WO2008097495A1 - Particules tridimensionnelles et procédés afférents y compris une lithographie interférentielle - Google Patents

Particules tridimensionnelles et procédés afférents y compris une lithographie interférentielle Download PDF

Info

Publication number
WO2008097495A1
WO2008097495A1 PCT/US2008/001428 US2008001428W WO2008097495A1 WO 2008097495 A1 WO2008097495 A1 WO 2008097495A1 US 2008001428 W US2008001428 W US 2008001428W WO 2008097495 A1 WO2008097495 A1 WO 2008097495A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
composition
template
surface portions
Prior art date
Application number
PCT/US2008/001428
Other languages
English (en)
Inventor
Edwin L. Thomas
Ji-Hyun Jang
Chaitanya K. Ullal
Steven E. Kooi
Cheong Yang Koh
Original Assignee
Massachusetts Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute Of Technology filed Critical Massachusetts Institute Of Technology
Publication of WO2008097495A1 publication Critical patent/WO2008097495A1/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • G03F7/0236Condensation products of carbonyl compounds and phenolic compounds, e.g. novolak resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention also relates to compositions comprising an interconnected network of individuated particles, wherein each particle is attached to one or more adjacent particles via at least three valence points, each valence point being a location at which at least three surfaces, or surface portions, of the particle meet.
  • FIG. IA shows (i) an SEM image of an interconnected structure of "four-valent” particles and (ii) a single, “four-valent” unit cell.
  • FIG. IB shows (i) an SEM image of an interconnected structure of "four-valent” particles after UV/ozonylsis, (ii) a single, "four-valent” particle, and (iii) a theoretical model of a single, "four-valent” particle in lower insets iv and vi, respectively.
  • FIG. 5 C shows (i) an SEM image of a PDMS phase mask comprising an array of circular holes (280 run in diameter and 600 run high on a 750 nm square lattice) and (ii) an SEM of the resulting three-dimensional structure created from the phase mask, and (iii) a computed theoretical intensity distribution for a 2 x 2 x 2 array of unit cells.
  • the present invention may advantageously provide compositions comprising particles (e.g., synthetic particles) having complex geometrical shapes including particles having multiple surfaces, or interconnected networks of such particles.
  • the particles, or networks thereof may have a particular shape, size, and/or valency.
  • at least some of the particles are not spherical or ellipsoidal.
  • substantially all of the particles are not spherical or ellipsoidal.
  • at least some of the particles have a surface including at least one concave portion.
  • the particles may comprises multiple surface portions, wherein each surface is substantially concave.
  • the particles may comprise multiple valence points and/or concave surface portions to form a complex geometrical shape.
  • the refractive-index contrast may be enhanced by exchanging the polymeric ILT with a material with a higher index of refraction.
  • the sol-gel method for infiltration used is as previously described. Since the P surface is a self-complementary structure, the inverse P from the infiltration of TiO 2 into the SU-8 ILT is also a member of the P surface family.
  • FIG. 11C is the SEM image of a TiO 2 inverse P and associated reflectance spectrum. P structures have only a partial photonic bandgap at the dielectric contrast of 5.3:1 which corresponds to that of TiO 2 /air. The reflectivity peak of FIG. 11C measured for the (100) plane is shown in FIG. HD.
  • FIG. 12 shows (a) an SEM image of elastomeric PDMS 3D network/air structure, (b) AFM images of the sample (i) before and (ii) after deformation, and (c) a BLS spectrum measured along the [lOToJdirection from J. H. Jang, C. K. Ullal, T. Gorishnyy, V. V. Tsukruk, E. L. Thomas, Nano Lett.
  • the thickness of the film successfully used was 3 microns at 532 nm exposure.
  • Polysilane polymers which possess a backbone consisting of silicon atoms, are a promising class of positive photoresists. Upon exposure to ultraviolet (UV) radiation in air, photoinsertion of oxygen takes place. The resultant introduction of Si-O-Si and Si- OH bonds induces changes in some properties of the polysilane films, such as solubility and wettability.
  • the electric field associated with a monochromatic plane wave can be described mathematically as: where m is the index identifying the particular beam, E 0 is the wave amplitude and direction of polarization, k is the wave vector, ⁇ is the angular frequency, and ⁇ is the phase.
  • the intensity distribution created by a set of beams is proportional to the square of the magnitude of the resultant vector sum. Since the polarization associated with an electromagnetic wave need not necessarily be linear, but can be circular or elliptical as well, the intensity may be arrived at by the inner product of the electric field with its complex conjugate. From this equation, it can be observed that the interference pattern has only a spatial variation and no temporal variation.
  • Example 3 The following example describes an embodiment wherein phase mask interference lithography is employed to achieve beam configurations that can yield three- dimensional interference patterns, for use in the context of the invention.
  • the HIL technique may allow for easy control of volume fraction along iso- intensity surfaces through several experimental parameters i.e. laser intensity, time of exposure, and chemistry of the photoresist platform.
  • FIG. 3 shows the variation in particle shape as a function of volume fraction assuming various iso-intensity contours and the effect of an isotropic etch on the 2D square and 3D simple cubic structures, respectively.
  • the iso intensity contour may determine the threshold which separates the highly crosslinked insoluble and low crosslinked soluble material.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

La présente invention concerne de manière générale des compositions comprenant des particules ayant diverses tailles et formes, ainsi que des procédés de production de telles particules. Les particules de l'invention peuvent comprendre des structures complexes, multivalentes. Dans certains cas, les particules peuvent avoir au moins une surface concave. La présente invention peut avantageusement fournir des procédés faciles, à rendement élevé, pour produire des structures de particule complexes. Les particules peuvent présenter de nouvelles propriétés optiques ou mécaniques, les rendant utiles en tant que cristaux photoniques, cristaux phononiques, microtreillis et microchâssis, particules colloïdales multivalentes, agents de distribution, ou analogue.
PCT/US2008/001428 2007-02-02 2008-02-01 Particules tridimensionnelles et procédés afférents y compris une lithographie interférentielle WO2008097495A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US89911907P 2007-02-02 2007-02-02
US60/899,119 2007-02-02
US90007707P 2007-02-07 2007-02-07
US60/900,077 2007-02-07

Publications (1)

Publication Number Publication Date
WO2008097495A1 true WO2008097495A1 (fr) 2008-08-14

Family

ID=39682010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/001428 WO2008097495A1 (fr) 2007-02-02 2008-02-01 Particules tridimensionnelles et procédés afférents y compris une lithographie interférentielle

Country Status (1)

Country Link
WO (1) WO2008097495A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101910A2 (fr) * 2009-03-02 2010-09-10 The Arizona Board Of Regents On Behalf Of The University Of Arizona Métamatériau acoustique à l'état solide et procédé d'utilisation de celui-ci pour concentrer un son
CN102722869A (zh) * 2012-05-25 2012-10-10 中国舰船研究设计中心 一种胶体晶体衍射图像增强方法
RU2491594C2 (ru) * 2011-12-02 2013-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Способ получения трехмерных объектов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465742B1 (en) * 1999-09-16 2002-10-15 Kabushiki Kaisha Toshiba Three dimensional structure and method of manufacturing the same
US20050124712A1 (en) * 2003-12-05 2005-06-09 3M Innovative Properties Company Process for producing photonic crystals
WO2005054119A2 (fr) * 2003-12-01 2005-06-16 The Board Of Trustees Of The University Of Illinois Procedes et dispositifs de fabrication de nanostructures tridimensionnelles
KR20050069360A (ko) * 2003-12-31 2005-07-05 엘지전자 주식회사 광결정 패턴의 형성 방법
KR20060072864A (ko) * 2004-12-24 2006-06-28 한국기계연구원 콜로이드 자기조립에 의한 다공성 마스크의 제조방법 및그 용도

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465742B1 (en) * 1999-09-16 2002-10-15 Kabushiki Kaisha Toshiba Three dimensional structure and method of manufacturing the same
WO2005054119A2 (fr) * 2003-12-01 2005-06-16 The Board Of Trustees Of The University Of Illinois Procedes et dispositifs de fabrication de nanostructures tridimensionnelles
US20050124712A1 (en) * 2003-12-05 2005-06-09 3M Innovative Properties Company Process for producing photonic crystals
KR20050069360A (ko) * 2003-12-31 2005-07-05 엘지전자 주식회사 광결정 패턴의 형성 방법
KR20060072864A (ko) * 2004-12-24 2006-06-28 한국기계연구원 콜로이드 자기조립에 의한 다공성 마스크의 제조방법 및그 용도

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101910A2 (fr) * 2009-03-02 2010-09-10 The Arizona Board Of Regents On Behalf Of The University Of Arizona Métamatériau acoustique à l'état solide et procédé d'utilisation de celui-ci pour concentrer un son
WO2010101910A3 (fr) * 2009-03-02 2011-01-13 The Arizona Board Of Regents On Behalf Of The University Of Arizona Métamatériau acoustique à l'état solide et procédé d'utilisation de celui-ci pour concentrer un son
CN102483913A (zh) * 2009-03-02 2012-05-30 代表亚利桑那大学的亚利桑那校董会 固态声学超材料和使用其聚焦声音的方法
US8596410B2 (en) 2009-03-02 2013-12-03 The Board of Arizona Regents on Behalf of the University of Arizona Solid-state acoustic metamaterial and method of using same to focus sound
RU2491594C2 (ru) * 2011-12-02 2013-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Способ получения трехмерных объектов
CN102722869A (zh) * 2012-05-25 2012-10-10 中国舰船研究设计中心 一种胶体晶体衍射图像增强方法

Similar Documents

Publication Publication Date Title
Jang et al. 3D micro‐and nanostructures via interference lithography
Cox et al. Nanoimprint lithography: Emergent materials and methods of actuation
Yabu Fabrication of honeycomb films by the breath figure technique and their applications
Moon et al. Chemical aspects of three-dimensional photonic crystals
Lopez Materials aspects of photonic crystals
Choi et al. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars
KR100930966B1 (ko) 블록공중합체의 나노구조와 일치하지 않는 형태의 표면패턴상에 형성되는 블록공중합체의 나노구조체 및 그 제조방법
Yang et al. Creating periodic three-dimensional structures by multibeam interference of visible laser
Pretzl et al. A lithography-free pathway for chemical microstructuring of macromolecules from aqueous solution based on wrinkling
Choi et al. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials
US8404123B2 (en) Fabrication of enclosed nanochannels using silica nanoparticles
US8617798B2 (en) Customized lithographic particles
US20050186515A1 (en) Structured materials and methods
WO2008097495A1 (fr) Particules tridimensionnelles et procédés afférents y compris une lithographie interférentielle
Jang et al. Shape control of multivalent 3D colloidal particles via interference lithography
Arsenault et al. Tailoring photonic crystals with nanometer-scale precision using polyelectrolyte multilayers
Xu et al. Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates
KR100837829B1 (ko) 무기고분자 및 친수성 고분자를 이용한 미세·나노유체 소자및 mems 미세구조물 제조 방법
JP7460154B2 (ja) 構造化ポリマー材料、構造化ポリマー材料の製造方法及び構造化ポリマー材料の用途
KR100836872B1 (ko) 무기고분자 및 친수성 고분자를 이용한 미세·나노유체 소자및 mems 미세구조물 제조 방법
JP2006167855A (ja) 周期性構造物の作成方法、周期性構造物、および、周期性構造物を用いた光学素子
Rauter et al. Nanotechnology for smart polymer optical devices
KR100837806B1 (ko) 무기고분자 및 친수성 고분자를 이용한 미세·나노유체 소자및 mems 미세구조물 제조 방법
Reader-Harris et al. Functional metamaterials for lab-on-fiber
Biswal et al. Fabrication of hydrogel microstructures using polymerization controlled by microcontact printing (PCμCP)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08725117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08725117

Country of ref document: EP

Kind code of ref document: A1