WO2008083539A1 - Relais protecteur fonctionnel de type à surveillance pour un courant résiduel - Google Patents

Relais protecteur fonctionnel de type à surveillance pour un courant résiduel Download PDF

Info

Publication number
WO2008083539A1
WO2008083539A1 PCT/CN2007/002431 CN2007002431W WO2008083539A1 WO 2008083539 A1 WO2008083539 A1 WO 2008083539A1 CN 2007002431 W CN2007002431 W CN 2007002431W WO 2008083539 A1 WO2008083539 A1 WO 2008083539A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
resistor
grounding
monitoring
line
Prior art date
Application number
PCT/CN2007/002431
Other languages
English (en)
French (fr)
Inventor
Gang Fu
Original Assignee
Lian Electric (Heshan) Technology Development Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lian Electric (Heshan) Technology Development Co. Ltd. filed Critical Lian Electric (Heshan) Technology Development Co. Ltd.
Publication of WO2008083539A1 publication Critical patent/WO2008083539A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/331Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers responsive to earthing of the neutral conductor

Definitions

  • the utility model designs a residual current action protection relay, in particular to a monitoring type residual current action protection relay, the backing technology
  • the side windings are coupled and connected, and the secondary winding generates an nickname voltage according to the change of the magnetic field and outputs, and controls the operation of the AC contactor and the like by the signal amplification.
  • they are not in the actual operation, but they do not achieve the desired effect.
  • the current of the circuit depends on the grounding resistance and the soil resistance.
  • the phase-to-earth grounding is prone to electrical explosion; if the human body touches the grid phase line, the human body is subjected to the voltage.
  • the problem to be solved by the utility model is that the existing residual current action protection relay has a small protection range and frequent actions affect the normal use.
  • phase-line ground signal detection monitoring discriminating circuit has various embodiments, wherein a relatively simple and low-cost solution includes three resistors, two diodes, two capacitors and a potentiometer, and the three resistors are respectively the first a resistor, a second resistor, and a third resistor, wherein the two capacitors are a first capacitor and a second capacitor, respectively, the two diodes are respectively a first diode and a second diode, and the second resistor and the second The three resistors are connected in series to form a series circuit, and the potentiometer, the first capacitor, the anode of the first diode, and the cathode of the second diode are simultaneously connected to the series circuit, and the other end of the series circuit, the first capacitor The other pole, the cathode of the first diode, the anode of the second diode, and one end of the first resistor are simultaneously connected to the ground to form an input end of the grounding signal detection and discrimin
  • the primary winding of the isolation transformer is connected to any phase line and the neutral line, and one end of the secondary winding of the isolation transformer and the fourth
  • the resistors are connected in series, and the other end of the fourth resistor is connected to one end of the ground and the fifth resistor, and the third end of the fifth resistor and the second electric
  • One end of the bit device and the anode of the third diode are connected, and the other end of the second potentiometer and the other end of the isolating transformer are connected to a node formed by a node and a fourth resistor or a fifth resistor and a ground line.
  • an input terminal grounded neutral fan monitoring groom defined number detecting circuit the other end of the diode to the undertaking of three fans zero line defining a ground signal detection circuit to monitor the output of a
  • the utility model can obtain obvious beneficial effects compared with the prior art:
  • the present invention is capable of controlling the electric shock current safety current, the protection does not operate, power running ⁇
  • Figure 1 is a block diagram showing the structure of the circuit of the present invention
  • Figure 2 is a wiring diagram of the application of the present invention.
  • 3 ⁇ 4 3 is a circuit diagram of a zero-sequence current transformer of the present invention.
  • FIG. 4 is a circuit diagram of the detection and discrimination of the phase line grounding signal detection of the utility model;
  • FIG. 5 is a circuit diagram of the detection and discrimination of the zero line grounding signal detection of the utility model; Test circuit. detailed description
  • 1 is a circuit principle structure block S of the present invention, and the circuit module of the present invention and its connection relationship are as shown in the figure, compared with the existing zero-sequence current transformer and three-phase line or three-phase line Compared with the technical connection of all the zero lines, the zero-sequence current transformer 1 of the present invention is only connected to the neutral line 11 and the ground line 10, and the harmonic elimination circuit 8 is connected in parallel with the primary winding of the zero-sequence current transformer 1
  • the wiring mode of the zero-sequence current transformer 1 of the utility model is greatly simplified, and the effect thereof is obviously improved: when the low-voltage power grid operates normally, the DC resistance of the primary winding is as small as several ohms, and the low-voltage power grid is directly grounded. System, if the insulation of the low-voltage power grid suddenly drops or a personal electric shock occurs, the primary winding of the zero-sequence current transformer exhibits
  • the power grid introduces high resistance between the ground and the ground.
  • the power grid is an indirect grounding system. If the human body is subjected to electric shock, the human body is subjected to a voltage.
  • the high-impedance value of the primary winding of the zero-sequence current transformer and the partial pressure of the grounding resistance and the human body resistance Generally, it should be less than 30 volts; the current through the human body is the current that can be limited by the impedance value and the grounding resistance and the body resistance. Generally, it should be less than 3Q.
  • the voltage and current that the human body is subjected to is the human body. Safe voltage and safe current that can withstand or get rid of.
  • the protection device does not need to cut off the power supply, and there is no personal electric shock or death.
  • the secondary winding of the zero-sequence current transformer 11 is connected to the input terminal of the phase-line grounding signal detection monitoring circuit 21, and the output terminal thereof is output to the phase-line grounding signal amplifying circuit 41, and the phase-line grounding signal detection monitoring circuit 21 functions
  • the collected phase-line grounding signal is given to the tuning, and the nature of the fault (instantaneous fault or permanent fault) is discriminated and processed. If the grid a phase occurs metal (wire landing, phase line and electrical equipment shell, etc.) ground fault, and some people touch the power on the b phase or c phase line.
  • the grounding of the a-phase line provides another path for the human body to contact the electric current on the other b-phase or c-phase line, which will inevitably lead to the failure of the protection measure. At this time, the circuit can distinguish the nature of the fault and promptly issue instructions for processing.
  • the output end of the phase line ground signal detection monitoring discriminating circuit 21 is sequentially connected to the phase line ground signal amplifying circuit 41, the first power amplifying circuit 51, the execution terminal trip circuit 7, and the phase line grounding warning lamp 61 is connected to the first power amplifying circuit 51 and The connection point of the terminal skip circuit is executed.
  • the neutral line signal detection benefit control defining circuit 22 is connected in parallel with the elimination circuit 8 , and the harmonic elimination circuit 8 is also connected in parallel with the primary winding of the zero sequence current sensor 1 as a pressure sensitive element. Its use is eliminated.
  • the function of the zero-line grounding signal detection and monitoring defining circuit 22 is: Repeated grounding occurs in the neutral line of the power grid, and when the protection measures fail, the monitoring neutral line is repeatedly grounded and processed.
  • the working process is to shape and define the detected zero-line grounding signal, and define whether the zero-line repeated grounding and the human body's electric shock circuit current endanger the safety of the human body and the instructions are processed.
  • the input end of the neutral line ground signal detection monitoring defining circuit 22 is sequentially connected to the neutral line ⁇ number amplifying circuit 42, the second power amplifying circuit 52, and the terminal trip circuit.
  • the neutral ground warning lamp 62 is connected to the connection point of the second power amplifying circuit 52 and the actuator trip circuit 7.
  • phase line grounding test circuit 31 and the neutral line grounding test circuit 32 shown in FIG. 1 are both analog test devices.
  • One end of the phase line grounding test circuit 31 is connected to any phase of the phase line, and the other end is connected to the work group ground line.
  • the role is to simulate a defined value and verify that the protection device is working properly.
  • the function of the neutral line test circuit 3i is to simulate a defined value and verify that the protection device is working properly.
  • One end is connected to the neutral line of the grid, and one end is connected to the working ground line.
  • the input end of the monitoring residual current action protection relay 203 is connected in series between the low-voltage neutral line of the distribution transformer H 201 and the working ground line 10, and the output end thereof. Connected to an AC contactor or automatic circuit breaker 202.
  • the human body 205 touches the phase line of the low-voltage power grid in the low-voltage power grid, the human body's electric shock current is monitored by the monitoring residual current action protection relay, and the protection device does not perform tripping.
  • the power grid operates normally, improving the reliability of power supply and use. .
  • ⁇ 3 is the structural electric diagram of the zero-sequence current transformer 1 of the present invention, and L1 is its primary winding,
  • U is its secondary group
  • Rl, U are resistors
  • capacitors VI, V2 are diodes
  • RP1 is a potentiometer.
  • the input end of the phase grounding signal detection monitoring discriminating circuit 21 is connected to the secondary winding L2 of the zero sequence current interchanger 1
  • the resistor RI is connected in parallel at both ends
  • the potentiometer RPIL is connected in series to the upper end, and the other end is connected to the positive terminal of the capacitor C1.
  • resistors R2, 3 are connected in series and connected in parallel to the two ends of the diode to form a voltage dividing circuit, the electric passenger C2 terminal is connected to R2, R3 The voltage dividing point between the terminals is connected to the phase line grounding signal amplifying circuit.
  • FIG. 5 is a circuit diagram of the zero-ground signal detection and monitoring definition circuit of the present invention.
  • the isolation transformer, R4 and R5 are resistors, RP2 is a potentiometer, V3 is a two-plate tube, and the input end is connected to the neutral line and the ground. Between the lines, the secondary winding of the isolation transformer T is connected in series with the resistor R4, and a voltage of several volts is applied between the neutral line and the ground.
  • the upper end of the potentiometer RP2 is connected to the neutral line, the lower end is connected in series with the resistor RS, and the resistor R5 is connected. One end is connected with the 3 ⁇ 4 wire to form a voltage dividing circuit.
  • FIG. 6 is the grounding of the neutral line of the utility model.
  • Test circuit diagram SB is the dynamic test button
  • R is the analog resistance, through the dynamic test button SB, analog resistor R, one end is connected to the working ground line, the other end is connected to the zero line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

说 明 书 监控式剩余电流动作保护继电器 技术领域
本实用新型设计一种剩余电流动作保护继电器, 尤其涉及一种监控式 剩余电流动作保护继电器, 背縈技术
随着电力工业的迅猛发展和近几年来在中国普遍开展的农材电网改 造, 新增加了大量的配电变压器和配电线路, 基本满足了农业生产加工和 日常生活用电的需求。 为达到要全供用电的 ϋ的, 在配电变压器 压側普 遍安装了各种类型的剩余电流动作保护继电器或漏电开关。 现有的剩余电 流动作保护继电器的构成部件只有坏形铁芯和次边绕组, 低压电网的四奈 相线和零线或者三条相线直接穿过环形铁芯通过其中的电流产生的磁场和 次边绕組耦合连接, 次边绕組根据磁场的变化产生倌号电压并输出, 孥过 信号放大等环节控制交流接触器等执行装置的动作。 然而, 它们在实际运 衧中,却达不到预想的效杲。譬如当线路发生相线金属性短路接地故障时, 该回路的电流大小取决于接地电阻及土壤电阻, 相线接地瞬间就容易产生 电气火突; 设若人身触及电网相线时,人体所承受的电压为相线对地电位, 通过人体的电流大小取决于人体的自身条件(年齡、 身高、 体量)和触电 环境奈件(高空、 水中、 空气湿度等) , 可否保证人身安全还与跳闸电路 的开关速度有关, 由于低压电网对地正常泄漏电流值往往会超出克希霍夫 定律界定的 30roA . S, 作为低压配电网总线路保护装置 (俗称总保〉 的剩 余电流动作值多整定在 lOOiaA及以上, 并规定只作间接接触保护, 也就是 说当人体直接触及电网相线时将极有可能得不到保护; 若电网零线发生重 复接地或电网某一相线发生金属性短路接地故障, 同时人体触及另外两相 任一相线时, 为人体触电电流提供了另一奈通路, 势必会导致保护措施失 效, 不能实现人身触电安全; 在农村低压电网往往会发生一些瞬时故障
(刮风树枝碰线、 大功率电力拖 ¾设备起动, 暴风雨的来临等) 亦将会造 成保护装置频繁误动作跳闸, 严重影响了自动化生产加工和人们 Θ常生活 用电。 给电力工作人员带来了很多麻烦, 有人称之为 "捣乱器" , 更有甚 者干脆将其退出运行, 通过上述分析, 现有的剩余电流动作保护继电器具 有明显的缺陷:
1.保护范围比较小, 现实运用中会出现多种多样的 1 题, 而现有的保 护装置只能对出现部分问题时作出保护动作, 这样将会大大降低保护装置 的使用效果。
2.频繁动作导致正常使用受到不利影响, 对于某些瞬时性故陣, 现有 的保护装置跳闸动作过于频繁, 使用电的连续性受到影响, 不但增加了电 力工作人员的劳动, 而且对于正常的用电也具有不利影响。 实用新型内容
本实用新型所要解决的问题为现有的剩余电流动作保护继电器保护范 围小且频繁动作影响正常使用的问题。
为了解决上迷问题, 本实用新型提供了一种监控式剩余电流动作保护 继电器, 该监控式剩余电流动作保护继电器的技术方棄为: 包括零序电流 互感器、 信号放大电路、 功率放大电路、 工作电源整流电路、 执行终端跳 闸电路、 消谐电路, 所迷剩余电流动作保护继电器还包括相线接地信号检 测监控电路和零线接地信号检测监控界定电路, 所述信号放大电路包括相 线接地信号放大电路和零线接地信号放大电路, 所述功率故大电路包括第 一功率效大电路和第二放大电路, 所迷零序电流亙感器包括环形铁芯及钚 绕其上的原¾绕组和次逸绕組、 消穡电路, 所述原达绕組和消谐电路并联 连接, 所述原边绕組的两个输入端子为中线连接端子和配电变压器工作接 地线连接端子, 所述次边绕组的两个端子与相线接地信号检测监控判别电 路连接, 所迷零线接地信号检测监控界定电路和所迷零序电流互感器并联 连接, 所述相线接地信号检测监控判别电路的输出端和所迷相线接地信号 放大电路的输入端连接, 所迷相线接地信号放大电路的输入端和所述第一 功率放大电路的输入端连接 > 所迷零线接地信号检测监控界定电路的输出 端和零线接地信号放大电路的输入端连接, 零线接地信号放大电路的输出 端和第二功率放大电路连接, 所述第一功率放大电路和第二功率放大电路 的输出端与执行终端跳闸电路连接。
上述相线接地信号检测监控判别电路具有多种实施方案, 其中较为简 单且成本低廉的方案为包括三个电阻、 两个二极管、 两个电容和一个电位 器, 所迷三个电阻分别为第一电阻、 第二电阻、 笫三电阻, 所迷两个电容 分别为第一电容、 第二电容, 所述两个二极管分别第一二极管和第二二极 管, 所述第二电阻和第三电阻串联连接組成串联电路, 电位器、 第一电容、 第一二极管的阳极、 第二二极管的阴极同时和所迷串连电路连接, 所迷串 联电路的另一端、 第一电容的另一极、 第一二极管的阴极、 第二二极管的 阳板及第一电阻的一端同时和地线连接組成所迷相线接地信号检测监控判 别电路的一个输入端, 所迷电位器的另一端和所述第一电阻的另一端连接 组成所迷相线接地信号检测监控判别电路的另一个输入端, 所迷第二电容 与所迷第二电阻和第三电阻的连接点连接, 所迷第二电容的另一极构成所 述相线接地信号的输入端。 上述零线接地信号检测监控界定电路也具有多 种实施方案, 其中较为优选的方案为包括隔离变压器、 两个电阻、 一个二 极管和一个电位器, 所迷电阻为第四电阻和第五电阻, 所述电位器为第二 电位器, 所迷二极管为第三二极管, 所迷隔离变压器的原边绕組与任一相 线和中线连接, 所述隔离变压器的次边绕组的一端和第四电阻串联, 第四 电阻的另一端和地线及第五电阻的一端连接, 第五电阻的 ¾—端和第二电 位器的一端及第三二极管的阳极连接, 笫二电位器的另一端和所述隔离变 压器的另一端连接組成的结点与第四电阻或者第五电阻和地线的结点构成 所迷零线接地倌号检测监控界定电路的输入端, 所述笫三二极管的另一端 为所迷零线接地信号检测监控界定电路的输出端 a
通过对本实用新型的技术方案进行分析, 本实用新型比起现有技术能 够取得明显的有益效茱:
1.提高了用电的可靠性, 当人体触电时, 本实用新型能够控制人身触 电电流为安全电流, 保护装置不动作, 电网正常运行 β
2.节约电能, 能够直接控制线路对地絶缘 > 减小线路对地泄漏电流, 可减少低压电网电能损耗,
3.保护范围大, 对现有技术来说, 当电网零线发生重复接地或电网某 一相发生金属性短路接地、 同时人身触及电网另外两相线中的任一相, 导 致保护措施失效, 危及人身安全时, 本实用新型能够快速动作作出跳闸切 断电源的处理。 附图说明
图 1为本实用新型的电路原理結构方框图;
图 2为本实用新型的应用接线图;
¾ 3为本实用新型的零序电流互感器电路图;
图 4为本实用新型的优逸的相线接地信号检测监控判别电路图; 图 5为本实用新型的优选的零线接地信号检测监控判别电路图; 图 6为本实用新型的优逸的零线接地试验电路。 具体实施方式
下面結合附图说明和具体实施方式对本实用新型做进一步的详细说 明。 图 1为本实用新型的电路原理结构方框 S, 本实用新型的备个电路模 块及其连接关系如图所示, 比起现有的零序电流互感器与三相线或者三相 线一零线全部连接的技水相比, , 本实用新型的零序电流互感器 1只与零 线 11及地线 10连接, 消谐电路 8与零序电流互感器 1的原边绕组并联连 接, , 本实用新型的零序电流互感器 1的接线方式大大得到简化, 其效杲 却有明显进步: 当低压电网正常运行时, 原边绕组的直流电阻很小约几欧 姆, 低压电网属直接接地系统, 若低压电网绝缘突然下降或发生人身触电 事故, 零序电流互感器原边绕組呈现高阻抗 , 约数千欧姆, (即相当于在
电网对地之间导入了高电阻) 电网为间接接地系统 设若电网发生人身触 电事故》 人体所承受的电压为零序电流互感器原边绕组呈现的高阻抗值与 接地电阻和人体电阻的分压,一般应小于 30伏; 通过人体的电流是阻抗值 与接地电阻及人体电阻所能限制的电流, 一般应小于 3Q亳要,换言之, 发 生人身触电事故时, 人体所承受的电压和电流是人体所能耐受或摆脱的安 全电压和安全电流。 保护装置勿需切断电源, 亦不会发生人身触电伤亡事 故。
零序电流互感器 11的次边绕组与相线接地信号检测监控判别电路 21 的输入端连接, 其输出端输出至相线接地信号放大电路 41 , 相线接地信号 检测监控判别电路 21的作用就是将采集到的相线接地信号给予整定,并加 以判别故障的性质 (瞬间故障或永夂性故障) 并作出处理。 设若电网 a相 发生金属性 (导线落地、 相线碰及用电设备外壳等)接地故障, 同时又有 人在 b相或 c相线上触及电源。 a相线的接地, 为人体在另外 b相或 c相 线上触电电流提供了另外一奈通路, 势必会导致保护措施失效 此时该电 路能够判别故障性质, 并迅速发出指令作出处理。 相线接地信号检测监控 判别电路 21的输出端依次连接相线接地信号放大电路 41、 第一功率放大 电路 51、执行终端跳闸电路 7 ,相线接地警示灯 61连接于笫一功率放大电 路 51和执行终端跳闹电路的连接点。 零线接地信号检测益控界定电路 22与消 i皆电路 8并联连接,消谐电路 8还并联连接与零序电流亙感器 1的原边绕组上, 为一压敏元件 它的用 途是消除线路对地电容与零序电流互感器 1的原边绕組工作时产生的谐振 过电压。零线接地信号检测监控界定电路 22的作用是: 带电网零线出现重 复接地, 导致保护措施失效时, 监控零线重复接地程度并作出处理。 工作 过程是将检测到的零线接地信号迸行整形、 界定, 界定零线重复接地与人 体触电回路电流是否危及到人身生命安全并发生指令作出处理。 零线接地 信号检测监控界定电路 22的输入端依次与零线接地倌号放大电路 42、 第 二功率放大电路 52、执行终端跳闸电路?,零线接地警示灯 62连接于第二 功率放大电路 52和执行 端跳闸电路 7的连接点。
图 1所示的相线接地试验电路 31和零线接地试验电路 32都是一种模 拟试验装置,相线接地试验电路 31的一端连接相线任一相, 另一端连接工 组接地线, 它的作用是模拟一界定值, 检验保护装置是否正常工作。 零线 接地试验电路 3i的作用是模拟一界定值,检验保护装置是否正常工作, 它 的一端连接电网零线, 一端连接工作接地线。
图 2为本实用新型的实施接线图, 将监控式剩佘电流动作保护继电器 203的输入端串接于配电变压 H 201的低压侧中性线与工作接地线 10之 间, 其输出端连接于交流接触器或自动断路器 202。 当低压电网发生人体 205触及低压电网相线时, 人体触电电流受到监控式剩佘电流动作保护继 电器的监控后为安全电流, 保护裝置不执行跳闸, 电网正常运行, 提高了 供用电的可靠性。 电网出现零线重复接地 206, 或相线某一相接地 207, 同时又有人体 205触及另外两相任一相线时, 势必会导致保护措施失效 a 此时 > 由监控式剩余电流动作保护继电器迅速发出指令, 执行终端跳闸^ 路迅速切断电源。 从而达到确保人身触电安全之 的6
Μ 3为本实用新型的零序电流互感器 1的结构电图, L1为其原边绕組,
U为其次边统組, RV为作为消谐电路 g的压敏电阻。 图 4为本实用新型的相线接地信号检测监控判別电路的电路图, Rl、 U 为电阻, 、 为电容, VI , V2为二极管, RP1为电位器。 相线接 地信号检测监控判别电路 21的输入端连接于零序电流互慼器 1的次边绕組 L2 , 电阻 RI并联于 两端, 电位器 RPIL串接于 上端, 另一端连接于电 容 C1正极, 二极管 VI正极、 V2负极, 电容 C1负极、 VI 负极、 V2正极连 接于 L2下端 >电阻 R2、 3串联后并联于二极管 两端,构成一分压电路, 电客 C2—端连接于 R2、 R3之间的分压点, 其输出端连接至相线接地信号 放大电路。
图 5为本实用新型的零幾接地信号检测监控界定电路的电路图, 了为 隔离变压器, R4、 R5为电阻, RP2为电位器, V3为二板管, 其输入端连接 于中性线与地线之间, 由隔离变压器 T的次级绕組串联电阻 R4 , 将数伏交 流电压施加于零线与地线之间, 电位器 RP2上端连接于零线, 下端串接电 阻 RS, 电阻 R5另一端与¾线迤接, 构成一分压电路, 二极管 正极连接 于电位器 RP2与电阻 R5之间的分压点,负极输出至零线接地信号放大电路, 图 6为本实用新型的零线接地试验电路图, SB为动合试验按钮, R为 模拟电阻, 通过动合试验按钮 SB,模拟电阻 R, 一端连接于工作接地线上, 另一端连接与零线上。
最后应当说明的是:以上实施例仅用以说明本实用新型的技术方案而非 对其限制; 尽管参照较佳实施例对本实用新型进行了详细的说明, 所属领域 的普通技术人员应当理解: 依然可以对本实用新型的具体实施方式进行修改 或者对部分技术特征进行等同替换; 而不脱离本实用新型技术方案的精神, 其均应涵盖在本实用新型请求保护的技术方案范围当中。

Claims

1,一种监控式剩佘电流动作保护继电器, 包括工作电源整流电路、 执 行终端跳闸电路, 其特征在子: 还包括零序电流互感器、 信号放大电路、 功率放大电路、 相线接地信号检测监控电路和零线接地信号检测监控界定 电路, 所述信号放大电路包括相线接地倌号放大电路和零线接地倌号放大 电路 所述功率放大电路包括第一功率放大电路和笫二功率放大电路, 所 迷零序电流互感器包括环形铁芯及环绕其上的原边绕組和次边统組、 消谐 电路, 所迷原边绕組和消谐电路并联连接, 所迷原逸绕組的两个输入端子 为中线连接端子和配电变压器工作接地线连接端子, 所迷次边蛲組的两个 端子与相线接地信号检测监控判別电路连接, 所述零线接地信号检测监控 界定电路和所迷零序电流互感器并联连接, 所迷相线接地信号检测监控 判別电路的输出端和所迷相线接地信号放大电路的输入端连接, 所逸相线 接地信号放大电路的输入端和所述第一功率放大电路的输入端连接, 所迷 零线接地信号检测监控界定电路的输出端和零线接地信号敌大电路的输入 端连接, 零线接地信号放大电路的输出端和第二功率放大电路连接, 所迷 第一功率放大电路和第二功率放大电路的输出端和执行终端跳闸电路连 接。
2.根据杈利要求 1所述的监控式剩余 '电流动作保护继电器, 其特征在 于: ¾包括模拟接地试验电路和接地警示装置, 所迷模拟接地试验电路包 括相线模拟接地试验电路和零线模拟接地试验电路, 所述接地警示装置包 括相线接地警示装置和零线接地警示装置, 所迷第二功率放大电路的输出 端和零线接地警示装置的输入端连接 ,所述第一功率放大电路的输出端和 相线接地警示装置的输入端连接。
3,根据杈利要求 2所述的监控式剩余电流动作保护继电器, 其特征在 于: 所迷相线接地倌号检测监控判別电路包括第一电阻、 第二电阻、 第三 电阻、 第一电容、 笫二电容、 笫一二极管和第二二极管, 所述第二电阻和 第三电阻串联连接組成分压电路, 电位器、 第一电容、 笫一二极管的阳极、 第二二极管的阴极同时和所迷分压电路连接, 所述分压电路的另一端、 笫 一电容的另一极、 第一二极管的阴极、 第二二极管的阳极及笫一电阻的一 端同时和地线连接組成所迷相线接地信号检测监控判别电路的一个输入 端, 所迷电位器的另一端和所述第一电阻的另一端连接组成所迷相线接地 信号检测监控判別电路的另一个输入端, 所迷第二电容与所迷第二电阻和 第三电阻的连接点连接, 所迷第二电容的另一极构成所述相线接地信号的 输入端。
4.根据权利要求 或 3所迷的监控式剩余电流动作保护继电器, 其特 征在于: 所迷零线接地信号检测监控界定电路包括隔离变压器、笫四电阻、 第五电阻、 笫二电位器、 第三二极管, 所迷隔离变压器的原边绕組与任一 相线和零线连接> 所述隔离变压器的次边绕組的一端和第四电阻串联, 第 四电阻的另一端和地线及第五电阻的一端连接, 第五电阻的另一端和第二 电位器的一端及第三二极管的阳极连接, 第二电位器的另一端和所迷隔离 变压器的另一端连接组成的结点与第四电阻或者第五电阻和地线的结点构 成所述零线接地信号检测监控界定电路的输入端, 所述笫三二极管的另一 端为所迷零线接地信号检测监控界定电路的输出端。
5.根据权利要求 4所述的监控式剩佘电流动作保护继电器, 其特征在 于: 所迷相线接地警示装置和零线接地警示裝置分别为相线接地警示灯和 零线接地警示灯。
6.根据权利要求 5所述的监控式剩余电流动作保护继电器, 其特征在 于: 所迷消谐电路为压敏电阻。
7.根椐权利要求 6所迷的监控式剩余电流动作保护继电器 5 其特征在 于: 所述零线接地试验电路包括动合按钮和模拟电阻, 动合按钮和模拟电 阻串联连接, 所迷动合按钮的另一端和零线连接, 所迷模拟电阻的另一端 和地线连接。
PCT/CN2007/002431 2007-01-12 2007-08-13 Relais protecteur fonctionnel de type à surveillance pour un courant résiduel WO2008083539A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200720089166.0 2007-01-12
CNU2007200891660U CN201066671Y (zh) 2007-01-12 2007-01-12 监控式剩余电流动作保护继电器

Publications (1)

Publication Number Publication Date
WO2008083539A1 true WO2008083539A1 (fr) 2008-07-17

Family

ID=39483854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002431 WO2008083539A1 (fr) 2007-01-12 2007-08-13 Relais protecteur fonctionnel de type à surveillance pour un courant résiduel

Country Status (2)

Country Link
CN (1) CN201066671Y (zh)
WO (1) WO2008083539A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104658163A (zh) * 2015-01-23 2015-05-27 中兴通讯股份有限公司 一种电能计量终端及电气火灾监控方法
CN107017603B (zh) * 2017-03-10 2020-02-21 浙江工商职业技术学院 智能接地保护装置及其控制方法
CN107910953B (zh) * 2017-03-29 2021-01-05 国网浙江省电力公司湖州供电公司 一种智能监控配电设备的装置及方法
CN108321767B (zh) * 2018-02-28 2023-10-27 厦门大学嘉庚学院 伴地线电气防火方法
DE102019101636A1 (de) * 2019-01-23 2020-07-23 Bender Gmbh & Co. Kg Elektrische Schaltungsvorrichtung zur Erkennung eines nichtgeöffneten Schaltkontaktes sowie einer Schutzleiterunterbrechung in einer ein- oder mehrphasigen elektrischen Zuleitung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248156A (ja) * 1997-03-04 1998-09-14 Toshiba Corp 漏電警報付回路遮断器
JPH1118281A (ja) * 1997-06-25 1999-01-22 Matsushita Electric Works Ltd 漏電検知器
JP2003032878A (ja) * 2001-07-10 2003-01-31 Mitsubishi Electric Corp 地絡検出装置および地絡検出方法
CN1610203A (zh) * 2004-11-03 2005-04-27 肖光希 防触电保命器
CN1889319A (zh) * 2005-06-30 2007-01-03 上海裕生企业发展有限公司 剩余电流保护电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10248156A (ja) * 1997-03-04 1998-09-14 Toshiba Corp 漏電警報付回路遮断器
JPH1118281A (ja) * 1997-06-25 1999-01-22 Matsushita Electric Works Ltd 漏電検知器
JP2003032878A (ja) * 2001-07-10 2003-01-31 Mitsubishi Electric Corp 地絡検出装置および地絡検出方法
CN1610203A (zh) * 2004-11-03 2005-04-27 肖光希 防触电保命器
CN1889319A (zh) * 2005-06-30 2007-01-03 上海裕生企业发展有限公司 剩余电流保护电路

Also Published As

Publication number Publication date
CN201066671Y (zh) 2008-05-28

Similar Documents

Publication Publication Date Title
WO2008083539A1 (fr) Relais protecteur fonctionnel de type à surveillance pour un courant résiduel
CN200947538Y (zh) 一种合闸前短路检测漏电保护开关
CN201210614Y (zh) 剩余电流控制监测保护器
CN206148928U (zh) 电力变压器的零序保护电路
CN110148340B (zh) 一种单相接地故障真型模拟实验相间短路保护装置及方法
CN201207564Y (zh) 变压器接地成套保护装置
CN210270040U (zh) 单相接地故障真型实验系统相间短路保护装置
CN100384042C (zh) 飞弧漏电保护装置及其保护方法
CN206573629U (zh) 一种负荷自适应电流测量及保护装置
CN201243193Y (zh) 低压电网剩余电流控制监测式保护器
CN202455061U (zh) 智能综合消谐装置
CN202034769U (zh) 三相电源供电塑壳漏电控制器
CN109004629A (zh) 一种适用于小电阻接地的接地变保护系统
CN108418173A (zh) 一种电弧故障断路器
CN203951163U (zh) 低压故障检测仪
CN206684227U (zh) 基于直流it系统的绝缘电阻检测电路
CN202872329U (zh) 一种带过压保护的断路器
CN1988302A (zh) 配电网接地故障的保护方法及其装置
CN205720528U (zh) 一种智能接地故障小电流放大装置
CN202103412U (zh) 一种电力电容器的动态自适应保护装置
CN2503653Y (zh) 通用过流继电保护器
CN205753375U (zh) 一种临时继电保护装置
CN2457729Y (zh) 单相漏电断路器
CN218940773U (zh) 空气开关远程监测系统
CN216530519U (zh) 一种可无功补偿的浸水防触电用电保护器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07785333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07785333

Country of ref document: EP

Kind code of ref document: A1