WO2008084228A1 - Système à moteur stirling et son procédé de fonctionnement - Google Patents

Système à moteur stirling et son procédé de fonctionnement Download PDF

Info

Publication number
WO2008084228A1
WO2008084228A1 PCT/GB2008/000069 GB2008000069W WO2008084228A1 WO 2008084228 A1 WO2008084228 A1 WO 2008084228A1 GB 2008000069 W GB2008000069 W GB 2008000069W WO 2008084228 A1 WO2008084228 A1 WO 2008084228A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
burner
heat
flow
stirling engine
Prior art date
Application number
PCT/GB2008/000069
Other languages
English (en)
Inventor
Timothy Sammon
Original Assignee
Microgen Energy Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microgen Energy Limited filed Critical Microgen Energy Limited
Publication of WO2008084228A1 publication Critical patent/WO2008084228A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/10Heat inputs by burners

Definitions

  • the present invention relates to a Stirling engine system and operating method.
  • the system has been particularly designed for a Stirling engine system suitable for use in domestic combined heat and power (DCHP) applications.
  • DCHP domestic combined heat and power
  • the concept is also applicable to other Stirling engine uses.
  • Stirling engine based DCHP systems use a Stirling engine supplied with heat, for example, from a burner, to generate electricity. Heat is recovered from the exhaust gases from the engine and is used to supply the domestic heat requirement either to heat hot water or a central heating system.
  • Stirling engine based DCHP systems are provided with a supplementary heater to supplement the heat recovered from the Stirling engine exhaust gases.
  • the present invention is concerned with the design of a simplified system which is cost-effective and is suitable for a small domestic dwelling or a well -insulated dwelling with relatively low heat demand.
  • a Stirling engine system comprising a Stirling engine, a burner adjacent to the engine, a supply of combustible fuel to the burner to produce a hot combusted fuel stream to heat the engine, and an annular splitter surrounding the burner which is configured to increase the proportion of combusted fuel which bypasses the engine as the flow of combustible fuel increases depending on the heat output required.
  • the present invention is able to satisfy additional heat demand without the need for an auxiliary burner. This is a much more cost-effective system without the need for the supplementary burner and its associated gas train is eliminated. Further, the heat being recovered is from a single stream thereby simplifying the design of heat exchanger required for downstream heat recovery.
  • the invention could, however, be used in conjunction with an auxiliary burner in an application with a greater heat demand.
  • the advantages described above do not apply, the ability to obtain a variable heat output from the engine burner gives more flexible system control .
  • the system provides a controlled reduction in engine efficiency (i.e., its ability to generate electricity) from, for example, 20% down to 15% or even 10%. This will enable a IkW rated electrical power engine to provide 1OkW of thermal energy without a supplementary burner. This will open up a new market for small or highly insulated dwellings.
  • the splitter may be actively movable to achieve the desired result.
  • a simpler design is achieved if the flow diverter is a static component, the shape of which is designed to provide the necessary flow characteristics.
  • the present invention also extends to a method of operating a Stirling engine system to provide heat output and electrical power output, the method comprising supplying a combustible fuel using a fuel supply to a burner adjacent to the engine to provide a hot combusted fuel stream to heat the engine, and splitting the flow using an annular splitter surrounding the burner and configured to vary the proportion of the combusted fuel stream which bypasses the engine depending on the heat output required.
  • Fig. 1 is a schematic view of the overall engine system
  • Fig. 2 is a cross-section through the engine head and surrounding components;
  • Figs. 3A and 3B are graphical representations respectively of idealised and realistic flow rates.
  • the engine is a linear free piston Stirling engine housed in a casing 1.
  • the casing contains, from top to bottom, a displacer, a power piston and an alternator, the details of which are unimportant to the present invention.
  • the engine is suspended from a bracket 2 by a plurality of springs 3 which are connected to a plate 4 attached to the engine. This suspension arrangement is described in detail in WO 03/042566.
  • Heat is supplied to the engine by a burner 5 having an annular configuration and surrounding the engine head 6 which is provided with a plurality of fins 7 to facilitate heat transfer into the engine.
  • the combustion chamber is sealed at its lower end by a flexible seal 8.
  • An annular block of insulation 9 and an annular coolant channel 10 are provided to reduce the temperature to which the flexible seal 8 is exposed. This is described in PCT/GB 2006/002254.
  • a coolant channel 11 surrounds the central portion of the housing 1. The temperature differential created by the burner 5 and coolant channel 11 drives the displacer and power piston which generates electricity at the alternator.
  • the exhaust duct 12 leads to a heat exchanger 14 where it heats water in a heating circuit 15 which has previously picked up some heat in the coolant channel 11.
  • the present invention is able to provide additional heat output thereby avoiding the need for an auxiliary burner, particularly for applications with a relatively low heat demand. This is done in general terms by increasing the amount of hot combustion gases from the burner 5, which bypass the engine head 6 thereby significantly increasing the temperature of the exhaust gases in the exhaust duct 12. This can be done at the expense of electrical output from the engine. Alternatively, the burner can be "over-fired” thereby optimising the performance of the engine and producing additional heat.
  • the additional feature provided by the present invention is an annular aerofoil 30 positioned in the inlet duct 13.
  • the aerofoil is described in greater detail below.
  • the burner 5 is divided into an upper section 5A and a lower section 5B.
  • the burner may comprise a single mesh as shown in previous examples. It should be understood that subsequent reference to the upper burner section could apply either to the separate sections shown in Fig. 2, or could apply to the single burner mesh 5, the upper part of which represents the upper section and the lower part of which represents the lower section.
  • the air in the inlet duct 13 is pre-heated by the exhaust gases and then encounters the aerofoil 30.
  • the aerofoil 30 essentially acts as a flow splitter diverting the flow between the upper burner section 5a and the lower burner section 5b.
  • the aerofoil 30 is designed such that the bulk of the flow is directed onto the lower burner section 5B .
  • a small residual flow is directed to the upper burner section 5A which is sufficient to ensure that there is combustion on this part of the burner head.
  • this residual flow should be as low as possible to minimise the heat which does not contribute to the electrical conversion efficiency.
  • a certain minimum level of flow is required to ensure that the mixture does properly ignite.
  • the aerofoil 30 is designed so that proportionally higher flow is directed to the upper burner section 5A, whilst proportionally less is directed to the lower burner section 5B heating the engine. Due to the location of the upper burner section 5A, this section is far less efficient at thermal transfer into the engine head resulting in a consequent significant increase in the temperature of the gases in the exhaust duct 12. There will still be radiative heat transfer from the burner 5A to the engine, but the convective and conductive transfer is relatively lower, so that most of the heat in the combustion products from the upper burner section 5A enters the heat exchanger 14 downstream of the exhaust duct.
  • the burner construction may be of any suitable conventional type, including mesh burners or a combination of mesh and foil for an optimum mix of low temperature combustion (to minimise NOx levels) and flame stability. Flame stability is especially important to enable a high turn-down ratio on the upper burner section 5A in particular since it is necessary to maintain this section of the burner alight .
  • Fig. 2 gives a general idea of the type of cross-section suitable in the present case.
  • the aerofoil 30 has been shaped so that, under the low flow conditions, the bulk of the flow path is around the back of the aerofoil so that the flow then impinges primarily on the lower burner section 5B.
  • the back of the aerofoil 30 has a radially outwardly extending projection 31 which produces a flow restriction together with the surrounding wall of the duct 13 which chokes the flow of the air flow at higher flow rates and ensures that a greater proportion of the flow passes inwardly over the top lip 32 of the aerofoil thereby increasing the proportion of the flow on the upper burner section 5A.
  • the idealised split of flow between the upper section 5A and lower burner section 5B is shown in Fig. 3A with a more realistic approximation shown in Fig. 3B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

La présente invention concerne un système à moteur Stirling comprenant un moteur Stirling (1), un brûleur (5) adjacent au moteur, une alimentation en carburant combustible à destination du brûleur afin de produire un flux de carburant brûlé chaud pour chauffer le moteur. Un séparateur annulaire (30) entoure le brûleur qui est configuré pour augmenter la proportion de carburant brûlé qui contourne le moteur (1) à mesure que le flux de carburant combustible augmente en fonction de la sortie de chaleur requise.
PCT/GB2008/000069 2007-01-11 2008-01-10 Système à moteur stirling et son procédé de fonctionnement WO2008084228A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0700558A GB0700558D0 (en) 2007-01-11 2007-01-11 A stirling engine system and operating method
GB0700558.0 2007-01-11

Publications (1)

Publication Number Publication Date
WO2008084228A1 true WO2008084228A1 (fr) 2008-07-17

Family

ID=37809819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2008/000069 WO2008084228A1 (fr) 2007-01-11 2008-01-10 Système à moteur stirling et son procédé de fonctionnement

Country Status (2)

Country Link
GB (1) GB0700558D0 (fr)
WO (1) WO2008084228A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017431A1 (fr) * 2007-08-02 2009-02-05 Whisper Tech Limited Système de cogénération à sortie thermique variable
WO2011157662A1 (fr) * 2010-06-14 2011-12-22 Bekaert Combustion Technology B.V. Moteur à combustion à joint inférieur refroidi par air
ITMI20131480A1 (it) * 2013-09-09 2015-03-10 Worgas Bruciatori Srl Bruciatore ad isolamento attivo, in particolare per un motore a combustione esterna
EP2894404A1 (fr) * 2014-01-08 2015-07-15 Vaillant GmbH Système de cogénération force/chaleur doté d'un préchauffage d'air commutable
EP2811141A4 (fr) * 2012-01-30 2015-10-21 Kyungdong Navien Co Ltd Cache d'échangeur de chaleur latente doté d'une conduite de refroidissement
US9732982B2 (en) 2008-11-27 2017-08-15 Ceres Intellectual Property Company Limited Boiler unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746838A1 (de) * 1997-10-23 1999-04-29 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer nach einem regenerativen Gaskreisprozeß arbeitenden Wärme- und Kältemaschine
DE19936591C1 (de) * 1999-08-04 2001-02-15 Bosch Gmbh Robert Gasbetriebene Generator-Therme
WO2003052328A1 (fr) * 2001-12-19 2003-06-26 Microgen Energy Limited Appareil de chauffage
WO2004102081A1 (fr) * 2003-05-13 2004-11-25 Microgen Energy Limited Dispositif de chauffe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746838A1 (de) * 1997-10-23 1999-04-29 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer nach einem regenerativen Gaskreisprozeß arbeitenden Wärme- und Kältemaschine
DE19936591C1 (de) * 1999-08-04 2001-02-15 Bosch Gmbh Robert Gasbetriebene Generator-Therme
WO2003052328A1 (fr) * 2001-12-19 2003-06-26 Microgen Energy Limited Appareil de chauffage
WO2004102081A1 (fr) * 2003-05-13 2004-11-25 Microgen Energy Limited Dispositif de chauffe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017431A1 (fr) * 2007-08-02 2009-02-05 Whisper Tech Limited Système de cogénération à sortie thermique variable
US9732982B2 (en) 2008-11-27 2017-08-15 Ceres Intellectual Property Company Limited Boiler unit
WO2011157662A1 (fr) * 2010-06-14 2011-12-22 Bekaert Combustion Technology B.V. Moteur à combustion à joint inférieur refroidi par air
EP2811141A4 (fr) * 2012-01-30 2015-10-21 Kyungdong Navien Co Ltd Cache d'échangeur de chaleur latente doté d'une conduite de refroidissement
ITMI20131480A1 (it) * 2013-09-09 2015-03-10 Worgas Bruciatori Srl Bruciatore ad isolamento attivo, in particolare per un motore a combustione esterna
WO2015033324A3 (fr) * 2013-09-09 2015-08-06 Worgas Bruciatori S.R.L. Brûleur à isolation active, en particulier pour un moteur à combustion externe
CN105518385A (zh) * 2013-09-09 2016-04-20 瓦盖斯燃烧器有限责任公司 主动隔离式燃烧器,特别地用于外燃发动机
US9982625B2 (en) 2013-09-09 2018-05-29 Worgas Bruciatori S.R.L. Active insulation burner, particularly for an external combustion engine
EP2894404A1 (fr) * 2014-01-08 2015-07-15 Vaillant GmbH Système de cogénération force/chaleur doté d'un préchauffage d'air commutable

Also Published As

Publication number Publication date
GB0700558D0 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
EP1936296B1 (fr) Appareil de chauffage
WO2008084228A1 (fr) Système à moteur stirling et son procédé de fonctionnement
US20110232295A1 (en) Method for operation of an integrated solar combined-cycle power station, and a solar combined-cycle power station for carrying out this method
US20110025055A1 (en) Domestic combined heat and power generation system
US8459033B2 (en) Systems and methods for modified wobbe index control with constant fuel temperature
WO2014128089A1 (fr) Système combiné de chaleur et de puissance
US20100269499A1 (en) Stirling engine system and operating method
DK0613518T3 (da) Kombineret gas-dampturbineanlæg til fremstilling af elektrisk energi
JP7472035B2 (ja) ボイラー用のコジェネレーションシステム
CN105387507A (zh) 节能环保型燃气冷凝模块供暖机组
RU2300636C1 (ru) Комбинированная тепло- и электроснабжающая установка
CN211476321U (zh) 辅热燃烧壁挂炉
WO2011068419A1 (fr) Système de cogénération
SU1728577A1 (ru) Котельна установка теплоэлектроцентрали
EP3841288B1 (fr) Dispositif d'alimentation en carburant/air
RU2772096C2 (ru) Система совместного производства тепловой и электрической энергии для котла
RU37544U1 (ru) Автономная система одновременного производства электроэнергии и тепла в газовой котельной
JP2008528867A (ja) 加熱装置
RU2196907C2 (ru) Электрогенерирующее устройство
EP1067335A1 (fr) Dispositif de chauffage
WO2015011645A1 (fr) Appareil pour générer de la chaleur et de l'électricité
WO2017130165A1 (fr) Système de combustion à haute température et procédé de production de chaleur correspondant destiné à une large plage d'applications
JP2006118368A (ja) ガスタービン発電設備
GB2330648A (en) Domestic boiler heated by gas turbine
SA99200510A (ar) طريقة لاستعادة الحرارة من نواتج احتراق الوقود ، وجهاز خاص بها ، ووسيلة للتشغيل ومجموعة جهاز احتراق خاصة بالجهاز المذكور

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08700161

Country of ref document: EP

Kind code of ref document: A1