WO2008098482A1 - A method for realizing fast handover in enhanced uplink - Google Patents

A method for realizing fast handover in enhanced uplink Download PDF

Info

Publication number
WO2008098482A1
WO2008098482A1 PCT/CN2008/000306 CN2008000306W WO2008098482A1 WO 2008098482 A1 WO2008098482 A1 WO 2008098482A1 CN 2008000306 W CN2008000306 W CN 2008000306W WO 2008098482 A1 WO2008098482 A1 WO 2008098482A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
uplink
target cell
channel
enhanced uplink
Prior art date
Application number
PCT/CN2008/000306
Other languages
English (en)
French (fr)
Inventor
Hui Chen
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to EP08706484.6A priority Critical patent/EP2129147B1/en
Publication of WO2008098482A1 publication Critical patent/WO2008098482A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a time division synchronous code division multiple access system, and more particularly to a method for enhancing fast uplink switching in a time division synchronous code division multiple access system.
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • HSUPA High Speed Uplink Packet Access
  • the UE (User Equipment) using the HSUPA service operates in the CELL-DCH (Dedicated Channel State) state.
  • a new transport channel E-DCH (Enhanced Uplink Dedicated Transport Channel) has been added to HSUPA to enhance the uplink data bearer on the transport channel.
  • the TTI (transmission time interval) of the E-DCH is 5 ms.
  • the physical channels associated with E-DCH are:
  • An E-AGCH channel (E-DCH absolute grant channel, ie, an enhanced absolute grant channel), is a control channel for Node B (base station) transmission grant information;
  • E-PUCH E-DCH uplink physical channel, also referred to as an enhanced uplink physical channel
  • E-DCH uplink physical channel is a service channel for the UE to carry an E-DCH type coded combined transmission channel, and information related to the auxiliary scheduling is also transmitted on the channel;
  • the E-RUCCH (E-DCH random access uplink control channel, that is, the enhanced uplink random access uplink control channel) is a physical layer control channel, and is used for transmitting information related to the auxiliary scheduling by the UE without authorization.
  • E-RUCCH uses random access physical channel resources;
  • the E-HICH (E-DCH hybrid automatic repeat request indication channel, that is, the enhanced hybrid automatic repeat request indication channel) is a physical layer control channel for the Node B to carry HARQ (Hybrid Automatic Repeat Request) indication information.
  • the HSUPA services are classified into scheduling services and non-scheduled services according to different scheduling modes.
  • the resources of the non-scheduled services are allocated by the SRNC (Serving Radio Network Controller) for the UE, and the allocation mode is the same as the existing dedicated channel allocation mode.
  • the Node B allocates an enhanced uplink resource pool to the Node B, and the Node B allocates resources for the single UE.
  • the UE In the scheduling service, the UE needs to "" some information to assist the scheduling of the Node B.
  • the information includes the UE buffer information, the power headroom, the path loss measurement information of the local cell and the neighboring cell, etc.
  • the auxiliary scheduling information When the UE has an authorized E- In PUCH, the auxiliary scheduling information will be sent through the E-PUCH channel; when there is no authorization, it will be sent through the E-RUCCH channel.
  • the UE When the UE has uplink data to be sent, it may trigger the transmission of the auxiliary scheduling information.
  • the authorization information is not every The UE transmits to the UE, and the scheduling function entity in the Node B decides whether/when it is sent according to the current network condition and the priority status of each competing UE.
  • the UE In the scheduling service, the UE first requests the resource through the E-RUCCH, and the Node B sends the absolute authorization information to the UE through the E-AGCH channel, including the power authorization information and the physical channel authorization information.
  • the power grant information is used to allocate available system interference resources among the competing UEs; the physical channel grant information is used to allocate time slots and code resources used by the E-PUCH among the competing UEs.
  • the authorization information on one E-AGCH is used only once for one UE.
  • the minimum duration for which the authorization applies is an E-DCH TTI.
  • Variable-length authorization can also be supported by using RDI (Resource Duration Indicator).
  • RDI can indicate The UE uses the authorization resource in the next 8 TTIs.
  • the UE listens to a set of E-AGCH channels, which are configured by the upper layer of the network for the UE. After successfully decoding, the UE reads the authorization information, and the timing time specified by the protocol is n E- After the AG cH, data is transmitted through the authorized E-PUCH channel.
  • the Node B decodes the received E-PUCH channel data, and returns an ACK on the E-HICH channel after the decoding succeeds; if it is unsuccessful, it returns a NACK, and the UE needs to perform retransmission processing according to the retransmission mechanism.
  • the working process of the HSUPA scheduling service is as shown in FIG. 1.
  • the UE requests the SRNC to establish an RRC (Radio Resource Control) connection, wherein the connection reason is to initiate a packet service, and the steps in FIG. 1 are specifically described as follows:
  • the SRNC passes the admission control process, and considers that an enhanced uplink can be established for the UE, and the radio link establishment process is initiated to the Node B by using the NBAP (Node B Application Protocol) protocol, where the parameters related to the enhanced uplink access, such as transmission, are transmitted.
  • NBAP Node B Application Protocol
  • Channel related information E-DCH service wireless Link number, etc.; if a wireless link has been established for the UE before, the configuration of the enhanced uplink parameter will be performed through the radio link reconfiguration process;
  • the Node B receives the configuration parameter, and allocates an E-AGCH channel and an E-RNTI (E-DCH radio link temporary identifier) to the UE from the enhanced uplink common resource pool of the cell, and establishes a response by using the NBAP radio link. Or the radio link reconfiguration response is returned to the SR C;
  • E-AGCH E-AGCH radio link temporary identifier
  • the SRNC initiates a radio bearer setup request to the UE by using an RC protocol, where there are E-DCH transport channel configuration information, E-PUCH related information, E-AGCH channel information, E-HICH channel information, etc.; With the wireless link, the configuration related to the enhanced uplink access will be performed through the radio bearer reconfiguration process;
  • the UE receives the configuration parameter, and returns a response message to the network side; determining, according to the configuration parameter, that the E-DCH transmission service starts to be available;
  • the UE When the amount of data in the buffer corresponding to the uplink radio bearer (ie, the radio bearer mapped to the E-DCH) is changed from 0 to non-zero, the UE initiates an E-RUCCH random access procedure, and carries the auxiliary scheduling information. ;
  • the Node B After detecting the random access request of the UE, the Node B joins the UE to the contention UE group that uses the E-DCH resource, according to the resource status of the cell, the QOS attribute of the enhanced uplink radio bearer of the UE, and the UE auxiliary scheduling information. Scheduling the UE, and transmitting the authorization information to the UE through the E-AGCH channel after allocating the appropriate resources;
  • the UE After receiving the E-AGCH, the UE sends data on the authorized E-PUCH after the timing time specified by the protocol n E _ AGCH ; if the UE buffer has data to be transmitted, the auxiliary scheduling information will also follow send;
  • Node B decodes data on the E-PUCH channel, and returns ACK (Acknowledgement)/NACK (Retransmission) information on the E-HICH channel after the protocol specified timing time n E-HICH ;
  • the Node B If the last authorized time of the E-AGCH has arrived, the Node B continues to allocate resources to the UE according to the scheduling policy, and sends the authorization information through the E-AGCH channel.
  • step 112 There is still data in the UE buffer to be sent, but when there is no authorization information, the resource is requested through the E-RUCCH.
  • the UE requests the scheduling resource from the Node B by using the E-RUCCH.
  • the E-RUCCH channel is a random access channel, and the channel resource is shared with the PRACH (random access physical channel).
  • the UE obtains the random access resource information used by the cell from the cell broadcast message, and sends an E-RUCCH request when necessary. Resources. Since the random access is performed after the uplink synchronization process in the TD-SCDMA system, the random access resource information includes the parameters required for uplink synchronization in addition to the random access physical channel information, and the uplink synchronization code is fast.
  • Each configuration instance includes information such as a random access physical channel, an available synchronization code, and a fast physical access channel.
  • the cell currently providing the HSUPA service for the UE is called an E-DCH serving cell.
  • E-DCH serving cell change that is, a handover occurs
  • the RNC sends different handover control commands according to different target cell and source cell parameter settings.
  • the source and target cells belong to the same Node B
  • the UE's service RC Generally, the radio link of the UE is reconfigured into the new cell by the physical channel reconfiguration message; when the source and the target cell do not belong to the same Node B, the serving RNC of the UE generally passes the transport channel reconfiguration or the radio bearer reconfiguration process. The radio link of the UE is reconfigured into the new cell.
  • the UE After the radio link is configured to the new cell, the UE first needs to initiate an uplink synchronization process to establish uplink synchronization, and other services can be performed after the uplink synchronization is completed.
  • the UE decides to request the enhanced uplink scheduling resource from the Node B according to its own buffer condition, it first needs to obtain the random access resource information from the broadcast message, and the process takes between 40ms and 350ms. This delay is difficult to accept for enhancing uplink services, especially for real-time services such as VoIP (VoIP) and video.
  • VoIP VoIP
  • the technical problem to be solved by the present invention is a time-division synchronous code division multiple access system to enhance the fast handover of the uplink, and to eliminate the high-speed uplink packet access scheduling service, which needs to read the cell broadcast information after the cell handover. Enhance uplink service delay and achieve fast switching.
  • the present invention provides a method for enhancing fast handover of an uplink, which is applied to a time division synchronous code division multiple access system, and includes the following steps: (a) the user terminal UE performs cell handover, and the network side determines that the UE carries the random access resource information of the target cell in the handover command sent to the UE when the target cell can perform the enhanced uplink service;
  • the UE after the UE switches to the target cell, if there is data in the buffer corresponding to the enhanced uplink radio bearer to be transmitted, the UE initiates enhanced uplink random access according to the random access resource information carried in the handover command to the base station Node. B requests to schedule resources.
  • the random access resource information includes one or more random access physical channels and enhanced uplink random access synchronization code information.
  • the random access resource information further includes a random access attempt number and a random access timer.
  • the handover command is a physical channel reconfiguration request, or a transport channel reconfiguration request, or a radio bearer reconfiguration request in the RRC message.
  • the cell handover is performed by the user terminal to enhance the uplink serving cell change, or the user terminal serving cell change is accompanied by a change of the normal uplink channel to the enhanced uplink channel type.
  • the uplink access code and the fast physical access channel carried in the random access physical channel and the handover command belong to the same random access resource configuration instance in the cell system information.
  • the uplink synchronization code corresponding to the enhanced uplink random access in the synchronization code information carried in the handover command is used for uplink synchronization.
  • the Node B after detecting the uplink synchronization code of the UE, the Node B returns an acknowledgement message on the fast physical access channel FPACH, and the UE only uses the subframe number when receiving the fast physical access channel. Selecting one of the random access physical channels carried in the handover command initiates enhanced uplink random access.
  • the network side determines that the UE is in the target.
  • the cell can perform enhanced uplink services.
  • the network side is a serving radio network controller SRNC of the UE. Further, in the step (a), when the base station Node B to which the target cell belongs does not belong to the SRNC control of the UE, the SRNC obtains the random access resource information of the target cell from the drift radio network controller DRNC through the Iur interface.
  • the process of the UE switching to the target cell includes: after the UE receives the handover command, the UE reestablishes the radio link in the target cell, and after the radio link is successfully reestablished, the handover command response is returned to the network side. Message.
  • the invention carries the random access resource information of the target cell in the handover command, so that the UE can obtain the random access resource of the target cell in advance, and after the UE switches to the target cell, the E-RUCCH access can be immediately applied to the Node B.
  • the resource avoids the time taken by the UE to read the cell broadcast information and obtain the random access resource information therefrom, greatly improves the switching speed of the E-DCH link, and improves the speed of the uplink random access after the handover. . BRIEF abstract
  • 1 is a flow chart of a conventional enhanced uplink configuration and data transmission
  • FIG. 2 is a flow chart of configuration and data transmission of E-DCH link switching signaling between Node Bs according to the present invention.
  • the present invention provides a method for improving the switching speed of an E-DCH link in an HSUPA scheduling service.
  • the network upper layer includes a handover command to the UE.
  • the E-RUCCH random access resource related information of the target cell enables the UE to immediately initiate a scheduling request after performing uplink synchronization in the switched new cell, and does not need to read system information of the new cell.
  • the following takes the TD-SCDMA system as an example.
  • the network side performs a cell handover decision for the UE according to the measurement information of the UE, and determines that the UE performs the enhanced uplink access service in the target cell, and the network side carries the target cell random in the handover command sent to the UE.
  • Access resource information The handover scenario here includes two cases. One is that the UE is in the CELL-DCH state and performs the HSUPA service in the source cell, and the HSUPA service is also performed in the target cell; the other is that the UE is in the CELL-DCH state and is in the source cell.
  • the uplink service (i.e., using a conventional dedicated physical channel) performs HSUPA traffic in the target cell.
  • the former case is that the E-DCH serving cell changes; the latter case is that the serving cell changes with the channel type change.
  • the SRNC determines that the UE can perform the enhanced uplink service in the target cell, including: the target cell supports the enhanced uplink service, the current service attribute of the UE can perform the enhanced uplink service, and the target cell can accept the UE to perform the enhanced uplink service.
  • the random access resource information mainly includes one or more random access physical channels (when the E-RUCCH is 10 ms, there are at most 2 random access physical channels) and the E-RUCCH synchronization code information; Some random access control parameters, such as random access attempts and random access timers. As shown in Table 1, it is an example of random access resource information.
  • a maximum of two random access channels are defined in the PRACH Definition (since the TTI of the E-RUCCH is 10 ms maximum, a maximum of two PRACH channels need to be defined); E-RUCCH SYNC-UL codes bitmap indicates that the enhanced uplink random access can be initiated. Synchronization code information used; N-RUCCH and T-RUCCH are used to control the number of attempts and timing of random access.
  • the handover command sent by the network side to the UE may be one of the following R C (Radio Resource Control) messages: a physical channel reconfiguration request, a transport channel reconfiguration request, and a radio bearer reconfiguration request.
  • R C Radio Resource Control
  • Which message is selected depends on the decision of the RNC. For example, when the transport channel configuration is not changed, the physical channel reconfiguration request message may be preferentially selected. When the transport channel configuration needs to be changed but the radio bearer configuration is not changed, the transport channel may be preferentially selected. The request message is configured. When the radio bearer configuration needs to be changed, the radio bearer reconfiguration message may be preferentially selected.
  • the serving RNC of the UE obtains the random access resource configuration of the target cell from the DRNC (drift RNC) through the Iur interface, and sends the configuration to the UE through the handover command.
  • DRNC drift RNC
  • the random access resource information will contain one or two resource information of random access physical channels.
  • the existing random access procedure of TD-SCDMA is always accompanied by an uplink synchronization process.
  • 3GPP has a corresponding relationship between the random access physical channel used and the uplink synchronization code (SYNCJJL) and fast physical access channel (FPACH) used in the uplink synchronization process. They should belong to the cell broadcast information.
  • SYNCJJL uplink synchronization code
  • FPACH fast physical access channel
  • the uplink synchronization code and FPACH channel in the handover command are configured in the Uplink Timing Advance Control information unit. As shown in Table 1, the uplink synchronization code and the FPACH channel are configured in the handover command, where SYNC_UL codes.
  • the bitmap is the synchronization code information that the UE can use. Some of these synchronization codes are used for ordinary random access, and others are used for E-RUCCH random access.
  • the synchronization code for E-RUCCH random access in the E-RUCCH SYNC_UL codes bitmap in Table 1 shall be a subset of the SYNC-UL codes bitmap available synchronization codes.
  • the UE selects one of the plurality of random access physical channels to transmit the E-RUCCH channel, and the selection thereof should be between the FPACH channel and the random access physical channel in the universal random access procedure defined by the 3GPP specification TS 25.224
  • the relationship between the FPACH channel number and the random access channel satisfies:
  • the NRACH is the number of random access physical channels corresponding to the FPACH, and the NRACH is not greater than Li; Li is the transport block length corresponding to the PRACHs, and is generally 1 or 2 for the E-RUCCH; SFN is the user The system subframe number when the terminal receives an acknowledgment on FPAC3 ⁇ 4.
  • the second step after the UE switches to the target cell, if there is data in the buffer corresponding to the enhanced uplink radio bearer to be transmitted, the enhanced uplink random access is performed, and the resource is requested from the Node B.
  • the UE initiates enhanced uplink random access according to the random access resource information carried in the handover command.
  • the UE After receiving the handover command, the UE first needs to reestablish the radio link in the target cell.
  • the process of the UE re-establishing the link includes an uplink synchronization process, and after the UE re-establishes the wireless link successfully (that is, after the synchronization is completed), the network is sent to the network.
  • the side returns to the handover completion response, that is, the handover procedure is completed, and the UE switches to the target cell.
  • the synchronization process of the UE reestablishing the radio link and the subsequent synchronization process of enhancing the uplink random access may be separate or combined into one process.
  • Separatate means that after receiving the handover command, the UE first selects the synchronization code of the ordinary random access, initiates uplink synchronization, and returns the handover completion response to the network side after the synchronization process is completed, and then the UE further responds according to the enhanced uplink radio bearer. Whether there is data in the rush zone needs to be sent to decide whether to initiate enhanced uplink random access, and if necessary, to initiate enhanced uplink synchronization and random access.
  • “Merge” means that after the UE receives the handover command, if the UE wishes to perform HSUPA service The UE should select a synchronization code dedicated to E-RUCCH random access according to the synchronization code information carried in the handover command, and the Node B sends the acknowledgement information on the FPACH channel after detecting the synchronization code, and the UE detects the acknowledgement information after detecting the acknowledgement information.
  • the Node B Upon receiving the enhanced uplink random access request of the UE, the Node B allocates enhanced uplink resources to the UE according to its scheduling algorithm.
  • the SRNC configures the target Node B in a typical 2-step manner, that is, first establishes a radio link in the target cell, and then configures the E-DCH link to the radio link through the radio link reconfiguration process.
  • the E-DCH handover procedure refer to the E-DCH handover procedure in 3GPP TS25.931.
  • the SRNC (Serving RNC) performs a cell handover decision according to the measurement information of the UE, and determines that the UE uses the HSUPA service in the target cell.
  • the SRNC initiates a radio link setup procedure to the target Node B through the NBAP (Node B Application Part) protocol to configure a new radio link. The response is returned after the NodeB configuration is successful.
  • NBAP Node B Application Part
  • the SRNC requires the source Node B to delete through the NBAP synchronous radio link reconfiguration process.
  • the E-DCH resource associated with the UE and set the effective time of the configuration. After the source Node B is configured successfully, it returns a response.
  • the SRNC performs the synchronous radio link reconfiguration process of the NBAP, and the target Node B establishes an E-DCH resource for the UE on the radio link established in step 201, and sets an effective time.
  • the effective time is the same as that in step 202. After the Node B configuration succeeds, it returns a response.
  • the SRNC sends a handover command to the UE.
  • the SRNC configures the resource of the target cell to the UE by using a transport channel reconfiguration request message.
  • the random access resource information of the target cell is also included, and the random access resource information includes the content described in Table 1.
  • the UE receives the transport channel reconfiguration request message, and initiates uplink synchronization in the target cell to reestablish the link. If the effective time is allowed, and the UE determines that there is data in the enhanced uplink buffer to be transmitted, the UE may directly select the synchronization code corresponding to the E-RUCCH random access to initiate uplink synchronization; the UE may also initiate normal uplink synchronization to complete the reconstruction. The link, after the effective time comes, initiates uplink synchronization of the E-RUCCH random access.
  • the Node B returns an acknowledgement message on the FPACH channel after detecting the synchronization code of the UE.
  • the following steps 207 and 208 have no determined timing relationship, step 209 is performed after step 208, and 210, 211, 212 are executed after 207:
  • the UE initiates enhanced uplink random access, selects a random access channel according to the system subframe number when the FPACH returns in step 206, and sends an E-RUCCH.
  • the UE returns a transport channel reconfiguration response message to the RNC.
  • the SRNC notifies the source Node B to delete the radio link of the UE.
  • the Node B sends the authorization information to the UE through the E-AGCH channel.
  • the Node B decodes the data on the E-PUCH channel and returns ACK/NACK information on the E-HICH channel.
  • the Node B decodes the data on the E-PUCH channel and returns ACK/NACK information on the E-HICH channel.
  • the present invention carries the random access resource information of the target cell in the handover command, so that the UE can obtain the random access resource of the target cell in advance, and after the UE link is reconfigured to the new cell, the E-RUCCH access can be initiated immediately.
  • the Node B applies for resources, avoids the time taken by the UE to read the cell broadcast information and obtain the random access resource information therefrom, greatly improves the switching speed of the E-DCH link, and improves the uplink random access after the handover. speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种增强上行链路实现快速切换的方法
技术领域
本发明涉及时分同步码分多址系统,尤其涉及一种时分同步码分多址系 统中增强上行链路实现快速切换的方法。
背景技术
2006年 3月, 3GPP ( 3rd Generation Partnership Project, 第三代合作伙 伴项目)通过了 TD-SCDMA (时分同步码分多址) 系统增强上行链路的立 项申请。增强上行链路一般被称为 HSUPA( High Speed Uplink Packet Access, 高速上行分组接入), 旨在通过先进的技术提高上行链路的效率, 以有效地 支持 web浏览、 视频、 多媒体信息和其他基于 IP的业务。
使用 HSUPA业务的 UE( User Equipment,用户终端)工作在 CELL—DCH (专用信道状态)状态。 HSUPA中新增了一种传输信道 E-DCH (增强上行 链路专用传输信道) , 增强上行数据承载在该传输信道上, E-DCH 的 TTI (传输时间间隔)为 5ms。
与 E-DCH相关的物理信道有:
E-AGCH信道(E-DCH绝对授权信道, 即增强绝对授权信道) , 是控 制信道, 用于 Node B (基站)传输授权信息;
E-PUCH ( E-DCH上行物理信道, 又称增强上行物理信道), 是业务信 道, 用于 UE承载 E-DCH类型的编码组合传输信道, 辅助调度相关的信息 也在该信道上传输;
E-RUCCH ( E-DCH随机接入上行控制信道, 即增强上行链路随机接入 上行控制信道) , 是物理层控制信道, 用于 UE在无授权的情况下, 传输辅 助调度相关的信息, E-RUCCH使用随机接入物理信道资源;
E-HICH ( E-DCH 混合自动重传请求指示信道, 即增强混合自动重传请 求指示信道) , 是物理层控制信道, 用于 Node B携带 HARQ (混合自动重 传请求)指示信息。 HSUPA业务按调度方式的不同分为调度业务和非调度业务, 其中非调 度业务的资源由 SRNC (服务无线网络控制器) 为 UE分配, 分配方式同现 有的专用信道分配方式; 在调度业务中, 由 SRNC为 Node B分配增强上行 链路资源池, 由 Node B为单个 UE分配资源。
在调度业务中, UE需要上 "^一些信息以辅助 Node B的调度,这些信息 包括 UE緩沖区信息、 功率余量、 本小区和邻小区的路损测量信息等。 当 UE有授权的 E-PUCH时, 辅助调度信息将通过 E-PUCH信道发送; 当没有 授权时, 将通过 E-RUCCH信道发送。 当 UE有上行数据需要发送时, 就可 能触发辅助调度信息的发送。 授权信息并不在每个 ΤΉ中向 UE发送, 完全 由 Node B中的调度功能实体根据当前网络状况和各竟争 UE的优先级情况 来决定是否 /何时发送。
调度业务中, UE首先通过 E-RUCCH请求资源, Node B通过 E-AGCH 信道向 UE发送绝对授权信息,其中包括功率授权信息和物理信道授权信息。 功率授权信息用于在各竟争 UE之间分配可用的系统干扰资源; 物理信道授 权信息用于在各竟争 UE之间分配 E-PUCH使用的时隙和码资源。 一条 E-AGCH上的授权信息一次只给一个 UE使用, 授权适用的最小持续时间是 一个 E-DCH TTI, 也可以通过使用 RDI (资源持续时间指示)支持可变长度 的授权, 比如 RDI可以指示 UE在接下来的 8个 TTI中使用该授权资源。 UE对一组 E-AGCH信道进行侦听, 这组 E-AGCH信道是由网络高层为 UE 配置的, UE—旦解码成功就读取其中的授权信息, 并在协议规定的定时时 间 nE-AGcH后通过授权的 E-PUCH信道发送数据。 Node B对接收的 E-PUCH 信道数据进行解码, 解码成功后在 E-HICH信道上返回 ACK; 不成功则返 回 NACK, 此时 UE需要根据重传机制进行重传处理。
HSUPA调度业务的工作过程如附图 1所示,在步骤 101之前, UE请求 SRNC建立 RRC (无线资源控制)连接, 其中连接原因是发起分组业务, 图 1中各步骤具体说明如下:
101 : SRNC经过接纳控制过程, 认为可以为该 UE建立增强上行链路, 通过 NBAP (节点 B应用协议)协议向 Node B发起无线链路建立过程, 其 中含增强上行接入相关的参数, 如传输信道相关的信息、 E-DCH服务无线 链路号等; 如果之前已为该 UE建立过无线链路, 那么将通过无线链路重配 置过程进行增强上行参数的配置;
102: Node B接收配置参数, 并从该小区的增强上行公共资源池中为该 UE分配 E-AGCH信道和 E-RNTI ( E-DCH无线链路临时标识),通过 NBAP 的无线链路建立响应或无线链路重配置响应返回给 SR C;
103: SRNC通过 RC协议向 UE发起无线承载建立请求,其中有 E-DCH 传输信道配置信息、 E-PUCH相关的信息、 E-AGCH信道信息、 E-HICH信 道信息等; 如果之前已经为 UE建立了无线链路, 那么将通过无线承载重配 置过程进行增强上行接入相关的配置;
104: UE接收配置参数, 并向网络侧回复响应消息; 根据配置参数确定 E-DCH传输业务开始可用;
105: UE增强上行无线承载(即映射到 E-DCH上的无线承载)对应的 緩冲区中数据量由 0变为非 0时, UE发起 E-RUCCH随机接入过程, 带上 辅助调度信息;
106: Node B检测到该 UE的随机接入请求后, 将 UE加入使用 E-DCH 资源的竟争 UE群中, 根据小区资源状况、 UE的增强上行无线承载的 QOS 属性、 UE 辅助调度信息等对该 UE 进行调度, 分配合适的资源后通过 E-AGCH信道向 UE发送授权信息;
107: UE收到 E-AGCH后, 在协议规定的定时时间 nE_AGCH后, 在授权 的 E-PUCH上发送数据; 若 UE緩冲区还有数据待传输, 辅助调度信息也将 随之发送;
108: Node B对 E-PUCH信道上的数据进行解码, 并在协议规定的定时 时间 nE-HICH后, 在 E-HICH信道上返回 ACK (确认) /NACK (重发)信息;
109: 如果上一次 E-AGCH的授权使用时间已到, Node B根据调度策略 继续为该 UE分配资源, 通过 E-AGCH信道发送授权信息;
110-111: 同步骤 107和 108;
112: UE緩沖区中还有数据需要发送, 但当前没有授权信息时, 通过 E-RUCCH申请资源。 步骤 105和步骤 112中, UE使用 E-RUCCH向 Node B请求调度资源。 E-RUCCH信道是随机接入信道, 它和 PRACH (随机接入物理信道)共享信 道资源, UE从小区广播消息中获得本小区使用的随机接入资源信息, 在必 要的时候发送 E-RUCCH请求资源。 由于 TD-SCDMA系统中, 随机接入是 在上行同步过程后进行的,因而随机接入资源信息除了包含随机接入物理信 道信息外, 还包含上行同步所需要的参数, 如上行同步码、 快速物理接入信 道等信息。 在一个小区中, 最多同时支持 16种随机资源配置实例, 可以参 考 3GPP TS25.331中的 PRACH system information list ( PRACH系统信息列 表)信息单元。 每个配置实例中包含随机接入物理信道、 可用同步码、 快速 物理接入信道等信息。
当前为 UE提供 HSUPA业务的小区称为 E-DCH服务小区。 当发生 E-DCH服务小区改变时(即发生了切换) , RNC根据目标小区与源小区参 数设置的不同而发送不同的切换控制命令,当源、目标小区属于同一 Node B 时, UE的服务 R C—般通过物理信道重配置消息将 UE的无线链路重新配 置到新小区中; 当源、 目标小区不属于同一 Node B时, UE的服务 RNC— 般通过传输信道重配置或无线承载重配置过程将 UE的无线链路重新配置到 新小区中。 无线链路配置到新小区后, UE首先需要发起上行同步过程建立 上行链路的同步, 完成上行链路同步后才可以进行其他业务。 当 UE根据自 己的緩沖区情况决定向 Node B请求增强上行链路的调度资源时, 首先需要 从广播消息中获取随机接入资源信息, 这一过程需要花费的时间在 40ms到 350ms之间。 这一时延对于增强上行业务, 尤其当前进行的是 VoIP (网络 电话) 、 视频等实时业务的应用场景来说是很难接受的。 发明内容
本发明要解决的技术问题是一种时分同步码分多址系统增强上行链路 实现快速切换的方法, 消除高速上行分组接入调度业务中, 由于小区切换后 需要读取小区广播信息带来的增强上行业务时延, 实现快速切换。
为了解决上述技术问题,本发明提供了一种增强上行链路实现快速切换 的方法, 应用于时分同步码分多址系统中, 包含如下步骤: ( a )用户终端 UE发生小区切换, 网络侧确定 UE在目标小区可以进行 增强上行业务时, 在发往 UE的切换命令中携带目标小区的随机接入资源信 息;
( b ) UE切换到目标小区后,如果增强上行无线承载对应的緩冲区中有 数据需要发送, UE根据切换命令中携带的随机接入资源信息发起增强上行 链路随机接入, 向基站 Node B请求调度资源。
进一步的, 所述步骤(a ) 中, 随机接入资源信息包括一条或多条随机 接入物理信道和增强上行链路随机接入同步码信息。
进一步的,所述随机接入资源信息中还包含随机接入尝试次数和随机接 入定时器。
进一步的, 所述步骤 ) 中, 所迷切换命令为无线资源控制 RRC消息 中的物理信道重配置请求、或传输信道重配置请求、或无线承载重配置请求。
进一步的, 所述小区切换为用户终端增强上行链路服务小区发生改变, 或为用户终端服务小区发生改变伴随普通上行信道到增强上行信道类型的 改变。
进一步的, 所述随机接入物理信道与切换命令中携带的上行同步码、快 速物理接入信道属于小区系统信息中同一随机接入资源配置实例。
进一步的, 所述步骤(b )中, UE发起增强上行随机接入时, 使用切换 命令中携带的同步码信息中增强上行链路随机接入对应的上行同步码进行 上行同步。
进一步的, 所述步骤(b ) 中, Node B检测到 UE的上行同步码后在快 速物理接入信道 FPACH上返回确认消息, UE才艮据接收所述快速物理接入 信道时的子帧号从切换命令中携带的随机接入物理信道中选择一条发起增 强上行链路随机接入。
进一步的, 所迷步骤(a ) 中当目标小区支持增强上行业务, 且 UE请 求的业务属性可以进行增强上行业务且目标小区的资源情况可以接纳该 UE 进行增强上行业务, 网络侧确定 UE在目标小区可以进行增强上行业务。
进一步的, 所述网络侧为 UE的服务无线网络控制器 SRNC。 进一步的, 所述步骤(a ) 中, 当目标小区所属基站 Node B 不属于 UE 的 SRNC控制时,所述 SRNC通过 Iur接口从漂移无线网络控制器 DRNC中 获得目标小区的随机接入资源信息。
进一步的, 所述步骤(b ) 中, UE切换到目标小区的过程包括: UE收 到所述切换命令后在目标小区重建无线链路, 重建无线链路成功后, 向网络 側返回切换命令响应消息。
本发明通过在切换命令中携带目标小区的随机接入资源信息, 使得 UE 能够提前获知目标小区的随机接入资源, 在 UE切换到目标小区后, 可以马 上发起 E-RUCCH接入向 Node B申请资源, 避免了 UE读取小区广播信息 并从中获得随机接入资源信息所花费的时间, 大大提高了 E-DCH链路的切 换速度, , 也提高了切换后增强上行链路随机接入的速度。 附图概述
图 1是现有的增强上行链路配置及数据发送流程图;
图 2是本发明 Node B间 E-DCH链路切换信令配置及数据发送流程图。
本发明的较佳实施方式
本发明提供了在 HSUPA调度业务中, 提高 E-DCH链路切换速度的方 法,在用户进行高速上行分组接入调度业务并发生 E-DCH服务小区改变时, 网络高层对 UE的切换命令中包含目标小区的 E-RUCCH随机接入资源相关 的信息 ,使得 UE在切换后的新小区中进行上行同步后能马上发起调度请求, 不需要读取新小区的系统信息。
下面以 TD-SCDMA系统为例进行介绍。
第一步、 网络侧根据 UE的测量信息为 UE做出小区切换判决, 并确定 UE在目标小区可以进行增强上行接入业务时, 网络側在发往 UE的切换命 令中带上目标小区的随机接入资源信息。 这里的切换场景包括两种情况, 一种是 UE处于 CELL— DCH状态并在 源小区进行 HSUPA业务, 在目标小区也进行 HSUPA业务; 另一种是 UE 处于 CELL— DCH状态并在源小区进行普通上行业务(即, 使用传统的专用 物理信道) , 在目标小区进行 HSUPA业务。 前一种情况就是 E-DCH服务 小区发生改变;后一种情况是服务小区发生改变伴随信道类型的改变。 SRNC 判断 UE在目标小区可以进行增强上行业务的依据包括: 目标小区支持增强 上行业务、 UE当前的业务属性可以进行增强上行业务、 目标小区可以接纳 该 UE进行增强上行业务。
随机接入资源信息中主要包括 1 条或多条随机接入物理信道 (当 E-RUCCH的 ΤΉ是 10ms时, 最多有 2条随机接入物理信道) 、 E-RUCCH 同步码信息; 也可以包括一些随机接入控制参数, 如随机接入尝试次数和随 机接入定时器等信息。 如表 1所示, 为一个随机接入资源信息的例子。 其中 PRACH Definition中定义了最多 2条随机接入信道(由于 E-RUCCH的 TTI 最大是 10ms, 因而最多需要定义 2条 PRACH信道); E-RUCCH SYNC— UL codes bitmap表示发起增强上行随机接入可以使用的同步码信息; N-RUCCH 和 T-RUCCH用于控制随机接入的尝试次数和定时时间。
Figure imgf000009_0001
Figure imgf000010_0001
网络侧发往 UE的切换命令可以是以下 R C(无线资源控制)消息之一: 物理信道重配置请求、传输信道重配置请求、 无线承载重配置请求。 具体选 择哪条消息取决于 RNC的决策, 比如当不改变传输信道配置时, 可以优先 选择物理信道重配置请求消息,当需要改变传输信道配置但不改变无线承载 配置时, 可以优先选择传输信道重配置请求消息, 当需要改变无线承载配置 时, 可以优先选择无线承载重配置消息。
当目标 Node B不属于 UE的服务 RNC控制时, UE的服务 RNC通过 Iur 接口从 DRNC (漂移 RNC ) 中获得目标小区的随机接入资源配置, 并通过 切换命令发送给 UE。
如表 1, 随机接入资源信息中将包含一条或 2条随机接入物理信道的资 源信息。 TD-SCDMA现有的随机接入流程中总是伴随有上行同步过程。 3GPP 在设计随机接入过程时,其中所用的随机接入物理信道和上行同步过程所用 的上行同步码(SYNCJJL ) 、 快速物理接入信道(FPACH )有着对应的关 系, 它们应属于小区广播信息中 PRACH system information list (随机接入物 理信道系统信息列表) 中的同一配置实例 (目前一个小区最多支持 16个随 机接入资源配置实例, 可以参考 3GPP TS25.331 中的 PRACH system information list信息单元) 。
切换命令中的上行同步码、 FPACH信道配置在 Uplink Timing Advance Control (上行定时提前控制)信息单元中, 如表 1 所示就是上行同步码和 FPACH信道在切换命令中的配置, 其中 SYNC— UL codes bitmap是 UE可以 使用的同步码信息, 这些同步码中有些用于普通随机接入、 另一些用于 E-RUCCH随机接入。 表 1 中的 E-RUCCH SYNC_UL codes bitmap中用于 E-RUCCH随机接入的同步码应是 SYNC— UL codes bitmap可用同步码的一 个子集。
Uplink Timing Advance Control (上行定时提前控制) 信息元素名 需要 多项 类型和参考 描述 信息元素名 需要 多项 类型和参考 描述
省略其他配置参数
»CHOICE TDD option MP
»>3.84 Mcps TDD 适用于 TD-CDMA
的配置参数
»>1.28 Mcps TDD 适用于
TD-SCDMA的配 置参数
»»SYNC_UL codes MP Bitstring(8) 同步码配置 (现有 bitmap 配置)
»»FPACH info MP FPACH info 快速物理接入信道
10.3.6.35a 的配置(现有配置) 省略其他已有配置
UE在多条随机接入物理信道中选择其中的一条信道进行 E-RUCCH信 道的发射, 其选择应该根据 3GPP规范 TS25.224定义的通用随机接入流程 中 FPACH信道与随机接入物理信道之间的关系来选择具体使用哪一条信道 用于 E-RUCCH信道。 FPACH信道号与随机接入信道之间的关系满足:
Figure imgf000011_0001
其中 NRACH是与 FPACH对应的随机接入物理信道 的个数, NRACH不大于 Li; Li是与这些 PRACH对应的传输块长度, 对于 E-RUCCH来说一般取值为 1或 2; SFN,是用户终端在 FPAC¾上收到确认 时的系统子帧号。
第二步, UE切换到目标小区后, 如果增强上行无线承载对应的緩冲区 中有数据需要发送, 就进行增强上行链路随机接入, 向 Node B请求资源。
UE根据切换命令中携带的随机接入资源信息发起增强上行链路随机接 入。
UE收到切换命令后首先需要在目标小区重建无线链路。 UE重建链路的 过程包括上行同步过程, UE重建无线链路成功后 (即同步完成后) 向网络 侧返回切换完成响应, 即完成了切换过程, UE切换到目标小区。
UE重建无线链路的同步过程和之后进行增强上行链路随机接入的同步 过程可以分开、 也可以合并为一个过程。 "分开,, 意味着 UE收到切换命令 后, 首先选择普通随机接入的同步码, 发起上行同步, 同步过程完成后向网 絡侧返回切换完成响应, 然后 UE再根据增强上行无线承载对应的緩冲区中 是否有数据需要发送决定是否发起增强上行链路随机接入,如果需要,再发 起增强上行同步和随机接入。 "合并" 意味着 UE 收到切换命令后, 如果 UE希望进行 HSUPA业务, UE应根据切换命令中携带的同步码信息选择一 个专用于 E-RUCCH随机接入的同步码进行发送, Node B检测到该同步码后 在 FPACH信道上回送确认信息, UE检测到确认信息后, 根据 FPACH确认 所在的系统子帧号从切换命令中携带的一条或多条随机接入物理信道(当 E-RUCCH的 ΤΉ最大是 10ms时, 最多有 2条随机接入物理信道) 中选择 一条(只有一条随机接入物理信道时就选该条随机接入物理信道,有两条时 从中选择一条随机接入物理信道)进行 E-RUCCH随机接入。 如果切换命令 中的生效时间不允许 UE立即发起增强上行链路随机接入, UE应等待切换 命令中的配置生效时间到达后发起增强上行同步和随机接入。
Node B接收到 UE的增强上行链路随机接入请求,会根据它的调度算法 为 UE分配增强上行链路资源。
图 2是同一 SRNC下不同 Node B间的 UE E-DCH服务小区变化流程图, 图中简要画出了网络侧 Node B和 RNC间的信令流程。 本例中 SRNC对目 标 Node B的配置采用典型的 2步式, 即首先在目标小区建立无线链路, 再 通过无线链路重配置过程将 E-DCH链路配置到该无线链路上, 这些流程具 体可以参考 3GPP TS25.931中的 E-DCH切换流程。
201: SRNC (服务的 RNC )根据 UE的测量信息进行小区切换的判决, 并确定 UE在目标小区使用 HSUPA业务。 SRNC通过 NBAP ( Node B应用 部分)协议向目标 Node B发起无线链路建立过程,配置新的无线链路。 NodeB 配置成功后返回响应。
202: SRNC通过 NBAP的同步无线链路重配置过程要求源 Node B删除 与该 UE相关的 E-DCH资源, 并设置该配置的生效时间。 源 Node B配置成 功后返回响应。
203: SRNC通过 NBAP的同步无线链路重配置过程要求目标 Node B在 步骤 201建立的无线链路上为该 UE建立 E-DCH资源, 并设置生效时间, 该生效时间与步骤 202中的一致。 Node B配置成功后返回响应。
204: SRNC向 UE发送切换命令, 本例中 SRNC通过传输信道重配置 请求消息向 UE配置目标小区的资源。 除了原有的配置信息外(包括了表 2 所述内容), 还带上目标小区的随机接入资源信息, 随机接入资源信息包括 表 1所述内容。
205: UE接收传输信道重配置请求消息, 并在目标小区发起上行同步, 重建链路。 如果生效时间允许, 且 UE确定增强上行链路緩冲区中有数据需 要传输, UE可以直接选择 E-RUCCH随机接入对应的同步码发起上行同步; UE也可以先发起普通上行同步, 完成重建链路, 在生效时间到来后, 再发 起 E-RUCCH随机接入的上行同步。
206: Node B检测到 UE的同步码后在 FPACH信道上返回确认消息。 以下 207和 208步骤没有确定的时序关系, 209步骤在 208步骤之后执 行, 210、 211、 212在 207之后执行:
207: UE发起增强上行链路随机接入, 根据 206步骤中 FPACH返回时 的系统子帧号选择随机接入信道, 发送 E-RUCCH。
208: UE向 RNC返回传输信道重配置响应消息。
209: SRNC通知源 Node B删除该 UE的无线链路。
210: Node B通过 E-AGCH信道向 UE发送授权信息 。
211 : UE收到 E-AGCH后, 在协议规定的定时时间 nE_AGCH后, 在授权 的 E-PUCH上发送数据; 若 UE緩沖区还有数据待传输, 辅助调度信息也将 随之发送。
212: Node B对 E-PUCH信道上的数据进行解码, 并在 E-HICH信道上 返回 ACK/NACK信息。 当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 形, 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
本发明通过在切换命令中携带目标小区的随机接入资源信息, 使得 UE 能够提前获知目标小区的随机接入资源, 在 UE链路重配置到新小区后, 可 以马上发起 E-RUCCH接入向 Node B申请资源, 避免了 UE读取小区广播 信息并从中获得随机接入资源信息所花费的时间, 大大提高了 E-DCH链路 的切换速度, 也提高了切换后增强上行链路随机接入的速度。

Claims

权 利 要 求 书
1、 一种增强上行链路实现快速切换的方法, 应用于时分同步码分多址 系统中, 包含如下步骤:
( a )用户终端 UE发生小区切换, 网络侧确定 UE在目标小区可以进行 增强上行业务时, 在发往 UE的切换命令中携带目标小区的随机接入资源信
( b ) UE切换到目标小区后, 如果增强上行无线承载对应的緩冲区中有 数据需要发送, UE根据切换命令中携带的随机接入资源信息发起增强上行 链路随机接入, 向基站 Node B请求调度资源。
2、 如权利要求 1所述的方法, 其特征在于: 所述步骤(a ) 中, 随机接 入资源信息包括一条或多条随机接入物理信道和增强上行链路随机接入同 步码信息。
3、 如权利要求 2所述的方法, 其特征在于: 所述随机接入资源信息中 还包含随机接入尝试次数和随机接入定时器。
4、 如权利要求 1所述的方法, 其特征在于: 所述步骤(a ) 中, 所述切 换命令为无线资源控制 RRC消息中的物理信道重配置请求、 或传输信道重 配置请求、 或无线承载重配置请求。
5、 如权利要求 1所述的方法, 其特征在于: 所述小区切换为用户终端 增强上行链路服务小区发生改变,或为用户终端服务小区发生改变伴随普通 上行信道到增强上行信道类型的改变。
6、 如权利要求 2所述的方法, 其特征在于: 所述随机接入物理信道与 切换命令中携带的上行同步码、快速物理接入信道属于小区系统信息中同一 随机接入资源配置实例。
7、 如权利要求 2所述的方法, 其特征在于: 所述步骤(b ) 中, UE发 起增强上行随机接入时,使用切换命令中携带的同步码信息中增强上行链路 随机接入对应的上行同步码进行上行同步。
8、 如权利要求 7所述的方法, 其特征在于: 所述步骤(b )中, Node B 检测到 UE的上行同步码后在快速物理接入信道 FPACH上返回确认消息, UE根据接收所述快速物理接入信道时的子帧号从切换命令中携带的随机接 入物理信道中选择一条发起增强上行链路随机接入。
9、 如权利要求 1所述的方法, 其特征在于: 所述步骤(a )中当目标小 区支持增强上行业务, 且 UE请求的业务属性可以进行增强上行业务且目标 小区的资源情况可以接纳该 UE进行增强上行业务, 网络侧确定 UE在目标 小区可以进行增强上行业务。
10、 如权利要求 1所述的方法, 其特征在于: 所述网络侧为 UE的服务 无线网络控制器 SRNC。
11、 如权利要求 10所述的方法, 其特征在于: 所述步骤(a )中, 当目 标小区所属基站 Node B 不属于 UE的 SRNC控制时, 所述 SRNC通过 lur 接口从漂移无线网络控制器 DRNC中获得目标小区的随机接入资源信息。
12、 如权利要求 1 所述的方法, 其特征在于: 所述步骤(b ) 中, UE 切换到目标小区的过程包括: UE收到所述切换命令后在目标小区重建无线 链路, 重建无线链路成功后, 向网络侧返回切换命令响应消息。
PCT/CN2008/000306 2007-02-15 2008-02-04 A method for realizing fast handover in enhanced uplink WO2008098482A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08706484.6A EP2129147B1 (en) 2007-02-15 2008-02-04 A method for realizing fast handover in enhanced uplink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710084660.2 2007-02-15
CN2007100846602A CN101247647B (zh) 2007-02-15 2007-02-15 一种增强上行链路实现快速切换的方法

Publications (1)

Publication Number Publication Date
WO2008098482A1 true WO2008098482A1 (en) 2008-08-21

Family

ID=39689653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000306 WO2008098482A1 (en) 2007-02-15 2008-02-04 A method for realizing fast handover in enhanced uplink

Country Status (4)

Country Link
EP (1) EP2129147B1 (zh)
KR (1) KR101041957B1 (zh)
CN (1) CN101247647B (zh)
WO (1) WO2008098482A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102550113A (zh) * 2009-04-27 2012-07-04 华为技术有限公司 随机无线接入方法、设备和系统
KR101266332B1 (ko) 2009-05-18 2013-05-22 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 강화된 업링크 랜덤 액세스 채널의 송신 방법, 시스템 및 그 장치
RU2496265C2 (ru) * 2009-06-23 2013-10-20 Хуавэй Текнолоджиз Ко., Лтд. Способ эстафетной передачи обслуживания, оборудование пользователя и устройство на сетевой стороне
CN111585715A (zh) * 2016-05-14 2020-08-25 上海朗帛通信技术有限公司 一种无线通信中的方法和装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171370B2 (en) 2006-11-14 2012-05-01 Futurewei Technologies, Inc. Method and apparatus for applying forward error correction in 66b systems
CN101730195B (zh) * 2008-10-22 2013-03-27 展讯通信(上海)有限公司 时分同步码分多址系统中随机接入方法及设备
CN101877895B (zh) * 2009-04-30 2014-04-16 电信科学技术研究院 一种小区切换方法和系统
CN102238720A (zh) * 2010-04-29 2011-11-09 华为技术有限公司 载波同步的方法及用户设备、基站
US8688121B2 (en) * 2010-04-30 2014-04-01 Blackberry Limited UE handling of common configuration after handover
US9055527B2 (en) * 2010-05-06 2015-06-09 Telefonaktiebolaget L M Ericsson (Publ) Method and system for determining a time synchronization offset between radio base stations
CN102469480B (zh) * 2010-11-10 2016-05-25 中兴通讯股份有限公司 优化的无线资源控制管理方法和系统
CN102548012B (zh) * 2010-12-22 2019-03-15 中兴通讯股份有限公司 一种随机接入方法及终端
CN102740444B (zh) 2011-04-04 2016-03-23 上海贝尔股份有限公司 在蜂窝通信系统中初始化从小区的方法、用户设备和基站
CN103004255B (zh) * 2011-06-17 2015-09-30 华为技术有限公司 配置信息的处理方法、无线网络控制器和基站
US9503951B2 (en) 2012-05-18 2016-11-22 Nokia Technologies Oy Method and apparatus for switch
CN102711235B (zh) * 2012-05-28 2014-12-17 华为技术有限公司 绝对授权值与信道状态参数的同步控制方法及相关设备
CN105165082B (zh) * 2013-10-28 2019-05-28 华为技术有限公司 一种资源调度的方法、装置及系统
CN104780577B (zh) * 2014-01-10 2018-07-24 中国移动通信集团公司 一种数据资源在小区间进行切换传输的方法和设备
CN104202779B (zh) * 2014-09-05 2018-01-02 中国电子科技集团公司第七研究所 通信系统中的小区切换方法及系统
CN105704765A (zh) * 2014-11-28 2016-06-22 中兴通讯股份有限公司 一种移动终端选择小区驻留的方法及装置
CN105992303B (zh) * 2015-02-02 2019-05-21 电信科学技术研究院 一种多模ue的接入及其控制方法、装置以及用户设备
CN106332233B (zh) 2015-06-30 2019-10-22 华为技术有限公司 一种终端、基站、小区接入方法和数据传输方法
CN106358250A (zh) * 2015-07-22 2017-01-25 中兴通讯股份有限公司 一种硬切换的方法及装置
KR102502279B1 (ko) * 2016-07-08 2023-02-21 삼성전자 주식회사 무선 통신 시스템에 있어서 핸드오버를 수행하는 방법 및 장치
CN107623947A (zh) * 2016-07-14 2018-01-23 展讯通信(上海)有限公司 基站、用户设备及其随机接入方法
US20200120560A1 (en) * 2016-10-07 2020-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Controlling Validity Time of Uplink Grant in Target Cell during RACH-Less Handover
CN115720381A (zh) 2017-05-03 2023-02-28 Lg 电子株式会社 发送和接收随机接入信道的方法及其装置
WO2018203689A1 (en) * 2017-05-05 2018-11-08 Samsung Electronics Co., Ltd. Apparatus and method for managing random access channel configuration in wireless communication system
PL3627895T3 (pl) * 2018-09-20 2023-09-04 Nokia Technologies Oy Wiązanie nośnej łącza uplink przy przekazaniu
CN111294802B (zh) * 2019-01-31 2022-11-25 展讯通信(上海)有限公司 小区切换方法及装置、存储介质、终端、基站
CN112399489A (zh) * 2019-08-14 2021-02-23 夏普株式会社 小区切换方法以及用户设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122704A2 (en) * 2004-06-18 2005-12-29 Lg Electronics Inc. A method of transmitting scheduling command for uplink enhanced dedicated channel in handover

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222832B1 (en) * 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US6760587B2 (en) * 2001-02-23 2004-07-06 Qualcomm Incorporated Forward-link scheduling in a wireless communication system during soft and softer handoff
US8102788B2 (en) * 2003-11-05 2012-01-24 Interdigital Technology Corporation Method and wireless transmit/receive unit for supporting an enhanced uplink dedicated channel inter-node-B serving cell change
KR100933156B1 (ko) * 2004-08-12 2009-12-21 삼성전자주식회사 업링크 서비스를 위한 전송 채널들을 이용한 핸드오프 지역에서의 업링크 데이터 송수신 방법 및 장치
KR20060038786A (ko) * 2004-11-01 2006-05-04 삼성전자주식회사 무선 접속 프로토콜에서 물리 계층과 매체 접근 제어계층간에 자원을 할당하는 시스템 및 방법
TWI390933B (zh) * 2005-03-14 2013-03-21 Interdigital Tech Corp 傳遞媒體獨立交接能力資訊之無線通信方法及系統

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122704A2 (en) * 2004-06-18 2005-12-29 Lg Electronics Inc. A method of transmitting scheduling command for uplink enhanced dedicated channel in handover

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; 1.28 Mcps TDD Enhanced Uplink; Physical Layer Aspects (Release 7)", 3GPP TR 25.827 V1.0.0, November 2006 (2006-11-01), XP008115561 *
3GPP: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility study on uplink enhancements for UTRA TDD (Release 6)", 3GPP TR 25.804 V6.1.0, March 2006 (2006-03-01), XP008115560 *
See also references of EP2129147A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102550113A (zh) * 2009-04-27 2012-07-04 华为技术有限公司 随机无线接入方法、设备和系统
KR101266332B1 (ko) 2009-05-18 2013-05-22 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 강화된 업링크 랜덤 액세스 채널의 송신 방법, 시스템 및 그 장치
RU2496265C2 (ru) * 2009-06-23 2013-10-20 Хуавэй Текнолоджиз Ко., Лтд. Способ эстафетной передачи обслуживания, оборудование пользователя и устройство на сетевой стороне
US9008040B2 (en) 2009-06-23 2015-04-14 Huawei Technologies Co., Ltd. Handover method, user equipment, and network side device
CN111585715A (zh) * 2016-05-14 2020-08-25 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN111585715B (zh) * 2016-05-14 2024-05-14 荣耀终端有限公司 一种无线通信中的方法和装置

Also Published As

Publication number Publication date
EP2129147A1 (en) 2009-12-02
EP2129147A4 (en) 2014-02-19
KR101041957B1 (ko) 2011-06-16
CN101247647B (zh) 2011-10-26
EP2129147B1 (en) 2016-04-06
CN101247647A (zh) 2008-08-20
KR20090122236A (ko) 2009-11-26

Similar Documents

Publication Publication Date Title
WO2008098482A1 (en) A method for realizing fast handover in enhanced uplink
JP4792525B2 (ja) Td−scdmaシステム及びそれにおけるhsupaランダムアクセスの制御方法
JP4782845B2 (ja) 移動通信システムにおける無線リソース割り当て
JP5303655B2 (ja) 端末の任意接続遂行技法
JP5654698B2 (ja) ランダムアクセス手順を行う方法及び装置
KR102053338B1 (ko) 이동통신 시스템에서 데이터를 송수신하는 방법 및 장치
US8121048B2 (en) Repeat control method in enhanced uplink asynchronous hybrid automatic repeat request
JP4523072B2 (ja) 上り接続のリディレクション方法
RU2408169C2 (ru) Способ выделения канала связи, система радиосвязи и структура канала связи на участке радиолинии
JP5328850B2 (ja) 移動通信システムでの応答情報伝送方法
TWI513215B (zh) Hspa系統中執行wtru狀態轉移方法及裝置
KR101206181B1 (ko) 무선 통신 접속 방법 및 랜덤 액세스 접속 방법
TW200835367A (en) Method for re-direction of uplink access
WO2009006823A1 (en) Random access method of time division synchronization code division mulitple access enhanced uplink system
JP6657114B2 (ja) 移動通信システムでの端末のハンドオーバー方法及び装置
WO2009089760A1 (fr) Procédé de transmission d'informations de programmation de liaison montante et son dispositif utilisateur
WO2009105997A1 (zh) 增强-专用传输信道传输时用户终端的编址和寻址方法
JP5033918B2 (ja) 移動通信システムにおける無線リソース割り当て要求の効果的な伝送方法
KR101719072B1 (ko) 이동통신시스템에서의 스케줄링 요청(Scheduling Request)을 효율적으로 전송하는 방법
EP2239980B1 (en) Reducing service interruption of a terminal during packet switched handover in a mobile communication
KR100992780B1 (ko) 랜덤 액세스 절차를 수행하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097019208

Country of ref document: KR

Ref document number: 2008706484

Country of ref document: EP