WO2008089777A1 - Heat exchanger with dual concentric tubes and calender - Google Patents

Heat exchanger with dual concentric tubes and calender Download PDF

Info

Publication number
WO2008089777A1
WO2008089777A1 PCT/DZ2008/000002 DZ2008000002W WO2008089777A1 WO 2008089777 A1 WO2008089777 A1 WO 2008089777A1 DZ 2008000002 W DZ2008000002 W DZ 2008000002W WO 2008089777 A1 WO2008089777 A1 WO 2008089777A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
calender
heat exchanger
heat
fluids
Prior art date
Application number
PCT/DZ2008/000002
Other languages
French (fr)
Inventor
Chérif BOUGRIOU
Khireddine Baadache
Original Assignee
Bougriou Cherif
Khireddine Baadache
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bougriou Cherif, Khireddine Baadache filed Critical Bougriou Cherif
Publication of WO2008089777A1 publication Critical patent/WO2008089777A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation

Definitions

  • the invention relates to heat exchangers with double tubes and calender, used in the fields: industrial, pharmaceutical, thermoelectric power station, nuclear power plant, transport, distillation, food industry, heating, cold, air conditioning, heat pump, cryogenics, etc. They are more particularly used in the field of heat exchangers.
  • the invented heat exchangers are similar to the conventional exchangers mentioned above, the difference being that single or corrugated tubes with or without fins are now replaced by double coaxial tubes (double jacketed tubes).
  • the outer diameter of the envelope of the double concentric tubes is of the same order as the tubes used in conventional tube and shell heat exchangers.
  • two new tubular plates are added to maintain and distribute a fluid in the inner tubes of the concentric double tubes.
  • the two old tubular plates are still used for the maintenance and distribution of the fluid passing through the annular passage formed by the two concentric tubes. So instead of the exchanger working with two fluids (a hot fluid and a cold fluid), now the heat exchanger works with three fluids (2 hot fluids and a cold CFC fluid or the reverse FCF).
  • the fluids can be of the same nature or not.
  • the present invention aims to intensify the heat exchange and increase compactness by increasing the exchange surface volume occupied by these devices. That is, the decrease in the cost and weight of this type of heat exchanger. For the same operating requirement, these new heat exchangers are smaller (tube length and volume reduced).
  • This is made possible by the addition of a second heat exchange surface and a third fluid, without increasing the volume of the heat exchanger or the geometrical shape on the side of the shell (outer casings).
  • the accessories Apart from the addition of a distributor and a collector and an exchange surface for the third fluid, the accessories: pumps (or fans), tube plates, calender, baffles, etc., remain unchanged.
  • the second heat exchange surface is a tube of nominal diameter less than the diameter of the tube of the first exchange surface. Both tubes are mounted concentrically.
  • Fig. 1 is a perspective view of the double concentric tube and shell heat exchanger
  • Fig. 2 is a perspective longitudinal section of this heat exchanger
  • Fig. 3 illustrates the longitudinal section of this heat exchanger in the direction B-B;
  • Fig. 4 relates to the perspective of the cross heat exchanger with concentric double tubes
  • Fig. 5a and 5b details the distribution of the fluids in the double concentric tubes and the collectors (or the distributors) of the crossed heat exchanger;
  • Fig. 6a and b represent the collectors (or distributors) of concentric form.
  • the second fluid enters the heat exchanger through the second distributor and passes through the annular passages formed by the inner tubes and the second tube plate and leaves the exchanger through the third tube plate and the penultimate collector (see Figures 2 and 3).
  • the third fluid enters the exchanger through the third distributor and passes through the exchanger on the outer side of the double envelopes (shell side) and leaves the heat exchanger by the first manifold in the same manner as the conventional tube and shell heat exchangers ( Figures 2 and 3).
  • These exchangers concentric double tubes and calender are constructed differently, depending on the state of the fluids present.
  • the tubes can be finned tubes and corrugated. Generally, the fluid flowing on the side of the shell can circulate to multipass due to the presence of baffles. This allows to irrigate better all the tubes. Baffles are perforated plates of different shapes: segments, disks, circular orifices, circular trunks, etc.
  • the tubes can be arranged in the beam in a staggered or aligned
  • FIG. 4 the case where the circulation of the fluid outside the outer casing (calender side) is perpendicular to the double jacket (double concentric tube), which is the case of crossed heat exchangers (gas-liquid or gas -gas).
  • the circulation of the fluids will have to be cross-type against the current because; thermally, it is the most efficient for this type of heat exchanger.
  • the manifold and the distributor of the fluids passing in the double envelopes are adjacent.
  • the two fluids of the same nature or the same level of temperature enter the same side of the heat exchanger.
  • the fluid different from the other two fluids flowing in the annular passage of the double jacket generally passes in the opposite direction of the global circulation of the other two fluids.
  • the external collector (or external distributor) corresponds to the fluid circulating inside the inner tubes of the double envelopes.
  • the other two (inner) correspond to the fluid circulating in the annular passages formed by the concentric tubes, see fig. 5a and 5b.
  • the embodiment of this invention is similar to that of cross or tube and shell heat exchangers and straight or helical concentric dual tube heat exchangers.
  • the only novelty lies in the mounting of double concentric tubes on two tubesheets for each end of the heat exchanger.
  • the first plate has holes of diameter equal to the inside diameter of the inner tube of the jacket while the second tube plate has holes of diameter equivalent to the inner diameter of the double concentric tube casing.
  • the first plate and the second plate (or third and fourth plate) are separated by a cylindrical trunk on which is welded the collector (or distributor) of the second fluid.
  • cross-heat exchanger with concentric double tubes its embodiment is identical to cross-heat exchangers against the current. The only difference is the presence of another collector and a second distributor on both sides of the heat exchanger.
  • the collectors have different diameter holes.
  • the first has holes of diameter equal to the inner diameter of the inner tube of concentric double tube, the holes the other collector have a diameter equivalent to the inside diameter of the double concentric tube casing, see fig. 4, 5a and 5b.
  • the central manifold distributed to the inner tubes
  • the external collector distributed to the envelopes, see fig. ⁇ a and ⁇ b.
  • the heat exchanger has two tube side passes.
  • the flow rate m 2 of industrial water is:
  • the ratio of the heat capacities of the two fluids and the efficiency of the exchanger are respectively:
  • the heat exchange coefficient h 2 of the industrial water in the tubes is:
  • the heat exchange coefficient is:
  • the heat exchange coefficient on the shell side is:
  • the average logarithmic temperature difference and the heat exchange surface of the exchanger are respectively:
  • the dodecane flow circulating on the shell side and inside the inner tubes of inner / outer diameters (da / di) are equal to half the total flow rate of cooled dodecane in the tube and shell heat exchanger above.
  • the cooling water passes countercurrently in the annular passages formed by the envelope of diameters (D 2 / Di) and the inner tubes.
  • the heat exchange coefficient h 3 of dodecane in the inner tubes is:
  • the heat exchange coefficient h 2 of industrial water in the annular passages is:
  • the passage section S P2 is determined by:
  • the Nusselt number is:
  • the heat exchange coefficient is:
  • the speed of the dodecane is: mi mip n .
  • the heat exchange coefficient on the shell side is:
  • the overall heat exchange coefficient Ki, 2 shell-side dodecane and cooling water
  • the overall heat exchange coefficient K 2 , 3 cooling water and dodecane inner tube side
  • the length (or volume) of the tube and shell exchanger is approximately 50% greater than the length (or volume) of the concentric double-shell and shell heat exchanger.
  • the most interesting result is that one can cool the double the dodecane flow rate, ie 30 m 3 / h with a length (or volume) of the heat exchanger with double concentric tubes and calender smaller by 23% compared to at the length of the tube and shell heat exchanger operating with the old dodecane flow rate of 15 m 3 / h.
  • the length of the exchanger with concentric double tubes and calender is further reduced, by increasing the dodecane flow. This length is 62% smaller in the case where the two exchangers operate with a dodecane flow rate equal to 30 m 3 / h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a heat exchanger with dual tubes and a calender, and to a superimposition of heat exchangers with triple concentric tubes that can operate according to a single or dual phase mode (condenser and evaporator). It is similar to a traditional tube and calender exchanger, the difference being that the tubes are replaced with dual coaxial tubes, which results in an increased heat-exchange surface without increasing neither the volume nor the geometrical shape on the calender side. The heat exchanger with dual tubes and a calender can be built in different manners depending on the state of the fluids. The simple tubes or notches can be provided with vanes having various shapes. Accordingly, the heat exchanger operates with three fluids (2 hot fluids and a cold fluid H-C-H or the opposite C-H-C) instead of two. Instead of straight tubes, the calender may include concentric tubes having a helical, coiled or spiralled shapes. If one of the fluids is a gas, the heat exchanger can be of the crossed co-current type, or most often crossed with counter-flow and dual tubes. The heat-exchangers with dual tubes and a calender can be used in the following fields: industry, pharmacy, thermal power plants, nuclear power plants, transport, distillation, agri-food industry, heating, cooling, air conditioning, heat pumps, cryogenics.

Description

ECHANGEURS DE CHALEUR A DOUBLES TUBES CONCENTRIQUES ET CALANDREHEAT EXCHANGERS WITH DOUBLE CONCENTRIC TUBES AND CALANDER
Domaine technique auquel se rapporte lrInventionTechnical field to which the invention relates r
L'invention concerne les échangeurs de chaleur à doubles tubes et calandre, utilisés dans les domaines : industriels, pharmaceutique, centrale thermoélectrique, centrale nucléaire, transport, distillation, industrie agro-alimentaire, chauffage, froid, climatisation, pompe à chaleur, cryogénie, etc. Ils sont plus particulièrement utilisés dans le domaine des échangeurs de chaleur.The invention relates to heat exchangers with double tubes and calender, used in the fields: industrial, pharmaceutical, thermoelectric power station, nuclear power plant, transport, distillation, food industry, heating, cold, air conditioning, heat pump, cryogenics, etc. They are more particularly used in the field of heat exchangers.
* Etat de la technique antérieure * State of the prior art
II existe des échangeurs de chaleur à tubes et calandre et des échangeurs de chaleur croisés simples ou à co-courant et à contre-courant depuis plusieurs décennies. Les tubes simples ou rainures sont de différents types géométriques pouvant avoir des ailettes de formes variées, voir les références [1—11] . Ces échangeurs de chaleur peuvent fonctionner en simple ou en double phase (condenseur et évaporateur) .There are tube and shell heat exchangers and simple or co-current and countercurrent cross-heat exchangers for several decades. The single tubes or grooves are of different geometrical types that can have fins of various shapes, see references [1-11]. These heat exchangers can operate in single or double phase (condenser and evaporator).
Ils présentent des performances thermiques et une compacité inférieures à celles de nos deux nouveaux types d' échangeurs de chaleur (échangeur de chaleur à doubles tubes coaxiaux et calandre et échangeur de chaleur croisé à doubles tubes coaxiaux) . Les performances de ces deux nouveaux échangeurs sont estimées meilleurs de 70% par rapport aux échangeurs de chaleur classiques.They have lower thermal performance and compactness than our two new types of heat exchangers (coaxial double tube heat exchanger and shell and coaxial double tube heat exchanger). The performance of these two new exchangers is estimated to be 70% better than conventional heat exchangers.
Les échangeurs de chaleur inventés sont similaires aux échangeurs classiques cités ci-dessus, la différence est que les tubes simples ou corrugués avec ou sans ailettes, sont maintenant remplacés par des doubles tubes coaxiaux (tubes à double enveloppe). Le diamètre extérieur de l'enveloppe des doubles tubes concentriques est de même ordre que les tubes utilisés dans les échangeurs de chaleur à tubes et calandre classiques. De même, deux nouvelles plaques tubulaires sont ajoutées pour maintenir et distribuer un fluide dans les tubes intérieurs des doubles tubes concentriques. Les deux anciennes plaques tubulaires sont toujours utilisées pour le maintien et la distribution du fluide transitant dans le passage annulaire formé par les deux tubes concentriques. Ainsi au lieu que l'échangeur fonctionne avec deux fluides (un fluide chaud et un fluide froid), maintenant l'échangeur de chaleur fonctionne avec trois fluides (2 fluides chauds et un fluide froid C-F-C ou l'inverse F-C-F). Les fluides peuvent être de même nature ou non.The invented heat exchangers are similar to the conventional exchangers mentioned above, the difference being that single or corrugated tubes with or without fins are now replaced by double coaxial tubes (double jacketed tubes). The outer diameter of the envelope of the double concentric tubes is of the same order as the tubes used in conventional tube and shell heat exchangers. Likewise, two new tubular plates are added to maintain and distribute a fluid in the inner tubes of the concentric double tubes. The two old tubular plates are still used for the maintenance and distribution of the fluid passing through the annular passage formed by the two concentric tubes. So instead of the exchanger working with two fluids (a hot fluid and a cold fluid), now the heat exchanger works with three fluids (2 hot fluids and a cold CFC fluid or the reverse FCF). The fluids can be of the same nature or not.
Les documents et les études qui nous ont permis la détermination de cette invention se résument aux différentes études sur les échangeurs de chaleur à tubes coaxiaux, croisés (simples, à co- courant et contre-courant. En fin, ce qui nous a permis cette invention sont les travaux récents sur les échangeurs de chaleur à triples tubes concentriques.The documents and studies that allowed us to determine this invention are summarized in the various studies on coaxial tube heat exchangers, crossed (single, co-current and countercurrent.) In the end, this allowed us to The invention is the recent work on heat exchangers with triple concentric tubes.
But de l'InventionPurpose of the Invention
La présente invention à pour but d'intensifier les échanges de chaleur et à augmenter la compacité par l'augmentation de la surface d'échange au volume occupé par ces appareils. C'est-à- dire, la diminution du coût et le poids de ce type d' échangeurs de chaleur. Pour la même exigence de fonctionnement, ces nouveaux échangeurs de chaleur sont plus petits (longueur des tubes et volume réduits). Cela est rendu possible par l'ajout d'une deuxième surface d'échange de chaleur et un troisième fluide, sans augmenter le volume de l'échangeur de chaleur ni la forme géométrique du côté de la calandre (extérieur des enveloppes). A part l'ajout d'un distributeur et d'un collecteur et une surface d'échange pour le troisième fluide, las accessoires : pompes (ou ventilateurs) , plaques tubulaires, calandre, chicanes, etc., restent sans modifications. La deuxième surface d'échange de chaleur n'est qu'un tube de diamètre nominal inférieur au diamètre du tube de la première surface d'échange. Les deux tubes sont montés concentriquement .The present invention aims to intensify the heat exchange and increase compactness by increasing the exchange surface volume occupied by these devices. That is, the decrease in the cost and weight of this type of heat exchanger. For the same operating requirement, these new heat exchangers are smaller (tube length and volume reduced). This is made possible by the addition of a second heat exchange surface and a third fluid, without increasing the volume of the heat exchanger or the geometrical shape on the side of the shell (outer casings). Apart from the addition of a distributor and a collector and an exchange surface for the third fluid, the accessories: pumps (or fans), tube plates, calender, baffles, etc., remain unchanged. The second heat exchange surface is a tube of nominal diameter less than the diameter of the tube of the first exchange surface. Both tubes are mounted concentrically.
Enoncé des figuresStatement of Figures
Notre invention est illustrée et expliquée à titre indicatif et non limitatif, par des schémas techniques annexés, plusieurs coupes de l'échangeur à doubles tubes concentriques et calandre, et échangeur de chaleur croisé, sont représentées :Our invention is illustrated and explained by way of indication and not limitation, by appended technical drawings, several sections of the exchanger concentric double tubes and calender, and crossed heat exchanger, are represented:
Fig. 1 est une vue en perspective de l'échangeur à double tube concentrique et calandre ;Fig. 1 is a perspective view of the double concentric tube and shell heat exchanger;
Fig. 2 est une coupe longitudinale en perspective de cet échangeur de chaleur ;Fig. 2 is a perspective longitudinal section of this heat exchanger;
Fig. 3 illustre la coupe longitudinale de cet échangeur de chaleur suivant la direction B-B ;Fig. 3 illustrates the longitudinal section of this heat exchanger in the direction B-B;
Fig. 4 concerne la perspective de l'échangeur de chaleur croisé à doubles tubes concentriques ;Fig. 4 relates to the perspective of the cross heat exchanger with concentric double tubes;
Fig. 5a et 5b détaille la distribution des fluides dans les doubles tubes concentriques et les collecteurs (ou les distributeurs) de l'échangeur de chaleur croisé ;Fig. 5a and 5b details the distribution of the fluids in the double concentric tubes and the collectors (or the distributors) of the crossed heat exchanger;
Fig. 6a et b représentent les collecteurs (ou les distributeurs) de forme concentrique.Fig. 6a and b represent the collectors (or distributors) of concentric form.
Présentation de l'essence de l'inventionPresentation of the essence of the invention
Dans l'échangeur de chaleur à doubles tubes concentriques et calandre représenté sur la fig. 1, on voit la calandre, les 3 distributeurs, les 3 collecteurs, les boites de distribution et l'extérieur des quatre plaques tubulaires . Les deux fluides de même niveau de température entrent par le premier et le troisième distributeur et sortent par le troisième et le premier colleteur respectivement. Le fluide de niveau de température différent aux deux autres fluides entre et sort toujours par le collecteur (distributeur) mitoyen. Le premier fluide (même niveau de température ou de même nature que le troisième fluide) entre par le premier distributeur et passe par la première plaque tubulaire et sort par la quatrième plaque tubulaire et le dernier collecteur comme il est indiqué sur les fig. 2 et 3. Tandis que le deuxième fluide pénètre dans l'échangeur de chaleur par le deuxième distributeur et traverse les passages de forme annulaire formée par les tubes intérieurs et la deuxième plaque tubulaire puis il quitte l'échangeur par la troisième plaque tubulaire et l'avant dernier collecteur (voir les fig. 2 et 3) . Le troisième fluide entre dans l'échangeur par le troisième distributeur et traverse l'échangeur du coté extérieur des doubles enveloppes (côté calandre) et quitte l'échangeur de chaleur par le premier collecteur de la même manière que les échangeurs à tubes et calandre classiques (fig. 2 et 3) . Ces échangeurs à doubles tubes concentriques et calandre sont construits de façon différente, selon l'état des fluides présents. Les tubes peuvent être à tubes à ailettes et corrugués. Généralement, Le fluide circulant du côté de la calandre peut circuler à multipasse du fait de la présence des chicanes. Cela permet d'irriguer mieux tous les tubes. Les chicanes sont des plaques trouées de formes différentes : segments, disques, orifices circulaires, troncs circulaires, etc. Les tubes peuvent être disposés dans le faisceau suivant un arrangement quinconce ou aligné.In the concentric double-tube heat exchanger and calender shown in FIG. 1, we see the grille, the 3 distributors, the 3 collectors, the distribution boxes and the outside of the four tubular plates. The two fluids of the same temperature level enter through the first and the third distributor and exit through the third and the first collector respectively. The fluid of different temperature level with the other two fluids enters and leaves always by the collector (distributor) adjoining. The first fluid (same temperature level or the same type as the third fluid) enters through the first distributor and passes through the first tube plate and out through the fourth tube plate and the last collector as shown in Figs. 2 and 3. While the second fluid enters the heat exchanger through the second distributor and passes through the annular passages formed by the inner tubes and the second tube plate and leaves the exchanger through the third tube plate and the penultimate collector (see Figures 2 and 3). The third fluid enters the exchanger through the third distributor and passes through the exchanger on the outer side of the double envelopes (shell side) and leaves the heat exchanger by the first manifold in the same manner as the conventional tube and shell heat exchangers (Figures 2 and 3). These exchangers concentric double tubes and calender are constructed differently, depending on the state of the fluids present. The tubes can be finned tubes and corrugated. Generally, the fluid flowing on the side of the shell can circulate to multipass due to the presence of baffles. This allows to irrigate better all the tubes. Baffles are perforated plates of different shapes: segments, disks, circular orifices, circular trunks, etc. The tubes can be arranged in the beam in a staggered or aligned arrangement.
On illustre sur la fig. 4, le cas où la circulation du fluide à l'extérieur de l'enveloppe extérieure (coté calandre) est perpendiculaire à la double enveloppe (double tube concentrique) , ce qui est le cas des échangeurs de chaleur croisés (gaz-liquide ou gaz-gaz) . La circulation des fluides devra être de type croisé à contre-courant parce que ; thermiquement, c'est la plus performante pour ce type d' échangeurs de chaleur. Ainsi, le collecteur et le distributeur des fluides passant dans les doubles enveloppes sont adjacents. Les deux fluides de même nature ou de même niveau de température entrent du même côté de l'échangeur de chaleur. Le fluide différent des deux autres fluides circulant dans le passage annulaire de la double enveloppe passe généralement dans le sens opposé de la circulation globale des deux autres fluides. Le collecteur extérieur (ou distributeur extérieur) correspond au fluide circulant à l' intérieur des tubes intérieurs des doubles enveloppes. Les deux autres (intérieurs) correspondent au fluide circulant dans les passages annulaires formés par les tubes concentriques, voir fig. 5a et 5b.It is illustrated in FIG. 4, the case where the circulation of the fluid outside the outer casing (calender side) is perpendicular to the double jacket (double concentric tube), which is the case of crossed heat exchangers (gas-liquid or gas -gas). The circulation of the fluids will have to be cross-type against the current because; thermally, it is the most efficient for this type of heat exchanger. Thus, the manifold and the distributor of the fluids passing in the double envelopes are adjacent. The two fluids of the same nature or the same level of temperature enter the same side of the heat exchanger. The fluid different from the other two fluids flowing in the annular passage of the double jacket generally passes in the opposite direction of the global circulation of the other two fluids. The external collector (or external distributor) corresponds to the fluid circulating inside the inner tubes of the double envelopes. The other two (inner) correspond to the fluid circulating in the annular passages formed by the concentric tubes, see fig. 5a and 5b.
Mode de réalisation de l 'InventionEmbodiment of the invention
La réalisation de cette invention est similaire à celle des échangeurs de chaleur croisés ou à tubes et calandre et des échangeurs de chaleur à double tube concentrique droit ou hélicoïdal. La seule nouveauté réside au montage des doubles tubes concentriques sur deux plaques tubulaires pour chaque extrémité de l'échangeur de chaleur. La première plaque a des trous de diamètre égal au diamètre intérieur du tube intérieur de la double enveloppe tandis que la deuxième plaque tubulaire a des trous de diamètre équivalent au diamètre intérieur de l'enveloppe de double tube concentrique. La première plaque et la deuxième plaque (ou la troisième et la quatrième plaque) sont séparées par un tronc cylindrique sur lequel est soudé le collecteur (ou distributeur) du deuxième fluide.The embodiment of this invention is similar to that of cross or tube and shell heat exchangers and straight or helical concentric dual tube heat exchangers. The only novelty lies in the mounting of double concentric tubes on two tubesheets for each end of the heat exchanger. The first plate has holes of diameter equal to the inside diameter of the inner tube of the jacket while the second tube plate has holes of diameter equivalent to the inner diameter of the double concentric tube casing. The first plate and the second plate (or third and fourth plate) are separated by a cylindrical trunk on which is welded the collector (or distributor) of the second fluid.
En ce que concerne, l'échangeur de chaleur croisé à doubles tubes concentriques, sa réalisation est identique aux échangeurs de chaleurs croisés à contre-courant. La seule différence est la présence d'un autre collecteur et d'un deuxième distributeur de part et d'autre de l'échangeur de chaleur.As regards the cross-heat exchanger with concentric double tubes, its embodiment is identical to cross-heat exchangers against the current. The only difference is the presence of another collector and a second distributor on both sides of the heat exchanger.
Les collecteurs (ou distributeurs) ont des trous de diamètre différents. Le premier a des trous de diamètre égal au diamètre intérieur du tube interne de double tube concentrique, les trous de l'autre colleteur ont un diamètre équivalent au diamètre intérieur de l'enveloppe de double tube concentrique, voir fig. 4, 5a et 5b. Dans le cas où les collecteurs (distributeurs) sont concentriques, le collecteur (distributeur) central est connecté aux tubes intérieurs et le collecteur (distributeur) extérieur est connecté aux enveloppes, voir fig. βa et βb.The collectors (or distributors) have different diameter holes. The first has holes of diameter equal to the inner diameter of the inner tube of concentric double tube, the holes the other collector have a diameter equivalent to the inside diameter of the double concentric tube casing, see fig. 4, 5a and 5b. In the case where the collectors (distributors) are concentric, the central manifold (distributor) is connected to the inner tubes and the external collector (distributor) is connected to the envelopes, see fig. βa and βb.
L'invention sera maintenant illustrée avec plus de détails par l'exemple suivant de comparaison entre l'échangeur de chaleur à doubles tubes concentriques et calandre et l'échangeur de chaleur à tubes et calandre. Cet exemple n'est nullement destiné à limiter ladite invention dans son cadre et son esprit.The invention will now be illustrated in more detail by the following example of comparison between the concentric double-shell and shell heat exchanger and the tube and shell heat exchanger. This example is not intended to limit the invention in its frame and spirit.
ExempleExample
Comme exemple de calcul, on reprend l'exemple du dimensionnement d'un échangeur à tubes et calandre, donné dans le Techniques de l'ingénieur, traité Génie énergétique [27]. Cet échangeur de chaleur sert à refroidir un débit Qi = 15 m3/h de dodécane de Tei = 120 0C à Tsl= 60 0C avec de l'eau industrielle circulant dans les tubes dont la température varie de Te2=20 0C à T32= 30 0C. Les propriétés physiques du dodécane à une température moyenne de 90 0C sont les suivantes : P1 = 750 kg/m3, cpl≈ 2260 J/ (kg. K), X1 ≈ 0.151 W/ (m. K) et μi = 7,5 x 10"4 Pa. s.As an example of calculation, we take again the example of the dimensioning of a heat exchanger with tubes and calender, given in the Techniques of the engineer, treated Energy Engineering [27]. This heat exchanger serves to cool a flow rate Qi = 15 m 3 / h of dodecane of T e i = 120 ° C. at T sl = 60 ° C. with industrial water circulating in the tubes whose temperature varies from T e2 = 20 0 C to T 32 = 30 0 C. The physical properties of dodecane at an average temperature of 90 ° C. are as follows: P 1 = 750 kg / m 3 , c pl ≈ 2260 J / (kg K), X 1 ≈ 0.151 W / (K m) and μi = 7.5 x 10 -4 Pa s.
Les propriétés physiques de l'eau industrielle à une température moyenne de 25 0C sont les suivantes : p2 = 1000 kg/m3, cp2= 4180 J/(kg.K), X1 = 0,607 W/ (m. K) et μx = 8,9 x 10"4 Pa. s.The physical properties of industrial water at an average temperature of 25 0 C are as follows: p 2 = 1000 kg / m 3, c p2 = 4180 J / (kg.K), X 1 = 0.607 W / (m. K) and μx = 8.9 x 10 "4 Pa. s.
L'échangeur est constitué d'un faisceau de Nt=66 tubes en acier doux de conductivité thermique λp = 50 W/ (m. K), de diamètres intérieur/extérieur (D2ZD1) de 20/24 mm, au pas triangulaire normal p = 30 mm. L'échangeur de chaleur a deux passes côté tubes. La calandre a un diamètre Dc = 337 mm et possède des chicanes d'épaisseur δ = 5 mm espacées d'une distance b = 100 mm. La section libre laissée par les chicanes est de 25%.The exchanger consists of a bundle of N t = 66 mild steel tubes of thermal conductivity λ p = 50 W / (m K), inner / outer diameters (D 2 ZD 1 ) of 20/24 mm, in normal triangular pitch p = 30 mm. The heat exchanger has two tube side passes. The calender has a diameter D c = 337 mm and has baffles of thickness δ = 5 mm spaced a distance b = 100 mm. The free section left by the baffles is 25%.
Afin de déterminer la longueur des tubes à installer, on doit calculer les étapes suivantes :In order to determine the length of the tubes to be installed, the following steps must be calculated:
La puissance de chaleur échangée est : Φ = IU1 Cpi(Tei - Tsi) =• 423750 WThe exchanged heat power is: Φ = IU 1 Cpi (T e i - T s i) = • 423750 W
Le débit m2 de l'eau industrielle est :The flow rate m 2 of industrial water is:
36.5 m* 3/h
Figure imgf000009_0001
36.5 m * 3 / h
Figure imgf000009_0001
Le rapport des capacités calorifiques des deux fluides et l'efficacité de l'échangeur sont respectivement :
Figure imgf000009_0002
The ratio of the heat capacities of the two fluids and the efficiency of the exchanger are respectively:
Figure imgf000009_0002
Suivant Kern [1], le coefficient correctif de l'écart de température logarithmique, correspondant aux valeurs de Z et η calculées est F = 0,97.According to Kern [1], the corrective coefficient of the logarithmic temperature difference corresponding to the values of Z and η calculated is F = 0.97.
Le coefficient d'échange de chaleur h2 de l'eau industrielle dans les tubes est :The heat exchange coefficient h 2 of the industrial water in the tubes is:
V2 = — m — = 0j978 ^ V2 = - m - = 0j978 ^
P2NtpSP2P 2 NtpS P 2
avec Ntp = Nt/2= 33 tubes par passewith N tp = N t / 2 = 33 tubes per pass
Sp2 - section de passage intérieure des tubes Le calcul du nombre de Reynolds et du nombre de Prandtl donneSp 2 - section of internal passage of the tubes The calculation of the Reynolds number and the number of Prandtl gives
Re2 = PH2D2 = 21974 et pr2 = μ2£p2 = 6jl3 μ2 λ2 en utilisant la corrélation de Colburn, le nombre de Nusselt est : Re2 = 21974 = PH2D2 and pr2 μ2 = £ p2 = μ 2 6jl3 λ2 using the Colburn correlation, the Nusselt number is:
Nu2 = 0,023 Re§>8 Pr1/3 = 125,2Nu 2 = 0.023 Re§> 8 Pr 1/3 = 125.2
Le coefficient d'échange de chaleur est :The heat exchange coefficient is:
h2 = λzNu2 =3801 W/(m2.K) D2h 2 = λzNu 2 = 3801 W / (m 2 .K) D 2
Du côté de la calandre, la section de passage entre chicanes et la vitesse du dodécane sont respectivement : Spi = (p - di) (b - δ) = 5,7 x 10"4 m2 etOn the side of the shell, the cross section between baffles and the speed of the dodecane are respectively: Spi = (p - di) (b - δ) = 5.7 x 10 -4 m 2 and
V1=_*L_ = _*!*_ = 0,65 m/s PlNcSpI PiDcSpi V1 = _ * L_ = _ *! * _ = 0.65 m / s PlNcSpI PiDcSpi
Le calcul du nombre de Reynolds, du nombre de Prandtl et du nombre de Nusselt donne :
Figure imgf000010_0001
The calculation of the Reynolds number, the Prandtl number and the Nusselt number gives:
Figure imgf000010_0001
Nui = 0,36 Re?'55 Pr}/ 3 = 163,3Nui = 0.36 Re? 55 Pr / 3 = 163.3
Le coefficient d' échange de chaleur côté calandre est :The heat exchange coefficient on the shell side is:
= λiNui = 102? w/(m2 K) Di = λiNui = 102? w / (m 2 K) Di
En tenant compte de la résistance conductive de la paroi, le coefficient d' échange de chaleur global est :Taking into account the conductive resistance of the wall, the overall heat exchange coefficient is:
K = = 900 W/(m2.K)K = = 900 W / (m 2 .K)
DiIn 2λp D2 h2DiIn 2λ p D2 h2
L' écart de température moyen logarithmique et la surface d'échange de chaleur de l'échangeur sont respectivement :The average logarithmic temperature difference and the heat exchange surface of the exchanger are respectively:
Figure imgf000010_0002
Figure imgf000010_0002
D'où la longueur des tubes dans la calandre est :Hence the length of the tubes in the grille is:
L = = 1,90m π D2Nt Maintenant, on va calculer la longueur des tubes à installer dans le cas d' un échangeur de chaleur à doubles tubes concentriques et calandre. On garde les données de l' échangeur de chaleur à tubes et calandre ci-dessus et on pose concentriquement dans chaque tube de diamètres intérieur/extérieur (D2/Dχ) de 20/24 mm un tube de diamètres intérieur/extérieur (d2/dχ) de 8/4 mm en acier doux.L = = 1.90m π D2N t Now, we will calculate the length of the tubes to be installed in the case of a heat exchanger with double concentric tubes and calender. The data of the tube and shell heat exchanger above are kept and each tube of inner / outer diameters (D 2 / Dχ) of 20/24 mm is placed concentrically in a tube of inside / outside diameters (d 2). / dχ) of 8/4 mm mild steel.
Dans cet exemple, le débit de dodécane circulant côté calandre et à l'intérieur des tubes intérieurs de diamètres intérieur/extérieur (da/di) sont égaux à la moitié du débit total de dodécane refroidi dans l' échangeur de chaleur à tubes et calandre ci-dessus.In this example, the dodecane flow circulating on the shell side and inside the inner tubes of inner / outer diameters (da / di) are equal to half the total flow rate of cooled dodecane in the tube and shell heat exchanger above.
L'eau de refroidissement passe à contre-courant dans les passages annulaires formés par l'enveloppe de diamètres (D2/Di) et les tubes intérieurs.The cooling water passes countercurrently in the annular passages formed by the envelope of diameters (D 2 / Di) and the inner tubes.
Le coefficient d'échange de chaleur h3 de dodécane dans les tubes intérieurs est :The heat exchange coefficient h 3 of dodecane in the inner tubes is:
V3 = ≡à = 5,024m/s V3 = ≡a = 5.024m / s
PlNtpSp3 avec SP3 = section de passage intérieure des tubes intérieurs m3=mi débit de dodécane circulant à l'intérieur des tubes intérieursPlNtpS p 3 with S P3 = inner passage section of the inner tubes m 3 = mi flow of dodecane circulating inside the inner tubes
Le calcul du nombre de Reynolds et du nombre de Prandtl donne :
Figure imgf000011_0001
en utilisant la corrélation de Colburn, le nombre de Nusselt est :
The calculation of Reynolds number and Prandtl number gives:
Figure imgf000011_0001
using the Colburn correlation, the Nusselt number is:
Nu3 =0,023 Re°>8 Pr^3 =142,6Nu 3 = 0.023 R e > 8 Pr ^ 3 = 142.6
Le coefficient d' échange de chaleur est : h3 = M-M = 5385 W/(m2.K)The heat exchange coefficient is: h3 = MW = 5385 W / (m 2 .K)
Le coefficient d' échange de chaleur h2 de l' eau industrielle dans les passages annulaires est :The heat exchange coefficient h 2 of industrial water in the annular passages is:
Y2 = — = 1,164 m/s p2NtpSp2Y 2 = - = 1,164 m / sp 2 NtpSp2
La section de passage SP2 est déterminée par :
Figure imgf000012_0001
The passage section S P2 is determined by:
Figure imgf000012_0001
Le calcul du nombre de Reynolds et du nombre de Prandtl donne :The calculation of Reynolds number and Prandtl number gives:
Re2 = P>2V2 h = 15696 et dh = D2 - di = 0 , 012 m μ2 Re 2 = P> 2V 2 h = 15696 and d h = D 2 - di = 0, 012 m 2
En utilisant la corrélation de Colburn, le nombre de Nusselt est :Using the Colburn correlation, the Nusselt number is:
Nu2 = 0,023ReJ8Pr2 73 = 95,7Nu 2 = 0.023ReJ 8 Pr 2 73 = 95.7
Le coefficient d' échange de chaleur est :The heat exchange coefficient is:
h2 = λ2Nu2 = 4840 W/(m2.K) dhh 2 = λ2Nu2 = 4840 W / (m 2 .K) dh
Du côté de la calandre, la vitesse du dodécane est : mi mip n .On the side of the grille, the speed of the dodecane is: mi mip n .
VJ = i — = = 0,325 m/sVJ = i - = = 0.325 m / s
PlNcSpi PiDcSpiP l NcSpi PiDcSpi
Le calcul du nombre de Reynolds et du nombre de Nusselt donne :The calculation of the Reynolds number and the Nusselt number gives:
Rei = PlIi^l = 78o9 et Nui = O,36Rei o.55pr;/3 = 111,5 Rei = PLII ^ l = 7 and 8 o9 Nui = O, 36R ei o. 55 p r ; / 3 = 111.5
Hlhl
Le coefficient d' échange de chaleur côté calandre est :The heat exchange coefficient on the shell side is:
hl = AlN.il = 702 W/(m2.K) Dih l = A l N.il = 702 W / (m 2 .K) Di
En tenant compte de la résistance conductive de la paroi, le coefficient d'échange de chaleur global Ki,2 (dodécane côté calandre et eau de refroidissement) et le coefficient d'échange de chaleur global K2,3 (eau de refroidissement et dodécane côté tubes intérieurs) sont calculés respectivement par :
Figure imgf000013_0001
Taking into account the conductive resistance of the wall, the overall heat exchange coefficient Ki, 2 (shell-side dodecane and cooling water) and the overall heat exchange coefficient K 2 , 3 (cooling water and dodecane inner tube side) are calculated respectively by:
Figure imgf000013_0001
Dans ce cas le flux de chaleur est :In this case the heat flow is:
φ = [Ki,2 S1 2F +K2,3 S2 JΔTMLφ = [Ki, 2 S 1 2 F + K 2 , 3 S 2 JΔTML
avec Si,2 = Ntπ D2L with Si, 2 = Nt π D 2L
S2,3 = Ntπ d2LS 2 , 3 = Nt π d 2L
D' où la longueur des doubles tubes concentriques dans la calandre est :Hence the length of the double concentric tubes in the shell is:
ΦΦ
L = r 1 = 1,27m π NtlKi,2D2F +K2,3d2jΔTMLL = r 1 = 1,27m NtlKi π 2 D 2 + K 2 F, 3d 2 jΔTML
Pour cet exemple, on déduit que la longueur (ou volume) de l'échangeur à tubes et calandre est supérieure d'environ 50 % à la longueur (ou volume) de l'échangeur de chaleur à doubles tubes concentriques et calandre.For this example, it is deduced that the length (or volume) of the tube and shell exchanger is approximately 50% greater than the length (or volume) of the concentric double-shell and shell heat exchanger.
Dans le cas où la résistance conductive est très petite (tubes en cuivre), l'écart du volume entre les deux échangeurs est d'environ 53 % (L= 1,21 m).In the case where the conductive resistance is very small (copper tubes), the difference in volume between the two exchangers is approximately 53% (L = 1.21 m).
Le résultat le plus intéressant est qu'on peut refroidir le double du débit de dodécane, soit 30 m3/h avec une longueur (ou volume) de l'échangeur de chaleur à doubles tubes concentriques et calandre plus petite de 23 % par rapport à la longueur de l'échangeur à tubes et calandre fonctionnant avec l'ancien débit de dodécane soit 15 m3/h.The most interesting result is that one can cool the double the dodecane flow rate, ie 30 m 3 / h with a length (or volume) of the heat exchanger with double concentric tubes and calender smaller by 23% compared to at the length of the tube and shell heat exchanger operating with the old dodecane flow rate of 15 m 3 / h.
De toute manière la longueur de l'échangeur à doubles tubes concentriques et calandre se réduit encore, en augmentant le débit dodécane. Cette longueur est plus petite de 62 % dans le cas où les deux échangeurs fonctionnent avec un débit de dodécane égal à 30 m3/h. In any case the length of the exchanger with concentric double tubes and calender is further reduced, by increasing the dodecane flow. This length is 62% smaller in the case where the two exchangers operate with a dodecane flow rate equal to 30 m 3 / h.

Claims

REVENDICATIONS
1. Echangeur de chaleur à doubles tubes concentriques et calandre, caractérisé par le transfert de chaleur entre trois fluides et par sa compacité.1. Heat exchanger with concentric double tubes and calender, characterized by the heat transfer between three fluids and its compactness.
2. Appareil thermique selon la revendication 1, peut être étendu aux échangeurs de chaleur ; croisés, croisés à co-courant et croisés à contre-courant.2. Thermal apparatus according to claim 1, can be extended to heat exchangers; crossed, crossed in co-current and crossed against the current.
3. Echangeur de chaleur selon la revendication 1, peut être monté avec des tubes concentriques sous forme ; hélicoïdale, en serpentin ou en spirale dans une calandre.3. Heat exchanger according to claim 1, can be mounted with concentric tubes in form; helical, serpentine or spiral in a shell.
4. Echangeur de chaleur selon la revendication 1 à 3 peut être à tubes simples, corrugués ou à ailettes de formes différentes.4. Heat exchanger according to claim 1 to 3 can be single tubes, corrugated or fin shapes of different.
5. Appareil selon les revendications 1 à 4, peut être utilisé dans tous les domaines d'applications des échangeurs de chaleur. Il peut fonctionner en simple phase (réchauffeur ou refroidisseur) ou avec changement de phase des fluides, tels que les condenseurs et évaporateurs 5. Apparatus according to claims 1 to 4, can be used in all areas of applications of heat exchangers. It can operate in single phase (heater or cooler) or with phase change of fluids, such as condensers and evaporators
PCT/DZ2008/000002 2007-01-24 2008-01-21 Heat exchanger with dual concentric tubes and calender WO2008089777A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DZ070056 2007-01-24
DZ070056 2007-01-24

Publications (1)

Publication Number Publication Date
WO2008089777A1 true WO2008089777A1 (en) 2008-07-31

Family

ID=39301630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DZ2008/000002 WO2008089777A1 (en) 2007-01-24 2008-01-21 Heat exchanger with dual concentric tubes and calender

Country Status (1)

Country Link
WO (1) WO2008089777A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040477A1 (en) * 2015-08-26 2017-03-03 Pera-Pellenc Sa THERMAL EXCHANGER, REFRIGERATION UNIT AND INSTALLATION USING THE HEAT EXCHANGER.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1473241A (en) * 1966-01-31 1967-03-17 Cem Comp Electro Mec Improvements to temperature exchangers
EP0437768A1 (en) * 1989-12-18 1991-07-24 Rockwell International Corporation Leak-safe hydrogen/air heat exchanger
JP2001280864A (en) * 2000-03-30 2001-10-10 Hitachi Ltd Heat exchanger and manufacturing method therefor
EP1189007A2 (en) * 2000-09-19 2002-03-20 Piero Pasqualini Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1473241A (en) * 1966-01-31 1967-03-17 Cem Comp Electro Mec Improvements to temperature exchangers
EP0437768A1 (en) * 1989-12-18 1991-07-24 Rockwell International Corporation Leak-safe hydrogen/air heat exchanger
JP2001280864A (en) * 2000-03-30 2001-10-10 Hitachi Ltd Heat exchanger and manufacturing method therefor
EP1189007A2 (en) * 2000-09-19 2002-03-20 Piero Pasqualini Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3040477A1 (en) * 2015-08-26 2017-03-03 Pera-Pellenc Sa THERMAL EXCHANGER, REFRIGERATION UNIT AND INSTALLATION USING THE HEAT EXCHANGER.

Similar Documents

Publication Publication Date Title
KR101222765B1 (en) Heat exchanger with heat exchange chambers utilizing respective medium directing members
US10132570B2 (en) Heat exchanger with multiple flow tubes for fluid circulation
US4049048A (en) Finned tube bundle heat exchanger
US6419009B1 (en) Radial flow heat exchanger
MX2008008179A (en) Spirally wound, layered tube heat exchanger and method of manufacture.
US20140041842A1 (en) Heat exchanger with heat exchange chambers utilizing respective medium directing members
WO2014119942A1 (en) Heat exchange system
CA2052411C (en) Rotary heat exchanger of improved effectiveness
JP2005214545A (en) Heat exchanger
WO2008089777A1 (en) Heat exchanger with dual concentric tubes and calender
EP0117829B2 (en) Tubular heat exchanger
JP3256634B2 (en) Heat exchanger
US9733024B2 (en) Tubing element with fins for a heat exchanger
CA2893104C (en) Tubing element for a heat exchanger means
EP2926072B1 (en) Tubing element for heat exchanger means
US10697708B2 (en) Heat exchangers
JPS60221691A (en) Condenser
WO2010010591A2 (en) A drier for compressed gas and method for producing the drier
FR2549946A1 (en) Finned heat exchanger, particularly for an air dehumidifier
WO2014083553A1 (en) Tubing element for a heat exchanger means
SE445138B (en) MIXTURES BETWEEN TWO MEDIA FOR THE CONDENSATION OF ANGES
JP2021188781A (en) Heat exchanger and binary power generation device
EP3236190A1 (en) Heat exchangers
JP2003240456A (en) Heat exchanger for hot-water supply
BE460175A (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08706948

Country of ref document: EP

Kind code of ref document: A1