem für ein Entlüftungssystem eines Verbrennungsmotors
DE102011052225A1 (de) Turboladerschutzverfahren eines Motors mit Niederdruck-Abgasrückführung
EP0412076A1 (de) Brennkraftmaschine mit Abgasturbolader
DE102006060313A1 (de) Verfahren zum Betrieb einer Brennkraftmaschine
DE3529280C1 (de) Vorrichtung zur Erhoehung der Drehzahl eines Abgasturboladers an einer Brennkraftmaschine
DE102010037650B4 (de) O2-Regelungssystem für einen Verbrennungsmotor und Verfahren zur Regelung der O2-Konzentration
DE112009000075T5 (de) Lufteinlasssystem mit Rückführkreis
DE102005052496A1 (de) Brennkraftmaschine mit einem Abgasturbolader
DE102011002438A1 (de) Bestimmung der Beladung eines Partikelfilters
DE102016119371A1 (de) Verbrennungsmotorsystem zum Auslassen von Kondenswasser und Verfahren des Verwendens des Verbrennungsmotorsystems
DE102008033350A1 (de) Differentialdruck(Delta-P)-AGR-Anlage für starke Strömung mit Vorkehrung sowohl für Strömungssteuerung als auch OBD-Überwachung
DE102004044893A1 (de) Abgasrückführeinrichtung und Verfahren zum Betrieb einer Abgasrückführeinrichtung
DE102017104469A1 (de) Verfahren zum Ermitteln des Beladungszustands eines Partikelfilters und Verbrennungsmotor
DE102006058748A1 (de) Abgasrückführvorrichtung für Brennkraftmaschinen
DE102009036060A1 (de) Verfahren zur Ermittlung einer NOx-Rohemission eines Kraftfahrzeugverbrennungsmotors
DE102016117807A1 (de) Aufladungssteuerverfahren eines Verbrennungsmotors zur Zylinderdeaktivierung
DE102012219811A1 (de) Verfahren und Vorrichtung zum Vermindern der Kondensatbildung vor dem Kompressor eines turbogeladenen Kraftfahrzeug-Verbrennungsmotors
EP2112356B1 (de) Verfahren zum betreiben einer Brennkraftmaschine
DE10111775A1 (de) Verfahren und Vorrichtung zur Bestimmung der Gasaustrittstemperatur der Turbine eines Abgasturboladers eines Kraftfahrzeugs
EP1614881B1 (de) Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine mit einem Abgasturbolader
DE112019004483T5 (de) Verfahren zur Betriebssteuerung einer Abgasrückführvorrichtung und Abgasrückführvorrichtung
DE102009028617A1 (de) Funktion zur Berechnung des bankspezifischen Abgasmassenstroms bei mehrflutig ausgeführten Abgasanlagen aufgeladener Brennkraftmaschinen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08708614

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08708614

Country of ref document: EP

Kind code of ref document: A1