WO2008101844A1 - Procede de commande d'un composant optique ou electro-optique et composant obtenu selon ce procede - Google Patents

Procede de commande d'un composant optique ou electro-optique et composant obtenu selon ce procede Download PDF

Info

Publication number
WO2008101844A1
WO2008101844A1 PCT/EP2008/051711 EP2008051711W WO2008101844A1 WO 2008101844 A1 WO2008101844 A1 WO 2008101844A1 EP 2008051711 W EP2008051711 W EP 2008051711W WO 2008101844 A1 WO2008101844 A1 WO 2008101844A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
component
electro
infrared
radiation source
Prior art date
Application number
PCT/EP2008/051711
Other languages
English (en)
Other versions
WO2008101844A9 (fr
Inventor
Jean-Pierre Huignard
Jean-Paul Pocholle
Eric Lallier
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2008101844A1 publication Critical patent/WO2008101844A1/fr
Publication of WO2008101844A9 publication Critical patent/WO2008101844A9/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3525Optical damage
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/293Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by another light beam, i.e. opto-optical deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3515All-optical modulation, gating, switching, e.g. control of a light beam by another light beam
    • G02F1/3521All-optical modulation, gating, switching, e.g. control of a light beam by another light beam using a directional coupler

Definitions

  • the present invention relates to a method for generating in a non-centro-symmetrical type of material an optical or electro-optical component, and in particular an optical or electro-optical component that is transparent at visible wavelengths. , the near infrared or the infrared, as well as to a component obtained according to this method.
  • Lithium niobate (LiNbO 3 ) electro-optical components are widely used for applications in laser beam modulation or conversion.
  • the lithium niobate-based components achieve a modulation rate of 40 Gbits / s at a wavelength of 1.5 ⁇ m and they allow, in opto-frequencies, to modulate the optical carrier at frequencies of several tens of GHz.
  • FIGS. 1 to 3 show examples of electro-optical components of the type to which the present invention relates.
  • the following components are respectively represented in these figures: in FIG. 1, an electrooptic modulator (1), in FIG. 2 a crystal (2) which is the seat of interactions in volume waves, and which becomes a laser cavity if depositing on its input and output faces a reflective and transmissive coating (3, 4) respectively, and in FIG. 3 an optical waveguide (5).
  • a known limitation of these devices is the photoinduced index change effect of the illumination beam which degrades their performance, especially if they are used in the visible or the near infrared.
  • the illumination beam generates a space charge field that modulates the refractive index of the crystal, which greatly disrupts beam propagation and reduces modulation or conversion efficiency.
  • FIG. 1 shows examples of electro-optical components of the type to which the present invention relates.
  • the following components are respectively represented in these figures: in FIG. 1, an electrooptic modulator (1), in FIG. 2 a crystal (2) which is the seat of
  • the subject of the present invention is a method of generating, in an electro-optical type material, an optical or electro-optical component, and in particular an optical or electro-optical component that is transparent to wavelengths in the visible range, the near infrared or the infrared, a process which allows, in addition to the elimination or at least the significant attenuation of the effects due to parasitic space charges in this material, to generate such an optical or electro-optical component, advantageously reconfigurable in real time.
  • the present invention also relates to an optical or electro-optical component transparent to wavelengths in the visible, the near infrared or the infrared component that is easily and quickly reconfigurable.
  • the method according to the invention is characterized in that it consists in illuminating locally (and not entirely) an electro-optical type material using a radiation source emitting in the spectral range blue or ultraviolet .
  • said radiation source is an incoherent, coherent or incoherent, unitary or multi-element source.
  • FIGS. 1 to 3 are simplified diagrams of examples of optical or electro-optical components which may be the seats of the space charge phenomena mentioned above and to which the device of the invention may be applied;
  • FIG. 4 is a simplified diagram of a an electro-optical component for which the effects of said space charge phenomena have been represented in a simplified manner,
  • FIGS. 5 to 7 are simplified side views of electro-optical components that can be generated with the process according to the invention, and
  • FIG. 8 is a simplified perspective view of an optical coupler that can be generated by optical control with the method according to the invention.
  • the present invention is described below with reference to its implementation for some types of optical and electro-optical components, but it is well understood that it is not limited to these only examples, and that it can be used to generate all kinds of optical components or complex circuits, ensuring at least one electro-optical function or a nonlinear optical function, which are transparent in the wavelengths of the visible, the near infrared, or the infrared, used at these wavelengths and may be the seat of troublesome photorefractive phenomena creating space charges.
  • the materials constituting these components are, in particular, but not exclusively, of the family LiNbO 3 , LiTaO 3 , KNbO 3 , SBN, KTP, and are often ferroelectric materials.
  • FIG. 5 shows a bar of electro-optical material (10) of the type to which the method of the invention applies, with a view to generating an optical waveguide.
  • This bar 10 receives a continuous or pulsed incident light flux (HA) having a wavelength in the visible or the near infrared or the infrared, and at its output a luminous flux (HB) is collected.
  • HA incident light flux
  • HB luminous flux
  • Two devices (12A) and (12B) incoherently illuminated sources illuminate the component (10) on each of the side faces of the bar 10, over its entire length, uniformly and over the entire width of these side faces.
  • the sources of the devices (12A) and (12B) are electroluminescent diodes (LEDs) emitting in the near blue or ultraviolet (wavelength greater than about 350 nm).
  • the optical power delivered by these diodes is preferably greater than 10 mW / cm 2 at the illuminated surface of the component.
  • This power is advantageously of the order of 10 to 100 mW / cm in order to have a depth of penetration into the component of at least 100 ⁇ m (in the case of a conventional component with a thickness of a few mm).
  • This lighting makes it possible, on the one hand, to quickly eliminate any optical damage effect created by the beam utilization wavelength (1 1).
  • the parasitic photoinduced field is at all times relaxed by that due to the incoherent illumination of the LEDs (or LEDs).
  • this illumination makes it possible to reduce the refractive index along two bars 10A, 1OB formed inside the bar 10, parallel to its lateral faces illuminated by the devices 12A and 12B, to form a kind of tunnel therein. serving as a waveguide for the beam 1 IA.
  • the principle of suppression of the parasitic induced photo field can be described as follows.
  • is the photovoltaic constant of the crystal
  • the photoconductivity of the material under illumination I expressed in W / cm
  • ⁇ o is the value of this photoconductivity in the dark.
  • the value of the photoinduced field E depends on the materials used, the wavelength of the laser beam (1 1) and the residual density of traps responsible for the photorefractive effect. It can reach saturation values as high as 5 to 10 kVci ⁇ f 1 . This value can lead, according to the amplitude of the electro-optical coefficient, to index variations of the order of I CT 4 to 10 ⁇ 3 typically.
  • the settling times are of the order of several tens of seconds, or even a few hours following the residual absorption and the level of illumination I.
  • FIGS. 6 and 7 give different optical configurations formed according to the method of the invention and incorporating a modulation or frequency conversion device (typically lithium niobate or tantalate, KTP, potassium niobate). ...) and the lighting device from the LED (or LED) emitting in blue or near UV spectral range where the crystal has a maximum of photoconductivity.
  • the lighting system can implement conventional optical elements such as diffusers, micro-optical networks to ensure both the collection of light from each LED and the uniformity of the lighting of the volume concerned around the beam propagation zone which is at the origin of the optical damage effect.
  • the assembly can be made in a compact and robust form operating at ambient temperature.
  • FIG. 6 shows an optical component (13) illuminated both transversely along its entire length by an assembly (14) of LEDs and longitudinally by two LEDs (15, 16) respectively associated with two semi-transparent mirrors (17, 18) arranged at 45 ° on the optical axis of the component (13) at its entry and exit.
  • the component (13) receives charge relaxation illumination in its core and in its peripheral portion.
  • the waveguide (19) shown in FIG. 7 is illuminated transversely by a diffuser array (20) which is arranged parallel to the optical axis of the guide (19) and whose length is substantially the same as that of the guide (19). ).
  • the network (19) is illuminated at the end by an LED 21.
  • the device of the invention can be implemented in many applications. Some of them are described below.
  • the device of the invention is well suited to applications that implement wavelengths of the visible or near-infrared range whose average power level is such that it generates optical damage effects.
  • electro-optical modulators frequency converters in guided wave or in volume.
  • the method of the invention will be applied opto-microwave (domain related to optical devices associated with microwave circuits), and optronics in general: generation of new frequencies for a LIDAR, sources of countermeasures, tunable sources of the parametric oscillator type, operating components the periodic reversal of domains in ferroelectric crystals
  • the principle applies to continuous or pulsed sources as long as the damage effect is cumulative before reaching its saturation value.
  • the present invention applies to all nonlinear optical materials: ferroelectric, semiconductors, organic .... to the extent that we adapt the wavelength of the incoherent (or possibly coherent) source in the vicinity of the maximum of photoconductivity of the material concerned.
  • the device of the invention also finds applications in any other electro-optical device that requires adjusting its operating point by optical control inducing a very localized index variation.
  • a first application is a Fabry-Perot interferometer made of a ferroelectric material.
  • the internal electric field can be large and consequently, in the presence of a photorefractive effect, a temporal modification of the spectral properties is observed (filtering, tunability, or even memory effect). -stability) ). Thanks to an incoherent UV radiation according to the invention, the manifestation of this effect can be eliminated.
  • optical control we can also integrate the optical control to substitute an electric control.
  • An example is the linear coupler.
  • FIG. 8 shows an LED (22) illuminating an optical coupler (23).
  • This coupler essentially comprises two waveguides (24, 25) formed in the same manner as the waveguide of FIG. 5. These waveguides each comprise an input arm (26, 27, respectively) and an output arm (28, 29, respectively) and approach each other in the central region (30) of the coupler parallel to each other, explained below with reference to FIG.
  • the coupler in the absence of UV radiation, can be mismatched, that is to say that one of the two guides constituting it has opto-geometric parameters (optical and geometrical) different from those of the other in the presence of UV radiation, the refractive index is locally modified, which results in a variation of the transfer and therefore that of the optical powers resulting from each of the guides It is thus possible either to equalize the power levels or, on the contrary, to perform an optical control function resulting in the realization of a temporal coding related to the modulation of the illumination diode (22).
  • represents the phase mismatch between the two structures constituting the coupler
  • K represents the coupling coefficient between the guides. (coefficient which is a function of the spacing of the guides, the distribution of the fields associated with the two basic modes associated with each guide). UV illuminating only one of the two guides (or inhomogeneously the two guides) will lead to modify the ⁇ as well as K, which makes it possible to modify the behavior of the coupler
  • the components generated by the method of the invention can be dynamically reconfigured, in real time, for example if a coupler is generated, the appropriate localized control of the ultraviolet illumination makes it possible to alternately couple an input to one or the other of the outputs of this coupler, and this, with a very high switching speed (compared to an electrical control which is dependent on the capacitive, inductive and resistive properties of the addressing circuit), because it acts as optical controls.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

La présente invention a pour objet un procédé de commande d'un composant optique ou électro-optique, et en particulier d'un composant optique ou électro-optique transparent aux longueurs d'onde dans le visible, le proche infrarouge ou l'infrarouge, et ce procédé est caractérisé en ce qu'il consiste à éclairer localement un matériau de type électro-optique à l'aide d'une source de rayonnement émettant le domaine spectral bleu ou ultraviolet.

Description

PROCEDE DE COMMANDE D'UN COMPOSANT OPTIQUE OU ELECTRO-OPTIQUE ET COMPOSANT OBTENU SELON CE PROCEDE
La présente invention se rapporte à un procédé de génération dans un matériau de type non centro-symétrique d'un composant optique ou électro-optique, et en particulier d'un composant optique ou électro-optique transparent aux longueurs d'onde dans le visible, le proche infrarouge ou l'infrarouge, ainsi qu'à un composant obtenu selon ce procédé. Les composants électro-optiques à base de niobate de lithium (LiNbO3) sont très largement utilisés pour les applications à la modulation ou à la conversion de fréquence de faisceau laser. A titre d'exemple, dans une configuration optique guidée, les composants à base de niobate de lithium atteignent permettent des cadences de modulation de 40 Gbits/s à la longueur d'onde de 1.5μm et ils permettent en opto- hyperfréquences de moduler la porteuse optique à des fréquences de plusieurs dizaines de GHz.
Ces matériaux sont également importants pour assurer la conversion efficace de la fréquence émise par une source laser en exploitant les coefficients non linéaires du cristal pour des applications telles que le doublage de fréquence, la conversion paramétrique, les interactions en onde de volume, guidée ou par renversement périodique des domaines ferroélectriques (Quasi Accord de Phase (QAP), ou Quasi Phase Matching (QPM) en anglais).
On a représenté en figures 1 à 3 des exemples de composants électro-optiques du type de ceux auxquels se rapporte la présente invention. On a respectivement représenté sur ces figures les composants suivants : en figure 1 , un modulateur électrooptique (1), en figure 2 un cristal (2) qui est le siège d'interactions en ondes de volume, et qui devient une cavité laser si on dépose sur ses faces d'entrée et de sortie un revêtement réfléchissant et transmissif (3, 4) respectivement, et en figure 3 un guide d'ondes optique (5). Une limitation connue de ces dispositifs est l'effet de changement d'indice photoinduit par le faisceau d'illumination qui dégrade leurs performances, en particulier s'ils sont utilisés dans le visible ou le proche infrarouge. Le faisceau d'illumination génère un champ de charges d'espace qui module l'indice de réfraction du cristal, ce qui perturbe fortement la propagation du faisceau et réduit l'efficacité de modulation ou de conversion. On a schématisé en figure 4 cet effet sur un cristal électro-optique (6) pouvant être utilisé en guide d'ondes, modulateur ou dispositif de conversion de longueur d'onde. Le faisceau optique d'entrée (7), collimaté à l'entrée du cristal (6), et qui devrait normalement se propager de façon sensiblement rectiligne dans ce cristal, en donnant un faisceau de sortie (8) rectiligne ou légèrement divergent, devient un faisceau de sortie (9) fortement divergent à cause de cet effet de changement d'indice. Sous le schéma du cristal 6, on a représenté en correspondance le diagramme d'évolution de l'indice de réfraction de ce cristal dans son sens transversal . Cet indice, qui a normalement une valeur no tout le long du cristal, subit une variation locale Δn, sensiblement au milieu de la longueur L du cristal 6, là où le champ de charges d'espace est le plus concentré.
Par traitement du matériau, en particulier par dopage Mg et utilisation de substrats stœchiométriques, les seuils de dommages sont plus élevés. Néanmoins, ils restent une limitation en régime impulsionnel et dans le visible pour le domaine spectral bleu - vert. Une solution alternative également utilisée consiste à chauffer le cristal et à maintenir sa température constante pour réduire l'effet de charges d'espace. D'autre part, on connait, par exemple d'après le document US 2004/173138 Al un procédé permettant de réduire ces effets de charges d'espace dans un matériau électro-optique en l'illuminant à l'aide d'un faisceau ultraviolet.
Par contre, on ne connait aucun procédé permettant de réaliser avec de tels matériaux de type électro-optique des composants, circuits ou fonctions optiques ou électro-optiques très variés. Dans la suite du texte, dans un but de simplification de la description, on désignera ces composants, circuits ou fonctions par le vocable unique de composants.
La présente invention a pour objet un procédé de génération dans un matériau de type électro-optique d'un composant optique ou électro-optique, et en particulier d'un composant optique ou électro-optique transparent aux longueurs d'onde dans le visible, le proche infrarouge ou l'infrarouge, procédé qui permette, outre l'élimination ou tout au moins l'atténuation importante des effets dus aux charges d'espace parasites dans ce matériau, de générer un tel composant optique ou électro-optique, avantageusement reconfigurable en temps réel. La présente invention a également pour objet un composant optique ou électro-optique transparent aux longueurs d'onde dans le visible, le proche infrarouge ou l'infrarouge, composant qui soit facilement et rapidement reconfigurable.
Le procédé conforme à l'invention est caractérisé en ce qu'il consiste à éclairer localement (et non plus en totalité) un matériau de type électro-optique à l'aide d'une source de rayonnement émettant dans le domaine spectral bleu ou ultraviolet.
De façon avantageuse, ladite source de rayonnement est une source incohérente, cohérente ou incohérente, unitaire ou multi-éléments.
La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par les dessins annexés, sur lesquels : les figures 1 à 3, déjà décrites ci-dessus, sont des schémas simplifiés d'exemples de composants optiques ou électro-optiques qui peuvent être les sièges des phénomènes de charges d'espace précités et auxquels peut être appliqué le dispositif de l'invention, - la figure 4 est un schéma simplifié d'un composant électro-optique pour lequel on a représenté de façon simplifiée les effets desdits phénomènes de charges d'espace, les figures 5 à 7 sont des vues simplifiées de côté de composants électro-optiques pouvant être générés avec le procédé conforme à l'invention, et la figure 8 est une vue simplifiée en perspective d'un coupleur optique pouvant être généré par commande optique avec le procédé conforme à l'invention.
La présente invention est décrite ci-dessous en référence à sa mise en œuvre pour quelques types de composants optiques et électro-optiques, mais il est bien entendu qu'elle n'est pas limitée à ces seuls exemples, et qu'elle peut être utilisée pour générer toutes sortes de composants optiques ou de circuits complexes, assurant au moins une fonction électro-optique ou une fonction optique non linéaire, qui sont transparents dans les longueurs d'onde du visible, du proche infrarouge, ou de l'infrarouge, utilisés à ces longueurs d'onde et pouvant être le siège des phénomènes photoréfractifs gênants de création de charges d'espace. Les matériaux constituant ces composants sont, en particulier, mais non exclusivement, de la famille des LiNbO3, LiTaO3, KNbO3, SBN, KTP .... et sont souvent des matériaux ferro- électriques. On a représenté en figure 5 un barreau de matériau électro-optique (10) du type auquel s'applique le procédé de l'invention, en vue d'y générer un guide d'ondes optique. Ce barreau 10 reçoit un flux lumineux incident (HA) continu ou impulsionnel ayant une longueur d'onde dans le visible ou le proche infrarouge ou l'infrarouge, et on recueille à sa sortie un flux lumineux (HB). Deux dispositifs (12A) et (12B) à sources d'έclairement incohérent illuminent le composant (10) sur chacune des faces latérales du barreau 10, sur toute sa longueur, de façon uniforme et sur toute la largeur de ces faces latérales. Dans le cas représenté sur la figure, les sources des dispositifs (12A) et (12B) sont des diodes électroluminescentes (LED) émettant dans le bleu ou l'ultraviolet proche (longueur d'onde supérieure à environ 350 nm). La puissance optique délivrée par ces diodes est, de préférence, supérieure à 10 mW/cm2 au niveau de la surface éclairée du composant. Cette puissance est avantageusement de l'ordre de 10 à 100 mW/cm afin d'avoir une profondeur de pénétration dans le composant d'au moins 100 μm (dans Ic cas d'un composant classique d'une épaisseur de quelques mm). Cet éclairage permet, d'une part, de supprimer rapidement tout effet de dommage optique crée par la longueur d'onde d'utilisation du faisceau (1 1). En d'autres termes, le champ photoinduit parasite est à chaque instant relaxé par celui dû à Féclairement incohérent des LED (ou DEL). D'autre part, cet éclairage permet de diminuer l'indice de réfraction selon deux barres 10A, 1OB formées à l'intérieur du barreau 10, parallèlement à ses faces latérales éclairées par les dispositifs 12A et 12B, pour y former une espèce de tunnel servant de guide d'ondes pour le faisceau 1 IA. Le principe de suppression du champ photo induit parasite peut être décrit comme suit.
Sous l'action de l'éclairement dû au faisceau laser (11), il se crée un champ de charges d'espace E dans le volume, ou en surface, dont la valeur à saturation est donnée par la relation :
E = β I /σ avec σ = σo + ai
Dans cette expression, β est la constante photovoltaïque du cristal, σ la photoconductivité du matériau sous illumination I exprimée en W/cm , σo est la valeur de cette photoconductivité dans l'obscurité. Dans ces conditions, il est connu que la constante de temps d'établissement du champ E dans un cristal tel que le niobate de lithium (ou autre matériau équivalent) est de l'ordre de grandeur de T, T étant la constante de temps de relaxation diélectrique du matériau :
T = ε / σ
La valeur du champ photoinduit E dépend des matériaux utilisés, de la longueur d'onde du faisceau laser (1 1) et de la densité résiduelle de pièges responsables de l'effet photoréfractif. Elle peut atteindre à saturation des valeurs aussi élevées que 5 à 10 kVciτf1. Cette valeur peut conduire, suivant l'amplitude du coefficient électro-optique, à des variations d'indice de l'ordre de I CT4 à 10~3 typiquement. Les temps d'établissement sont de l'ordre de plusieurs dizaines de secondes, voire de quelques heures suivant l'absorption résiduelle et le niveau d'éclairement I.
Dans le cas d'un éclairement incohérent bleu /UV (UV pour : UltraViolet) superposé à la région active du dispositif, il est connu que cette longueur d'onde induit dans le niobate, au voisinage de sa bande d'absorption, un effet de photoconduction important. En d'autres ternies, sous éclairement homogène bleu/UV, le terme de photoconduction α Ib (photoconduction pour le bleu ou l'ultraviolet) devient prépondérant et grand devant le terme α I (photoconduction pour le visible ou le proche infrarouge). Le temps de réponse de l'effet associé à la relaxation de la charge d'espace par faisceau bleu / UV est typiquement de l'ordre d'une fraction de seconde. Dans ces conditions, on va relaxer rapidement le champ de charge d'espace parasite photoinduit par l'illumination 1 visible ou I infrarouge. L'éclairement incohérent s'oppose ainsi à la création de toute variation d'indice susceptible de perturber la propagation du champ optique en régime focalisé ou guidé, et de ce fait maintient le fonctionnement du dispositif.
A titre d'exemple, on donne sur les figures 6 et 7 différentes configurations optiques formées selon le procédé de l'invention et intégrant un dispositif de modulation ou de conversion de fréquence (typiquement en niobate ou tantalate de lithium, KTP, niobate de potassium...) et le dispositif d'éclairage issu de la LED (ou DEL) émettant dans le bleu ou proche UV, domaine spectral où le cristal présente un maximum de photoconductivité. Le système d'éclairage peut mettre en œuvre des éléments optiques classiques tels que diffuseurs, réseaux de micro-optiques pour assurer à la fois la collection de lumière issue de chaque LED ainsi que l'uniformité de l'éclairage du volume concerné autour de la zone de propagation du faisceau qui est à l' origine de l'effet de dommage optique. L'ensemble peut être réalisé sous une forme compacte et robuste fonctionnant à température ambiante. On a représenté en figure 6 un composant optique (13) éclairé à la fois transversalement sur toute sa longueur par un ensemble (14) de LED et longitudinalement par deux LED (15, 16) associées respectivement à deux miroirs semi-transparents (17, 18) disposés à 45° sur l'axe optique du composant (13), à son entrée et à sa sortie. De cette façon, le composant (13) reçoit une illumination de relaxation de charges dans son cœur et dans sa partie périphérique.
Le guide d'ondes (19) représenté en figure 7 est éclairé transversalement par un réseau diffuseur (20) qui est disposé parallèlement à l'axe optique du guide (19) et dont la longueur est sensiblement la même que celle du guide (19). Le réseau (19) est éclairé en bout par une LED 21. Le dispositif de l'invention peut être mis en œuvre dans de nombreuses applications. On en décrit ci-dessous quelques-unes.
Le dispositif de l'invention est bien adapté aux applications qui mettent en œuvre des longueurs d'ondes du domaine visible ou proche infrarouge dont le niveau de puissance moyenne est tel qu'il génère des effets de dommage optique. On citera en particulier : les modulateurs électro-optiques, les convertisseurs de fréquence en onde guidée ou en volume. Plus précisément, on appliquera le procédé de l'invention à l'opto-hyperfréquence (domaine relatif aux dispositifs optiques associés à des circuits hyperfréquences), et à l'optronique en général : génération de nouvelles fréquences pour un LIDAR, sources de contre-mesures, sources accordables du type oscillateurs paramétriques, composants exploitant le renversement périodique des domaines dans les cristaux ferroélectiques Le principe s'applique aux sources continues ou impulsionnelles dans la mesure où l'effet de dommage est cumulatif avant d'atteindre sa valeur à saturation.
La présente invention s'applique à tous les matériaux optiques non linéaires : ferroélectriques, semiconducteurs, organiques.... dans la mesure où l'on adaptera la longueur d'onde de la source incohérente (ou éventuellement cohérente) au voisinage du maximum de photoconductivité du matériau concerné.
Selon une autre caractéristique du dispositif de l'invention, celui-ci trouve aussi des applications dans tout autre dispositif électro-optique qui demande d'ajuster son point de fonctionnement par une commande optique induisant une variation d'indice très localisée. On décrit brièvement ci-dessous quelques exemples de tels dispositifs :
- Une première application est un interféromètre Fabry-Pérot constitué d'un matériau ferroélectrique. Pour un coefficient de surtension élevé de cavité, le champ électrique interne peut être important et par voie de conséquence, en présence d'un effet photoréfractif, on observe une modification dans le temps des propriétés spectrales (filtrage, accordabilité, voire effet mémoire (bi-stabilité) ...). Grâce à un rayonnement UV incohérent conforme à l'invention, on peut éliminer la manifestation de cet effet.
- Inversement, en présence d'une source cohérente UV/bleu, on peut modifier l'indice de réfraction effectif et commander l'état de l' interféromètre opérant dans un autre domaine spectral (par exemple dans le domaine de longueurs d'onde compris entre 800 et 1500 nm, afin d'optimiser les propriétés d'un coupleur ou d'un interféromètre.
- En commande optique, on peut également intégrer le contrôle optique pour le substituer à une commande électrique. Un exemple en est le coupleur linéaire.
Dans ce cas, il suffit d'agir par exemple sur un de ses bras ou en périphérie pour modifier l'indice de réfraction d'un des guides le constituant ou pour modifier le coefficient de couplage entre les dits guides. Ceci se traduit par un basculement de l'état de sortie du coupleur.
On a représenté en figure 8 une LED (22) éclairant un coupleur optique (23). Ce coupleur comporte essentiellement deux guides d'ondes (24, 25) formés de la même manière que le guide d'ondes de la figure 5. Ces guides d'ondes comportent chacun un bras d'entrée (26, 27, respectivement) et un bras de sortie ((28, 29, respectivement) et se rapprochent l'un de l'autre dans la zone centrale (30) du coupleur en y étant parallèles entre eux. On explique ci-dessous en référence à la figure 8 l'effet d'une commande optique par la diode UV (22) éclairant, dans la zone centrale (30), l'un des guides, en l'occurrence le guide (24), de la façon suivante : en l'absence de rayonnement UV, le coupleur peut être désadapté, c'est-à-dire que l'un des deux guides le constituant présente des paramètres opto-géométriques (optiques et géométriques) différents de ceux de l'autre. en présence du rayonnement UV, on modifie localement l'indice de réfraction, ce qui entraîne une variation du transfert et donc celle des puissances optiques issues de chacun des guides. On peut ainsi soit égaliser les niveaux de puissance, soit au contraire réaliser une fonction de commande optique aboutissant à la réalisation d'un codage temporel lié à la modulation de la diode d'éclairement (22).
Dans la configuration représentée sur la figure 8 (injection sur un seul bras), l'évolution de la puissance de sortie optique a(z), évolution conditionnée par l'éclairement UV sur une distance de propagation z (dans la zone 30) varie selon la loi :
Figure imgf000010_0001
où a(0) est le champ incident et a(z) l'éclairement à la sortie du bras (28), Δβ représente le désaccord de phase entre les deux structures qui constituent le coupleur et K représente le coefficient de couplage entre les guides (coefficient qui est fonction de l'espacement des guides, de la répartition des champs associés aux deux modes fondamentaux associés à chaque guide). Le fait d'illuminer en UV un seul des deux guides (ou d'une manière inhomogène les deux guides) va conduire à modifier le Δβ ainsi que K , ce qui permet de modifier le comportement du coupleur
(c'est-à-dire la valeur du couplage entre ses deux bras).
On notera que les composant générés par le procédé de l'invention peuvent être reconfigurés dynamiquement, en temps réel, par exemple si on génère un coupleur, la commande localisée appropriée de l'έclairement en ultraviolet permet de coupler alternativement une entrée vers l'une ou l'autre des sorties de ce coupleur, et ce, avec une très grande vitesse de commutation (comparativement à une commande électrique qui est tributaire des propriétés capacitive, selfique et résistive du circuit d'adressage), du fait qu'il s'agit de commandes optiques.

Claims

REVENDICATIONS
1. Procédé de génération dans un matériau de type électro-optique d'un composant optique ou électro-optique transparent aux longueurs d'onde dans le visible et/ou l'infrarouge, caractérisé en ce qu'il consiste à éclairer localement un matériau de type électro-optique à l'aide d'une source de rayonnement émettant dans le domaine spectral bleu ou ultraviolet.
2. Procédé selon la revendication 1 , caractérisé en ce que ladite source de rayonnement est une source incohérente dont la longueur d'onde est adaptée au voisinage du maximum de photoconductivité du matériau du composant.
3. Procédé selon la revendication 1 , caractérisé en ce que ladite source de rayonnement est une source cohérente ou incohérente, unitaire ou multiéléments, dont la longueur d'onde est adaptée au voisinage du maximum de photoconductivité du matériau du composant.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le composant généré est un composant assurant une fonction électro- optique.
5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le composant généré est un composant assurant une fonction optique non linéaire.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le matériau constituant le composant est un matériau optique de la famille des LiNbO3, LiTaO3, KNbO3, SBN, KTP ou un matériau ferro- électrique, semiconducteur ou organique.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que la puissance optique délivrée par la source de rayonnement émettant dans le domaine spectral bleu ou ultraviolet est supérieure à 10 mW/cm2 au niveau de la surface éclairée du composant.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le composant est l'un au moins des composants suivants : un guide d'ondes, un coupleur électro-optique, un modulateur électro-optique, un cristal qui est la siège d'interactions en ondes de volume, une cavité laser, un dispositif de conversion de longueur d'onde optique, un Lidar, une source de contre-mesures, un oscillateur paramétrique, un composant exploitant le renversement périodique des domaines dans les cristaux ferroélectiques, un interféromètre Fabry-Pérot constitué d'un matériau ferroélectrique.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le composant généré est reconfiguré dynamiquement, en temps réel.
10. Composant optique ou électro-optique transparent aux longueurs d'onde dans le visible, le proche infrarouge ou l'infrarouge, caractérisé en ce qu'il est généré par le procédé selon l'une des revendications précédentes.
PCT/EP2008/051711 2007-02-13 2008-02-13 Procede de commande d'un composant optique ou electro-optique et composant obtenu selon ce procede WO2008101844A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0701028A FR2912517B1 (fr) 2007-02-13 2007-02-13 Dispositif de commande d'un composant optique ou electro-optique
FR07/01028 2007-02-13

Publications (2)

Publication Number Publication Date
WO2008101844A1 true WO2008101844A1 (fr) 2008-08-28
WO2008101844A9 WO2008101844A9 (fr) 2008-10-30

Family

ID=38441491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/051711 WO2008101844A1 (fr) 2007-02-13 2008-02-13 Procede de commande d'un composant optique ou electro-optique et composant obtenu selon ce procede

Country Status (2)

Country Link
FR (1) FR2912517B1 (fr)
WO (1) WO2008101844A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456764B2 (en) 2019-09-24 2022-09-27 Samsung Electronics Co., Ltd. Multi-function communication device with millimeter-wave range operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433901A2 (fr) * 1989-12-20 1991-06-26 Sumitomo Electric Industries, Ltd. Déflecteur optique pour usage avec des fibres optiques
EP0503808A1 (fr) * 1991-03-15 1992-09-16 Sperry Marine Inc. Elément pour traitement des signaux optiques avec coupleur à fibre optique avec taux de couplage variable
US6710366B1 (en) * 2001-08-02 2004-03-23 Ultradots, Inc. Nanocomposite materials with engineered properties
US20040173138A1 (en) * 2003-03-06 2004-09-09 National Institute For Materials Science Method for treating photorefractive effect of an optical device and photorefractive effect-suppressed optical frequency conversion device
US20050254746A1 (en) * 2004-05-14 2005-11-17 Sumitomo Electric Industries, Ltd. Optical device with lightwave circuit element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0433901A2 (fr) * 1989-12-20 1991-06-26 Sumitomo Electric Industries, Ltd. Déflecteur optique pour usage avec des fibres optiques
EP0503808A1 (fr) * 1991-03-15 1992-09-16 Sperry Marine Inc. Elément pour traitement des signaux optiques avec coupleur à fibre optique avec taux de couplage variable
US6710366B1 (en) * 2001-08-02 2004-03-23 Ultradots, Inc. Nanocomposite materials with engineered properties
US20040173138A1 (en) * 2003-03-06 2004-09-09 National Institute For Materials Science Method for treating photorefractive effect of an optical device and photorefractive effect-suppressed optical frequency conversion device
US20050254746A1 (en) * 2004-05-14 2005-11-17 Sumitomo Electric Industries, Ltd. Optical device with lightwave circuit element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DITTRICH P. ET AL.: "Dynamical light induced waveguides by interband photorefraction", ADV. IN PHOTOREFRACTIVE MATERIALS, OSA TOPICAL MEETING, 27 June 1999 (1999-06-27), pages 538 - 544, XP009098160 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11456764B2 (en) 2019-09-24 2022-09-27 Samsung Electronics Co., Ltd. Multi-function communication device with millimeter-wave range operation

Also Published As

Publication number Publication date
FR2912517B1 (fr) 2009-09-18
WO2008101844A9 (fr) 2008-10-30
FR2912517A1 (fr) 2008-08-15

Similar Documents

Publication Publication Date Title
EP0031263B1 (fr) Dispositif optique non-linéaire à guide d'onde composite et source de rayonnement utilisant un tel dispositif
EP0882251B1 (fr) Dispositif de controle d'impulsions lumineuses par un dispositif programmable acousto-optique
EP0603036B1 (fr) Dispositif de traitement optique de signaux électriques
EP0546891B1 (fr) Doubleur de fréquence comprenant un réseau d'indice optique commandable électriquement
FR2692374A1 (fr) Procédé et dispositif de modulation et d'amplification de faisceaux lumineux.
EP0187058B1 (fr) Source optique monomode et dispositif amplificateur optique accordable dans le proche infrarouge
FR2971594A1 (fr) Modulateur terahertz
FR2521737A1 (fr) Dispositif optique bistable
FR2749945A1 (fr) Composant electrooptique
WO2008101844A1 (fr) Procede de commande d'un composant optique ou electro-optique et composant obtenu selon ce procede
EP1011011A1 (fr) Modulateur de type Mach-Zehnder présentant un taux d'extinction très élevé
EP1253462B1 (fr) Emetteur optique comprenant un modulateur compose d'une pluralite d'éléments de modulation
FR2831005A1 (fr) Generateur de breves impulsions optiques
EP2846424B1 (fr) Dispositif optoélectronique intégré comprenant une section d'émission laser et une section de traitement du signal optique émis.
EP3698466B1 (fr) Oscillateur radiofrequence ameliore
FR2706090A1 (fr) Dispositif résonateur pour obtenir de la lumière cohérente avec une largeur de bande de fréquence réduite.
EP0745232B1 (fr) Modulateur electro-optique
WO2011148080A1 (fr) Dispositif et procédé d'obtention d'une lumière polychromatique stabilisée sur une plage de longueurs d'onde déterminée
FR2757647A1 (fr) Modulateur electrooptique de faisceau lumineux
FR2785099A1 (fr) Laser a l'etat solide, notamment microlaser, capable d'emettre des impulsions longues
WO2003007056A1 (fr) Filtre commandable a commutation rapide
FR2577328A1 (fr) Dispositif integrable de modulation d'amplitude d'une onde optique guidee
WO2003010861A1 (fr) Etireur d'impulsions ultracourtes compact et adaptif
FR2939212A1 (fr) Modulateur de porteuse optique par plasmons de surface, a base de materiaux semiconducteurs
WO1996014600A1 (fr) Dispositif parametrique optique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08716823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08716823

Country of ref document: EP

Kind code of ref document: A1