WO2008098504A1 - Procédé et système pour fournir un service multidiffusion et dispositif pour fournir un paramètre de service multidiffusion - Google Patents

Procédé et système pour fournir un service multidiffusion et dispositif pour fournir un paramètre de service multidiffusion Download PDF

Info

Publication number
WO2008098504A1
WO2008098504A1 PCT/CN2008/070263 CN2008070263W WO2008098504A1 WO 2008098504 A1 WO2008098504 A1 WO 2008098504A1 CN 2008070263 W CN2008070263 W CN 2008070263W WO 2008098504 A1 WO2008098504 A1 WO 2008098504A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicast
multicast service
service
cscf
parameter
Prior art date
Application number
PCT/CN2008/070263
Other languages
English (en)
French (fr)
Inventor
Jun Yan
Xiangyang Wu
Feng Wang
Jincheng Li
Youying Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008098504A1 publication Critical patent/WO2008098504A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/611Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for multicast or broadcast

Definitions

  • the present invention relates to the field of multimedia multicast technologies, and in particular, to a method, device and system for providing multicast services. Background of the invention
  • IP IP Multimedia Subsystem
  • IMS IP Multimedia Subsystem
  • IMS is a subsystem superimposed on the existing packet domain in the Wideband Code Division Multiple Access (WCDMA) network in the 3GPP R5 phase.
  • WCDMA Wideband Code Division Multiple Access
  • the packet domain is used as the bearer channel for the upper layer control signaling and media transmission, and the session initiation protocol (SIP) is introduced.
  • SIP session initiation protocol
  • the network architecture of the IMS is as shown in FIG. 1.
  • the main functional entities include a Call Session Control Function (CSCF), which includes a proxy CSCF (Proxy CSCF, P-CSCF) 102, and a query service CSCF (I/S).
  • -CSCF 103
  • An application server (AS) 115 for various business logic control functions, a home subscriber server (HSS) that centrally manages subscriber subscription data, and a Medium Gateway Control Function (MGCF) 106/ for implementing interworking with the circuit switched network.
  • MGCF Medium Gateway Control Function
  • Interactive Multimedia Gateway (T-MGW) 107 The user equipment (UE) 101 accesses the IMS through the P-CSCF 102 of the current location, and the session and service trigger control and the service control interaction with the AS are completed by the S-CSCF of its place of registration.
  • the P-CSCF 102 and the I/S-CSCF 103 may be collectively referred to as a CSCF, and are used to provide related functions such as user agent, session control, routing, service triggering, and interworking between different IMS domains in the IMS network; MGCF 106/T-MGF 107/
  • the SGF 109 is a media gateway control function, a media gateway function, and a signaling gateway function, and is used for interworking between an IMS network user and a traditional public switched telephone network (PSTN) network user;
  • a Border Gateway Control Function Entity (BGCF) 108 is used for Addressing and routing between MGCFs between different IMS domains; Subscriber Location Function (SLF) 114 is used for selection between multiple User Profile Server Function (UPSF) 116;
  • Interconnect Border Control Function (IBCF) 111 and Interconnect Border Gateway Function (IBGF) 110 are functional entities of IMS i or interworking; Media Resource Function Controller (MRFC) 104 and Media Resource Function Processor (MR
  • the Resource and Admission Control Subsystem (RACS) 117 is configured to complete control of the bearer network according to the requirements of the service layer, such as IMS.
  • P-CSCF 102 and I/S-CSCF 103 are collectively referred to as IMS core (core IMS).
  • the streaming media service or IPTV service is a new business that has developed rapidly in recent years.
  • stream media The service transmits multimedia files including video and audio on the packet switched network, and the network device for storing these multimedia files is called a streaming media source. Users can play multi-multicast service media content immediately without having to completely download these multimedia files.
  • the key technology for streaming media implementation is streaming technology. Streaming technology processes continuous video and audio information into a media stream and stores it in a streaming media source. The user device plays the media stream while downloading. A network transmission technology that does not need to wait until the entire file is downloaded to the local device.
  • multicast technology can be used to enable the service sender, that is, the streaming media source, to send a media stream to the specified multicast address.
  • the service receiver that is, the user equipment
  • joins the service multicast group for example, using the Internet Group Message Protocol (IGMP) to request the neighboring router to send the service content to itself, and between the routers.
  • IGMP Internet Group Message Protocol
  • a multicast routing protocol (such as protocol-independent multicast-sparse mode (PIM-SM) protocol) is used to establish a multicast forwarding path, so that the multicast service content can be transmitted from the multicast source along the multicast forwarding path to the content receiving. square.
  • the multicast service is used to transmit traffic, and the sender of the service only needs to send one stream regardless of the number of receivers. Multicast data only generates a single data stream between transmission points on the transmission path from the service transmission point to the receiver. Obviously, the use of multicast technology can reduce the load of the service sender and effectively utilize network resources.
  • a typical example of a multicast service is a live television (LTV) service.
  • LTV live television
  • the multicast service can be used to send the same service content to multiple users at the same time. It can be regarded as a multicast service.
  • the speaker's audio and video information can be sent. After being sent to the conference server and then sent to multiple users in multicast mode, this can also be regarded as the application of the multicast service.
  • the IMS system can provide voice services, but there is no better solution for providing multicast services. Summary of the invention
  • the embodiment of the present invention provides a method for providing a multicast service, which can implement a multicast service based on an IMS system.
  • the method comprises the following steps:
  • the service providing device obtains the multicast service parameter from the multicast service parameter providing function entity SPSF;
  • the network side allocates network resources according to the multicast service parameters
  • the media resource function entity MRF provides the multicast service to the user equipment through the allocated network resources.
  • the embodiment of the invention further provides a system for providing a multicast service, and a multicast service parameter providing device.
  • the system includes an IMS network and a service providing device, and further includes:
  • the SPSF is configured to store the multicast service identifier and the multicast service parameter associated with the multicast service identifier.
  • the service providing device is configured to obtain the corresponding multicast service parameter from the SPSF according to the multicast service identifier, and obtain the obtained multicast service parameter. Send to the IMS network;
  • the IMS network is configured to allocate a network resource according to the multicast service parameter, and the MRF sends the multicast service content to the user equipment through the allocated network resource.
  • the multicast service parameter providing device includes:
  • a receiving requesting module configured to receive a request for providing a multicast service parameter, where the request includes a service identifier, and send the service identifier to a multicast service parameter matching module;
  • a multicast service parameter storage module configured to store multicast service parameters
  • the multicast service parameter matching module is configured to match the corresponding multicast service parameter in the multicast service parameter storage module according to the service identifier from the receiving request module, and match the The multicast service parameters are sent to the sending module;
  • a sending module configured to send the received multicast service parameter from the multicast service parameter matching module to the network entity that submits the multicast service parameter request.
  • the embodiment of the present invention provides the multicast service parameters by the SPSF, allocates network resources according to the multicast service parameters, and sends the multicast service to the user equipment.
  • 1 is a schematic structural diagram of an existing IMS system
  • FIG. 2 is a schematic diagram of a system for providing a multicast service according to an embodiment of the present invention
  • FIG. 3 is a flow chart of service request signaling of a basic control plane according to an embodiment of the present invention
  • FIG. 4 is a flow chart of service request signaling of a control plane according to a first embodiment of the present invention
  • FIG. Multicast flow chart
  • FIG. 6 is a flow chart of service request signaling of a control plane according to a second embodiment of the present invention
  • FIG. 7 is a flow chart of service request signaling of a control plane according to a fourth embodiment of the present invention
  • FIG. 8 is a flowchart of a method according to an embodiment of the present invention.
  • the business parameters provide a schematic diagram of the internal modules of the functional entities.
  • the IMS-based multicast service system has a network structure as shown in FIG. 2, where functional entities or components such as UE 201, RACS 202, MRF 204, UPSF 205, AS 206, and interfaces ISC, Gm, Gq/Gq,, Mr, Sh, Cx, etc. in existing electricity
  • TISPAN Telecommunication and Internet converged Services and Protocols for Advanced Networking
  • the AS 206 is used to provide a logical control function for the service.
  • the AS 206 is an entity that provides services to the UE 201 and may be referred to as a service providing device.
  • the MRF 204 is an entity that provides a multicast service media stream on the data plane, and the media service content may be from a media server in the network.
  • the system of the embodiment of the present invention further includes a Service Parameter Supply Function (SPSF) 207.
  • SPSF Service Parameter Supply Function
  • the entity is used to save and provide the multicast service parameters required for the multicast service, including the media transmission parameters used by the multicast service, including the multicast address, multicast port, and/or multicast source address. /port, also includes codec information.
  • the multicast source address/port is the address/port of the media server that provides the content of the multicast service media resource.
  • Wherein II is an interface between the AS 206 and the SPSF 207; the AS 206 can request the transport layer information of the multicast service from the SPSF 207 through the interface, including the multicast address, or the multicast address and port, and possibly the multicast source address. , or multicast source address and port.
  • the SPSF 207 shown in FIG. 2 is connected to the AS 206 as only one of the connection modes.
  • the SPSF 207 can also be disposed between the S-CSCF 203 and the MRF 204, or between the AS 206 and the MRF 204; SPSF 207 There may be an interface between the S-CSCF 203 and the MRF 204, or an interface between the AS 206 and the MRF 204, respectively.
  • the multicast service flow of the embodiment of the present invention is divided into two logical parts, a service request signaling process of the control plane and a multicast process of the data plane, and the two logical parts are respectively elaborated.
  • the service request signaling process is when the user requests the service, in order to obtain the multicast service media transmission.
  • the multicast processing mechanism of the access part is different. Therefore, after the user obtains the multicast service transmission parameters, the data plane interaction process specific to the access technology needs to be performed, which is not correct in the present invention.
  • a variety of access technologies are described in an exhaustive manner, and only the access network architecture covered by the TISAPN RACS is taken as an example. The use of other access technologies does not affect the application of the present invention.
  • the basic control plane service request signaling process of the embodiment of the present invention is as shown in FIG. 3, and includes the following steps:
  • Step 301 to step 302 The UE sends an initiation session request including a service identifier to the P-CSCF, and the initiation session requests the route to the AS through the route of the I/S-CSCF.
  • Step 303 After receiving the request for initiating the session, the AS sends a multicast service parameter request to the SPSF, where the multicast service parameter specifically includes a service multicast address and/or a port, and/or a medium such as a multicast source address and/or a port. Transmission parameters and codec information.
  • Step 304 The SPSF returns a multicast service parameter to the AS.
  • Step 305 After receiving the multicast service parameter, the AS sends a session response message to the P/I/S-CSCF, where the session response message carries the multicast service parameter.
  • Step 306 The P/I/S-CSCF determines a network resource required for the multicast service according to a resource reservation process between the multicast service parameter and the RACS in the session response message.
  • Step 307 The P/I/S-CSCF sends a session response message to the UE. Determine the codec mode that both parties support.
  • Step 309 The UE sends an acknowledgement message for initiating the session to the P/I/S-CSCF.
  • Step 310 The P/I/S-CSCF performs a resource configuration process with the AS, and allocates network resources corresponding to the multicast service.
  • Step 311 The P/I/S-CSCF sends an acknowledgement message for initiating the session to the AS.
  • the resource reservation process of step 306, the media negotiation process of step 308, and the resource configuration process of step 310 may refer to the relevant provisions of the existing standardization protocol.
  • the service request signaling process of the control plane in the first embodiment of the present invention is as shown in FIG. 4, and includes the following steps:
  • Step 401 The UE guides the selected program through an Electronic Program Guide (EPG) to initiate a SIP service request to the P/I/S-CSCF.
  • EPG Electronic Program Guide
  • the SIP request carries a multicast service identifier.
  • the multicast service identifier is used to identify the content of the program requested by the user; for different services, the multicast service identifier may be different.
  • the specific sending process is that the UE sends the SIP service request to the local P-CSCF, and selects the corresponding I-CSCF and S-CSCF through the prior art routing mechanism, and the P-CSCF sends the SIP service request to the selected one. I-CSCF and S-CSCF.
  • the user does not know how to obtain the EPG, which can be solved by the prior art.
  • the user obtains the EPG from the network entity that provides the electronic program guide through the Hypertext Transfer Protocol (HTTP).
  • HTTP Hypertext Transfer Protocol
  • Step 402 The S-CSCF triggers the corresponding AS to perform processing according to the received service request.
  • a possible triggering method is as follows: After receiving the SIP request, the S-CSCF downloads an initial filter Criteria (iFC) from the UPSF, and matches the service identifier and the field carried in the SIP request with the iFC. The corresponding AS is selected according to the matching result, and a service request is sent to the selected AS. If the service identifier in the SIP request is "LTV" and the service identifier "LTV" in the iFC corresponds to the live TV server, the request is given to the given live TV service server for processing. In fact, other triggering methods can be used.
  • Steps 403 to 404 The AS requests user service data from the UPSF, and the user service data includes a user channel usage permission list, a subscription term, and the like.
  • the AS determines the multicast service that can be used by the user equipment according to the user service data from the UPSF, and if the multicast service that can be used by the user equipment is not found, rejects the multicast service request, and ends the present invention. If the corresponding multicast service is found, proceed to step 405.
  • Step 405 The AS analyzes the multicast service identifier in the user service request, determines the multicast service parameter corresponding to the multicast service identifier, and sends the information requesting the multicast service parameter to the SPSF, where the multicast service parameter specifically includes the service.
  • the multicast address (and port) may also include media transmission parameters and codec information such as the multicast source address (and port). In the media transmission parameters, the multicast address is required; the multicast destination port must be attached to the multicast address; the source port must be attached to the source address or not appear; possible combinations are:
  • Multicast address and port For example, Multicast address and port, source address, and source port.
  • At least the multicast address and the multicast port are included in the information transmitted to the terminal;
  • Step 406 The SPSF returns a multicast service parameter to the AS.
  • the multicast service parameters include media transmission parameters and codec information.
  • the AS performs necessary updates based on the media transmission parameters and/or user traffic data user sessions, such as updating the channel currently used by the user.
  • Step 407 The AS attaches the media transmission parameter information to the response message, and the response message is forwarded by the IMS core to the P-CSCF.
  • Step 408 The P-CSCF performs a resource control request to the RACS according to the media transmission parameter carried in the response message.
  • the resource control request is used to instruct the transport layer to perform resource allocation and use a specified multicast authorization list, such as prohibiting or allowing a specified user to receive a specific multicast.
  • the access layer gating entity is an RCEF, which performs multicast authorization and resource control, and establishes a multicast channel.
  • the access layer gating entity may also be other nodes depending on the actual network.
  • the multicast authorization list includes information that prohibits or allows a designated user to receive a specific multicast service media stream.
  • Step 410 The P-CSCF forwards the response given in step 408 to the UE.
  • Step 411 The UE confirms the response, and the acknowledgement is forwarded to the AS through the P-CSCF.
  • the user obtains parameter information that can be used for transport layer multicast establishment.
  • step 408 and step 409 are used to describe a possible resource control process in the process; this step may occur when the P-CSCF in the IMS core receives the service response, and may also occur in the P-CSCF in the IMS core.
  • the specific timing depends on the network's resource control strategy.
  • the resource control process can also be divided into resource reservation and resource usage processes, which occur under certain conditions.
  • the media negotiation process given in this example has only been negotiated once. In actual interaction, the UE and AS may need to be multiple times. Media negotiation process. Unless otherwise stated, the specific implementation details of the resource control process can be referred to the existing RACS technical standards.
  • the data plane multicast process in the embodiment of the present invention includes the following steps: Step 501: The UE sends a request to the access layer gating node to join the specified multicast group to receive the group sent to the specified multicast address. Broadcast service content, if the request is an IGMP request, only the multicast address, or multicast address and multicast port will be used when joining the multicast group request; if extended IGMP or similar protocol is used, multicast may also be included. Source address/port, but multicast address is still required.
  • the RCEF may further include the authorization of the multicast join request according to the foregoing multicast authorization list. If the authorization is passed, the subsequent process is continued, otherwise the UE's request is rejected and the process ends.
  • Step 502 After the request is processed by the RCEF, the RCEF establishes a multicast transmission path to the MRF through another transport layer entity such as the BGF, and the process may be performed by using a multicast routing protocol (such as PIM-SM or PIM-DM).
  • the multicast service media stream then flows from the MRF to the RCEF and is sent by the RCEF to the UE.
  • Step 503 The user needs to end the multicast service, and the UE sends a SIP BYE message to the P-CSCF to end the multicast service to end the session.
  • the SIP BYE message carries multicast address/port information.
  • Step 504 The P-CSCF sends a resource control request to the RACS according to the multicast address/port information carried in the request, where the transport layer performs resource control and modifies or deletes the indication of the specified multicast authorization list, to delete the The transport layer service media stream usage rights of the UE.
  • the resource control described herein may only record or update the number of users for the multicast service media stream, without actually releasing the actual resources when a certain user leaves, because there may be other users watching the same program.
  • Step 505 The RACS maps the application layer command/request to the transport layer parameter, and transmits the multicast authorization list to the access layer gating entity such as RCEF, and performs multicast authorization and resource control by the RCEF.
  • the access layer gating entity such as RCEF
  • Step 506 The P-CSCF routes the request for ending the multicast service from the UE to the AS.
  • Step 507 The AS sends a session end confirmation message to the UE, confirming that the session ends.
  • Step 508 The UE sends a multicast group leaving request, such as an IGMP leave message, to the gated entity RCEF to complete the data plane service end process.
  • a multicast group leaving request such as an IGMP leave message
  • This message can also be sent simultaneously when the user initiates a SIP BYE end session, without affecting the business process.
  • the transmission is performed.
  • the layer can perform service routing according to the multicast address. If the multicast address and the source address are carried, the transport layer can perform media routing with the multicast address and the source address. Alternatively, a new protocol similar to IGMP or the IGMP protocol can be used. Expanding to carry a combination of parameters such as a multicast address and/or a multicast source address and/or a multicast destination port and/or a port in the multicast group request, and the transport layer may further perform the media stream according to the combination of the parameters. routing.
  • the MRF can distinguish the multicast media stream by a multicast (destination) address, or a multicast address and port, and may also include a multicast source address, or a combination of parameters such as a multicast source address and a port. Multiple multicast media streams can be provided using one multicast address.
  • Step 407a The AS sends the bearer to the MRF.
  • Step 407b The MRF returns the corresponding media transmission parameter to the AS.
  • the media transmission parameters include a service multicast address or a multicast address and a destination port, a multicast source address or a multicast source address and a source port, and codec information.
  • the media transmission parameter may be the same as the media transmission parameter in the media resource request sent by the AS, or may be different. The reason may be that the multicast source has changed or updated, etc.; if the source is additionally used based on the parameter The address or the combination of the source address and the source port is used to distinguish the multicast service.
  • the MRF can provide the multicast source address and the source port information.
  • the reason for adding the above steps is: Confirm that the MRF is in normal working condition, or inform the MRF to prepare for providing multicast services; or request the MRF to provide additional parameters.
  • Step 406a the AS sends a multicast service parameter request to the MRF, and the request is first sent to the S-CSCF of the IMS core;
  • Step 406b the S-CFCF forwards the multicast service parameter request to the SPSF.
  • Step 407a the SPSF processes the multicast service parameter request, and returns a multicast service parameter response to the S-CSCF.
  • the response carries the media transmission parameter to the S-CSCF, including the service multicast address and the port and/or the multicast source. Address and / or source port, codec information, and so on.
  • the SPSF may also further route the multicast service parameter request to the MRF, so that the MRF provides the above media transmission parameters.
  • Step 407b The S-CSCF forwards the multicast service parameter response to the AS.
  • the multicast service parameter request sent by the AS is not directly sent to the SPSF, but is forwarded to the SPSF through the route of the S-CSCF.
  • FIG. 8 A schematic diagram of an internal module of the SPSF according to the embodiment of the present invention is shown in FIG. 8, and includes the following modules:
  • the receiving request module 801 is configured to receive a request for providing a multicast service parameter, where the request includes a service identifier, and send the service identifier to the multicast service parameter matching module 803.
  • the multicast service parameter request is from an AS.
  • the multicast service parameter storage module 802 is configured to store media transmission parameters and codec information, where the media transmission parameters include a multicast service address and/or a port, and/or a multicast source address and/or a port.
  • the multicast service parameter matching module 803 is configured to match the corresponding media transmission parameter and the codec information in the multicast service parameter storage module 802 according to the service identifier from the receiving request module 801, and match the matched media transmission parameter. And the codec information is sent to the sending module 804.
  • the sending module 804 is configured to send the received media transmission parameter and the codec information to the network entity that submits the multicast service parameter request.
  • the network entity is AS.
  • the SPSF may further include a multicast service parameter obtaining module 805, configured to obtain the multicast service parameter, and send the obtained multicast service parameter to the multicast service parameter storage module.
  • a multicast service parameter obtaining module 805 configured to obtain the multicast service parameter, and send the obtained multicast service parameter to the multicast service parameter storage module.
  • the SPSF used in the embodiment of the present invention plays a role in providing a multicast service parameter to the AS in the implementation process of the present invention.
  • the service discovery and selection function SD&SF
  • the Multimedia Resources Locate Function MRLF
  • the media resource proxy functional entity MRBF
  • a Service Schedule Function is deployed to serve as the SPSF in the solution of the embodiment of the present invention.
  • the multicast service parameter acquisition module 805 includes:
  • the multicast address management unit is configured to perform multicast address/port allocation and management, for example, to allocate and manage addresses of multiple MRFs, or source addresses and/or ports of media servers that provide media content to the MRF.
  • the address and content association unit is configured to establish a correspondence between the multicast service content identifier, the multicast source address, and/or the multicast address/port managed by the port and the multicast address management unit.
  • the Service Discovery and Selection Function Entity is located in the IPTV standard currently being developed by the TISPAN standards organization, and can be used to provide service discovery information and provide users with guidance information for using the service; of course, the entity can also provide multi-operator portals. Information, thereby providing the user with guidance information for selecting multiple operators; the user can select to use the service of the specific operator based on the guidance information.
  • the entity may also have the function of storing the multicast service transport layer information, including the multicast address, or the multicast address and port, which may be included in the multicast service. Broadcast source address, or multicast source Address and port, etc.
  • the multicast service parameter obtaining module 805 includes: an operator interface unit, through which the operator transmits the multicast address/port and/or multicast source of the multicast service provided by the operator.
  • the service information such as the address/port is injected into the multicast service parameter storage module 802.
  • the multicast service parameter obtaining module 805 includes:
  • Determining a multicast service unit configured to determine a multicast address or a media server that provides multicast services for the UE
  • the multicast service parameter extraction unit is configured to extract related information of the multicast address determined by the multicast service unit or the multicast source address/port information of the media server, and send the information to the multicast service parameter storage module 802.
  • the service request signaling process of the control plane as shown in FIG. 3 can be implemented. If the MRBF is used as the SPSF, the service plane signaling process of the control plane as shown in FIG. 7 can be implemented.
  • a detailed description of MRLF or MRBF or related functional implementation can be found in the above application documents.
  • An embodiment of the present invention provides an IMS-based multicast system, and implements a multicast service implementation process based on the system, and provides an entity for providing multicast service parameters in the system. Based on the embodiments of the present invention, those skilled in the art can obtain various implementation schemes of the IMS-based multicast mechanism service without any creative work, thereby enriching the IMS-based multicast service, especially the current hot IPTV service. The development provides a good foundation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种提供组播业务的方法和系统以及组播业务参数提供设备 技术领域
本发明涉及多媒体组播技术领域, 特别涉及一种提供组播业务的方 法、 设备及系统。 发明背景
在通讯和信息技术高度发展的今天, 随着跨链路层以及传输介质的
IP技术的出现, 互联网络( Internet )应用的迅速普及。 与此同时, 人们 不再满足于单一的语音通信方式, 而需要全新的多媒体通信方式。 移动 通讯网络和固定通讯网络的 IP化、 Internet和电信网络的融合已无可争 议地成为业界公认的发展方向。为满足越来越突出的 IP多媒体应用的普 遍需求, 第三代合作伙伴计戈 ( Three Generation Partnership Project, 3GPP )在分组承载网的基础上, 引入全 IP业务网络架构的 IP多媒体子 系统( IP Multimedia System, IMS ), 目标是提供个性化用户数据, 屏蔽 用户接入方式, 控制业务能力的开放程度, 提供多媒体的通信体验。
IMS是 3GPP R5阶段叠加在宽带码分多址( WCDMA ) 网络中已有 分组域之上的一个子系统, 采用分组域为其上层控制信令和媒体传输的 承载通道, 引入会话初始协议(SIP )作为业务控制协议,利用 SIP筒单、 易扩展、 媒体组合方便的特点, 通过将业务控制与承载控制分离, 提供 丰富的多媒体业务。
IMS的网络架构如图 1所示, 主要的功能实体包括呼叫会话控制功 能实体(Call Session Control Function, CSCF ), 具体包括代理 CSCF ( Proxy CSCF, P-CSCF ) 102、 查询服务 CSCF ( I/S-CSCF ) 103、 提供 各种业务逻辑控制功能的应用服务器(AS ) 115、 集中管理用户签约数 据的归属用户服务器(HSS ) 以及用于实现与电路交换网互通的媒体网 关控制实体 ( Medium Gateway Control Function, MGCF ) 106/交互式多 媒体网关(T-MGW ) 107。用户设备(UE ) 101通过当前所在地的 P-CSCF 102接入 IMS, 会话和业务触发控制及与 AS的业务控制交互则由其注 册地的 S-CSCF完成。
P-CSCF102和 I/S-CSCF 103可统称为 CSCF,用于提供 IMS网络中 用户代理、 会话控制、 路由、 业务的触发以及不同 IMS域间互通等相关 功能; MGCF 106/T-MGF 107/SGF 109为媒体网关控制功能、 媒体网关 功能和信令网关功能, 用于实现 IMS 网络用户和传统公用电话交换网 ( PSTN ) 网络用户之间的互通; 边界网关控制功能实体(BGCF ) 108 用于不同 IMS 域间 MGCF 之间的寻址和路由; 用户位置功能实体 ( Subscriber Location Function, SLF ) 114用于多个用户属性服务功能实 体(User Profile Server Function, UPSF ) 116之间的选择; 互联边界控 制功能(Interconnect Border Control Function, IBCF ) 111及互联边界 网关功能 ( Interconnect Border Gateway Function, IBGF ) 110为 IMS i或 间互通的功能实体; 媒体资源功能控制器 ( Media Resource Function Controller, MRFC ) 104和媒体资源功能处理器( Media Resource Function Processor , MRFP ) 105可统称为媒体资源功能实体( MRF ), 用于对媒 体资源的分配、 控制及其处理; 网络附着子系统(Network Attachment Sub-system , NASS ) 101 用于用户的接入认证、 地址分配等; 资源接 入控制系统 ( Resource and Admission Control Subsystem, RACS ) 117用 于根据业务层如 IMS的需求,完成对承载网络的控制。其中, P-CSCF 102 和 I/S-CSCF 103统称为 IMS核心 ( core IMS )。
流媒体业务或 IPTV业务是近几年迅速发展的一种新业务。 流媒体 业务在分组交换网络上传输包括视频、 音频在内的多媒体文件, 用于存 储这些多媒体文件的网络设备称为流媒体源。 用户无需完全下载这些多 媒体文件就可以立即播放多组播业务媒体内容。 流媒体实现的关键技术 就是流式传输技术, 而流式传输技术是把连续的视频和音频信息经过处 理后成为媒体流存储在流媒体源中, 用户设备一边下载一边播放所述媒 体流, 而不需要等整个文件下载到本地设备后才可以观看的网络传输技 术。
如果同时有多个用户要求接收相同的业务内容, 可以采用组播技术 使业务发送方即流媒体源向指定组播地址发送一份媒体流。 为了获取组 播内容, 业务接收方即用户设备通过加入业务组播组, 如使用互联网组 群消息协议( Internet Group Message Protocol, IGMP )来要求邻接的路 由器发送业务内容给自己, 而路由器之间则通过组播路由协议(如协议 无关组播-稀疏模式(PIM-SM)协议等)交互以建立组播转发路径, 这样 组播业务内容就可以从组播源沿组播转发路径传递给内容接收方。 使用 组播技术传送业务流, 无论接收方有多少, 业务发送方只需要发送一个 数据流。 组播数据在从业务发送点到接收方的传送路径上的传送点之间 只产生单一的数据流, 显而易见使用组播技术可以减轻业务发送方的负 荷, 并且可以有效利用网络资源。
组播业务的典型实例是直播电视(LTV )业务。 对于观看同一节目 的全部用户, 在每一时刻所收到的节目内容都是完全相同的, 因此可以 采用承载层组播的方式来减小网络带宽需求。 当然, 对于需要将同一业 务内容同时发送给多个用户的情况都可以采用组播方式来开展, 都可以 看作是组播业务, 如对于多方会议而言, 可以将发言者的音视频信息发 送到会议服务器之后再以组播方式发送给多个用户, 这同样可以看作是 组播业务的应用。 目前基于 IMS系统可以提供话音业务,但对于提供组播类业务还没 有较好的解决方案。 发明内容
本发明的实施例提出一种提供组播业务的方法, 可以实现基于 IMS 系统的组播业务。 该方法包括如下步骤:
业务提供设备从组播业务参数提供功能实体 SPSF获取组播业务参 数;
网络侧根据所述组播业务参数分配网络资源;
媒体资源功能实体 MRF通过所分配的网络资源向用户设备提供组 播业务。
本发明实施例还提出一种提供组播业务的系统, 以及组播业务参数 提供设备。
所述系统包括 IMS网络和业务提供设备, 还包括:
SPSF, 用于存储组播业务标识以及与之相关联的组播业务参数; 所述业务提供设备用于根据组播业务标识向 SPSF获取相应的组播 业务参数, 将所获取的组播业务参数发送至 IMS网络;
所述 IMS网络用于根据所述组播业务参数分配网络资源,并由其中 的 MRF将组播业务内容通过所分配的网络资源下发给用户设备。
所述组播业务参数提供设备包括:
接收请求模块, 用于接收要求提供组播业务参数的请求, 该请求中 包括业务标识; 并将所述业务标识发送至组播业务参数匹配模块;
组播业务参数存储模块, 用于存储组播业务参数;
组播业务参数匹配模块, 用于根据来自接收请求模块的业务标识, 在组播业务参数存储模块中匹配到相应的组播业务参数, 并将所匹配到 的组播业务参数发送至发送模块;
发送模块, 用于将所收到的来自组播业务参数匹配模块的组播业务 参数发送至提交组播业务参数请求的网络实体。
从以上技术方案可以看出, 本发明实施例由 SPSF提供组播业务参 数, 根据所述组播业务参数分配网络资源并将组播业务发送至用户设 备。
附图简要说明
图 1为现有的 IMS系统结构示意图;
图 2为本发明实施例提供组播业务的系统示意图;
图 3为本发明实施例方案基本的控制面的业务请求信令流程图; 图 4为本发明第一实施例的控制面的业务请求信令流程图; 图 5为本发明第一实施例数据面的组播流程图;
图 6为本发明第二实施例的控制面的业务请求信令流程图; 图 7为本发明第四实施例的控制面的业务请求信令流程图; 图 8为本发明实施例的组播业务参数提供功能实体的内部模块示意 图。
实施本发明的方式
为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图对本 发明作进一步的详细阐述。
本发明实施例给出的基于 IMS的组播业务系统, 其网络结构如图 2 所示, 其中功能实体或者组件如 UE 201、 RACS 202, MRF 204、 UPSF 205、 AS 206以及接口 ISC、 Gm、 Gq/Gq,、 Mr, Sh, Cx等在现有的电 信和英特网 if虫合业务和十办议 ( Telecommunication and Internet converged Services and Protocols for Advanced Networking , TISPAN )系列标准中已 有定义; 当然, TISPAN所定义的 IMS系统和 3GPP所定义的 IMS系统 一脉相 ^ , 其细节差异不影响此专利的具体应用。
AS 206用于提供业务的逻辑控制功能, 对于控制平面来说, AS 206 就是向 UE 201提供业务的实体, 可以被称为业务提供设备。
MRF 204作为数据面上提供组播业务媒体流的实体, 其媒体业务内 容可以是来自网络中的媒体服务器。
本发明实施例系统还包括组播业务参数提供功能实体 (Service Parameter Supply Function, SPSF)207。 该实体用于保存并对外提供组播 业务开展所需的组播业务参数(Service Parameters ), 包括组播业务所 使用的媒体传输参数, 包括组播地址、 组播端口和 /或组播源地址 /端口, 还包括编解码信息。所述组播源地址 /端口就是提供组播业务媒体资源内 容的媒体服务器的地址 /端口。 其中 II为 AS 206和 SPSF 207之间的接 口; AS 206可以通过此接口从 SPSF 207请求组播业务的传输层信息, 包括组播地址, 或者组播地址和端口, 可能还包括组播源地址, 或者组 播源地址和端口等。
图 2中所示 SPSF 207与 AS 206相连接只是其中一种连接方式, 实 际上 SPSF 207也可以设置于 S-CSCF 203与 MRF 204之间,或者设置于 AS 206与 MRF 204之间; SPSF 207可以与 S-CSCF 203及 MRF 204之 间分别具有接口, 也可以与 AS 206及 MRF 204之间分别具有接口。
以下将本发明实施例的组播类业务流程划分为两个逻辑部分, 控制 面的业务请求信令过程和数据面的组播过程, 并分别对这两个逻辑部分 进行详细阐述。
业务请求信令过程是用户请求业务时, 为了获得组播业务媒体流传 对于不同的接入网技术, 其接入部分的组播处理机制有所不同, 因 此在用户获得组播业务传输参数后还需要进行特定于接入技术的数据 面交互过程,在本发明中不对多种接入技术进行穷举说明,仅以 TISAPN RACS所涵盖的接入网架构为例加以说明。 采用其它接入技术并不影响 本发明的应用。
本发明实施例的基本控制平面业务请求信令流程如图 3所示, 包括 如下步骤:
步骤 301至步骤 302: UE向 P-CSCF发送包含业务标识的发起会话 请求, 该发起会话请求经过 I/S-CSCF的路由, 转发到 AS。
步骤 303: AS收到发起会话请求后, 向 SPSF发送组播业务参数请 求, 所述组播业务参数具体包括业务组播地址和 /或端口, 和 /或组播源 地址和 /或端口等媒体传输参数和编解码信息。
步骤 304: SPSF向 AS返回组播业务参数。
步骤 305: AS收到组播业务参数后, 向 P/I/S-CSCF发送会话响应 消息, 该会话响应消息中携带所述组播业务参数。
步骤 306: P/I/S-CSCF根据所述会话响应消息中的组播业务参数与 RACS之间进行资源预留过程, 确定该组播业务所需的网络资源。
步骤 307: P/I/S-CSCF将会话响应消息发送至 UE。 确定双方共同支持的编解码方式。
步骤 309: UE向 P/I/S-CSCF发送发起会话的确认消息。
步骤 310: P/I/S-CSCF与 AS进行资源配置过程, 分配与该组播业 务相应的网络资源。
步骤 311 : P/I/S-CSCF向 AS发送发起会话的确认消息。 上述流程中, 步骤 306的资源预留过程、 步骤 308的媒体协商过程 以及步骤 310的资源配置过程可参照现有标准化协议的相关规定。
以下通过具体实施例对本发明方案进行进一步阐述。
本发明第一实施例的控制平面的业务请求信令过程如图 4所示, 包 括如下步骤:
步骤 401 : UE通过电子节目指南( EPG )引导选择节目,向 P/I/S-CSCF 发起 SIP业务请求。 该 SIP请求携带组播业务标识。 组播业务标识用于 标识用户所请求的节目内容; 对于不同的业务而言, 组播业务标识可能 是不同的。具体发送过程是 UE将该 SIP业务请求发送到本地的 P-CSCF, 通过现有技术的路由选择机制,选择相应的 I-CSCF和 S-CSCF, P-CSCF 再将 SIP业务请求发送到所选的 I-CSCF和 S-CSCF。
另夕卜,这里没有给出用户如何获取 EPG,可以用现有技术加以解决, 例如用户通过超文本传递协议(Hypertext Transfer Protocol, HTTP ) 向 提供电子节目单的网络实体获取 EPG。
步骤 402: S-CSCF根据所收到的业务请求, 触发相应的 AS进行处 理。 一种可能的触发方式如下: S-CSCF在收到 SIP请求后, 从 UPSF 下载初始过滤准则 ( Initial Filter Criteria, iFC ),把所述 SIP请求中携带 的业务标识、 字段等与 iFC进行匹配, 根据匹配结果选择对应的 AS, 并向所选择的 AS发送业务请求。如 SIP请求中的业务标识为 "LTV" , iFC 中定义业务标识" LTV"对应直播电视服务器, 则触发请求给定的直播电 视业务服务器进行处理。 实际上也可采用其它的触发方式。
步骤 403至 404: AS向 UPSF请求用户业务数据, 所述用户业务数 据包括用户频道使用权限列表、订阅期限等。 AS根据来自 UPSF的用户 业务数据, 确定所述用户设备的可以使用的组播业务, 若未找到所述用 户设备可以使用的组播业务, 则拒绝所述组播业务请求, 并结束本发明 流程; 若找到相应的组播业务则继续执行步骤 405。
步骤 405: AS分析用户业务请求中的组播业务标识, 确定与该组播 业务标识对应的组播业务参数, 并向 SPSF发送请求组播业务参数的信 息, 所述组播业务参数具体包括业务组播地址(和端口), 可能还包括 组播源地址(和端口)等媒体传输参数和编解码信息。媒体传输参数中, 组播地址是必须的; 组播目的端口必须依附于组播地址; 源端口必须依 附于源地址出现, 或者不出现; 可能组合为:
组播地址;
组播地址和(目的)端口;
组播地址和(目的)端口以及源地址;
组播地址和源地址;
组播地址和源地址以及源端口;
组播地址和端口, 源地址, 以及源端口。
在传送给终端的信息中至少有组播地址和组播端口;
但是用于 IGMP加入组播组的请求时只会用到组播地址和 /或组播端 口;
若扩展 IGMP或类似协议,则可以都使用到,但组播地址是必须的。 步骤 406: SPSF向 AS返回组播业务参数。 所述组播业务参数包括 媒体传输参数和编解码信息。 AS根据所述媒体传输参数和 /或对用户业 务数据用户会话进行必要更新, 如更新用户当前使用的频道。
步骤 407: AS将媒体传输参数信息附加在响应消息中, 这个响应消 息由 IMS核心进行路由转发至 P-CSCF。
步骤 408: P-CSCF根据所述响应消息中所携带的媒体传输参数向 RACS进行资源控制请求。 所述资源控制请求用于指示传输层进行资源 分配并使用指定组播授权列表, 如禁止或者允许指定用户接收特定组播 步骤 409: RACS将应用层的资源控制请求中包含的媒体传输参数 映射为传输层参数, 并将组播授权列表传送到接入层门控实体。 本实施 例中, 所述接入层门控实体为 RCEF, 由其进行组播授权和资源控制, 建立组播通道。 根据实际网络的不同, 接入层门控实体也可以为其它节 点。 所述组播授权列表包括禁止或者允许指定用户接收特定组播业务媒 体流的信息。
步骤 410: P-CSCF将步骤 408给出的响应转发给 UE。
步骤 411: UE对上述响应予以确认, 该确认通过 P-CSCF转发最终 发到 AS。
至此, 用户获得了可用于传输层组播建立的参数信息。
上述流程中, 步骤 408和步骤 409用于说明流程中可能的资源控制 过程; 此步骤可能发生在 IMS核心中的 P-CSCF收到业务响应时, 也可 以发生在 IMS核心中的 P-CSCF收到业务确认时,具体时机取决于网络 的资源控制策略。 另外, 资源控制过程也可以分为资源预留和资源使用 过程, 分别在一定条件下发生; 此例中给出的媒体协商过程仅经过了一 次协商, 在实际交互中 UE和 AS可能需要多次的媒体协商过程。 以下 如未加说明, 资源控制过程的具体实施细节均可参照现有 RACS技术标 准进行。
本发明实施例的数据面组播过程如图 5所示, 包括如下步骤: 步骤 501: UE向接入层门控节点发出加入指定组播组的请求, 以接 收发送到指定组播地址的组播业务内容, 如果该请求为 IGMP请求, 则 加入组播组的请求时只会用到组播地址, 或者组播地址和组播端口; 若 使用扩展 IGMP或类似协议, 则可能还包括组播源地址 /端口, 但组播地 址仍然是必须的。 这里可能还进一步包括 RCEF根据前述下发的组播授权列表对组播 加入请求进行授权, 如果授权通过则继续执行后续流程, 否则拒绝 UE 的请求并结束流程。
步骤 502: 该请求经 RCEF处理后, RCEF通过其它传输层实体如 BGF建立到 MRF的组播传送路径, 该过程可以使用组播路由协议(如 PIM-SM或 PIM-DM )等进行。此后组播业务媒体流由 MRF流向 RCEF, 并由 RCEF发送给 UE。
步骤 503: 用户需要结束此次组播业务, UE向 P-CSCF发送结束组 播业务的请求 SIP BYE消息以结束此次会话。所述 SIP BYE消息中携带 组播地址 /端口信息。
步骤 504: P-CSCF根据所述请求中所携带的组播地址 /端口信息, 向 RACS发送资源控制请求, 其中包括传输层进行资源控制并修改或者 删除指定组播授权列表的指示, 以删除所述 UE的传输层业务媒体流使 用权限。 这里所述资源控制对于组播业务媒体流来讲可能只是进行用户 数的记录或更新, 而不必在某个用户离开时进行实际的资源释放, 因为 可能还存在其它用户正在收看同一节目。
步骤 505: RACS将应用层指令 /请求映射为传输层参数, 并将组播 授权列表传送到接入层门控实体如 RCEF, 由 RCEF进行组播授权和资 源控制等。
步骤 506: P-CSCF将来自 UE的结束组播业务的请求路由给 AS。 步骤 507: AS向 UE发送会话结束确认消息, 确认会话结束。
步骤 508: UE向门控实体 RCEF发送组播组离开请求,如 IGMP leave 消息;以完成数据面业务结束过程。这个消息也可以在用户发起 SIP BYE 结束会话时就同时发送, 并不影响业务处理过程。
在上述流程中, 若步骤 501的 IGMP请求仅携带组播地址, 则传输 层可以根据组播地址进行业务路由; 若携带组播地址和源地址, 则传输 层可以跟组播地址和源地址进行媒体路由; 另外, 也可以采用与 IGMP 类似的新协议或者对 IGMP协议加以扩展从而在组播组请求中携带组播 地址和 /或组播源地址和 /或组播目的端口和 /或端口等参数的组合, 传输 层则进一步可以根据所述参数的组合对媒体流进行路由。 也就是说, MRF可以以组播(目的)地址, 或者组播地址和端口, 可能还包括组播 源地址, 或者组播源地址和端口等参数的组合来对组播媒体流加以区 分, 从而可以使用一个组播地址提供多个组播媒体流。
本发明第二实施例的控制平面的业务请求信令过程如图 6所示, 该 流程与图 3所示流程相比, 原步骤 407之后, 进一步包括如下步骤: 步骤 407a: AS向 MRF发送携带步骤 407中获得的业务组播地址和 /或端口、 编解码信息的媒体资源请求;
步骤 407b: MRF向 AS返回相应的媒体传输参数。 所述媒体传输参 数包括业务组播地址或者组播地址和目的端口, 组播源地址或者组播源 地址和源端口, 以及编解码信息等。 该媒体传输参数可能与 AS发送的 媒体资源请求中的媒体传输参数相同, 也可能不同, 出现不同的原因可 能是组播源发生了变动或者更新等; 若在所述参数的基础上额外使用源 地址或者使用源地址和源端口的组合来区分组播业务,则此步骤中 MRF 可以提供组播源地址以及源端口信息。
添加以上步骤的原因是: 确认 MRF处于正常的工作状态, 或者通 知 MRF做好提供组播业务的准备工作; 或者请求 MRF提供附加参数。
本实施例的其它步骤以及数据面组播过程同第一实施例, 故不再赘 述。
本发明第三实施例的控制平面的业务请求信令过程如图 7所示, 与 图 4所示的流程相比, 仅是步骤 406和 407替换为如下步骤: 步骤 406a,: AS向 MRF发送组播业务参数请求, 该请求首先发送 给 IMS核的 S-CSCF;
步骤 406b,: S-CFCF向 SPSF转发组播业务参数请求;
步骤 407a,: SPSF处理组播业务参数请求, 向 S-CSCF返回组播业 务参数响应; 在此响应中携带媒体传输参数给 S-CSCF, 具体包括业务 组播地址和端口和 /或组播源地址和 /或源端口、编解码信息等。这里 SPSF 也可能向 MRF进一步路由组播业务参数请求,从而由 MRF提供上述媒 体传输参数。
步骤 407b,: S-CSCF将所述组播业务参数响应转发给 AS。
该实施例中, AS发出的组播业务参数请求不是直接发送给 SPSF, 而是经过 S-CSCF的路由转发到 SPSF。
本发明实施例的 SPSF的内部模块的示意图如图 8所示, 包括如下 模块:
接收请求模块 801 , 用于接收要求提供组播业务参数的请求, 该请 求中包括业务标识; 并将所述业务标识发送至组播业务参数匹配模块 803。 本实施例中, 所述组播业务参数请求来自于 AS。
组播业务参数存储模块 802,用于存储媒体传输参数和编解码信息, 所述媒体传输参数包括组播业务地址和 /或端口, 和 /或组播源地址和 /或 端口。
组播业务参数匹配模块 803, 用于根据来自接收请求模块 801的业 务标识, 在组播业务参数存储模块 802中匹配到相应的媒体传输参数和 编解码信息, 并将所匹配到的媒体传输参数和编解码信息发送至发送模 块 804。
发送模块 804, 用于将所收到的媒体传输参数和编解码信息发送至 提交组播业务参数请求的网络实体, 在本发明实施例中, 该网络实体为 AS。
此外, SPSF还可以包括一个组播业务参数获取模块 805, 用于获取 所述组播业务参数, 并将所获取的组播业务参数发送至组播业务参数存 储模块。
本发明实施例中所用到的 SPSF,在本发明的实施流程中所起到的作 用就是向 AS提供组播业务参数。 具体实现上, 可以由相关专利中的业 务发现与选择功能实体( Services Discover and Select Function, SD&SF ), 媒体资源定位功能实体( Multimedia Resources Locate Function, MRLF )、 媒体资源代理功能实体( MRBF )或业务部署功能实体( Service Schedule Function, SSF )来充当本发明实施例方案中的 SPSF。
根据本发明人 2007年 1月 11日提交的另一份专利申请文件中规定, SSF用于完成对组播业务的部署和组织, 若由 SSF来充当 SPSF, 则所 述组播业务参数获取模块 805包括:
组播地址管理单元, 用于进行组播地址 /端口的分配和管理, 例如, 分配和管理多个 MRF的地址,或者向 MRF提供媒体内容的媒体服务器 的源地址和 /或端口。
地址与内容关联单元, 用于建立组播业务内容标识、 组播源地址和 / 或端口和组播地址管理单元所管理的组播地址 /端口之间的对应关系。
业务发现与选择功能实体(SD&SF )在目前 TISPAN标准组织正在 制定的 IPTV标准中, 定位为可以用于提供业务发现信息, 为用户提供 使用业务的引导信息; 当然该实体也可以提供多运营商入口信息, 从而 为用户提供选择多运营商的引导信息; 用户可以基于此引导信息选定使 用特定运营商的业务。 在本发明实施例中, 该实体也可以具备这样的功 能, 即可以保存组播业务开展所需使用的组播业务传输层信息, 包括组 播地址, 或者组播地址和端口, 可能还包括组播源地址, 或者组播源地 址和端口等。
若由 SD&SF来充当 SPSF,则所述组播业务参数获取模块 805包括: 运营商接口单元, 运营商通过该单元, 将其所提供的组播业务的组 播地址 /端口和 /或组播源地址 /端口等业务信息注入组播业务参数存储模 块 802中。
申请号为 200610033774.X 的专利申请文件中提出了用于进行媒体 资源调度的 MRLF和 /或 MRBF。 若由 MRLF或 MRBF来充当 SPSF, 则所述组播业务参数获取模块 805包括:
确定组播业务单元, 用于确定为 UE提供组播业务的组播地址或媒 体服务器;
组播业务参数提取单元, 用于将确定组播业务单元所确定的组播地 址的相关信息或媒体服务器的组播源地址 /或端口信息提取出来,并发送 至组播业务参数存储模块 802。
若由 MRLF充当 SPSF, 则可以实现如图 3所示的控制平面的业务 请求信令过程; 若由 MRBF充当 SPSF, 则可以实现如图 7所示的控制 平面的业务请求信令过程。 MRLF或 MRBF的详细介绍或相关功能实现 可参阅上述申请文件。
以上仅是对组播业务参数获取模块的具体实现举了几个常见的例 子, 本发明实施例并未对组播业务参数的获取方式进行限制。
本发明实施例给出了一个基于 IMS的组播系统,给出基于该系统的 组播业务实现流程, 并给出该系统中用于提供组播业务参数的实体。 基 于本发明实施例, 本领域技术人员可以无需付出创造性劳动, 得到各种 基于 IMS的组播机制业务的实现方案, 从而为丰富基于 IMS系统的组 播类业务, 尤其是目前热点的 IPTV类业务开展提供了良好的基础。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应 包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种提供组播业务的方法, 其特征在于, 该方法包括如下步骤: 业务提供设备从组播业务参数提供功能实体 SPSF获取组播业务参 数;
IP多媒体子系统 IMS网络根据所述组播业务参数分配网络资源; 媒体资源功能实体 MRF通过所分配的网络资源向用户设备提供组 播业务。
2、根据权利要求 1所述的方法, 其特征在于, 所述业务提供设备获 取组播参数之前, 进一步包括:
用户设备向代理呼叫会话控制功能实体 P-CSCF发送包含业务标识 的业务请求, P-CSCF选择相应的查询呼叫会话控制功能实体 I-CSCF和 服务呼叫会话功能实体 S-CSCF, 并将所述业务请求发送给所选择的 S-CSCF;
所述 S-CSCF根据所收到的业务请求, 触发相应的业务提供设备进 行处理。
3、根据权利要求 1所述的方法, 其特征在于, 所述业务提供设备向 组播业务参数提供功能实体获取组播业务参数包括:
业务提供设备分析用户业务请求中的组播业务标识, 确定与该组播 业务标识对应的组播业务参数, 并向 SPSF发送请求组播业务参数的信 息;
SPSF向业务提供设备返回组播业务参数。
4、根据权利要求 3所述的方法, 其特征在于, 所述组播业务参数包 括媒体传输参数和编解码信息。
5、根据权利要求 4所述的方法, 其特征在于, 所述媒体传输参数包 括: 组播业务地址, 组播业务端口、 组播源地址、 组播源端口或以上内 容的任意组合。
6、 根据权利要求 5所述的方法, 其特征在于, 所述 SPSF向业务提 供设备返回组播业务参数之后, 进一步包括:
业务提供设备向 MRF发送携带所获得的组播业务参数的媒体资源 请求;
MRF向业务提供设备返回媒体源地址, 或者媒体源地址和端口。
7、根据权利要求 1所述的方法, 其特征在于, 所述业务提供设备从 组播业务参数提供功能实体获取组播业务参数包括:
业务提供设备向 P/I/S-CSCF发送组播业务参数请求, S-CSCF将所 述组播业务参数请求转发给 SPSF;
SPSF处理所述组播业务参数请求,向 S-CSCF返回组播业务参数响 应, S-CSCF将所述组播业务参数响应转发给业务提供设备。
8、根据权利要求 1至 7任一项所述的方法, 其特征在于, 所述根据 所述组播业务参数分配网络资源包括:
应用服务器将包含组播业务参数信息的响应消息通过 IP 多媒体子 系统 IMS核心进行路由转发至 P-CSCF;
P-CSCF根据所述响应消息中的组播业务参数向资源及许可控制子 系统 RACS进行资源控制请求;
RACS将应用层指令 /请求映射为传输层参数并根据用户定位结果将 组播授权列表传送到接入层门控实体;
接入层门控实体建立到 MRF的组播传送路径。
9、根据权利要求 8所述的方法, 其特征在于, 所述接入层门控实体 建立到 MRF的组播传送路径之前, 进一步包括:
UE向接入层门控节点发出加入指定组播组的请求。
10、 根据权利要求 9所述的方法, 其特征在于, 所述 UE向接入层 门控节点发出加入指定组播组的请求之后, 进一步包括: 接入层门控实 体根据组播授权列表对所收到的组播加入请求进行授权, 如果授权通过 则执行所述后续步骤。
11、 根据权利要求 1至 7任一项所述的方法, 其特征在于, 所述网 络侧根据所述组播业务参数分配网络资源包括:
业务提供设备收到组播业务参数后,向 P/I/S-CSCF发送携带所述组 播业务参数的会话响应消息;
P/I/S-CSCF根据所述会话响应消息中的组播业务参数与 RACS之间 进行资源预留过程, 确定该组播业务所需的网络资源;
P/I/S-CSCF将会话响应消息发送至用户设备, 用户设备和业务提供 设备通过 RACS以及 P/I/S-CSCF进行媒体协商过程,确定双方共同支持 的编解码方式;
P/I/S-CSCF与业务提供设备进行资源配置过程, 分配与该组播业务 相应的网络资源。
12、 一种提供组播业务的系统, 包括 IMS网络和业务提供设备, 其 特征在于, 该系统还包括:
SPSF, 用于存储组播业务标识以及与之相关联的组播业务参数; 所述业务提供设备用于根据组播业务标识向 SPSF获取相应的组播 业务参数, 将所获取的组播业务参数发送至 IMS网络;
所述 IMS网络用于根据所述组播业务参数分配网络资源,并由其中 的 MRF将组播业务内容通过所分配的网络资源下发给用户设备。
13、 根据权利要求 12所述的系统, 其特征在于, 所述 IMS网络包 括 P-CSCF、 I-CSCF和 S-CSCF;
所述 P-CSCF用于接收来自用户设备的包含业务标识的业务请求, 选择相应的 I-CSCF和 S-CSCF, P-CSCF再将所述业务请求发送到所选 的 I-CSCF和 S-CSCF;
所述 S-CSCF用于根据所收到的业务请求, 选择相应的业务提供设 备, 并将所述业务请求发送至所选择的业务提供设备。
14、根据权利要求 13所述的系统, 其特征在于, 该系统进一步包括 UPSF, 用于存储 iFC, 并根据 S-CSCF的请求, 向 S-CSCF提供相应的 iFC;
则所述 S-CSCF选择业务提供设备为: S-CSCF将业务请求与所述 iFC进行匹配, 根据匹配结果选择对应的业务提供设备。
15、根据权利要求 12、 13或 14所述的系统,其特征在于,所述 SPSF 为业务发现与选择功能实体 SD&SF、媒体资源定位功能实体 MRLF、媒 体资源代理功能实体 MRBF或业务部署功能实体 SSF。
16、 一种组播业务参数提供设备, 其特征在于, 该设备包括: 接收请求模块, 用于接收要求提供组播业务参数的请求, 该请求中 包括业务标识; 并将所述业务标识发送至组播业务参数匹配模块;
组播业务参数存储模块, 用于存储组播业务参数;
组播业务参数匹配模块, 用于根据来自接收请求模块的业务标识, 在组播业务参数存储模块中匹配到相应的组播业务参数, 并将所匹配到 的组播业务参数发送至发送模块;
发送模块, 用于将所收到的来自组播业务参数匹配模块的组播业务 参数发送至提交组播业务参数请求的网络实体。
17、 根据权利要求 16所述的组播业务参数提供设备, 其特征在于, 该设备进一步包括组播业务参数获取模块, 用于获取组播业务参数, 并 将所获取的组播业务参数发送至组播业务参数存储模块。
18、 根据权利要求 17所述的组播业务参数提供设备, 其特征在于, 所述组播业务参数包括媒体传输参数和编解码信息;
所述媒体传输参数包括: 组播业务地址和 /或端口, 和 /或组播源地 址和 /或端口。
19、 根据权利要求 18所述的组播业务参数提供设备, 其特征在于, 所述组播业务参数获取模块包括:
组播地址管理单元, 用于进行组播地址 /端口的分配和管理; 地址与内容关联单元, 用于建立组播业务内容标识、 组播源地址和 / 或端口和组播地址管理单元所管理的组播地址 /端口之间的对应关系。
20、 根据权利要求 19所述的组播业务参数提供设备, 其特征在于, 所述组播业务参数提供设备为业务部署功能实体 SSF。
21、 根据权利要求 18所述的组播业务参数提供设备, 其特征在于, 所述组播业务参数获取模块包括:
运营商接口单元, 运营商通过该单元, 将其所提供的组播业务的组 播地址 /端口和 /或组播源地址 /端口等业务信息注入组播业务参数存储模 块。
22、 根据权利要求 21所述的组播业务参数提供设备, 其特征在于, 所述组播业务参数提供设备为业务发现与选择功能实体 SD&SF。
23、 根据权利要求 18所述的组播业务参数提供设备, 其特征在于, 所述组播业务参数获取模块包括:
确定组播业务单元, 用于确定为 UE提供组播业务的组播地址或媒 体服务器;
组播业务参数提取单元, 用于将确定组播业务单元所确定的组播地 址的相关信息或媒体服务器的组播源地址 /或端口信息提取出来,并发送 至组播业务参数存储模块。
24、 根据权利要求 23所述的组播业务参数提供设备, 其特征在于, 所述组播业务参数提供设备为媒体资源定位功能实体 MRLF或媒体资 源代理功能实体 MRBF。
PCT/CN2008/070263 2007-02-09 2008-02-03 Procédé et système pour fournir un service multidiffusion et dispositif pour fournir un paramètre de service multidiffusion WO2008098504A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710080103.3A CN101242291A (zh) 2007-02-09 2007-02-09 一种提供组播业务的方法和系统以及组播业务参数提供设备
CN200710080103.3 2007-02-09

Publications (1)

Publication Number Publication Date
WO2008098504A1 true WO2008098504A1 (fr) 2008-08-21

Family

ID=39689666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070263 WO2008098504A1 (fr) 2007-02-09 2008-02-03 Procédé et système pour fournir un service multidiffusion et dispositif pour fournir un paramètre de service multidiffusion

Country Status (2)

Country Link
CN (1) CN101242291A (zh)
WO (1) WO2008098504A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457492A (zh) * 2010-10-20 2012-05-16 中国移动通信有限公司 流媒体文件的协同传输方法、系统以及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741915B (zh) * 2008-11-17 2013-04-24 华为技术有限公司 一种对等协议内容交互方法、设备及系统
CN108668178B (zh) * 2017-03-31 2020-12-04 华为技术有限公司 一种组播实现方法及相关网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735272A (zh) * 2004-07-29 2006-02-15 北京三星通信技术研究有限公司 为多媒体广播组播业务提供通知的方法
CN1809023A (zh) * 2005-01-19 2006-07-26 华为技术有限公司 组播业务处理方法和系统
WO2006123216A2 (en) * 2005-05-19 2006-11-23 Nokia Corporation Method and system for handover between service delivery platforms by following content

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735272A (zh) * 2004-07-29 2006-02-15 北京三星通信技术研究有限公司 为多媒体广播组播业务提供通知的方法
CN1809023A (zh) * 2005-01-19 2006-07-26 华为技术有限公司 组播业务处理方法和系统
WO2006123216A2 (en) * 2005-05-19 2006-11-23 Nokia Corporation Method and system for handover between service delivery platforms by following content

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO X. ET AL.: "Application of IP Multimedia Streaming Services in Third-generation Mobile Networks", COMPUTER AND MODERNIZATION, 31 July 2004 (2004-07-31), pages 84 - 87 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102457492A (zh) * 2010-10-20 2012-05-16 中国移动通信有限公司 流媒体文件的协同传输方法、系统以及设备

Also Published As

Publication number Publication date
CN101242291A (zh) 2008-08-13

Similar Documents

Publication Publication Date Title
US8077717B2 (en) Method and system for providing multicast services
EP1988666B1 (en) A streaming media network system, a realization method and a enable entity of streaming media service
WO2008049314A1 (fr) Procédé et système pour implémenter un service de multidiffusion ou un service de diffusion générale sur la base d'un réseau de nouvelle génération
EP1760963B1 (en) A method and an apparatus for resource admission control
CN100579209C (zh) 基于ngn网络实现时移电视业务的方法及系统、媒体资源设备
US8307049B2 (en) Method and device for obtaining media description information of IPTV services
WO2007093124A1 (fr) Procédé et système d'ordonnancement de ressources multimédia
KR101433225B1 (ko) Ims 아키텍쳐 네트워크에서 ip 텔레비젼 서비스에 액세스하기 위한 시스템
WO2009117919A1 (zh) 一种内容点播业务的建立方法、系统和装置
EP2071839A1 (en) A method, a system and a device for channel authorization of television living broadcast by network
WO2007028336A1 (fr) Procede et reseau de traitement de contenu d'un message de protocole d'ouverture de session
WO2009024092A1 (fr) Procédé et système permettant la commande d'autorisation de ressource de service
WO2009024081A1 (fr) Procédé, dispositif et système pour traiter la continuité du flux multimédia dans une session
WO2008131651A1 (fr) Procédé, système et dispositif de commande de ressource multidiffusion
WO2009052762A1 (fr) Procédé, dispositif et système d'amélioration de service de diffusion (bc)
WO2007068206A1 (fr) Procede et reseau de mise en marche d'informations concernant la capacite de session
CN100525256C (zh) Sip多媒体系统中请求消息的传输方法及设备
WO2011015015A1 (zh) 内容上行方法及内容交付功能实体
CN101155046A (zh) 实现组播控制的网络控制系统和方法
WO2008154884A1 (fr) Procédé, système et dispositif d'accès au service pour un fournisseur de service de télévision par protocole internet contracté sans attribution
WO2008098504A1 (fr) Procédé et système pour fournir un service multidiffusion et dispositif pour fournir un paramètre de service multidiffusion
WO2009049518A1 (fr) Procédé, système et entité d'établissement de session de système de télévision par internet ip
WO2008089702A1 (fr) Système et procédé de mise en oeuvre de service multimédia en flux, et entité de fonction de commande de ce service
WO2008154849A1 (fr) Procédé et entité de fonction pour récupérer les informations de sélection du service iptv
WO2009003408A1 (fr) Procédé de commutation d'un flux multimédia, système et équipement dans un service de télévision à décalage temporel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08706637

Country of ref document: EP

Kind code of ref document: A1