WO2008081956A1 - High carbon hot-rolled steel sheet and method for production thereof - Google Patents

High carbon hot-rolled steel sheet and method for production thereof Download PDF

Info

Publication number
WO2008081956A1
WO2008081956A1 PCT/JP2007/075341 JP2007075341W WO2008081956A1 WO 2008081956 A1 WO2008081956 A1 WO 2008081956A1 JP 2007075341 W JP2007075341 W JP 2007075341W WO 2008081956 A1 WO2008081956 A1 WO 2008081956A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
ferrite
hot
steel sheet
heat
Prior art date
Application number
PCT/JP2007/075341
Other languages
French (fr)
Japanese (ja)
Inventor
Nobusuke Kariya
Kazuhiro Seto
Nobuyuki Nakamura
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP07860538.3A priority Critical patent/EP2103697B1/en
Priority to CN2007800482110A priority patent/CN101568655B/en
Priority to KR1020097013010A priority patent/KR101107531B1/en
Publication of WO2008081956A1 publication Critical patent/WO2008081956A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high carbon heat 33 ⁇ 4, particularly a high carbon heat excellent in bending after processing, and the Mit method. Background sickle
  • Non-Patent Document 1 As a processing rod for automatic parts using high charcoal ⁇ 3 ⁇ 4, it is possible to increase the thickness and to open a fiber processing chamber that has drastically increased 3 ⁇ 4 ⁇ . Has been put into practical use.
  • high-carbon steel is required to be able to be processed without any problems even if it combines multiple processing modes such as pulling, drawing, stretching, bending, and hole expansion. In particular, since bending often occurs after bending after applying traction!], Bending 14 after excellent traction!] Is desired.
  • Patent Document 1 After hot rolling a high-carbon coal of a predetermined chemical composition, descaling, heating in a hydrogen atmosphere above 95 volume m ⁇ specified by the chemical composition ⁇ A method for producing a soft, high-coal zone with excellent uniformity and workability by cooling at a cooling rate of 1 ° C or less at a temperature of 100 ° C / hr or less is being tested. Further, Patent Document 2, was cooled 10 ⁇ 100D, until?
  • Non-Patent Document 1 Journal of the JSTP, 44, 2003, p.409-413
  • Patent Document 1 JP-A-9-157758
  • Patent Document 2 JP-A-5-9588
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-13145 Disclosure of Invention
  • the high carbon hot-spring of ⁇ 3 ⁇ 4 in these submissive techniques is superior in properties when processed in a single processing mode such as tension or 73 ⁇ 4, but bends after tensile processing. Combining multiple processing modes; ⁇ had problems such as cracking.
  • An object of the present invention is to provide a high carbon heat exciter having excellent bending properties after tensile processing and an i * "method thereof.
  • the inventors have determined the amount of Sol. A1 in the steel, the cooling conditions after hot rolling, the cutting temperature, and the annealing temperature.
  • the ability to control properly S has been found to be extremely important ⁇ and the ferrite grain size obtained by the later measurement method should be 5.0 / zm or less, and the ferrite grains with a force aspect ratio of 0 or more It was found that by controlling the area ratio below 1 TO, it was possible to obtain excellent bending characteristics after pulling.
  • the present invention has been made on the basis of the above findings, and has a mass of 34, C: 0.2-0.71 Si: 2% or less, 3 ⁇ 4fo: 2% or less, P: 0.03% or less, S: 0.0 , Sol.
  • A1 A process of hot rolling steel with a content of 0.01% or less and N: 0.01% or less to a finish of (Ar 3 transformation point-20 ° C) or more to form a hot plate
  • the process of cooling the heat plate to 60 ° C / second or more and 120 ° C / second to 650 ° C or less and the heat after the tilt itself and ⁇ Ru step by preparative, heat ⁇ after Ri preparative IiP5, to «a step of ⁇ by a Cl transformation point of ⁇ above 64TfC, the manufacturing i * law high carbon hot ⁇ with.
  • heat is glued to 600 ° C or less with a paste of 80 ⁇ / sec or more and less than 120 ° C / sec. It ’s better to pick it up below 550 ° C.
  • the present invention also relates to a high-carbon steel sheet that is formed into a cocoon and has a mass of CO. 2
  • the area ratio of ferrite grains having a self-spect ratio of 40 or more is more preferable.
  • B 0.005 mass y. Cr: 3.5 mass% or less, Ni: 3.5 mass% or less, Mo: 0.7 mass% or less, Cu: 0.1 quality *% or less, Ti: 0.1 mass% or less, b: 0.1 mass% or less, W, V, Zr: 0.1 mass in total.
  • FIG. 1 is a diagram showing the relationship between the area ratio of ferrite grains having an aspect ratio of 40 or more and the bending 14 after pulling. Best Mode for Invention
  • the amount of C is specified as 0.2 to 0.7%.
  • the C content exceeds O. S%, and that the C content is 0.5% 3 ⁇ 4 or less in order to improve the workability.
  • Si amount Since Si tends to graphitize carbides and inhibit j1 ⁇ 2A property, the amount is specified to be 23 ⁇ 4 or less, preferably 0.5% or less.
  • Mn content When Mn is contained in ii3 ⁇ 4, the ductility tends to be lowered. Therefore, the amount is specified to be 2% or less, preferably 1% or less.
  • P content When P is contained in ⁇ , ductility such as stretch flangeability is reduced, and cracks are generated and become fragile. Therefore, the content is specified to be 0.0 «lower, preferably 0.02% 3 ⁇ 4 lower.
  • Sol. M amount: SoL Al is the most important element in the present invention. That is, when the amount of Sol. Al exceeds 0.01%, when nitrogen is used as a relatively non-oxidizing atmosphere with relatively high efficiency, A1N is formed on the surface layer when heat is generated in a nitrogen atmosphere. The inventors of the present invention have found that the bending force 14 after working 11 hours is markedly reduced by the surface hardening of the steel sheet and significantly decreases. Therefore, the amount of Sol. A1 is specified to be 0.01% or less.
  • N amount When N is contained in »j, the ductility is lowered, so the amount is 0 ⁇ 01% 3 ⁇ 4 lower, preferably 0. lower.
  • Fe and unavoidable impurities but for example, B, Cr, Ni, Mo, Cu, Ti, Nb within the range usually added for the purpose of improving i1 ⁇ 2A b properties and softening resistance.
  • W
  • V or Zr Even if at least one element such as V or Zr is added, the effect of the present invention is not impaired. Specifically, these elements are: ⁇ : 0.005% or less, Cr: 3.5% or less, Ni: 3.5% or less, Mo: 0.7% or less, 01: 0. 1 lower, Ti: 0. 1% lower, Nb: ai lower, W, V, Zr: 0.1 total lower.
  • the hot rolling finish should be (Ar 3 transformation point-20 ° C) or higher.
  • the Ar 3 transformation point can be calculated from the following equation (1), but actually measured may be used.
  • M represents the content of the element M 00.
  • correction terms may be introduced. For example, to contain Cr, Mo, Ni force S, -ll X [Cr], +31.5 X [Mo], -15 A correction term such as 2 X [Ni] may be added to the right-hand side of equation (1).
  • Cooling conditions after hot rolling In the present invention, the amount of Sol. A1 is low, and although the grain growth is hardly inhibited by the pinning of A1N, ferrite grains are transformed. This is because the strain imparted to the austenite grains during rolling is accumulated by cooling after the hot rolling, and the strain accumulated in the subsequent stage contributes as the core of the ferrite grains. It is estimated to be. If the cooling ⁇ after hot rolling is 60 ° C / second, the strain applied to the austenite grains during rolling is less likely to accumulate. Then, the ferrite grains grow and stick. As a result, the ferrite grain size exceeds 5.0 ⁇ , and the bending habit after the pulling is deteriorated.
  • cooling after hot rolling should be 60 ° C / ⁇ or more and 120 ° C / second or less.
  • the upper limit of ffil ⁇ is preferably 115 ° C / sec.
  • the cooling temperature is 650 ° C or less, preferably 600 ° C or less.
  • the cooling rate is 500 ° C. or higher.
  • Cooling after heat is removed, but if the tempering exceeds 600 ° C, the strain force made austenite at the time of hot rolling is released. Elite particle size exceeds 5.0 ⁇ ⁇ , and bending difficulty after traction DIE deteriorates. Therefore, the tapping shall be 600 ° C or less. In order to obtain a sufficient t & t self-cooling effect, it is preferable to set the temperature at a lower temperature than when the self-cooling is stopped. Note that, since the shape of the heat ⁇ deteriorates, the scraping is preferably 200 ° C or higher, more preferably 350 ° C or higher. When the ratio of ferrite grains with an aspect ratio of 40 or more is reduced to 1TO, the bending characteristics are further improved. To achieve this, ⁇ ⁇ ⁇ «is 80 ° C / sec. It is necessary to keep the temperature below 600 ° C and force winding up to 550 ° C.
  • the scale removal means is not particularly limited, but it is preferable to use the usual method. '
  • Heat ⁇ ⁇ The heat wrapping board after being removed by scissors or the like is subjected to a force S as spheroidization in order to spheroidize the carbide. At that time, if ⁇ is less than 60 ° C, the ferrite core length becomes insufficient, the area ratio of ferrite grains with an aspect ratio of 40 or more exceeds 15%, and the bending characteristics after drawing are deteriorated. To do. On the other hand, ⁇ 3 ⁇ 4 is austenitization partially proceeds exceeds A Cl transformation point, since pearlite is formed during cooling, bending after pulling ⁇ E ⁇ deteriorates. Therefore, S ⁇ of the hot plate is set to 60 ° C or more and ACl transformation point or less.
  • the thickness of the steel sheet is 680 ° C or higher.
  • the Ac / transformation point can be calculated from the following equation (2), but actually measured values can also be used.
  • Ac! Transformation point 754 83-32. 25 X [C] +23. 32 X [Si]-17. 76 X [Mn] ' ⁇ ⁇ ⁇ (2)
  • [M] represents the content (mass) of the element M.
  • correction terms may be introduced. For example, ⁇ containing Cr, Mo, and V 17. Add 3 X [Cr], +4 51 X [Mo], +15. 62 X [V] and the corresponding correction term to the right side of Equation (2).
  • Heat time is 8 ⁇ 80 hours 3 ⁇ 4g force S preferred.
  • the obtained carbide in the soot was measured at about 1/4 position of the chemical, average aspect ratio of about 5.0 or less.
  • both the converter and the electric power can be shelfd.
  • the high coal mine that has been difficult in this way is made into a slab by rolling ingots for one minute or continuous. Slabs are usually heated and then hot rolled. In the case of a slab made of steel, it may be applied as it is or as it is heat-retained for the purpose of suppressing the temperature drop and rolled for the first time. In addition, when the slab is heated and hot-rolled, the slab temperature should be 1280 ° C or less to avoid deterioration of the surface state due to the scale.
  • the hot rolling can be performed by omitting the rolling and only rolling.
  • the plate In order to ensure the finish, it is also possible to heat the plate with a heating means such as a sheet bar heater during hot rolling.
  • the coil can be kept warm by means such as a slow cooling cover after winding, in order to promote shaping or to reduce hardness. 3 ⁇ 4J?
  • the heat wrapping plate is not particularly limited as long as the production of the present invention can be maintained, but a heat of 1.0 to 10. ⁇ is particularly preferable.
  • the heat ⁇ fiber can be done either in a box or, ⁇ . After dredging, temper rolling is performed as necessary. Since this temper rolling does not affect the i3 ⁇ 4AtL property, there are no particular restrictions on the conditions.
  • the heat ⁇ produced by the method of the upper bowl invention is a heat summary that has been subjected to heat denaturation, and as described above, the average aspect ratio is about 5.0 or less. This is a hot plate with carbides.
  • the thermal steel plate of the present application has a ferrite grain size of 5.0 zm or less.
  • Ferrite grain size has an effect on bending after rolling, and when the ferrite grain size exceeds 5.0 / zm, many Tsuruta carbides are ejected into the ferrite grains, In Loe, fine voids generated at the interface between the carbide and the parent phase (ferrite) are connected in the bending process and cracks occur.
  • the ferrite grain size is set to 5.0 z ra or less, the fine carbides in the ferrite grains are reduced, and the Hengda void generated in the! Since it becomes difficult to be connected in the bending after the bending, it is possible to suppress cracking.
  • the area ratio power of ferrite grains with an aspect ratio of 4.0 or more is 5% 3 ⁇ 4 under the heat of ⁇ .
  • the ferrite grain shape affects the bending characteristics after the erosion, and if the ferrite grain has an aspect ratio of 4.0 or more, the aspect ratio is 40 or more.
  • Such an aspect ratio of 40 or more If the area ratio of ferritic grains exceeds 15%, cracks will occur in the bending process starting from a crack at the pulling S3 ⁇ 4D.
  • the area ratio of ferrite grains with such an aspect ratio of 40 or more By making it 15% or less, it is possible to suppress cracking by bending after the pulling opening, more preferably, the area ratio of ferrite grains having an aspect ratio of 40 or more is 10% 3 ⁇ 4 or less. It is.
  • o ⁇ 1 to 10 are examples of the present invention
  • ⁇ . 11 to 20 are comparative examples.
  • the aspect ratio and area ratio of ferrite port and ferrite grain were measured by the following methods. In addition, the following method was applied to the bending after 11 hours of working.
  • the ferrite grain size is an average value of the grain size obtained by approximating the ferrite grain to a circle by image interpretation.
  • the pect ratio is the average value of (ellipse major axis) / (ellipse minor axis) obtained by ellipsoidal approximation of ferrite grains from the image ⁇ .
  • the image of the micro yarn is observed at double magnification, and the image of the ferrite particle size and the ferrite particle size are determined by image folding using the “Image Pro PI us ver.4 0” ( ⁇ ) software of Media Cybernetics.
  • the spectrum ratio was determined. Furthermore, an area ratio of 40 or more in aspect ratio is obtained for each ferrite grain, and this is divided by the total area of the field of view to obtain an area ratio for each field of view. -0 or more ferrite grain area ratio.
  • Examples No. 1 to 10 which are examples of the present invention, have a ferrite grain size of 5.0 / zm or less, and the area ratio of ferrite grains having a force and a aspect ratio of 40 or more is 15%.
  • Tsutsu excellent in bending 14 after working 11e.
  • the average aspect ratio of the carbide was 5.0 or less, and the carbide was spheroidized.
  • Figure 1 shows the percentage of ferrite grains with an aspect ratio of 40 or more in ferrite with a ferrite of 5 or less.
  • the ferrite grain size is set to 5.0 / xm or less and the area ratio of ferrite grains having a force-spect ratio of 4_0 or more is reduced by 15% 3 ⁇ 4 It can be seen that excellent bending characteristics after pulling can be obtained.
  • the steel E shown in Table 1 was made into a slab and then heated to 1230 ° C. Hot rolling and heat fibering were performed under the conditions shown in Table 4, and ⁇ o.21-37 in ⁇ .5 was applied. Note that the fiber was made in a nitriding atmosphere (03 ⁇ 4 atmosphere ⁇ ). For the obtained heat ⁇ , the aspect ratio and area ratio of ferrite and ferrite grains were measured by the same method as i, and the bending characteristics after the pulling were examined. In addition, as in Example 1, the effect of carbide masculinization was checked.
  • the ratio of ferrite grains having an aspect ratio of 40 or more can be reduced by 1 «.
  • the average aspect ratio of the carbides is 5.0 or less, and it is shown that the carbides are shaped.
  • E ⁇ I copper whose extinction is within the scope of the present invention is excellent in bending properties after tensile processing, including G and I steels, which include iron and silicon other than the ingredients. Show.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Disclosed is a high carbon hot-rolled steel sheet showing excellent flexural properties after being stretched. Also disclosed is a method for producing the high carbon hot-rolled steel sheet. The method for producing the high carbon hot-rolled steel sheet comprises the steps of: hot-rolling a steel comprising the following components (by mass): C: 0.2-0.7%, Si: 2% or less, Mn: 2% or less, P: 0.03% or less, S: 0.03% or less, Sol.Al: 0.01% or less and N: 0.01% or less at a finishing temperature which is equal to or higher than a temperature lower by 20°C than the Ar3 transformation point to form a hot-rolled steel sheet; cooling the hot-rolled steel sheet to a temperature of 650°C or below at a cooling rate of not less than 60°C/sec and less than 120°C/sec; winding-up the cooled hot-rolled steel sheet at a winding temperature of 600°C or lower; and annealing the wound hot-rolled steel sheet at an annealing temperature of equal to or higher than 640°C and equal to or lower than the Ac1 transformation temperature.

Description

明細書 高炭素熱 およびその ^^法 技術分野  Description High carbon heat and its ^^ method
本発明は、 高炭素熱«3¾、 特に加工後の曲げ ·に優れた高炭素熱^^およびそ の Mit^法に関する。 背景鎌  The present invention relates to a high carbon heat 3¾, particularly a high carbon heat excellent in bending after processing, and the Mit method. Background sickle
工具あるいは自動車部品 (ギア、 ミッション)等に麵される高炭素纖は、 種々の複 雑な形状に加工されるため優れた加工性がユーザーから求められる。 一方、 近年、 部品 製造コスト の要求が強くなり、 加工工程の省 B&^加工方法の変更カ行われている。 例えば、 非特許文献 1に記載されているように、 高炭^ ¾を用いた自動 系部品 の加工擴として、 增肉膨を可能にし、 大幅なェ ¾^を翔した繊加ェ謹が開 発され、 一部実用化されている。 それとともに、 高炭素麵には、 引張り、 絞り、 張出 し、 曲げ、 穴広げなどの加工様式を複雖み合; ϊ ¾:ても問題なく加工ができることが要 請されている。 特に、 引働!]ェを施した後に曲げ加工を施すと曲げ部に割れが発生する が多いため、優れた引動!]ェ後の曲げ 14が望まれている。  High carbon steel used for tools or automobile parts (gears, missions), etc. is processed into various complex shapes, and therefore excellent workability is required by users. On the other hand, in recent years, the demand for component manufacturing costs has increased, and B & ^ processing methods have been changed to save processing steps. For example, as described in Non-Patent Document 1, as a processing rod for automatic parts using high charcoal ^ ¾, it is possible to increase the thickness and to open a fiber processing chamber that has drastically increased ¾ ^. Has been put into practical use. At the same time, high-carbon steel is required to be able to be processed without any problems even if it combines multiple processing modes such as pulling, drawing, stretching, bending, and hole expansion. In particular, since bending often occurs after bending after applying traction!], Bending 14 after excellent traction!] Is desired.
これまで、 高炭素 の加工性を向上させるために、 レヽくつかの技術が検討されてい る。 例えば、 特許文献 1には、 所定の化学成分の高炭麵を熱間圧延し、 脱スケールを 行った後、 95容 m ^上の水素雰囲気中で、 ィ匕学成分で規定された加熱 ^熱時間 で,後、 100°C/hr以下の冷 ¾1 ^で冷却して、 軟質で、 «の均一性や加工性に優 れた高炭麵帯を製造する方法が験されている。 また、 特許文献 2には、 (ACl変態点 +30 )以上の仕上 で圧延された を 10〜100d、の ί^ίΡ ^で 20〜500Όの? まで冷却し、 l〜10 ¾¾¾f後、 500〜(^変態点 +30で)の温舰に再加熱して卷取り.、 必 要に応じて 650〜 (ACl変態点 +30 )で 1時間以上均熱することにより加工性の良好な高 炭素薄謹を製造する方法が験されている。 さらに、 特許文献 3には、 Cを 0.2〜0. 7 質量 %含有する鋼を、 仕上温度 (Ar3変態点- 20°C)以上で熱間圧延した後、 冷 ¾BS度 120°C /秒 かつ i^i ff止 650°C以下で を行レヽ、 次レ、で卷取 a¾ βΟΟ 以下で卷取り、
Figure imgf000004_0001
ことにより、 伸びフランジ性に優れた高 炭素熱® ^を^ する方法が提案されてレ、る。
To date, several techniques have been studied to improve the processability of high carbon. For example, in Patent Document 1, after hot rolling a high-carbon coal of a predetermined chemical composition, descaling, heating in a hydrogen atmosphere above 95 volume m ^ specified by the chemical composition ^ A method for producing a soft, high-coal zone with excellent uniformity and workability by cooling at a cooling rate of 1 ° C or less at a temperature of 100 ° C / hr or less is being tested. Further, Patent Document 2, was cooled 10~100D, until? Of ί ^ ίΡ ^ in the 20~500Ό was rolled at finishing above (A Cl transformation point + 30), after l~10 ¾¾¾f, 500 ~ reheated in warm舰of (^ in transformation point + 30)卷取Ri., 650 as needed (a Cl transformation point + 30) in good workability by soaking 1 hour or more A method of producing high carbon flakes is being tested. Further, in Patent Document 3, a steel containing 0.2 to 0.7% by mass of C is hot-rolled at a finishing temperature (Ar 3 transformation point−20 ° C.) or higher, and then cooled to a BS degree of 120 ° C./second. And i ^ i ff stop at 650 ° C or below
Figure imgf000004_0001
As a result, a method for producing high carbon heat® with excellent stretch flangeability has been proposed.
非特許文献 1 : Journal of the JSTP, 44, 2003, p.409-413  Non-Patent Document 1: Journal of the JSTP, 44, 2003, p.409-413
特許文献 1 :特開平 9~157758号公報 '  Patent Document 1: JP-A-9-157758
特許文献 2 :特開平 5~9588号公報  Patent Document 2: JP-A-5-9588
特許文献 3 :特開 2003- 13145号公報 発明の開示  Patent Document 3: Japanese Patent Laid-Open No. 2003-13145 Disclosure of Invention
しかしながら、 これらの従雄術に言 β¾の高炭素熱涎謹は、 引張りや 7¾£げなどの 単一の加工様式で加工した時の特性には優れているが、 引張加工後に曲げ加工を施すな ど複数の加工様式を組み合; ^には、 割れが発生するなどの問題があつた。  However, the high carbon hot-spring of β¾ in these submissive techniques is superior in properties when processed in a single processing mode such as tension or 7¾, but bends after tensile processing. Combining multiple processing modes; ^ had problems such as cracking.
本発明は、 引張加工後の曲げ特性に優れた高炭素熱^^およびその製 i *"法を提供 することを目的とする。  An object of the present invention is to provide a high carbon heat exciter having excellent bending properties after tensile processing and an i * "method thereof.
本発明者らは、 高炭素熱^^の引働 Hェ後の曲げ特性について を進めた結 果、 鋼の Sol. A1量、 熱間圧延後の冷却条件、 卷取温度、 および焼鈍温度を適切に制御 すること力 S極めて重要であることを見出し^ そして、 後 る測定法で求めたフェラ ィト粒径を 5.0 /zm以下にし、 力っァスぺクト比が 0以上のフェライト粒の面積率を 1 TO下に制御することにより、 優れた引働ロェ後の曲げ特性が得られることを見出した。 本発明は、 以上の知見に基づいてなされたものであり、 質量 34で、 C:0.2-0. 71 Si:2% 以下、 ¾fo:2%以下、 P:0.03%以下、 S:0.0«下、 Sol. A1: 0.01%以下、 N:0. 01%以下を含有す る の鋼を、 (Ar3変態点 - 20°C)以上の仕上 で熱間圧延して熱^^板とする工程と、 ΙίίΙΕ熱^板を、 60で/秒以上 120°C/秒 満の冷却 で 650°C以下の まで冷却す る工程と、 tilt己?^ *後の熱^^を、 600 以下の卷取 で卷取る工程と、 ΙίΠ5 取 り後の熱^^を、 64tfC以上 ACl変態点以下の纖 で纖する工程と、 を有する高 炭素熱^^の製 i *法を«する。 As a result of studying the bending characteristics after high carbon heat ^^, the inventors have determined the amount of Sol. A1 in the steel, the cooling conditions after hot rolling, the cutting temperature, and the annealing temperature. The ability to control properly S has been found to be extremely important ^ and the ferrite grain size obtained by the later measurement method should be 5.0 / zm or less, and the ferrite grains with a force aspect ratio of 0 or more It was found that by controlling the area ratio below 1 TO, it was possible to obtain excellent bending characteristics after pulling. The present invention has been made on the basis of the above findings, and has a mass of 34, C: 0.2-0.71 Si: 2% or less, ¾fo: 2% or less, P: 0.03% or less, S: 0.0 , Sol. A1: A process of hot rolling steel with a content of 0.01% or less and N: 0.01% or less to a finish of (Ar 3 transformation point-20 ° C) or more to form a hot plate The process of cooling the heat plate to 60 ° C / second or more and 120 ° C / second to 650 ° C or less and the heat after the tilt itself and卷取Ru step by preparative, heat ^^ after Ri preparative IiP5, to «a step of纖by a Cl transformation point of纖above 64TfC, the manufacturing i * law high carbon hot ^^ with.
本発明の方法では、 ΙίίΙΚ^する工程において、 熱^ を、 80Ό /秒以上 120°C/秒 未満の糊¾ ^で 600°C以下の まで糊し、 力つ ΙΙϊΐΕ^取る工程にぉレ、て、 550°C 以下の で卷取るようにすることが好ましレ、。  In the method of the present invention, in the step of ΙίίΙΚ, heat is glued to 600 ° C or less with a paste of 80 Ό / sec or more and less than 120 ° C / sec. It ’s better to pick it up below 550 ° C.
本発明は、 また、 诞 状化^ ίである高炭素 诞鋼板であって、 質量 で、 CO. 2 The present invention also relates to a high-carbon steel sheet that is formed into a cocoon and has a mass of CO. 2
〜0.7%、 Si:2%¾下、 ¾fci:2 ¾TF、 P:0. 03%¾下、 S:0.0«下、 Sol. A1:0.01%¾下、 N:0.01% 以下を舍有する糸!^を有し、 フェライト粒径が 5· 0Mm以下であり、 力 ^つアスペクト比 が 4. 0以上のフェライト粒の面積率が 15%¾下である、 高炭素熱^ ^板を«する。 ここで、 フェライト,とは、 画 WWによりフェライト粒を円と近似して求めた粒 径の平均値であり、 まだ、 ァスぺクト比とは、 画^ によりフェライト粒を楕円近似 して求めた (楕円の長軸)/ (楕円の短軸)の平均値である。 具体的には、 鋼板の圧延方向 に ラな «1¥断面を研磨し、 娜の 1/4の位置をナイタール液 (硝^エタノール)で腐 食した後、 ¾S型電子顕^^により倍率 1500倍でミク口糸職の観察を行 ヽ、 Media Cybe rneticsネ環の画^?^ソフト "Image Pro Plus ver. 0" (Bl)を使用して画^^ fによ りフヱライト,、 フェライ卜粒のァスぺクト比を求めた。 さらに、 各々のフェライト 粒に対してアスペクト比 40以上の面積率を求め、 これを視野の全 で除して、 視野 毎の面積率を求め、 50視野の平:^直をアスペクト比が 40以上のフェライト粒の面積 率とした。 ' ~ 0.7%, Si: 2% ¾, ¾fci: 2 ¾TF, P: 0.03% ¾, S: 0.0 «, Sol. A1: 0.01% ¾, N: 0.01% Has a thread! ^ To舍有the following ferrite grain size is not less less 5 · 0 M m, the force ^ one aspect ratio 4.0 or more of ferrite grains area ratio is under 15% ¾, high carbon Heat ^^ Here, ferrite is the average value of the particle diameters obtained by approximating the ferrite grains to circles by image WW, and the aspect ratio is still obtained by elliptically approximating the ferrite grains by image ^. It is the average value of (ellipse long axis) / (ellipse short axis). Specifically, after polishing a rough «1 $ cross section in the rolling direction of the steel plate, and corroding 1/4 of the heel with nital liquid (glass ^ ethanol), ¾ S-type electron microscope ^^ Observe the Miku mouth knives at double magnification, using Media Cybrnetics image ^? ^ Software "Image Pro Plus ver. 0" (Bl) The aspect ratio of the grains was determined. Furthermore, the area ratio of 40 or more aspect ratio is obtained for each ferrite grain, and this is divided by the whole field of view to obtain the area ratio of each field of view. Of ferrite grains. '
己ァスぺクト比が 40以上のフェライト粒の面積率が 下であることがより好 ましい。 なお、 本発明においては、 上記鋼の糸诚に加えて、 次の含有量の範囲の B、 Cr、 Ni、 o、 Cu、 Ti、 b、 W、 V、 Zrのうちから選ばれた少なくとも 1種を含有させるこ とも可能である。  The area ratio of ferrite grains having a self-spect ratio of 40 or more is more preferable. In addition, in the present invention, in addition to the above-described steel thread reel, at least one selected from B, Cr, Ni, o, Cu, Ti, b, W, V, and Zr in the following content ranges: It is also possible to include seeds.
B:0.005質量 y。以下、 Cr:3. 5質量%以下、 Ni:3. 5質量 %以下、 Mo:0. 7質量 %以下、 Cu:0. 1質 *%以下、 Ti:0. 1質量%以下、 b:0. 1質量 %以下、 W、 V、 Zr:合計で 0. 1質量 下。  B: 0.005 mass y. Cr: 3.5 mass% or less, Ni: 3.5 mass% or less, Mo: 0.7 mass% or less, Cu: 0.1 quality *% or less, Ti: 0.1 mass% or less, b: 0.1 mass% or less, W, V, Zr: 0.1 mass in total.
本発明により、 引張加工などの加工を施した後でも曲げ特性に優れる高炭素熱^ ¾ を製造できるようになった。 図面の簡単な説明  According to the present invention, it is possible to produce a high carbon heat flux that is excellent in bending properties even after being subjected to processing such as tensile processing. Brief Description of Drawings
図 1は、 ァスぺクト比が 40以上のフェライト粒の面積率と引 ェ後の曲げ 14と の関係を示す図である。 発明を,するための最良の形態  FIG. 1 is a diagram showing the relationship between the area ratio of ferrite grains having an aspect ratio of 40 or more and the bending 14 after pulling. Best Mode for Invention
以下に、 本発明である高炭^ ®«およびその 法について詳細に説明する。 なお、 成分の含有量の単位である 「%」 ほ特に断らない限り 「質 *%」 を意味するものと する。  In the following, the high-carbon coal «which is the present invention and its method will be described in detail. Unless otherwise specified, “%”, which is a unit of component content, means “quality *%”.
鋼の糸城 C量: Cは炭化物を形成し、 !¾Λ後の を付与する重要な元素である。 C量が 0.2% 未満では、 後に «« 部品としての十分な弓娘が得られない。 一方、 C量が 0. 7%を超えると、 たとえフェライト粒径が 5.0 μπι以下であり、 力っァスぺクト比が 0 以上のフェライト粒の面積率が 19½¾下であっても、 十分な引働!]ェ後の曲げ特性が得 られない。 また、 熱間圧延後の硬度が著しく高くなり、 鋼板が脆くなるため取扱いが不 便となるばかりカゝ、 j½A後の,構 i ffl部品としての弓 ¾も する。 したがって、 C 量は 0. 2〜0. 7%に規定する。 なお、 !^A l^の硬度をより重視する は、 C量は O. S% 超えに、 また、 加工性をより SISする は、 C量は 0. 5%¾下とすること力好ましい。 Steel castle C amount: C forms carbides! It is an important element that gives after ¾Λ. If the amount of C is less than 0.2%, a sufficient bow daughter as a part will not be obtained later. On the other hand, if the amount of C exceeds 0.7%, even if the ferrite grain size is 5.0 μπι or less and the area ratio of ferrite grains having a force-spect ratio of 0 or more is less than 19½¾, sufficient Bending properties after [working!] Can not be obtained. In addition, the hardness after hot rolling becomes remarkably high and the steel sheet becomes brittle, so that handling is inconvenient, and a bow as a structural iffl part after j½A is also provided. Therefore, the amount of C is specified as 0.2 to 0.7%. In addition,! To place more emphasis on the hardness of ^ A l ^, it is preferable that the C content exceeds O. S%, and that the C content is 0.5% ¾ or less in order to improve the workability.
Si量: Siは炭化物を黒鉛化し、 j½A性を阻害する傾向があるので、 その量は 2¾以下、 好ましくは 0.5%以下に規定する。  Si amount: Since Si tends to graphitize carbides and inhibit j½A property, the amount is specified to be 2¾ or less, preferably 0.5% or less.
Mn量: Mnを; ii¾に含有させると延性の低下を引き起こす傾向があるので、 その量は 2%以下、 好ましくは 1%以下に規定する。  Mn content: When Mn is contained in ii¾, the ductility tends to be lowered. Therefore, the amount is specified to be 2% or less, preferably 1% or less.
P量: Pを■に含有させると伸ぴフランジ性などの延性が低下し、 また割れが発生 し衬くなるので、 その含有量は 0.0«下、 好ましくは 0.02%¾下に規定する。  P content: When P is contained in ■, ductility such as stretch flangeability is reduced, and cracks are generated and become fragile. Therefore, the content is specified to be 0.0 «lower, preferably 0.02% ¾ lower.
S i: Sを■に含有させると、 Pと同様、 伸びフランジ性などの延性が低下し、 ま た割れが発生 L^tくなるので、 その含有量は 0.0«下、 好ましくは 0. 下に規 定する。 .  S i: When S is included in ■, as with P, ductility such as stretch flangeability is reduced, and cracks are generated L ^ t, so its content is 0.0 «lower, preferably 0. Specified. .
Sol. M量: SoL Alは本発明における最も重要な元素である。 すなわち、 Sol. Al量が 0. 01%を超えると、 比較的^ ffiで非酸化性雰囲気として多用されている窒素を用い、 窒素 雰囲気中で熱^^を するとき,表層に A1Nが形成され、 鋼板表層力硬化して引 働 11ェ後の曲げ 14を著しく低下させることを発明者ら ¾ffたに知見した。 したがって、 Sol. A1量は 0.01%以下に規定する。  Sol. M amount: SoL Al is the most important element in the present invention. That is, when the amount of Sol. Al exceeds 0.01%, when nitrogen is used as a relatively non-oxidizing atmosphere with relatively high efficiency, A1N is formed on the surface layer when heat is generated in a nitrogen atmosphere. The inventors of the present invention have found that the bending force 14 after working 11 hours is markedly reduced by the surface hardening of the steel sheet and significantly decreases. Therefore, the amount of Sol. A1 is specified to be 0.01% or less.
N量: Nを »jに含有させると延性が低下するので、 その量は 0· 01%¾下、 好ましくは 0. 下に する。  N amount: When N is contained in »j, the ductility is lowered, so the amount is 0 · 01% ¾ lower, preferably 0. lower.
ここで、 以上の各元素を所定量以下、 例えば 0.0001%未満に低減するにはコスト増を 招くので、 α 0001似上^含有させることが好ましレ、。  Here, reducing each of the above elements to a predetermined amount or less, for example, less than 0.0001%, incurs an increase in cost.
は Feおよび不可避的不純物とするが、 さらに、 例えば、 i½A b性の向上ゃ艱 し軟化抵抗の向上を目的として、 通常添卩される範囲で B、 Cr、 Ni、 Mo、 Cu、 Ti、 Nb、 W、 Fe and unavoidable impurities, but for example, B, Cr, Ni, Mo, Cu, Ti, Nb within the range usually added for the purpose of improving i½A b properties and softening resistance. , W,
V、 Zr等の少なくとも一つの元素を添卩しても本発明の効果が損なわれることはない。 具体的には、 これらの元素は、 Β:0.005%以下、 Cr:3. 5%以下、 Ni:3. 5%以下、 Mo :0. 7%以下、 01:0. 1似下、 Ti:0. 1%¾下、 Nb:ai似下、 W、 V、 Zr:合計で 0. 1似下含有させることが できる。 なお、 上記目的のためには、 Β:0· 0005%以上、 Cr:0.05%以上、 Ni:0.05%以上、 Mo: 0. 05%¾上、 Cu:0.01%¾上、 Ti: 0.01似上、 Nb: 0.01似上、 W、 V、 Zr:合計で 0.01 ¾上含 有させることが好ましい。 また、 製 itiii程で Sn、 Pb等の元素が不純物として^ Λして も本発明の効果には影響を及ぼさない。 Even if at least one element such as V or Zr is added, the effect of the present invention is not impaired. Specifically, these elements are: Β: 0.005% or less, Cr: 3.5% or less, Ni: 3.5% or less, Mo: 0.7% or less, 01: 0. 1 lower, Ti: 0. 1% lower, Nb: ai lower, W, V, Zr: 0.1 total lower. For the above purposes, Β: 0 · 0005% or more, Cr: 0.05% or more, Ni: 0.05% or more, Mo: 0.05% ¾, Cu: 0.01% ¾, Ti: 0.01 or more Nb: 0.01, and W, V, Zr: It is preferable to contain 0.01 ¾ in total. Further, even if an element such as Sn or Pb is used as an impurity as in the case of itiii, the effect of the present invention is not affected.
製 牛 Cow
熱間圧延の仕上 仕上 が (Ar3変態点- 20°C)未満では、 部分的にフェライト域 で圧延され、 ■後のフェライト,が 5. 0 mを超えるため引 11ェ後の曲げ特性が 劣化する。 したがって、 熱間圧延の仕上 は (Ar3変態点- 20°C)以上とする。 なお、 Ar3 変態点は次の式 (1)から計算できるが、 実際に測定した を用いてもよい。 If the finish of the hot rolling is less than (Ar 3 transformation point-20 ° C), it will be partially rolled in the ferrite region, and the following ferrite will exceed 5.0 m. to degrade. Therefore, the hot rolling finish should be (Ar 3 transformation point-20 ° C) or higher. The Ar 3 transformation point can be calculated from the following equation (1), but actually measured may be used.
Ar3変態点 ^lO^OSX E^+ YX SiJ-SOX Bln] · · · (1) Ar 3 transformation point ^ lO ^ OSX E ^ + YX SiJ-SOX Bln] · · · (1)
ここで、 Mは元素 Mの含有量 00を表す。 なお、 含有元素に応じて、 補正項を導入して もよく、 例えば、 Cr、 Mo、 Ni力 S含有される には、 - ll X [Cr]、 +31. 5 X [Mo], -15. 2 X [Ni]といった補正項を式 (1)の右辺に加えてよい。 Here, M represents the content of the element M 00. Depending on the elements contained, correction terms may be introduced. For example, to contain Cr, Mo, Ni force S, -ll X [Cr], +31.5 X [Mo], -15 A correction term such as 2 X [Ni] may be added to the right-hand side of equation (1).
熱間圧延後の冷却条件:本発明では Sol. A1量が低く、 A1Nのピンエングによる粒成長 阻害が起こり難いにも拘わらずフェライト粒の»化を ¾ ^している。 これは、 熱間圧 延後に に冷却することで圧延中にオーステナイト粒に付与された歪が蓄積され付 くなり、 その後の,において蓄積された歪がフェライト粒の核^^サイトとして寄与 するためと推定される。 熱間圧延後の冷却 ^が 60°C/秒味満であると、 圧延中にォー ステナイト粒に付与された歪が蓄積されにくくなるため、 その後の,においてフェラ イト粒の核 サイトが減少して、 フェライト粒が成長し付くなる。 その結果、 フエ ライト粒径が 5.0 μιηを超え、 引働 Ρェ後の曲げ赚が劣化する。 一方、 が 12 0°C/秒以上の は、 後のフェライト粒径は 5. 0A m以下である力 ァスぺクト比 が 40以上のフェライト粒の面積率が 15%を超えるため、 上記と同様に引張加工後の曲 げ 14が劣化する。 これは、 冷却 ¾gが 120°C/秒以上になるとオーステナイト粒に圧 延中に付与された歪力 S圧延後に過剰に するため、 その後の におレ、て等軸のフエ ライト粒が成長することが困難になるためと推定される。 以上のことから、 熱間圧延後 の冷却 は 60°C/涉以上 120°C/秒 満とする。 ffil^の上限は 115°C/秒とすること が好ましい。 こうした ¾ ^によって? する の終点 、 すなわち冷却停止 が 6 50°Cより高いと、 熱^¾を巻取るまでの冷却中に才ーステナイト中に蓄積された歪が 解放される。 その結果、 纖後のフェライト粒径が 5. 0/z mを超え、 引動!]ェ後の曲げ 特性が劣化する。 したがって、 冷 止温度は 650°C以下、 好ましくは 600°C以下とす る。 なお、 の測定精度上の問題があるので、 冷 ¾1 止 は 500°C以上とすること が好ましい。 Cooling conditions after hot rolling: In the present invention, the amount of Sol. A1 is low, and although the grain growth is hardly inhibited by the pinning of A1N, ferrite grains are transformed. This is because the strain imparted to the austenite grains during rolling is accumulated by cooling after the hot rolling, and the strain accumulated in the subsequent stage contributes as the core of the ferrite grains. It is estimated to be. If the cooling ^ after hot rolling is 60 ° C / second, the strain applied to the austenite grains during rolling is less likely to accumulate. Then, the ferrite grains grow and stick. As a result, the ferrite grain size exceeds 5.0 μιη, and the bending habit after the pulling is deteriorated. On the other hand, when the temperature is 120 ° C / sec or more, the area ratio of ferrite grains with a force aspect ratio of 40 or more exceeds 15%. Similarly, the bend 14 after tensile processing deteriorates. This is because when the cooling ¾g is 120 ° C / sec or more, the strain applied to the austenite grains becomes excessive after the rolling, so that the equiaxed ferrite grains grow after that. Is estimated to be difficult. Based on the above, cooling after hot rolling should be 60 ° C / 涉 or more and 120 ° C / second or less. The upper limit of ffil ^ is preferably 115 ° C / sec. If the end point of such ¾ ^, ie, the cooling stop is higher than 650 ° C, the strain accumulated in the austenite will be released during the cooling until the heat is wound. As a result, the ferrite grain size after 超 え exceeds 5.0 / zm, and the bending properties after traction!] Deteriorate. Therefore, the cooling temperature is 650 ° C or less, preferably 600 ° C or less. In addition, since there is a problem in the measurement accuracy, it is preferable that the cooling rate is 500 ° C. or higher.
止 に到達した後の御は、 特に規定する必要がなく、 自然冷却してもよい し、 力を弱めて強制冷却を纖してもよい。 赚の均 H4などの 、からは復熱を 抑制する ¾gに強制冷却することが好ましレヽ。  After reaching the stop, there is no need to stipulate, and natural cooling may be used, or forced cooling may be encouraged by reducing the power. It is preferable to forcibly cool to ¾g to suppress recuperation from the average H4.
卷取 :冷却後の熱^ β Κは卷取られるが、 そのとき、 卷取 が 600°Cを超える と熱間圧延時にオーステナイトに された歪力 S解放されるため、 その後の,後のフ エライト粒径が 5. 0μ πιを超え、 引働 DIE後の曲げ難が劣化する。 したがって、 卷取 は 600°C以下とする。 なお、 t&t己急冷の効果を十分に得るため卷取 は Ιϋϊ己冷却 停止 よりも低温とすることが好ましい。 なお、 熱^^の形状が劣化するため、 卷 取 は 200°C以上とすることが好ましく、 350°C以上とすることがより好ましい。 ァスぺクト比が 40以上のフェライト粒の 率を 1TO下にするとさらに曲げ特性 が向上するが、 それには、 ί^ί «を 80°C/秒以上 120 *満とし、 ί ^^止 を 600°C以下とし、 力ゝっ巻取 を 550°C以下とする必要がある。  卷取 : Cooling after heat is removed, but if the tempering exceeds 600 ° C, the strain force made austenite at the time of hot rolling is released. Elite particle size exceeds 5.0μ πι, and bending difficulty after traction DIE deteriorates. Therefore, the tapping shall be 600 ° C or less. In order to obtain a sufficient t & t self-cooling effect, it is preferable to set the temperature at a lower temperature than when the self-cooling is stopped. Note that, since the shape of the heat ^^ deteriorates, the scraping is preferably 200 ° C or higher, more preferably 350 ° C or higher. When the ratio of ferrite grains with an aspect ratio of 40 or more is reduced to 1TO, the bending characteristics are further improved. To achieve this, ί ^ ί «is 80 ° C / sec. It is necessary to keep the temperature below 600 ° C and force winding up to 550 ° C.
スケール除去:卷取り後の熱涎赚は、 通常、 次の を行う前にスケール 除去される。 スケ一ル除去手段は、 特に制約はないが、 通常の方法で^ ¾することが好 ましい。 '  Descaling: After removal of the hot cake, the scale is usually descaled before the next. The scale removal means is not particularly limited, but it is preferable to use the usual method. '
熱^^の魏 :赚などによりスケーノ 去した後の熱纏板は、 炭化物の球 状化を図るために球状化 として^ 力 S施される。 そのとき、 纖 が 6 0°C未満 ではフェライト¾ ^長が不十分となり、 ァスぺクト比が 4 0以上のフェライト粒の面積 率が 15%を超えて、 引變形後の曲げ特性が劣化する。 一方、 纖 ¾が ACl変態点を 超えるとオーステナイト化が部分的に進行し、 冷却中にパーライトが生成するため、 引 働卩ェ後の曲げ ^劣化する。 したがって、 熱 板の ,S ^は 6 0°C以上 ACl変 態点以下とする。 より優れた伸ぴフランジ性を得るために、 «鋼板の, を 68 0°C以上とすることが好ましい。 なお、 Ac/変態点は次の式 (2)から計算できるが、 実際 に測定した を用いてもよレ、。 Ac!変態点 =754 83-32. 25 X [C]+23. 32 X [Si]- 17. 76 X [Mn] ' · · · (2) Heat ^^ ^: The heat wrapping board after being removed by scissors or the like is subjected to a force S as spheroidization in order to spheroidize the carbide. At that time, if 纖 is less than 60 ° C, the ferrite core length becomes insufficient, the area ratio of ferrite grains with an aspect ratio of 40 or more exceeds 15%, and the bending characteristics after drawing are deteriorated. To do. On the other hand,纖¾ is austenitization partially proceeds exceeds A Cl transformation point, since pearlite is formed during cooling, bending after pulling働卩E ^ deteriorates. Therefore, S ^ of the hot plate is set to 60 ° C or more and ACl transformation point or less. In order to obtain better stretch flangeability, it is preferable that the thickness of the steel sheet is 680 ° C or higher. The Ac / transformation point can be calculated from the following equation (2), but actually measured values can also be used. Ac! Transformation point = 754 83-32. 25 X [C] +23. 32 X [Si]-17. 76 X [Mn] '· · · (2)
ここで、 [M]は元素 Mの含有量 (質量 を表す。 なお、 含有元素に応じて、 補正項を導入 してもよく、 例えば、 Crや Mo、 Vを含有する^^には、 +17. 3 X [Cr]、 +4 51 X [Mo] , +15. 62 X [V]とレ、つた補正項を式 (2)の右辺に加えてよレ、。 Here, [M] represents the content (mass) of the element M. Depending on the contained elements, correction terms may be introduced. For example, ^^ containing Cr, Mo, and V 17. Add 3 X [Cr], +4 51 X [Mo], +15. 62 X [V] and the corresponding correction term to the right side of Equation (2).
熱 の^時間は 8〜80時間 ¾g力 S好ましレ、。 得られた纖中の炭化物は 化 レ、 平均のァスぺクト比で約 5. 0以下となる の約 1/4の位置で測定した働。  Heat time is 8 ~ 80 hours ¾g force S preferred. The obtained carbide in the soot was measured at about 1/4 position of the chemical, average aspect ratio of about 5.0 or less.
本発明の高炭麵を溶製するには、 転炉、 電 どちらも棚可能である。 また、 こ うして難された高炭麵は、 造塊一分赃延または連^^によりスラブとされる。 スラブは、 通常、 加熱された後、 熱間圧延される。 なお、 で されたスラブ の場合は、 そのままあるいは温度低下を抑制する目的で保熱して、 圧延する直 ¾1延を 適用してもよい。 また、 スラブを加熱して熱間圧延する は、 スケールによる表面状 態の劣化を避けるためにスラブ加^¾を 1280°C以下とすること力 S好ましレヽ。 熱間圧 ' 延は、 赃延を省略して仕 J£延だけで行うこともできる。 なお、 仕上 を確保する ため、 熱間圧延中にシートバーヒータ等の加熱手段により概贿の加熱を行ってもよ レ、。 また、 状化促進あるいは硬度赚のため、 巻取り後にコイルを徐冷カバー等の手 段で保温してもよレ、。 熱纏板の ¾J?は、 本発明の製麟件が維持できる限りにおいて 特に制限はなレ、が、 1. 0-10. Οπιπの熱 が 特に好適である。  In order to melt the high coal slag of the present invention, both the converter and the electric power can be shelfd. In addition, the high coal mine that has been difficult in this way is made into a slab by rolling ingots for one minute or continuous. Slabs are usually heated and then hot rolled. In the case of a slab made of steel, it may be applied as it is or as it is heat-retained for the purpose of suppressing the temperature drop and rolled for the first time. In addition, when the slab is heated and hot-rolled, the slab temperature should be 1280 ° C or less to avoid deterioration of the surface state due to the scale. The hot rolling can be performed by omitting the rolling and only rolling. In order to ensure the finish, it is also possible to heat the plate with a heating means such as a sheet bar heater during hot rolling. In addition, the coil can be kept warm by means such as a slow cooling cover after winding, in order to promote shaping or to reduce hardness. ¾J? Of the heat wrapping plate is not particularly limited as long as the production of the present invention can be maintained, but a heat of 1.0 to 10.πππ is particularly preferable.
熱^^の繊は、 箱纖、 ; ^いずれでも行える。 麟後は、 必要に応じて調 質圧延を行う。 この調質圧延は i¾AtL性に影響を及ぼさないことから、 その条件に対し て特に制限はない。  The heat ^^ fiber can be done either in a box or, ^. After dredging, temper rolling is performed as necessary. Since this temper rolling does not affect the i¾AtL property, there are no particular restrictions on the conditions.
上鉢発明の方法で製造された熱 ^は、 熱涎 状化難を施された熱 纏であ り、 上記したように、 平均ァスぺクト比が約 5. 0以下と、 状化された炭化物を有する 熱 板である。  The heat ^ produced by the method of the upper bowl invention is a heat summary that has been subjected to heat denaturation, and as described above, the average aspect ratio is about 5.0 or less. This is a hot plate with carbides.
また、 本願の熱 «板は、 フェライト粒径が 5. 0 z m以下である。 フェライト粒径は、 引翻 0ェ後の曲げ徹に影響を及ぼし、 フヱライト粒径が 5. 0 /z mを超えると、 フェラ ィト粒内に鶴田な炭化物が多衝出することとなり、 引働ロェで炭化物と母相 (フェラ ィト)との界面で発生した微細なボイドが、 曲げ加工において連結して割れが発生する。 フェライト粒径を 5. 0 z ra以下とすることにより、 フェライト粒内の微細な炭化物は少 なくなり、 引働 !1ェで発生した衡田なボイドが、 引働 [!ェ後の曲げにおいて連結し難く なるため、 割; M生を抑制することができる。 さらに、 : の熱^^において、 ァスぺクト比が 4.0以上のフェライト粒の面積率 力 5%¾下である。 フェライト粒の形状は、 フェライト粒径と同様に引働ロェ後の曲げ 特性に影響を及ぼし、 該フヱライト粒のァスぺクト比が 4. 0以上であると、 ァスぺクト 比が 40以上のフェライト粒と 40未満の等軸状のフェライト粒との粒界で引働 [1ェに おいて «Βな割れが発生し JH "くなる。 このようなァスぺクト比が 40以上のフェライ ト粒の面積率が 15%を超えると、 引 ¾S¾Dェでの な割れを起点として曲げ加工におい て割れが発生する。 このようなァスぺクト比が 4 0以上のフェライト粒の面積率を 15% 以下とすることにより、 引動口ェ後の曲げで割; 生を抑制することができる。 より好 ましくは、 ァスぺクト比が 40以上のフェライト粒の面積率は 10%¾下である。 Further, the thermal steel plate of the present application has a ferrite grain size of 5.0 zm or less. Ferrite grain size has an effect on bending after rolling, and when the ferrite grain size exceeds 5.0 / zm, many Tsuruta carbides are ejected into the ferrite grains, In Loe, fine voids generated at the interface between the carbide and the parent phase (ferrite) are connected in the bending process and cracks occur. By setting the ferrite grain size to 5.0 z ra or less, the fine carbides in the ferrite grains are reduced, and the Hengda void generated in the! Since it becomes difficult to be connected in the bending after the bending, it is possible to suppress cracking. Furthermore, the area ratio power of ferrite grains with an aspect ratio of 4.0 or more is 5% ¾ under the heat of ^. Like the ferrite grain size, the ferrite grain shape affects the bending characteristics after the erosion, and if the ferrite grain has an aspect ratio of 4.0 or more, the aspect ratio is 40 or more. At the grain boundary between the ferrite grains of less than 40 and the equiaxed ferrite grains, [1] «severe cracking occurs and becomes J H". Such an aspect ratio of 40 or more If the area ratio of ferritic grains exceeds 15%, cracks will occur in the bending process starting from a crack at the pulling S¾D.The area ratio of ferrite grains with such an aspect ratio of 40 or more By making it 15% or less, it is possible to suppress cracking by bending after the pulling opening, more preferably, the area ratio of ferrite grains having an aspect ratio of 40 or more is 10% ¾ or less. It is.
実施例 1 Example 1
表 1に示す化学成分を有する鋼 A〜Eおよび Zの連^ tスラブを 1250°Cに加熱し、 表 2に示す条件にて熱間圧延し、 m . 同じく表 2に示す条件にて熱诞謹の;^を 行い、 ;¾ 5. 011111の, . 1〜20を製造した。 なお、 は窒化性雰囲気 雰囲気)で 行った。  Steels A to E and Z having the chemical composition shown in Table 1 were heated to 1250 ° C, hot-rolled under the conditions shown in Table 2, and m. 1 ~ 20 of ¾ 5. 011111 was produced. Note that was performed in a nitriding atmosphere.
ここで、 , ο· 1〜10は本発明例であり、 Νο. 11〜20は比較例である。 そして、 フェライトお港、 フェライト粒のアスペクト比と面積率を以下の方法で測定した。 また、 引働 11ェ後の曲げ徹を以下の方法で籠した。  Here,, o · 1 to 10 are examples of the present invention, and Νο. 11 to 20 are comparative examples. And the aspect ratio and area ratio of ferrite port and ferrite grain were measured by the following methods. In addition, the following method was applied to the bending after 11 hours of working.
フェライト粒径、 フェライト粒のァスぺクト比と面積率:ここで、 フェライト粒径は、 画像解听によりフェライト粒を円と近似して求めた粒径の平均値であり、 また、 ァスぺ クト比とは、 画^^によりフェライト粒を楕円近似して求めた (楕円の長軸)/ (楕円の 短軸)の平均値である。 具体的には、 鋼板の圧延方向に TOな簿断面を研磨し、 W の 1/4の位置をナイタール液 (硝^エタノール)で腐食した後、 «型電子顕^ によ «9倍率 1500  Ferrite grain size, ferrite grain aspect ratio and area ratio: Here, the ferrite grain size is an average value of the grain size obtained by approximating the ferrite grain to a circle by image interpretation. The pect ratio is the average value of (ellipse major axis) / (ellipse minor axis) obtained by ellipsoidal approximation of ferrite grains from the image ^^. Specifically, after polishing the TO cross section in the rolling direction of the steel sheet and corroding 1/4 of W with nital liquid (glass ^ ethanol), «type electron microscope« 9 magnification 1500
倍でミクロ糸職の観察を行い、 Media Cyberneticsネ±¾の画^^?ソフト "Image Pro PI us ver.4 0" (ΊΜ)を使用して画像解折によりフェライト粒径、 フェライト粒のァスぺク ト比を求めた。 さらに、 各々のフェライト粒に対してアスペクト比 40以上の面積率を 求め、 これを視野の全面積で除して、 視野毎の面積率を求め、 50視野の平均値をァス ぺクト比が- 0以上のフェライト粒の面積率とした。 The image of the micro yarn is observed at double magnification, and the image of the ferrite particle size and the ferrite particle size are determined by image folding using the “Image Pro PI us ver.4 0” (ΊΜ) software of Media Cybernetics. The spectrum ratio was determined. Furthermore, an area ratio of 40 or more in aspect ratio is obtained for each ferrite grain, and this is divided by the total area of the field of view to obtain an area ratio for each field of view. -0 or more ferrite grain area ratio.
また、 銅板の圧延方向に TOな鹏断面を研磨し、 の 1/4の位置をピクラール液 Also, grind the TO cross section in the rolling direction of the copper plate and place 1/4 of
(ピクリン酸;エタノール)で腐食後、 錢電子顕赚により倍率 3000倍でミク口糸職の 観察を行い、 上記した画^? ^ソフトにて、 炭化物のァスぺクト比 (最長 径) を求めた。 そして、 各炭化物について求めたアスペクト比を平均 (個数平均)して、 平均 のアスペクト比を求め、 状ィ されていることを ¾t した。 After being corroded with (picric acid; ethanol) Observe the above picture ^? ^ Software determined the aspect ratio (longest diameter) of carbides. Then, the aspect ratios obtained for each carbide were averaged (number average) to obtain the average aspect ratio, and the results were obtained.
引張加工後の曲げ特性:圧延方向に対して直角な方向より採取した、 平行部の幅が 3 Onmの JIS 5号纖片を用レ、、 JIS Z 2241に- «した方法で引張 を行レ、、 15%の予歪 を付与した後、 JIS Z 2248に準拠した押曲げ法により曲げ を行った。 曲〖~m験での ポン^^ Dは lmnとし、 3回,を行い、 3回とも割れが発生しないものを〇、 1回割れ および 2回割れ力 S発生したものを△、 3回とも割れ力 S発生したものを Xとした。 なお、 〇の を発明例とした。  Bending characteristics after tensile processing: JIS No. 5 strips with a parallel width of 3 Onm taken from the direction perpendicular to the rolling direction were used, and tension was applied in accordance with JIS Z 2241. After applying a pre-strain of 15%, bending was performed by a press bending method in accordance with JIS Z 2248. Pong ^^ D in ~ m experiment is set to lmn, and it is performed 3 times, and the crack is not generated in all three times. The cracking force S generated was designated as X. In addition, ○ was an invention example.
結果を表 3に示す。 本発明例である »反 No. 1〜10は、 レ、ずれもフェライト粒径が 5.0 /z m以下であり、 力、っァスぺクト比が 40以上のフェライト粒の面積率が 15%¾下とな :つており、 引働 11ェ後の曲げ 14に優れている。 なお、 本発明例では、 レヽずれも炭化物 の平均のァスぺクト比が 5. 0以下であり、 状ィ t ^されて炭化物が球状化しているこ とを ?mした。  The results are shown in Table 3. Examples No. 1 to 10, which are examples of the present invention, have a ferrite grain size of 5.0 / zm or less, and the area ratio of ferrite grains having a force and a aspect ratio of 40 or more is 15%. Below: Tsutsu, excellent in bending 14 after working 11e. In the examples of the present invention, it was also confirmed that the average aspect ratio of the carbide was 5.0 or less, and the carbide was spheroidized.
図 1に、 フェライト,が 5. 以下の ^81こおけるァスぺクト比が 40以上のフ ェライト粒の麵率と引働 U1後の曲げ特性との M 、を示す。 本発明例の纖 Νο· 1〜1 0のように、 フェライト粒径を 5.0/x m以下とし、 力っァスぺクト比が 4_ 0以上のフエ ライト粒の面積率を 15%¾下にすると、 優れた引働 Πェ後の曲げ特性が得られることが わかる。 Figure 1 shows the percentage of ferrite grains with an aspect ratio of 40 or more in ferrite with a ferrite of 5 or less. When the ferrite grain size is set to 5.0 / xm or less and the area ratio of ferrite grains having a force-spect ratio of 4_0 or more is reduced by 15% ¾ It can be seen that excellent bending characteristics after pulling can be obtained.
表 1 (質量%) Table 1 (mass%)
Figure imgf000012_0001
Figure imgf000012_0001
表 2 Table 2
Figure imgf000013_0001
Figure imgf000013_0001
表 3 Table 3
Figure imgf000014_0001
Figure imgf000014_0001
難例 2 Difficult example 2
F銅 (C:0.31%、 Si:0.18%、 : 0.68%、 P:0.012 S: 0.00331 Sol. A1:0.005%、 ^0.0040%. 変態点: 785°C、 変態点' ·737°0、  F copper (C: 0.31%, Si: 0.18%,: 0.68%, P: 0.012 S: 0.00331 Sol. A1: 0.005%, ^ 0.0040%. Transformation point: 785 ° C, transformation point '737 ° 0,
G銅 (C:0.23%、 Si:0.18%、 Μη··0.7β¾、 P:0.016^ 5:0.0040 Sol. A1:0.008%、 N: 0.00281 Cr:1.2 3変態点: 785°C、 変態点 :759 )、 G copper (C: 0.23%, Si: 0.18%, Μη · 0.7β¾, P: 0.016 ^ 5: 0.0040 Sol.A1: 0.008%, N: 0.00281 Cr: 1.2 3 Transformation point: 785 ° C, Transformation point: 759),
H鋼 (C:0.32¾、 Si: 1.2%, ifa:1.5%、 P:0.025 S:0.010%、 Sol. Α1:0.006%, N: 0.00701 3変態点: 80°C、 変態点: 746°C)、  Steel H (C: 0.32¾, Si: 1.2%, ifa: 1.5%, P: 0.025 S: 0.010%, Sol. Α1: 0.006%, N: 0.00701 3 Transformation point: 80 ° C, Transformation point: 746 ° C ),
I銅 (C:0.35%、 Si:0.20%、 Mn: 0.68 P: 0.012%, S: 0.00381 Sol: A1:0.005% N:0.00331 Mo:0.17%, Cr:0.98%、 3変態点: 773°C、 変 :754°0、 および、 Copper I (C: 0.35%, Si: 0.20%, Mn: 0.68 P: 0.012%, S: 0.00381 Sol: A1: 0.005% N: 0.00331 Mo: 0.17%, Cr: 0.98%, 3 transformation points: 773 ° C , Change: 754 ° 0, and
表 1に示す E鋼を、 してスラブとした後 1230°Cに加熱し、 表 4に示す条件 にて熱間圧延および熱 の繊を行い、 娜 .5画の赚 o.21-37を i し なお、 繊は窒化性雰囲気 0¾雰囲^)で行った。 得られた熱^^に対し、 i と同様の方法で、 フェライト,、 フェライト粒のァスぺクト比と面積率を測定し、 引働ロェ後の曲げ特性を讓した。 また、 例 1と同様に、 炭化物の雄化の辭 を廳した。  The steel E shown in Table 1 was made into a slab and then heated to 1230 ° C. Hot rolling and heat fibering were performed under the conditions shown in Table 4, and 赚 o.21-37 in 娜 .5 was applied. Note that the fiber was made in a nitriding atmosphere (0¾ atmosphere ^). For the obtained heat ^, the aspect ratio and area ratio of ferrite and ferrite grains were measured by the same method as i, and the bending characteristics after the pulling were examined. In addition, as in Example 1, the effect of carbide masculinization was checked.
なお、 F銅〜 I鋼の 3変態点、 変態点は、 上記式 (1)あるいは式 (2)から求めたも のであり、 Crあるいは Moを含有する G鋼、 I銅については、 上記の補正項を用いて 求めたものである。 The three transformation points and transformation points of F copper to I steel were obtained from the above formula (1) or (2). For G steel and I copper containing Cr or Mo, the above corrections were made. It is obtained using the term.
結果を表 5に示す。 冷却 ¾ の条件を一定とした鋼板 Νο·21〜27では、 御速 度が本発明の範囲内である No.22-26の引張加工後の曲げ特性が顕著に優れているこ とがわかる。 Νο.23〜26では、 ァスぺクト比が 40以上のフェライト粒の面積率 を 10%¾下とできることがわかる。 また、 ^^¾¾¾¾をー定として調査した,1¾-28 〜33では、 ^^止 a¾、 巻取 とも本発明の範囲内である, o.30〜33の引張 加工後の曲げ が特に優れていることがわかる。 停止 を 600で以下および 卷取? を550°〇以下にした賺1¾.33は、 ァスぺクト比が 40以上のフェライト粒 の ®¾率が 1«下とできることが かる。 なお、 本発明例では、 いずれも炭化物の 平均のァスぺクト比が 5.0以下であり、 状ィ されて炭化物が 状化しているこ とを し 觸滅が本発明の範囲内である E〜I銅はレ、ずれも、 »成分以外の合^ ΰ素を添 加した G鋼および I鋼も含めて、 優れた引張加工後の曲げ特性を示す。 The results are shown in Table 5. It can be seen that in steel plates 21 to 27 in which the cooling conditions are constant, No. 22-26, whose control speed is within the range of the present invention, has remarkably superior bending characteristics after tensile processing. From Νο.23 to 26, the area ratio of ferrite grains with an aspect ratio of 40 or more can be reduced by 10% ¾. Also, ^^ ¾¾¾¾ was investigated as constant, 1¾-28 to 33 are within the scope of the present invention for both ^^ stop a¾ and winding, o. I understand that. In the case of ¾1¾.33 where the stop is 600 or less and the recovery is 550 ° or less, the ratio of ferrite grains having an aspect ratio of 40 or more can be reduced by 1 «. In all of the examples of the present invention, the average aspect ratio of the carbides is 5.0 or less, and it is shown that the carbides are shaped. E ~ I copper whose extinction is within the scope of the present invention is excellent in bending properties after tensile processing, including G and I steels, which include iron and silicon other than the ingredients. Show.
表 4 Table 4
Figure imgf000017_0001
Figure imgf000017_0001
表 5 Table 5
Figure imgf000018_0001
Figure imgf000018_0001

Claims

: ft求の範囲 : Ft range
1 . 質 で、 C:0.2〜0. 7 Si:2¾¾下、 Μη:2%¾下、 P:0.03似下、 S:0. 03%¾TF、 Sol. Al:0.01%¾下、 N:0.01%以下を含有する組成の鋼を、 (Ar3変態点- 20°C)以上の仕上 て^間圧延して熱^^とする工程と、1.Quality, C: 0.2 ~ 0.7 Si: 2¾¾, Μη: 2% ¾, P: 0.03, S: 0.03% ¾TF, Sol.Al:0.01%¾, N: 0.01 % Of steel containing less than or equal to (Ar 3 transformation point-20 ° C)
Figure imgf000019_0001
60で/秒以上 120°C/秒沬満の冷 で 650°C以下の まで冷 却する工程と、
Figure imgf000019_0001
Cooling at 60 ° C / s to 120 ° C / s and cooling to 650 ° C or less,
IS冷却後の熱涎赚を、 600°C以下の卷取 ϊ¾で巻取る工程と、  A process of winding the hot water after IS cooling at a temperature of 600 ° C or less;
m iり後の熱 ® ^板を、 6 0°C以上 ACl変態点以下の„ で焼鈍する工程と、 を有する高炭素熱^^の製 The process of annealing the heat-treated steel plate after mi is annealed at a temperature not lower than 60 ° C and not higher than the ACl transformation point.
2 . ήΐΤΐΞ する工程において、 熱 板を、 80°C/秒以上 120°C/秒 満の冷却速 度で 600°C以下の? まで し、 力つ 取る工程において、 550°C以下の温 度て 取る、 2. In the process of heat treatment, is the heating plate at a cooling rate of 80 ° C / second or more and 120 ° C / second or less and 600 ° C or less? However, in the process of taking force, take it at a temperature below 550 ° C.
請求項 1に |5¾の高炭素熱^¾の製 法。 Claim 1 A process for producing | 5¾ high carbon heat.
3 . 鋼の糸滅が、 上 |¾城にカ卩えて、 さらに下記の含有量の範囲の B、 Cr、 Ni、 Mo、 Cu、 Ti、 Nb、 W、 V、 Zrのうちから選ばれた少なくとも 1種を含有する、 請求項 1また は 2に Sttの高炭 の製 法; 3. Steel destruction was selected from B, Cr, Ni, Mo, Cu, Ti, Nb, W, V, and Zr in the following content ranges. A method for producing Stt's high charcoal according to claim 1 or 2, comprising at least one species;
質 で、 Β··0. 005%以下、 Cr:3. 5%以下、 Ni:3. 5¾以下、 Mo:0. 7%以下、 Cu:0. 1¾以下、 Ti: 0. 1%以下、 Nb:0. 1%以下、 W、 V、 Zr:合計で 0. 1 以下。 Quality: Β ... 0.005% or less, Cr: 3.5% or less, Ni: 3.5¾ or less, Mo: 0.7% or less, Cu: 0.1 or less, Ti: 0.1% or less, Nb: 0.1% or less, W, V, Zr: 0.1 or less in total.
4 . 熱 状ィ匕 ^&材である高炭素熱延鋼板であって、 4. High-temperature hot-rolled steel sheet, which is the heat state
質 4%で、 C:0.2〜0.7%、 Si:2%¾下、 Μη:¾¾下、 P:0.03%¾下、 S:0.0«下、 Sol. A 1:0.01%以下、 N:0. 01%以下を含有する組成を有し、  4%, C: 0.2-0.7%, Si: 2% ¾, Μη: ¾¾, P: 0.03% ¾, S: 0.0 «, Sol.A 1: 0.01% or less, N: 0. Having a composition containing no more than 01%,
フェライト,が 5.0/zm以下であり、 力っァスぺクト比が 4 0以上のフェライト 粒の面積率が 15似下である、  Ferrite, 5.0 / zm or less, and the area ratio of ferrite grains with a force-spect ratio of 40 or more is 15 times lower.
高炭素熱 鋼板; ' High carbon steel sheet;
ここで、 フェライト粒径とは、 画翻晰によりフェライト粒を円と近似して求めた粒 径の平雌であり、 また、 アスペクト比とは、 画^? i)fによりフェライト粒を楕円近 似して求めた (楕円の長軸)/ (楕円の短軸)の平均値である。 ' Here, the ferrite grain size is a grain obtained by approximating a ferrite grain to a circle by drawing. The aspect ratio is the average value of (ellipse major axis) / (ellipse minor axis) obtained by approximating the ferrite grains to an ellipse by image i? F. '
5 . ァスぺクト比が 40以上のフェライト粒の面積率が 下である、 5. The area ratio of ferrite grains with an aspect ratio of 40 or more is low.
請求項 4に記載の高炭素熱^ High carbon heat according to claim 4 ^
6 . 鋼の糸滅が、 上 に加えて、 さらに下記の含有量の範囲の B、 Cr、 Ni、 Mo、 Cu、 Ti、 Nb、 W、 V、 Zrのうちから選ばれた少なくとも 1種を含有する、 6. In addition to the above, at least one selected from among B, Cr, Ni, Mo, Cu, Ti, Nb, W, V, and Zr with the following content ranges is added to the above. contains,
請求項 4または 5の Vヽずれか 1項に記載の高炭素熱 板; 質 4%で、 B:0.005%以下、 Cr:3.5%以下、 Ni:3.5%以下、 Mo:0. 7以下、 Cu:0. 1%以下、  The high-carbon hot plate according to claim 4 or 5 according to claim 4, wherein the material is 4%, B: 0.005% or less, Cr: 3.5% or less, Ni: 3.5% or less, Mo: 0.7 or less, Cu: 0.1% or less,
Ti:0. 1%以下、 Nb:0. 1%以下、 W、 V、 Zr:合計で 0. 1%以下。  Ti: 0.1% or less, Nb: 0.1% or less, W, V, Zr: 0.1% or less in total.
PCT/JP2007/075341 2006-12-25 2007-12-21 High carbon hot-rolled steel sheet and method for production thereof WO2008081956A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07860538.3A EP2103697B1 (en) 2006-12-25 2007-12-21 High carbon hot-rolled steel sheet
CN2007800482110A CN101568655B (en) 2006-12-25 2007-12-21 High carbon hot-rolled steel sheet and method for production thereof
KR1020097013010A KR101107531B1 (en) 2006-12-25 2007-12-21 High carbon hot-rolled steel sheet and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-347539 2006-12-25
JP2006347539A JP4952236B2 (en) 2006-12-25 2006-12-25 High carbon hot rolled steel sheet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2008081956A1 true WO2008081956A1 (en) 2008-07-10

Family

ID=39588633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/075341 WO2008081956A1 (en) 2006-12-25 2007-12-21 High carbon hot-rolled steel sheet and method for production thereof

Country Status (6)

Country Link
EP (1) EP2103697B1 (en)
JP (1) JP4952236B2 (en)
KR (1) KR101107531B1 (en)
CN (1) CN101568655B (en)
TW (1) TWI333507B (en)
WO (1) WO2008081956A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021280575B2 (en) * 2020-05-28 2023-12-14 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101352723B (en) * 2008-08-20 2010-12-22 秦皇岛首秦金属材料有限公司 Medium plate flexible rolling method
WO2012147922A1 (en) * 2011-04-27 2012-11-01 新日本製鐵株式会社 Fe-BASED METAL PLATE AND METHOD FOR MANUFACTURING SAME
CN103084386B (en) * 2011-10-31 2015-02-25 上海汇众汽车制造有限公司 Method for optimizing surface quality of hot-rolled steel plates
KR101353551B1 (en) * 2011-12-22 2014-01-23 주식회사 포스코 High carbon hot/cold rolled steel coil and manufactureing method thereof
KR101505287B1 (en) * 2013-05-30 2015-03-23 현대제철 주식회사 Steel and method for manufacturing the same
CN104032214B (en) * 2013-09-26 2015-12-09 北大方正集团有限公司 A kind of non-hardened and tempered steel and production technique thereof
EP3091098B1 (en) * 2014-03-28 2018-07-11 JFE Steel Corporation High-carbon hot-rolled steel sheet and method for producing same
WO2015146174A1 (en) * 2014-03-28 2015-10-01 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and method for producing same
JP6265108B2 (en) * 2014-11-07 2018-01-24 Jfeスチール株式会社 Hot-rolled steel sheet for cold-rolled steel sheet or hot-dip galvanized steel sheet and method for producing the same
JP7019574B2 (en) * 2015-12-15 2022-02-15 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ High-strength hot-dip galvanized steel strip
ES2818195T5 (en) 2015-12-15 2023-11-30 Tata Steel Ijmuiden Bv High Strength Hot Dip Galvanized Steel Strip
KR101770073B1 (en) * 2016-09-20 2017-08-21 현대제철 주식회사 Method of manufacturing high strength steel deforemed bar
KR101889173B1 (en) * 2016-12-13 2018-08-16 주식회사 포스코 High strength fine spheroidal graphite steel sheet having low yield ratio and manufacturing method thereof
US11491581B2 (en) 2017-11-02 2022-11-08 Cleveland-Cliffs Steel Properties Inc. Press hardened steel with tailored properties
WO2019131099A1 (en) * 2017-12-25 2019-07-04 Jfeスチール株式会社 Hot-rolled steel sheet and method for manufacturing same
KR102209556B1 (en) 2018-12-19 2021-01-29 주식회사 포스코 Steel sheet having excellent hole-expandability, formed member, and manufacturing method of therefor
KR102588222B1 (en) * 2019-05-16 2023-10-13 닛폰세이테츠 가부시키가이샤 Steel wire and hot rolled wire rod
CN110983182B (en) * 2019-12-16 2021-03-23 首钢集团有限公司 800 MPa-grade hot rolled steel and preparation method and application thereof
CN110983181B (en) * 2019-12-16 2021-04-16 首钢集团有限公司 700 MPa-grade hot rolled steel and preparation method and application thereof
KR102415763B1 (en) 2019-12-20 2022-07-04 주식회사 포스코 Hot rolled steel suitable for post heat treatable complex shaped parts with excellent hold expansion ratio and excellent yield ratio, parts, and menufacturing for the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550427A (en) * 1978-10-03 1980-04-12 Kawasaki Steel Corp Manufacture of hot rolled medium or high carbon steel strip suitable for use in precision punching
JPS62284019A (en) * 1986-06-03 1987-12-09 Nippon Steel Corp Manufacture of high carbon steel sheet
JPH04214839A (en) * 1990-12-14 1992-08-05 Sumitomo Metal Ind Ltd High carbon thin steel sheet good in formability and its manufacture
JPH059588A (en) 1991-02-26 1993-01-19 Sumitomo Metal Ind Ltd Production of high carbon steel sheet excellent in formability
JPH05239588A (en) * 1992-02-26 1993-09-17 Sumitomo Metal Ind Ltd Medium carbon hot rolled steel plate excellent in formability and weldability and its production
JPH09157758A (en) 1995-12-05 1997-06-17 Sumitomo Metal Ind Ltd Production of high carbon steel strip excellent in workability
JPH10265845A (en) * 1997-03-24 1998-10-06 Kawasaki Steel Corp Production of hot rolled alloy steel sheet excellent in cold workability
JP2003013145A (en) 2001-06-28 2003-01-15 Nkk Corp Method for manufacturing high-carbon hot-rolled steel sheet superior in stretch flange formability
JP2005097740A (en) * 2003-08-28 2005-04-14 Jfe Steel Kk High-carbon hot-rolled steel sheet, and method for manufacturing the same
JP2005290547A (en) * 2004-03-10 2005-10-20 Jfe Steel Kk High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP2006063394A (en) * 2003-08-28 2006-03-09 Jfe Steel Kk High-carbon hot-rolled steel plate and method for manufacturing the same
JP2007039796A (en) * 2005-06-29 2007-02-15 Jfe Steel Kk High-carbon hot-rolled steel sheet and process for producing the same
JP2007277696A (en) * 2005-10-05 2007-10-25 Jfe Steel Kk Dead soft high-carbon hot-rolled steel sheet and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3242303B2 (en) * 1995-09-29 2001-12-25 川崎製鉄株式会社 High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP3755368B2 (en) * 2000-01-31 2006-03-15 Jfeスチール株式会社 High carbon steel plate with excellent stretch flangeability
KR100673422B1 (en) * 2003-08-28 2007-01-24 제이에프이 스틸 가부시키가이샤 High carbon hot rolled steel sheet, cold rolled steel sheet and method for production thereof
JP2005094470A (en) 2003-09-18 2005-04-07 Fuji Photo Film Co Ltd Digital camera
US20050199322A1 (en) * 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
CN101379208B (en) * 2006-01-31 2012-06-20 杰富意钢铁株式会社 Steel plate having excellent fine blanking processability and method for manufacture thereof
JP5076347B2 (en) * 2006-03-31 2012-11-21 Jfeスチール株式会社 Steel plate excellent in fine blanking workability and manufacturing method thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550427A (en) * 1978-10-03 1980-04-12 Kawasaki Steel Corp Manufacture of hot rolled medium or high carbon steel strip suitable for use in precision punching
JPS62284019A (en) * 1986-06-03 1987-12-09 Nippon Steel Corp Manufacture of high carbon steel sheet
JPH04214839A (en) * 1990-12-14 1992-08-05 Sumitomo Metal Ind Ltd High carbon thin steel sheet good in formability and its manufacture
JPH059588A (en) 1991-02-26 1993-01-19 Sumitomo Metal Ind Ltd Production of high carbon steel sheet excellent in formability
JPH05239588A (en) * 1992-02-26 1993-09-17 Sumitomo Metal Ind Ltd Medium carbon hot rolled steel plate excellent in formability and weldability and its production
JPH09157758A (en) 1995-12-05 1997-06-17 Sumitomo Metal Ind Ltd Production of high carbon steel strip excellent in workability
JPH10265845A (en) * 1997-03-24 1998-10-06 Kawasaki Steel Corp Production of hot rolled alloy steel sheet excellent in cold workability
JP2003013145A (en) 2001-06-28 2003-01-15 Nkk Corp Method for manufacturing high-carbon hot-rolled steel sheet superior in stretch flange formability
JP2005097740A (en) * 2003-08-28 2005-04-14 Jfe Steel Kk High-carbon hot-rolled steel sheet, and method for manufacturing the same
JP2006063394A (en) * 2003-08-28 2006-03-09 Jfe Steel Kk High-carbon hot-rolled steel plate and method for manufacturing the same
JP2005290547A (en) * 2004-03-10 2005-10-20 Jfe Steel Kk High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP2007039796A (en) * 2005-06-29 2007-02-15 Jfe Steel Kk High-carbon hot-rolled steel sheet and process for producing the same
JP2007277696A (en) * 2005-10-05 2007-10-25 Jfe Steel Kk Dead soft high-carbon hot-rolled steel sheet and its manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE JSTP, vol. 44, 2003, pages 409 - 413
See also references of EP2103697A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2021280575B2 (en) * 2020-05-28 2023-12-14 Jfe Steel Corporation Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate

Also Published As

Publication number Publication date
EP2103697A1 (en) 2009-09-23
TW200837199A (en) 2008-09-16
JP2008156712A (en) 2008-07-10
EP2103697A4 (en) 2015-03-11
TWI333507B (en) 2010-11-21
KR20090094001A (en) 2009-09-02
JP4952236B2 (en) 2012-06-13
EP2103697B1 (en) 2019-05-01
KR101107531B1 (en) 2012-01-31
CN101568655B (en) 2011-06-29
CN101568655A (en) 2009-10-28

Similar Documents

Publication Publication Date Title
WO2008081956A1 (en) High carbon hot-rolled steel sheet and method for production thereof
KR100651302B1 (en) High carbon steel wire rod superior in wire-drawability and method for producing the same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
KR101913530B1 (en) High-strength galvanized steel sheets and methods for manufacturing the same
KR101925735B1 (en) Steel wire for wire drawing
JP5994356B2 (en) High-strength thin steel sheet with excellent shape freezing property and method for producing the same
JP6350398B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5011846B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6566168B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5330181B2 (en) Manufacturing method for spring steel
JP7010418B1 (en) High-strength hot-rolled steel sheet and its manufacturing method
KR101892526B1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
WO2016024371A1 (en) Method for manufacturing high-strength steel sheet
KR20160138230A (en) High-carbon hot-rolled steel sheet and method for producing same
JP4568875B2 (en) Method for producing grain-oriented electrical steel sheets with excellent magnetic properties
JP3879446B2 (en) Method for producing high carbon hot-rolled steel sheet with excellent stretch flangeability
JP2003013144A (en) Method for manufacturing high-carbon cold-rolled steel sheet superior in stretch flange formability
JP4622609B2 (en) Method for producing soft high workability high carbon hot rolled steel sheet with excellent stretch flangeability
JP4333356B2 (en) Cold rolled steel sheet manufacturing method
JP5157417B2 (en) Steel sheet and manufacturing method thereof
JP7444096B2 (en) Hot rolled steel sheet and its manufacturing method
JP7444097B2 (en) Hot rolled steel sheet and its manufacturing method
JP5874376B2 (en) High-strength steel sheet with excellent workability and method for producing the same
KR20180058804A (en) Steel wire
WO2022070840A1 (en) High-strength steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780048211.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07860538

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097013010

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007860538

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE