WO2008075610A1 - Magnetic detector - Google Patents

Magnetic detector Download PDF

Info

Publication number
WO2008075610A1
WO2008075610A1 PCT/JP2007/074022 JP2007074022W WO2008075610A1 WO 2008075610 A1 WO2008075610 A1 WO 2008075610A1 JP 2007074022 W JP2007074022 W JP 2007074022W WO 2008075610 A1 WO2008075610 A1 WO 2008075610A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
external magnetic
resistance value
magnetoresistive effect
electric resistance
Prior art date
Application number
PCT/JP2007/074022
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshito Sasaki
Shinichi Sasaki
Naoya Hasegawa
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Priority to JP2008550122A priority Critical patent/JP5006339B2/en
Publication of WO2008075610A1 publication Critical patent/WO2008075610A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic detection device including a magnetoresistive effect element, and more particularly to a magnetic detection device capable of bipolar detection.
  • a magnetic detection device including a magnetic detection element has been adopted for opening / closing detection of a folding cellular phone.
  • the magnetic detection element a Hall element or a magnetoresistive effect element is used. Unlike the Hall element, the magnetoresistive element can appropriately change its electric resistance even with a weak external magnetic field and can be expected to have a long life.
  • GMR effect For the magnetoresistive effect element, a GMR element using a giant magnetoresistive effect (GMR effect) is employed.
  • GMR effect giant magnetoresistive effect
  • the RH curve (hysteresis loop) 1 of the GMR element is shifted to the external magnetic field side in the (+) direction as shown in FIG.
  • the electrical resistance value R changes along the RH curve 1 shown in Fig. 8.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-214900
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-180286
  • the folding mobile phone includes the GMR element having the RH curve 1 shown in FIG. 8, when the folding mobile phone is opened and closed, the external magnetic field H in the (+) direction acts on the GMR element from the magnet. So the magnets had to be placed properly.
  • the GMR element having the RH curve 1 shown in FIG. 8 by using a GMR element in which the RH curve is shifted to the external magnetic field side in the (one) direction, the (+) direction and (one It is possible to detect an external magnetic field in either direction.
  • the GMR element for detecting the external magnetic field in the (+) direction and the GGMR element for detecting the external magnetic field in the (one) direction are not the same configuration, such as being formed with different film thicknesses. It was necessary to manufacture. As a result, the manufacturing process becomes complicated!
  • the magnetic detection element incorporated in the magnetic detection device is a magnetoresistive effect element utilizing the magnetoresistive effect.
  • the invention described in Patent Document 1 discloses a magnetic detection device capable of bipolar detection.
  • Patent Document 1 does not disclose a specific configuration of the magnetoresistive element. That is, a specific configuration of the magnetoresistive effect element having the characteristics shown in FIG.
  • an object of the present invention is to provide a magnetic detection device that enables bipolar detection with a simple element structure.
  • a magnetic detection device comprises:
  • It has a magnetoresistive effect element using a magnetoresistive effect that changes its electric resistance against an external magnetic field
  • the magnetoresistive effect element has a laminated structure of a first laminated body and a second laminated body, and the first laminated body includes a first fixed magnetic layer and a first free magnetic layer formed of a first nonmagnetic material layer. And the second laminated body has a second pinned magnetic layer and a second free magnetic layer as a second non-magnetic material layer.
  • the electrical resistance changes with respect to the external magnetic field in the (one) direction opposite to the (+) direction,
  • the external magnetic field in the (+) direction When the external magnetic field in the (+) direction enters, the external magnetic field in the (+) direction is detected by changing the electric resistance value of the first laminate, and the external magnetic field in the () direction enters. In this case, the external magnetic field in the (one) direction is detected by changing the electric resistance value of the second laminated body.
  • the magnetoresistive effect element includes a first stacked body whose electric resistance changes with respect to an external magnetic field in the (+) direction, and an electric resistance which changes with respect to the external magnetic field in the (one) direction. It is formed with a laminated structure with the second stack. As a result, bipolar detection can be realized with a simple element structure.
  • the horizontal axis is the magnitude of the external magnetic field H
  • the vertical axis is the resistance value R of the magnetoresistive element.
  • the acting second interlayer coupling magnetic field Hin2 appears on the external magnetic field side in the (-) direction,
  • the increasing / decreasing tendency of the electric resistance value of the magnetoresistive effect element with respect to the intensity change of the external magnetic field in the (+) direction shows a reverse tendency.
  • two magnetoresistive effect elements are prepared, and one magnetoresistive effect element is connected in series to the first fixed resistance element via the first output extraction unit, and the other magnetoresistive effect element is provided.
  • the resistance effect element is connected in series to the second fixed resistance element via the second output extraction section.
  • the fixed resistance value R3 of the first fixed resistance element is equal to the electric resistance value R1 of the magnetoresistive effect element when the external magnetic field is zero and the external magnetic field is zero when an external magnetic field in the (+) direction acts.
  • the electric resistance of the magnetoresistive effect element changed to the maximum from the electric resistance R1
  • the fixed resistance value R5 of the second fixed resistance element is an electric resistance value R1 when the external magnetic field of the magnetoresistive effect element is zero, and an external magnetic field in the (one) direction. It is preferable that the value be between the electric resistance value R4 of the magnetoresistive effect element changed to the maximum from the electric resistance value R1 when the external magnetic field is zero.
  • the fixed resistance value R3 of the first fixed resistance element is an intermediate value between the electric resistance value R1 and the electric resistance value R2 of the magnetoresistive effect element
  • the fixed resistance value of the second fixed resistance element R5 is more preferably an intermediate value between the electric resistance value R1 and the electric resistance value R4 of the magnetoresistive element.
  • the present invention by using one type of magnetoresistive effect element and two types of fixed resistance elements having different fixed resistance values, it is possible to realize a magnetic detection device capable of handling bipolar. That is, it is not necessary to use a plurality of types of magnetoresistive elements as in the prior art. It is also possible to make a circuit configuration that can detect even the direction of the acting external magnetic field.
  • a first series circuit in which a magnetoresistive effect element and a first fixed resistance element are connected in series
  • a second series circuit in which a magnetoresistive effect element and a second fixed resistance element are connected in series
  • a fixed resistance element connected in series via a third output extraction unit, and the first output extraction unit of the first series circuit and the second output extraction unit of the second series circuit one by one , Connected to the common differential output unit through the connection switching unit together with the third output extraction unit of the third series circuit,
  • connection switching unit when the first output extraction unit and the differential output unit are connected, a first bridge circuit formed by connecting the first series circuit and the third series circuit in parallel is the difference.
  • the second series circuit and the third series circuit are switched to the state connected to the dynamic output unit. It is preferable that the second bridge circuit formed by connecting in parallel is switched to a state in which the second bridge circuit is connected to the differential output section.
  • the first bridge circuit is a side that detects an external magnetic field in the (+) direction
  • the second bridge circuit is a side that detects an external magnetic field in the (one) direction.
  • the two bridge circuits can be obtained with a small number of elements and a simple circuit configuration. The invention's effect
  • the magnetoresistive effect element includes a first stacked body whose electric resistance changes with respect to an external magnetic field in the (+) direction, and an electric resistance which changes with respect to the external magnetic field in the (one) direction. It is formed in a laminated structure with the second laminated body. As a result, bipolar detection can be realized with a simple element structure.
  • FIG. 1 is a circuit configuration diagram of the magnetic detection device 20 of the present embodiment
  • FIG. 2 is an RH graph for explaining the RH curve of the magnetoresistive effect element
  • FIG. 3 is a layer of the magnetoresistive effect element.
  • FIG. 4 to FIG. 7 are schematic cross-sectional views showing a structure of a foldable mobile phone incorporating the magnetic detection device, which is an example for explaining the use of the magnetic detection device of the present embodiment.
  • a magnetic detection device 20 of the present embodiment shown in FIG. 1 includes an element configuration unit 21 and an integrated circuit (IC) 22.
  • IC integrated circuit
  • the element constituent unit 21 includes a first series circuit 26, a magnetoresistive effect element 27, and a first series circuit in which a magnetoresistive effect element 23 and a first fixed resistance element 24 are connected in series via a first output extraction unit 25.
  • the second series circuit 30 in which the fixed resistance element 28 is connected in series via the second output extraction section 29, and the fixed resistance element 31 and the fixed resistance element 32 are connected in series via the third output extraction section 33.
  • the third series circuit 34 is configured.
  • the third series circuit 34 forms a bridge circuit with the first series circuit 26 and the second series circuit 30 as a common circuit.
  • a bridge circuit in which the first series circuit 26 and the third series circuit 34 are connected in parallel is referred to as a first bridge circuit BC1
  • the second series circuit 30 and the third series circuit 34 are connected in parallel.
  • the resulting bridge circuit is referred to as a second bridge circuit BC2.
  • a magnetoresistive effect element 23 and a fixed resistance element 32 are connected in parallel, and the first fixed resistance element 24 and the fixed resistance element 31 are connected. And are connected in parallel.
  • the magnetoresistive effect element 27 and the fixed resistance element 31 are connected in parallel, and the second fixed resistance element 28 and the fixed resistance element 32 are connected in parallel. Yes.
  • the integrated circuit 22 includes an input terminal (power source) 39, ground terminals 42 and 2. Two external output terminals 40, 41 are provided.
  • the input terminal 39, the ground terminal 42, and the external output terminals 40, 41 are electrically connected to a terminal portion on the device side (not shown) by wire bonding or die bonding.
  • the signal line 50 connected to the input terminal 39 and the signal line 51 connected to the ground terminal 42 are connected to both ends of the first series circuit 26, the second series circuit 30 and the third series circuit 34, respectively. It is connected to each of the electrodes provided in the section.
  • one differential amplifier (differential output unit) 35 is provided in the integrated circuit 22 in the integrated circuit 22.
  • the third output extraction unit 33 of the third series circuit 34 is connected to either the + input unit or the one input unit of the differential amplifier 35. Note that the connection between the third output extraction unit 33 and the differential amplifier 35 is fixed (not in a disconnected state).
  • the first output extraction section 25 of the first series circuit 26 and the second output extraction section 29 of the second series circuit 30 are connected to the input section of the first switch circuit (first connection switching section) 36, respectively. ing.
  • the output section of the first switch circuit 36 is connected to either the ⁇ input section or the + input section of the differential amplifier 35 (to the input section on the side where the third output extraction section 33 is not connected). It is connected.
  • the output section of the differential amplifier 35 is connected to a Schmitt trigger type comparator 38, and the output section of the comparator 38 is connected to a second switch circuit (second connection switching). Part) It is connected to 43 input parts. Further, the output section of the second switch circuit 43 is connected to the first external output terminal 40 and the second external output terminal 41 via the two latch circuits 46 and 47 and the FET circuits 54 and 55, respectively.
  • a third switch circuit (third connection switching unit) 48 is provided in the integrated circuit 22.
  • An output part of the third switch circuit 48 is connected to a signal line 51 connected to the ground terminal 42.
  • the input part of the third switch circuit 48 includes a first series circuit 26 and a second series circuit. One end of the circuit 30 is connected.
  • an internal switch circuit 52 and a clock circuit 53 are provided in the integrated circuit 22.
  • the switch of the interval switch circuit 52 When the switch of the interval switch circuit 52 is turned off, the power supply to the integrated circuit 22 is stopped. The on / off of the switch of the interval switch circuit 52 is determined by the clock signal from the clock circuit 53.
  • the internal switch circuit 52 has a power saving function for intermittently energizing.
  • the clock signal from the clock circuit 53 is also output to each of the first switch circuit 36, the second switch circuit 43, and the third switch circuit 48.
  • the magnetoresistive effect element 23 and the magnetoresistive effect element 27 have the same layer structure.
  • the magnetoresistive elements 23 and 27 are formed of a laminated structure of a first laminated body 60 and a second laminated body 61.
  • the laminated structure of the magnetoresistive effect elements 23 and 27 will be described with reference to FIG.
  • the magnetoresistive effect elements 23 and 27 are arranged on the installation surface 62 from below from the seed layer 63, the first antiferromagnetic layer 64, the first pinned magnetic layer 65, and the first nonmagnetic layer.
  • Material layer 66, first free magnetic layer 67, intermediate separation layer 68, second free magnetic layer 69, second nonmagnetic material layer 70, second pinned magnetic layer 71, second antiferromagnetic layer 72, and protective layer 73 Are stacked in this order.
  • the first laminate 60 is composed of a first antiferromagnetic layer 64, a first pinned magnetic layer 65, a first nonmagnetic material layer 66, and a first free magnetic layer 67.
  • the second laminated body 61 includes a second free magnetic layer 69, a second nonmagnetic material layer 70, a second pinned magnetic layer 71, and a second antiferromagnetic layer 72.
  • the first stacked body 60 and the second stacked body 61 are magnetically separated by an intermediate separating layer 68.
  • the first pinned magnetic layer 65 has a laminated ferrimagnetic structure in which a first magnetic layer 65a, a nonmagnetic intermediate layer 65b, and a second magnetic layer 65c are laminated in this order from the bottom.
  • the second pinned magnetic layer 71 has a laminated ferrimagnetic structure in which the second magnetic layer 71c, the nonmagnetic intermediate layer 71b, and the first magnetic layer 71a are laminated in this order from the bottom.
  • the magnetization directions of the first magnetic layers 65a and 71a and the second magnetic layers 65c and 71c constituting the laminated ferrimagnetic structure are antiparallel.
  • the seed layer 63 is formed of NiFeCr or Cr.
  • the first antiferromagnetic layer 64 and the second antiferromagnetic layer 72 are composed of the element ⁇ (where ⁇ is one or more of Pt, Pd, Ir, Rh, Ru, Os).
  • anti-ferromagnetic material containing Mn, or element ⁇ and element a ′ (where elements are Ne, Ar, Kr, Xe, Be, B, C, N, Mg, Al, Si, P, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, Cd, Sn, Hf, Ta, W, Re, Au, Pb, and rare earth elements 1 Seeds or two or more elements) and Mn Made of antiferromagnetic material.
  • the first antiferromagnetic layer 64 and the second antiferromagnetic layer 72 are made of IrMn or PtMn.
  • the first magnetic layer 65a, 71a, the second magnetic layer 65c, 71c, the first free magnetic layer 67, and the second free magnetic layer 69 are each formed of a magnetic material such as a CoFe alloy, a NiFe alloy, or a CoFeNi alloy.
  • the first nonmagnetic material layer 66 and the second nonmagnetic material layer 70 are made of Cu, for example.
  • the nonmagnetic intermediate layers 65b and 71b are made of, for example, Ru.
  • the intermediate separation layer 68 is made of Cu, for example.
  • the protective layer 73 is made of Ta, for example.
  • the magnetization directions of the first magnetic layers 65a and 71a are the (+) direction and the second magnetic layer.
  • the magnetization directions of the layers 65c and 71c are (one) direction.
  • the magnetizations of the first magnetic layers 65a and 7la and the second magnetic layers 65c and 71c are fixed so that they do not fluctuate due to an external magnetic field!
  • FIG. 3 shows a no-magnetic field state in which an external magnetic field is not acting.
  • the magnetization direction of the first free magnetic layer 67 is the (one) direction
  • the magnetization direction of the second free magnetic layer 69 is the (+) direction.
  • the magnetizations of the free magnetic layers 67 and 69 are changed by an external magnetic field.
  • the giant magnetoresistive effect includes the second magnetic layer 65c, 71c and the free magnetic layer.
  • the magnetization of the second free magnetic layer 69 of the second stacked body 61 changes.
  • the magnetization direction of the first free magnetic layer 67 is the (one) direction, the magnetization does not fluctuate even when the external magnetic field H in the (one) direction acts. Therefore, the electrical resistance value of the first laminated body 60 remains constant.
  • the first RH curve C1 and the second RH curve C2 have a loop shape having a predetermined width (meaning that there is hysteresis).
  • This first interlayer coupling magnetic field Hinl acts between the first pinned magnetic layer 65 and the first free magnetic layer 67 and appears on the external magnetic field side in the (+) direction on the RH graph. is doing.
  • This second interlayer coupling magnetic field Hin2 acts between the second pinned magnetic layer 71 and the second free magnetic layer 69 and appears on the external magnetic field side in the (-) direction on the RH graph. is doing.
  • the interlayer coupling magnetic fields Hinl and Hin2 described above can be obtained by adjusting the film thickness of the first nonmagnetic material layer 66 and the second nonmagnetic material layer 70, adjusting the interface roughness, or the like.
  • the magnetoresistive elements 23 and 27 described above are GMR elements using the giant magnetoresistive effect (GMR effect), but are TMR elements using the tunnel magnetoresistive effect (TMR effect). Also good.
  • the force of the pinned magnetic layers 65 and 71 having a laminated ferrimagnetic structure may be other than that, for example, a single layer structure or a laminated structure of magnetic layers.
  • the magnetoresistive effect elements 23 and 27 are fixed resistance elements 24 and 28, respectively. They are connected in series.
  • the fixed resistance value R3 of the first fixed resistance element 24 connected in series to the magnetoresistive effect element 23 is the electric resistance of the magnetoresistive effect element 23 when the external magnetic field H is zero. It is adjusted to be an intermediate value between the gas resistance value R1 and the maximum electric resistance value R2 of the magnetoresistive element 23 when the external magnetic field H in the (+) direction acts!
  • the fixed resistance value R5 of the second fixed resistance element 28 connected in series to the magnetoresistive effect element 27 is, as shown in FIG. 2, when the external magnetic field H of the magnetoresistive effect element 27 is zero. It is adjusted to be an intermediate value between the electric resistance value R1 at the time and the minimum electric resistance value R4 of the magnetoresistive effect element 27 when the external magnetic field in the (one) direction is applied.
  • the fixed resistance elements 24 and 28 have the same material layer structure as the magnetoresistive effect elements 23 and 27 shown in FIG. 3, but the stacking order is different and the electric resistance does not change with respect to the external magnetic field. Formed with structure. In such a case, it is preferable because variations in the temperature coefficient (TCR) between the fixed resistance elements 24 and 28 and the magnetoresistive effect elements 23 and 27 can be suppressed, and the operational stability can be improved.
  • TCR temperature coefficient
  • the fixed resistance elements 31 and 32 constituting the third series circuit 34 also have the same material layer structure as that of the magnetoresistive effect elements 23 and 27, for example, like the fixed resistance elements 24 and 28. However, the stacking order is different and the electrical resistance does not change against an external magnetic field. At this time, the fixed resistance values of the fixed resistance elements 31 and 32 are adjusted to be the same value.
  • the magnetoresistive effect elements 23 and 27 and the fixed resistance elements 24, 28, 31 and 32 are provided on the surface of the magnetic detection device 20 capable of sensing an external magnetic field.
  • the magnetoresistive effect elements 23, 27 and the fixed resistance elements 24, 28, 31, 32 are formed in a meander shape. Thereby, the element resistance of each element can be increased and the current consumption can be reduced.
  • the fixed resistance elements 31 and 32 constituting the third series circuit 34 are integrated into an integrated circuit.
  • the fixed resistance elements 31 and 32 are formed of a high resistance material to more appropriately reduce current consumption.
  • the fixed resistance elements 31 and 32 are made of Si.
  • the magnitude of the external magnetic field H acting on the magnetic detection device 20 is within the “use range” shown in FIG. Within the “use range”, an external magnetic field that is strong enough to change the magnetization direction of the pinned magnetic layers 65 and 71 does not act. That is, the magnetizations of the pinned magnetic layers 65 and 71 remain fixed.
  • the comparator 38 When the electric resistance value R of the magnetoresistive effect element 23 gradually increases from R1 due to the intensity change of the external magnetic field H in the (+) direction, and eventually exceeds the fixed resistance value R3 of the first fixed resistance element 24 Based on the differential potential generated by the differential amplifier 35, the comparator 38 generates an ON signal (magnetic field detection signal), and the ON signal is output from the first external output terminal 40.
  • the first switch circuit 36, the second switch circuit 43, and the third switch circuit 48 are clock circuits.
  • the switch operates in response to the clock signal from 53.
  • the second bridge circuit BC2 is connected to the differential amplifier 35.
  • the differential amplifier 35 and the second external output terminal 41 are connected by the second switch circuit 43, and the second series circuit 30 and the ground terminal 42 are connected by the third switch circuit 48. .
  • the electric resistance value R of the magnetoresistive effect element 27 gradually decreases from R1 due to the intensity change of the external magnetic field H in the (one) direction, and eventually falls below the resistance straight R5 of the second fixed resistance element 28.
  • the comparator 38 When turned, the comparator 38 generates an ON signal (magnetic field detection signal) based on the differential potential generated by the differential amplifier 35, and the ON signal is output from the second output terminal 41.
  • the magnetic detection device 20 of the present embodiment includes the magnetoresistive effect elements 23 and 27 as shown in FIG.
  • the first laminated body 60 has a structure using a magnetoresistive effect in which the electrical resistance changes with respect to the external magnetic field H in the (+) direction
  • the second laminated body 61 has an external magnetic field in the (one) direction.
  • the structure uses the magnetoresistive effect that changes the electrical resistance.
  • the external magnetic field H in either the (+) direction or the (one) direction acts on the magnetic detection device 20.
  • External magnetic field H can be detected. That is, bipolar detection is possible.
  • the magnetoresistive effect elements 23 and 27 are composed of one type of magnetoresistive effect element. That is, as shown in FIG. 1, two magnetoresistive elements 23 and 27 are provided. Since the magnetoresistive elements 23 and 27 have the same layer structure (the film thickness of each layer is also the same at this time). It can be formed by the same manufacturing process, and can be manufactured easily and appropriately.
  • the first interlayer coupling magnetic field Hin 1 acting between 67 appears on the external magnetic field side in the (+) direction on the RH graph.
  • the second interlayer coupling magnetic field Hin2 acting between the second fixed magnetic layer 71 and the second free magnetic layer 69 constituting the second stacked body 61 is shown on the RH graph. It appears on the external magnetic field side in the direction (1)!
  • the magnetic field strength of the external magnetic field H in the (+) direction when the electric resistance value R1 of the magnetoresistive effect element 23, 27 at the position where the external magnetic field H is zero is used as a reference.
  • the magnetoresistive effect elements 23 and 27 have a step-type RH curve including the first RH curve C1 and the second RH curve C2 shown in FIG.
  • the magnetic detection device 20 compatible with bipolar detection can be realized with a simple circuit configuration, and the action direction of the external magnetic field can be detected.
  • the first external output terminal 40 is connected to the first bridge circuit BC1.
  • the external magnetic field H in the (+) direction acts and the electric resistance value of the magnetoresistive effect element 23 is
  • the fixed resistance value R3 of the first fixed resistance element 24 shown in FIG. 2 is exceeded, an ON signal is output from the first external output terminal 40.
  • an OFF signal is always output from the first external output terminal 40 when the electric resistance value of the magnetoresistive effect element 23 is lower than the fixed resistance R3 of the first fixed resistance element 24.
  • the second external output terminal 41 is connected to the second bridge circuit BC2.
  • the external magnetic field H in the (one) direction is applied, and the electric resistance of the magnetoresistive effect element 27 is When the resistance value is less than the fixed resistance R5 of the second fixed resistance element 28 shown in FIG. 2, an ON signal is output from the second external output terminal 41.
  • an OFF signal is always output from the first external output terminal 40.
  • the external magnetic field H in the (+) direction is magnetic. If it can be identified that it is acting on the detection device 20 and an ON signal is output from the second external output terminal 41 and V, (in this case, an OFF signal is output from the first external output terminal 40), ( It can be identified that the external magnetic field H in the direction of ⁇ ) acts on the magnetic detector 20.
  • the fixed resistance value R3 of the first fixed resistance element 24 indicates that the external magnetic field H is zero. It is preferably an intermediate value between the electric resistance value Rl of the magnetoresistive effect element 23 at the time and the maximum resistance value R2 of the magnetoresistive effect element 23 when the external magnetic field H in the (+) direction acts.
  • the fixed resistance value R5 of the second fixed resistance element 28 is the magnetic resistance value R1 of the magnetoresistive effect element 27 when the external magnetic field H is zero and the magnetic resistance when the external magnetic field H in the (one) direction acts. It is preferably an intermediate value with respect to the maximum resistance value R4 of the resistance effect element 27.
  • the magnetic detection device 20 compatible with bipolar detection can be realized appropriately.
  • the output timing of the ON signal when the external magnetic field H in the (+) direction is applied, 1) The output timing of the ON signal when the external magnetic field H in the direction is applied can be set to be the same.
  • the magnetic detection device 20 of the present embodiment uses the first bridge circuit BC1 as the midpoint potential of the third series circuit 34 in which fixed resistance elements 31 and 32 are connected in series, It is shared as the reference potential for the second bridge circuit BC2. Then, the connection between the first output extraction part 25 of the first series circuit 26 constituting the first bridge circuit BC1 and the differential amplifier 35, and the second of the second series circuit 30 constituting the second bridge circuit BC2.
  • a first switch circuit 36 for alternately switching the connection between the output extraction unit 29 and the differential amplifier 35 is provided in the integrated circuit 22.
  • the magnetic detection device 20 of the present embodiment conventionally uses the third series circuit 34 as a common circuit in both the first bridge circuit BC1 and the second bridge circuit BC2.
  • the number of elements can be reduced as compared with FIG.
  • the number of elements can be reduced and the circuit configuration can be simplified in the bipolar sensor.
  • the first switch circuit 48 when the first bridge circuit BC1 and the differential amplifier 35 are connected by the first switch circuit 36, the first switch circuit 48 The column circuit 26 and the ground terminal 42 are connected.
  • the third switch circuit 48 connects the second series circuit 30 and the ground terminal 42. Is connected.
  • no current flows through the first series circuit 26 when the second bridge circuit BC2 and the differential amplifier 35 are connected, no current flows through the first series circuit 26. Therefore, current consumption can be reduced and detection sensitivity can be improved.
  • the third switch circuit 48 is provided between the input terminal 39 and the first series circuit 26, and between the input terminal 39 and the second series circuit 30, together with the ground terminal 42 side or instead of the ground terminal 42 side. It's set up! /!
  • the bipolar detection-compatible magnetic detection device 20 can be used, for example, for opening / closing detection of a folding mobile phone.
  • the foldable mobile phone 90 has a configuration in which a first member (display housing) 91 and a second member (operation housing) 92 are connected so as to be openable and closable.
  • a liquid crystal display, a receiver, and the like are provided on the surface of the first member 91 facing the second member 92.
  • Various operation buttons, a microphone, and the like are provided on the surface of the second member 92 facing the first member 91.
  • FIG. 4 shows a state in which the foldable mobile phone 90 is closed.
  • the first member 91 includes a magnet 94
  • the second member 92 includes the magnetic detection device 20 of the present embodiment. Built-in. As shown in FIG.
  • the magnet 94 and the magnetic detection device 20 are arranged at positions facing each other!
  • the magnetic detection device 20 may be arranged at a position shifted in a direction parallel to the approach direction of the external magnetic field from the position facing the magnet 94.
  • an external magnetic field (+ H) in the (+) direction generated from the magnet 94 is transmitted to the magnetic detection device 20, and the magnetic detection device 20 transmits the external magnetic field (+ H).
  • the folding cellular phone 90 is in a closed state.
  • the folding cellular phone 90 when the folding cellular phone 90 is opened as shown in FIG. 5, as the first member 91 moves away from the second member 92, the external magnetic field (+ H) transmitted to the magnetic detection device 20 gradually increases. As the size increases, the external magnetic field (+ H) transmitted to the magnetic detector 20 eventually becomes zero. Mouth. When the magnitude of the external magnetic field (+ H) transmitted to the magnetic detection device 20 becomes a predetermined magnitude or less, it is detected that the foldable mobile phone 90 is in an open state, for example, The control unit built in the cellular phone 90 is controlled so that the backlight on the back side of the liquid crystal display and the operation buttons shines.
  • the magnetic detection device 20 of the present embodiment is a bipolar compatible sensor. That is, in Fig. 4, the N pole of the magnet 94 is on the left side of the figure and the S pole is on the right side of the figure, and when the polarity is reversed as shown in Fig. 6 (N pole is on the right side and S pole is on the left side)
  • the direction of the external magnetic field ( ⁇ H) exerted on the magnetic detection device 20 is reversed from the direction of the external magnetic field (+ H) in FIG.
  • ⁇ H external magnetic field
  • the magnet 94 can be arranged regardless of the polarity of the external magnetic field, there is no restriction on the arrangement of the magnet 94, and assembly is facilitated.
  • both a detection signal for an external magnetic field in the (+) direction and a detection signal for an external magnetic field in the (one) direction can be obtained.
  • the configuration may be simplified.
  • the camera mode is activated by inverting the first member 91.
  • the direction of the external magnetic field H acting on the magnetic detection device 20 is reversed. Identify the direction of the partial magnetic field. That is, as already described, two external output terminals 40 and 41 are provided as shown in FIG. 1, and the first external output terminal 40 is connected to the first bridge circuit BC1 that detects the external magnetic field H in the (+) direction.
  • the second external output terminal 41 is connected to the second bridge circuit BC2 that detects the external magnetic field H in the (one) direction.
  • the laminated body 61 is the first laminated body in which the electrical resistance changes with respect to the external magnetic field H in the (+) direction, and the laminated body 60 changes in the electrical resistance with respect to the external magnetic field H in the (one) direction.
  • the RH curve has a line-symmetric shape with the horizontal axis shown in Fig. 2 as the axis of symmetry. That is, the electrical resistance of the magnetoresistive elements 23 and 27 gradually decreases from R1 as the external magnetic field in the (+) direction increases, and gradually increases from R1 as the external magnetic field in the (one) direction increases. Become.
  • the magnetic detection device 20 of the present embodiment may be used for opening / closing detection of a portable electronic device such as a game machine in addition to detection of opening / closing of a folding mobile phone.
  • this embodiment can be used for applications that require a magnetic detection device 20 that supports bipolar detection, such as a slide sensor.
  • FIG. 1 is a circuit configuration diagram of a magnetic detection device of the present embodiment
  • FIG. 2 RH graph for explaining the RH curve of the magnetoresistive effect element of the present embodiment.
  • FIG. 3 Partial sectional view showing the layer structure of the magnetoresistive effect element of the present embodiment. A partial cross-sectional view of a cut surface cut from a normal direction),
  • FIG. 4 is an example for explaining the use of the magnetic detection device of the present embodiment (a partial schematic view of a foldable mobile phone incorporating the magnetic detection device, showing a state in which the phone is closed);
  • FIG. 5 An example for explaining the use of the magnetic detection device of the present embodiment (a partial schematic view of a foldable mobile phone incorporating the magnetic detection device, showing a state in which the phone is opened)
  • FIG. 6 is an example for explaining the use of the magnetic detection device of the present embodiment (a partial schematic view of a foldable mobile phone incorporating the magnetic detection device, with the arrangement of magnets reversed from FIG. 4; The phone is closed)
  • FIG. 7 is an example for explaining the use of the magnetic detection device of the present embodiment (a partial schematic view of a foldable mobile phone incorporating the magnetic detection device, with the arrangement of magnets reversed from FIG. 5; The phone is open)

Abstract

[PROBLEMS] To provide a magnetic detector which can perform bipolar detection through a simple element configuration. [MEANS FOR SOLVING PROBLEMS] A magnetoresistive effect element (23, 27) is formed of a multilayer structure of a first laminate (60) and a second laminate (61). The first laminate (60) is constituted by laminating a first fixed magnetic layer (65) and a first free magnetic layer (67) through a first nonmagnetic material layer (66) and has an electric resistance variable for the external magnetic field in the (+) direction. The second laminate (61) is constituted by laminating a second fixed magnetic layer (71) and a second free magnetic layer (69) through a second nonmagnetic material layer (70) and has an electric resistance variable for the external magnetic field in the (-) direction. When the external magnetic field in the (+) direction intrudes, electric resistance of the first laminate (60) varies and the external magnetic field in the (+) direction is detected and when the external magnetic field in the (-) direction intrudes, electric resistance of the second laminate (61) varies and the external magnetic field in the (-) direction is detected.

Description

明 細 書  Specification
磁気検出装置  Magnetic detector
技術分野  Technical field
[0001] 本発明は、磁気抵抗効果素子を備えた磁気検出装置に係り、特に、双極検出可能 な磁気検出装置に関する。  The present invention relates to a magnetic detection device including a magnetoresistive effect element, and more particularly to a magnetic detection device capable of bipolar detection.
背景技術  Background art
[0002] 最近、折畳み式携帯電話の開閉検知には磁気検出素子を備えた磁気検出装置が 採用されている。  [0002] Recently, a magnetic detection device including a magnetic detection element has been adopted for opening / closing detection of a folding cellular phone.
[0003] 前記磁気検出素子にはホール素子や磁気抵抗効果素子が用いられる。前記磁気 抵抗効果素子は、ホール素子と違って弱い外部磁界に対しても適切に電気抵抗が 変化し、長寿命を期待できる。  As the magnetic detection element, a Hall element or a magnetoresistive effect element is used. Unlike the Hall element, the magnetoresistive element can appropriately change its electric resistance even with a weak external magnetic field and can be expected to have a long life.
[0004] 前記磁気抵抗効果素子には、巨大磁気抵抗効果 (GMR効果)を用いた GMR素 子が採用されている。  [0004] For the magnetoresistive effect element, a GMR element using a giant magnetoresistive effect (GMR effect) is employed.
[0005] 前記 GMR素子の RHカーブ(ヒステリシスループ) 1は、図 8に示すように例えば、( + )方向の外部磁界側にシフトして!/、る。すなわち GMR素子は( + )方向の外部磁 界 Hが侵入すると図 8に示す RHカーブ 1に沿って電気抵抗値 Rが変化する。  [0005] The RH curve (hysteresis loop) 1 of the GMR element is shifted to the external magnetic field side in the (+) direction as shown in FIG. In other words, when the external magnetic field H in the (+) direction enters the GMR element, the electrical resistance value R changes along the RH curve 1 shown in Fig. 8.
特許文献 1 :特開 2005— 214900号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-214900
特許文献 2:特開 2004— 180286号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-180286
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしな力 Sら、図 8に示す RHカーブ 1を有する GMR素子では、前記(+ )方向と逆 方向である(-)方向の外部磁界 Hの強度変化に対して電気抵抗が変化しない。 However, in the GMR element having the RH curve 1 shown in FIG. 8, the electrical resistance changes with respect to the intensity change of the external magnetic field H in the (−) direction opposite to the (+) direction. do not do.
[0007] よって、(一)方向の外部磁界 Hが侵入した際、前記 GMR素子は電気抵抗変化し ないため、(一)方向の外部磁界を検出することはできない。 [0007] Therefore, when the external magnetic field H in the (1) direction invades, the GMR element does not change in electric resistance, and thus the external magnetic field in the (1) direction cannot be detected.
[0008] したがって、折り畳み携帯電話に図 8に示す RHカーブ 1を有する GMR素子を内臓 するとき、折畳み式携帯電話の開閉時に、 GMR素子に磁石から(+ )方向の外部磁 界 Hが作用するように、磁石を適切に配置しなければいけなかった。 [0009] また、図 8に示す RHカーブ 1を有する GMR素子とともに、 RHカーブが、(一)方向 の外部磁界側にシフトしている GMR素子を用いることで、(+ )方向、及び(一)方向 のどちらの方向の外部磁界も検出することが可能になる。 [0008] Therefore, when the folding mobile phone includes the GMR element having the RH curve 1 shown in FIG. 8, when the folding mobile phone is opened and closed, the external magnetic field H in the (+) direction acts on the GMR element from the magnet. So the magnets had to be placed properly. [0009] In addition to the GMR element having the RH curve 1 shown in FIG. 8, by using a GMR element in which the RH curve is shifted to the external magnetic field side in the (one) direction, the (+) direction and (one It is possible to detect an external magnetic field in either direction.
[0010] しかしながら、かかる場合、素子数が多くなるといった問題があった。特に、(+ )方 向の外部磁界検出用の GMR素子と、(一)方向の外部磁界検出用の GGMR素子 は、異なる膜厚で形成される等、同じ構成でないので、別々の製造プロセスで製造す ることが必要であった。よって製造プロセスが煩雑化すると!/、つた問題があった。  However, in such a case, there is a problem that the number of elements increases. In particular, the GMR element for detecting the external magnetic field in the (+) direction and the GGMR element for detecting the external magnetic field in the (one) direction are not the same configuration, such as being formed with different film thicknesses. It was necessary to manufacture. As a result, the manufacturing process becomes complicated!
[0011] 上記の特許文献 1 , 2に記載された発明には、磁気検出装置に内臓される磁気検 出素子が、磁気抵抗効果を利用した磁気抵抗効果素子であると記載されている。特 に、特許文献 1に記載された発明には、双極検出可能な磁気検出装置が開示されて いる。  [0011] In the inventions described in Patent Documents 1 and 2, it is described that the magnetic detection element incorporated in the magnetic detection device is a magnetoresistive effect element utilizing the magnetoresistive effect. In particular, the invention described in Patent Document 1 discloses a magnetic detection device capable of bipolar detection.
[0012] しかしながら特許文献 1に記載された発明には、前記磁気抵抗効果素子の具体的 構成が開示されていない。すなわち特許文献 1の図 2の特性を有する磁気抵抗効果 素子の具体的構成が開示されてレ、なレ、。  However, the invention described in Patent Document 1 does not disclose a specific configuration of the magnetoresistive element. That is, a specific configuration of the magnetoresistive effect element having the characteristics shown in FIG.
[0013] そこで本発明は上記従来の課題を解決するためのものであり、特に、簡単な素子 構造で双極検出を可能とした磁気検出装置を提供することを目的としている。  [0013] Therefore, the present invention has been made to solve the above-described conventional problems, and in particular, an object of the present invention is to provide a magnetic detection device that enables bipolar detection with a simple element structure.
課題を解決するための手段  Means for solving the problem
[0014] 本発明における磁気検出装置は、  [0014] A magnetic detection device according to the present invention comprises:
外部磁界に対して電気抵抗が変化する磁気抵抗効果を用いた磁気抵抗効果素子 を有し、  It has a magnetoresistive effect element using a magnetoresistive effect that changes its electric resistance against an external magnetic field,
前記磁気抵抗効果素子は、第 1積層体と第 2積層体との積層構造で構成され、 前記第 1積層体は、第 1固定磁性層及び第 1フリー磁性層が第 1非磁性材料層を 介して積層された構成であり、(+ )方向の外部磁界に対して電気抵抗が変化し、 前記第 2積層体は、第 2固定磁性層及び第 2フリー磁性層が第 2非磁性材料層を 介して積層された構成であり、前記(+ )方向とは逆方向の(一)方向の外部磁界に 対して電気抵抗が変化し、  The magnetoresistive effect element has a laminated structure of a first laminated body and a second laminated body, and the first laminated body includes a first fixed magnetic layer and a first free magnetic layer formed of a first nonmagnetic material layer. And the second laminated body has a second pinned magnetic layer and a second free magnetic layer as a second non-magnetic material layer. The electrical resistance changes with respect to the external magnetic field in the (one) direction opposite to the (+) direction,
前記(+ )方向の外部磁界が侵入したときに、前記第 1積層体の電気抵抗値が変化 することで前記( + )方向の外部磁界が検出され、前記( )方向の外部磁界が侵入 したときに、前記第 2積層体の電気抵抗値が変化することで前記(一)方向の外部磁 界が検出されることを特徴とするものである。 When the external magnetic field in the (+) direction enters, the external magnetic field in the (+) direction is detected by changing the electric resistance value of the first laminate, and the external magnetic field in the () direction enters. In this case, the external magnetic field in the (one) direction is detected by changing the electric resistance value of the second laminated body.
[0015] 本発明では、前記磁気抵抗効果素子は、(+ )方向の外部磁界に対して電気抵抗 が変化する第 1積層体と、(一)方向の外部磁界に対して電気抵抗が変化する第 2積 層体との積層構造で形成されている。これによつて、双極検出を簡単な素子構造で 実現できる。 [0015] In the present invention, the magnetoresistive effect element includes a first stacked body whose electric resistance changes with respect to an external magnetic field in the (+) direction, and an electric resistance which changes with respect to the external magnetic field in the (one) direction. It is formed with a laminated structure with the second stack. As a result, bipolar detection can be realized with a simple element structure.
[0016] 本発明で採用される磁気抵抗効果素子は、  The magnetoresistive effect element employed in the present invention is
横軸を外部磁界 Hの大きさとし、縦軸を磁気抵抗効果素子の抵抗値 Rとした R— H グラフ上には、  On the R—H graph, the horizontal axis is the magnitude of the external magnetic field H, and the vertical axis is the resistance value R of the magnetoresistive element.
前記第 1固定磁性層と前記第 1フリー磁性層間に作用する第 1層間結合磁界 Hinl 、 (+ )方向の外部磁界側に発現し、前記第 2固定磁性層と前記第 2フリー磁性層 間に作用する第 2層間結合磁界 Hin2が、前記(-)方向の外部磁界側に発現すると ともに、  A first interlayer coupling magnetic field Hinl acting between the first pinned magnetic layer and the first free magnetic layer, expressed on the external magnetic field side in the (+) direction, between the second pinned magnetic layer and the second free magnetic layer; The acting second interlayer coupling magnetic field Hin2 appears on the external magnetic field side in the (-) direction,
外部磁界がゼロのときの前記磁気抵抗効果素子の電気抵抗値を基準としたとき、( + )方向の外部磁界の強度変化に対する前記磁気抵抗効果素子の電気抵抗値の 増減傾向と、(一)方向の外部磁界の強度変化に対する前記磁気抵抗効果素子の電 気抵抗値の増減傾向とが逆傾向を示す構成となっている。  When the electric resistance value of the magnetoresistive effect element when the external magnetic field is zero is used as a reference, the increasing / decreasing tendency of the electric resistance value of the magnetoresistive effect element with respect to the intensity change of the external magnetic field in the (+) direction, The increase / decrease tendency of the electric resistance value of the magnetoresistive effect element with respect to the change in the strength of the external magnetic field in the direction shows a reverse tendency.
[0017] これによつて、簡単な素子構成で適切に双極検出が可能となり、特に、(+ )方向の 外部磁界の強度変化に対する抵抗値の増減傾向と、(一)方向の外部磁界の強度変 化に対する抵抗値の増減傾向とが逆傾向を示すことで、検出される外部磁界の方向 までも検知することが可能となる。  [0017] This makes it possible to appropriately detect a bipolar element with a simple element configuration. In particular, the tendency of the resistance value to increase / decrease with respect to the change in the intensity of the external magnetic field in the (+) direction and the strength of the external magnetic field in the (1) direction. Since the increase / decrease tendency of the resistance value with respect to the change shows a reverse tendency, even the direction of the detected external magnetic field can be detected.
[0018] 本発明では、前記磁気抵抗効果素子は 2個用意され、一つの前記磁気抵抗効果 素子は第 1出力取り出し部を介して第 1固定抵抗素子に直列接続され、もう一つの前 記磁気抵抗効果素子は第 2出力取り出し部を介して第 2固定抵抗素子に直列接続さ れており、  In the present invention, two magnetoresistive effect elements are prepared, and one magnetoresistive effect element is connected in series to the first fixed resistance element via the first output extraction unit, and the other magnetoresistive effect element is provided. The resistance effect element is connected in series to the second fixed resistance element via the second output extraction section.
前記第 1固定抵抗素子の固定抵抗値 R3は、外部磁界がゼロのときの前記磁気抵 抗効果素子の電気抵抗値 R1と、(+ )方向の外部磁界が作用したときに、外部磁界 がゼロのときの電気抵抗値 R1から最大限に変化した前記磁気抵抗効果素子の電気 抵抗値 R2との間の値であり、前記第 2固定抵抗素子の固定抵抗値 R5は、前記磁気 抵抗効果素子の外部磁界がゼロのときの電気抵抗値 R1と、(一)方向の外部磁界が 作用したときに、前記外部磁界がゼロのときの電気抵抗値 R1から最大限に変化した 前記磁気抵抗効果素子の電気抵抗値 R4との間の値であることが好ましい。 The fixed resistance value R3 of the first fixed resistance element is equal to the electric resistance value R1 of the magnetoresistive effect element when the external magnetic field is zero and the external magnetic field is zero when an external magnetic field in the (+) direction acts. The electric resistance of the magnetoresistive effect element changed to the maximum from the electric resistance R1 The fixed resistance value R5 of the second fixed resistance element is an electric resistance value R1 when the external magnetic field of the magnetoresistive effect element is zero, and an external magnetic field in the (one) direction. It is preferable that the value be between the electric resistance value R4 of the magnetoresistive effect element changed to the maximum from the electric resistance value R1 when the external magnetic field is zero.
[0019] 特に、前記第 1固定抵抗素子の固定抵抗値 R3は、前記磁気抵抗効果素子の電気 抵抗値 R1と電気抵抗値 R2との中間値であり、前記第 2固定抵抗素子の固定抵抗値 R5は、前記磁気抵抗効果素子の電気抵抗値 R1と電気抵抗値 R4との中間値である ことがより好ましい。 In particular, the fixed resistance value R3 of the first fixed resistance element is an intermediate value between the electric resistance value R1 and the electric resistance value R2 of the magnetoresistive effect element, and the fixed resistance value of the second fixed resistance element R5 is more preferably an intermediate value between the electric resistance value R1 and the electric resistance value R4 of the magnetoresistive element.
[0020] 本発明では、 1種類の磁気抵抗効果素子と、固定抵抗値が異なる 2種類の固定抵 抗素子を用いることで、双極対応可能な磁気検出装置を実現できる。すなわち従来 のように複数種類の磁気抵抗効果素子を用いる必要がない。また、作用する外部磁 界の方向までも検知できる回路構成にすることが可能である。  In the present invention, by using one type of magnetoresistive effect element and two types of fixed resistance elements having different fixed resistance values, it is possible to realize a magnetic detection device capable of handling bipolar. That is, it is not necessary to use a plurality of types of magnetoresistive elements as in the prior art. It is also possible to make a circuit configuration that can detect even the direction of the acting external magnetic field.
[0021] 本発明では、磁気抵抗効果素子と第 1固定抵抗素子とが直列接続された第 1直列 回路と、磁気抵抗効果素子と第 2固定抵抗素子とが直列接続された第 2直列回路と 、固定抵抗素子が第 3出力取り出し部を介して直列接続された第 3直列回路とを備え 前記第 1直列回路の第 1出力取り出し部と前記第 2直列回路の第 2出力取り出し部 は一方ずつ、接続切換部を介して共通の差動出力部に前記第 3直列回路の第 3出 力取り出し部と共に接続されており、  In the present invention, a first series circuit in which a magnetoresistive effect element and a first fixed resistance element are connected in series, a second series circuit in which a magnetoresistive effect element and a second fixed resistance element are connected in series, A fixed resistance element connected in series via a third output extraction unit, and the first output extraction unit of the first series circuit and the second output extraction unit of the second series circuit one by one , Connected to the common differential output unit through the connection switching unit together with the third output extraction unit of the third series circuit,
前記接続切換部にて、前記第 1出力取り出し部と前記差動出力部が接続されたと き、前記第 1直列回路と前記第 3直列回路とが並列接続してなる第 1ブリッジ回路が 前記差動出力部に接続された状態に切り換わり、前記接続切換部にて、前記第 2出 力取り出し部と前記差動出力部が接続されたとき、前記第 2直列回路と前記第 3直列 回路とが並列接続してなる第 2ブリッジ回路が前記差動出力部に接続された状態に 切り換わることが好適である。  In the connection switching unit, when the first output extraction unit and the differential output unit are connected, a first bridge circuit formed by connecting the first series circuit and the third series circuit in parallel is the difference. When the second output extraction unit and the differential output unit are connected in the connection switching unit, the second series circuit and the third series circuit are switched to the state connected to the dynamic output unit. It is preferable that the second bridge circuit formed by connecting in parallel is switched to a state in which the second bridge circuit is connected to the differential output section.
[0022] 第 1ブリッジ回路は、(+ )方向の外部磁界を検出する側であり、第 2ブリッジ回路は 、(一)方向の外部磁界を検出する側である。そして本発明では、上記 2つのブリッジ 回路を少ない素子数で且つ、簡単な回路構成で得ることが可能である。 発明の効果 [0022] The first bridge circuit is a side that detects an external magnetic field in the (+) direction, and the second bridge circuit is a side that detects an external magnetic field in the (one) direction. In the present invention, the two bridge circuits can be obtained with a small number of elements and a simple circuit configuration. The invention's effect
[0023] 本発明では、磁気抵抗効果素子は、(+ )方向の外部磁界に対して電気抵抗が変 化する第 1積層体と、(一)方向の外部磁界に対して電気抵抗が変化する第 2積層体 との積層構造で形成されている。これによつて、双極検出を簡単な素子構造で実現 できる。  [0023] In the present invention, the magnetoresistive effect element includes a first stacked body whose electric resistance changes with respect to an external magnetic field in the (+) direction, and an electric resistance which changes with respect to the external magnetic field in the (one) direction. It is formed in a laminated structure with the second laminated body. As a result, bipolar detection can be realized with a simple element structure.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 図 1は、本実施形態の磁気検出装置 20の回路構成図、図 2は磁気抵抗効果素子 の RHカーブを説明するための R— Hグラフ、図 3は、磁気抵抗効果素子の層構造を 示す部分断面図、図 4〜図 7は、本実施形態の磁気検出装置の用途を説明するため の一例であり、前記磁気検出装置を内臓した折畳み式携帯電話の模式図、である。  FIG. 1 is a circuit configuration diagram of the magnetic detection device 20 of the present embodiment, FIG. 2 is an RH graph for explaining the RH curve of the magnetoresistive effect element, and FIG. 3 is a layer of the magnetoresistive effect element. FIG. 4 to FIG. 7 are schematic cross-sectional views showing a structure of a foldable mobile phone incorporating the magnetic detection device, which is an example for explaining the use of the magnetic detection device of the present embodiment.
[0025] 図 1に示す本実施形態の磁気検出装置 20は、素子構成部 21と集積回路 (IC) 22 とを有して構成される。  A magnetic detection device 20 of the present embodiment shown in FIG. 1 includes an element configuration unit 21 and an integrated circuit (IC) 22.
[0026] 前記素子構成部 21は、磁気抵抗効果素子 23と第 1固定抵抗素子 24とが第 1出力 取り出し部 25を介して直列接続された第 1直列回路 26、磁気抵抗効果素子 27と第 2 固定抵抗素子 28とが第 2出力取り出し部 29を介して直列接続された第 2直列回路 3 0、及び、固定抵抗素子 31と固定抵抗素子 32が第 3出力取り出し部 33を介して直列 接続された第 3直列回路 34で構成される。  [0026] The element constituent unit 21 includes a first series circuit 26, a magnetoresistive effect element 27, and a first series circuit in which a magnetoresistive effect element 23 and a first fixed resistance element 24 are connected in series via a first output extraction unit 25. 2 The second series circuit 30 in which the fixed resistance element 28 is connected in series via the second output extraction section 29, and the fixed resistance element 31 and the fixed resistance element 32 are connected in series via the third output extraction section 33. The third series circuit 34 is configured.
[0027] 前記第 3直列回路 34は、共通回路として前記第 1直列回路 26及び前記第 2直列 回路 30と夫々ブリッジ回路を構成する。以下では前記第 1直列回路 26と前記第 3直 列回路 34とが並列接続されてなるブリッジ回路を第 1ブリッジ回路 BC1と、前記第 2 直列回路 30と前記第 3直列回路 34とが並列接続されてなるブリッジ回路を第 2ブリツ ジ回路 BC2と称する。  The third series circuit 34 forms a bridge circuit with the first series circuit 26 and the second series circuit 30 as a common circuit. Hereinafter, a bridge circuit in which the first series circuit 26 and the third series circuit 34 are connected in parallel is referred to as a first bridge circuit BC1, and the second series circuit 30 and the third series circuit 34 are connected in parallel. The resulting bridge circuit is referred to as a second bridge circuit BC2.
[0028] 図 1に示すように、前記第 1ブリッジ回路 BC1では、磁気抵抗効果素子 23と、固定 抵抗素子 32とが並列接続されるとともに、前記第 1固定抵抗素子 24と前記固定抵抗 素子 31とが並列接続されている。また前記第 2ブリッジ回路 BC2では、前記磁気抵 抗効果素子 27と、前記固定抵抗素子 31とが並列接続されるとともに、前記第 2固定 抵抗素子 28と前記固定抵抗素子 32とが並列接続されている。  As shown in FIG. 1, in the first bridge circuit BC1, a magnetoresistive effect element 23 and a fixed resistance element 32 are connected in parallel, and the first fixed resistance element 24 and the fixed resistance element 31 are connected. And are connected in parallel. In the second bridge circuit BC2, the magnetoresistive effect element 27 and the fixed resistance element 31 are connected in parallel, and the second fixed resistance element 28 and the fixed resistance element 32 are connected in parallel. Yes.
[0029] 図 1に示すように前記集積回路 22には入力端子(電源) 39、アース端子 42及び 2 つの外部出力端子 40, 41が設けられている。前記入力端子 39、アース端子 42及び 外部出力端子 40, 41は夫々図示しない機器側の端子部とワイヤボンディングやダイ ボンディング等で電気的に接続されて!/、る。 As shown in FIG. 1, the integrated circuit 22 includes an input terminal (power source) 39, ground terminals 42 and 2. Two external output terminals 40, 41 are provided. The input terminal 39, the ground terminal 42, and the external output terminals 40, 41 are electrically connected to a terminal portion on the device side (not shown) by wire bonding or die bonding.
[0030] 前記入力端子 39に接続された信号ライン 50及び前記アース端子 42に接続された 信号ライン 51は、前記第 1直列回路 26,第 2直列回路 30及び第 3直列回路 34の両 側端部に設けられた電極の夫々に接続されてレ、る。  [0030] The signal line 50 connected to the input terminal 39 and the signal line 51 connected to the ground terminal 42 are connected to both ends of the first series circuit 26, the second series circuit 30 and the third series circuit 34, respectively. It is connected to each of the electrodes provided in the section.
[0031] 図 1に示すように集積回路 22内には、 1つの差動増幅器 (差動出力部) 35が設けら れている。前記第 3直列回路 34の第 3出力取り出し部 33は、前記差動増幅器 35の +入力部、一入力部のどちらか一方に接続されている。なお、前記第 3出力取り出し 部 33と前記差動増幅器 35の接続は固定されている(非接続状態にはならない)。  As shown in FIG. 1, in the integrated circuit 22, one differential amplifier (differential output unit) 35 is provided. The third output extraction unit 33 of the third series circuit 34 is connected to either the + input unit or the one input unit of the differential amplifier 35. Note that the connection between the third output extraction unit 33 and the differential amplifier 35 is fixed (not in a disconnected state).
[0032] 前記第 1直列回路 26の第 1出力取り出し部 25及び第 2直列回路 30の第 2出力取り 出し部 29は夫々第 1スィッチ回路(第 1接続切換部) 36の入力部に接続されている。 そして、前記第 1スィッチ回路 36の出力部は前記差動増幅器 35の-入力部、 +入 力部のどちらか一方に(前記第 3出力取り出し部 33が接続されていない側の入力部 に)接続されている。  [0032] The first output extraction section 25 of the first series circuit 26 and the second output extraction section 29 of the second series circuit 30 are connected to the input section of the first switch circuit (first connection switching section) 36, respectively. ing. The output section of the first switch circuit 36 is connected to either the − input section or the + input section of the differential amplifier 35 (to the input section on the side where the third output extraction section 33 is not connected). It is connected.
[0033] 図 1に示すように、前記差動増幅器 35の出力部は、シュミットトリガー型のコンパレ ータ 38に接続され、さらに前記コンパレータ 38の出力部は第 2のスィッチ回路(第 2 接続切換部) 43の入力部に接続されている。さらに前記第 2スィッチ回路 43の出力 部は、 2つのラッチ回路 46, 47及び FET回路 54、 55を経て第 1外部出力端子 40及 び第 2外部出力端子 41に夫々接続される。  As shown in FIG. 1, the output section of the differential amplifier 35 is connected to a Schmitt trigger type comparator 38, and the output section of the comparator 38 is connected to a second switch circuit (second connection switching). Part) It is connected to 43 input parts. Further, the output section of the second switch circuit 43 is connected to the first external output terminal 40 and the second external output terminal 41 via the two latch circuits 46 and 47 and the FET circuits 54 and 55, respectively.
[0034] さらに図 1に示すように、前記集積回路 22内には第 3のスィッチ回路(第 3接続切換 部) 48が設けられている。前記第 3のスィッチ回路 48の出力部は、前記アース端子 4 2に接続された信号ライン 51に接続され、前記第 3のスィッチ回路 48の入力部には、 第 1直列回路 26及び第 2直列回路 30の一端部が接続されている。  Further, as shown in FIG. 1, a third switch circuit (third connection switching unit) 48 is provided in the integrated circuit 22. An output part of the third switch circuit 48 is connected to a signal line 51 connected to the ground terminal 42. The input part of the third switch circuit 48 includes a first series circuit 26 and a second series circuit. One end of the circuit 30 is connected.
[0035] さらに図 1に示すように、前記集積回路 22内には、インターノ^レスイッチ回路 52及 びクロック回路 53が設けられて!/、る。前記インターバルスィッチ回路 52のスィッチが オフされると、集積回路 22内への通電が停止するようになっている。前記インターバ ルスイッチ回路 52のスィッチのオン.オフは、前記クロック回路 53からのクロック信号 に連動しており、前記インターノ^レスイッチ回路 52は通電状態を間欠的に行う節電 機能を有している。 Further, as shown in FIG. 1, an internal switch circuit 52 and a clock circuit 53 are provided in the integrated circuit 22. When the switch of the interval switch circuit 52 is turned off, the power supply to the integrated circuit 22 is stopped. The on / off of the switch of the interval switch circuit 52 is determined by the clock signal from the clock circuit 53. The internal switch circuit 52 has a power saving function for intermittently energizing.
[0036] 前記クロック回路 53からのクロック信号は、第 1スィッチ回路 36、第 2スィッチ回路 4 3、及び第 3スィッチ回路 48の夫々にも出力される。  The clock signal from the clock circuit 53 is also output to each of the first switch circuit 36, the second switch circuit 43, and the third switch circuit 48.
[0037] 前記磁気抵抗効果素子 23と磁気抵抗効果素子 27は同じ層構造である。前記磁気 抵抗効果素子 23 , 27は、第 1積層体 60と第 2積層体 61との積層構造で形成される 。磁気抵抗効果素子 23, 27の積層構造を図 3を用いて説明する。  The magnetoresistive effect element 23 and the magnetoresistive effect element 27 have the same layer structure. The magnetoresistive elements 23 and 27 are formed of a laminated structure of a first laminated body 60 and a second laminated body 61. The laminated structure of the magnetoresistive effect elements 23 and 27 will be described with reference to FIG.
[0038] 図 3に示すように、前記磁気抵抗効果素子 23, 27は、設置面 62上に下からシード 層 63、第 1反強磁性層 64、第 1固定磁性層 65、第 1非磁性材料層 66、第 1フリー磁 性層 67、中間分離層 68、第 2フリー磁性層 69、第 2非磁性材料層 70、第 2固定磁性 層 71、第 2反強磁性層 72及び保護層 73の順に積層されている。  As shown in FIG. 3, the magnetoresistive effect elements 23 and 27 are arranged on the installation surface 62 from below from the seed layer 63, the first antiferromagnetic layer 64, the first pinned magnetic layer 65, and the first nonmagnetic layer. Material layer 66, first free magnetic layer 67, intermediate separation layer 68, second free magnetic layer 69, second nonmagnetic material layer 70, second pinned magnetic layer 71, second antiferromagnetic layer 72, and protective layer 73 Are stacked in this order.
[0039] 図 3に示すように、前記第 1積層体 60は、第 1反強磁性層 64、第 1固定磁性層 65、 第 1非磁性材料層 66及び第 1フリー磁性層 67で構成される。前記第 2積層体 61は、 第 2フリー磁性層 69、第 2非磁性材料層 70、第 2固定磁性層 71及び第 2反強磁性 層 72で構成される。前記第 1積層体 60と第 2積層体 61間は中間分離層 68によって 磁気的に分離されている。  As shown in FIG. 3, the first laminate 60 is composed of a first antiferromagnetic layer 64, a first pinned magnetic layer 65, a first nonmagnetic material layer 66, and a first free magnetic layer 67. The The second laminated body 61 includes a second free magnetic layer 69, a second nonmagnetic material layer 70, a second pinned magnetic layer 71, and a second antiferromagnetic layer 72. The first stacked body 60 and the second stacked body 61 are magnetically separated by an intermediate separating layer 68.
[0040] 図 3に示すように、第 1固定磁性層 65は、下から第 1磁性層 65a、非磁性中間層 65 b及び第 2磁性層 65cの順に積層された積層フェリ構造である。第 2固定磁性層 71は 、下から第 2磁性層 71c、非磁性中間層 71b及び第 1磁性層 71 aの順に積層された 積層フェリ構造である。  As shown in FIG. 3, the first pinned magnetic layer 65 has a laminated ferrimagnetic structure in which a first magnetic layer 65a, a nonmagnetic intermediate layer 65b, and a second magnetic layer 65c are laminated in this order from the bottom. The second pinned magnetic layer 71 has a laminated ferrimagnetic structure in which the second magnetic layer 71c, the nonmagnetic intermediate layer 71b, and the first magnetic layer 71a are laminated in this order from the bottom.
[0041] 前記積層フェリ構造を構成する第 1磁性層 65a, 71 aと第 2磁性層 65c, 71cの磁化 方向は反平行となっている。  [0041] The magnetization directions of the first magnetic layers 65a and 71a and the second magnetic layers 65c and 71c constituting the laminated ferrimagnetic structure are antiparallel.
[0042] 前記シード層 63は、 NiFeCrあるいは Crで形成される。前記第 1反強磁性層 64及 び第 2反強磁性層 72は、元素 α (ただし αは、 Pt, Pd, Ir, Rh, Ru, Osのうち 1種ま たは 2種以上の元素である)と Mnとを含有する反強磁性材料、又は、元素 αと元素 a ' (ただし元素 は、 Ne, Ar, Kr, Xe, Be, B, C, N, Mg, Al, Si, P, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, Cd, Sn, Hf, Ta, W, Re, Au, Pb、及び希土類元素のうち 1種または 2種以上の元素である)と Mnとを含有す る反強磁性材料で形成される。例えば前記第 1反強磁性層 64及び第 2反強磁性層 7 2は、 IrMnや PtMnで形成される。前記第 1磁性層 65a, 71a,第 2磁性層 65c, 71c 、第 1フリー磁性層 67及び第 2フリー磁性層 69は夫々、 CoFe合金、 NiFe合金、 Co FeNi合金等の磁性材料で形成される。また前記第 1非磁性材料層 66及び第 2非磁 性材料層 70は例えば、 Cuで形成される。また非磁性中間層 65b, 71bは例えば Ru で形成される。前記中間分離層 68は例えば Cuで形成される。また前記保護層 73は 例えば Taで形成される。 [0042] The seed layer 63 is formed of NiFeCr or Cr. The first antiferromagnetic layer 64 and the second antiferromagnetic layer 72 are composed of the element α (where α is one or more of Pt, Pd, Ir, Rh, Ru, Os). Or anti-ferromagnetic material containing Mn, or element α and element a ′ (where elements are Ne, Ar, Kr, Xe, Be, B, C, N, Mg, Al, Si, P, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Ag, Cd, Sn, Hf, Ta, W, Re, Au, Pb, and rare earth elements 1 Seeds or two or more elements) and Mn Made of antiferromagnetic material. For example, the first antiferromagnetic layer 64 and the second antiferromagnetic layer 72 are made of IrMn or PtMn. The first magnetic layer 65a, 71a, the second magnetic layer 65c, 71c, the first free magnetic layer 67, and the second free magnetic layer 69 are each formed of a magnetic material such as a CoFe alloy, a NiFe alloy, or a CoFeNi alloy. . The first nonmagnetic material layer 66 and the second nonmagnetic material layer 70 are made of Cu, for example. The nonmagnetic intermediate layers 65b and 71b are made of, for example, Ru. The intermediate separation layer 68 is made of Cu, for example. The protective layer 73 is made of Ta, for example.
[0043] 紙面右方向を(+ )方向、紙面左方向を(一)方向としたとき、図 3に示すように、第 1 磁性層 65a, 71aの磁化方向は(+ )方向、第 2磁性層 65c, 71cの磁化方向は(一) 方向である。前記第 1磁性層 65a, 7 la及び第 2磁性層 65c, 71cの磁化は外部磁界 によって変動しな!/、ように固定されて!/、る。  [0043] When the right direction on the paper is the (+) direction and the left direction on the paper is the (one) direction, as shown in FIG. 3, the magnetization directions of the first magnetic layers 65a and 71a are the (+) direction and the second magnetic layer. The magnetization directions of the layers 65c and 71c are (one) direction. The magnetizations of the first magnetic layers 65a and 7la and the second magnetic layers 65c and 71c are fixed so that they do not fluctuate due to an external magnetic field!
[0044] 図 3は、外部磁界が作用していない無磁場状態を示している。図 3に示すように無 磁場状態では、第 1フリー磁性層 67の磁化方向は(一)方向であり、第 2フリー磁性 層 69の磁化方向は(+ )方向である。前記フリー磁性層 67, 69の磁化は外部磁界に よって変動する。  FIG. 3 shows a no-magnetic field state in which an external magnetic field is not acting. As shown in FIG. 3, in the absence of a magnetic field, the magnetization direction of the first free magnetic layer 67 is the (one) direction, and the magnetization direction of the second free magnetic layer 69 is the (+) direction. The magnetizations of the free magnetic layers 67 and 69 are changed by an external magnetic field.
[0045] 巨大磁気抵抗効果 (GMR効果)は、前記第 2磁性層 65c, 71cと前記フリー磁性層  [0045] The giant magnetoresistive effect (GMR effect) includes the second magnetic layer 65c, 71c and the free magnetic layer.
67, 69との磁化方向の関係で発現される。すなわち、前記第 2磁性層 65c, 71cと前 記フリー磁性層 67, 69との磁化方向が平行状態のとき電気抵抗値が最小値となり、 前記第 2磁性層 65c, 71cと前記フリー磁性層 67, 69との磁化方向が反平行状態の とき電気抵抗値が最大値となる。  It is expressed in relation to the magnetization direction with 67 and 69. That is, when the magnetization directions of the second magnetic layers 65c and 71c and the free magnetic layers 67 and 69 are in a parallel state, the electric resistance value becomes the minimum value, and the second magnetic layers 65c and 71c and the free magnetic layers 67 , 69 is the maximum value when the magnetization direction is antiparallel.
[0046] 今、(+ )方向に外部磁界 Hが作用すると、第 1積層体 60の第 1フリー磁性層 67の 磁化が変動する。一方、第 2フリー磁性層 69は、磁化方向が(+ )方向であるため、( + )方向の外部磁界 Hが作用しても磁化変動しない。よって第 2積層体 61の電気抵 抗値は一定のままである。  [0046] Now, when the external magnetic field H acts in the (+) direction, the magnetization of the first free magnetic layer 67 of the first stacked body 60 changes. On the other hand, since the magnetization direction of the second free magnetic layer 69 is the (+) direction, the magnetization does not fluctuate even when the external magnetic field H in the (+) direction acts. Therefore, the electrical resistance value of the second laminated body 61 remains constant.
[0047] ( + )方向の外部磁界 Hの磁界強度が徐々に大きくなつていくと前記第 1フリー磁性 層 67の磁化方向は徐々に(+ )方向に変化する。これによつて第 1フリー磁性層 67と 第 2磁性層 65cの磁化関係が平行状態から徐々に反平行状態になり、磁気抵抗効 果素子 23, 27の電気抵抗値 Rは図 2に示す第 1RHカーブ C1上に沿って、徐々に 大きくなつていく。 [0047] As the magnetic field strength of the external magnetic field H in the (+) direction gradually increases, the magnetization direction of the first free magnetic layer 67 gradually changes to the (+) direction. As a result, the magnetization relationship between the first free magnetic layer 67 and the second magnetic layer 65c gradually changes from the parallel state to the antiparallel state, and the electric resistance value R of the magnetoresistive effect elements 23 and 27 is as shown in FIG. 1RH curve gradually along C1 It grows big.
[0048] 一方、(一)方向に外部磁界 Hが作用すると、第 2積層体 61の第 2フリー磁性層 69 の磁化が変動する。一方、第 1フリー磁性層 67は、磁化方向が(一)方向であるため 、(一)方向の外部磁界 Hが作用しても磁化変動しない。よって第 1積層体 60の電気 抵抗値は一定のままである。  On the other hand, when the external magnetic field H acts in the (one) direction, the magnetization of the second free magnetic layer 69 of the second stacked body 61 changes. On the other hand, since the magnetization direction of the first free magnetic layer 67 is the (one) direction, the magnetization does not fluctuate even when the external magnetic field H in the (one) direction acts. Therefore, the electrical resistance value of the first laminated body 60 remains constant.
[0049] (一)方向の外部磁界 Hの磁界強度が徐々に大きくなつていくと前記第 2フリー磁性 層 69の磁化方向は徐々に(一)方向に変化する。これによつて第 2フリー磁性層 69と 第 2磁性層 71cの磁化関係が反平行状態から徐々に平行状態になり、磁気抵抗効 果素子 23, 27の電気抵抗値 Rは図 2に示す第 2RHカーブ C2上に沿って、徐々に 小さくなつていく。  [0049] When the magnetic field strength of the external magnetic field H in (1) direction gradually increases, the magnetization direction of the second free magnetic layer 69 gradually changes to (1) direction. As a result, the magnetization relationship between the second free magnetic layer 69 and the second magnetic layer 71c gradually changes from the antiparallel state to the parallel state, and the electric resistance value R of the magnetoresistive effect elements 23 and 27 is as shown in FIG. Gradually get smaller along 2RH curve C2.
[0050] 図 2に示すように、第 1RHカーブ C1及び第 2RHカーブ C2は、所定幅を持つ(ヒス テリシスがあることを意味する)ループ状となっている。  [0050] As shown in FIG. 2, the first RH curve C1 and the second RH curve C2 have a loop shape having a predetermined width (meaning that there is hysteresis).
[0051] ループ状に形成された第 1 RHカーブ C 1の中心から外部磁界 H = 0 (Oe)のライン までの磁界の強さで第 1層間結合磁界 Hinlの大きさが決定される。この第 1層間結 合磁界 Hinlは、第 1固定磁性層 65と第 1フリー磁性層 67との間に作用するものであ り、 R—Hグラフ上における(+ )方向の外部磁界側に発現している。  [0051] The magnitude of the first interlayer coupling magnetic field Hinl is determined by the strength of the magnetic field from the center of the first RH curve C1 formed in a loop shape to the line of the external magnetic field H = 0 (Oe). This first interlayer coupling magnetic field Hinl acts between the first pinned magnetic layer 65 and the first free magnetic layer 67 and appears on the external magnetic field side in the (+) direction on the RH graph. is doing.
[0052] ループ状に形成された第 2RHカーブ C2の中心から外部磁界 H = 0 (Oe)のライン までの磁界の強さで第 2層間結合磁界 Hin2の大きさが決定される。この第 2層間結 合磁界 Hin2は、第 2固定磁性層 71と第 2フリー磁性層 69との間に作用するものであ り、 R—Hグラフ上における(-)方向の外部磁界側に発現している。  [0052] The magnitude of the second interlayer coupling magnetic field Hin2 is determined by the strength of the magnetic field from the center of the second RH curve C2 formed in a loop shape to the line of the external magnetic field H = 0 (Oe). This second interlayer coupling magnetic field Hin2 acts between the second pinned magnetic layer 71 and the second free magnetic layer 69 and appears on the external magnetic field side in the (-) direction on the RH graph. is doing.
[0053] 上記した前記層間結合磁界 Hinl , Hin2は、前記第 1非磁性材料層 66及び第 2非 磁性材料層 70の膜厚の調整や、界面粗さの調整等によって得ることが出来る。  The interlayer coupling magnetic fields Hinl and Hin2 described above can be obtained by adjusting the film thickness of the first nonmagnetic material layer 66 and the second nonmagnetic material layer 70, adjusting the interface roughness, or the like.
[0054] 上記で説明した磁気抵抗効果素子 23, 27は巨大磁気抵抗効果 (GMR効果)を利 用した GMR素子であつたが、トンネル磁気抵抗効果 (TMR効果)を利用した TMR 素子であってもよい。  [0054] The magnetoresistive elements 23 and 27 described above are GMR elements using the giant magnetoresistive effect (GMR effect), but are TMR elements using the tunnel magnetoresistive effect (TMR effect). Also good.
[0055] また図 3では、固定磁性層 65, 71が積層フェリ構造であった力 それ以外の構造、 例えば磁性層の単層構造や積層構造であってもよい。  In FIG. 3, the force of the pinned magnetic layers 65 and 71 having a laminated ferrimagnetic structure may be other than that, for example, a single layer structure or a laminated structure of magnetic layers.
[0056] 図 1に示すように前記磁気抵抗効果素子 23, 27は夫々、固定抵抗素子 24, 28と 直列接続されている。 As shown in FIG. 1, the magnetoresistive effect elements 23 and 27 are fixed resistance elements 24 and 28, respectively. They are connected in series.
[0057] 前記磁気抵抗効果素子 23に直列接続された第 1固定抵抗素子 24の固定抵抗値 R3は、図 2に示すように、外部磁界 Hがゼロのときの前記磁気抵抗効果素子 23の電 気抵抗値 R1と、(+ )方向の外部磁界 Hが作用した際の前記磁気抵抗効果素子 23 の最大電気抵抗値 R2との中間値となるように調整されて!/、る。  As shown in FIG. 2, the fixed resistance value R3 of the first fixed resistance element 24 connected in series to the magnetoresistive effect element 23 is the electric resistance of the magnetoresistive effect element 23 when the external magnetic field H is zero. It is adjusted to be an intermediate value between the gas resistance value R1 and the maximum electric resistance value R2 of the magnetoresistive element 23 when the external magnetic field H in the (+) direction acts!
[0058] また、前記磁気抵抗効果素子 27に直列接続された第 2固定抵抗素子 28の固定抵 抗値 R5は、図 2に示すように、前記磁気抵抗効果素子 27の外部磁界 Hがゼロのとき の電気抵抗値 R1と、(一)方向の外部磁界が作用した際の前記磁気抵抗効果素子 2 7の最小電気抵抗値 R4との中間値となるように調整されて!/、る。  Further, the fixed resistance value R5 of the second fixed resistance element 28 connected in series to the magnetoresistive effect element 27 is, as shown in FIG. 2, when the external magnetic field H of the magnetoresistive effect element 27 is zero. It is adjusted to be an intermediate value between the electric resistance value R1 at the time and the minimum electric resistance value R4 of the magnetoresistive effect element 27 when the external magnetic field in the (one) direction is applied.
[0059] 例えば前記固定抵抗素子 24, 28は、図 3に示す磁気抵抗効果素子 23, 27と同じ 材料層の積層構造であるが積層順が異なって外部磁界に対して電気抵抗が変化し ない構造で形成される。かかる場合、前記固定抵抗素子 24, 28と磁気抵抗効果素 子 23, 27との温度係数 (TCR)のばらつきを抑制でき、動作安定性を向上させること が出来るので好適である。  For example, the fixed resistance elements 24 and 28 have the same material layer structure as the magnetoresistive effect elements 23 and 27 shown in FIG. 3, but the stacking order is different and the electric resistance does not change with respect to the external magnetic field. Formed with structure. In such a case, it is preferable because variations in the temperature coefficient (TCR) between the fixed resistance elements 24 and 28 and the magnetoresistive effect elements 23 and 27 can be suppressed, and the operational stability can be improved.
[0060] 第 3直列回路 34を構成する前記固定抵抗素子 31 , 32も前記固定抵抗素子 24, 2 8と同じように、例えば、磁気抵抗効果素子 23, 27と同じ材料層の積層構造であるが 積層順が異なって外部磁界に対して電気抵抗が変化しなレ、構造で形成される。この とき、前記固定抵抗素子 31 , 32の固定抵抗値は共に同じ値となるように調整されて いる。  [0060] The fixed resistance elements 31 and 32 constituting the third series circuit 34 also have the same material layer structure as that of the magnetoresistive effect elements 23 and 27, for example, like the fixed resistance elements 24 and 28. However, the stacking order is different and the electrical resistance does not change against an external magnetic field. At this time, the fixed resistance values of the fixed resistance elements 31 and 32 are adjusted to be the same value.
[0061] 前記磁気抵抗効果素子 23, 27及び固定抵抗素子 24, 28, 31 , 32は、外部磁界 を感知可能な磁気検出装置 20の表面に設けられている。前記磁気抵抗効果素子 2 3, 27,及び固定抵抗素子 24, 28, 31 , 32はミアンダ形状で形成される。これにより 、各素子の素子抵抗を増大させて消費電流を低減できる。  The magnetoresistive effect elements 23 and 27 and the fixed resistance elements 24, 28, 31 and 32 are provided on the surface of the magnetic detection device 20 capable of sensing an external magnetic field. The magnetoresistive effect elements 23, 27 and the fixed resistance elements 24, 28, 31, 32 are formed in a meander shape. Thereby, the element resistance of each element can be increased and the current consumption can be reduced.
[0062] 図 1に代えて、第 3直列回路 34を構成する前記固定抵抗素子 31 , 32を、集積回路  Instead of FIG. 1, the fixed resistance elements 31 and 32 constituting the third series circuit 34 are integrated into an integrated circuit.
22内に組み込んでもよい。このとき前記固定抵抗素子 31 , 32を高抵抗材料で形成 して、より適切に消費電流の低減を図ることが好適である。例えば前記固定抵抗素子 31 , 32は Siで形成される。  22 may be incorporated. At this time, it is preferable that the fixed resistance elements 31 and 32 are formed of a high resistance material to more appropriately reduce current consumption. For example, the fixed resistance elements 31 and 32 are made of Si.
[0063] 次に、外部磁界の検出原理について説明する。 図 1に示すように第 1出力取り出し部 25と差動増幅器 35とが前記第 1スィッチ回路 36によって接続されると、第 1ブリッジ回路 BC1が前記差動増幅器 35に接続された 状態になる。またこのとき、差動増幅器 35と、第 1外部出力端子 40間が前記第 2スィ ツチ回路 43によって接続され、前記第 1直列回路 26と前記アース端子 42間が第 3ス イッチ回路 48によって接続されている。 Next, the detection principle of the external magnetic field will be described. As shown in FIG. 1, when the first output extraction unit 25 and the differential amplifier 35 are connected by the first switch circuit 36, the first bridge circuit BC1 is connected to the differential amplifier 35. At this time, the differential amplifier 35 and the first external output terminal 40 are connected by the second switch circuit 43, and the first series circuit 26 and the ground terminal 42 are connected by the third switch circuit 48. Has been.
[0064] 磁気検出装置 20に作用する外部磁界 Hの大きさは図 2に示す「使用範囲」内であ る。「使用範囲」内では、前記固定磁性層 65, 71の磁化方向を変動させるほどの強 い外部磁界は作用しない。すなわち固定磁性層 65, 71の磁化は固定されたままで ある。 The magnitude of the external magnetic field H acting on the magnetic detection device 20 is within the “use range” shown in FIG. Within the “use range”, an external magnetic field that is strong enough to change the magnetization direction of the pinned magnetic layers 65 and 71 does not act. That is, the magnetizations of the pinned magnetic layers 65 and 71 remain fixed.
[0065] まず、図 1の回路状態で、本実施形態の磁気検出装置 20に(+ )方向の外部磁界 Hが作用すると、前記磁気抵抗効果素子 23の電気抵抗値 Rは、図 2に示す R1から 第 1RHカーブ C1上に沿って徐々に大きくなつていく。  First, in the circuit state of FIG. 1, when an external magnetic field H in the (+) direction acts on the magnetic detection device 20 of the present embodiment, the electrical resistance value R of the magnetoresistive effect element 23 is shown in FIG. Gradually increase from R1 along the 1st RH curve C1.
[0066] 前記磁気抵抗効果素子 23の電気抵抗値 Rが(+ )方向の外部磁界 Hの強度変化 によって R1から徐々に大きくなり、やがて、第 1固定抵抗素子 24の固定抵抗値 R3を 超えると、差動増幅器 35で生成された差動電位に基づいて、コンパレータ 38では O N信号 (磁界検出信号)が生成され、前記 ON信号が前記第 1外部出力端子 40から 出力される。  [0066] When the electric resistance value R of the magnetoresistive effect element 23 gradually increases from R1 due to the intensity change of the external magnetic field H in the (+) direction, and eventually exceeds the fixed resistance value R3 of the first fixed resistance element 24 Based on the differential potential generated by the differential amplifier 35, the comparator 38 generates an ON signal (magnetic field detection signal), and the ON signal is output from the first external output terminal 40.
[0067] 第 1スィッチ回路 36,第 2スィッチ回路 43及び第 3スィッチ回路 48は、クロック回路  [0067] The first switch circuit 36, the second switch circuit 43, and the third switch circuit 48 are clock circuits.
53からのクロック信号を受けて連動してスィッチ動作する。そして第 2出力取り出し部 29と差動増幅器 35とが前記第 1スィッチ回路 36によって接続されると、第 2ブリッジ 回路 BC2が前記差動増幅器 35に接続された状態になる。またこのとき、差動増幅器 35と、第 2外部出力端子 41間が前記第 2スィッチ回路 43によって接続され、前記第 2直列回路 30と前記アース端子 42間が第 3スィッチ回路 48によって接続される。  The switch operates in response to the clock signal from 53. When the second output extraction unit 29 and the differential amplifier 35 are connected by the first switch circuit 36, the second bridge circuit BC2 is connected to the differential amplifier 35. At this time, the differential amplifier 35 and the second external output terminal 41 are connected by the second switch circuit 43, and the second series circuit 30 and the ground terminal 42 are connected by the third switch circuit 48. .
[0068] 上記の回路状態で、本実施形態の磁気検出装置 20に(一)方向の外部磁界 Hが 作用すると、前記磁気抵抗効果素子 27の電気抵抗値 Rが図 2に示す R1から第 2RH カーブ C2上に沿って徐々に小さくなつていく。  [0068] In the circuit state described above, when an external magnetic field H in one direction acts on the magnetic detection device 20 of the present embodiment, the electric resistance value R of the magnetoresistive effect element 27 changes from R1 to the second RH shown in FIG. Gradually decrease along curve C2.
[0069] 前記磁気抵抗効果素子 27の電気抵抗値 Rが(一)方向への外部磁界 Hの強度変 化によって R1から徐々に小さくなり、やがて、第 2固定抵抗素子 28の抵抗直 R5を下 回ると、差動増幅器 35で生成された差動電位に基づいて、コンパレータ 38では ON 信号 (磁界検出信号)が生成され、前記 ON信号が前記第 2出力端子 41から出力さ れる。 [0069] The electric resistance value R of the magnetoresistive effect element 27 gradually decreases from R1 due to the intensity change of the external magnetic field H in the (one) direction, and eventually falls below the resistance straight R5 of the second fixed resistance element 28. When turned, the comparator 38 generates an ON signal (magnetic field detection signal) based on the differential potential generated by the differential amplifier 35, and the ON signal is output from the second output terminal 41.
[0070] 以上のように、本実施形態の磁気検出装置 20は、磁気抵抗効果素子 23, 27が図  As described above, the magnetic detection device 20 of the present embodiment includes the magnetoresistive effect elements 23 and 27 as shown in FIG.
3に示す第 1積層体 60と第 2積層体 61との積層構造で形成される。そして、前記第 1 積層体 60は(+ )方向の外部磁界 Hに対して電気抵抗が変化する磁気抵抗効果を 利用した構造で、前記第 2積層体 61は(一)方向の外部磁界に対して電気抵抗が変 化する磁気抵抗効果を利用した構造となっている。  This is formed by a laminated structure of the first laminated body 60 and the second laminated body 61 shown in FIG. The first laminated body 60 has a structure using a magnetoresistive effect in which the electrical resistance changes with respect to the external magnetic field H in the (+) direction, and the second laminated body 61 has an external magnetic field in the (one) direction. Thus, the structure uses the magnetoresistive effect that changes the electrical resistance.
[0071] よって前記磁気抵抗効果素子 23, 27を用いることで、前記磁気検出装置 20に対 して(+ )方向、あるいは(一)方向のどちらの方向の外部磁界 Hが作用しても、外部 磁界 Hを検出することが可能である。すなわち双極検出が可能である。  Therefore, by using the magnetoresistive effect elements 23 and 27, the external magnetic field H in either the (+) direction or the (one) direction acts on the magnetic detection device 20. External magnetic field H can be detected. That is, bipolar detection is possible.
[0072] 本実施形態では、前記磁気抵抗効果素子 23, 27は 1種類の磁気抵抗効果素子で 構成される。すなわち図 1に示すように、前記磁気抵抗効果素子 23, 27は 2個用意 される力 前記磁気抵抗効果素子 23, 27は同じ層構造 (このとき各層の膜厚も同じ である)であるので同じ製造プロセスで形成でき、容易且つ適切に製造できる。  In the present embodiment, the magnetoresistive effect elements 23 and 27 are composed of one type of magnetoresistive effect element. That is, as shown in FIG. 1, two magnetoresistive elements 23 and 27 are provided. Since the magnetoresistive elements 23 and 27 have the same layer structure (the film thickness of each layer is also the same at this time). It can be formed by the same manufacturing process, and can be manufactured easily and appropriately.
[0073] 図 2に示すように、第 1積層体 60を構成する第 1固定磁性層 65と第 1フリー磁性層  As shown in FIG. 2, the first pinned magnetic layer 65 and the first free magnetic layer constituting the first laminate 60
67間に作用する第 1層間結合磁界 Hin 1は、 R— Hグラフ上において(+ )方向の外 部磁界側に発現している。また、図 2に示すように、第 2積層体 61を構成する第 2固 定磁性層 71と第 2フリー磁性層 69間に作用する第 2層間結合磁界 Hin2は、 R— H グラフ上にぉレ、て(一)方向の外部磁界側に発現して!/、る。  The first interlayer coupling magnetic field Hin 1 acting between 67 appears on the external magnetic field side in the (+) direction on the RH graph. In addition, as shown in FIG. 2, the second interlayer coupling magnetic field Hin2 acting between the second fixed magnetic layer 71 and the second free magnetic layer 69 constituting the second stacked body 61 is shown on the RH graph. It appears on the external magnetic field side in the direction (1)!
[0074] そして、図 2に示すように外部磁界 Hがゼロの位置での前記磁気抵抗効果素子 23 , 27の電気抵抗値 R1を基準としたとき、(+ )方向の外部磁界 Hの磁界強度変化に 対する前記磁気抵抗効果素子 23, 27の電気抵抗値の増減傾向と、(一)方向の外 部磁界 Hの磁界強度変化に対する前記磁気抵抗効果素子 23, 27の電気抵抗値の 増減傾向とが逆傾向を示している。すなわち、(+ )方向の外部磁界が徐々に大きく なると、前記磁気抵抗効果素子 23, 27の電気抵抗値は、 R1から徐々に大きくなる増 加傾向を示し、一方、(一)方向の外部磁界 Hが徐々に大きくなると、前記磁気抵抗 効果素子 23, 27の電気抵抗値は、 R1から徐々に小さくなる減少傾向を示す。 [0075] そして、磁気抵抗効果素子 23, 27は、図 2に示す第 1RHカーブ C1と第 2RHカー ブ C2からなる段階型の RHカーブを有している。これにより、簡単な回路構成で双極 検出対応型の磁気検出装置 20を実現できるとともに外部磁界の作用方向まで検知 が可能である。 [0074] Then, as shown in FIG. 2, the magnetic field strength of the external magnetic field H in the (+) direction when the electric resistance value R1 of the magnetoresistive effect element 23, 27 at the position where the external magnetic field H is zero is used as a reference. The increase and decrease tendency of the electric resistance value of the magnetoresistive effect elements 23 and 27 with respect to the change, and Shows the reverse trend. That is, when the external magnetic field in the (+) direction gradually increases, the electric resistance values of the magnetoresistive effect elements 23 and 27 show a tendency to increase gradually from R1, while the external magnetic field in the (1) direction. As H increases gradually, the electrical resistance values of the magnetoresistive elements 23 and 27 tend to decrease gradually from R1. The magnetoresistive effect elements 23 and 27 have a step-type RH curve including the first RH curve C1 and the second RH curve C2 shown in FIG. As a result, the magnetic detection device 20 compatible with bipolar detection can be realized with a simple circuit configuration, and the action direction of the external magnetic field can be detected.
[0076] このように外部磁界の作用方向まで検知可能なのは、図 2に示すように、(+ )方向 の外部磁界 Hに対して磁気抵抗効果素子 23, 27の電気抵抗値が変化する第 1RH カーブ C1の抵抗変化領域と、(一)方向の外部磁界 Hに対して磁気抵抗効果素子 2 3, 27の電気抵抗値が変化する第 2RHカーブ C2の抵抗変化領域とが異なる領域と なっている力もである。  [0076] As shown in Fig. 2, it is possible to detect the action direction of the external magnetic field in the first RH in which the electrical resistance values of the magnetoresistive elements 23 and 27 change with respect to the external magnetic field H in the (+) direction. The resistance change area of the curve C1 is different from the resistance change area of the second RH curve C2 in which the electric resistance values of the magnetoresistive elements 23 and 27 change with respect to the external magnetic field H in the (one) direction. Power is also.
[0077] 図 1に示すように外部出力端子 40, 41は 2つ設けられている。第 1外部出力端子 4 0は、第 1ブリッジ回路 BC1に接続されており、第 1ブリッジ回路 BC1では、(+ )方向 の外部磁界 Hが作用して、磁気抵抗効果素子 23の電気抵抗値が図 2に示す第 1固 定抵抗素子 24の固定抵抗値 R3を超えると ON信号が前記第 1外部出力端子 40か ら出力されるようになっている。換言すれば、磁気抵抗効果素子 23の電気抵抗値が 第 1固定抵抗素子 24の固定抵抗ィ直 R3を下回っていると OFF信号が前記第 1外部 出力端子 40から常に出力されている。一方、第 2外部出力端子 41は、第 2ブリッジ回 路 BC2に接続されており、第 2ブリッジ回路 BC2では、(一)方向の外部磁界 Hが作 用して、磁気抵抗効果素子 27の電気抵抗値が図 2に示す第 2固定抵抗素子 28の固 定抵抗ィ直 R5を下回ると ON信号が前記第 2外部出力端子 41から出力されるようにな つている。換言すれば、磁気抵抗効果素子 27の電気抵抗値が第 2固定抵抗素子 28 の固定抵抗値 R4を上回っていると OFF信号が前記第 1外部出力端子 40から常に 出力されている。  As shown in FIG. 1, two external output terminals 40 and 41 are provided. The first external output terminal 40 is connected to the first bridge circuit BC1. In the first bridge circuit BC1, the external magnetic field H in the (+) direction acts and the electric resistance value of the magnetoresistive effect element 23 is When the fixed resistance value R3 of the first fixed resistance element 24 shown in FIG. 2 is exceeded, an ON signal is output from the first external output terminal 40. In other words, an OFF signal is always output from the first external output terminal 40 when the electric resistance value of the magnetoresistive effect element 23 is lower than the fixed resistance R3 of the first fixed resistance element 24. On the other hand, the second external output terminal 41 is connected to the second bridge circuit BC2. In the second bridge circuit BC2, the external magnetic field H in the (one) direction is applied, and the electric resistance of the magnetoresistive effect element 27 is When the resistance value is less than the fixed resistance R5 of the second fixed resistance element 28 shown in FIG. 2, an ON signal is output from the second external output terminal 41. In other words, when the electric resistance value of the magnetoresistive effect element 27 exceeds the fixed resistance value R4 of the second fixed resistance element 28, an OFF signal is always output from the first external output terminal 40.
[0078] よって、第 1外部出力端子 40から ON信号が出力されている場合 (このとき第 2外部 出力端子 41からは OFF信号が出力される)は、(+ )方向の外部磁界 Hが磁気検出 装置 20に作用していると識別でき、第 2外部出力端子 41から ON信号が出力されて V、る場合 (このとき第 1外部出力端子 40からは OFF信号が出力される)は、(―)方向 の外部磁界 Hが磁気検出装置 20に作用していると識別できる。  [0078] Therefore, when the ON signal is output from the first external output terminal 40 (in this case, the OFF signal is output from the second external output terminal 41), the external magnetic field H in the (+) direction is magnetic. If it can be identified that it is acting on the detection device 20 and an ON signal is output from the second external output terminal 41 and V, (in this case, an OFF signal is output from the first external output terminal 40), ( It can be identified that the external magnetic field H in the direction of −) acts on the magnetic detector 20.
[0079] 図 2に示すように、第 1固定抵抗素子 24の固定抵抗値 R3は、外部磁界 Hがゼロの ときの磁気抵抗効果素子 23の電気抵抗値 Rlと、(+ )方向の外部磁界 Hが作用した ときの磁気抵抗効果素子 23の最大抵抗値 R2との中間値であることが好適である。ま た、第 2固定抵抗素子 28の固定抵抗値 R5は、外部磁界 Hがゼロのときの磁気抵抗 効果素子 27の電気抵抗値 R1と、(一)方向の外部磁界 Hが作用したときの磁気抵抗 効果素子 27の最大抵抗値 R4との中間値であることが好適である。 [0079] As shown in FIG. 2, the fixed resistance value R3 of the first fixed resistance element 24 indicates that the external magnetic field H is zero. It is preferably an intermediate value between the electric resistance value Rl of the magnetoresistive effect element 23 at the time and the maximum resistance value R2 of the magnetoresistive effect element 23 when the external magnetic field H in the (+) direction acts. The fixed resistance value R5 of the second fixed resistance element 28 is the magnetic resistance value R1 of the magnetoresistive effect element 27 when the external magnetic field H is zero and the magnetic resistance when the external magnetic field H in the (one) direction acts. It is preferably an intermediate value with respect to the maximum resistance value R4 of the resistance effect element 27.
[0080] これにより、適切に双極検出対応型の磁気検出装置 20を実現できる。また上記に 加えて、第 1層間結合磁界 Hinlと第 2層間結合磁界 Hin2の大きさを同じにすること で、(+ )方向の外部磁界 Hが作用したときの ON信号の出力タイミングと、(一)方向 の外部磁界 Hが作用したときの ON信号の出力タイミングとを同じに設定できる。  Accordingly, the magnetic detection device 20 compatible with bipolar detection can be realized appropriately. In addition to the above, by making the magnitude of the first interlayer coupling magnetic field Hinl and the second interlayer coupling magnetic field Hin2 equal, the output timing of the ON signal when the external magnetic field H in the (+) direction is applied, 1) The output timing of the ON signal when the external magnetic field H in the direction is applied can be set to be the same.
[0081] また図 1に示すように本実施形態の磁気検出装置 20は、固定抵抗素子 31 , 32が 直列接続された第 3直列回路 34の中点電位を前記第 1ブリッジ回路 BC1と、前記第 2ブリッジ回路 BC2の基準電位として共通化している。そして、前記第 1ブリッジ回路 BC1を構成する第 1直列回路 26の第 1出力取り出し部 25と差動増幅器 35間の接続 、及び前記第 2ブリッジ回路 BC2を構成する第 2直列回路 30の第 2出力取り出し部 2 9と差動増幅器 35間の接続を交互に切り換える第 1スィッチ回路 36を集積回路 22内 に設けている。  Further, as shown in FIG. 1, the magnetic detection device 20 of the present embodiment uses the first bridge circuit BC1 as the midpoint potential of the third series circuit 34 in which fixed resistance elements 31 and 32 are connected in series, It is shared as the reference potential for the second bridge circuit BC2. Then, the connection between the first output extraction part 25 of the first series circuit 26 constituting the first bridge circuit BC1 and the differential amplifier 35, and the second of the second series circuit 30 constituting the second bridge circuit BC2. A first switch circuit 36 for alternately switching the connection between the output extraction unit 29 and the differential amplifier 35 is provided in the integrated circuit 22.
[0082] このように、本実施形態の磁気検出装置 20は、第 3直列回路 34を前記第 1ブリッジ 回路 BC1と、前記第 2ブリッジ回路 BC2の双方で共通回路として使用することで、従 来に比べて、素子数を減らすことが可能である。  [0082] As described above, the magnetic detection device 20 of the present embodiment conventionally uses the third series circuit 34 as a common circuit in both the first bridge circuit BC1 and the second bridge circuit BC2. The number of elements can be reduced as compared with FIG.
[0083] さらに本実施形態では 1つの差動増幅器 35を設けるだけで、第 1ブリッジ回路 BC1 と差動増幅器 35とが接続された状態と、第 2ブリッジ回路 BC2と差動増幅器 35とが 接続された状態を交互に得ることが出来、簡単な回路構成で適切に、第 1ブリッジ回 路 BC1及び第 2ブリッジ回路 BC2から夫々、前記差動増幅器 35にて差動電位を得 ること力 S出来る。  [0083] Further, in the present embodiment, only by providing one differential amplifier 35, the state where the first bridge circuit BC1 and the differential amplifier 35 are connected, and the second bridge circuit BC2 and the differential amplifier 35 are connected. The ability to obtain the differential potential in the differential amplifier 35 from the first bridge circuit BC1 and the second bridge circuit BC2, respectively, with a simple circuit configuration, as appropriate. I can do it.
[0084] 以上により本実施形態によれば双極対応型センサにおいて、従来よりも、素子数を 減らすことができるとともに回路構成を簡単に出来る。  As described above, according to the present embodiment, the number of elements can be reduced and the circuit configuration can be simplified in the bipolar sensor.
[0085] また本実施形態では、前記第 1スィッチ回路 36により前記第 1ブリッジ回路 BC1と 前記差動増幅器 35間が接続されたとき、前記第 3スィッチ回路 48により前記第 1直 列回路 26と前記アース端子 42間が接続される。また、前記第 1スィッチ回路 36によ り前記第 2ブリッジ回路 BC2と前記差動増幅器 35間が接続されたとき、前記第 3スィ ツチ回路 48により前記第 2直列回路 30と前記アース端子 42間が接続される。これに より、前記第 1ブリッジ回路 BC1と前記差動増幅器 35間が接続されたとき、第 2直列 回路 30に電流は流れない。また前記第 2ブリッジ回路 BC2と前記差動増幅器 35間 が接続されたとき、第 1直列回路 26に電流は流れない。よって、消費電流の低減を 図ることが出来、また検出感度を向上させることが出来る。 In the present embodiment, when the first bridge circuit BC1 and the differential amplifier 35 are connected by the first switch circuit 36, the first switch circuit 48 The column circuit 26 and the ground terminal 42 are connected. When the second bridge circuit BC2 and the differential amplifier 35 are connected by the first switch circuit 36, the third switch circuit 48 connects the second series circuit 30 and the ground terminal 42. Is connected. As a result, no current flows through the second series circuit 30 when the first bridge circuit BC1 and the differential amplifier 35 are connected. Further, when the second bridge circuit BC2 and the differential amplifier 35 are connected, no current flows through the first series circuit 26. Therefore, current consumption can be reduced and detection sensitivity can be improved.
[0086] 前記第 3スィッチ回路 48は、入力端子 39と第 1直列回路 26間、及び入力端子 39と 第 2直列回路 30間に前記アース端子 42側とともに、あるいは前記アース端子 42側 に代えて設けられて!/、てもよ!/、。  [0086] The third switch circuit 48 is provided between the input terminal 39 and the first series circuit 26, and between the input terminal 39 and the second series circuit 30, together with the ground terminal 42 side or instead of the ground terminal 42 side. It's set up! /!
[0087] 本実施形態による双極検出対応型の磁気検出装置 20は、例えば折畳み式携帯電 話の開閉検知に使用できる。  The bipolar detection-compatible magnetic detection device 20 according to the present embodiment can be used, for example, for opening / closing detection of a folding mobile phone.
[0088] 図 4に示すように折畳み式携帯電話 90は、第 1部材 (表示筐体) 91と第 2部材 (操 作筐体) 92とが開閉自在に連結された構成である。前記第 1部材 91の前記第 2部材 92との対向面には液晶ディスプレイやレシーバ等が設けられている。前記第 2部材 9 2の前記第 1部材 91との対向面には、各種の操作釦及びマイク等が設けられている 。図 4は折畳み式携帯電話 90を閉じた状態であり、図 4に示すように前記第 1部材 91 には磁石 94が内臓され、前記第 2部材 92には本実施形態の磁気検出装置 20が内 臓されている。図 4に示すように閉じた状態で、前記磁石 94と磁気検出装置 20は互 いに対向した位置に配置されて!/、る。あるいは前記磁気検出装置 20は前記磁石 94 との対向位置よりも、外部磁界の進入方向と平行な方向にずれた位置に配置されて あよい。  As shown in FIG. 4, the foldable mobile phone 90 has a configuration in which a first member (display housing) 91 and a second member (operation housing) 92 are connected so as to be openable and closable. A liquid crystal display, a receiver, and the like are provided on the surface of the first member 91 facing the second member 92. Various operation buttons, a microphone, and the like are provided on the surface of the second member 92 facing the first member 91. FIG. 4 shows a state in which the foldable mobile phone 90 is closed. As shown in FIG. 4, the first member 91 includes a magnet 94, and the second member 92 includes the magnetic detection device 20 of the present embodiment. Built-in. As shown in FIG. 4, in the closed state, the magnet 94 and the magnetic detection device 20 are arranged at positions facing each other! Alternatively, the magnetic detection device 20 may be arranged at a position shifted in a direction parallel to the approach direction of the external magnetic field from the position facing the magnet 94.
[0089] 図 4では、前記磁石 94から発せられた(+ )方向の外部磁界( + H)が、前記磁気検 出装置 20に伝わり、前記磁気検出装置 20では前記外部磁界( + H)を検出し、これ により、折畳み式携帯電話 90は閉じた状態にあることが検出される。  In FIG. 4, an external magnetic field (+ H) in the (+) direction generated from the magnet 94 is transmitted to the magnetic detection device 20, and the magnetic detection device 20 transmits the external magnetic field (+ H). Thus, it is detected that the folding cellular phone 90 is in a closed state.
[0090] 一方、図 5のように折畳み式携帯電話 90を開くと、前記第 1部材 91が前記第 2部材 92から離れるにつれて、徐々に前記磁気検出装置 20に伝わる外部磁界( + H)の大 きさは小さくなつていき、やがて前記磁気検出装置 20に伝わる外部磁界( + H)はゼ 口になる。前記磁気検出装置 20に伝わる外部磁界( + H)の大きさがある所定の大き さ以下となった場合に、前記折畳み式携帯電話 90が開いた状態にあることが検出さ れ、例えば、前記携帯電話 90内に内臓される制御部にて、液晶ディスプレイや操作 釦の裏側にあるバックライトが光るように制御されている。 On the other hand, when the folding cellular phone 90 is opened as shown in FIG. 5, as the first member 91 moves away from the second member 92, the external magnetic field (+ H) transmitted to the magnetic detection device 20 gradually increases. As the size increases, the external magnetic field (+ H) transmitted to the magnetic detector 20 eventually becomes zero. Mouth. When the magnitude of the external magnetic field (+ H) transmitted to the magnetic detection device 20 becomes a predetermined magnitude or less, it is detected that the foldable mobile phone 90 is in an open state, for example, The control unit built in the cellular phone 90 is controlled so that the backlight on the back side of the liquid crystal display and the operation buttons shines.
[0091] 本実施形態の磁気検出装置 20は、双極対応型センサである。すなわち図 4では、 磁石 94の N極は図示左側に S極は図示右側に位置する力、図 6に示すように極性を 逆にした場合 (N極が図示右側、 S極が図示左側)、前記磁気検出装置 20に及ぼさ れる外部磁界(-H)の方向は、図 4の外部磁界( + H)の方向と反転する。本実施形 態では、力、かる場合でも、図 6のように折畳み式携帯電話 90を閉じた状態から図 7の ように前記携帯電話 90を開いたとき、開いたことが適切に検知されるようになってい [0091] The magnetic detection device 20 of the present embodiment is a bipolar compatible sensor. That is, in Fig. 4, the N pole of the magnet 94 is on the left side of the figure and the S pole is on the right side of the figure, and when the polarity is reversed as shown in Fig. 6 (N pole is on the right side and S pole is on the left side) The direction of the external magnetic field (−H) exerted on the magnetic detection device 20 is reversed from the direction of the external magnetic field (+ H) in FIG. In this embodiment, even when force is applied, when the cellular phone 90 is opened as shown in FIG. 7 from the state in which the folding cellular phone 90 is closed as shown in FIG. 6, it is detected appropriately. Like
[0092] よって、外部磁界の極性に関係なく磁石 94を配置できるので、前記磁石 94の配置 に規制が無くなり、組み立てが容易になる。 Accordingly, since the magnet 94 can be arranged regardless of the polarity of the external magnetic field, there is no restriction on the arrangement of the magnet 94, and assembly is facilitated.
[0093] 上記した開閉検知方法では、外部磁界の方向まで識別できなくても、双極にて外 部磁界の変化だけを検知できればよいので、例えば図 1に示す外部出力端子 40, 4 1はどちらか一つでもよい。  [0093] In the above open / close detection method, even if the direction of the external magnetic field cannot be identified, it is only necessary to detect a change in the external magnetic field using a bipolar circuit. For example, the external output terminals 40 and 41 shown in FIG. Or just one.
[0094] すなわち例えば図 1に示す第 2スィッチ回路 43を無くして、コンパレータ 38からラッ チ回路 46、 FET回路 54を経て外部出力端子 40に至る一つの信号ラインを形成す ると、前記外部出力端子 40からは、(+ )方向の外部磁界に対する検出信号、(一) 方向の外部磁界に対する検出信号の双方の信号を得ることが出来る。このとき、外部 磁界の方向まで識別できないが、開閉検知においては、外部磁界の方向まで識別 できなくてもよいとするニーズがあり、したがって、外部出力端子を一つだけにして、さ らに回路構成を簡単にしてもよい。  That is, for example, when the second switch circuit 43 shown in FIG. 1 is eliminated and one signal line from the comparator 38 to the latch circuit 46 and the FET circuit 54 to the external output terminal 40 is formed, the external output From the terminal 40, both a detection signal for an external magnetic field in the (+) direction and a detection signal for an external magnetic field in the (one) direction can be obtained. At this time, it is not possible to identify the direction of the external magnetic field, but there is a need for open / close detection that the direction of the external magnetic field does not have to be identified. The configuration may be simplified.
[0095] また、第 1部材 91を図 5の開いた状態から表裏面を反転させることができるタイプ( ターンオーバータイプ)の折畳み式携帯電話 90では、第 1部材 91の反転によりカメラ モードを起動させる等、非反転状態と反転状態とで異なる機能を起動させるようにし たいとするニーズがある。かかる場合、非反転状態と反転状態では、前記磁気検出 装置 20に作用する外部磁界 Hの方向が逆転するので、図 1の回路構成によって、外 部磁界の方向を識別する。すなわち既に説明したように、図 1に示すように外部出力 端子 40, 41を 2つ設け、第 1外部出力端子 40を(+ )方向の外部磁界 Hを検出する 第 1ブリッジ回路 BC1に接続し、第 2外部出力端子 41を(一)方向の外部磁界 Hを検 出する第 2ブリッジ回路 BC2に接続する。これにより、 ON信号を出力する外部出力 端子を識別することで、外部磁界の方向まで識別できる。 [0095] In the folding mobile phone 90 of the type (turnover type) that can flip the first member 91 from the open state of FIG. 5 (turnover type), the camera mode is activated by inverting the first member 91. There is a need to activate different functions in the non-inverted state and the inverted state. In such a case, in the non-inverted state and the inverted state, the direction of the external magnetic field H acting on the magnetic detection device 20 is reversed. Identify the direction of the partial magnetic field. That is, as already described, two external output terminals 40 and 41 are provided as shown in FIG. 1, and the first external output terminal 40 is connected to the first bridge circuit BC1 that detects the external magnetic field H in the (+) direction. The second external output terminal 41 is connected to the second bridge circuit BC2 that detects the external magnetic field H in the (one) direction. Thus, by identifying the external output terminal that outputs the ON signal, it is possible to identify the direction of the external magnetic field.
[0096] なお図 3において、紙面右側を(+ )方向、紙面左側を(一)方向として説明したが、 紙面左側を(一)方向、紙面右側を(+ )方向としてもよい。かかる場合、積層体 61が( + )方向の外部磁界 Hに対して電気抵抗が変化する第 1積層体であり、積層体 60が (一)方向の外部磁界 Hに対して電気抵抗が変化する第 2積層体である。そして RH カーブは図 2に示す横軸を対称軸とした線対称形状となる。すなわち磁気抵抗効果 素子 23、 27の電気抵抗は(+ )方向の外部磁界が大きくなるにつれて、 R1から徐々 に小さくなり、一方、(一)方向の外部磁界が大きくなるにつれて、 R1から徐々に大き くなる。 In FIG. 3, the right side of the paper is described as the (+) direction, and the left side of the paper is described as the (1) direction. However, the left side of the paper may be the (1) direction, and the right side of the paper may be the (+) direction. In such a case, the laminated body 61 is the first laminated body in which the electrical resistance changes with respect to the external magnetic field H in the (+) direction, and the laminated body 60 changes in the electrical resistance with respect to the external magnetic field H in the (one) direction. This is the second laminate. The RH curve has a line-symmetric shape with the horizontal axis shown in Fig. 2 as the axis of symmetry. That is, the electrical resistance of the magnetoresistive elements 23 and 27 gradually decreases from R1 as the external magnetic field in the (+) direction increases, and gradually increases from R1 as the external magnetic field in the (one) direction increases. Become.
[0097] 本実施形態の磁気検出装置 20は、折畳み式携帯電話の開閉検知以外にゲーム 機等の携帯式電子機器の開閉検知に使用されてもよい。本形態は、上記開閉検知 以外にも、スライドセンサ等、双極検出対応の磁気検出装置 20が必要な用途で使用 できる。  The magnetic detection device 20 of the present embodiment may be used for opening / closing detection of a portable electronic device such as a game machine in addition to detection of opening / closing of a folding mobile phone. In addition to the above open / close detection, this embodiment can be used for applications that require a magnetic detection device 20 that supports bipolar detection, such as a slide sensor.
図面の簡単な説明  Brief Description of Drawings
[0098] [図 1]本実施形態の磁気検出装置の回路構成図、  FIG. 1 is a circuit configuration diagram of a magnetic detection device of the present embodiment,
[図 2]本実施形態の磁気抵抗効果素子の RHカーブを説明するための R— Hグラフ、 [図 3]本実施形態の磁気抵抗効果素子の層構造を示す部分断面図(膜厚方向と平 行な方向から切断した切断面の部分断面図)、  [FIG. 2] RH graph for explaining the RH curve of the magnetoresistive effect element of the present embodiment. [FIG. 3] Partial sectional view showing the layer structure of the magnetoresistive effect element of the present embodiment. A partial cross-sectional view of a cut surface cut from a normal direction),
[図 4]本実施形態の磁気検出装置の用途を説明するための一例(前記磁気検出装 置を内臓した折畳み式携帯電話の部分模式図であり、前記電話を閉じた状態を示 す)、  FIG. 4 is an example for explaining the use of the magnetic detection device of the present embodiment (a partial schematic view of a foldable mobile phone incorporating the magnetic detection device, showing a state in which the phone is closed);
[図 5]本実施形態の磁気検出装置の用途を説明するための一例(前記磁気検出装 置を内臓した折畳み式携帯電話の部分模式図であり、前記電話を開いた状態を示 す)、 [図 6]本実施形態の磁気検出装置の用途を説明するための一例(前記磁気検出装 置を内臓した折畳み式携帯電話の部分模式図であり、磁石の配置を図 4とは逆にし 、前記電話を閉じた状態を示す)、 [FIG. 5] An example for explaining the use of the magnetic detection device of the present embodiment (a partial schematic view of a foldable mobile phone incorporating the magnetic detection device, showing a state in which the phone is opened), FIG. 6 is an example for explaining the use of the magnetic detection device of the present embodiment (a partial schematic view of a foldable mobile phone incorporating the magnetic detection device, with the arrangement of magnets reversed from FIG. 4; The phone is closed)
[図 7]本実施形態の磁気検出装置の用途を説明するための一例(前記磁気検出装 置を内臓した折畳み式携帯電話の部分模式図であり、磁石の配置を図 5とは逆にし 、前記電話を開いた状態を示す)、  FIG. 7 is an example for explaining the use of the magnetic detection device of the present embodiment (a partial schematic view of a foldable mobile phone incorporating the magnetic detection device, with the arrangement of magnets reversed from FIG. 5; The phone is open)
園 8]従来の磁気検出装置に設けられた磁気抵抗効果素子の RHカーブを説明する ための R— Hグラフ、 8] R—H graph for explaining the RH curve of the magnetoresistive effect element provided in the conventional magnetic detection device,
符号の説明 Explanation of symbols
20 磁気検出装置 20 Magnetic detector
21 素子構成部  21 Element configuration
22 集積回路  22 Integrated circuits
23、 27 磁気抵抗効果素子  23, 27 Magnetoresistive element
24 第 1固定抵抗素子  24 1st fixed resistance element
28 第 2固定抵抗素子  28 2nd fixed resistance element
31、 32 固定抵抗素子  31, 32 Fixed resistance element
26 第 1直列回路  26 1st series circuit
30 第 2直列回路  30 Second series circuit
34 第 3直列回路  34 3rd series circuit
35 差動増幅器  35 differential amplifier
36 第 1スィッチ回路  36 1st switch circuit
38 コンパレータ  38 Comparator
40、 41 外部出力端子  40, 41 External output terminal
43 第 2スィッチ回路  43 Second switch circuit
48 第 3スィッチ回路  48 3rd switch circuit
60 第 1積層体  60 First laminate
61 第 2積層体  61 Second laminate
63 シード層 64 第 1反強磁性層 63 Seed layer 64 First antiferromagnetic layer
65 第 1固定磁性層  65 First pinned magnetic layer
66 第 1非磁性材料層 66 First non-magnetic material layer
67 第 1フリー磁性層67 1st free magnetic layer
68 中間分離層 68 Middle separation layer
69 第 2フリー磁性層 69 Second free magnetic layer
70 第 2非磁性材料層70 Second nonmagnetic material layer
71 第 2固定磁性層 71 Second pinned magnetic layer
72 第 2反強磁性層  72 Second antiferromagnetic layer
73 保護層  73 Protective layer
90 折昼 A 3¾ ^占 90 Noon A 3¾ ^ Fortune
91 第 1部材 (表示筐体)91 1st part (Display housing)
92 第 2部材 (操作筐体)92 2nd part (control enclosure)
94 磁石 94 Magnet
CI 第 1RHカーブ  CI 1st RH curve
C2 第 2RHカーブ  C2 2nd RH curve
Hinl 第 1層間結合磁界 Hin2 第 2層間結合磁界  Hinl 1st interlayer coupling field Hin2 2nd interlayer coupling field

Claims

請求の範囲 The scope of the claims
[1] 外部磁界に対して電気抵抗が変化する磁気抵抗効果を用いた磁気抵抗効果素子 を有し、  [1] It has a magnetoresistive element using a magnetoresistive effect in which the electric resistance changes with respect to an external magnetic field,
前記磁気抵抗効果素子は、第 1積層体と第 2積層体との積層構造で構成され、 前記第 1積層体は、第 1固定磁性層及び第 1フリー磁性層が第 1非磁性材料層を 介して積層された構成であり、(+ )方向の外部磁界に対して電気抵抗が変化し、 前記第 2積層体は、第 2固定磁性層及び第 2フリー磁性層が第 2非磁性材料層を 介して積層された構成であり、前記(+ )方向とは逆方向の(一)方向の外部磁界に 対して電気抵抗が変化し、  The magnetoresistive effect element has a laminated structure of a first laminated body and a second laminated body, and the first laminated body includes a first fixed magnetic layer and a first free magnetic layer formed of a first nonmagnetic material layer. And the second laminated body has a second pinned magnetic layer and a second free magnetic layer as a second non-magnetic material layer. The electrical resistance changes with respect to the external magnetic field in the (one) direction opposite to the (+) direction,
前記(+ )方向の外部磁界が侵入したときに、前記第 1積層体の電気抵抗値が変化 することで前記( + )方向の外部磁界が検出され、前記( )方向の外部磁界が侵入 したときに、前記第 2積層体の電気抵抗値が変化することで前記(一)方向の外部磁 界が検出されることを特徴とする磁気検出装置。  When the external magnetic field in the (+) direction enters, the external magnetic field in the (+) direction is detected by changing the electric resistance value of the first stacked body, and the external magnetic field in the () direction enters. In some cases, the external magnetic field in the (one) direction is detected by changing the electric resistance value of the second laminated body.
[2] 横軸を外部磁界 Hの大きさとし、縦軸を磁気抵抗効果素子の抵抗値 Rとした R— H グラフ上には、 [2] On the R—H graph, the horizontal axis is the magnitude of the external magnetic field H, and the vertical axis is the resistance value R of the magnetoresistive element.
前記第 1固定磁性層と前記第 1フリー磁性層間に作用する第 1層間結合磁界 Hinl 、 (+ )方向の外部磁界側に発現し、前記第 2固定磁性層と前記第 2フリー磁性層 間に作用する第 2層間結合磁界 Hin2が、前記(-)方向の外部磁界側に発現すると ともに、  A first interlayer coupling magnetic field Hinl acting between the first pinned magnetic layer and the first free magnetic layer, expressed on the external magnetic field side in the (+) direction, between the second pinned magnetic layer and the second free magnetic layer; The acting second interlayer coupling magnetic field Hin2 appears on the external magnetic field side in the (-) direction,
外部磁界がゼロのときの前記磁気抵抗効果素子の電気抵抗値を基準としたとき、( + )方向の外部磁界の強度変化に対する前記磁気抵抗効果素子の電気抵抗値の 増減傾向と、(一)方向の外部磁界の強度変化に対する前記磁気抵抗効果素子の電 気抵抗値の増減傾向とが逆傾向を示す請求項 1記載の磁気検出装置。  When the electric resistance value of the magnetoresistive effect element when the external magnetic field is zero is used as a reference, the increasing / decreasing tendency of the electric resistance value of the magnetoresistive effect element with respect to the intensity change of the external magnetic field in the (+) direction, The magnetic detection device according to claim 1, wherein the increasing / decreasing tendency of the electric resistance value of the magnetoresistive effect element with respect to a change in strength of the external magnetic field in the direction shows a reverse tendency.
[3] 前記磁気抵抗効果素子は 2個用意され、一つの前記磁気抵抗効果素子は第 1出 力取り出し部を介して第 1固定抵抗素子に直列接続され、もう一つの前記磁気抵抗 効果素子は第 2出力取り出し部を介して第 2固定抵抗素子に直列接続されており、 前記第 1固定抵抗素子の固定抵抗値 R3は、外部磁界がゼロのときの前記磁気抵 抗効果素子の電気抵抗値 R1と、(+ )方向の外部磁界が作用したときに、外部磁界 がゼロのときの電気抵抗値 Rlから最大限に変化した前記磁気抵抗効果素子の電気 抵抗値 R2との間の値であり、前記第 2固定抵抗素子の固定抵抗値 R5は、前記磁気 抵抗効果素子の外部磁界がゼロのときの電気抵抗値 R1と、(一)方向の外部磁界が 作用したときに、前記外部磁界がゼロのときの電気抵抗値 R1から最大限に変化した 前記磁気抵抗効果素子の電気抵抗値 R4との間の値である請求項 2記載の磁気検 出装置。 [3] Two magnetoresistive elements are prepared, one of the magnetoresistive elements is connected in series to the first fixed resistive element via the first output extraction unit, and the other magnetoresistive element is The fixed resistance value R3 of the first fixed resistance element is connected in series to the second fixed resistance element via the second output extraction unit, and the electric resistance value of the magnetoresistive effect element when the external magnetic field is zero When R1 and the external magnetic field in the (+) direction act, the external magnetic field Is a value between the electrical resistance value R1 of the magnetoresistive effect element maximally changed from the electrical resistance value Rl when zero is zero, and the fixed resistance value R5 of the second fixed resistance element is the magnetoresistive effect When the external magnetic field of the element is zero, and when the external magnetic field in the (one) direction is applied, the magnetoresistance effect changes to the maximum from the electric resistance value R1 when the external magnetic field is zero. 3. The magnetic detection device according to claim 2, wherein the magnetic detection device has a value between the electric resistance value R4 of the element.
[4] 前記第 1固定抵抗素子の固定抵抗値 R3は、前記磁気抵抗効果素子の電気抵抗 値 R1と電気抵抗値 R2との中間直であり、前記第 2固定抵抗素子の固定抵抗値 R5 は、前記磁気抵抗効果素子の電気抵抗値 R1と電気抵抗値 R4との中間値である請 求項 3記載の磁気検出装置。  [4] The fixed resistance value R3 of the first fixed resistance element is an intermediate value between the electric resistance value R1 and the electric resistance value R2 of the magnetoresistive effect element, and the fixed resistance value R5 of the second fixed resistance element is 4. The magnetic detection device according to claim 3, wherein the magnetoresistance effect element is an intermediate value between an electric resistance value R1 and an electric resistance value R4.
[5] 磁気抵抗効果素子と第 1固定抵抗素子とが直列接続された第 1直列回路と、磁気 抵抗効果素子と第 2固定抵抗素子とが直列接続された第 2直列回路と、固定抵抗素 子が第 3出力取り出し部を介して直列接続された第 3直列回路とを備え、  [5] A first series circuit in which a magnetoresistive effect element and a first fixed resistance element are connected in series, a second series circuit in which a magnetoresistive effect element and a second fixed resistance element are connected in series, and a fixed resistance element And a third series circuit connected in series via the third output extraction unit,
前記第 1直列回路の第 1出力取り出し部と前記第 2直列回路の第 2出力取り出し部 は一方ずつ、接続切換部を介して共通の差動出力部に前記第 3直列回路の第 3出 力取り出し部と共に接続されており、  One of the first output extraction unit of the first series circuit and the second output extraction unit of the second series circuit are respectively connected to the common differential output unit via the connection switching unit. Connected with the take-out part,
前記接続切換部にて、前記第 1出力取り出し部と前記差動出力部が接続されたと き、前記第 1直列回路と前記第 3直列回路とが並列接続してなる第 1ブリッジ回路が 前記差動出力部に接続された状態に切り換わり、前記接続切換部にて、前記第 2出 力取り出し部と前記差動出力部が接続されたとき、前記第 2直列回路と前記第 3直列 回路とが並列接続してなる第 2ブリッジ回路が前記差動出力部に接続された状態に 切り換わる請求項 3又は 4に記載の磁気検出装置。  In the connection switching unit, when the first output extraction unit and the differential output unit are connected, a first bridge circuit formed by connecting the first series circuit and the third series circuit in parallel is the difference. When the second output extraction unit and the differential output unit are connected in the connection switching unit, the second series circuit and the third series circuit are switched to the state connected to the dynamic output unit. 5. The magnetic detection device according to claim 3, wherein a second bridge circuit formed by connecting in parallel is switched to a state of being connected to the differential output unit.
PCT/JP2007/074022 2006-12-20 2007-12-13 Magnetic detector WO2008075610A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008550122A JP5006339B2 (en) 2006-12-20 2007-12-13 Magnetic detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006342859 2006-12-20
JP2006-342859 2006-12-20

Publications (1)

Publication Number Publication Date
WO2008075610A1 true WO2008075610A1 (en) 2008-06-26

Family

ID=39536241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074022 WO2008075610A1 (en) 2006-12-20 2007-12-13 Magnetic detector

Country Status (2)

Country Link
JP (1) JP5006339B2 (en)
WO (1) WO2008075610A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102817A (en) * 2008-10-27 2010-05-06 Tdk Corp Magnetoresistive element including pair of ferromagnetic layers coupled to pair of shield layers
JP2017133912A (en) * 2016-01-27 2017-08-03 アルプス電気株式会社 Magnetic sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529199A (en) * 1998-11-20 2003-09-30 シーゲート テクノロジー リミテッド ライアビリティ カンパニー Differential VGMR sensor
JP2004029007A (en) * 2002-05-14 2004-01-29 Hewlett-Packard Development Co Lp Magnetic field detection sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003529199A (en) * 1998-11-20 2003-09-30 シーゲート テクノロジー リミテッド ライアビリティ カンパニー Differential VGMR sensor
JP2004029007A (en) * 2002-05-14 2004-01-29 Hewlett-Packard Development Co Lp Magnetic field detection sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102817A (en) * 2008-10-27 2010-05-06 Tdk Corp Magnetoresistive element including pair of ferromagnetic layers coupled to pair of shield layers
JP2017133912A (en) * 2016-01-27 2017-08-03 アルプス電気株式会社 Magnetic sensor

Also Published As

Publication number Publication date
JPWO2008075610A1 (en) 2010-04-08
JP5006339B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
US7288934B1 (en) Electronic device incorporating magnetoresistive elements for sensing both N and S magnetic poles
JP4810275B2 (en) Magnetic switch
JP5066524B2 (en) Magnetic detector
JP4904359B2 (en) Magnetic detector
JP4668818B2 (en) Magnetic sensor
JP4904352B2 (en) Magnetic sensor
WO2008059914A1 (en) Magnetic detector and electronic apparatus employing it
JP4904358B2 (en) Magnetic detector
JP5006339B2 (en) Magnetic detector
JP2010157002A (en) Electronic device
JP5174676B2 (en) Magnetic detection device and electronic apparatus
JP5048771B2 (en) Magnetic detector and electrical product
EP2112522A1 (en) Magnetic sensor and its manufacturing method
JP5184379B2 (en) Magnetic detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550122

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850542

Country of ref document: EP

Kind code of ref document: A1