WO2008078021A2 - Media filtrant pour dispositif de filtration des gaz d'echappement d'un moteur diesel, dispositif de filtration mettant en oeuvre un tel media, et ligne d'echappement des gaz d'un moteur a combustion interne mettant en oeuvre un tel dispositif - Google Patents

Media filtrant pour dispositif de filtration des gaz d'echappement d'un moteur diesel, dispositif de filtration mettant en oeuvre un tel media, et ligne d'echappement des gaz d'un moteur a combustion interne mettant en oeuvre un tel dispositif Download PDF

Info

Publication number
WO2008078021A2
WO2008078021A2 PCT/FR2007/052441 FR2007052441W WO2008078021A2 WO 2008078021 A2 WO2008078021 A2 WO 2008078021A2 FR 2007052441 W FR2007052441 W FR 2007052441W WO 2008078021 A2 WO2008078021 A2 WO 2008078021A2
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
filtration
filter
structure according
exhaust gas
Prior art date
Application number
PCT/FR2007/052441
Other languages
English (en)
Other versions
WO2008078021A3 (fr
Inventor
Jean-Claude Fayard
Jean-Pierre Joulin
Original Assignee
Exoclean Filtration Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exoclean Filtration Technology filed Critical Exoclean Filtration Technology
Priority to US12/518,734 priority Critical patent/US20100061899A1/en
Priority to CA002671884A priority patent/CA2671884A1/fr
Priority to JP2009540819A priority patent/JP2010512988A/ja
Priority to EP07871876A priority patent/EP2121540A2/fr
Publication of WO2008078021A2 publication Critical patent/WO2008078021A2/fr
Publication of WO2008078021A3 publication Critical patent/WO2008078021A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0016Honeycomb structures assembled from subunits
    • C04B38/0019Honeycomb structures assembled from subunits characterised by the material used for joining separate subunits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2488Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2350/00Arrangements for fitting catalyst support or particle filter element in the housing
    • F01N2350/02Fitting ceramic monoliths in a metallic housing
    • F01N2350/06Fitting ceramic monoliths in a metallic housing with means preventing gas flow by-pass or leakage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention generally relates to the field of particulate filters, and more particularly to an exhaust gas filtration device for a diesel engine.
  • the present invention relates to the implementation and construction of an original filter media, intended to be integrated within a device for filtering the exhaust gas of a diesel engine.
  • catalytic converters or catalysts usually consisting of a stainless steel casing, a thermal insulator and a support honeycomb impregnated with precious metals, such as platinum or rhodium.
  • catalytic converters now include a particulate filter, the function of which is to retain the carbon particles, constituting the unburnt particles emitted by the engine.
  • a particulate filter the function of which is to retain the carbon particles, constituting the unburnt particles emitted by the engine.
  • Diesel particulate filter techniques used today or under development, all face the major problem of incomplete and untimely combustion of particles retained on the filter media. Indeed for urban use conditions, the temperature of the exhaust gas reached is insufficient to cause this combustion and significantly limit clogging of the filter.
  • CTR continuous Regenerating Trap
  • This means consists of a catalyst support on which is fixed the catalyst, which is usually a precious metal such as platinum or rhodium.
  • NO 2 produced by the action of the latter has the property of oxidizing carbon particles from 250 ° C.
  • the proper functioning of the filter depends on the average temperature reached and the ratio of particles emitted with respect to NO 2 formed.
  • Cordierite is a ceramic that has a low thermal conductivity associated with average mechanical properties, and is therefore very sensitive to sudden temperature changes that accompany uncontrolled regeneration.
  • Silicon carbide has a much better thermal conductivity (0.08 cal / cm / s / ° C against 0.0025 for cordierite), associated with much higher mechanical properties and a melting temperature of more than 2,000 ° C. It thus makes it possible to better withstand this uncontrolled combustion phenomenon without however being able to eliminate all the incidents. Indeed the weak point of the silicon carbide is its coefficient of high expansion, (4.5.10 ⁇ "against 1.10 ⁇ " for cordierite). Therefore, it bears less heat shocks than cordierite.
  • the silicon carbide filter media are manufactured in segmented form and are in the form of mini blocks generally of square section, bonded to each other by a cement.
  • This cement has the role of absorbing the dimensional differences during the combustion phases related to the large temperature variations that can be observed.
  • this filtering medium is machined and turned to form cylindrical or oblong revolution forms to be then incorporated by force in a metal casing surrounded by a ceramic mat, said metal shell being intended to maintain assembled the different segments together.
  • the objective of the present invention is to propose an original fabrication and assembly technique of the filtering medium, capable of very substantially reducing the thermal and mechanical stresses during brutal combustion of the deposited carbon particles (without any inconvenience), so as to eliminate the cracks that may ensue.
  • Another object of the invention is to provide a method of assembly allowing sudden regenerations, and therefore significant variations in temperature without destructive effect on the filter, both with filtration media made of silicon carbide and cordierite or other ceramics usable for this function.
  • Another object of the invention is to provide the possibility of having parallelepipedal shapes instead of the usual cylindrical shapes or revolutions, to be able to achieve extra flat filter media.
  • Another object of this invention is to have the possibility of incorporating directly into the filter media electrical resistors possibly to overcome all the usual methods of regeneration used.
  • This first relates to an exhaust gas filtration device comprising at least one set of filter units separated from each other by a mat or ceramic fabric coated on both sides with a ceramic glue, to hold them together while keeping them mechanically and thermally independent. These filter units are then inserted into a structure of a metallic, ceramic or other nature. One or more filter units are thus capable of being inserted into this structure so as to form larger or smaller sets depending on the intended use. The association in these structures of one or more filter units is carried out in the same manner, each filter unit being bonded to a ceramic support which separates it from its neighbor or from the structure in which it is contained.
  • the filter units are in the form of a parallelepiped with a honeycomb structure and of square section, the size of which is between 20 and 200 millimeters per side, for lengths of 50 to more than 500 mm.
  • said filter units of square section are mounted directly in the structure containing them, assembling as and when all the following components: filtering units, mat coated with a ceramic adhesive, for example by the method described below.
  • the receptacle or envelope, containing the filter units can be made in two parts. It is coated with ceramic glue at each angle. It receives a flexible ceramic support pre-cut to the right dimension, said support having been pre-impregnated with water so that the glue can be distributed throughout the duration of the operation.
  • all the filter units intended to be assembled after having been pre-impregnated with water are largely coated with ceramic glue.
  • the assembly of the assembly is continued by thus disposing the filter units pre-coated with adhesive on the ceramic support, each filter unit being separated from its neighbor or from said receptacle or said envelope by the ceramic support according to the same procedure.
  • the ceramic support consists of a mat or a fabric based on long fibers and having a density of between 150 and 500 kg / m 3 ; it has a thickness between 0.5 and 15 mm, depending on the type of application envisaged for the filter and the size of each filter unit. The choice of the final thickness depends on the level of thermal and mechanical insulation sought for the intended application as well as the geometry of the part to accommodate the variations in expansion.
  • the adhesive used is preferably based on oxides or ceramic carbides, generally used for the bonding of brick or insulating refractory felt of class 26 or greater than 1400 ° C., the coefficient of expansion of which is close to that of the filtering medium. used.
  • the filter units are each associated with an electric heating resistor (8), contiguous to said unit, or integrated therein.
  • the invention also relates to an exhaust line of an internal combustion engine, incorporating the filtering device thus described.
  • This exhaust line comprises at least one inlet for gases from said internal combustion, at least one filtration device for trapping the solid particles contained in said exhaust gas of said engine and at least one exhaust port to the atmosphere of said gases located downstream of said filtration device.
  • the filtration device comprises at least one catalytic means and means for filtering said exhaust gases within a reaction chamber situated in the path of the flow of the exhaust gases, said means consisting of a plurality of filter units, as previously described; "said line comprises valves or valves intended to isolate a portion of the filter device by stopping the flow of exhaust gas reaching the level of the part concerned.
  • FIG. 1 represents a schematic three-dimensional view of the device of the invention, comprising four filtering elements.
  • Figure 2 shows a schematic sectional view of these four elements assembled and glued in a metal box.
  • Figures 3 and 4 show a schematic three-dimensional view of these four elements assembled and glued in the can illustrating a possibility of welding.
  • Figures 5 and 6 show schematically four filter elements assembled and glued in a metal box substantially different from that shown in Figures 3 and 4, a portion being in the form of cover ensuring a covering.
  • Figure 5 shows how said box must be stressed before welding so as to ensure good compression of the ceramic mat to ensure a good seal.
  • FIG. 7 represents respectively in section and in perspective the use of filtering elements of triangular section and their assembly in a metal box.
  • FIG. 8 illustrates a variant of the invention, in which electric heating resistors for heating each filter element.
  • FIG. 10 schematically illustrates a filtration device implementing the filtering elements of the invention, incorporating electrical resistances so as to control the regeneration phases.
  • the units or filter elements (1) consist of a filter media made of cordierite, or silicon carbide, or another ceramic adapted to the conditions, including thermal conditions, to which said elements are likely to be submitted.
  • These filter units (1) are in the form of a parallelepiped with a honeycomb structure. In the example described, they are of square cross section, the size of which is between 20 and 200 millimeters per side, for lengths of 50 to more than 500 mm.
  • These filtering units are assembled in a rigid support (4), preferably metal, constituted in this case by a box, by means of seals (5). It is this box that ensures the mechanical cohesion of the assembled filter units, these being further separated from each other by a seal (2, 3).
  • seals (5) consist of a fabric or a ceramic mat, or any other flexible product having good resistance to high temperature.
  • These seals (2, 3, 5) are coated on their two faces, that is to say on both sides intended to come into contact with the two filter units considered; by means of a ceramic glue, preferably based on oxides or ceramic carbides, (generally used for the bonding of brick or insulating refractory felt of class 26 or greater than 1,400 ° C., the coefficient of expansion of which is close to that of the filter medium used), during assembly, so as to ensure a bond between the fabric or the mat that constitutes them and the filter media of the filter units. They have a typical thickness of 0.5 to 15 mm.
  • the joints are impregnated with water, to keep them sufficiently wet, and prevent them from drying the ceramic glue which they are then coated, for example with a brush.
  • the adhesive must indeed remain malleable during the entire process of producing the filtration device. Because of this glue coating, the mat is therefore not deeply impregnated by said glue, but only superficially, and typically in one or two layers of the long fibers that constitute it. This is why, after assembly, the filtration units remain mechanically and thermally independent from each other.
  • the thickness of the adhesive coating is close to 2 tenths of a millimeter.
  • the glue does not penetrate inside the mat, so that the latter retains its mechanical properties and flexibility.
  • the box (4) consists of a sheet preferably made of stainless steel, and whose thickness is adapted to the size of the assembly to be made, for example 1 to 2 mm for a square set of 100 to 150 mm side, see more than 2 mm for larger boxes. It is important that this box has a very good rigidity so as to keep the filter units together with each other and keep under pressure the mat that separates them.
  • the adhesive that coats the surface between the mat and the filter is only intended to seal the assembly.
  • the constituent plate of the box (4) In order to improve the rigidity of the constituent plate of the box (4), it is embossed. However, it can also be reinforced by reinforcements welded to its flanks.
  • the box (4) is in the form of two parts (6) and (7), each of said parts partially surrounding four filter units in the example described. These two parts are secured to one another by welding a linear rod (8) at their junction areas.
  • this method of assembly is facilitated, and is likely to be automated.
  • the two parts (6, 7) are interlocked into one another like a lid on a box.
  • This variant is advantageous for small boxes, typically up to 250 mm side.
  • the realization of the whole is automatable.
  • the section of the filter units is no longer of square shape, but of triangular shape (see FIG. 7), the principle of the invention remaining identical.
  • This triangular section shape favors the construction of extra flat filters, typically having a height less than 100 mm. In addition, it allows to put filter media having excellent resistance to very severe regenerations.
  • a heating electric resistance (8) is incorporated in the filtering units, intended, in known manner, to regenerate the filtering unit in question.
  • heating resistors can be carried out during the assembly of the structure, on one of the faces thereof, as shown in FIG. 8, between the filter medium and the ceramic mat. , more or less secured to the filter media by the ceramic glue used in the assembly.
  • heating resistors can also be carried out directly within said filter medium, in one of the channels (9) defined by the honeycomb structure which characterizes them, reserved for this purpose as represented by FIG. figure 9.
  • electrically heated filter media is advantageously effected in a device comprising a system of valves or valves, for isolating part of the filter. Indeed, if one wants to program regenerations of said media when the engine is running, it is necessary to implement electrical powers of several kilowatts to simply offset all the calories that would be entrained in the exhaust. For example, for a 100 kW diesel engine operating at half load, the exhaust gas flow rate is close to 100 g / s, requiring an electric power of 20 kW to simply raise the exhaust gas temperature to 200 ° C. .
  • the exhaust gas at the engine outlet is introduced into the device (10) via a pipe (11), then is directed to the catalyst elements (12), and then filtered at two filter structures (13, 14) containing the filtration units (1) according to the invention.
  • Each of the filtration units is capable of being heated by means of heating resistors (8), associated with a corresponding electric circuit (15).
  • valves or valves (16) are positioned at the outlet of the filtration structures, so as to be able to close off one or the other of the said structures, in order to maintain the obstructed structure at a high temperature, and to favor the general operation of the exhaust line.
  • These valves or valves are actuated by any means, such as for example pneumatic cylinders (17).
  • the device (10) further comprises an outlet pipe (18) of the exhaust gases thus filtered. Moreover, it advantageously comprises a temperature (19) and pressure (20) sensor, arranged upstream of the filtration structures (13, 14), and intended to promote the management of the operation of the filtration units.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

La structure de filtration de l'invention est constituée d'une pluralité d'unités filtrantes (1) comprenant un média filtrant, dans laquelle lesdites unités filtrantes : sont séparées les unes des autres par un mat ou tissu de céramique enduit avec une colle céramique, de manière à les solidariser les unes aux autres tout en les gardant mécaniquement et thermiquement indépendante; sont insérées ensuite dans une structure (4), notamment de nature métallique ou céramique, et sont solidarisées à celle-ci par le biais d'un support, également réalisé en un mat ou tissu céramique enduit d'une colle céramique.

Description

MEDIA FILTRANT POUR DISPOSITIF DE FILTRATION DES GAZ D'ÉCHAPPEMENT D'UN MOTEUR DIESEL, DISPOSITF DE FILTRATION METTANT EN OEUVRE UN TEL MEDIA, ET LIGNE D'ECHAPPEMENT DES GAZ D'UN MOTEUR A COMBUSTION INTERNE METTANT EN OEUVRE UN TEL DISPOSITIF
DOMAINE DE L'INVENTION
La présente invention concerne de façon générale le domaine des filtres à particules, et de façon plus particulière, un dispositif de filtration de gaz d'échappement pour moteur diesel.
De façon plus particulière, la présente invention concerne la mise en œuvre et la construction d'un média filtrant original, destiné à être intégré au sein d'un dispositif de filtration des gaz d'échappement d'un moteur diesel.
ETAT ANTERIEURDE LA TECHNIQUE
La réduction des émissions polluantes produites par les moteurs à explosion, et en particulier par les moteurs diesels, est l'objectif que se sont fixés les pouvoirs publics. A cette fin, l'instauration de normes toujours plus draconiennes impose aux constructeurs automobiles de développer des moteurs présentant des consommations de plus en plus réduites et surtout optimisées afin de limiter la libération de particules imbrûlées; mais également des dispositifs de filtration de gaz d'échappement permettant de retenir les particules polluantes.
Ainsi, afin de réduire l'émission de gaz polluants imbrûlés et de particules solides, les constructeurs automobiles ont mis au point les pots catalytiques ou catalyseurs, généralement constitués d'une enveloppe en acier inoxydable, d'un isolant thermique et d'un support en nid d'abeille imprégné de métaux précieux, tels que le platine ou le rhodium.
Ces pots catalytiques comportent désormais un filtre à particules, dont la fonction est de retenir les particules de carbone, constituant les particules imbrûlées émises par le moteur. Toutefois, l'une des difficultés consiste à trouver des solutions pour que ces particules de carbone piégées sur le filtre puissent brûler ou s'oxyder au fur et à mesure qu'elles se déposent afin d'éviter le colmatage de ce dernier. Les techniques de filtres à particules pour moteur diesel, utilisées aujourd'hui ou en cours de développement, sont toutes confrontées au problème majeur de la combustion incomplète et intempestive des particules retenues sur le média filtrant. En effet pour des conditions d'utilisation urbaine, la température des gaz d'échappement atteinte est insuffisante pour provoquer cette combustion et limiter significativement le colmatage du filtre.
Sans assistance chimique, les particules de carbone issues de la combustion du gazole ne commencent à s'oxyder significativement qu'au-dessus de 5000C. Ces températures n'étant pratiquement jamais atteintes dans les conditions de roulage urbain, il est donc nécessaire de faire appel à un procédé chimique pour les éliminer.
A défaut d'assistance chimique, il s'ensuit un colmatage du filtre qui, outre le fait qu'il entraîne une perte de charge au niveau du moteur, et donc un mauvais fonctionnement de celui-ci, provoque des réactions violentes lorsque ces particules de carbone piégées en concentration excessive s'enflamment brutalement sur le média filtrant. Cette réaction de combustion, très rapide et très exothermique d'une grande masse de particules, entraîne des températures localement très élevées et conduit généralement à une destruction du filtre par choc thermique.
Pour obtenir l'oxydation de ces particules, plusieurs systèmes sont déjà utilisés. Ainsi, certains systèmes proposent de disposer en amont du filtre à particules, un moyen de catalyse d'oxydation permettant la transformation du monoxyde d'azote NO, contenu dans les gaz d'échappement, en dioxyde d'azote NO2 à partir de 2500C. Cette technique, appelée "Continuons Regenerating Trap" (C.R.T.), allie les effets du filtre à particules et du catalyseur d'oxydation du NO.
Ce moyen est constitué par un support catalytique sur lequel est fixé le catalyseur, qui est généralement un métal précieux tel que le platine ou le rhodium. Le NO2 produit par l'action de ce dernier possède la propriété d'oxyder les particules de carbone à partir de 2500C. Toutefois, le bon fonctionnement du filtre dépend de la température moyenne atteinte et du rapport de particules émises par rapport au NO2 formé.
Il existe un moyen similaire constituant une variante de ce dernier, dans lequel le catalyseur est fixé directement sur le filtre à particules. D'autres techniques de régénération font appel à l'utilisation d'additifs organo métalliques rajoutés au gazole, tels que le cérium, fer, strontium, calcium ou autres, de manière à enrober les particules de carbone formées de l'oxyde métallique du catalyseur et à obtenir ainsi une oxydation de celle-ci à plus basse température.
Ces techniques permettent d'obtenir un effet similaire à celui obtenu avec le NO2 en catalysant la combustion des matières charbonneuses à des températures voisines de 300, 3500C.
D'autres techniques consistent à mettre en oeuvre des moyens de chauffage complémentaires du type brûleurs, résistances électriques ou autres. Ces moyens de chauffage complémentaire ne sont actionnés que lorsque la cartouche présente un début de colmatage, se traduisant par une augmentation de la perte de charge. Un tel dispositif de régénération est mis en œuvre avec le moteur en marche, c'est à dire en présence d'un débit de gaz d'échappement important. Il nécessite donc une puissance de chauffage importante pour simultanément porter à la bonne température les gaz d'échappement et la masse de la cartouche filtrante.
Aujourd'hui, la majorité des filtres sont constitués d'un média filtrant en cordiérite sous forme de nids d'abeille. La cordiérite est une céramique qui présente une faible conductivité thermique associée à des propriétés mécaniques moyennes, et qui est donc très sensible aux variations brutales de température qui accompagnent les régénérations incontrôlées.
En effet, lorsque le phénomène se produit, cette combustion n'est pas du tout homogène et on peut très bien observer une partie du filtre relativement froide et relever sur la partie au niveau de laquelle la combustion s'est déclarée, une température très élevée. Les différences de température observées entre ces parties chaudes et le reste du filtre du fait de la faible conductibilité thermique de la cordiérite et malgré son faible coefficient de dilatation, peuvent générer des variations de dilation telle que des micros fissurations peuvent apparaître, qui à terme sont susceptibles de conduire à la destruction du média filtrant. La cordiérite présente en outre un autre facteur limitant, lié de façon indirecte à sa faible conductibilité thermique. En effet la combustion du carbone dans l'air conduit à des températures supérieures à 1.5000C et rien ne s'oppose à ce que ces températures soient atteintes si le carbone est présent en concentration suffisante. Or, la température de fusion de la cordiérite de l'ordre de 1400 0C risque d'être dépassée et le filtre détruit.
Afin de pallier ces inconvénients, on a proposé de remplacer la cordiérite par du carbure de silicium. Celui-ci est de plus en plus utilisé pour la fabrication de média filtrant, céramique, mais sous forme segmenté.
Le carbure de silicium présente une bien meilleure conductibilité thermique (0,08 cal/cm/s/°C contre 0,0025 pour la cordiérite), associée à des propriétés mécaniques bien supérieures et une température de fusion de plus de 2.000 0C. Il permet donc de mieux résister à ce phénomène de combustion incontrôlée sans pouvoir toutefois éliminer tous les incidents. En effet le point faible du carbure de silicium est son coefficient de dilatation élevé, (4,5.10~" contre 1.10~" pour la cordiérite). Partant, il supporte donc moins bien les chocs thermiques que la cordiérite.
Afin de réduire les conséquences de cet inconvénient, les médias filtrants en carbure de silicium sont fabriqué sous forme segmentée et se présente sous forme de mini blocs généralement de section carrée, collés les uns aux autres par un ciment. Ce ciment a pour rôle d'absorber les différences dimensionnelles durant les phases de combustion liées aux fortes variations de températures qui peuvent être observées. Pour rendre ce média filtrant résistant mécaniquement sans que les segments qui le constituent puissent se désolidariser durant les phases de combustion, il est usiné et tourné pour en faire des formes de révolution cylindrique ou oblongue pour être ensuite incorporé de force dans une enveloppe métallique entourée d'un mat de céramique, ladite enveloppe métallique étant destinée à maintenir assemblés les différents segments entre eux.
Dans un tel contexte technique, l'objectif de la présente invention indépendamment des procédés de régénération utilisés, est de proposer une technique de fabrication et d'assemblage originale du média filtrant, propre à réduire de manière très sensible les contraintes thermiques et mécaniques lors des combustions brutales des particules de carbone déposées (sans aucun inconvénient), de manière à éliminer les fissurations susceptibles d'en découler. Un autre objectif de l'invention est de fournir un mode d'assemblage autorisant des régénérations brutales, et donc des variations importantes de la température sans effet destructif sur le filtre, aussi bien avec des médias filtrants réalisés en carbure de silicium qu'en cordiérite ou autres céramiques utilisables pour cette fonction.
Un autre objectif de l'invention est d'offrir la possibilité de disposer de formes parallélépipédiques au lieu des formes cylindriques ou de révolutions habituelles, pour pouvoir réaliser des médias filtrants extra plats.
Un autre objectif de cette invention est d'avoir la possibilité d'incorporer directement dans le média filtrant des résistances électriques permettant éventuellement de s'affranchir de toutes les méthodes habituelles de régénération utilisées.
EXPOSE DE L'INVENTION
Ces objectifs, parmi d'autres, sont atteints par la présente invention. Celle-ci concerne tout d'abord un dispositif de filtration de gaz d'échappement comprenant au moins un ensemble d'unités filtrantes séparées les unes des autres par un mat ou tissu de céramique enduit sur ses deux faces d'une colle céramique, de manière à les solidariser les unes aux autres tout en les gardant mécaniquement et thermiquement indépendante. Ces unités filtrantes sont insérées ensuite dans une structure de nature métallique, céramique ou autre. Une ou plusieurs unités filtrantes sont donc ainsi susceptibles d'être insérées dans cette structure de manière à former des ensembles plus ou moins importants en fonction de l'utilisation envisagée. L'association dans ces structures d'une ou de plusieurs unités filtrantes est réalisée de la même manière, chaque unité filtrante étant collée sur un support céramique qui la sépare de sa voisine ou de la structure dans laquelle elle est contenue.
Selon un mode de réalisation préféré de l'invention, les unités filtrantes se présentent sous forme de parallélépipède avec une structure en nid d'abeille et de section carrée, dont la dimension est comprise entre 20 et 200 millimètres de côté, pour des longueurs de 50 à plus de 500 mm.
Selon une caractéristique remarquable de l'invention, lesdites unités filtrantes de section carrée sont montées directement dans la structure les contenant, en assemblant au fur et à mesure tous les constituants suivants : unités filtrantes, mat enduit d'une colle céramique, par exemple par la méthode décrite ci-dessous. Le réceptacle ou enveloppe, contenant les unités filtrantes, peut être réalisé en deux parties. Il est enduit de colle céramique à chaque angle. Il reçoit un support céramique souple prédécoupé à la bonne dimension, ledit support ayant été au préalable pré imprégné d'eau de manière à ce que la colle puisse bien se répartir durant toute la durée de l'opération. Parallèlement toutes les unités filtrantes prévues pour être assemblées après avoir été elles aussi pré imprégnées d'eau, sont largement enduites de colle céramique. L'assemblage de l'ensemble se poursuit en disposant ainsi les unités filtrantes pré-enduites de colle sur le support céramique, chaque unité filtrante étant séparée de sa ou de ses voisines ou dudit réceptacle ou de ladite enveloppe par le support céramique suivant la même procédure.
Avantageusement, le support céramique est constitué par un mat ou un tissu à base de fibres longues et présentant une densité comprise entre 150 et 500 kg/m3 ; il présente une épaisseur comprise entre 0,5 et 15 mm, fonction du type d'application envisagé pour le filtre et de la dimension de chaque unité filtrante. Le choix de l'épaisseur finale dépend du niveau d'isolation thermique et mécanique recherché pour l'application visée ainsi que de la géométrie de la pièce pour encaisser les variations de dilatation.
La colle mise en oeuvre est préférentiellement à base d'oxydes ou de carbures céramiques, utilisés généralement pour la liaison de brique ou de feutre réfractaire isolant de classe 26 ou supérieur à 1400 0C dont le coefficient de dilatation est proche de celui du média filtrant utilisé.
Avantageusement, les unités filtrantes sont chacune associées à une résistance électrique chauffante (8), accolée à ladite unité, ou intégrée en son sein.
L'invention concerne également une ligne d'échappement de moteur à combustion interne, intégrant le dispositif de filtration ainsi décrit. Cette ligne d'échappement comprend au moins un orifice d'entrée des gaz issus de ladite combustion interne, au moins un dispositif de filtration destiné à piéger les particules solides contenues dans lesdits gaz d'échappement dudit moteur et au moins un orifice d'échappement à l'atmosphère desdits gaz situé en aval dudit dispositif de filtration. Selon l'invention :
" le dispositif de filtration comprend au moins un moyen de catalyse et des moyens de filtration desdits gaz d'échappement au sein d'une enceinte réactionnelle située dans la trajectoire du flux des gaz d'échappement, lesdits moyens étant constitués d'une pluralité d'unités filtrantes, telles que précédemment décrites ; " ladite ligne comprend des clapets ou valves destinés à isoler une partie du dispositif de filtration en arrêtant les flux de gaz d'échappement parvenant au niveau de la partie considérée.
BREVE DESCRIPTION DES FIGURES
La présente invention sera mieux comprise à la lecture de la description qui suit, à l'appui des figures annexées, qui représentent, de façon nullement limitative, des exemples de réalisation du dispositif de filtration selon l'invention et dans lesquels :
La figure 1 représente une vue tridimensionnelle schématique du dispositif de l'invention, comprenant quatre éléments filtrants.
La figure 2 représente une vue schématique en section de ces quatre éléments assemblés et collés dans une boîte métallique. Les figures 3 et 4 représentent une vue schématique tridimensionnelle de ces quatre éléments assemblés et collés dans la boîte métallique illustrant une possibilité de soudure.
Les figures 5 et 6 représentent schématiquement quatre éléments filtrants assemblés et collés dans une boîte métallique sensiblement différente de celle représentée au sein des figures 3 et 4, une partie étant sous forme de couvercle assurant un recouvrement. La figure 5 montre de quelle manière ladite boîte doit être mise sous contrainte avant soudure de manière à assurer une bonne compression du mat céramique pour garantir une bonne étanchéité.
La figure 7 représente respectivement en section et en perspective l'utilisation d'éléments filtrants de section triangulaire et leur assemblage dans une boîte métallique. La figure 8 illustre une variante de l'invention, dans laquelle des résistances électriques chauffantes destinées à chauffer chaque élément filtrant.
La figure 9 illustre la possibilité de prévoir au moment de la fabrication un canal dans le nid d'abeille des éléments filtrants de manière à assurer une meilleure intégration des résistances chauffantes. La figure 10 illustre schématiquement un dispositif de filtration mettant en oeuvre les éléments filtrants de l'invention, incorporant des résistances électriques de manière à contrôler les phases de régénération. MODE DE REALISATION DE L'INVENTION
Selon une première forme de réalisation de l'invention, les unités ou éléments filtrants (1) sont constitués d'un média filtrant réalisé en cordiérite, ou en carbure de silicium, ou en une autre céramique adaptée aux conditions, thermiques notamment, auxquelles lesdits éléments sont susceptibles d'être soumis.
Ces unités filtrantes (1) se présentent sous forme de parallélépipède avec une structure en nid d'abeille. Dans l'exemple décrit, elles sont de section transversale carrée, dont la dimension est comprise entre 20 et 200 millimètres de côté, pour des longueurs de 50 à plus de 500 mm.
Ces unités filtrantes sont assemblées dans un support rigide (4), de préférence métallique, constitué en l'espèce par une boîte, par l'intermédiaire de joints (5). C'est cette boîte qui assure la cohésion mécanique des unités filtrantes assemblées, celles-ci étant en outre séparées les unes avec les autres par un joint (2, 3). Ces différents joints présentent une résistance thermique importante et une bonne compressibilité, autorisant la dilatation des unités filtrantes lors des phases de régénérations. Avantageusement, ces joints (5) sont constitués d'un tissu ou d'un mat de céramique, ou de tout autre produit flexible présentant une bonne résistance à haute température.
Ces joints (2, 3, 5) sont enduits sur leur deux faces, c'est à dire sur les deux faces destinées à venir en contact avec les deux unités filtrantes considérées ; au moyen d'une colle céramique, préférentiellement à base d'oxydes ou de carbures céramiques, (utilisés généralement pour la liaison de brique ou de feutre réfractaire isolant de classe 26 ou supérieur à 1.400 0C, dont le coefficient de dilatation est proche de celui du média filtrant utilisé), lors de l'assemblage, de manière à assurer un collage entre le tissu ou le mat qui les constitue et le média filtrant des unités filtrantes. Ils présentent une épaisseur typique de 0,5 à 15 mm.
Au surplus, préalablement à leur mise en place, les joints sont imprégnés d'eau, afin de les maintenir suffisamment humides, et éviter qu'ils n'assèchent la colle céramique dont ils sont ensuite enduits, par exemple au pinceau. La colle doit en effet rester sous forme malléable durant tout le processus de réalisation du dispositif de filtration. En raison de cette enduction de colle, le mat n'est donc pas imprégné en profondeur par ladite colle, mais limitativement de manière superficielle, et typiquement selon une ou deux épaisseurs des fibres longues qui le constituent. C'est d'ailleurs pour cette raison qu'après assemblage, les unités de filtration demeurent indépendante mécaniquement et thermiquement les unes par rapport aux autres.
Ainsi, pour un mat d'épaisseur d'environ 2 mm, l'épaisseur de l'enduction de colle est voisine de 2 dixièmes de millimètres. La colle ne pénètre donc pas à l'intérieur du mat, de sorte que ce dernier conserve ses propriétés mécaniques et de souplesse.
Avantageusement, la boîte (4) est constituée d'une tôle de préférence réalisée en acier inoxydable, et dont l'épaisseur est adaptée à la taille de l'ensemble à réaliser, par exemple 1 à 2 mm pour un ensemble carré de 100 à 150 mm de côté, voir plus de 2 mm pour des boîtes de dimensions supérieures. Il est important que cette boîte présente une très bonne rigidité de manière à maintenir assemblées les unités filtrantes les unes avec les autres et garder sous pression le mat qui les sépare. La colle qui enduit la surface entre le mat et le filtre n'a pour objet que d'assurer l'étanchéité de l'ensemble.
Afin d'améliorer la rigidité de la tôle constitutive de la boîte (4), celle-ci est gaufrée. Cependant, elle peut également être renforcée par des renforts soudés sur ses flancs.
Selon l'invention, la boîte (4) se présente sous la forme de deux parties (6) et (7), chacune desdites parties venant entourer partiellement quatre unités filtrantes dans l'exemple décrit. Ces deux parties sont solidarisées l'une à l'autre par soudage d'une baguette linéaire (8) au niveau de leurs zones de jonction. Ainsi, pour les boîtes de grandes dimensions, ce mode d'assemblage est facilité, et est susceptible d'être automatisé.
Selon encore une autre variante (voire figures 5 et 6), les deux parties (6, 7) viennent s'imbriquer l'une dans l'autre à l'instar d'un couvercle sur une boîte. Cette variante s'avère avantageuse pour les boîtes de petites dimensions, typiquement jusqu'à 250 mm de côté. Là encore, la réalisation de l'ensemble est automatisable.
Selon une autre variante de l'invention, la section des unités filtrantes n'est plus de forme carrée, mais de forme triangulaire (voir figure 7), le principe de l'invention demeurant identique. Cette forme à section triangulaire favorise la construction de filtres extra plats, présentant typiquement une hauteur inférieure à 100 mm. En outre, elle permet de mettre en oeuvre des média filtrants présentant une excellente résistance aux régénérations très sévères.
Selon une caractéristique avantageuse de l'invention, on incorpore au sein des unités filtrantes, une résistance électrique chauffante (8), destinée, de manière connue, à régénérer l'unité filtrante en question.
A cet effet, l'intégration de telles résistances chauffantes peut être réalisée lors de l'assemblage de la structure, sur l'une des faces de celle-ci, ainsi que représenté sur la figure 8, entre le média filtrant et le mat céramique, de manière plus ou moins solidarisée au média filtrant par la colle céramique utilisé dans l'assemblage.
Cependant, l'intégration de telles résistances chauffantes peut également être réalisée directement au sein dudit média filtrant, dans l'un des canaux (9) définis par la structure en nid d'abeille qui les caractérise, réservé à cet effet comme le représente la figure 9.
La mise en œuvre de média filtrant réchauffé électriquement s'effectue avantageusement dans un dispositif comportant un système de valves ou de clapets, permettant d'isoler une partie du filtre. En effet si l'on veut programmer des régénérations dudit média lorsque le moteur tourne, il est nécessaire de mettre en œuvre des puissances électriques de plusieurs kilowatts pour simplement compenser toutes les calories qui seraient entraînées dans les gaz d'échappement. Par exemple pour un moteur diesel de 100 kW fonctionnant à demi charge, le débit des gaz d'échappement est voisin de 100 g/s, nécessitant une puissance électrique de 20 kW pour simplement monter la température des gaz d'échappement de 200 0C.
En revanche, si par le biais d'une telle valve, seul l'un des modules filtrants est chauffé, pour une masse de 1000 grammes, la puissance électrique nécessaire pour monter la température de 2000C en 30 secondes diminue à environ 4 kW, voire même à 2 kW si l'on se contente d'aboutir à ce résultat en une minute.
Il est de fait envisageable de chauffer individuellement chaque élément filtrant les uns après les autres pour réduire si nécessaire la puissance de chauffe. La température de régénération étant atteinte (plus de 500 0C sans additif ou 400 0C avec additif), la valve ayant maintenu isolée du débit des gaz d'échappement le module de filtration en question, est progressivement ouverte de manière à amener l'oxygène contenu dans les gaz d'échappement en contact avec le carbone pour en assurer la combustion. L'énergie produite est alors suffisante pour porter tous les éléments du module bien au- delà de la température initiale de combustion (500 ou 400 0C) et la faire progresser à tout l'ensemble de filtration.
On a de fait représenté en relation avec la figure 10 une ligne d'échappement incorporant une pluralité d'unités de filtration conformes à l'invention, et intégrant lesdites résistances électriques chauffantes.
Les gaz d'échappement en sortie de moteur sont introduits dans le dispositif (10) par une tubulure (11), puis sont dirigés vers les éléments de catalyseur (12), pour ensuite être filtrés au niveau de deux structures de filtration (13, 14) contenant les unités de filtration (1) conformes à l'invention. Chacune des unités de filtration est susceptible d'être chauffée par l'intermédiaire de résistances chauffantes (8), associées à un circuit électrique (15) correspondant.
Selon l'invention, les valves ou clapets (16) sont positionnés en sortie des structures de filtration, de telle sorte à pouvoir obturer l'une ou l'autre desdites structures, afin de maintenir la structure obstruée à température élevée, et favoriser le fonctionnement général de la ligne d'échappement. Ces valves ou clapets sont actionnés par tout moyen, tel que par exemple des vérins pneumatiques (17).
Le dispositif (10) comporte en outre une tubulure de sortie (18) des gaz d'échappement ainsi filtrés. Au surplus, il comporte avantageusement un capteur de température (19) et de pression (20), disposés en amont des structures de filtration (13, 14), et destinés à favoriser la gestion du fonctionnement des unités de filtration.

Claims

REVENDICATIONS
1. Structure de fïltration, constituée d'une pluralité d'unités filtrantes (1) comprenant un média filtrant, caractérisée : " en ce que lesdites unités filtrantes (1) sont séparées les unes des autres par un mat ou tissu de céramique enduit sur ses deux faces, c'est à dire sur les faces destinées à venir en contact avec lesdites unités filtrantes, avec une colle céramique, de manière à les solidariser les unes aux autres tout en les gardant mécaniquement et thermiquement indépendantes ; " et en ce que lesdites unités filtrantes sont insérées ensuite dans une structure
(4), notamment de nature métallique ou céramique, et sont solidarisées à celle- ci par le biais d'un support, également réalisé en un mat ou tissu céramique enduit d'une colle céramique.
2. Structure de filtration selon la revendication 1, caractérisée en ce que les unités filtrantes sont constituées d'une structure en nid d'abeilles réalisée en céramique, et notamment en cordiérite ou en carbure de silicium.
3. Structure de filtration selon l'une des revendications 1 et 2, caractérisée en ce que le mat ou le tissu de céramique est constitué de fibres longues, et en ce qu'il présente une densité comprise entre 150 et 500 kg/m3, et une épaisseur comprise entre 0,5 et 10 mm.
4. Structure de filtration selon l'une des revendications 1 à 3, caractérisée en ce que le mat ou le tissu de céramique est préalablement imprégné d'eau avant d'être enduit de colle sur ses faces.
5. Structure de filtration selon l'une des revendications 1 à 4, caractérisée en ce que les unités filtrantes se présentent sous forme de parallélépipède de section transversale carrée.
6. Structure de filtration selon la revendication 5, caractérisée en ce que la dimension des côtés du carré est comprise entre 20 et 200 millimètres, et en ce que leur longueur est comprise entre 50 et 500 mm.
7. Structure de filtration selon l'une des revendications 1 à 4, caractérisée en ce que les unités filtrantes présentent une section transversale triangulaire.
8. Structure de filtration selon l'une des revendications 1 à 6, caractérisée en ce que la structure contenante, de nature métallique ou céramique est réalisée en deux parties, solidarisées l'une à l'autre par soudure.
9. Structure de filtration selon l'une des revendications 1 à 6, caractérisée en ce que la structure contenante, de nature métallique ou céramique est réalisée en deux parties, l'une venant s'imbriquer dans l'autre.
10. Structure de filtration selon l'une des revendications 1 à 8, caractérisée en ce que les unités filtrantes sont chacune associées à une résistance électrique chauffante (8), accolée à ladite unité, ou intégrée en son sein.
11. Dispositif de filtration de gaz d'échappement comprenant au moins un moyen de catalyse et des moyens de filtration desdits gaz d'échappement au sein d'une enceinte réactionnelle située dans la trajectoire du flux des gaz d'échappement, caractérisé en ce que les moyens de filtration sont constitués d'une structure de filtration selon l'une des revendications 1 à 10.
12. Ligne d'échappement (10) de moteur à combustion interne, comprenant au moins un orifice d'entrée (11) des gaz issus de ladite combustion interne, au moins un dispositif de filtration destiné à piéger les particules solides contenues dans lesdits gaz d'échappement dudit moteur et au moins un orifice d'échappement (18) à l'atmosphère desdits gaz situé en aval dudit dispositif de filtration, caractérisée : " en ce que le dispositif de filtration comprend au moins un moyen de catalyse (12) et des moyens de filtration (13, 14) desdits gaz d'échappement au sein d'une enceinte réactionnelle située dans la trajectoire du flux des gaz d'échappement, lesdits moyens étant constitués d'une pluralité d'unités filtrantes (1) comprenant un média filtrant, lesdites unités étant séparées les unes des autres par un mat ou tissu de céramique enduit sur ses deux faces, c'est à dire sur les faces destinées à venir en contact avec lesdites unités filtrantes, avec une colle céramique, de manière à les solidariser les unes aux autres tout en les gardant mécaniquement et thermiquement indépendante, et sont insérées dans une structure (4), notamment de nature métallique ou céramique, et solidarisées à celle-ci par le biais d'un support, également réalisé en un mat ou tissu céramique enduit d'une colle céramique, les unités filtrantes étant en outre chacune associées à une résistance électrique chauffante (8), accolée à ladite unité, ou intégrée en son sein ; et en ce que ladite ligne comprend des clapets ou valves (16) destinés à isoler une partie du dispositif de filtration en arrêtant les flux de gaz d'échappement parvenant au niveau de la partie considérée.
PCT/FR2007/052441 2006-12-13 2007-12-05 Media filtrant pour dispositif de filtration des gaz d'echappement d'un moteur diesel, dispositif de filtration mettant en oeuvre un tel media, et ligne d'echappement des gaz d'un moteur a combustion interne mettant en oeuvre un tel dispositif WO2008078021A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/518,734 US20100061899A1 (en) 2006-12-13 2007-12-05 Filtering medium for the exhaust gas filtration device of a diesel engine, filtration device implementing such medium, and exhaust gas line of an internal combustion engine implementing such device
CA002671884A CA2671884A1 (fr) 2006-12-13 2007-12-05 Media filtrant pour dispositif de filtration des gaz d'echappement d'un moteur diesel, dispositif de filtration mettant en oeuvre un tel media, et ligne d'echappement des gaz d'unmoteur a combustion interne mettant en oeuvre un tel dispositif
JP2009540819A JP2010512988A (ja) 2006-12-13 2007-12-05 ディーゼルエンジンの排ガスろ過装置用のろ材、前記ろ材を組み込んだろ過装置、及び前記装置を組み込んだ内燃エンジンの排ガスライン
EP07871876A EP2121540A2 (fr) 2006-12-13 2007-12-05 Media filtrant pour dispositif de filtration des gaz d'echappement d'un moteur diesel, dispositif de filtration mettant en oeuvre un tel media, et ligne d'echappement des gaz d'un moteur a combustion interne mettant en oeuvre un tel dispositif

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0655496A FR2909896B1 (fr) 2006-12-13 2006-12-13 Media filtrant pour dispositif de filtration des gaz d'echappement d'un moteur diesel, dispositif de filtration et ligne d'echappement des gaz d'un moteur a combustion interne le mettant en oeuvre
FR0655496 2006-12-13

Publications (2)

Publication Number Publication Date
WO2008078021A2 true WO2008078021A2 (fr) 2008-07-03
WO2008078021A3 WO2008078021A3 (fr) 2008-11-06

Family

ID=38190881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/052441 WO2008078021A2 (fr) 2006-12-13 2007-12-05 Media filtrant pour dispositif de filtration des gaz d'echappement d'un moteur diesel, dispositif de filtration mettant en oeuvre un tel media, et ligne d'echappement des gaz d'un moteur a combustion interne mettant en oeuvre un tel dispositif

Country Status (6)

Country Link
US (1) US20100061899A1 (fr)
EP (1) EP2121540A2 (fr)
JP (1) JP2010512988A (fr)
CA (1) CA2671884A1 (fr)
FR (1) FR2909896B1 (fr)
WO (1) WO2008078021A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169617A (ja) * 2015-03-11 2016-09-23 日本特殊陶業株式会社 微粒子捕集システムおよび微粒子捕集装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375853A1 (fr) * 2001-03-29 2004-01-02 Ngk Insulators, Ltd. Structure en nid d'abeilles et son montage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582805A (en) * 1992-12-21 1996-12-10 Toyota Jidosha Kabushiki Kaisha Electrically heated catalytic apparatus
US5512251A (en) * 1994-07-29 1996-04-30 W. R. Grace & Co.-Conn. Combined electrically heatable converter body
US5603216A (en) * 1994-08-02 1997-02-18 Corning Incorporated By-pass adsorber system
JP3949265B2 (ja) * 1998-03-30 2007-07-25 日本碍子株式会社 セラミック製ハニカム構造体の組み込み方法及び同方法に使用する保持部材
JP4511070B2 (ja) * 2001-03-29 2010-07-28 日本碍子株式会社 ハニカム構造体及びそのアッセンブリ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375853A1 (fr) * 2001-03-29 2004-01-02 Ngk Insulators, Ltd. Structure en nid d'abeilles et son montage

Also Published As

Publication number Publication date
EP2121540A2 (fr) 2009-11-25
FR2909896A1 (fr) 2008-06-20
FR2909896B1 (fr) 2009-02-06
JP2010512988A (ja) 2010-04-30
US20100061899A1 (en) 2010-03-11
WO2008078021A3 (fr) 2008-11-06
CA2671884A1 (fr) 2008-07-03

Similar Documents

Publication Publication Date Title
EP1455923B1 (fr) Corps filtrant comportant une pluralite de blocs filtrants, notamment destine a un filtre a particules
WO2007088307A2 (fr) Filtre catalytique presentant un temps d'amorcage reduit
US7687008B2 (en) Method for producing ceramic honeycomb filter
EP1373690B1 (fr) Corps filtrant pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne.
EP2069617B1 (fr) Element monolithique a coins renforces pour la filtration de particules
FR2856108A1 (fr) Epurateur de gaz d'echappement pour moteur a combustion interne avec filtre a particules comportant une zone d'absorption de chaleur
FR2944052A1 (fr) Structure de filtration d'un gaz et de reduction des nox.
FR2928561A1 (fr) Structure de filtration de gaz
WO2008078021A2 (fr) Media filtrant pour dispositif de filtration des gaz d'echappement d'un moteur diesel, dispositif de filtration mettant en oeuvre un tel media, et ligne d'echappement des gaz d'un moteur a combustion interne mettant en oeuvre un tel dispositif
EP1472442B1 (fr) Procede de gestion de moyens de decolmatage d un filtre a particules.
FR2878898A1 (fr) Filtre d'epuration de gaz d'echappement et procede de fabrication de celui-ci
CA2458983C (fr) Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour moteur diesel et dispositif de mise en oeuvre
EP1448882B1 (fr) Dispositif de filtration des gaz d echappement pour moteur diesel comprenant un support de catalyseur integre dans le moyen de filtration
EP2340099A1 (fr) Dispositifs de filtration de particules
EP1511550A2 (fr) Dispositif de filtration de gaz d'echappement
FR2650628A1 (fr) Filtre alveolaire notamment pour pot catalytique et son procede de fabrication
FR2965489A1 (fr) Structure en nid d'abeille microfissuree.
FR2879236A1 (fr) Filtre a particules a section de canaux variable
FR3017899A1 (fr) Structure de filtration d'un gaz et de reduction des oxydes d'azote
FR2823252A1 (fr) Corps filtrant pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
FR2777800A1 (fr) Filtre a particules pour gaz
FR2867508A1 (fr) Filtre a particules pour ligne d'echappement d'un moteur a combustion interne et ligne d'echappement comprenant un tel filtre a particules.
FR2686652A1 (fr) Procede et dispositif pour l'elimination en continu par postcombustion de particules solides imbrulees.
FR2990721A1 (fr) Filtre a particules

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2671884

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12518734

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009540819

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007871876

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07871876

Country of ref document: EP

Kind code of ref document: A2