WO2008086748A1 - A-interface-based mobile communication method,system and equipment - Google Patents

A-interface-based mobile communication method,system and equipment Download PDF

Info

Publication number
WO2008086748A1
WO2008086748A1 PCT/CN2008/070061 CN2008070061W WO2008086748A1 WO 2008086748 A1 WO2008086748 A1 WO 2008086748A1 CN 2008070061 W CN2008070061 W CN 2008070061W WO 2008086748 A1 WO2008086748 A1 WO 2008086748A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
bss
mgw
msc
voice
Prior art date
Application number
PCT/CN2008/070061
Other languages
English (en)
French (fr)
Inventor
Feng Li
Shijun Li
Yong Wang
Haopeng Zhu
Xinhua Yang
Hailei Wang
Bo Zhao
Shaohua Luo
Guohong Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNA2007100078523A external-priority patent/CN101018198A/zh
Priority claimed from CNA2007101057666A external-priority patent/CN101316223A/zh
Priority claimed from CN2007101093569A external-priority patent/CN101316385B/zh
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP08700085A priority Critical patent/EP2101466A4/en
Publication of WO2008086748A1 publication Critical patent/WO2008086748A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1043Gateway controllers, e.g. media gateway control protocol [MGCP] controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • H04W88/181Transcoding devices; Rate adaptation devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/14Interfaces between hierarchically different network devices between access point controllers and backbone network device

Definitions

  • the present invention relates to mobile communication technologies, and more particularly to a mobile communication method, system and apparatus based on an A interface. Background of the invention
  • the GSM network consists of two subsystems: BSS (Base Station Subsystem) and NSS (Network Sub-System).
  • BSS Base Station Subsystem
  • NSS Network Sub-System
  • the BSS mainly completes the function of accessing the user terminal, and provides the wireless interface so that the user terminal can access the NSS;
  • the NSS mainly provides voice exchange and constructs various voice service functions on the voice channel exchange (basic voice call function, supplemented) Voice call function of the service, etc.).
  • the interface between BSS and NSS is the A interface, and the A interface is defined in the GSM protocol.
  • NSS Network Service Set
  • PCM Pulse Code Modulation
  • the Transcoder and Rate Adaption Unit (TRAU) function must be supported in the BSS to place the PCM code stream after the above codec conversion function is completed. In the TDM circuit, it is then handed over to the NSS for processing.
  • TDM Transcoder and Rate Adaption Unit
  • the quality of voice calls is not high. Since the voice channel always performs codec conversion before the exchange, for the mobile-to-mobile call, even if the same voice codec function is supported between the two user terminals, the codec conversion is always performed twice (user terminal editing) Decoded to PCM, PCM is then coded to the user terminal), and codec conversion is a loss of voice quality, which reduces the voice quality of the call. If the NSS has evolved into an IP (Internet Protocol) bearer, when the compressed voice codec is used for voice exchange within the NSS, the codec conversion will be performed 4 times (the user terminal codec is to the PCM, and the PCM to the NSS side is compressed. Codec, NSS side compression codec to PCM, PCM to user terminal codec), making the problem of voice call quality more prominent.
  • IP Internet Protocol
  • codec conversion requires a lot of computing resources, codec is generally completed by DSP (DSP Digital Signal Processor), the price is high, and each code is codec converted, it is necessary to deploy a large number of codec converters. This will result in an increase in the cost of network construction for operators.
  • DSP DSP Digital Signal Processor
  • each call voice signal needs to occupy 64 Kbps of bandwidth, which is much higher than the compressed voice codec bandwidth (take the full-rate GSM voice codec supported by most mobile phones as an example, only It needs to occupy 13Kbps of bandwidth), and the bandwidth of the TDM circuit is exclusive. Even during the user's silence, the idle frame consumption bandwidth must be transmitted, which leads to the problem of low bandwidth utilization in the PCM format.
  • an object of the present invention is to provide a mobile communication method, system and device based on an A interface, which improve call quality, reduce network construction cost, and improve bandwidth utilization.
  • a mobile communication method based on A interface comprising:
  • a mobile communication system based on an A interface comprising: a base station subsystem BSS and a core network connected through an A interface, the system further comprising:
  • a channel establishing module configured to establish an internet protocol-based voice call session bearer channel between the BSS and the core network, where the session bearer channel passes through the A interface between the base station subsystem and the core network; and the transmission module is used to press the Internet protocol.
  • the session data is transmitted through the session bearer channel via the A interface.
  • a mobile communication core network includes a mobile switching center server MSS and a media gateway MGW, and the core network further includes:
  • a channel establishment module connected to the mobile switching center server, configured to establish an internet protocol-based voice call session bearer channel between the base station subsystem BSS and the media gateway, where the session bearer channel is between the base station subsystem and the core network
  • the A bearer channel is configured to transmit session data transmitted by the A interface after being encapsulated by the Internet protocol.
  • a base station subsystem includes:
  • a transmission module configured to encapsulate the session data according to the Internet protocol, and transmit the session data through the session bearer channel via the A interface, where the session bearer channel is an Internet protocol-based voice call session carrying channel established between the base station subsystem and the core network
  • the session bearer channel is connected to the A interface between the base station subsystem and the core network.
  • the invention fully utilizes the switching and processing capabilities of the modern core network, as well as the IP interface capability, and can achieve the following beneficial effects after implementation:
  • the BSS always sends the received voice signal directly to the core network for processing, and does not perform codec conversion; and, in the case where the codecs of the two user terminals are the same (in fact, the core network always tries Through signaling, the codec of the two user terminals is negotiated to be the same in the call setup.
  • the core network only needs to directly exchange the voice signals, and does not need codec conversion, thereby avoiding unnecessary codec conversion and reducing the number of edits. Decoding conversion times improves voice quality.
  • the BSS does not perform the codec conversion scheme, and the codec conversion is required twice for each call in the prior art scheme (in some scenarios, even four conversions are required), the solution of the present invention can be Save a lot of codec converter resources and reduce operators' network construction costs.
  • the BSS accesses the core network through the IP interface, and the IP interface is a statistical multiplexing interface.
  • the bandwidth utilization is high, and there is no granularity limitation.
  • Each voice channel uses only the bandwidth and IP header required for the compressed voice codec. Overhead, during the user's silence, voice packets can be transmitted without idle frame filling, which greatly provides bandwidth utilization efficiency.
  • FIG. 1 is a schematic flowchart of an implementation process of a mobile communication method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a communication system in a softswitch architecture according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a control plane protocol stack of a base station controller and a mobile switching center server according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a protocol stack of a base station controller and a media gateway user plane according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of an implementation process of a negotiation coding format when a voice call session bearer channel is established based on an IP according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of establishing an implementation of an A interface bearer according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an IP address information transmission process in a normal call process and a support mode according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of an IP address information transmission process in a normal call process and a transparent mode according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of an IP address information transmission process in a handover process and a support mode according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a process of transmitting IP address information in a handover process and a transparent mode according to an embodiment of the present invention
  • FIG. 11 is a schematic flowchart of an SDP negotiation process in a normal call process according to an embodiment of the present invention
  • 12 is a schematic diagram of a SDP negotiation process in a handover process according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of a mobile communication system based on an A interface according to an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of a mobile communication core network according to an embodiment of the present invention
  • 15 is a schematic structural diagram of a base station subsystem according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a mobile switching center server according to an embodiment of the present invention. Mode for carrying out the invention
  • the basic idea of the present invention is to replace the NSS with a core switching network (hereinafter referred to as a core network) providing an IP interface capability, and establish an IP bearer channel through the A interface between the BSS and the core network, and pass between the BSS and the core network.
  • the established IP bearer channel performs data transmission, and the BSS does not perform the codec conversion operation during data transmission. That is to say, for the data from the terminal to the core network, the BSS does not perform the codec operation after receiving the packet, directly encapsulates the received data, and then transmits the IP encapsulated data to the core through the established IP bearer channel.
  • the BSS does not perform codec conversion after receiving it, and sends it directly to the terminal.
  • the above scheme actually converts the existing A-interface TDM transmission mode into an IP transmission mode, and realizes the IPization of the A interface.
  • the BSS does not need to encode and decode the data from the terminal side, and directly encapsulates the data into the core network; the core network is responsible for processing all the codec related transactions and completing the packet switching function.
  • the solution makes full use of the processing power and interface capability of the core network, reduces the number of codec operations, improves call voice quality, reduces network construction costs, saves transmission bandwidth on the A interface, and improves transmission bandwidth utilization.
  • the data transmission and decoding formats at both ends of the session may be negotiated, and the same codec is used at both ends of the session. format. If the negotiation succeeds, both ends of the session adopt the same codec format, then the core network directly transmits the data after receiving the data sent by the BSS. Send, do not make any codec conversion; If the negotiation is unsuccessful, the two ends of the session use different codec formats, then you need to insert TC (Transcoder) in the core network to perform conversion between different codec formats. Convert the codec format used by one end of the session to the codec format used by the other end, so that both ends of the session with different codec formats can talk to each other.
  • TC Transcoder
  • FIG. 1 is a schematic flowchart of a mobile communication method according to an embodiment of the present invention.
  • the method is used for GSM.
  • the GSM includes a BSS and a core network connected through an A interface.
  • the method includes the following steps: Step 101: Negotiating the transmitted session data. Decoding format, when the codec format is inconsistent, the TC (Transcoder) is inserted into the core network to perform code conversion on the transmitted session data, and if not, the insertion is not performed;
  • Step 102 Establish an IP-based voice call session bearer channel between the BSS and the core network, where the session bearer channel is connected to the A interface between the BSS and the core network.
  • Step 103 The BSS encapsulates the session data according to an IP protocol.
  • Step 104 The encapsulated session data is transmitted through the session bearer channel via the A interface.
  • the A-interface signaling protocol can use SIGTRAN/SCTP/IP (Signaling Transport/Stream Control Transmission Protocol/Internet Protocol)
  • SIGTRAN/SCTP/IP Signaling Transport/Stream Control Transmission Protocol/Internet Protocol
  • the transmission protocol/internet protocol in which the SIGTRAN, the SCTP, and the IP are different layers of the protocol, the protocol hierarchy is sequentially reduced, and the SIGTRAN protocol can adopt the MTP Level 3 User Adaptation Layer (MTP3 User Adaptation Layer); or, the A interface
  • the signaling protocol can also use the MTP3/MTP2/L1 (Message Transport Part Level 3 / Message Transport Part Level 2/L1, Layer 3 Debugging, 1: Transmit Part 2 Layer Messaging Part / LI) protocol, MTP3, MTP2.
  • L1 is a protocol of different layers, and the protocol hierarchy is sequentially reduced.
  • L1 is a TDM time slot, which may be E1/T1/SDH/SONET (El/Tl/Synchoronous Digital Hierarchy / Synchoronous Optical Netwrok, El or Tl or synchronous digital System or Synchronous Optical Network) protocol.
  • L1 is Layer 1, which is the physical layer, the first layer in the OSI seven-layer model, and E1 is the first in the European digital transmission system. Level; Tl: The first stage of the North American T carrier system.
  • the A interface can use RTP/UDP/IP (Real Time Transport Protocol/User Datagram Protocol/Internet Protocol). / User Data Packet Protocol / Internet Protocol), RTP, UDP, IP are different layers of protocols, and their protocol levels are reduced in turn.
  • RTP/UDP/IP Real Time Transport Protocol/User Datagram Protocol/Internet Protocol
  • UDP User Data Packet Protocol
  • IP IP
  • the signaling of the core network interacting with the A interface is an extended BSSAP (Base Station Subsystem Application Part) signaling.
  • BSSAP Base Station Subsystem Application Part
  • the A interface signaling protocol can also be performed using the MTP3 User Adaptation Protocol.
  • MTP3 User Adaptation Protocol takes the core switching network of the softswitch architecture as an example to illustrate the specific implementation.
  • GSM Global System for Mobile Communications
  • GSM Global System for Mobile Communications
  • MSC Server Mobile Switching Center Server, mobile switching.
  • MGW Media Gateway, media gateway
  • BSS includes BSC (Base Station Controller, base station control bearer-independent call control signaling) interaction
  • MSC Server and BSC interact with BSSAP+ (extended BSSAP), BSC and MGW
  • BSC Base Station Controller
  • BSSAP+ extended BSSAP
  • BSC and MGW Between the MSC Servers is an A Interface
  • VoIP Voice over IP refers to an IP-based voice call session bearer channel.
  • the bearer establishment and teardown of the A interface can be controlled by the MSC Server (MSS or MSC-S); the BSS can be established on the A interface through the BSC.
  • MSC Server MSC Server
  • the GSM compressed voice is directly encapsulated into an IP bearer and then transmitted to the core network for processing. If the MSC-S succeeds in the bearer establishment process so that the two ends of the codec are consistent, the GSM compressed voice will be transparently transmitted in the core network; otherwise, the core network inserts the TC to perform code conversion on the transmitted session data, such as the MGW in the core network. Insert TC to complete the codec conversion.
  • BSSAP signaling in order to support IP bearers, BSSAP signaling can be extended.
  • the control plane and the user plane protocol stack of the A interface can be implemented in the following manner.
  • the BSC of the BSS and the MGW and the MSC Server implemented in the core network are taken as an example for description.
  • the English characters except the ones already explained above indicate:
  • MAP Mobile Application Part
  • SCCP Signaling Connection Control Point
  • MAC Media Access Control
  • ppp Point-to-Point Protocol point-to-point protocol.
  • FIG 3 is a schematic diagram of the BSC and MSC Server control plane protocol stack.
  • the A interface is IP-based
  • the A-interface signaling protocol is carried on the SIGTRAN/SCTP protocol.
  • the M3UA protocol can be used for bearer.
  • Figure 4 is a schematic diagram of the BSC and MGW user plane protocol stack. As shown in the figure, on the user side, the GSM compressed voice codec can be directly carried on the RTP/UDP/IP protocol. The core network will handle issues related to codec interworking. The corresponding protocol can refer to RFC3551 and RFC3527.
  • the A interface signaling protocol can also be performed using the MTP3 User Adaptation Protocol.
  • the IP-based voice call session bearer channel call setup process can be implemented as follows.
  • FIG. 5 is a schematic diagram of a process of implementing a negotiated coding format for a call setup of a voice call session based on an IP, as shown in the following figure, including the following steps:
  • Step 501 The O-MSC ( Originate-MSC; (call) originating MSC end) sends a list of available encoding formats to the Transit-MSC (Transit MSC), such as (V, w, X, y, z);
  • Step 502 The O-MSC sends the selected coding format to the O-MGW ( Originate-MGW; (call) originating MGW end), and in this example, the selected V code is used for description;
  • Step 503 The Transit-MSC encodes a format list to the T-MSC (terminate-MSC; (call) terminating MSC end), such as (V, w, X, z, ).
  • the transit MGW does not support the codec y.
  • the transit MSC deletes y;
  • Step 504 The T-MSC selects an encoding format, such as V, and feeds back T-MGW (terminate-MGW; (call) terminates the MGW end);
  • Step 505 the T-MSC feeds back the selected encoding format v to the Transit-MSC;
  • Step 506 the Transit-MSC determines the selected encoding format v to the Transit-MGW;
  • Step 507 the Transit-MSC feeds back the selected coding format v to the 0-MSC;
  • Step 508 0-MSC feeds back the determined encoding format v to the 0-MGW;
  • Step 509 The 0-MGW and the T-MGW establish a bearer according to the encoding format v.
  • the MSC-S will try its best to avoid the use of the codec converter, that is, during the call, it always tries to negotiate the codec of the calling party to be the same.
  • Codec Multimedia Digital Codec
  • negotiation is performed before the bearer is established, so the core network will establish appropriate bearer resources for the call to avoid inserting the TC into the call.
  • the final decision on the choice of codec is in the BSC.
  • the MSC-S can only suggest that the BSC prefer a certain codec format. Even if the 0-MSC and the T-MSC finally select the same codec (for example, both V), if the BSC decides not to comply with the MSC's suggestion according to the local channel resources, etc., the call is still not TrFO, in this case, only Insert TC on the MGW.
  • the establishment process of the A interface bearer can be performed as follows.
  • FIG. 6 is the A-interface bearer.
  • a schematic diagram of the implementation process is established. As shown in the figure, after obtaining the IP address and port number of the MGW-side, the MSC-S indicates to the BSC through the extended BSSAP signaling. Also indicated are the recommended codec list and rate, such as ACS/SCS (accepted codec set/selected codec set), corresponding to the voice version list, and RTP encapsulation. Some information is required, such as PayloadType, Packtize Time, Clock Rate, and so on. After obtaining the IP address and port number of the BSC side, the MSC-S indicates to the MGW through the Mc interface, thereby completing the establishment of a bearer.
  • the user plane processing can be performed as follows.
  • the compressed GSM voice can be sent between the MGW and the BSC.
  • the BSC does not need to convert the codec format.
  • the GSM voice is transparently forwarded. Otherwise, the MGW automatically inserts the TC for conversion.
  • the embodiment of the present invention provides an IP-based GSM network architecture.
  • the GSM is composed of an access network and a core network.
  • the core network can exchange voices between users using the same or different voice codecs. In the case of the same codec, the direct exchange is performed. In the case of different voice codecs, the codec format used by the other party is converted and exchanged, so that users can always talk to each other; the GSM access network will transmit voice signals from the user terminal. The untransformed is sent to the core network for exchange, and the voice signal is sent to the user terminal without conversion in the opposite direction.
  • the GSM access network itself does not perform any codec conversion; the voice signal between the GSM access network and the core switching network is carried by the IP protocol.
  • the GSM A interface protocol is adopted, and on this basis, it is extended to enable it to support the bearer mode of the IP protocol.
  • the core network always negotiates the codec of the calling parties through signaling interaction. When the negotiation is successful, the parties will use the same codec.
  • the voice signal between the GSM access network and the core network can be carried on the IP protocol in the form of RTP/UDP.
  • the signaling message between the GSM access network and the core network may be carried in the form of SIGTRAN/SCTP/IP, or MTP3/MTP2/L1 (where L1 is a TDM time slot, specifically E1/T1/SDH/SONET) Form bearing.
  • the BSS directly encapsulates and compresses the compressed voice to the core network; the core network is responsible for processing all the multi-codec related transactions, including codec negotiation and codec conversion after the negotiation fails, and completes the voice packet. exchange.
  • This scheme makes full use of the existing characteristics of the core network, and supports TrFO (Transcode Free Operatiion, in the case of consistent code negotiation).
  • TrFO Transcode Free Operatiion, in the case of consistent code negotiation.
  • the code-free conversion operation improves the voice quality, reduces the use of TC resources, and saves the transmission bandwidth on the A interface.
  • the BSS design is also compressed.
  • the BSS and the MGW need to obtain each other's IP address information, and also perform SDP (Session Description Protocol) negotiation.
  • SDP Session Description Protocol
  • the SDP negotiation content includes: PT, packet time, packet rate, clock rate, etc.
  • the IP address information transfer process and the SDP negotiation process between the BSS and the MGW can be performed through the mobile switching center.
  • the mobile switching center is an MSC in a 2G communication system, and the IP address information in the 3G communication system is specifically an MSCe or an MSC Server.
  • the IP address information may be an IP address and a UDP port number, or may be an IP address and a circuit identifier. Code (CIC, Circuit Identity Code).
  • Figures 7 to 10 show the process of transmitting IP address information between the BSS and the MGW through the MSC during the normal call process and during the handover process and in different User Plane (UP) modes.
  • Figure 7 corresponds to the normal call process and support mode;
  • Figure 8 corresponds to the normal call process and transparent mode;
  • Figure 9 corresponds to the switch process and support mode;
  • Figure 10 corresponds to the switch process and the transparent mode.
  • the IP address information transfer process shown in Figure 7 mainly includes the following steps:
  • Step 701 The MSC sends a request for obtaining the IP address and the UDP port number of the MGW to the MGW through the ADD_REQ (Endpoint Establishment Request message).
  • Step 702 After receiving the ADD_REQ message sent by the MSC, the MGW returns an ADD_REPLY (endpoint establishment response message) to the MSC, and carries its own IP address and UDP port number in the message.
  • ADD_REPLY endpoint establishment response message
  • Step 703 The MSC sends the received IP address and UDP port number of the MGW to the BSS through the ASSIGNMENT_REQ (Assignment Request message).
  • Step 704 After receiving the ASSIGNMENT_REQ message, the BSS passes the IuUP Init (UP).
  • the initialization message sends its own IP address and UDP port number to the MGW. Among them, IuUP is
  • Step 705 After receiving the IuUP Init message, the MGW returns an IuUP Init ACK to the BSS (UP initial ⁇ response message).
  • Step 706 The BSS returns an ASSIGNMENT COMPLETE to the MSC, and optionally carries or does not carry its own IP address and UDP port number in the message.
  • the IP address information transfer process shown in Figure 8 mainly includes the following steps:
  • Steps 801 - 803 The same as steps 701 - 703, and will not be described again here.
  • Step 804 After receiving the ASSIGNMENT_REQ message, the BSS returns to the MSC.
  • ASSIGNMENT COMPLETE message and carries its own IP address and UDP port number in the message.
  • Step 805 The MSC sends the received BSS IP address and UDP port number to the MGW through the MODIFY_REQ (Endpoint Attribute Change Request message).
  • Step 806 After receiving the MODIFY_REQ message, the MGW returns to the MSC.
  • the IP address information transfer process shown in Figure 9 mainly includes the following steps:
  • Steps 901 ⁇ 902 The same as steps 701 ⁇ 702, and will not be described here.
  • Step 903 The MSC sends the MGW IP address and the UDP port number to the target BSS through a Handover-Request (Handover Request message).
  • Step 904 The target BSS sends its own IP address and UDP port number to the MGW through the IuUP Init message.
  • Step 905 After receiving the IuUP Init message, the MGW returns an IuUP Init ACK message to the target BSS.
  • Step 906 The target BSS returns a Handover-Request_ACK (Handover Request Response message) to the MSC, and may choose to carry or not carry its own IP address and UDP port in the message. number.
  • Handover-Request_ACK Handover Request Response message
  • the IP address information transmission process shown in Figure 10 mainly includes the following steps:
  • Steps 1001 ⁇ 1003 The same as steps 901 ⁇ 903, and will not be described here.
  • Step 1004 After receiving the Handover-Request message, the target BSS returns a Handover-Request_ACK message to the MSC, and carries its own IP address and UDP port number in the message.
  • Step 1005 The MSC sends the IP address and UDP port number of the target BSS to the MGW through the MODIFY_REQ message.
  • Step 1006 After receiving the MODIFY_REQ message, the MGW returns a MODIFY_REPLY message to the MSC.
  • the carrying of the IP address and the UDP port number in the ASSIGNMENT_REQ, the ASSIGNMENT COMPLETE, the Handover-Request, the Handover-Request_ACK, etc. may be performed by adding a cell to the message, such as adding a transport layer address in the message. (Transport Layer Address)
  • the existing 2-byte-length CIC cell is expanded to 16 bytes, and a field for carrying an IP address and a UDP port number is added to the CIC cell.
  • a field for indicating whether the delivered content is a CIC or an IP address and a UDP port number may be added to the CIC cell.
  • CIC corresponds to TDM transmission mode, and IP + PORT corresponds to IP transmission mode.
  • octet 4 and octet 5 represent CIC
  • octet 4 ⁇ octet 17 represents an IP address
  • octet 18-octet 19 represents a port number PORT.
  • the above embodiment mainly describes the transmission process of the IP address and the UDP port number in detail. It should be noted that in the present invention, an IP address and a CIC may be used instead of the IP address and the UDP port number. In this way, the BSC and the MGW can continue to maintain the A interface using the original CIC concept.
  • the SDP negotiation process is described in detail below.
  • the first line represents the bit
  • the first byte (octet 1 ) is the cell identifier
  • the second byte (octet 2 ) represents the cell length.
  • octet 3 the number of bearer types (PT, Payload Type) is indicated; the bearer type identifies the codec type used on the bearer channel, and the correspondence between the value of the PT and the codec type is as shown in Table 3;
  • octet 4 uses one bit to identify the value of Ext. When Ext is 0, it indicates that the bearer type (PT) identified in octet 4 does not support Redundant (Red). When Ext is 1 Indicates that the bearer type (PT) identified in octet 4 supports Redundant (Red); the Red specifically refers to the RFC2198 redundant RTP packet.
  • the Ext bit of the first bit of octet 4 in the table takes a value of 0, which means that the bearer type (PT) identified in octet 4 does not support Red.
  • the value of Octet 5 in the table is 1, indicating that the bearer type (PT) identified in octet 5 supports Red. Therefore, the information carried in the embodiment of the Speech SDP Information list cell shown in Table 2 indicates that the structure is established by the cell embodiment.
  • the codec types used on the bearer channel include codec types that support RFC2198 redundant transmission and codec types that do not support RFC2198 redundant transmission.
  • the value of the service bearer type (PT) is used to indicate the type of codec that the BSC needs to provide services.
  • Table 3 shows the correspondence between the partial bearer type (PT) value and the codec type.
  • each PT value has a corresponding codec type defined, that is, a static PT; for example, as shown in Table 3, when the PT value is 3, Indicates the use of GSM coding, The code uses a clock rate of 8000 Hz.
  • the PT value is dynamically allocated, that is, before the service bearer is performed, a value in the system temporary negotiation 96 - 127 is used to identify the codec type that is not defined in the static PT. .
  • GSM-EFR GSM enhanced full rate speech
  • GSM-HR GSM half rate speech
  • GSM-EFR GSM enhanced full rate speech
  • GSM-HR GSM half rate speech
  • GSM Half Rate encoding
  • AMR adaptive multi-rate
  • AdaptiveMultiRate encoding
  • AMR-WB data service
  • DATA data service
  • RFC 2198 redundant RTP packet (Red) carrier type PT
  • the basic idea of the RFC2198 redundant transmission is that the data of the same content is encoded by different coding types, and then encapsulated into two data packets for transmission. To improve the robustness of data services against IP packet loss and the connection rate of data services.
  • the data of the previous frame or the first few frames is redundantly transmitted.
  • Whether to enable this function is determined by the MSC SERVER directive.
  • the Calltype of the Server in the Localcontrol descriptor of the ADD or MOD command is specified as DATA.
  • the server sends the relevant redundancy parameters to the BSC through the BSSAP message to ensure that the parameters of the BSC and the MGW are consistent.
  • the SDP message of the BSC is as follows:
  • the RTP Payload parameter is further carried in the Speech SDP Information list during the negotiation of the SDP.
  • the information to be identified in the fields includes: Red's PT value, the PT value used to identify the two encoding types used in redundant transmission, and the clock rate used by Red.
  • RTP Red parameter where 97 is set to be dynamically assigned and is paired with RTP Red.
  • the redundant transmission in this example adopts the coding mode of PCMU; 8000 Indicates the clock rate.
  • the PT value in the embodiment shown in Table 2 is the voice version in the channel type ( Channnel Type) cell carried in the prior art assignment request message (ASSIGNMENT REQUEST) and handover request message (HANDOVER REQUEST) ( Speech version ) corresponds.
  • AMR-WBs there is a relationship that a PT value corresponds to multiple codecs;
  • the PT value does not correspond to the speech version in the Channel Type cell.
  • Speech SDP Information list does not have to contain all the information of the existing speech version, and the system can use the speech version in combination with the PT of the Speech SDP Information list.
  • Octet 4c is used to identify the activated codec rate set (ACS, Active Codec Set); Octet 4d is used to identify the supported codec rate set (SCS, Supported Codec Set), and whether to allow the other party to optimize the ACS in Octet 4e (OM, Optimisation Mode for ACS) and Maximal number of codec modes in the ACS. Since HR, EFR, and FR are single rate encoding, for the three fields Octet 4c, Octet 4d, and Octet 4e, when the encoding type is HR, EFR, or FR, Table 2 will not be included in the Speech SDP Information list. The contents of the three fields Octet 4c, Octet 4d, Octet 4e are shown.
  • the contents of the three fields Octet 4c, Octet 4d, and Octet 4e shown in Table 2 are optional.
  • the identifiers are all Support, otherwise it will be identified according to the structure of Table 4.
  • the Speech SDP Information list must carry the Octet 4c shown in Table 2.
  • the clock rate (clock rate) is identified in the Octet 5e.
  • the following provides a correspondence between the value of the clock rate field and the clock rate (unit: hz).
  • 1111 1111 Invalid value Referring to Table 2, where the packet time is identified in Octet 5f. The following provides a correspondence between the value of a packet time field and the packing duration (in ms).
  • the structure of the Speech SDP Information list cell has been described above by way of a specific embodiment. It can be seen from the foregoing embodiment that the content of the SDP is added to the content of the SDP, and the content of the IP header multiplexing/compression technology and the 2198 redundant transmission technology is added. By adding the content of the negotiation, the MGW and the BSC can be adopted. More reliable transmission technologies such as 2198 redundant transmission, which helps to improve the reliability of the A interface transmission between the MGW and the BSC and reduce the packet loss rate of the IP data packet.
  • Step 1101 When the MSC sends an ADD_REQ message to the MGW to establish an access side endpoint, the PT carries the PT information, and indicates the PT information in the RTP packet of the BSC.
  • Step 1102 The MSC receives the MGW load setup response message ADD_REPLY;
  • Step 1103 The MSC sends the ASSIGNMENT_REQ message to the BSS, and carries the Speech SDP Information list information in the message; the bearer type PT information is included in the message;
  • Step 1104 The BSS returns an ASSIGNMENT COMPLETE message to the MSC, and The message carries the actual Speech SDP Information list of the BSS; including the actual used bearer type PT information;
  • Step 1105 The Speech SDP Information list returned by the BSS, if the MSC determines that the PT that is actually preferred by the BSS changes, the MODIFY_REQ message sent by the MSC to the MGW carries the changed PT to notify the MGW that the PT changes.
  • Step 1106 The MGW returns a response message MODIFY_REPLY.
  • the message flows shown in FIG. 11 and FIG. 8 can be combined, that is, in the message interaction process shown in FIG. 8 or FIG. 11, the IP address information transmission and the SDP negotiation process are simultaneously performed.
  • the MSC sends the MGW IP address, the UDP port number, and the Speech SDP Information list to the BSS through the ASSIGNMENT_REQ message.
  • the BSS sends the BSS IP address, the UDP port number, and the Speech SDP Information list actually used by the BSS through the ASSIGNMENT COMPLETE message.
  • the MSC sends the BSS IP address, the UDP port number, and the changed PT information to the MGW through the MODIFY_REQ message.
  • the interaction of the bearer type information between the BSS and the MGW is implemented through the negotiation of the SDP.
  • the embodiment may also be carried out by using the protocol in the Speech SDP Information list.
  • the way of redundant information is to implement the negotiation of redundant transmission information between the BSS and the MGW.
  • the present invention further provides an embodiment for implementing negotiation of redundant transmission information between the BSS and the MGW.
  • the MSC When the MSC sends an ADD REQ message to the MGW to establish an access side endpoint, it carries the redundancy information specified by the protocol (such as the 2198 redundancy information specified by the protocol), indicating the redundancy mode adopted by the MGW;
  • the MSC receives the MGW load setup response message ADD REPLY;
  • the MSC sends an ASSIGNMENT REQ message to the BSS, and carries a Speech SDP Information list in the message, which identifies the redundant information specified by the protocol.
  • Step 1201 When the MSC sends an ADD_REQ message to the MGW to establish an access side endpoint, the MSC carries the PT information, indicating the PT information in the RTP packet of the BSC. ;
  • Step 1202 The MSC receives the MGW load setup response message ADD_REPLY;
  • Step 1203 The MSC sends the Handover-Request message to the BSS, and carries the Speech SDP Information list information in the message; the bearer type PT information is included in the message;
  • Step 1204 The BSS returns a Handover-Request_ACK message to the MSC, and carries the Speech SDP Information list actually used by the BSS, including the actually used bearer type PT information;
  • Step 1205 According to the Speech SDP Information list returned by the BSS, if the MSC determines that the preferred PT actually used by the BSS changes, the MODIFY_REQ message sent by the MSC to the MGW carries the changed PT to notify the MGW that the PT changes.
  • Step 1206 The MGW returns a response message MODIFY_REPLY.
  • the message flows shown in FIG. 12 and FIG. 10 can be combined, that is, in the message interaction process shown in FIG. 10 or FIG. 12, the IP address information transmission and the SDP negotiation process are simultaneously performed.
  • the MSC sends the MGW IP address, the UDP port number, and the Speech SDP Information list to the BSS through the Handover-Request message.
  • the BSS uses the Handover-Request_ACK message to simultaneously set the BSS IP address, UDP port number, and the Speech SDP actually used by the BSS.
  • the information list is sent to the MSC; the MSC sends the BSS IP address, the UDP port number, and the changed PT information to the MGW through the MODIFY_REQ message.
  • the negotiation of the redundant transmission information between the BSS and the MGW can be implemented by carrying the redundant information specified by the protocol in the Speech SDP Information list.
  • the present invention further provides an embodiment for implementing negotiation of redundant transmission information between a BSS and an MGW.
  • the MSC sends an ADD REQ message to the MGW to establish an access side endpoint, it carries the redundancy information specified by the protocol (such as 2198 redundant information specified by the protocol), indicating the redundancy mode adopted by the MGW; and the MSC receives the 7-set setup response message of the MGW. ;
  • the MSC sends a HANDOVER REQUEST message to the BSS, and carries a Speech SDP Information list in the message, which identifies the redundant information specified by the protocol.
  • the MSC is responsible for interworking the SDP negotiation between the MGW and the BSC, and then implementing the IP of the A interface through negotiation, thereby avoiding the conversion of the voice coding in the prior art, thereby improving the voice quality and saving the TC. Resources, reducing system costs.
  • the content of the negotiation of the embodiment of the present invention includes the IP header multiplexing/compression technology and the 2198 redundant transmission technology, thereby improving the robustness of data transmission between the MGW and the BSC.
  • the method includes the following steps: the mobile switching center sends a bearer setup request message to the media gateway MGW, carrying the bearer type PT information; the mobile switching center acquires the bearer setup response message sent by the MGW; and the mobile switching center sends the voice/data code to the base station controller BSC.
  • the above-mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention further provides a mobile communication system based on the A interface.
  • a mobile communication system based on the A interface.
  • FIG. 13 shows an exemplary structural diagram of the mobile communication system, which is applicable to GSM, which mainly includes a BSS and a core network connected through the A interface, and further includes: a channel establishment module, configured to establish an IP-based voice call session bearer channel between the BSS and the core network, where the session bearer channel passes the BSS and the core A interface between the networks;
  • GSM Global System for Mobile communications
  • a transmission module configured to encapsulate the session data according to the IP protocol, and transmit the session data through the session carrying channel via the A interface.
  • the preferred implementation may further include a code converter for performing de-encoding conversion on the transmitted session data;
  • a negotiation module configured to negotiate the transmitted session data encoding and decoding format before establishing an IP-based voice call session bearer channel between the BSSs, and when the codec format is inconsistent, insert the code converter into the core network to transmit The session data is code converted.
  • the A-interface signaling protocol can use the SIGTRAN/SCTP/IP protocol, and the SIGTRAN protocol can adopt the M3UA protocol.
  • the A interface may use the RTP/UDP/IP protocol when the BSS encapsulates the session data according to the IP protocol and transmits the session data through the session bearer channel via the A interface.
  • the A interface signaling protocol can also be performed using MTP3.
  • the signaling that the core network interacts with the A interface can use extended BSSAP signaling.
  • the embodiment of the present invention further provides a mobile communication core network, and a specific implementation manner of the mobile communication core network is described below with reference to the accompanying drawings.
  • FIG. 14 is a schematic structural diagram of the mobile communication core network.
  • the mobile communication core network is applicable to a GSM network
  • the GSM network includes a BSS and a core network connected through an A interface
  • the core network includes The mobile switching center server MSC-S, the media gateway MGW, and the core network further include:
  • a channel establishment module connected to the mobile switching center server, configured to establish an IP-based voice call session bearer channel between the BSS and the media gateway, where the session bearer channel passes through the BSS and the core
  • the A interface between the networks; the session bearer channel is configured to transmit session data transmitted by the A interface after being encapsulated by the IP protocol.
  • the preferred implementation may further include a code converter connected to the media gateway for performing de-encoding conversion on the transmitted session data;
  • the negotiation module is connected to the mobile switching center server, and is configured to negotiate the transmitted session data encoding and decoding format before establishing an IP-based voice call session bearer channel between the BSSs, and insert the code conversion when the codec formats are inconsistent
  • the device performs code conversion on the transmitted session data.
  • an embodiment of the present invention further provides a base station subsystem BSS, and a specific implementation manner of the base station subsystem is described below with reference to the accompanying drawings.
  • FIG. 15 shows an exemplary structural diagram of a base station subsystem.
  • the base station subsystem can be applied to a GSM network.
  • the GSM network includes a BSS and a core network connected through an A interface, and the base station subsystem includes:
  • a transmission module configured to encapsulate the session data according to the IP protocol, and transmit the session data through the session bearer channel through the A interface, where the session bearer channel is an IP-based voice call session established between the BSS and the core network.
  • the session 7 channel is connected to the A interface between the BSS and the core network.
  • the MSC-S that is, the MSS
  • the MSC-S is further configured to obtain the IP address information of the MGW during the IP-based channel establishment process, and send the obtained MGW IP address information to the BSS; the BSS receives the IP address of the MGW. After the address information, the IP address information is directly sent to the MGW, or the IP address information is sent to the MSC, and the MSC forwards the BSS IP address information to the MGW.
  • the MSC-S that is, the MSS is further used to send PT information to the MGW during the establishment of the IP bearer channel, and send a voice/data codec carrying the PT information to the BSS.
  • SDP information which receives the voice/data codec SDP information actually used by the BSS returned by the BSS; and then determines that the BSS information actually used by the BSS is carried in the SDP information. Whether the preferred PT is the same as the PT sent by the MSC to the BSS, if different, sends the changed PT information to the MGW.
  • FIG. 16 is a schematic structural diagram of an MSS, and specifically includes: a first message generating unit, a first interface unit, a message parsing unit, a second interface unit, and a determining unit, where:
  • a first message generating unit configured to generate a first message, and add a voice/data codec SDP information to the first message;
  • the first message is an assignment request message or a handover request message;
  • the information exchange with the base station controller BSC includes: sending the first message to the BSC; acquiring a first message response message that is returned by the BSC and carrying the actually used voice/data codec SDP information; the first message is And the message parsing unit parses the first message response message to obtain the voice/data codec SDP information carried in the first message response message;
  • a determining unit configured to determine whether the bearer type PT information in the parsed voice/data codec SDP information is consistent with the bearer type information in the voice/data codec SDP information sent by the first message to the BSC, if not, Triggering the second interface unit to send the changed PT information to the media gateway MGW through the change request message;
  • the second interface unit is configured to perform information interaction with the MGW, including: sending the PT information to the MGW by using a bearer setup request message and a change request message.
  • the voice/data codec SDP information corresponds to the bearer type, and further identifies whether the RFC2198 redundant transmission is supported.
  • the channel type channel type information is included, and the sequence of the SDP information encoded by the voice data in the embodiment of the present invention corresponds to the sequence of the channel type information;
  • the voice version encoded SDP information does not carry the voice version Speech Version information carried in the Channel Type information.
  • the SDP information encoded by the voice data further carries the voice version Speech Version information carried in the channel type Channel Type information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

基于 A接口的移动通信方法、 系统及装置 技术领域
本发明涉及移动通信技术, 尤其涉及基于 A接口的移动通信方法、 系统 及装置。 发明背景
GSM网络由 BSS( Base Station Subsystem,基站子系统)和 NSS( Network Sub-System, 网络子系统)两个子系统组成。 其中 BSS主要完成用户终端接 入的功能, 提供无线接口使得用户终端可以接入 NSS; NSS主要提供话路交 换及建构在话路交换上的各种语音业务功能(基本的语音通话功能, 具有补 充业务的语音通话功能等)。 BSS和 NSS之间的接口是 A接口, A接口在 GSM协议中进行了定义。
在现有的 GSM网络中, NSS提供的接口能力是有限的, 它能够提供的 对外接口只有一种, 就是 64Kbps的 TDM ( Time Division Multiplex, 时分复 用 ) 电路接口, 因此 BSS只能通过 64Kbps TDM电路与 NSS对接。 同时电 路接口的话路交换能力也是有限的,因为它能够处理的编解码格式只有一种, 即 PCM ( Pulse Code Modulation, 脉沖编码调制), 所以无论用户终端采用什 么编解码格式, 在 BSS都必须转换成 PCM格式, 才能送往 NSS进行交换。 因此,在现有的 GSM网络中,在 BSS中必须支持 TRAU( Transcoder and Rate Adaption Unit, 码变换和速率适配单元) 功能, 才能在完成上述编解码转换 的功能后, 将 PCM码流放置到 TDM电路中, 再交给 NSS处理。
发明人在发明过程中注意到, 在上述 GSM的架构下, 现有技术存在着 语音通话质量不高、 建网成本高、 带宽利用率低的不足。
1、 语音通话质量不高。 由于话路在交换前总是要进行编解码转换, 对于移动到移动的呼叫, 即 使两个用户终端之间支持相同的语音编解码功能, 也总是要进行两次编解码 转换(用户终端编解码到 PCM, PCM再编解码到用户终端 ), 而编解码转换 是存在语音质量损失的, 这降低了通话语音质量。 如果 NSS 已经演进为 IP ( Internet Protocol, 互联网协议)承载, 在 NSS内部采用压缩语音编解码进 行话路交换时, 由于将进行 4次编解码转换(用户终端编解码到 PCM, PCM 到 NSS侧压缩编解码, NSS侧压缩编解码到 PCM, PCM再到用户终端编解 码 ), 使得语音通话质量降低的问题更为突出。
2、 建网成本高。
由于编解码转换需要大量的计算资源,编解码一般使用 DSP( DSP Digital Signal Processor, 数字信号处理器) 完成, 价格较高, 每次呼叫都进行编解 码转换,就必须部署大量的编解码转换器,这将导致运营商的建网成本增加。
3、 带宽利用率低。
由于 PCM格式是非压缩的语音编解码格式, 每路呼叫语音信号需要占 用 64Kbps 的带宽, 这大大高于压缩语音编解码的带宽 (以大多数手机都支 持的全速率 GSM语音编解码为例, 只需要占用 13Kbps的带宽), 而且 TDM 电路带宽是独占的, 即使在用户静默期间, 也必须传送空闲帧消耗带宽, 这 都导致了 PCM格式下带宽利用率不高的问题。 发明内容
有鉴于此, 本发明的目的在于提供一种基于 A接口的移动通信方法、 系 统及装置, 提升通话质量、 降低建网成本、 提高带宽利用率。
为达到上述目的, 本发明的技术方案是这样实现的:
一种基于 A接口的移动通信方法, 该方法包括:
在基站子系统 BSS与核心网之间建立经 A接口的 IP承载通道;
BSS与核心网之间通过建立的 IP承载通道进行数据传输,在数据传输过 程中, BSS对接收到的数据进行透传, 不执行编解码转换操作。
一种基于 A接口的移动通信系统,该系统包括通过 A接口相连的基站子 系统 BSS与核心网, 该系统还包括:
通道建立模块,用于在 BSS与核心网之间建立基于互联网协议的语音呼 叫会话承载通道, 所述会话承载通道经基站子系统与核心网之间的 A接口; 传输模块,用于按互联网协议将会话数据封装后经 A接口通过所述会话 承载通道传输会话数据。
一种移动通信核心网,包括移动交换中心服务器 MSS和媒体网关 MGW, 该核心网还包括:
通道建立模块, 与移动交换中心服务器相连, 用于在基站子系统 BSS与 所述媒体网关之间建立基于互联网协议的语音呼叫会话承载通道, 所述会话 承载通道经基站子系统与核心网之间的 A接口; 所述会话承载通道用于传输 按互联网协议封装后经 A接口传输的会话数据。
一种基站子系统, 包括:
传输模块,用于按互联网协议将会话数据封装后经 A接口通过会话承载 通道传输会话数据, 所述会话承载通道是在基站子系统与核心网之间建立的 基于互联网协议的语音呼叫会话承载通道, 所述会话承载通道经基站子系统 与核心网之间的 A接口。
本发明充分利用了现代核心网的交换和处理能力, 以及 IP接口能力, 实 施后可以获得以下有益效果:
一、本发明中 BSS总是将收到的语音信号直接送往核心网处理, 不执行 编解码转换; 并且, 在两个用户终端的编解码相同的情况下 (事实上, 核心 网总是试图通过信令在呼叫建立将两个用户终端的编解码协商为相同),核心 网也只需直接对语音信号进行交换, 不需要编解码转换, 从而避免了不必要 的编解码转换, 减少了编解码转换次数, 提升了语音质量。 二、 本发明中 BSS不进行编解码转换的方案, 相比现有技术方案中每个 呼叫都需要进行两次编解码转换(在有的场景下甚至需要进行四次转换 ) ,本 发明方案可以节省大量的编解码转换器资源, 降低运营商的建网成本。
三、 本发明中 BSS通过 IP接口接入核心网, 而 IP接口是统计复用的接 口, 带宽利用率高, 没有粒度限制, 每个话路仅使用压缩语音编解码所需的 带宽及 IP包头开销,在用户静默期间可以不传送语音包, 无需进行空闲帧填 充, 从而大大提供了带宽利用效率。 附图简要说明
图 1为本发明实施例中移动通信方法实施流程示意图;
图 2为本发明实施例中软交换架构下的通信系统结构示意图; 图 3为本发明实施例中基站控制器与移动交换中心服务器控制面协议栈 示意图;
图 4为本发明实施例中基站控制器与媒体网关用户面协议栈示意图; 图 5为本发明实施例中基于 IP的语音呼叫会话承载通道呼叫建立时协商 编码格式实施流程示意图;
图 6为本发明实施例中 A接口承载的建立实施流程示意图;
图 7为本发明实施例中普通呼叫过程、支持模式下的 IP地址信息传递过 程示意图;
图 8为本发明实施例中普通呼叫过程、透明模式下的 IP地址信息传递过 程示意图;
图 9为本发明实施例中切换过程、支持模式下的 IP地址信息传递过程示 意图;
图 10为本发明实施例中切换过程、 透明模式下的 IP地址信息传递过程 示意图;
图 11为本发明实施例普通呼叫过程中的 SDP协商流程示意图; 图 12为本发明实施例切换过程中的 SDP协商流程示意图; 图 13为本发明实施例中基于 A接口的移动通信系统结构示意图; 图 14为本发明实施例中移动通信核心网的结构示意图;
图 15为本发明实施例中基站子系统的结构示意图;
图 16为本发明实施例中移动交换中心服务器的结构示意图。 实施本发明的方式
为使本发明的目的、 技术方案及优点更加清楚明白, 下面参照附图并举 实施例, 对本发明作进一步详细说明。
本发明的基本思想是: 用提供 IP接口能力的核心交换网络(以下筒称为 核心网)取代 NSS,在 BSS与核心网之间建立经 A接口的 IP承载通道, BSS 与核心网之间通过建立的 IP承载通道进行数据传输,在数据传输过程中 BSS 不执行编解码转换操作。 也就是说, 对于终端到核心网方向的数据, BSS收 到后不执行编解码操作, 直接对收到的数据进行 IP封装, 然后将经 IP封装 后的数据通过建立的 IP承载通道传送给核心网;对于核心网到终端方向的数 据, BSS收到后不执行编解码转换, 直接发送给终端。
上述方案实际上是将现有的 A接口 TDM传输方式转换成了 IP传输方 式, 实现了 A接口的 IP化。 在该方案中, BSS无需对来自终端侧的数据进 行编解码转换, 直接对该数据进行 IP封装并传送给核心网; 核心网负责处理 所有与编解码有关的事务, 并完成分组交换功能。 该方案充分利用核心网的 处理能力和接口能力, 减少编解码操作次数, 以提升呼叫语音质量, 降低建 网成本, 节省 A接口上的传输带宽, 提高传输带宽利用率。
另外, 为了进一步减少数据传输过程中的编解码转换操作次数, 还可以 在 IP通道上进行数据传输之前,先对会话两端的数据传输编解码格式进行协 商, 尽量使得会话两端采用相同的编解码格式。 如果协商成功, 会话两端采 用相同的编解码格式, 则核心网收到 BSS发送来的数据后, 直接进行透明转 发, 不作任何编解码转换; 如果协商不成功, 会话两端采用不同的编解码格 式, 则需要在核心网中插入 TC ( Transcoder, 码变换器), 用于执行不同编解 码格式之间的转换, 将会话一端使用的编解码格式转换成另一端使用的编解 码格式, 使得采用不同编解码格式的会话两端能够相互通话。
图 1 为本发明实施例中移动通信方法实施流程示意图, 用于 GSM, 在 GSM中包括通过 A接口相连的 BSS与核心网, 如图所示, 包括如下步骤: 步骤 101、 协商传输的会话数据编解码格式, 当编解码格式不一致时, 在核心网插入 TC ( Transcoder, 码变换器)对传输的所述会话数据进行码转 换, 如一致则不用插入;
步骤 102、 在 BSS与核心网之间建立基于 IP的语音呼叫会话承载通道, 所述会话承载通道经 BSS与核心网之间的 A接口;
步骤 103、 BSS按 IP协议将会话数据封装;
步骤 104、 将封装的会话数据经 A接口通过会话承载通道传输。
在 BSS与核心网之间建立基于 IP的语音呼叫会话承载通道时, 所述 A 接口信令协议可以使用 SIGTRAN/SCTP/IP ( Signalling Transport/Stream Control Transmission Protocol/Internet Protocol, 信令传输 /流控制传输协议 /互 联网协议), 其中, SIGTRAN、 SCTP、 IP为不同层的协议, 其协议层次依次 降低, SIGTRAN协议可以采用 M3UA ( MTP Level 3 User Adaptation Layer, MTP3 用户适配协议); 或者, A接口信令协议也可以使用 MTP3/MTP2/L1 ( Message Transport Part Level 3 /Message Transport Part Level 2/L1 , 3层消',1: 传送部分 /2层消息传送部分/ LI )协议, MTP3、 MTP2、 L1为不同层的协议, 其协议层次依次降低, 其中, L1 为 TDM 时隙, 具体可以是 E1/T1/SDH/SONET ( El/Tl/Synchoronous Digital Hierarchy /Synchoronous Optical Netwrok, El或 Tl或同步数字体系或同步光纤网)协议。 其中 L1是 Layer 1 , 即物理层, OSI七层模型中的第一层, E1是欧洲数字传输系统第一 级; Tl: 北美 T载波系统第一级。
在 BSS按 IP协议将会话数据封装后经 A接口通过所述会话承载通道传 输会话数据时,所述 A接口可以使用 RTP/UDP/IP( Realtime Transport Protocol/ User Datagram Protocol/Internet Protocol,实时传输协议 /用户数据包协议 /互联 网协议), RTP、 UDP、 IP是不同层的协议, 其协议层次依次降低。
核心网与 A 接口进行交互的信令是扩展的 BSSAP ( Base Station Subsystem Application Part , 基站子系统应用部分)信令。
另一种实施中, A接口信令协议还可以使用 MTP3用户适配协议来进行。 以下再以软交换架构的核心交换网为例说明具体的实施方案。
图 2为软交换架构下的通信系统结构示意图, 如图所示, 通信系统应用 于 GSM, GSM包括通过 A接口相连的 BSS与核心网, 核心网中包括 MSC Server ( Mobile Switching Center Server,移动交换中心服务器)、 MGW ( Media Gateway, 媒体网关); BSS中包括 BSC ( Base Station Controller, 基站控制 承载无关的呼叫控制信令)交互, MSC Server与 BSC通过 BSSAP+ (扩展的 BSSAP ) 交互, BSC与 MGW、 MSC Server之间是 A Interface ( A接口), VoIP ( Voice over IP, 基于 IP的语音呼叫 )表示基于 IP的语音呼叫会话承载 通道。
在 BSS与核心网之间建立基于 IP的语音呼叫会话承载通道时, 可以通 过 MSC Server (筒称 MSS或 MSC-S )控制 A接口的承载建立和拆除; BSS 中可以通过 BSC在 A接口承载建立后, 将 GSM压缩语音直接封装为 IP承 载后传送给核心网处理。如果 MSC-S在承载建立过程中成功的使得两端编解 码一致, 则 GSM压缩语音将在核心网透明传输; 否则在核心网插入 TC对传 输的会话数据进行码转换,如在核心网的 MGW中插入 TC完成编解码转换。 实施中, 为了支持 IP承载, 可以对 BSSAP信令进行扩展。 A接口的控制面和用户面协议栈可以按以下方式实施, 实施中以 BSS的 BSC与核心网中具体实施的 MGW、 MSC Server为例进行说明。 下两图中除 上面已进行说明的标示而外的英文分别表示:
MAP ( Mobile Application Part ) 移动应用部分; SCCP ( Signaling Connection Control Point )信令连接控制部分; MAC ( Media Access Control ) 媒体接入控制; ppp ( Point-to-Point Protocol ) 点到点协议。
图 3是 BSC与 MSC Server控制面协议栈示意图, 如图所示, 因为 A接 口已经 IP化, 所以 A接口信令协议承载在 SIGTRAN/SCTP协议之上, 优选 实施中可以使用 M3UA 协议进行承载。 实施中可以参考 RFC 协议号为 RFC2960的 SCTP, RFC协议号为 RFC3332的 M3UA。
图 4是 BSC与 MGW用户面协议栈示意图, 如图所示, 在用户面, 将 GSM的压缩语音编解码直接承载在 RTP/UDP/IP协议上即可。 核心网将会处 理与编解码互通相关的问题。 相应的协议可以参考 RFC3551和 RFC3527。
另一种实施中, A接口信令协议还可以使用 MTP3用户适配协议来进行。 基于 IP 的语音呼叫会话承载通道呼叫建立过程的实施可按以下方式进 行。
图 5为基于 IP的语音呼叫会话承载通道呼叫建立时协商编码格式实施流 程示意图, 如图所示, 包括如下步骤:
步骤 501、 O-MSC ( Originate-MSC; (呼叫)发起 MSC端)向 Transit-MSC (转接 MSC )发送可用的编码格式列表, 如(V , w , X , y , z );
步骤 502、 O-MSC向 O-MGW ( Originate- MGW; (呼叫)发起 MGW端 ) 发送选定编码格式, 本例中以选定 V编码来进行说明;
步骤 503、 Transit-MSC 向 T-MSC ( Terminate- MSC; (呼叫)终结 MSC 端)编码格式列表, 如(V , w, X , z, ), 本例中设 transit MGW 不支持编解 码 y , 则 transit MSC删除 y; 步骤 504、 T-MSC选择编码格式,比如 V ,并反馈 T-MGW( Terminate-MGW; (呼叫)终结 MGW端);
步骤 505、 T-MSC向 Transit-MSC反馈选择的编码格式 v;
步骤 506、 Transit-MSC向 Transit-MGW确定选择的编码格式 v;
步骤 507、 Transit-MSC向 0-MSC反馈选择的编码格式 v;
步骤 508、 0-MSC向 0-MGW反馈确定的编码格式 v;
步骤 509、 0-MGW与 T-MGW按编码格式 v建立承载。
在核心网, 由于核心网的机制特点, MSC-S会尽力避免编解码转换器的 使用, 即在呼叫过程中, 总是试图将呼叫方的编解码协商为相同。 在承载建 立之前会进行 Codec (多媒体数字信号编解码器)协商, 所以核心网将会为 呼叫建立合适的承载资源, 避免在呼叫中插入 TC。
在 GSM系统中, 编解码的选择的最终决定权在 BSC, MSC-S只能建议 BSC优先选择某种编解码格式。即使 0-MSC和 T-MSC最终选择的编解码相 同 (例如都是 V ), 但如果 BSC根据本地的信道资源等情况决定不遵从 MSC 的建议, 呼叫仍然不是 TrFO, 此时, 实施中只需在 MGW上插入 TC即可。
A接口承载的建立过程可以按以下方式进行。
由于 A接口已经 IP化, 在 A接口上不再存在电路的概念, 呼叫建立时 不再是占用电路的过程, 而是在 BSC和 MGW之间建立 IP承载的过程, 图 6为 A接口承载的建立实施流程示意图, 如图所示, MSC-S在获取 MGW— 侧的 IP地址和端口号之后, 通过扩展的 BSSAP信令指示给 BSC。 同时指示 的还有建议的编解码列表和速率, 如 ACS/SCS ( accepted codec set/selected codec set, 接受的编解码集合 /选定的编解码集合) 列表, 和语音版本列表对 应, 以及 RTP封装所必须的一些信息, 如 PayloadType (载荷类型)、 Packtize Time (打包时长)、 Clock Rate (时钟频率)等。 在得到 BSC侧的 IP地址和 端口号之后, MSC-S通过 Mc接口指示给 MGW,从而完成一次承载的建立。 用户面处理过程可按以下方式进行。
在 A接口的承载建立后, 在 MGW和 BSC之间就可以发送压缩的 GSM 语音了。 BSC不需要进行编解码格式的转换。 在核心网一侧, 如果呼叫双方 编解码一致,则对 GSM语音进行透明转发,否则 MGW自动插入 TC进行转 换。
由上述实施可知, 本发明实施例提供了基于 IP的 GSM网络架构, GSM 由接入网和核心网组成, 核心网可以在使用相同或者不同语音编解码的用户 之间进行话路交换, 在语音编解码相同的情况下直接交换, 在语音编解码不 同的情况下转换成对方使用的编解码格式再进行交换, 使得用户之间总是可 以相互通话; GSM接入网将来自用户终端的语音信号不经转换的送到核心网 进行交换,在相反的方向上将语音信号不经转换的送往用户终端。 GSM接入 网自身从不进行任何编解码转换; 在 GSM接入网和核心交换网之间的语音 信号采用 IP协议承载。
在 GSM网络实施中,采用 GSM A接口协议,并在此基础上经过扩展后, 使之能够支持 IP协议的承载方式。
在 GSM 网络实施中, 核心网总是通过信令交互对呼叫各方的编解码进 行协商, 在协商成功时, 各方将使用相同的编解码。
在 GSM 网络实施中, GSM接入网和核心网之间的语音信号可以采用 RTP/UDP的形式在 IP协议上承载。 GSM接入网和核心网之间的信令消息可 以采用 SIGTRAN/SCTP/IP的形式 载,或 MTP3/MTP2/L1 (其中 L1为 TDM 时隙, 具体可以是 E1/T1/SDH/SONET ) 的形式承载。
在上述实施例中, BSS直接对压缩语音进行 IP封装并传送给核心网;核 心网负责处理所有多编解码有关的事务, 包括编解码协商以及协商失败后的 编解码转换, 并完成语音分组的交换。 这种方案充分利用了核心网的已有特 性,在能协商编码一致的情况下,通过支持 TrFO ( Transcode Free Operatiion, 免码变换操作),提升了语音质量、 减少了 TC资源的使用、 节省了 A接口上 的传输带宽; 同时也筒化了 BSS的设计。
在图 6所示的 A接口承载建立过程中, BSS和 MGW之间不仅需要互相 获取对方的 IP地址信息, 还要进行 SDP ( Session Description Protocol, 会话 描述协议)协商, SDP协商内容包括: 载荷类型 PT、 打包时长 Packet Time、 时钟频率 Clock Rate等。
所述 BSS和 MGW之间的 IP地址信息传递过程及 SDP协商过程可以通 过移动交换中心进行。其中,所述移动交换中心在 2G通信系统中就是 MSC, 在 3G通信系统中具体是指 MSCe或 MSC Server^所述 IP地址信息可以为 IP 地址和 UDP端口号, 也可以为 IP地址和电路识别码 ( CIC, Circuit Identity Code )。
下面首先对 IP地址信息的传递过程进行详细说明。图 7 ~ 10分别示出了 在普通呼叫过程中和切换过程中以及不同的用户面 ( UP , User Plane )模式 下, BSS和 MGW之间通过 MSC传递 IP地址信息的过程。 其中, 图 7对应 普通呼叫过程、 支持模式; 图 8对应普通呼叫过程、 透明模式; 图 9对应切 换过程、 支持模式; 图 10对应切换过程、 透明模式。
图 7所示 IP地址信息传递过程主要包括以下步骤:
步骤 701: MSC通过 ADD_REQ (端点建立请求消息)向 MGW发送获 取 MGW的 IP地址和 UDP端口号的请求。
步骤 702: MGW收到 MSC发送来的 ADD_REQ消息后, 向 MSC返回 ADD_REPLY(端点建立响应消息;),并在该消息中携带自身的 IP地址和 UDP 端口号。
步骤 703: MSC通过 ASSIGNMENT_REQ (指配请求消息)将收到的 MGW的 IP地址和 UDP端口号发送给 BSS。
步骤 704: BSS收到 ASSIGNMENT_REQ消息后, 通过 IuUP Init ( UP 初始化消息)将自身的 IP地址和 UDP端口号发送给 MGW。 其中, IuUP是
3GPP的 Iu接口用户面协议。
步骤 705: MGW收到 IuUP Init消息后, 向 BSS返回 IuUP Init ACK ( UP 初始^ ^响应消息)。
步骤 706: BSS向 MSC返回 ASSIGNMENT COMPLETE (指配完成消 息 ), 并可以选择在该消息中携带或者不携带自身的 IP地址和 UDP端口号。
图 8所示 IP地址信息传递过程主要包括以下步骤:
步骤 801 - 803: 与步骤 701 - 703相同, 这里不再赘述。
步骤 804 : BSS 收到 ASSIGNMENT_REQ 消息后, 向 MSC 返回
ASSIGNMENT COMPLETE消息, 并在该消息中携带自身的 IP地址和 UDP 端口号。
步骤 805: MSC通过 MODIFY_REQ (端点属性更改请求消息)将收到 的 BSS的 IP地址和 UDP端口号发送给 MGW。
步骤 806: MGW 收到 MODIFY_REQ 消息后, 向 MSC 返回
MODIFY_REPLY (端点属性更改响应消息)。
图 9所示 IP地址信息传递过程主要包括以下步骤:
步骤 901 ~ 902: 与步骤 701 ~ 702相同, 这里不再赘述。
步骤 903: MSC通过 Handover-Request (切换请求消息 )将 MGW的 IP 地址和 UDP端口号发送给目标 BSS。
步骤 904: 目标 BSS通过 IuUP Init消息将自身的 IP地址和 UDP端口号 发送给 MGW。
步骤 905: MGW收到 IuUP Init消息后, 向目标 BSS返回 IuUP Init ACK 消息。
步骤 906: 目标 BSS向 MSC返回 Handover-Request_ACK (切换请求响 应消息),并可以选择在该消息中携带或者不携带自身的 IP地址和 UDP端口 号。
图 10所示 IP地址信息传递过程主要包括以下步骤:
步骤 1001 ~ 1003: 与步骤 901 ~ 903相同, 这里不再赘述。
步骤 1004: 目标 BSS 收到 Handover-Request 消息后, 向 MSC 返回 Handover-Request_ACK消息,并在该消息中携带自身的 IP地址和 UDP端口 号。
步骤 1005: MSC通过 MODIFY_REQ消息将目标 BSS的 IP地址和 UDP 端口号发送给 MGW。
步骤 1006: MGW 收到 MODIFY_REQ 消息后, 向 MSC 返回 MODIFY_REPLY消息。
其中,关于 IP地址和 UDP端口号在 ASSIGNMENT_REQ、 ASSIGNMENT COMPLETE、 Handover-Request、 Handover-Request_ACK等消息中的携带, 具体可通过在这些消息中新增信元, 如在这些消息中新增传输层地址 ( Transport Layer Address )信元实现, 或者, 扩展这些消息中的 CIC信元来 实现。
比如, 将现有的 2个字节长度的 CIC信元扩展为 16个字节, 在 CIC信 元中增加用来承载 IP地址和 UDP端口号的字段。 为了使扩展后的 CIC信元 既支持传递 IP地址和 UDP端口号, 也支持传递 CIC , 可以在 CIC信元中增 加用来表示传递的内容是 CIC还是 IP地址和 UDP端口号的字段。 具体扩展 后的 CIC信元格式参见表 1所示。 5 4
Element identifie octet 1
Length octet 2
Spare ΐΡ/ΎΌΜ octet 3
IP octet 4
IP octet 5
IP octet 17
PORT octet 18
PORT octet 19 表 1
其中, 第一行表示比特位; octet 1表示元素标识符; octet 2表示长度; octet 3的第一个 bit用来指示后续的 octet是 CIC还是 IP地址 +端口号 P0RT。 CIC对应 TDM传输方式, IP + PORT对应 IP传输方式。
为了使扩展后的 CIC信元既支持传递 IP + PORT, 也支持传递 CIC, 可 以对 octet 3的 bitl进行如下设置:
octet 3的 bit 1=0时, octet 4和 octet 5表示 CIC;
octet 3的 bitl=l时, octet 4~ octet 17表示 IP地址, octet 18- octet 19表 示端口号 PORT。
以上实施例主要针对 IP地址和 UDP端口号的传递过程进行了详细说明。 需要说明的是,在本发明中,也可以使用 IP地址和 CIC来代替 IP地址和 UDP 端口号。 这样, BSC和 MGW就可以继续使用原有的 CIC概念对 A接口进 行维护。
下面对 SDP协商过程进行详细说明。
本发明实施例在 A接口 BSSAP信令的 ASSIGNMENT REQUEST, ASSIGNMENT COMPLETE, 以及 HANDOVER REQUEST和 HANDOVER REQUEST ACK消息的结构基础上, 增加信元: Speech SDP Information list
(语音 /数据编解码 SDP 信息)。 所述 ASSIGNMENT REQUEST , ASSIGNMENT COMPLETE 、 HANDOVER REQUEST 和 HANDOVER REQUEST ACK消息的已有结构参见相关标准。 以下参照表 2 , 具体说明本发明一个实施例中所述 Speech SDP Information list信元的结构。
II
o
8 7 6 5 4 3 2 1
Element identifier Octet 1
Len gth Octet 2
Number of PT Octet 3
Payload Type Octet 4
Clock rate Octet 4a
Packet time Octet 4b
ACS/Config-WB Octet 4c
SCS Octet 4d
Spare OM MACS Octet 4e
Ext =l Payload Type (red) Octet 5
Ext PT Octet 5a
Ext PT Octet 5b
Ext PT Octet 5c
1 Octet 5d
Clock rate(red) Octet 5e
Packet time(red) Octet 5f
表 2
其中, 第一行表示比特位, 第一字节 (octet 1 ) 为信元标识符; 第二字 节 (octet 2 )表示信元长度。
octet 3中, 表示承载类型 (PT, Payload Type ) 的数量; 所述承载类型 标识出承载通道上所采用的编解码类型, PT的取值与编解码类型的对应关系 如表 3所示;
如表 2所示, octet 4中用一个比特位标识 Ext的值, 当 Ext取值为 0时 表示 octet 4中标识的承载类型 ( PT ) 不支持 Redundant ( Red ), 当 Ext取值 为 1时表示 octet 4中标识的承载类型( PT )支持 Redundant ( Red );所述 Red 特指 RFC2198 冗余 RTP包。
如表 2所示,该表中 octet 4的第一个比特位的 Ext取值为 0,即表明 octet 4中标识的承载类型 (PT ) 不支持 Red。 并且, 该表中 Octet 5取值为 1 , 即 表明 octet 5中标识的承载类型( PT )支持 Red。因此,表 2示出的 Speech SDP Information list信元实施例中携带的信息表明:通过该信元实施例结构所建立 的承载通道上采用的编解码类型包含了支持 RFC2198 冗余传输的编解码类 型也包含了不支持 RFC2198 冗余传输的编解码类型。
所述业务承载类型 (PT ) 的取值用于指示 BSC需要提供业务的编解码 类型。 表 3示出了部分承载类型 (PT )取值与编解码类型的对应关系。
Figure imgf000018_0001
表 3
参照表 2 , PT取值占用 7个比特位, 因而 PT取值范围为 0 - 127。 现有 技术中, 0 - 95的取值范围内, 每一 PT值已定义了所对应的编解码类型, 即 为静态 PT; 例如, 如表 3所示, 当 PT取值为 3时, 即表示采用 GSM编码, 该编码采用的时钟速率为 8000赫兹。 在 PT的 96 - 127的取值范围内, PT 值为动态分配, 即在进行业务承载之前, 系统临时协商 96 - 127中的某一值 用于标识未在静态 PT中被定义的编解码类型。
参照表 3可知, 结合已有的定义, 本发明实施例所适用移动通信系统中 将涉及的 GSM增强的全速率语音( GSM-EFR, GSM Enhanced Full Rate )编 码、 GSM半速率语音( GSM-HR , GSM Half Rate )编码、自适应多速率( AMR , AdaptiveMultiRate )编码、 AMR-WB, 数据业务(DATA ) 以及 RFC 2198冗 余 RTP包(Red ) 的承载类型 (PT ) 的取值将采用动态取值的方式。
所述 RFC2198 冗余传输的基本思想是将同样内容的数据分别采用不同 的编码类型进行编码后, 封装为两个数据包进行传输。 为提高数据业务抗 IP 丟包的健壮性和数据业务的接通率。采用 2198的方式,在发送当前的数据的 报文中, 冗余发送前一帧或前几帧的数据。
是否启动此功能, 由 MSC SERVER指示决定。 Server在 ADD或 MOD 命令的 Localcontrol描述符中的 Calltype, 指定为 DATA。 并在 Local描述中 下发 SDP信息指示冗余参数,并在 Local描述中下发 SDP信息指示冗余参数: m=audio 1234 RTP/AVP 97 96
a=rtpmap:96 PCMA/8000
a=rtpmap:97 red/8000/1
a=fmtp:97 96/96
同时 Server要将相关的冗余参数通过 BSSAP消息下发给 BSC ,保证 BSC 和 MGW的参数一致。 BSC的 SDP消息如下描述:
若承载通道上采用的编码类型支持 RFC2198 冗余传输时, 则需要进一 步在 SDP的协商过程中在 Speech SDP Information list中携带 RTP Payload参 数, 该些字段中至少应标识的信息包括: 用于标识 RTP Red的 PT值、 用于 标识冗余传输中采用的两种编码类型的 PT值、 Red采用的时钟速率。
以下为一 RTP Red参数举例, 其中 97设为动态分配的与 RTP Red所对 应的 PT值; 96为冗余传输中采用的 ΡΤ值, a=fmtp:97 96/96标识冗余一帧, 参照表 3可知, 本举例中的冗余传输采用了 PCMU的编码方式; 8000表示 时钟速率。
m=audio 1234 RTP/AVP 97 96
a=rtpmap:96 PCMA/8000
a=rtpmap:97 red/8000/1
a=fmtp:97 96/96
进一步参照表 2所示的 Speech SDP Information list信元结构:
对于语音业务, 表 2所示实施例中的 PT值与现有技术中指配请求消息 ( ASSIGNMENT REQUEST )和切换请求消息 ( HANDOVER REQUEST ) 所携带的通道类型 ( Channnel Type )信元中的语音版本( speech version )相 对应。 其中, 对于不同的 AMR、 AMR-WB , 则存在一个 PT值对应多个编解 码的关系;
对于数据业务,由于数据业务的承载类型和 2198冗余的承载类型各自仅 仅只有一种, 因此, 该 PT取值与 Channel Type信元中的 speech version不存 在对应关系。
上文所述 speech version在现有技术中用于传递语音编解码类型, 因而, 对于语音业务, 在表 2示出 Speech SDP Information list结构与现有技术中 Channnel Type结构顺序相同的情况下, Speech SDP Information list中不必包 含现有 speech version的所有信息 ,系统可将所述 speech version与 Speech SDP Information list的 PT结合使用。
进一步参照表 2所示的 Speech SDP Information list信元结构:
Octet 4c用于标识激活的编解码速率集合( ACS, Active Codec Set ); Octet 4d用于标识支持的编解码速率集合(SCS , Supported Codec Set ),在 Octet 4e 中标识是否允许对方对 ACS的优化( OM, Optimisation Mode for ACS )以及 最大 ACS个数 ( MACS , Maximal number of codec modes in the ACS )。 由于 HR、 EFR、 FR为单速率编码, 因此对于 Octet 4c、 Octet 4d、 Octet 4e这三个字段而言,当编码类型为 HR、 EFR、 FR时,则 Speech SDP Information list中将不包含表 2中所示 Octet 4c、 Octet 4d、 Octet 4e这三个字段的内容。
对于 FR AMR/HR AMR的编码类型, 表 2中所示 Octet 4c、 Octet 4d、 Octet 4e这三个字段的内容可选, 当 Speech SDP Information list中不携带这 三个字段的内容, 则标识都支持, 否则按照表 4的结构予以标识。
Figure imgf000021_0001
表 4
由表 4可知, Octet 4c和 Octet 4d的 1至 8个比特位分别对应不同的编 码速率, 若支持该速率的编码, 则在该字节对应的比特位上取值 1 , 否则该 比特位取值为 0。 Octet 4e中预留了 4个比特位, 并用 1个比特位用于标识 OM, 以及用 3个比特位用于 MACS的取值。
对于 AMR WB的编码类型, Speech SDP Information list必须携带表 2中 所示 Octet 4c。
上述对于表 2中所示 Octet 4c、 Octet 4d、 Octet 4e这三个字段的内容的 相关规定参见现有相关标准, 不再赘述。
参照表 2, 其中, Octet 5e中标识时钟速率(clock rate ),。 以下提供了一 clock rate字段取值与时钟速率(单位: hz ) 的对应关系。
0000 0000:8000hz
0000 0010:16000hz
0000 0011:reserved
1111 1111:无效值 参照表 2, 其中, Octet 5f 中标识打包时长(packet time )。 以下提供了一 packet time字段取值与打包时长(单位: ms ) 的对应关系。
0000 0010:10ms
0000 0011:20ms
0000 0100:30ms
0000 0101:40ms
0000 0110:reserved
1111 1111:无效值
以上通过一具体实施例说明了 Speech SDP Information list信元的结构。 由上述实施例可知, 本发明实施例在协商 SDP的内容中加入了 IP头复 用 /压缩技术、 2198 冗余传输技术等内容, 通过添加所述的协商内容, 使得 MGW与 BSC之间可以采用如 2198冗余传输等更可靠的传输技术, 从而有 助于提高 MGW与 BSC之间的 A接口传输的可靠性以及降低 IP数据包的丟 包率。
的结构。
以下具体说明 SDP的协商过程的实施例。
图 11所示实施例为普通呼叫过程中 SDP协商的消息流程。 如图所示: 步骤 1101: MSC向 MGW发送 ADD_REQ消息建立接入侧端点时候, 携带 PT信息, 指示 BSC的 RTP包中的 PT信息;
步骤 1102: MSC收到 MGW的 载建立响应消息 ADD_REPLY;
步骤 1103: MSC将 ASSIGNMENT_REQ消息下发给 BSS, 并在该消息 中携带 Speech SDP Information list信息; 其中包括承载类型 PT信息;
步骤 1104: BSS向 MSC返回 ASSIGNMENT COMPLETE消息, 并在该 消息中携带 BSS的实际使用 Speech SDP Information list; 包括实际使用的承 载类型 PT信息;
步骤 1105: 通过 BSS返回的 Speech SDP Information list, 如果 MSC判 断得到 BSS 实际首选的 PT 发生变化, 则在 MSC 发送给 MGW 的 MODIFY_REQ消息中携带变化后的 PT , 以通知 MGW PT发生变化;
步骤 1106: MGW返回响应消息 MODIFY_REPLY。
需要说明的是, 图 11和图 8所示的消息流程可以进行合并处理, 即在图 8或图 11所示的消息交互过程中, 同时执行 IP地址信息传递及 SDP协商过 程。比如, MSC通过 ASSIGNMENT_REQ消息同时将 MGW的 IP地址、 UDP 端口号及 Speech SDP Information list发送给 BSS; BSS通过 ASSIGNMENT COMPLETE消息同时将 BSS的 IP地址、 UDP端口号及 BSS 实际使用的 Speech SDP Information list发送给 MSC; MSC通过 MODIFY_REQ消息同时 将 BSS的 IP地址、 UDP端口号及变化后的 PT信息发送给 MGW。
上述方法中, 通过 SDP的协商实现了 BSS与 MGW之间承载类型信息 的交互, 参照上文提供的 Speech SDP Information list信元的结构, 本实施例 中还可通过 Speech SDP Information list中携带协议规定的冗余信息的方式实 现 BSS和 MGW之间冗余传输信息的协商。
另一方面, 在普通呼叫过程中传递 SDP的消息流程中, 本发明还提供一 实施例用于实现 BSS与 MGW之间进行冗余传输信息的协商。 包括:
MSC向 MGW发送 ADD REQ消息建立接入侧端点时候,携带协议规定 的冗余信息 (如协议规定的 2198冗余信息 ), 指示 MGW采用的冗余方式;
MSC收到 MGW的 载建立响应消息 ADD REPLY;
MSC将 ASSIGNMENT REQ消息下发给 BSS ,并在该消息中携带 Speech SDP Information list , 其中标识协议规定的冗余信息。
通过以上方式, 实现了在普通呼叫流程中进行冗余传输信息的协商。 图 12所示实施例为切换过程中 SDP协商的消息流程, 如图所示: 步骤 1201: MSC向 MGW发送 ADD_REQ消息建立接入侧端点时候, 携带 PT信息, 指示 BSC的 RTP包中的 PT信息;
步骤 1202: MSC收到 MGW的 载建立响应消息 ADD_REPLY;
步骤 1203: MSC将 Handover-Request消息下发给 BSS, 并在该消息中 携带 Speech SDP Information list信息; 其中包括承载类型 PT信息;
步骤 1204: BSS向 MSC返回 Handover-Request_ACK消息,并在该消息 中携带 BSS实际使用的 Speech SDP Information list, 包括实际使用的承载类 型 PT信息;
步骤 1205: 根据 BSS返回的 Speech SDP Information list, 如果 MSC判 断得到 BSS 实际使用的首选 PT发生变化, 则在 MSC发送给 MGW 的 MODIFY_REQ消息中携带变化后的 PT , 以通知 MGW PT发生变化;
步骤 1206: MGW返回响应消息 MODIFY_REPLY。
需要说明的是, 图 12和图 10所示的消息流程可以进行合并处理, 即在 图 10或图 12所示的消息交互过程中, 同时执行 IP地址信息传递及 SDP协 商过程。 比如, MSC通过 Handover-Request消息同时将 MGW的 IP地址、 UDP 端口号及 Speech SDP Information list 发送给 BSS ; BSS 通过 Handover-Request_ACK消息同时将 BSS的 IP地址、 UDP端口号及 BSS实 际使用的 Speech SDP Information list发送给 MSC; MSC通过 MODIFY_REQ 消息同时将 BSS的 IP地址、 UDP端口号及变化后的 PT信息发送给 MGW。
参照上文提供的 Speech SDP Information list信元的结构, 本实施例中还 可通过 Speech SDP Information list中携带协议规定的冗余信息的方式实现 BSS和 MGW之间冗余传输信息的协商。
本发明还提供一实施例用于实现 BSS与 MGW之间进行冗余传输信息的 协商。 MSC向 MGW发送 ADD REQ消息建立接入侧端点时候,携带协议规定 的冗余信息 (如协议规定的 2198冗余信息 ), 指示 MGW采用的冗余方式; MSC收到 MGW的 7 载建立响应消息;
MSC将 HANDOVER REQUEST消息下发给 BSS , 并在该消息中携带 Speech SDP Information list , 其中标识协议规定的冗余信息。
通过以上方式, 实现了在切换过程中进行冗余传输信息的协商。
以上实施例中 MSC负责互通 MGW和 BSC之间的 SDP的协商,进而通 过协商, 实现了 A接口的 IP化, 避免了现有技术中语音编码的转换, 从而 提高了语音质量, 并且节省了 TC资源, 降低了系统成本。 并且本发明实施 例的协商内容中加入了 IP头复用 /压缩技术、 2198冗余传输技术等内容, 从 而有助于提高 MGW和 BSC之间数据传输的健壮性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机 可读存储介质中, 该程序在执行时, 包括如下步骤: 移动交换中心向媒体网 关 MGW发送承载建立请求消息, 携带承载类型 PT信息; 移动交换中心获 取 MGW发送的承载建立响应消息;移动交换中心向基站控制器 BSC发送语 音 /数据编码的 SDP信息, 携带 PT信息; 以及, 获取 BSC返回的实际使用 的语音 /数据编码的 SDP信息;若判断得到 BSC返回的所述语音 /数据编码的 SDP信息中携带的 PT信息与移动交换中心发给 BSC的语音 /数据编码的 SDP 信息中携带的 PT信息不同;则移动交换中心向 MGW发送变化后的 PT信息。 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
与本发明实施例提供的基于 A接口的移动通信方法相对应,本发明实施 例还提供了一种基于 A接口的移动通信系统, 下面结合附图对本系统的具体 实施方式进行说明。
图 13 示出了该移动通信系统的示例性结构示意图, 该系统可应用于 GSM, 主要包括通过 A接口相连的 BSS与核心网, 另外还包括: 通道建立模块, 用于在 BSS与核心网之间建立基于 IP的语音呼叫会话 承载通道, 所述会话承载通道经 BSS与核心网之间的 A接口;
传输模块, 用于按 IP协议将会话数据封装后经 A接口通过所述会话承 载通道传输会话数据。
优选实施中还可以进一步包括码变换器, 用于对传输的会话数据进行解 编码转换;
协商模块, 用于在 BSS之间建立基于 IP的语音呼叫会话承载通道前, 协商传输的所述会话数据编解码格式, 当编解码格式不一致时, 在核心网插 入所述码变换器对传输的所述会话数据进行码转换。
实施中, 在 BSS与核心网之间建立基于 IP的语音呼叫会话承载通道时, 所述 A接口信令协议可以使用 SIGTRAN/SCTP/IP协议, SIGTRAN协议可以 采用 M3UA协议。
在 BSS按 IP协议将会话数据封装后经 A接口通过所述会话承载通道传 输会话数据时, 所述 A接口可以使用 RTP/UDP/IP协议。
另一种实施中, A接口信令协议还可以使用 MTP3来进行。
核心网与 A接口进行交互的信令可以使用扩展的 BSSAP信令。
相应地, 本发明实施例还提供了一种移动通信核心网, 下面结合附图对 移动通信核心网的具体实施方式进行说明。
图 14示出了该移动通信核心网的示例性结构示意图,如图所示,该移动 通信核心网可应用于 GSM网络,所述 GSM网络包括通过 A接口相连的 BSS 与核心网, 核心网包括移动交换中心服务器 MSC-S、 媒体网关 MGW, 核心 网还包括:
通道建立模块, 与移动交换中心服务器相连, 用于在 BSS与媒体网关之 间建立基于 IP的语音呼叫会话承载通道, 所述会话承载通道经 BSS与核心 网之间的 A接口; 所述会话承载通道用于传输按 IP协议封装后经 A接口传 输的会话数据。
优选实施中还可以进一步包括码变换器, 与媒体网关相连, 用于对传输 的会话数据进行解编码转换;
协商模块, 与移动交换中心服务器相连, 用于在 BSS之间建立基于 IP 的语音呼叫会话承载通道前, 协商传输的所述会话数据编解码格式, 当编解 码格式不一致时, 插入所述码变换器对传输的所述会话数据进行码转换。
另外, 本发明实施例还提供了一种基站子系统 BSS, 下面结合附图对基 站子系统的具体实施方式进行说明。
图 15示出了基站子系统的示例性结构示意图,如图所示,基站子系统可 应用于 GSM网络, GSM网络包括通过 A接口相连的 BSS与核心网, 基站 子系统包括:
传输模块, 用于按 IP协议将会话数据封装后经 A接口通过会话承载通 道传输会话数据,所述会话承载通道是通道在 BSS与核心网之间建立的基于 IP的语音呼叫会话 7?载通道, 所述会话 7 载通道经 BSS与核心网之间的 A 接口。
在图 13、 14、 15中, 所述 MSC-S即 MSS进一步用于在 IP 载通道建 立过程中获取 MGW的 IP地址信息,将获取的 MGW IP地址信息发送给 BSS; BSS收到 MGW的 IP地址信息后, 将自身 IP地址信息直接发送给 MGW, 或者, 将自身 IP地址信息发送给 MSC, MSC再将 BSS IP地址信息转发给 MGW。
另外, 在图 13、 14、 15中, 所述 MSC-S即 MSS还进一步用于在 IP承 载通道建立过程中向 MGW发送 PT信息, 并向 BSS发送携带所述 PT信息 的语音 /数据编解码 SDP信息,接收 BSS返回的 BSS实际使用的语音 /数据编 解码 SDP信息; 然后判断 BSS实际使用的语音 /数据编解码 SDP信息中携带 的首选 PT是否与 MSC发给 BSS的 PT相同, 如果不同, 则向 MGW发送变 化后的 PT信息。
图 16示出了 MSS的示例性结构示意图, 具体可包括: 第一消息生成单 元、 第一接口单元、 消息解析单元、 第二接口单元和判断单元, 其中:
第一消息生成单元, 用于生成第一消息, 在第一消息中添加携带语音 / 数据编解码 SDP信息; 所述第一消息为指配请求消息或者切换请求消息; 第一接口单元, 用于与基站控制器 BSC进行信息交互, 包括: 向 BSC 发送所述的第一消息;获取 BSC返回的携带实际使用的语音 /数据编解码 SDP 信息的第一消息响应消息;所述第一消息为指配请求消息或者切换请求消息; 消息解析单元, 对所述第一消息响应消息进行解析, 得到第一消息响应 消息中携带的语音 /数据编解码 SDP信息;
判断单元, 用于判断解析得到的语音 /数据编解码 SDP信息中的承载类 型 PT信息与通过第一消息发送到 BSC的语音 /数据编解码 SDP信息中的承 载类型信息是否一致, 若不一致, 则触发第二接口单元通过更改请求消息将 变化后的 PT信息发送到媒体网关 MGW;
第二接口单元, 用于与 MGW进行信息交互, 包括: 通过承载建立请求 消息和更改请求消息将 PT信息发送到 MGW。
在上述实施例结构基础上, 所述语音 /数据编解码 SDP信息中, 对应于 承载类型, 进一步标识是否支持 RFC2198冗余传输。
现有指配请求消息和切换请求消息中包括通道类型 Channel Type信息, 则本发明实施例中所述语音数据编码的 SDP信息的组成顺序与所述 Channel Type信息的组成顺序相对应; 且所述语音数据编码的 SDP信息中不携带所 述 Channel Type信息中携带的语音版本 Speech Version信息。
或者, 本发明实施例中, 所述语音数据编码的 SDP信息中进一步携带通 道类型 Channel Type信息中携带的语音版本 Speech Version信息。 以上所述对本发明的目的、 技术方案和有益效果进行了进一步的详细说 明, 所应理解的是, 以上所述并不用以限制本发明, 凡在本发明的精神和原 则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范 围之内。

Claims

权利要求书
1、 一种基于 A接口的移动通信方法, 其特征在于, 该方法包括: 在基站子系统 BSS与核心网之间建立经 A接口的 IP承载通道;
BSS与核心网之间通过建立的 IP承载通道进行数据传输,在数据传输过 程中, BSS对接收到的数据进行透传, 不执行编解码转换操作。
2、 根据权利要求 1所述的方法, 其特征在于, 该方法进一步包括: 在数据传输之前, 核心网对会话两端的编解码格式进行协商, 协商成功 时, 会话两端采用相同的编解码格式, 核心网对会话两端间的传输数据进行 透明转发; 协商不成功时, 会话两端采用不同的编解码格式, 在核心网中插 入码变换器对不同的编解码格式进行转换。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述核心网与 BSS 之间采用扩展的基站子系统应用部分信令进行交互。
4、 根据权利要求 3所述的方法, 其特征在于, 所述 A接口信令协议使 用信令传输 /流控制传输协议 /互联网协议; 或使用 3层消息传送部分 /2层消 息传送部分/ L1协议。
5、 根据权利要求 4所述的方法, 其特征在于, 所述 L1为 E1/T1/同步数 字体系 /同步光纤网。
6、 如权利要求 3所述的方法, 其特征在于, 所述 A接口信令协议使用 MTP3用户适配协议。
7、 如权利要求 3所述的方法, 其特征在于, 所述 BSS与核心网之间通 过建立的 IP承载通道进行数据传输时, 所述 A接口数据传输使用实时传输 协议 /用户数据包协议 /互联网协议。
8、根据权利要求 1所述的方法, 其特征在于, 所述核心网包括移动交换 中心 MSC和媒体网关 MGW , 所述在 BSS与核心网之间建立经 A接口的 IP 承载通道的过程包括: BSS和 MGW分别获取对方的 IP信息,并根据获取的 IP信息建立 IP承 载通道。
9、 根据权利要求 8所述的方法, 其特征在于, 所述 BSS和 MGW分别 获取对方的 IP信息的过程包括:
MSC向 MGW发送获取 MGW IP信息的请求, MGW收到请求后将自身 IP信息返回给 MSC, MSC将收到的 MGW IP信息发送给 BSS;
BSS收到 MGW IP信息后, 直接将自身 IP信息发送给 MGW, 或者, BSS将自身 IP信息发送给 MSC, MSC将 BSS IP信息发送给 MGW。
10、 根据权利要求 9所述的方法, 其特征在于, 所述 MSC向 MGW发 送获取 MGW IP信息的请求包括: MSC通过端点建立请求消息 ADD_REQ 向 MGW发送获取 MGW IP信息的请求;
所述 MGW将自身 IP信息返回给 MSC包括: MGW通过端点建立响应 消息 ADD_REPLY将自身 IP信息返回给 MSC。
11、根据权利要求 9所述的方法,其特征在于,所述 MSC将收到的 MGW IP信息发送给 BSS 包括: MSC通过指配请求消息 ASSIGNMENT_REQ或者 切换请求消息 Handover-Request将获取的 MGW IP信息发送给 BSS。
12、 根据权利要求 11 所述的方法, 其特征在于, 所述 IP信息携带在 ASSIGNMENT_REQ消息或 Handover-Request消息的电路识别码 CIC信元中 发送;
或者,在 ASSIGNMENT_REQ消息或 Handover-Request消息中新增传输 层地址信元, 将所述 IP信息携带在新增的传输层地址信元中发送。
13、 根据权利要求 9所述的方法, 其特征在于, 所述 BSS将自身 IP信 息发送给 MGW包括: BSS通过用户面初始化消息 IuUP Init将自身的 IP信 息发送给 MGW。
14、 根据权利要求 9所述的方法, 其特征在于, 所述 BSS将自身 IP信 息发送给 MSC 包括: BSS通过指配完成消息 ASSIGNMENT COMPLETE或 者切换请求响应消息 Handover-Request_ACK将自身 IP信息发送给 MSC。
15、 根据权利要求 14 所述的方法, 其特征在于, 所述 IP信息携带在 ASSIGNMENT COMPLETE消息或 Handover-Request_ACK消息的 CIC信元 中发送;
或者, 在 ASSIGNMENT COMPLETE消息或 Handover-Request_ACK消 息中新增传输层地址信元,将所述 IP信息携带在新增的传输层地址信元中发 送。
16、 根据权利要求 9所述的方法, 其特征在于, 所述 MSC将 BSS IP信 息发送给 MGW 包括: MSC通过端点属性更改请求消息 MODIFY_REQ将 BSS IP信息发送给 MGW。
17、 根据权利要求 8至 16任一项所述的方法, 其特征在于, 所述 IP信 息为 IP地址和用户数据包协议 UDP端口号; 或者为 IP地址和 CIC。
18、 根据权利要求 1 或 8 所述的方法, 其特征在于, 所述核心网包括 MSC和 MGW , 所述在 BSS与核心网之间建立经 A接口的 IP承载通道的过 程还包括: 所述 BSS与 MGW之间通过 MSC进行 SDP协商。
19、 根据权利要求 18所述的方法, 其特征在于, 所述 SDP协商过程包 括:
MSC在建立接入侧端点时向 MGW发送承载类型 PT信息;
MSC向 BSS发送携带所述 PT信息的语音 /数据编解码 SDP信息, 并接 收 BSS返回的 BSS实际使用的语音 /数据编解码 SDP信息;
MSC判断 BSS实际使用的语音 /数据编解码 SDP信息中携带的首选 PT 是否与 MSC发给 BSS的 PT相同, 如果不同, 则向 MGW发送变化后的 PT 信息。
20、 根据权利要求 19所述的方法, 其特征在于, 所述 MSC通过指配请 求消息 ASSIGNMENT_REQ将所述语音 /数据编解码 SDP信息发送给 BSS , 所述 BSS通过指配完成消息 ASSIGNMENT COMPLETE将 BSS实际使用的 语音 /数据编解码 SDP信息返回给 MSC;
或者, 所述 MSC通过切换请求消息 Handover-Request将所述语音 /数据 编解码 SDP 信息发送给 BSS , 所述 BSS 通过切换请求响应消息 Handover-Request_ACK将 BSS实际使用的语音 /数据编解码 SDP信息返回给 MSC。
21、根据权利要求 20所述的方法,其特征在于,在 ASSIGNMENT_REQ 消息或 ASSIGNMENT COMPLETE 消息或 Handover-Request 消息或 Handover-Request_ACK消息中新增 Speech SDP Information list信元,将所述 语音 /数据编解码 SDP信息携带在新增的 Speech SDP Information list信元中 发送。
22、 根据权利要求 19或 20所述的方法, 其特征在于, 所述语音 /数据编 解码 SDP信息中的 PT信息进一步标识是否支持协议规定的冗余传输。
23、 根据权利要求 20 所述的方法, 其特征在于, 所述指配请求消息 ASSIGNMENT_REQ 和切换请求消息 Handover-Request 中包括通道类型 Channel Type信息 ,
所述语音 /数据编解码 SDP信息的组成顺序与所述 Channel Type信息的 组成顺序相对应, 且所述语音 /数据编解码 SDP信息中不携带所述 Channel Type信息中携带的语音版本 Speech Version信息;
或者, 所述语音 /数据编解码 SDP信息中进一步携带通道类型 Channel Type信息中携带的语音版本 Speech Version信息。
24、 根据权利要求 18所述的方法, 其特征在于, 所述 SDP协商过程包 括:
MSC在建立接入侧端点时向 MGW发送冗余信息; MSC向 BSS发送携带所述冗余信息的语音 /数据编解码 SDP信息。
25、根据权利要求 24所述的方法, 其特征在于, 所述 MSC向 BSS发送 携带所述冗余信息的语音 /数据编解码 SDP信息包括:
MSC通过指配请求消息 ASSIGNMENT_REQ将携带所述冗余信息的语 音 /数据编解码 SDP信息发送给 BSS;
或者, MSC通过切换请求消息 Handover-Request将携带所述冗余信息的 语音 /数据编解码 SDP信息发送给 BSS。
26、 一种基于 A接口的移动通信系统, 其特征在于, 该系统包括通过 A 接口相连的基站子系统 BSS与核心网, 该系统还包括:
通道建立模块,用于在 BSS与核心网之间建立基于互联网协议的语音呼 叫会话承载通道, 所述会话承载通道经基站子系统与核心网之间的 A接口; 传输模块,用于按互联网协议将会话数据封装后经 A接口通过所述会话 承载通道传输会话数据。
27、 根据权利要求 26所述的系统, 其特征在于, 该系统进一步包括: 码变换器, 用于对传输的会话数据进行解编码转换;
协商模块,用于在 BSS与核心网之间建立基于互联网协议的语音呼叫会 话承载通道前, 协商传输的所述会话数据编解码格式, 当编解码格式不一致 时, 在核心网插入所述码变换器对传输的所述会话数据进行码转换。
28、根据权利要求 26所述的系统, 其特征在于, 所述核心网包括移动交 换中心服务器 MSS和媒体网关 MGW, 其中,
MSS,用于在所述承载通道建立过程中获取 MGW的 IP信息,将获取的 MGW IP信息发送给 BSS;
所述 BSS, 用于在收到 MGW的 IP信息后, 将自身 IP信息直接发送给 MGW, 或者, 将自身 IP信息发送给 MSC, MSC再将 BSS IP信息转发给 MGW。
29、 根据权利要求 28所述的系统, 其特征在于, 所述 MSS进一步用于 在所述承载通道建立过程中向 MGW发送 PT信息, 并向 BSS发送携带所述 PT信息的语音 /数据编解码 SDP信息, 接收 BSS返回的 BSS实际使用的语 音 /数据编解码 SDP信息; 然后判断 BSS 实际使用的语音 /数据编解码 SDP 信息中携带的首选 PT是否与 MSC发给 BSS的 PT相同, 如果不同, 则向 MGW发送变化后的 PT信息。
30、 根据权利要求 26所述的系统, 其特征在于, 所述 A接口信令面协 议采用信令传输协议或流控制传输协议或互联网协议或 3层消息传送部分协 议或 2层消息传送部分协议或 L1协议。
31、 根据权利要求 26所述的系统, 其特征在于, 所述 A接口用户面协 议采用实时传输协议或用户数据包协议或互联网协议。
32、 根据权利要求 26至 31任一项所述的系统, 其特征在于, 所述核心 网与 BSS采用扩展的基站子系统应用部分信令进行交互。
33、 一种移动通信核心网, 包括移动交换中心服务器 MSS 和媒体网关 MGW, 其特征在于, 该核心网还包括:
通道建立模块, 与移动交换中心服务器相连, 用于在基站子系统 BSS与 所述媒体网关之间建立基于互联网协议的语音呼叫会话承载通道, 所述会话 承载通道经基站子系统与核心网之间的 A接口; 所述会话承载通道用于传输 按互联网协议封装后经 A接口传输的会话数据。
34、根据权利要求 33所述的移动通信核心网,其特征在于,进一步包括: 码变换器, 与媒体网关相连, 用于对传输的会话数据进行解编码转换; 协商模块, 与移动交换中心服务器相连, 用于在基站子系统之间建立基 于互联网协议的语音呼叫会话承载通道前, 协商传输的所述会话数据编解码 格式, 当编解码格式不一致时, 插入所述码变换器对传输的所述会话数据进 行码转换。
35、 根据权利要求 33所述的移动通信核心网, 其特征在于, 所述 MSS 进一步用于在所述承载通道建立过程中获取 MGW 的 IP信息, 将获取的 MGW IP信息发送给 BSS, 并进一步用于将 BSS发来的 BSS IP信息发送给 MGW。
36、根据权利要求 33至 35任一项所述的移动通信核心网,其特征在于, 所述 MSS进一步用于在所述^载通道建立过程中向 MGW发送 PT信息, 并 向 BSS发送携带所述 PT信息的语音 /数据编解码 SDP信息, 接收 BSS返回 的 BSS实际使用的语音 /数据编解码 SDP信息; 然后判断 BSS实际使用的语 音 /数据编解码 SDP信息中携带的首选 PT是否与 MSC发给 BSS的 PT相同, 如果不同, 则向 MGW发送变化后的 PT信息。
37、 一种基站子系统, 其特征在于, 包括:
传输模块,用于按互联网协议将会话数据封装后经 A接口通过会话承载 通道传输会话数据, 所述会话承载通道是在基站子系统与核心网之间建立的 基于互联网协议的语音呼叫会话承载通道, 所述会话承载通道经基站子系统 与核心网之间的 A接口。
PCT/CN2008/070061 2007-01-12 2008-01-09 A-interface-based mobile communication method,system and equipment WO2008086748A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08700085A EP2101466A4 (en) 2007-01-12 2008-01-09 METHOD, SYSTEM AND MOBILE COMMUNICATION EQUIPMENT BASED ON INTERFACE A

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CNA2007100078523A CN101018198A (zh) 2007-01-12 2007-01-12 一种ip地址信息传递方法及移动交换中心
CN200710007852.3 2007-01-12
CN200710105766.6 2007-05-29
CNA2007101057666A CN101316223A (zh) 2007-05-29 2007-05-29 一种移动通信方法、系统及设备
CN2007101093569A CN101316385B (zh) 2007-05-30 2007-05-30 一种会话描述协议协商的方法以及相关设备
CN200710109356.9 2007-05-30

Publications (1)

Publication Number Publication Date
WO2008086748A1 true WO2008086748A1 (en) 2008-07-24

Family

ID=39635665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070061 WO2008086748A1 (en) 2007-01-12 2008-01-09 A-interface-based mobile communication method,system and equipment

Country Status (2)

Country Link
EP (1) EP2101466A4 (zh)
WO (1) WO2008086748A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994054A (zh) * 2015-03-19 2015-10-21 数据通信科学技术研究所 基于td-scdma透传语音信道传输分组数据的方法、移动终端
US11158029B2 (en) 2016-02-12 2021-10-26 Vigilance Health Imaging Network Inc. Distortion correction of multiple MRI images based on a full body reference image

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143544B (zh) * 2010-11-02 2014-03-05 华为技术有限公司 控制语音编码速率的方法、设备及系统
KR102512614B1 (ko) 2018-12-12 2023-03-23 삼성전자주식회사 오디오 개선을 지원하는 전자 장치 및 이를 위한 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283054A (zh) * 1999-09-09 2001-02-07 深圳市中兴通讯股份有限公司 一种在移动交换中心应用层中实现过负荷控制的方法
CN1409914A (zh) * 1999-12-17 2003-04-09 诺基亚公司 Ip连接上的数据呼叫路由发送
CN1549627A (zh) * 2003-05-20 2004-11-24 华为技术有限公司 基站及其实现方法和基站测试系统/网络系统
US6958983B2 (en) * 2000-01-25 2005-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for optimal routing of calls in a base station system
CN1761334A (zh) * 2005-11-11 2006-04-19 中国联合通信有限公司 语音透传实现系统及其实现语音透传的方法
CN1801873A (zh) * 2005-01-07 2006-07-12 华为技术有限公司 一种传真业务数据的传输方法
CN1835605A (zh) * 2005-03-18 2006-09-20 华为技术有限公司 实现iwf业务数据交互的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112410A2 (en) * 2004-05-07 2005-11-24 Alcatel Wireless, Inc. Providing voice and data service for wireless cellular subscribers operating in a wireless local area network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283054A (zh) * 1999-09-09 2001-02-07 深圳市中兴通讯股份有限公司 一种在移动交换中心应用层中实现过负荷控制的方法
CN1409914A (zh) * 1999-12-17 2003-04-09 诺基亚公司 Ip连接上的数据呼叫路由发送
US6958983B2 (en) * 2000-01-25 2005-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for optimal routing of calls in a base station system
CN1549627A (zh) * 2003-05-20 2004-11-24 华为技术有限公司 基站及其实现方法和基站测试系统/网络系统
CN1801873A (zh) * 2005-01-07 2006-07-12 华为技术有限公司 一种传真业务数据的传输方法
CN1835605A (zh) * 2005-03-18 2006-09-20 华为技术有限公司 实现iwf业务数据交互的方法
CN1761334A (zh) * 2005-11-11 2006-04-19 中国联合通信有限公司 语音透传实现系统及其实现语音透传的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN D. AND SUN D.: "The Technoly of All-IP network and Softswitch Formulation by 3GPP and 3GGp2", JOURNAL OF HUAQIAO UNIVERSITY (NATURAL SCIENCE), vol. 24, no. 4, October 2003 (2003-10-01), pages 419 - 424, XP008111243 *
See also references of EP2101466A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994054A (zh) * 2015-03-19 2015-10-21 数据通信科学技术研究所 基于td-scdma透传语音信道传输分组数据的方法、移动终端
US11158029B2 (en) 2016-02-12 2021-10-26 Vigilance Health Imaging Network Inc. Distortion correction of multiple MRI images based on a full body reference image

Also Published As

Publication number Publication date
EP2101466A1 (en) 2009-09-16
EP2101466A4 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
US8116335B2 (en) Methods and apparatus for data communication
RU2431239C2 (ru) Способ, устройство и система для установления канала-носителя в gsm-сети
US8194649B2 (en) Methods and apparatus for data communication
JP5545224B2 (ja) ゲートウェイ装置とシステムと方法
US10242686B2 (en) Hybrid RTP payload format
WO2008086748A1 (en) A-interface-based mobile communication method,system and equipment
JP5459309B2 (ja) ゲートウェイ装置と方法と通信システム
EP1192821B1 (en) Method for transmitting calls over packet network
CN101316385B (zh) 一种会话描述协议协商的方法以及相关设备
CN103871415B (zh) 实现异系统间语音互通的方法、系统与tfo转换装置
WO2016184281A1 (zh) 一种媒体互通方法及其装置
WO2003024137A1 (en) Signal processing device and signal processing method
JP4477240B2 (ja) データ送信方法及びネットワーク要素
WO2009036693A1 (fr) Procédé et système de traitement de données de liaison montante et descendante dans un réseau de communication sans fil
WO2009036698A1 (fr) Procédé, système et dispositif pour une transmission de données
CN101316379B (zh) 第二代移动通信系统中实现a接口ip化的方法、设备及系统
CN108476383B (zh) 一种最大打包间隔的协商方法、装置以及存储介质
CN101316223A (zh) 一种移动通信方法、系统及设备
WO2009000292A1 (en) Technique for reducing transcoding operations in a telecommunication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700085

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2322/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008700085

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE