WO2008076167A1 - Improved radiant heater - Google Patents

Improved radiant heater Download PDF

Info

Publication number
WO2008076167A1
WO2008076167A1 PCT/US2007/022102 US2007022102W WO2008076167A1 WO 2008076167 A1 WO2008076167 A1 WO 2008076167A1 US 2007022102 W US2007022102 W US 2007022102W WO 2008076167 A1 WO2008076167 A1 WO 2008076167A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistive material
contact terminal
heating system
substrate
radiant heating
Prior art date
Application number
PCT/US2007/022102
Other languages
French (fr)
Inventor
Richard Cooper
Original Assignee
Richard Cooper
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richard Cooper filed Critical Richard Cooper
Publication of WO2008076167A1 publication Critical patent/WO2008076167A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/02Electric heating systems solely using resistance heating, e.g. underfloor heating
    • F24D13/022Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • This invention relates to heaters and in particular to a method of heating rooms and spaces through radiant heat from floors, walls and ceilings.
  • various known systems and methods used for heating floors Some include circulating heated water or air through a piping system installed beneath the surface of the floor (FIG. 1 ).
  • Others include electrically heated insulated wires that are enmeshed in a material placed in between the floor surface and the sub floor, or in a concrete layer that also serves as the finished floor.
  • a cement board is attached to the sub floor and a finish material such as tile, linoleum or wood are adhered to the cement board. In those systems efficiency is compromised as there is no intimate contact between the source of heat and the surface to be heated.
  • This invention overcomes these shortcomings of the prior art, and provides an improved system for heating surfaces such as floors and walls.
  • a resistive film such as a graphite- impregnated sol-gel is applied directly to a backer board by means of spraying, painting or silk screening where the tile or outer surface material is to be applied.
  • the width and thickness of the resistive film is selected to provide the desired power as expressed in watts per square inch or watts per square foot.
  • the material requires a firing process for curing. The Curing process it is necessary to control the process so that only the surface of the cement backer board is heated so as not to affect the composite materials within the backer board.
  • the resistive film is cured by the use of infra-ted heat processing equipment.
  • the resistive film can be patterned onto an insulative material substrate such as mica, and the mica interposed between the subfloor and the finish surface material such as tile or linoleum.
  • the mica is installed by the use of an adhesive applied to the backer board and to the finish surface material.
  • the mica can be in the form of pre-cut tiles with the resistive material patterned onto each tile.
  • spaced apart electrodes or busbars are applied to apply a voltage across the patterned resistive material.
  • a protective coating such as Teflon® or silicon is then applied over the resistive material to protect it from moisture and to provide an electrically insulative layer.
  • overheating can be prevented by the use of a temperature sensor embedded in or placed atop the floor assembly.
  • the sensor sends a signal to a controller that reduces or cuts power if a maximum temperature is reached or exceeded.
  • Fig. I is a cross-sectional view of a prior art radiant heating assembly.
  • Fig. 2 is a top plan view of a preferred embodiment of the invention.
  • Fig. 3 is a cross-sectional view of the embodiment shown in Fig. 1 shown as part of a floor assembly.
  • Fig.4 is a cross-sectional view of the embodiment shown in Fig- 4 an d which also includes a decorative top layer over the heating unit.
  • Fig. 5 is a top plan view of a second embodiment of the invention which us es a different interconnect.
  • frig. 6 is a top plan view of the embodiment of the invention shown in Fig. 2 in which multiple individual units are shown interconnected.
  • Backer board may be any of a number of materials, but in the preferred embodiment it is formed of a cementous material, and which is designed to underlay tile or other floor finish materials.
  • Hardy Board® One such product is known as Hardy Board®.
  • the patterned resistive film is a graphite impregnated sol-gel material such as that manufactured by either ThermoCexamix, Lac. of Shirley Mass. or Datec Coating Corporation of Milton, Ontario, Canada.
  • the resistive material is applied directly to the backer board through a means of spraying, painting or silk screening onto the surface of the substrate that will support the tile or other outer finish material.
  • Other methods of applying a resistor include the thermal spraying of the resistive material.
  • the resistive material could be a continuous layer covering the entire surface, but is preferably applied in a pattern to reduce the amount of material required to provide the necessary power.
  • the heat source can be created by combustion of fuel gases, an electric arc, or ionized plasma.
  • the droplets are accelerated with a carrier gas and directed towards a prepared surfece.
  • the droplets impact the surface and freeze instantaneously.
  • the coalings are deposited using resistive metals or electro conductive ceramics.
  • metals which is the case when the substrate is mica
  • the metal is melted in a conventional thermal spray system and subjected to a reactive gas such as oxygen when the metal is in the molten state.
  • the metal forms reaction products such as metal oxides that are incorporated into the deposited coating.
  • the coating will then comprise the free metal starting material together with some proportion of metal oxides that will tend to boost the coating resistivity. In this way, a heater with substantially increase resistivity is formed into a coating.
  • Heater starting materials are typically nickel-chrome alloys, iron-chrome alloys, titanium, titanium oxide or zirconium diboride.
  • the heater coating is typically designed to form a pattern that determines the electrical resistance by balancing a combination of the geometric factors of element path length, element thickness, and element width with material factor of element resistivity.
  • the resistive film is selected to embody a resistance value that provides the necessary power as expressed in watts per square inch or watts per square foot.
  • This sheet resistance value is affected by a combination of material formulation and thickness of the sol-gel as is well-known to those of skill in the art, including the manufacturers of the material.
  • the sol-gel resistive material In most instances after the sol-gel resistive material is applied, it must be cured to a finished state by heating.
  • the parameters of the curing process vary according to the resistive material selected, and the invention is not limited to any particular curing process. Those of skill in the art will appreciate the heating/curing process must be controlled so to adequately heat the uncured resistive material on the surface of the cement backer board and also so as not to affect the composite materials within the underlying backer board.
  • One preferred curing method employs the use of an infra red heater, which is particularly well-suited as it can be readily controlled to heat primarily the resistive film and surface of the backer board without overheating the body of the backer board.
  • spaced apart electrodes or busbars are applied to apply a voltage across the resistor.
  • a protective coating 15 such as Teflon® or silicon is then applied over the resistor to protect from moisture and to provide an electrical insulation.
  • An important feature of the invention with the use of the cement backer board is that the backer board provides an excellent means of connectivity. Affixing fasteners such as threaded screws can be utilized to make safe and secure electrical connections.
  • mica coated heaters can also be utilized by placing the mica heater between the cement backer board and the outer material 18 such as tile, linoleum or laminate as shown in FIG. 4, all of which are typically supported on a subfloor 17.
  • This method requires an additional coating of adhesive, one layer 19 to the backer board and one layer 20 adhering the top layer 18 to the surface.
  • This method is still preferable to the existing products using heated water or wire woven febrics that take up space and waste cutafgy.
  • the backer board serves as an excellent heat and electrical insulator in the invention.
  • the bonding materials also provide increased electrical insulation.
  • Sensor wires 25 can be applied at strategic points over the surface of the hater to control temperature for comfort and safety.
  • the resistive layer 52 is a layer rather man patterned as in the first embodiment
  • the contacts 54 and 56 are in the form of long conductive strips that are placed in contact with the resistive material and held in place by a conductive adhesive.
  • the individual tiles are assembled into a floor by placing the edges adjacent one another and interconnecting the conductive strips 54 and 56
  • the heating system is such that it does not have the ability to overheat and provide a hazard.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

A thick film, large area resistance heater including a substrate having an electrically non-conductive surface on which is deposited a film electrical resistor such as a thermal sprayed, photo resist etched foil or sol-gel graphite based material. A combination of an electrically conductive film coat backer board substrate composed of the Portland cement, sand, cellulose fibers and other selective additives. A mica substrate heater can be cemented to cement backer board or a vinyl adhesive backing.

Description

Improved Radiant Heater Background of the Invention
This invention relates to heaters and in particular to a method of heating rooms and spaces through radiant heat from floors, walls and ceilings. There ate various known systems and methods used for heating floors. Some include circulating heated water or air through a piping system installed beneath the surface of the floor (FIG. 1 ). Others include electrically heated insulated wires that are enmeshed in a material placed in between the floor surface and the sub floor, or in a concrete layer that also serves as the finished floor. In many cases a cement board is attached to the sub floor and a finish material such as tile, linoleum or wood are adhered to the cement board. In those systems efficiency is compromised as there is no intimate contact between the source of heat and the surface to be heated. This invention overcomes these shortcomings of the prior art, and provides an improved system for heating surfaces such as floors and walls.
Summary of the Invention
This invention meets the need for a more efficient, space saving, cost efficient and energy saving method to heat floors, walls, ceilings and surface areas such as countertøps. In one preferred embodiment, a resistive film such as a graphite- impregnated sol-gel is applied directly to a backer board by means of spraying, painting or silk screening where the tile or outer surface material is to be applied.
The width and thickness of the resistive film is selected to provide the desired power as expressed in watts per square inch or watts per square foot. In embodiments utilizing a sol-gel resistive material, the material requires a firing process for curing. The Curing process it is necessary to control the process so that only the surface of the cement backer board is heated so as not to affect the composite materials within the backer board. In one preferred embodiment the resistive film is cured by the use of infra-ted heat processing equipment.
In another preferred embodiment the resistive film can be patterned onto an insulative material substrate such as mica, and the mica interposed between the subfloor and the finish surface material such as tile or linoleum. In this embodiment the mica is installed by the use of an adhesive applied to the backer board and to the finish surface material. The mica can be in the form of pre-cut tiles with the resistive material patterned onto each tile.
After the resistive material is applied and cured, spaced apart electrodes or busbars are applied to apply a voltage across the patterned resistive material. A protective coating such as Teflon® or silicon is then applied over the resistive material to protect it from moisture and to provide an electrically insulative layer.
In another aspect of the invention, overheating can be prevented by the use of a temperature sensor embedded in or placed atop the floor assembly. The sensor sends a signal to a controller that reduces or cuts power if a maximum temperature is reached or exceeded. These and other features of the invention will be described below and in reference to the drawings.
Brief Description of the Drawings
Fig. I is a cross-sectional view of a prior art radiant heating assembly. Fig. 2 is a top plan view of a preferred embodiment of the invention. Fig. 3 is a cross-sectional view of the embodiment shown in Fig. 1 shown as part of a floor assembly. Fig.4 is a cross-sectional view of the embodiment shown in Fig- 4 and which also includes a decorative top layer over the heating unit.
Fig. 5 is a top plan view of a second embodiment of the invention which uses a different interconnect. frig. 6 is a top plan view of the embodiment of the invention shown in Fig. 2 in which multiple individual units are shown interconnected.
Detailed Description
Referring now to Fig.'s 2-4, a preferred embodiment of the invention is shown generally at 10, and includes a backer board substrate 12, a patterned resistive material 13 disposed on the substrate 12, and interconnects 14 and 16. Backer board may be any of a number of materials, but in the preferred embodiment it is formed of a cementous material, and which is designed to underlay tile or other floor finish materials. One such product is known as Hardy Board®.
In one embodiment the patterned resistive film is a graphite impregnated sol-gel material such as that manufactured by either ThermoCexamix, Lac. of Shirley Mass. or Datec Coating Corporation of Milton, Ontario, Canada. The resistive material is applied directly to the backer board through a means of spraying, painting or silk screening onto the surface of the substrate that will support the tile or other outer finish material. Other methods of applying a resistor include the thermal spraying of the resistive material. The resistive material could be a continuous layer covering the entire surface, but is preferably applied in a pattern to reduce the amount of material required to provide the necessary power. In thermal spray, a ™*™* mwder OT **• form fa fed to a heat ∞""* Where it is melted into fine droplets. The heat source can be created by combustion of fuel gases, an electric arc, or ionized plasma. The droplets are accelerated with a carrier gas and directed towards a prepared surfece. The droplets impact the surface and freeze instantaneously. By traversing the spray apparatus repeatedly over the surface, a coating is built up.
The coalings are deposited using resistive metals or electro conductive ceramics. When metals are used, which is the case when the substrate is mica, the metal is melted in a conventional thermal spray system and subjected to a reactive gas such as oxygen when the metal is in the molten state. The metal forms reaction products such as metal oxides that are incorporated into the deposited coating. The coating will then comprise the free metal starting material together with some proportion of metal oxides that will tend to boost the coating resistivity. In this way, a heater with substantially increase resistivity is formed into a coating.
Heater starting materials are typically nickel-chrome alloys, iron-chrome alloys, titanium, titanium oxide or zirconium diboride. The heater coating is typically designed to form a pattern that determines the electrical resistance by balancing a combination of the geometric factors of element path length, element thickness, and element width with material factor of element resistivity.
The resistive film is selected to embody a resistance value that provides the necessary power as expressed in watts per square inch or watts per square foot. This sheet resistance value is affected by a combination of material formulation and thickness of the sol-gel as is well-known to those of skill in the art, including the manufacturers of the material.
In most instances after the sol-gel resistive material is applied, it must be cured to a finished state by heating. The parameters of the curing process vary according to the resistive material selected, and the invention is not limited to any particular curing process. Those of skill in the art will appreciate the heating/curing process must be controlled so to adequately heat the uncured resistive material on the surface of the cement backer board and also so as not to affect the composite materials within the underlying backer board. One preferred curing method employs the use of an infra red heater, which is particularly well-suited as it can be readily controlled to heat primarily the resistive film and surface of the backer board without overheating the body of the backer board.
After the resistor material is applied and cured, spaced apart electrodes or busbars are applied to apply a voltage across the resistor. A protective coating 15 such as Teflon® or silicon is then applied over the resistor to protect from moisture and to provide an electrical insulation.
An important feature of the invention with the use of the cement backer board is that the backer board provides an excellent means of connectivity. Affixing fasteners such as threaded screws can be utilized to make safe and secure electrical connections.
The use of mica coated heaters can also be utilized by placing the mica heater between the cement backer board and the outer material 18 such as tile, linoleum or laminate as shown in FIG. 4, all of which are typically supported on a subfloor 17. This method requires an additional coating of adhesive, one layer 19 to the backer board and one layer 20 adhering the top layer 18 to the surface. This method is still preferable to the existing products using heated water or wire woven febrics that take up space and waste cutafgy.
The backer board serves as an excellent heat and electrical insulator in the invention. The bonding materials also provide increased electrical insulation. Sensor wires 25 can be applied at strategic points over the surface of the hater to control temperature for comfort and safety.
Referring to FIG. 7 individual tiles are assembled into a heating assembly by placing two tiles adjacent each other with their respective electrical contacts 15 and 16 overlapping, hi the embodiment shown the connectors are connected by screw 23 which is driven through the contacts and into the underlying backer board, hi alternative embodiments the contacts could also be connected by adhesives or in any other suitable manner.
Referring to FIG.'s 5 and 6 another embodiment is shown at 50. In this embodiment the resistive layer 52 is a layer rather man patterned as in the first embodiment In this embodiment the contacts 54 and 56 are in the form of long conductive strips that are placed in contact with the resistive material and held in place by a conductive adhesive. The individual tiles are assembled into a floor by placing the edges adjacent one another and interconnecting the conductive strips 54 and 56
The heating system is such that it does not have the ability to overheat and provide a hazard.

Claims

CLAIMS:
1. A heater comprising: an insulative substrate; an electrically resistive material on a major surface of the substrate; at least one contact terminal in contact with the resistive material; and, a decorative layer covering the resistive material.
2. A heater according to claim 1 further comprising an underlying surface, and the insulative substrate mounted on the underlying surface.
3. A heater according to claim 5 wherein the insulative substrate is mica.
4. A radiant heating system according to claim 1 wherein the insulative substrate is formed from a cellulosic material.
5. A heater according to claim 1 wherein the insulative substrate is formed of a material selected from the group consisting of portland cement, gypsum, cementous materials, composite materials, polymeric materials, glass, ceramics, and minerals.
6. A radiant heating system according to claim 1 wherein the insulative substrate is formed of a water-resistant materiaL
7. A heating system according to claim 1 further comprising a plurality of electrically interconnected members, each member comprising: an insulative substrate; a patterned resistive material on a major surface of the substrate; at least one contact terminal in contact with the resistive material on the substrate; and, a decorative layer covering the resistive material.
8. A heater according to claim 1 farther comprising a controller, a temperature sensor in commvαncation vw1b a controller, the controller operable to regulate electrical current to the resistive material responsive to a signal from the temperature sensor.
9. A healer according to claim 1 wherein the resistive material forms a serpentine pattern having first and second ends, and the at least one contact terminal comprises a contact terminal connected to each of the first and second serpentine pattern end.
10. A radiant heating system according to claim 1 wherein the patterned resistive material comprises a rectilinear pattern having first and second opposed edges, and the at least one contact terminal comprises a contact terminal connected to each of the first and second opposed edges.
11. A radiant heating system according to claim 10 wherein the contact terminal connected to each of the first and second opposed edges comprises an elongate contact terminal.
12. A radiant heating system according to claim 1 wherein the resistive material comprises a graphite-containing material.
13. A radiant heating system according to claim 1 wherein the resistive material comprises a heat curable resistive material.
14. A radiant heating system according to claim 7 wherein each at least one contact terminal is positioned to contact a contact terminal of an adjacent member.
15. A heating system according to claim 7 wherein Ae plurality of electrically interconnected members connected in series.
16. A beating system according to claim 7 wherein the plurality of electrically interconnected members connected in parallel.
17. A heater according to claim 1 wherein the contact terminal is a conductive material in electrical contact with the resistive material.
18. A heater according to claim 1 wherein the contact terminal comprises a portion of the resistive material.
PCT/US2007/022102 2006-10-16 2007-10-16 Improved radiant heater WO2008076167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/582,166 US20080056694A1 (en) 2006-08-29 2006-10-16 Radiant heater
US11/582,166 2006-10-16

Publications (1)

Publication Number Publication Date
WO2008076167A1 true WO2008076167A1 (en) 2008-06-26

Family

ID=39536604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/022102 WO2008076167A1 (en) 2006-10-16 2007-10-16 Improved radiant heater

Country Status (2)

Country Link
US (1) US20080056694A1 (en)
WO (1) WO2008076167A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242538A1 (en) * 2008-03-26 2009-10-01 Dennis Porzio Decorative trim heating device
US8306408B2 (en) * 2008-05-30 2012-11-06 Thermoceramix Inc. Radiant heating using heater coatings
US20110188838A1 (en) * 2008-05-30 2011-08-04 Thermoceramix, Inc. Radiant heating using heater coatings
MX2011002662A (en) * 2008-09-16 2011-05-10 United States Gypsum Co Electrical heater with a resistive neutral plane.
JP5973917B2 (en) * 2009-11-05 2016-08-23 ウィンストン ウォールボーズ リミテッド Heating panel and method for the panel
US20110286724A1 (en) * 2010-05-19 2011-11-24 Travis Goodman Modular Thermal Energy Retention and Transfer System
US20130071716A1 (en) * 2011-09-16 2013-03-21 General Electric Company Thermal management device
WO2019149966A1 (en) * 2018-02-05 2019-08-08 Ecovolt Ltd A radiant heater and method of manufacture
CN109084366A (en) * 2018-08-16 2018-12-25 海南正诚立世科技有限公司 A kind of indoor heating management system based on Internet of Things
US20200113020A1 (en) * 2018-10-05 2020-04-09 Serendipity Technologies Llc Low power high-efficiency heating element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408069A (en) * 1993-09-28 1995-04-18 Mischel, Jr.; James V. Self-defogging mirror
US6154607A (en) * 1999-02-17 2000-11-28 S. C. Johnson & Son, Inc. Device for dispensing volatile materials
US20040190882A1 (en) * 2003-03-28 2004-09-30 Richard Cooper Radiant heater

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2521540A (en) * 1946-09-17 1950-09-05 Max C Richardson Prefabricated panel and warming means therefor
US2889439A (en) * 1955-07-29 1959-06-02 Albert C Nolte Electric heating devices and the like
US3277419A (en) * 1963-11-20 1966-10-04 Du Pont Laminated heating unit
US3697728A (en) * 1968-12-13 1972-10-10 Air Plastic Service Gmbh Heating devices
US3564200A (en) * 1969-01-09 1971-02-16 Elektra Systems Inc Electric radiant heating panel
GB1296398A (en) * 1969-03-06 1972-11-15
US3657516A (en) * 1969-11-10 1972-04-18 Kansai Hoon Kogyo Kk Flexible panel-type heating unit
US3757087A (en) * 1970-09-11 1973-09-04 Smiths Industries Ltd Heating elements
US3767895A (en) * 1971-12-01 1973-10-23 Infra Red Circuits & Controls Portable electric radiant space heating panel
US3983075A (en) * 1974-06-21 1976-09-28 Kennecott Copper Corporation Copper filled conductive epoxy
US3973103A (en) * 1975-04-21 1976-08-03 Universal Oil Products Company Wood veneer radiant heating panel
US4384401A (en) * 1979-12-07 1983-05-24 Sierracin Corporation Method for forming a heater element
EP0112922B1 (en) * 1982-06-24 1988-09-21 Matsushita Electric Industrial Co., Ltd. Panel heater
GB8704469D0 (en) * 1987-02-25 1987-04-01 Thorn Emi Appliances Thick film electrically resistive tracks
US5380988A (en) * 1992-04-29 1995-01-10 Dyer; C. William Heated mat structure for melting ice and snow
IT1284901B1 (en) * 1996-10-01 1998-05-28 Mauro Ambrosiano HEATING APPARATUS FOR CLOTHING AND LINEN
US5910267A (en) * 1997-09-24 1999-06-08 Stricker; Jesse C. Infrared heater
IT1303893B1 (en) * 1998-11-12 2001-03-01 Cadif Srl PROCESS FOR MANUFACTURE, BY PULTRUSION, 37 PROFILATITRANSFORMERS OF THE ELECTRIC CURRENT IN DIFFUSED HEAT
FR2802761B1 (en) * 1999-12-17 2002-03-08 Jean Claude Couraud HEATING PAINT
US6519835B1 (en) * 2000-08-18 2003-02-18 Watlow Polymer Technologies Method of formable thermoplastic laminate heated element assembly
GB0124190D0 (en) * 2001-10-09 2001-11-28 Panaghe Stylianos Printed heating element electric toaster
US7039304B2 (en) * 2004-09-09 2006-05-02 Engineered Glass Products Llc Method and apparatus for a cloth heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408069A (en) * 1993-09-28 1995-04-18 Mischel, Jr.; James V. Self-defogging mirror
US6154607A (en) * 1999-02-17 2000-11-28 S. C. Johnson & Son, Inc. Device for dispensing volatile materials
US20040190882A1 (en) * 2003-03-28 2004-09-30 Richard Cooper Radiant heater

Also Published As

Publication number Publication date
US20080056694A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
WO2008076167A1 (en) Improved radiant heater
US8306408B2 (en) Radiant heating using heater coatings
US8618445B2 (en) Heating system
US5942140A (en) Method for heating the surface of an antenna dish
US20110188838A1 (en) Radiant heating using heater coatings
US20100089899A1 (en) Heatable covering system
WO2009055959A1 (en) Electric heating panel, and manufacturing method and usage thereof
NZ589032A (en) Heating panel and method therefor
US20110155716A1 (en) Stone panel
EP0894417B1 (en) Method for heating the surface of an antenna dish
WO2007115559A3 (en) Insulating panel with a heating function and surface heating system
EP4301090A1 (en) Natural stone panel with an integrated heating system and manufacturing method thereof
EP3154313B1 (en) Cooking device, and method for its realisation
WO2024047254A1 (en) Space heating film
AU2013202931A1 (en) Heating panel and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07852799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07852799

Country of ref document: EP

Kind code of ref document: A1