WO2008072714A1 - Temperature sensor, living body health managing system - Google Patents

Temperature sensor, living body health managing system Download PDF

Info

Publication number
WO2008072714A1
WO2008072714A1 PCT/JP2007/074064 JP2007074064W WO2008072714A1 WO 2008072714 A1 WO2008072714 A1 WO 2008072714A1 JP 2007074064 W JP2007074064 W JP 2007074064W WO 2008072714 A1 WO2008072714 A1 WO 2008072714A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
temperature
contact member
sensor
temperature sensor
Prior art date
Application number
PCT/JP2007/074064
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Ikehara
Toshihiro Itoh
Yi Zhang
Masaaki Ichiki
Takeshi Kobayashi
Ryutaro Maeda
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2008072714A1 publication Critical patent/WO2008072714A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/56Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid
    • G01K5/62Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip
    • G01K5/70Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip specially adapted for indicating or recording
    • G01K5/72Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip specially adapted for indicating or recording with electric transmission means for final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/56Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid
    • G01K5/62Measuring temperature based on the expansion or contraction of a material the material being a solid constrained so that expansion or contraction causes a deformation of the solid the solid body being formed of compounded strips or plates, e.g. bimetallic strip
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue

Definitions

  • the present invention relates to a temperature sensor and a living body health management system using the same.
  • thermoelectric conversion elements such as thermocouples. Since these generate electromotive force (voltage) corresponding to temperature without consuming power, the power consumption of the element itself is zero, but the generated voltage is analog, so an A / D converter circuit is still required And requires power.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-98398
  • the temperature data detected by the temperature sensor is transmitted intermittently at regular intervals. To improve the response to temperature changes, the data can be detected and transmitted at finer time intervals. As a result, power consumption must be increased.
  • the detected temperature data is transmitted regardless of whether there is a temperature change. In other words, it can be said that unnecessary data transmission is performed. There is room.
  • the present invention has been made based on such a technical problem, and an object of the present invention is to provide a temperature sensor or the like that can achieve reduction in size and weight while achieving power saving. To do.
  • the inventors of the present invention which have intensively studied to solve the above problems, have focused on a temperature switch using a bimetal structure.
  • the temperature switch using the metal structure has zero power consumption and the output is an ON / OFF electrical switch, so it can be read directly as a digital signal and is required for reading. Power can be minimized.
  • the bimetal temperature switch is a switch that operates at a specific temperature, it cannot be used to detect a continuous temperature change within a wide temperature range.
  • the temperature sensor of the present invention made there is a bimetallic cantilever formed by laminating two kinds of materials having different linear expansion coefficients, an electric contact member facing the tip of the cantilever with a gap, Multiple sets of voltage application units that apply voltage to the cantilever or electrical contact member, and detection circuits that detect voltage fluctuations when the cantilever deformed in response to a temperature change contacts or separates from the electrical contact member .
  • the lengths of the plurality of cantilevers or the gap between the cantilever tip and the electrical contact member are formed to be different from each other.
  • the bimetallic cantilever is deformed according to the temperature change.
  • the timing differs. The longer the cantilever, the narrower the gap between the tip of the cantilever and the electrical contact member The contact is made with less temperature change.
  • such a temperature sensor may further include a measurement control circuit that digitally measures the temperature based on signals emitted from a plurality of detection circuits.
  • the cantilever is formed of a conductive material on at least the layer facing the electric contact member.
  • the layer facing the electrical contact member of the force cantilever is made of a non-conductive material
  • the surface of the cantilever facing the electrical contact member is made of a conductive material, and the cantilever is deformed according to temperature changes. It is preferable to provide a conductive member such as a wiring that conducts to the electrical contact member.
  • the voltage applying unit may be a capacitor fed from a power source.
  • the capacitor is discharged when a cantilever that does not need to be constantly applied with a voltage contacts the electrical contact member, and the voltage change can be detected by the detection circuit. Then, when the capacitor is discharged, the power supply control circuit may supply power from the power source to the capacitor.
  • the temperature sensor as described above may be used for any purpose, but can be used for the purpose of health management of a living population such as an animal.
  • the present inventors attached a sensor that measures physical quantities such as acceleration, inclination, temperature, blood flow, blood pressure, and pulse to a living body such as an animal to be managed, and transmitted the measurement from the sensor. Based on the result data, we have developed a technology that determines the health status of a living body by determining the behavioral state of the living body.
  • the temperature sensor of the present invention is suitable for use as described above.
  • a living body health management system for such a purpose is a system for managing the health of a living body, is mounted on a living body to be managed, measures a physical quantity including at least temperature, and wirelessly transmits the measurement result as data.
  • a sensor and a control device that determines whether or not an abnormality has occurred in the health state of the living body based on data transmitted from the sensor.
  • the sensor includes a bimetallic cantilever formed by laminating two types of materials having different linear expansion coefficients, an electric contact member facing the tip of the cantilever with a gap, and a voltage applied to the cantilever or the electric contact member.
  • the gap force S between the tip of the cantilever and the electrical contact member is different from each other.
  • the senor preferably includes a remote power storage unit that stores the wirelessly supplied power.
  • the temperature sensor of the present invention it is possible to digitally measure the temperature change by detecting the contact of the plurality of sets of cantilevers to the electrical contact member with the signal of the detection circuit force. .
  • temperature measurement in a wide temperature range can be performed by appropriately setting the difference in cantilever length between each pair or the difference in gap between the tip of the cantilever and the electrical contact member.
  • the cantilever unless the temperature change amount exceeds a certain level, the cantilever does not contact the electrical contact member and the ON signal is not output, so the power for outputting the signal can be suppressed.
  • the temperature change is small, the amount of data transmitted wirelessly can be suppressed, which also leads to power saving.
  • voltage fluctuations that occur when the cantilever comes in contact with or separates from the electrical contact member can be used as an output signal from the detection circuit, so that a digital signal can be output directly and an AD converter is not required.
  • Such a temperature sensor can be made small by MEMS technology, and by reducing power consumption, it is possible to eliminate the battery and reduce the weight. In the management system, the weight of the sensor can be reduced. This is because the ability to achieve a long life by reducing power consumption can be achieved.
  • FIG. 1 is a conceptual diagram of a bird flu monitoring system in the present embodiment.
  • FIG. 2 is a diagram showing a configuration of a sensor.
  • FIG. 3 is a diagram showing a specific configuration of a temperature sensor.
  • FIG. 4 An example of the configuration when the temperature sensor is manufactured by MEMS technology.
  • FIG. 5 is a diagram showing the relationship between the cantilever length and the operating temperature difference.
  • FIG. 1 is a diagram conceptually depicting a bird flu monitoring system (biological health management system) 100 according to the present invention. is there.
  • one or more avian influenza monitoring systems 100 are installed so as to cover the sensor 120 attached to the bird (living body) managed in the management area 110 and the management area 110.
  • Relay station 130 a relay station controller 140 that centrally controls all relay stations 130 installed in the management area 110, a transmission / reception device 150, a control device (determination device) 160, and the like.
  • the management area 110 is provided for raising birds, such as a birdhouse.
  • the management area 110 may be an outdoor area such as a ranch, an indoor area such as a barn, or each animal in the zoo. It can be a building or a whole natural park.
  • the configuration of the present invention can also be applied to human subjects.
  • the management area 110 the sensor 120 and the relay station 130 communicate wirelessly. Therefore, the management area 110 is an area where the relay station 130 can acquire the signal from the sensor 120 directly or indirectly. Therefore, when the management area 110 is widened, the power to increase the wireless communication output of the sensor 120 and the number of relay stations 130 may be increased. It is preferable that one relay station 130 can cover an area having a radius of several tens of meters.
  • Such a sensor There are IEEE802.lx wireless LAN, PHS (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark), UWB, etc. as communication methods between 120 and relay station 130. Considering the balance between power and communication distance, ZigBee (registered trademark) is now the preferred method. Of course, other methods may be used.
  • the sensor 120 is a high-density integration of a sensor group that detects the posture and behavior of a bird, vital signs, and the like, and a detection processing circuit, a communication circuit, a power source, and a power management device, so as to monitor the health state of the bird. It is a system in package.
  • Measurement data in the sensor 120 is transmitted wirelessly.
  • the transmitted measurement data is received by the relay station 130 and further transferred to the relay station controller 140.
  • the relay station 130 and the relay station controller 140 can be connected by wireless or wired Ethernet (registered trademark).
  • the relay station controller 140 controls not only the relay station 130 installed in the management area 110 but also the relay stations in the other management areas 112 and 114, and collects and transmits the data of the sensors 120 received by these relay stations. Transfer to device 150.
  • the relay station controller 140 is assigned an identification mark such as an IP address to all the relay stations 130 installed in the management area 110, and is provided with a control device. It is possible to add a function that mediates transmission of commands given from 160 to each sensor 120.
  • the relay station controller 140 can also be configured to control hand over between the relay stations 130.
  • the transmission / reception device 150 transmits the measurement data of the sensor 120 to the control device 160 through the Ethernet (registered trademark), the Internet, a telephone line, a wireless telephone network.
  • the control device 160 is a computer device in terms of hardware, and can be manufactured by installing software having necessary functions in a general-purpose computer. Therefore, many functions of the control device 160 are realized by cooperation of hardware such as CPU, memory, network adapter, and modem, which is provided in a general computer, and software.
  • the control device 160 monitors the occurrence of bird flu by determining the measurement data transmitted from the sensor 120.
  • the measurement sent from sensor 120 is If it is determined that the fixed data indicates the occurrence of avian influenza, the result of the determination, that is, information indicating that avian influenza has occurred, is output as an alarm, printed out in print, or input in advance. It can also be output by sending an e-mail to the destination.
  • the control device 160 may be installed in the vicinity of the management area 110! /, But it may be installed at a remote location quite far away.
  • FIG. 2 is a diagram showing the configuration of the sensor 120.
  • the sensor 120 includes, for example, a physical quantity sensor 210 for measuring a predetermined physical quantity on a thin film substrate, and a circuit for controlling each part so as to perform a predetermined operation as the sensor 120.
  • Communication control for transmitting and receiving radio waves between the sensor control unit (power supply control circuit, measurement control circuit) 220 configured with a capacitor unit 230 that stores the power necessary for the operation of the sensor 120, and the relay station 130 Communication control unit 240 and antenna 250 mounted on a thin ribbon (film) substrate.
  • a sensor 120 uses the latest ultra-high-density mounting technology and MEMS processing technology. By making full use and narrowing down the sensor function, it will be ultra-compact.
  • an ultra-small sensor chip is manufactured by a system-in-package with a three-dimensional multilayer chip (5 mm or less) in the middle lcm square area on a 3 cm square antenna FPC.
  • the physical quantity sensor 210 is a physical quantity sensing chip that measures at least temperature.
  • an acceleration sensor 210A and a temperature sensor 210T are provided as the physical quantity sensor 210.
  • the sensor information including the acceleration information and the temperature information detected by the acceleration sensor 210A and the temperature sensor 210T is not transmitted to the relay station 130 one after another.
  • the ability to reduce power consumption by reducing the amount of power can be reduced with S.
  • the sensor control unit 220 includes an IC and a memory, and is a physical quantity sensor.
  • An event-driven circuit that performs predetermined processing when a signal is received from 210 is provided.
  • the predetermined process the contents of the signal received from the physical quantity sensor 210 are recorded. There is something that accumulates in
  • sensor 120 generates electric power by induced electromotive force by receiving radio waves transmitted from relay station 130 by antenna 250, and stores this electric power in capacitor unit 230.
  • the sensor control unit 220 includes an RF-DC conversion circuit that converts radio waves received by the antenna 250 into direct current, and a charging circuit that stores electric power in the capacitor unit 230 by the direct current converted by the RF-DC conversion circuit. , Has.
  • the sensor 120 is an active sensor that has a power supply and communicates with its own power, it does not require scanning by a reader like RF—ID, and it is never easy to control its behavior.
  • N / A suitable for bird management! /
  • the communication control unit 240 responsible for communication control functions as an ultra-compact wireless communication device for transmitting measurement data from the physical quantity sensor 210, and includes a control chip having a communication control circuit and And an impedance matching circuit for matching the impedance of radio waves to be transmitted and received.
  • the control chip is configured to have a unique identifier.
  • the control chip is configured to transmit the identifier together.
  • FIG. 3 is a diagram showing a configuration of the temperature sensor 210T for detecting the temperature in the physical quantity sensor 210. As shown in FIG. 3
  • the temperature sensor 210T includes a plurality of bimetal cantilever sensors 211.
  • the bimetal cantilever sensor 211 has a lever (cantilever) 2 12 made of a bimetal material in which a high linear expansion coefficient material 212a and a low linear expansion coefficient material 21 2b are joined or laminated, and only a base end portion 212c thereof is a base 213.
  • the structure is fixed to the cantilever and supported in a cantilever shape.
  • An electrical contact member 214 made of a conductive material is disposed with a predetermined gap so as to face the lever 212.
  • the lever 212 made of such a bimetal material swells and deforms around the base end 212c according to a change in temperature due to the difference in linear expansion coefficient between the high linear expansion coefficient material 212a and the low linear expansion coefficient material 212b.
  • the tip 212d moves in a direction approaching / separating from the electrical contact member 214 and reaches a predetermined temperature, the tip 212d comes into contact with the electrical contact member 214.
  • the low linear expansion coefficient material 212b is usually provided so as to face the electrical contact member 214, and constitutes an electrical contact with respect to the electrical contact member 214. For this reason, the low linear expansion coefficient material 212b needs to be formed of a conductive material.
  • a material other than metal is used as the low linear expansion coefficient material 212b, it is necessary to add a conductive member such as a wiring made of a conductive material to the surface of the lever 212 on the low linear expansion coefficient material 212b side.
  • the plurality of bimetal cantilever sensors 211 are formed so that the lengths of the levers 212 are different from each other! If the high linear expansion coefficient material 212a and the low linear expansion coefficient material 212b constituting the lever 212 are common between the bimetal cantilever sensors 211, the lever 212 is located at the same distance from the base end 212c. If so, it will stagnate and deform with the same radius of curvature as the temperature changes. At this time, since the lengths of the levers 212 are different from each other between the bimetal cantilever sensors 211, the longer the lever 212, the greater the displacement of the tip 212d.
  • the tip end portion 212d contacts the electrical contact member 214 at an earlier timing as the bimetal force inch lever sensor 211 of the lever 212 is longer.
  • the timing that is, the temperature at which the tip 212d contacts the electrical contact member 214 is determined according to the length of the lever 212.
  • the difference in the length of the lever 212 between the bimetal cantilever sensors 21 1 is determined by the measurement pitch when measuring the temperature digitally, in other words, by the minimum unit of measurement. Accordingly, the length of the lever 212 between the bimetal cantilever sensors 211 is preferably provided at a constant pitch. Where lever 212 The gap between the lever 212 and the electric contact member 214 may be different among the plurality of bimetal cantilever sensors 211.
  • each bimetal cantilever sensor 211 a voltage is applied to the electrical contact member 214, and the lever 212 side is grounded.
  • a signal processing circuit 215 is connected to each bimetal cantilever sensor 211! /.
  • this signal processing circuit 215 a voltage that is stored in a capacitor (voltage applying unit) 215a is applied to the electrical contact member 214.
  • the bimetal cantilever sensor 211 has a voltage that changes when the lever 212 is deformed by the temperature change and is brought into contact with the electrical contact member 214 to establish electrical continuity. This is applied to the F / F (Flip Flop) circuit. It is detected by a detection circuit 215b consisting of When the voltage detected by the detection circuit 215b fluctuates, the output signal from the detection circuit 215b switches from OFF force, ON, or from ON to OFF.
  • the lever 212 and the electrical contact member 214 are electrically connected.
  • a power supply control signal for supplying power from the power source for a certain period of time is output to the power source.
  • Such a signal processing circuit 215 can be formed in an IC constituting the sensor control unit 220.
  • the temperature sensor 210T having such a configuration includes a plurality of sets of bimetal cantilever sensors 211, and the lengths of the levers 212 are different in a plurality of stages.
  • the lever 212 contacts the electrical contact member 214 and the signal processing circuit 215 detects from the detection circuit 215b.
  • Output signal turns ON.
  • the output signals of ON are sequentially output from the signal processing circuits 215 of each set in the order of the length of the lever 212.
  • the lever 212 that has been in contact with the electrical contact member 214 is separated from the electrical contact member 214, and the output signal from the detection circuit 215b is turned OFF.
  • the output signal of OFF is sequentially transmitted from the signal processing circuit 215 of each set in the shortest order of the lever 212. It will be output.
  • the sensor control unit 220 when the signal from the detection circuit 215b is switched from OFF to ON, or from ON to OFF, the OFF force, or from ON or from ON to OFF, and the time information thereof are displayed.
  • the information stored in the memory and transmitted at a predetermined timing is transmitted to the control device 160 via the relay station 130.
  • the temperature change is digitally measured by detecting the contact of the plurality of bimetallic levers 212 having different lengths to the electrical contact member 214 with a signal from the detection circuit 215b. It becomes possible to do. At this time, by appropriately setting the difference in the length of the lever 212 between the multiple levers 212, it is possible to minimize the power consumption without detecting the temperature with the minimum unit accuracy more than necessary. can do. As long as the temperature change amount does not exceed a certain level, the lever 212 does not contact the electrical contact member 214 and no ON signal is output. This naturally reduces the power required to output the signal. Further, the data obtained as a result of the measurement in this way is the temperature and time information when the temperature change occurs. In other words, if the temperature change is small, the amount of data transmitted wirelessly can be reduced, which also leads to power saving.
  • the capacitor 215a is charged, and when the lever 212 comes into contact with the electrical contact member 214 and discharges, power is supplied to the capacitor 215a. Can be suppressed.
  • the voltage fluctuation generated when the lever 212 contacts / separates the electrical contact member 214 is directly output from the detection circuit 215b, so that a digital signal can be output directly and no AD converter is required. It is.
  • Such a temperature sensor 210T can be formed by MEMS technology.
  • a silicon oxide film 261 as a sacrificial layer is deposited on a silicon substrate 260, and a Ni (Young The film 262 is produced by sputtering or vapor deposition.
  • a 0.5-inch thick W (Young's modulus 345GPa, linear expansion coefficient 4 ⁇ 5E-6 / ° C) film 263 was formed as a low linear expansion coefficient material 222b by sputtering or vapor deposition. 222 is formed.
  • These films use photolithography and etching. Therefore, machining can be performed with an accuracy of m level. Make 21 Reen 222s of length 195 111 forces, et al 215 111, changing the length by 1 m. By using photolithography and etching, these levers 222 having different lengths can be manufactured simultaneously.
  • the silicon oxide film 261 in the lower part of the bimetallic lever 222 is removed by etching with an HF aqueous solution so that the lever 222 can operate freely. Since W and Ni do not dissolve in HF, the lever 222 can be left selectively.
  • a glass plate 264 having a recess 264a having a depth of 5 m is joined to the upper surface of the lever 222, and an electrical contact member 224 is joined to the inside.
  • the glass plate 264 and the electrical contact member 224 may be obtained by joining two layers of an insulating spacer having a thickness of 5 inches and a substrate on which electrodes are formed.
  • the W film 263 made of the low linear expansion coefficient material 222b faces the electric contact member 224. Therefore, when the temperature rises, the electric contact member 224 is directed and bent.
  • one end of a bimetal prepared by superposing two layers of material A (thickness ta, Young's modulus Ea, linear expansion coefficient aa) and material B (thickness tb, Young's modulus Eb, linear expansion coefficient ab) is fixed.
  • the cantilever structure has a length L
  • the displacement y due to the temperature change ⁇ at the other end is expressed by the following equation. From this equation, the temperature difference that creates a 5 m displacement at the tip 222d of the lever 222 can be calculated.
  • FIG. 5 shows the calculation results when the reno 212 is 195 to 215 m in length in the temperature sensor 210T having the above-described configuration using Equation 1.
  • the lever 212 without bending force S is manufactured at room temperature (20 ° C)
  • the lever 212 and the electrical contact member 214 come into contact with each other and the switch is turned on.
  • the lever 212 of length 215 111 is turned on at a temperature difference of 16.51 ° C (actual temperature 36.51 ° C) with respect to room temperature.
  • the temperature range of ° C can be covered at intervals of about 0.2 ° C.
  • body temperature can be measured with an accuracy (measurement pitch) of 0.2 ° C.
  • this sensor 120 When this sensor 120 is used for other living bodies, the same design should be performed within the measurement temperature range according to the type of the living body! /.
  • the temperature sensor 210T can be reduced in size and weight by forming the temperature sensor 210T by MEMS technology. Moreover, the lever 212 and the like having different lengths can be formed in a lump so that mass production is possible at low cost. The sensor 120 provided with such a temperature sensor 210T can be reduced in size and weight, and at the same time, can save power.
  • the senor 120 may be designed exclusively for the size of “sensor type”, the output of a communication device, etc., depending on the application, such as for aquaculture, livestock, and wild animals.
  • the sensor 120 can also be used for purposes other than monitoring the occurrence of avian influenza.
  • the sensor 120 can be configured to include a battery in the sensor 120 that does not supply power by radio waves. Of course, it is also possible to charge the battery at an appropriate timing.
  • the present invention can be applied not only to the aquaculture industry, but also to other livestock farming and health monitoring of wild animals, and prevents large-scale transmission of infectious diseases via wild animals. It can also be used to construct a simple network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

It is possible to provide a temperature sensor capable of reducing the sensor size and weight and save power. The temperature sensor (210T) includes a plurality of sets of bimetal cantilever sensors (211) having lever 212 stepwise different. For example, when the temperature increases and the temperature has reached a predetermined value decided by the length of the set of the levers (212), the lever (212) is brought into contact with an electric contact member (214) so as to turn ON an output signal from a detection circuit (215b) in a signal processing circuit (215). Thus, in the sensor control unit, when the temperature continuously increases, for example, output signals are successively outputted from the respective sets of signal processing circuit (215) in the descending order of the lengths of the levers (212).

Description

明 細 書  Specification
温度センサ、生体の健康管理システム  Temperature sensor, living body health management system
技術分野  Technical field
[0001] 本発明は、温度センサ、およびそれを用いた生体の健康管理システムに関する。  The present invention relates to a temperature sensor and a living body health management system using the same.
背景技術  Background art
[0002] 従来より、最もよく使われる温度センサ素子として、半導体ピエゾ抵抗素子、サーミ スタ素子がある。これらは温度によって電気抵抗が変化するものである力 S、抵抗値を 読み取るためには、素子に電流を流し、そのときの電圧降下あるいは電流値といった アナログ を検出しなければならない。そのためには、素子に常時一定の電流を流 しつづけ、安定した状態で動作させる必要があり、その結果、大きな電力を消費する 。また、アナログ値をデジタル信号に変換するには A/Dコンバータ回路が必要とな り、その動作にも電力を必要とする。  Conventionally, there are a semiconductor piezoresistive element and a thermistor element as the most frequently used temperature sensor element. In order to read the force S, which changes the electric resistance with temperature, and the resistance value, a current must be passed through the element, and an analog such as a voltage drop or current value at that time must be detected. For this purpose, it is necessary to keep a constant current constantly flowing through the element to operate in a stable state, and as a result, a large amount of power is consumed. In addition, an A / D converter circuit is required to convert an analog value into a digital signal, and power is also required for its operation.
他に温度センサ素子として、熱電対などの熱電変換素子がある。これらは電力を消 費することなく温度に対応した起電力(電圧)を発生するため、素子自体の消費電力 はゼロであるが、発生電圧はアナログ であるため、やはり A/Dコンバータ回路が 必要となり、電力を必要とする。  Other temperature sensor elements include thermoelectric conversion elements such as thermocouples. Since these generate electromotive force (voltage) corresponding to temperature without consuming power, the power consumption of the element itself is zero, but the generated voltage is analog, so an A / D converter circuit is still required And requires power.
このような温度センサを、無線式とする場合、温度の計測対象に取り付けた状態で の電源の確保が問題となる。また、 A/Dコンバータによっても電力が消費されるため 、消費電力を抑え、無線式の温度センサを使用できる期間を少しでも長期化するた めの様々な工夫がこれまでにもなされている。 (例えば、特許文献 1参照。)。  When such a temperature sensor is wireless, securing a power supply in a state where it is attached to a temperature measurement target becomes a problem. In addition, since power is also consumed by the A / D converter, various ideas have been made so far to reduce power consumption and extend the period during which the wireless temperature sensor can be used. (For example, see Patent Document 1).
[0003] 特許文献 1:特開 2006— 98398号公報  [0003] Patent Document 1: Japanese Unexamined Patent Publication No. 2006-98398
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、温度センサを、動物等の生体に装着するような用途の場合、外部から電力 を供給したり、バッテリに充電を行うのは困難であるうえ、電源を含めた温度センサ全 体を小型化 ·軽量化する必要があるために、大型のバッテリ等を備えることもできない 。したがって、このような用途においては、消費電力をさらに抑える必要性がある。 また、一般には温度センサで検出した温度データを、一定時間ごとに間欠的に送 信しているが、温度変化に対する応答性を高めるには、より細かい時間間隔でデー タを検出して送信せざるを得ず、その結果、消費電力が大きくならざるを得ない。また 、間欠的に温度の検出'送信を行う場合、温度変化の有無に関わらず、検出した温 度のデータは送信するため、いわば、無駄なデータ送信を行っているとも言え、消費 電力を抑える余地がある。 [0004] However, in a case where the temperature sensor is attached to a living body such as an animal, it is difficult to supply electric power from the outside or charge the battery, and the entire temperature sensor including the power source is difficult. Since it is necessary to reduce the size and weight, it is impossible to provide a large battery. Therefore, it is necessary to further reduce power consumption in such applications. In general, the temperature data detected by the temperature sensor is transmitted intermittently at regular intervals. To improve the response to temperature changes, the data can be detected and transmitted at finer time intervals. As a result, power consumption must be increased. In addition, when intermittent temperature detection and transmission is performed, the detected temperature data is transmitted regardless of whether there is a temperature change. In other words, it can be said that unnecessary data transmission is performed. There is room.
本発明は、このような技術的課題に基づいてなされたもので、小型 ·軽量化を図るこ とを可能としつつも、省電力化を図ることのできる温度センサ等を提供することを目的 とする。  The present invention has been made based on such a technical problem, and an object of the present invention is to provide a temperature sensor or the like that can achieve reduction in size and weight while achieving power saving. To do.
課題を解決するための手段  Means for solving the problem
[0005] 上記のような課題を解決すべく鋭意検討を行った本発明者らは、バイメタル構造を 利用した温度スィッチに注目した。ノ ィメタル構造を利用した温度スィッチは、素子自 体の消費電力はゼロであり、また出力も ON/OFFの電気的スィッチとなるため、直 接デジタル信号として読み出すことが可能であり、読み出しに必要な電力は最小限と すること力 Sできる。しかし、バイメタル温度スィッチは、単体では、ある特定の温度で動 作するスィッチであるため、広範囲の温度領域内における連続的な温度変化の検出 には使用できない。 [0005] The inventors of the present invention, which have intensively studied to solve the above problems, have focused on a temperature switch using a bimetal structure. The temperature switch using the metal structure has zero power consumption and the output is an ON / OFF electrical switch, so it can be read directly as a digital signal and is required for reading. Power can be minimized. However, since the bimetal temperature switch is a switch that operates at a specific temperature, it cannot be used to detect a continuous temperature change within a wide temperature range.
[0006] そこでなされた本発明の温度センサは、線膨張率の互いに異なる 2種類の材料を 積層してなるバイメタル式のカンチレバーと、カンチレバーの先端部に間隙を隔てて 対向する電気接点部材と、カンチレバーまたは電気接点部材に電圧を印加する電 圧印加部と、温度変化に応じて変形したカンチレバーが電気接点部材に対して接触 または離間したときの電圧変動を検出する検出回路と、を複数組備える。そして、複 数組のカンチレバーの長さまたはカンチレバーの先端部と電気接点部材との間隙が 、互いに異なるよう形成されていることを特徴としている。このように、複数組間におい て、複数組のカンチレバーの長さまたはカンチレバーの先端部と電気接点部材との 間隙を、互いに異ならせておくと、温度変化に応じてバイメタル式のカンチレバーが 変形したとき、カンチレバーの先端部と電気接点部材とが接触するタイミングが異な る。カンチレバーが長いほど、カンチレバーの先端部と電気接点部材の間隙が狭い ほど、少ない温度変化で接触する。このようにして、各組間における、カンチレバーの 長さの差、またはカンチレバーの先端部と電気接点部材との間隙の差に応じて決ま る温度ピッチに相当する温度変化が生じたときに、複数組のカンチレバーと電気接 点部材との接触状態が変化し、検出回路では、その接触ほたは離間)を電圧変動 により検出すること力できる。これにより、複数組のカンチレバーを用いることで広い温 度範囲における温度検出を、デジタル的に行うことができる。 [0006] The temperature sensor of the present invention made there is a bimetallic cantilever formed by laminating two kinds of materials having different linear expansion coefficients, an electric contact member facing the tip of the cantilever with a gap, Multiple sets of voltage application units that apply voltage to the cantilever or electrical contact member, and detection circuits that detect voltage fluctuations when the cantilever deformed in response to a temperature change contacts or separates from the electrical contact member . The lengths of the plurality of cantilevers or the gap between the cantilever tip and the electrical contact member are formed to be different from each other. As described above, when the lengths of the multiple cantilevers or the gap between the tip of the cantilever and the electrical contact member are different from each other, the bimetallic cantilever is deformed according to the temperature change. When the tip of the cantilever and the electrical contact member come into contact with each other, the timing differs. The longer the cantilever, the narrower the gap between the tip of the cantilever and the electrical contact member The contact is made with less temperature change. In this way, when a temperature change corresponding to the temperature pitch determined according to the difference in the length of the cantilever or the difference in the gap between the tip of the cantilever and the electrical contact member occurs between each set, The contact state between the pair of cantilevers and the electrical contact member changes, and the detection circuit can detect the contact or separation) by voltage fluctuation. Thus, temperature detection in a wide temperature range can be performed digitally by using a plurality of sets of cantilevers.
そこで、このような温度センサに、複数の検出回路から発する信号に基づいて、温 度をデジタル的に測定する測定制御回路をさらに備えることもできる。  Therefore, such a temperature sensor may further include a measurement control circuit that digitally measures the temperature based on signals emitted from a plurality of detection circuits.
[0007] ところで、カンチレバーは、少なくとも電気接点部材に対向する側の層を導電性材 料で形成するのが好ましい。  [0007] By the way, it is preferable that the cantilever is formed of a conductive material on at least the layer facing the electric contact member.
力ンチレバーの電気接点部材に対向する側の層を非導電性材料で形成する場合 、カンチレバーの電気接点部材に対向する側の面に、導電性材料からなり、温度変 形に応じてカンチレバーが変形したときに電気接点部材に対して導通する配線等の 導通部材を設けるのが好ましレ、。  When the layer facing the electrical contact member of the force cantilever is made of a non-conductive material, the surface of the cantilever facing the electrical contact member is made of a conductive material, and the cantilever is deformed according to temperature changes. It is preferable to provide a conductive member such as a wiring that conducts to the electrical contact member.
[0008] また、電圧印加部は電源から給電されるコンデンサとすることができる。このような構 成においては、常時電圧を印加する必要がなぐカンチレバーが電気接点部材に接 触したときにコンデンサが放電し、これによつて電圧変化を検出回路で検出すること ができる。そして、コンデンサが放電したときには、給電制御回路において、コンデン サへの電源からの給電が行われるようにすれば良い。  [0008] The voltage applying unit may be a capacitor fed from a power source. In such a configuration, the capacitor is discharged when a cantilever that does not need to be constantly applied with a voltage contacts the electrical contact member, and the voltage change can be detected by the detection circuit. Then, when the capacitor is discharged, the power supply control circuit may supply power from the power source to the capacitor.
[0009] ところで、上記したような温度センサは、いかなる目的で用いても良いが、動物等の 生体集団の健康管理等の目的で使用することが可能である。  [0009] By the way, the temperature sensor as described above may be used for any purpose, but can be used for the purpose of health management of a living population such as an animal.
我が国における BSE発生や鳥インフルエンザ流行などを契機に、最近「食の安全」 に対する関心が急速に高まっている。し力、し、これらの問題は、「人間にとっての安全 」とレ、う観点からの個々の感染症などに対する対症療法的な対策だけでは根本的に は解決できず、改めて、食とは何力、、人間と自然 (動植物)との関わりはどうあるべきか 、とレ、うような大局的な観点から問題を捉えなおす必要性に迫られて!/、る。  Recently, interest in “food safety” has been rapidly increasing due to the outbreak of BSE and the avian influenza epidemic in Japan. However, these problems cannot be fundamentally solved only by symptomatic measures against individual infectious diseases from the viewpoint of “safety for human beings”. What is food again? There is an urgent need to re-examine the problem from a global point of view, how should the relationship between human power and nature (animals and plants) be?
[0010] 動物の生態を調べる従来の方法としては、 GPS端末による渡り鳥の位置探査や、 牛の歩行頻度から発情期を検出する試みが知られている。また、従来の動物健康管 理センシングには、オフラインのバイオ的検査手法が主に開発されてきた。し力、しこ れらの方法では、検査を迅速に行うことができず、且つ高コストであり、一般に普及さ せることができるものではなかった。 [0010] As conventional methods for investigating the ecology of animals, attempts are being made to detect the estrus from the location of migratory birds using a GPS terminal or the walking frequency of cattle. In addition, conventional animal health tube For physical sensing, off-line biotechnological methods have been mainly developed. However, these methods cannot perform inspection quickly, are expensive, and cannot be widely used in general.
[0011] そこで、本発明者らは、加速度 ·傾斜 ·温度 ·血流 ·血圧 ·脈拍等の物理量測定を行 うセンサを管理対象となる動物等の生体に装着し、センサから送信された測定結果 のデータに基づ!/、て生体の行動状態を判定することで、生体の健康状態を判定する 技術を開発した。 [0011] Therefore, the present inventors attached a sensor that measures physical quantities such as acceleration, inclination, temperature, blood flow, blood pressure, and pulse to a living body such as an animal to be managed, and transmitted the measurement from the sensor. Based on the result data, we have developed a technology that determines the health status of a living body by determining the behavioral state of the living body.
このような技術においては、 MEMS技術により、物理センサや通信装置等を超小 型のチップに収めることができる。このようなチップを多数の管理生体に装着してデ ータを逐次的に収集し、コンピュータを用いてデータを解析することで、多数の管理 生体を一括して管理することができるのである。  In such technology, physical sensors and communication devices can be housed in ultra-small chips by MEMS technology. By attaching such a chip to a large number of living organisms, collecting data sequentially, and analyzing the data using a computer, it is possible to manage a large number of living organisms at once.
[0012] さらに研究を重ねた過程で、本発明者らは、生体の健康状態を判定するのに生体 の体温の変化を監視するのが好ましいことを見出した。 [0012] In the course of further research, the present inventors have found that it is preferable to monitor changes in the body temperature of the living body in order to determine the health state of the living body.
本発明の温度センサは、上記のような用途に用いるのに好適である。  The temperature sensor of the present invention is suitable for use as described above.
そのような用途の生体の健康管理システムは、生体の健康管理を行うシステムであ つて、管理を行う生体に装着されて少なくとも温度を含む物理量を測定するとともに、 測定の結果をデータとして無線送信するセンサと、センサから送信されたデータに基 づき、生体の健康状態に異常が生じているか否かの判定を行う制御装置と、を備える 。そして、センサは、線膨張率の互いに異なる 2種類の材料を積層してなるバイメタル 式のカンチレバーと、カンチレバーの先端部に間隙を隔てて対向する電気接点部材 と、カンチレバーまたは電気接点部材に電圧を印加する電圧印加部と、温度変化に 応じて変形したカンチレバーが電気接点部材に対して接触または離間したときの電 圧変動を検出する検出回路と、を複数組備え、複数組のカンチレバーの長さまたは カンチレバーの先端部と電気接点部材との間隙力 S、互いに異なるよう形成されている ことを特徴とする。  A living body health management system for such a purpose is a system for managing the health of a living body, is mounted on a living body to be managed, measures a physical quantity including at least temperature, and wirelessly transmits the measurement result as data. A sensor and a control device that determines whether or not an abnormality has occurred in the health state of the living body based on data transmitted from the sensor. The sensor includes a bimetallic cantilever formed by laminating two types of materials having different linear expansion coefficients, an electric contact member facing the tip of the cantilever with a gap, and a voltage applied to the cantilever or the electric contact member. A plurality of sets of voltage application units to be applied and detection circuits for detecting voltage fluctuations when a cantilever deformed in response to a temperature change comes into contact with or apart from the electrical contact member. Alternatively, the gap force S between the tip of the cantilever and the electrical contact member is different from each other.
ここで、センサは、無線供給された電力を蓄電する遠隔蓄電部を備えるようにする のが好ましい。  Here, the sensor preferably includes a remote power storage unit that stores the wirelessly supplied power.
発明の効果 [0013] 本発明の温度センサによれば、複数組備えられたカンチレバーの電気接点部材へ の接触を検出回路力 の信号で検出することで、温度変化をデジタル的に測定する ことが可能となる。このとき、各組間における、カンチレバーの長さの差、またはカンチ レバーの先端部と電気接点部材との間隙の差を適切に設定することで、広い温度範 囲の温度測定を行うことができ、しかも必要以上の最小単位'精度で温度を検出する こともなく、消費電力を最小限に抑えた構成とすることができる。また、温度変化量が 一定以上とならない限り、カンチレバーは電気接点部材には接触せず、 ON信号も 出力されないため、信号を出力するための電力も抑えることができる。また、このよう にして測定を行う結果、温度変化が少なければ、無線で送出するデータ量も抑えるこ とができ、これも省電力化につながる。 The invention's effect [0013] According to the temperature sensor of the present invention, it is possible to digitally measure the temperature change by detecting the contact of the plurality of sets of cantilevers to the electrical contact member with the signal of the detection circuit force. . At this time, temperature measurement in a wide temperature range can be performed by appropriately setting the difference in cantilever length between each pair or the difference in gap between the tip of the cantilever and the electrical contact member. In addition, it is possible to achieve a configuration that minimizes power consumption without detecting the temperature with a minimum unit accuracy that is more than necessary. In addition, unless the temperature change amount exceeds a certain level, the cantilever does not contact the electrical contact member and the ON signal is not output, so the power for outputting the signal can be suppressed. As a result of the measurement, if the temperature change is small, the amount of data transmitted wirelessly can be suppressed, which also leads to power saving.
また、カンチレバーが電気接点部材に接触 ·離間することで生じる電圧変動が、そ のまま検出回路からの出力信号となるので、ダイレクトにデジタル信号を出力すること ができ、 ADコンバータも不要となる。  In addition, voltage fluctuations that occur when the cantilever comes in contact with or separates from the electrical contact member can be used as an output signal from the detection circuit, so that a digital signal can be output directly and an AD converter is not required.
このような温度センサは、 MEMS技術によって小型に形成することができ、また消 費電力を抑えることでバッテリ等を廃し、軽量化を図ることが可能と管理システムにお いては、センサの軽量化を図るとともに、消費電力を抑えることでロングライフ化を図 ること力 Sできるため、そのなる。  Such a temperature sensor can be made small by MEMS technology, and by reducing power consumption, it is possible to eliminate the battery and reduce the weight. In the management system, the weight of the sensor can be reduced. This is because the ability to achieve a long life by reducing power consumption can be achieved.
また、このような温度センサを備えた生体の健康管理対象となる生体の種類を限定 する意図はないが、特に行動のコントロールが困難な動物等を対象として健康管理 を行う用途に特に適している。  In addition, although there is no intention to limit the type of living body that is subject to health management of a living body equipped with such a temperature sensor, it is particularly suitable for use in health management targeting animals and the like whose behavior is difficult to control. .
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本実施の形態における鳥インフルエンザ監視システムの概念図である。  FIG. 1 is a conceptual diagram of a bird flu monitoring system in the present embodiment.
[図 2]センサの構成を示す図である。  FIG. 2 is a diagram showing a configuration of a sensor.
[図 3]温度センサの具体的構成を示す図である。  FIG. 3 is a diagram showing a specific configuration of a temperature sensor.
[図 4]温度センサを MEMS技術により製造する場合の構成の例である。  [Fig. 4] An example of the configuration when the temperature sensor is manufactured by MEMS technology.
[図 5]カンチレバーの長さと作動温度差との関係を示す図である。  FIG. 5 is a diagram showing the relationship between the cantilever length and the operating temperature difference.
符号の説明  Explanation of symbols
[0015] 100· · ·鳥インフルエンザ監視システム(生体の健康管理システム)、 120· · ·センサ、 130· · ·中継局、 150· · ·送受信装置、 160· · ·制御装置 (判定装置)、 210· · ·物理量セ ンサ、 210A…加速度センサ、 210T…温度センサ、 211…バイメタルカンチレバー センサ、 212· · ·レバー(カンチレバー)、 212a…高線膨張率材料、 212b…低線膨張 率材料、 212c…基端部、 212d…先端部、 214· · ·電気接点部材、 215…信号処理 回路、 215a…コンデンサ(電圧印加部)、 215b…検出回路、 220· · ·センサ制御部( 給電制御回路、測定制御回路)、 240· · ·通信制御部、 250· · ·アンテナ [0015] 100 · · · Bird flu monitoring system (biological health management system), 120 · · · sensor, 130 ··· Relay station, 150 ··· Transceiver, 160 ··· Control device (determination device), 210 ··· Physical quantity sensor, 210A ... Acceleration sensor, 210T ... Temperature sensor, 211 ... Bimetal cantilever sensor, 212 · · · Lever (cantilever), 212a ... High linear expansion material, 212b ... Low linear expansion material, 212c ... Base end, 212d ... Tip, 214 ... Electrical contact member, 215 ... Signal processing circuit, 215a ... Capacitor (voltage application part), 215b ... Detection circuit, 220 ... Sensor control part (power supply control circuit, measurement control circuit), 240 ... Communication control part, 250 ... Antenna
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。本実 施の形態においては、本発明を、鳥インフルエンザの発生監視に用いる例を挙げる 図 1は、本発明による鳥インフルエンザ監視システム(生体の健康管理システム) 10 0を概念的に描いた図である。 Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings. In this embodiment, an example in which the present invention is used for monitoring the occurrence of avian influenza is given. FIG. 1 is a diagram conceptually depicting a bird flu monitoring system (biological health management system) 100 according to the present invention. is there.
図 1に示すように、鳥インフルエンザ監視システム 100は、管理区域 110内で管理 される鳥(生体)に装着されるセンサ 120、管理区域 110内をカバーするように 1つ又 は複数個設置される中継局 130、管理区域 110内に設置される全ての中継局 130を 集中制御する中継局コントローラ 140、送受信装置 150、制御装置 (判定装置) 160 などから構成される。  As shown in FIG. 1, one or more avian influenza monitoring systems 100 are installed so as to cover the sensor 120 attached to the bird (living body) managed in the management area 110 and the management area 110. Relay station 130, a relay station controller 140 that centrally controls all relay stations 130 installed in the management area 110, a transmission / reception device 150, a control device (determination device) 160, and the like.
[0017] 管理区域 110は、本実施の形態においては、鳥舎等、鳥を飼育するために設けら れたものである。鳥インフルエンザの監視以外に本発明を適用する場合、この管理 区域 110は、牧場などのような屋外区域である場合もあれば、牛舎などの屋内区域 である場合もあり、或いは動物園内の各動物舎としたり、自然公園全体などとすること もできる。さらには、人間を対象とした場合においても、本発明の構成を適用すること ができる。  In the present embodiment, the management area 110 is provided for raising birds, such as a birdhouse. When the present invention is applied in addition to bird flu monitoring, the management area 110 may be an outdoor area such as a ranch, an indoor area such as a barn, or each animal in the zoo. It can be a building or a whole natural park. Furthermore, the configuration of the present invention can also be applied to human subjects.
管理区域 110内においては、センサ 120と中継局 130との間は無線により通信が 行われる。このため、管理区域 110は、中継局 130がセンサ 120からの信号を直接 又は間接に取得し得る領域である。従って、管理区域 110を広くする場合には、セン サ 120の無線通信の出力を上げる力、、中継局 130の数を増やせばよい。 1つの中継 局 130によって、半径数 10mの領域をカバーできることが好ましい。このようなセンサ 120と中継局 130との間における通信方式として、 IEEE802. l lxの無線 LAN、 P HS (登録商標)、 Bluetooth (登録商標)、 ZigBee (登録商標)、 UWB等の規格があ るが、消費電力と通信距離のバランスを考えると、現在では ZigBee (登録商標)が好 適な方式といえる。むろん、他の方式を用いても構わない。 In the management area 110, the sensor 120 and the relay station 130 communicate wirelessly. Therefore, the management area 110 is an area where the relay station 130 can acquire the signal from the sensor 120 directly or indirectly. Therefore, when the management area 110 is widened, the power to increase the wireless communication output of the sensor 120 and the number of relay stations 130 may be increased. It is preferable that one relay station 130 can cover an area having a radius of several tens of meters. Such a sensor There are IEEE802.lx wireless LAN, PHS (registered trademark), Bluetooth (registered trademark), ZigBee (registered trademark), UWB, etc. as communication methods between 120 and relay station 130. Considering the balance between power and communication distance, ZigBee (registered trademark) is now the preferred method. Of course, other methods may be used.
[0018] センサ 120は、鳥の姿勢や行動、バイタルサインなどを検出するセンサ群と、検出 処理回路、通信回路、電源およびパワーマネージメントデバイスを高密度集積化した 、鳥の健康状態をモニタするためのシステムインパッケージである。  [0018] The sensor 120 is a high-density integration of a sensor group that detects the posture and behavior of a bird, vital signs, and the like, and a detection processing circuit, a communication circuit, a power source, and a power management device, so as to monitor the health state of the bird. It is a system in package.
このセンサ 120における測定データは無線により送信される。送信された測定デー タは中継局 130によって受信され、さらに、中継局コントローラ 140に転送される。  Measurement data in the sensor 120 is transmitted wirelessly. The transmitted measurement data is received by the relay station 130 and further transferred to the relay station controller 140.
[0019] 中継局 130と中継局コントローラ 140とは、無線又は有線のイーサネット(登録商標 )で接続されること力できる。中継局コントローラ 140は、管理区域 110に設置される 中継局 130のみならず、他の管理区域 112や 114の中継局も制御し、これらの中継 局で受信されたセンサ 120のデータを集めて送受信装置 150へと転送する。さらに、 中継局コントローラ 140には、中継局 130からのデータを集めることの他に、管理区 域 110に設置される全ての中継局 130へ IPアドレス等の識別標識を付与したり、制 御装置 160から個々のセンサ 120に与えられる命令の伝達を媒介したりする機能を 付加すること力 Sできる。別の実施態様において、複数の中継局 130によってメッシュ ネットワークを形成する場合には、中継局コントローラ 140は、中継局 130間のハンド オーバの制御も行うように構成されることができる。  The relay station 130 and the relay station controller 140 can be connected by wireless or wired Ethernet (registered trademark). The relay station controller 140 controls not only the relay station 130 installed in the management area 110 but also the relay stations in the other management areas 112 and 114, and collects and transmits the data of the sensors 120 received by these relay stations. Transfer to device 150. Furthermore, in addition to collecting data from the relay station 130, the relay station controller 140 is assigned an identification mark such as an IP address to all the relay stations 130 installed in the management area 110, and is provided with a control device. It is possible to add a function that mediates transmission of commands given from 160 to each sensor 120. In another embodiment, when a mesh network is formed by a plurality of relay stations 130, the relay station controller 140 can also be configured to control hand over between the relay stations 130.
送受信装置 150は、イーサネット (登録商標) ·インターネット ·電話回線,無線電話 ネットワーク 'などを通じて、センサ 120の測定データを制御装置 160へと送信する。  The transmission / reception device 150 transmits the measurement data of the sensor 120 to the control device 160 through the Ethernet (registered trademark), the Internet, a telephone line, a wireless telephone network.
[0020] 制御装置 160は、ハードウェア的にはコンピュータ装置であり、必要な機能を備え たソフトウェアを汎用のコンピュータにインストールすることで、製造することができる。 このため制御装置 160の多くの機能は、一般的なコンピュータが備えている、 CPU やメモリ、ネットワークアダプタ、モデム等のハードウェアと、ソフトウェアとの協働によ つて実現されている。  The control device 160 is a computer device in terms of hardware, and can be manufactured by installing software having necessary functions in a general-purpose computer. Therefore, many functions of the control device 160 are realized by cooperation of hardware such as CPU, memory, network adapter, and modem, which is provided in a general computer, and software.
この制御装置 160は、センサ 120から送信された測定データを判定することで、鳥 インフルエンザの発生の有無を監視している。そして、センサ 120から送信された測 定データが、鳥インフルエンザの発生を示すものであると判定された場合には、その 判定結果、すなわち鳥インフルエンザが発生したことを表す情報を、アラームの出力 、印刷物のプリントアウト、予めインプットされた送付先への電子メールの送信等によ つて出力することもできる。制御装置 160は管理区域 110の近辺に設置されていても よ!/、が、全く離れた遠隔地に設置されて V、ても良!/、。 The control device 160 monitors the occurrence of bird flu by determining the measurement data transmitted from the sensor 120. The measurement sent from sensor 120 is If it is determined that the fixed data indicates the occurrence of avian influenza, the result of the determination, that is, information indicating that avian influenza has occurred, is output as an alarm, printed out in print, or input in advance. It can also be output by sending an e-mail to the destination. The control device 160 may be installed in the vicinity of the management area 110! /, But it may be installed at a remote location quite far away.
[0021] 次に、図 2を用いてセンサ 120の構成について説明する。 Next, the configuration of the sensor 120 will be described with reference to FIG.
図 2はセンサ 120の構成を示す図である。  FIG. 2 is a diagram showing the configuration of the sensor 120.
図 2に示すように、センサ 120は、例えば、薄帯状のフィルム基板上に、所定の物理 量を測定する物理量センサ 210と、センサ 120として所定の動作を行うように各部を コントロールするための回路が構成されたセンサ制御部(給電制御回路、測定制御 回路) 220と、センサ 120の動作に必要な電力を蓄えるコンデンサ部 230と、中継局 130との間で電波の送受信を行うための通信制御を行うための通信制御部 240と、 アンテナ 250を、薄帯状 (フィルム状)の基板上に実装した超小型ネットワークセンサ このようなセンサ 120は、最先端の超高密度実装技術および MEMS加工技術を駆 使すると共に、センサ機能を絞り込むことにより、超小型なものとする。一つの例では 、 3cm角アンテナ FPC上の真ん中 lcm角領域に 3次元積層チップ(5mm以下)を搭 載したシステムインパッケージにより超小型センサチップを製造する。  As shown in FIG. 2, the sensor 120 includes, for example, a physical quantity sensor 210 for measuring a predetermined physical quantity on a thin film substrate, and a circuit for controlling each part so as to perform a predetermined operation as the sensor 120. Communication control for transmitting and receiving radio waves between the sensor control unit (power supply control circuit, measurement control circuit) 220 configured with a capacitor unit 230 that stores the power necessary for the operation of the sensor 120, and the relay station 130 Communication control unit 240 and antenna 250 mounted on a thin ribbon (film) substrate. Such a sensor 120 uses the latest ultra-high-density mounting technology and MEMS processing technology. By making full use and narrowing down the sensor function, it will be ultra-compact. In one example, an ultra-small sensor chip is manufactured by a system-in-package with a three-dimensional multilayer chip (5 mm or less) in the middle lcm square area on a 3 cm square antenna FPC.
[0022] 物理量センサ 210は、少なくとも温度を測定するような物理量センシングチップであ る。本実施の形態においては、物理量センサ 210として、加速度センサ 210Aと、温 度センサ 210Tとが備えられている。  The physical quantity sensor 210 is a physical quantity sensing chip that measures at least temperature. In the present embodiment, an acceleration sensor 210A and a temperature sensor 210T are provided as the physical quantity sensor 210.
[0023] 本実施の形態のセンサ 120においては、加速度センサ 210Aや温度センサ 210T で検出した加速度情報や温度情報を含むセンサ情報を、逐次中継局 130に送信す るのではなぐ送信頻度、送信データ量を抑えることで消費電力を低減できるような構 成とすること力 Sでさる。  [0023] In the sensor 120 of the present embodiment, the sensor information including the acceleration information and the temperature information detected by the acceleration sensor 210A and the temperature sensor 210T is not transmitted to the relay station 130 one after another. The ability to reduce power consumption by reducing the amount of power can be reduced with S.
[0024] センサ制御部 220は、具体的には ICとメモリとから構成されるもので、物理量センサ  [0024] Specifically, the sensor control unit 220 includes an IC and a memory, and is a physical quantity sensor.
210から信号を受け取ったときに、所定の処理を行うイベントドリブン回路を備えてい る。ここで、所定の処理としては、物理量センサ 210から受け取った信号の内容をメモ リに蓄積する、というものがある。 An event-driven circuit that performs predetermined processing when a signal is received from 210 is provided. Here, as the predetermined process, the contents of the signal received from the physical quantity sensor 210 are recorded. There is something that accumulates in
さらに、本実施の形態において、センサ 120は、中継局 130から送信される電波を アンテナ 250で受信することで誘導起電力により電力を発生し、この電力をコンデン サ部 230に蓄えるようになつている。このため、センサ制御部 220は、アンテナ 250で 受信した電波を直流電流に変換する RF— DC変換回路と、 RF— DC変換回路で変 換した直流電流によって電力をコンデンサ部 230に蓄える充電回路と、を備えている 。このように、センサ 120が電源を搭載して自らの電力で通信を行うアクティブセンサ であるため、 RF— IDのようにリーダによるスキャンを必要とせず、その行動を制御す ることが決して容易ではな!/、鳥の管理に適して!/、る。  Further, in the present embodiment, sensor 120 generates electric power by induced electromotive force by receiving radio waves transmitted from relay station 130 by antenna 250, and stores this electric power in capacitor unit 230. Yes. Therefore, the sensor control unit 220 includes an RF-DC conversion circuit that converts radio waves received by the antenna 250 into direct current, and a charging circuit that stores electric power in the capacitor unit 230 by the direct current converted by the RF-DC conversion circuit. , Has. In this way, because the sensor 120 is an active sensor that has a power supply and communicates with its own power, it does not require scanning by a reader like RF—ID, and it is never easy to control its behavior. N / A, suitable for bird management! /
[0025] 通信制御を担う通信制御部 240は、物理量センサ 210による測定データを送信す るための超小型の無線通信機としての機能を発揮するものであり、通信制御回路を 有した制御チップと、送受信する電波のインピーダンスを整合するインピーダンス整 合回路とを有する。ここで、制御チップは、独自の識別子を持つように構成され、物理 量センサ 210によるセンサ情報を送信する際には、当該識別子を共に送信するよう に構成される。 [0025] The communication control unit 240 responsible for communication control functions as an ultra-compact wireless communication device for transmitting measurement data from the physical quantity sensor 210, and includes a control chip having a communication control circuit and And an impedance matching circuit for matching the impedance of radio waves to be transmitted and received. Here, the control chip is configured to have a unique identifier. When transmitting sensor information from the physical quantity sensor 210, the control chip is configured to transmit the identifier together.
[0026] 図 3は、物理量センサ 210において、温度を検出するための温度センサ 210Tの構 成を示す図である。  FIG. 3 is a diagram showing a configuration of the temperature sensor 210T for detecting the temperature in the physical quantity sensor 210. As shown in FIG.
この図 3に示すように、温度センサ 210Tは、複数のバイメタルカンチレバーセンサ 2 11を備えている。  As shown in FIG. 3, the temperature sensor 210T includes a plurality of bimetal cantilever sensors 211.
バイメタルカンチレバーセンサ 211は、高線膨張率材料 212aと低線膨張率材料 21 2bとが接合あるいは積層された状態のバイメタル材からなるレバー(カンチレバー) 2 12が、その基端部 212cのみがベース 213に固定されて片持ち梁状に支持された構 成となっている。このレバー 212と対向するように、導電材料からなる電気接点部材 2 14が、予め定めたギャップを有して配置されて!/、る。  The bimetal cantilever sensor 211 has a lever (cantilever) 2 12 made of a bimetal material in which a high linear expansion coefficient material 212a and a low linear expansion coefficient material 21 2b are joined or laminated, and only a base end portion 212c thereof is a base 213. The structure is fixed to the cantilever and supported in a cantilever shape. An electrical contact member 214 made of a conductive material is disposed with a predetermined gap so as to face the lever 212.
[0027] レバー 212を構成する高線膨張率材料 212aとしては、例えば、 A1 = 23. IE— 6/°C)、 Au = 14. 2E— 6/°C)、 Ni = 13· 4E— 6/°C)などが利用できる。 低線膨張率材料 212bとしては、例えば、 W =4· 5E— 6/°C)、 Mo = 5· 5E 6/。C)、インバー合金 =0· IE— 6/。C)、シリコン = 2· 5E— 6/。C)、シリ コン酸化物(α = 0· 5Ε— 6/°C)、シリコン窒化物(α = 3Ε— 6/°C)等を用いること ができる。 [0027] As the high linear expansion coefficient material 212a constituting the lever 212, for example, A1 = 23. IE— 6 / ° C), Au = 14.2E— 6 / ° C), Ni = 13 · 4E— 6 / ° C) can be used. As the low linear expansion coefficient material 212b, for example, W = 4 · 5E—6 / ° C), Mo = 5 · 5E 6 /. C), Invar alloy = 0 · IE— 6 /. C), silicon = 2 · 5E— 6 /. C), Siri Con oxide (α = 0 · 5Ε-6 / ° C), silicon nitride (α = 3Ε-6 / ° C), or the like can be used.
このようなバイメタル材からなるレバー 212は、高線膨張率材料 212aと低線膨張率 材料 212bの線膨張率の違いから、温度の変化に応じて基端部 212cを中心として橈 み変形し、その先端部 212dが電気接点部材 214に対し接近 ·離間する方向に移動 し、所定の温度に達すると、先端部 212dが電気接点部材 214に接触するようになつ ている。  The lever 212 made of such a bimetal material swells and deforms around the base end 212c according to a change in temperature due to the difference in linear expansion coefficient between the high linear expansion coefficient material 212a and the low linear expansion coefficient material 212b. When the tip 212d moves in a direction approaching / separating from the electrical contact member 214 and reaches a predetermined temperature, the tip 212d comes into contact with the electrical contact member 214.
ここで、室温より高い温度の測定では通常、低線膨張率材料 212bが、電気接点部 材 214に対向するように設けられ、電気接点部材 214に対する電気接点を構成する 。このため、低線膨張率材料 212bは、導電性を有する材料で形成する必要がある。 低線膨張率材料 212bとして金属以外の材料を使う場合は、レバー 212の低線膨張 率材料 212b側の表面に、導電性材料からなる配線等の導通部材を付加する必要が ある。  Here, in the measurement at a temperature higher than room temperature, the low linear expansion coefficient material 212b is usually provided so as to face the electrical contact member 214, and constitutes an electrical contact with respect to the electrical contact member 214. For this reason, the low linear expansion coefficient material 212b needs to be formed of a conductive material. When a material other than metal is used as the low linear expansion coefficient material 212b, it is necessary to add a conductive member such as a wiring made of a conductive material to the surface of the lever 212 on the low linear expansion coefficient material 212b side.
複数備えられたバイメタルカンチレバーセンサ 211にお!/、ては、レバー 212の長さ が互いに異なるように形成されて!/、る。各バイメタルカンチレバーセンサ 211間にお いて、レバー 212を構成する高線膨張率材料 212a、低線膨張率材料 212bの材質 が共通であれば、レバー 212は、基端部 212cからの距離が同じ位置であれば、温 度変化に応じて同一の曲率半径で橈み変形する。このとき、各バイメタルカンチレバ 一センサ 211間において、レバー 212の長さが互いに異なるので、長いレバー 212 ほど、その先端部 212dの変位が大きい。したがって、レバー 212の長いバイメタル力 ンチレバーセンサ 21 1ほど、先端部 212dが電気接点部材 214に早いタイミングで接 触する。つまり、各バイメタルカンチレバーセンサ 211においては、レバー 212の長さ に応じて、先端部 212dが電気接点部材 214に接触するタイミング、すなわち温度が 決まっている。  The plurality of bimetal cantilever sensors 211 are formed so that the lengths of the levers 212 are different from each other! If the high linear expansion coefficient material 212a and the low linear expansion coefficient material 212b constituting the lever 212 are common between the bimetal cantilever sensors 211, the lever 212 is located at the same distance from the base end 212c. If so, it will stagnate and deform with the same radius of curvature as the temperature changes. At this time, since the lengths of the levers 212 are different from each other between the bimetal cantilever sensors 211, the longer the lever 212, the greater the displacement of the tip 212d. Accordingly, the tip end portion 212d contacts the electrical contact member 214 at an earlier timing as the bimetal force inch lever sensor 211 of the lever 212 is longer. In other words, in each bimetal cantilever sensor 211, the timing, that is, the temperature at which the tip 212d contacts the electrical contact member 214 is determined according to the length of the lever 212.
ここで、後に詳述するが、各バイメタルカンチレバーセンサ 21 1間におけるレバー 2 12の長さの差は、温度をデジタル的に測定する際の測定ピッチ、言い換えれば測定 最小単位によって定まる。これに伴い、各バイメタルカンチレバーセンサ 211間にお けるレバー 212の長さは、一定寸法ピッチで設けるのが好ましい。ここで、レバー 212 の長さは一定にし、レバー 212と電気接点部材 214の間隙を、複数のバイメタルカン チレバーセンサ 211間で異ならせるようにすることも可能である。 Here, as will be described in detail later, the difference in the length of the lever 212 between the bimetal cantilever sensors 21 1 is determined by the measurement pitch when measuring the temperature digitally, in other words, by the minimum unit of measurement. Accordingly, the length of the lever 212 between the bimetal cantilever sensors 211 is preferably provided at a constant pitch. Where lever 212 The gap between the lever 212 and the electric contact member 214 may be different among the plurality of bimetal cantilever sensors 211.
[0029] 各バイメタルカンチレバーセンサ 211は、電気接点部材 214に電圧が印加され、レ バー 212側は接地されている。 [0029] In each bimetal cantilever sensor 211, a voltage is applied to the electrical contact member 214, and the lever 212 side is grounded.
各バイメタルカンチレバーセンサ 211には、信号処理回路 215が接続されて!/、る。 この信号処理回路 215においては、電気接点部材 214に、コンデンサ(電圧印加部) 215aで蓄電して!/、る電圧を印加する。バイメタルカンチレバーセンサ 211にお!/、て、 温度変化によってレバー 212が変形して電気接点部材 214に接触して導通が図ら れると、電圧が変化するので、これを F/F (Flip Flop)回路からなる検出回路 215b で検出する。検出回路 215bで検出される電圧が変動すると、検出回路 215bからの 出力信号は、 OFF力、ら ON、あるいは ONから OFFに切り替わる。  A signal processing circuit 215 is connected to each bimetal cantilever sensor 211! /. In this signal processing circuit 215, a voltage that is stored in a capacitor (voltage applying unit) 215a is applied to the electrical contact member 214. The bimetal cantilever sensor 211 has a voltage that changes when the lever 212 is deformed by the temperature change and is brought into contact with the electrical contact member 214 to establish electrical continuity. This is applied to the F / F (Flip Flop) circuit. It is detected by a detection circuit 215b consisting of When the voltage detected by the detection circuit 215b fluctuates, the output signal from the detection circuit 215b switches from OFF force, ON, or from ON to OFF.
また、センサ制御部 220においては、検出回路 215bからの出力信号が OFFから O Nに切り替わつたことを検出したとき、一定の待ち時間を経過した後、レバー 212と電 気接点部材 214の導通によって放電したコンデンサ 215aに対し、電源からの給電を 一定時間だけ行うための給電制御信号を電源に出力する。  In the sensor control unit 220, when it is detected that the output signal from the detection circuit 215b has switched from OFF to ON, after a certain waiting time has elapsed, the lever 212 and the electrical contact member 214 are electrically connected. For the discharged capacitor 215a, a power supply control signal for supplying power from the power source for a certain period of time is output to the power source.
このような信号処理回路 215は、センサ制御部 220を構成する IC中に形成すること ができる。  Such a signal processing circuit 215 can be formed in an IC constituting the sensor control unit 220.
[0030] このような構成の温度センサ 210Tにおいては、バイメタルカンチレバーセンサ 211 を複数組備え、レバー 212の長さが複数段階に異なる長さとされている。これにより、 温度が例えば上昇し、それぞれのバイメタルカンチレバーセンサ 211のレバー 212 の長さによって決まる所定の温度に到達すると、レバー 212が電気接点部材 214に 接触して信号処理回路 215において検出回路 215bからの出力信号が ONとなる。こ れにより、センサ制御部 220においては、例えば温度が連続的に上昇していくと、各 組の信号処理回路 215からは、レバー 212の長い順に ONの出力信号が順次出力 されてくる。逆に、温度が低下していけば、電気接点部材 214に接触していたレバー 212が電気接点部材 214から離れて、検出回路 215bからの出力信号は OFFとなる 。このため、センサ制御部 220においては、例えば温度が連続的に下降していくと、 各組の信号処理回路 215からは、レバー 212の短い順に、 OFFの出力信号が順次 出力されてくる。 [0030] The temperature sensor 210T having such a configuration includes a plurality of sets of bimetal cantilever sensors 211, and the lengths of the levers 212 are different in a plurality of stages. Thus, for example, when the temperature rises and reaches a predetermined temperature determined by the length of the lever 212 of each bimetal cantilever sensor 211, the lever 212 contacts the electrical contact member 214 and the signal processing circuit 215 detects from the detection circuit 215b. Output signal turns ON. Thereby, in the sensor control unit 220, for example, when the temperature rises continuously, the output signals of ON are sequentially output from the signal processing circuits 215 of each set in the order of the length of the lever 212. On the contrary, if the temperature decreases, the lever 212 that has been in contact with the electrical contact member 214 is separated from the electrical contact member 214, and the output signal from the detection circuit 215b is turned OFF. For this reason, in the sensor control unit 220, for example, when the temperature continuously decreases, the output signal of OFF is sequentially transmitted from the signal processing circuit 215 of each set in the shortest order of the lever 212. It will be output.
ここで、センサ制御部 220においては、検出回路 215bからの信号が OFFから ON 、あるいは ONから OFFに切り替わると、 OFF力、ら ON、あるいは ONから OFFに切り 替わったこと、およびその時刻情報をメモリに記憶させ、所定のタイミングで、記憶し たそれらの情報を、中継局 130を介して制御装置 160に送信するようになっている。  Here, in the sensor control unit 220, when the signal from the detection circuit 215b is switched from OFF to ON, or from ON to OFF, the OFF force, or from ON or from ON to OFF, and the time information thereof are displayed. The information stored in the memory and transmitted at a predetermined timing is transmitted to the control device 160 via the relay station 130.
[0031] このような構成により、互いに長さの異なる複数のバイメタル式のレバー 212の電気 接点部材 214への接触を、検出回路 215bからの信号で検出することで、温度変化 をデジタル的に測定することが可能となる。このとき、複数本のレバー 212間における レバー 212の長さの差を適切に設定することで、必要以上の最小単位'精度で温度 を検出することもなぐ消費電力を最小限に抑えた構成とすることができる。また、温 度変化量が一定以上とならない限り、レバー 212は電気接点部材 214には接触せず 、 ON信号も出力されない。これにより、当然、信号を出力するための電力も抑えるこ と力 Sできる。また、このようにして測定を行う結果、得られるデータは、温度変化が生じ たときの温度と時刻情報である。つまり、温度変化が少なければ、無線で送出するデ 一タ量も抑えることができ、これも省電力化につながる。 [0031] With such a configuration, the temperature change is digitally measured by detecting the contact of the plurality of bimetallic levers 212 having different lengths to the electrical contact member 214 with a signal from the detection circuit 215b. It becomes possible to do. At this time, by appropriately setting the difference in the length of the lever 212 between the multiple levers 212, it is possible to minimize the power consumption without detecting the temperature with the minimum unit accuracy more than necessary. can do. As long as the temperature change amount does not exceed a certain level, the lever 212 does not contact the electrical contact member 214 and no ON signal is output. This naturally reduces the power required to output the signal. Further, the data obtained as a result of the measurement in this way is the temperature and time information when the temperature change occurs. In other words, if the temperature change is small, the amount of data transmitted wirelessly can be reduced, which also leads to power saving.
また、待機中においても、コンデンサ 215aに蓄電しておき、レバー 212が電気接点 部材 214に接触して放電した場合にコンデンサ 215aへの給電を行うようになってい るので、この点においても消費電力を抑えることができる。さらに、レバー 212が電気 接点部材 214に接触 ·離間することで生じる電圧変動力 そのまま検出回路 215bか らの出力信号となるので、ダイレクトにデジタル信号を出力することができ、 ADコンパ ータも不要である。  In addition, even during standby, the capacitor 215a is charged, and when the lever 212 comes into contact with the electrical contact member 214 and discharges, power is supplied to the capacitor 215a. Can be suppressed. In addition, the voltage fluctuation generated when the lever 212 contacts / separates the electrical contact member 214 is directly output from the detection circuit 215b, so that a digital signal can be output directly and no AD converter is required. It is.
[0032] このような温度センサ 210Tは、 MEMS技術によって形成することができる。  [0032] Such a temperature sensor 210T can be formed by MEMS technology.
これには、図 4に示すように、シリコン基板 260上に、犠牲層となるシリコン酸化膜 2 61を堆積し、その上に高線膨張率材料 222aとして厚さ 0. 5 mの Ni (ヤング率 200 GPa、線膨張率 13· 4E— 6/°C)膜 262をスパッタあるいは蒸着によって作製する。 さらにその上に低線膨張率材料 222bとしてスパッタあるいは蒸着によって厚さ 0. 5 inの W (ヤング率 345GPa、線膨張率 4· 5E— 6/°C)膜 263を形成し、バイメタル 構造のレバー 222を形成する。これらの膜はフォトリソグラフィ一法とエッチングを使 用して、 mレベルの精度で加工を行うことができる。長さ 195 111力、ら 215 111のレ ノ ー 222を、長さを 1 mづっ変えて 21個作製する。フォトリソグラフィ一とエッチング を使うことで、これらの長さの異なる複数のレバー 222は同時に製作できる。 For this purpose, as shown in FIG. 4, a silicon oxide film 261 as a sacrificial layer is deposited on a silicon substrate 260, and a Ni (Young The film 262 is produced by sputtering or vapor deposition. On top of that, a 0.5-inch thick W (Young's modulus 345GPa, linear expansion coefficient 4 · 5E-6 / ° C) film 263 was formed as a low linear expansion coefficient material 222b by sputtering or vapor deposition. 222 is formed. These films use photolithography and etching. Therefore, machining can be performed with an accuracy of m level. Make 21 Reen 222s of length 195 111 forces, et al 215 111, changing the length by 1 m. By using photolithography and etching, these levers 222 having different lengths can be manufactured simultaneously.
次に HF水溶液によりエッチングすることで、バイメタル構造のレバー 222の下方の 部分のシリコン酸化膜 261を除去し、レバー 222が自由に動作できるようにする。 Wと Niは HFに溶解しないため、レバー 222を選択的に残すことができる。  Next, the silicon oxide film 261 in the lower part of the bimetallic lever 222 is removed by etching with an HF aqueous solution so that the lever 222 can operate freely. Since W and Ni do not dissolve in HF, the lever 222 can be left selectively.
このレバー 222の上面に深さ 5 mの凹部 264aを有したガラス板 264を接合し、そ の内部には電気接点部材 224を接合する。ガラス板 264と電気接点部材 224は、 5 inの厚さの絶縁性のスぺーサと電極を形成した基板の 2層からなる構造を接合し たものであっても良い。  A glass plate 264 having a recess 264a having a depth of 5 m is joined to the upper surface of the lever 222, and an electrical contact member 224 is joined to the inside. The glass plate 264 and the electrical contact member 224 may be obtained by joining two layers of an insulating spacer having a thickness of 5 inches and a substrate on which electrodes are formed.
このバイメタル式のレバー 222は、低線膨張率材料 222bからなる W膜 263が電気 接点部材 224に対向しているため、温度が上昇すると電気接点部材 224に向力、つて 屈曲していく。ここで、 2層の材料 A (厚さ ta、ヤング率 Ea、線膨張率 a a)および材料 B (厚さ tb、ヤング率 Eb、線膨張率 a b)を重ね合わせて作製したバイメタルの一端を 固定して長さ Lのカンチレバー構造とした場合、もう一端の温度変化 ΔΤによる変位 y は、次式で表される。この式から、レバー 222の先端部 222dにおいて 5 mの変位 を作り出す温度差が計算できる。  In this bimetallic lever 222, the W film 263 made of the low linear expansion coefficient material 222b faces the electric contact member 224. Therefore, when the temperature rises, the electric contact member 224 is directed and bent. Here, one end of a bimetal prepared by superposing two layers of material A (thickness ta, Young's modulus Ea, linear expansion coefficient aa) and material B (thickness tb, Young's modulus Eb, linear expansion coefficient ab) is fixed. When the cantilever structure has a length L, the displacement y due to the temperature change ΔΤ at the other end is expressed by the following equation. From this equation, the temperature difference that creates a 5 m displacement at the tip 222d of the lever 222 can be calculated.
[0033] 國 y = 6 L2 ( b— a) (ta + tb)厶 T / (2 tb2 K) ただし、定数 Κは [0033] Country y = 6 L 2 (b— a) (ta + tb) 厶 T / (2 tb 2 K) where the constant Κ is
Κ = 4 + 6 (ta / tb) + 4 (ta - tb)2 + (Ea / Eb) (ta / tb)3 + (Eb / Ea) (tb /ta) Κ = 4 + 6 (ta / tb) + 4 (ta-tb) 2 + (Ea / Eb) (ta / tb) 3 + (Eb / Ea) (tb / ta)
[0034] 数 1を用い、上記した構成の温度センサ 210Tにおいて、レノ一 212を長さ 195〜2 15 mとしたときの計算結果を図 5に示す。 [0034] FIG. 5 shows the calculation results when the reno 212 is 195 to 215 m in length in the temperature sensor 210T having the above-described configuration using Equation 1.
室温(20°C)で曲力 Sりのないレバー 212が製造される場合、図 5で示した温度差が 発生すると、レバー 212と電気接点部材 214が接触してスィッチが ONになる。例え ば、長さ 215 111のレバー 212は室温に対して温度差 16. 51°C (実温度 36. 51°C) でスィッチが ONとなる。長さの違う 21本のレバー 21で、実温度 36· 51°C〜40. 07 °Cの温度範囲を、約 0. 2°Cおきにカバーできる。この温度センサ 210Tを用いること で、体温を 0. 2°Cの精度 (測定ピッチ)で測定することが可能となる。 When the lever 212 without bending force S is manufactured at room temperature (20 ° C), when the temperature difference shown in FIG. 5 occurs, the lever 212 and the electrical contact member 214 come into contact with each other and the switch is turned on. For example, the lever 212 of length 215 111 is turned on at a temperature difference of 16.51 ° C (actual temperature 36.51 ° C) with respect to room temperature. 21 levers 21 of different lengths, actual temperature 36 · 51 ° C ~ 40.07 The temperature range of ° C can be covered at intervals of about 0.2 ° C. By using this temperature sensor 210T, body temperature can be measured with an accuracy (measurement pitch) of 0.2 ° C.
このセンサ 120を他の生体に使用する場合は、その生体の種類に応じた測定温度 範囲で同様な設計を行えばよ!/、。  When this sensor 120 is used for other living bodies, the same design should be performed within the measurement temperature range according to the type of the living body! /.
[0035] このようにして、 MEMS技術で温度センサ 210Tを形成することで、温度センサ 21 0Tを小型 ·軽量化することができる。しかも、長さが異なるレバー 212等についても、 一括で形成できるので、低コストで量産が可能である。このような温度センサ 210Tを 備えたセンサ 120は、小型 ·軽量化を図ることを可能としつつも、省電力化を図ること が可能となる。 [0035] In this manner, the temperature sensor 210T can be reduced in size and weight by forming the temperature sensor 210T by MEMS technology. Moreover, the lever 212 and the like having different lengths can be formed in a lump so that mass production is possible at low cost. The sensor 120 provided with such a temperature sensor 210T can be reduced in size and weight, and at the same time, can save power.
[0036] 以上、本願発明の好適な実施態様につ!/、て例を挙げて説明してきたが、本願発明 は、その範囲を逸脱することなぐここで説明した実施態様の他にも様々な実施態様 を取りうることは言うまでもな!/、。  [0036] While the preferred embodiments of the present invention have been described with reference to examples, the present invention is not limited to the embodiments described herein without departing from the scope of the present invention. Needless to say, embodiments can be taken! /.
例えば、センサ 120は、養鳥用 ·牧畜用 ·野生動物用等、その用途に応じて大きさ' センサの種類'通信機の出力等を専用設計されてもよい。  For example, the sensor 120 may be designed exclusively for the size of “sensor type”, the output of a communication device, etc., depending on the application, such as for aquaculture, livestock, and wild animals.
また、センサ 120を、鳥インフルエンザの発生監視以外の用途に用いることも可能 である。また、その動作の制御が困難な動物ではなぐ他の用途に用いるのであれば 、電波による電力供給を行うのではなぐセンサ 120にバッテリを備えるような構成と することもできる。もちろん、このバッテリには、適宜タイミングで充電が行えるようにす ることも可倉である。  The sensor 120 can also be used for purposes other than monitoring the occurrence of avian influenza. In addition, if the sensor 120 is used for other purposes than an animal whose operation is difficult to control, it can be configured to include a battery in the sensor 120 that does not supply power by radio waves. Of course, it is also possible to charge the battery at an appropriate timing.
また、本願発明は、養鳥業に応用できるのみならず、その他の牧畜業や、野生動物 の健康状態モニタリングにも応用が可能であり、野生動物を経由した感染症の伝搬 を防止する大規模なネットワークの構築などのためにも利用が可能である。  The present invention can be applied not only to the aquaculture industry, but also to other livestock farming and health monitoring of wild animals, and prevents large-scale transmission of infectious diseases via wild animals. It can also be used to construct a simple network.
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を 取捨選択したり、他の構成に適宜変更することが可能である。  In addition to the above, the configurations described in the above embodiments can be selected or changed to other configurations as appropriate without departing from the gist of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 線膨張率の互いに異なる 2種類の材料を積層してなるバイメタル式のカンチレバー と、  [1] Bimetallic cantilevers made by laminating two types of materials with different linear expansion coefficients,
前記カンチレバーの先端部に間隙を隔てて対向する電気接点部材と、 前記カンチレバーまたは前記電気接点部材に電圧を印加する電圧印加部と、 温度変化に応じて変形した前記カンチレバーが前記電気接点部材に対して接触ま たは離間したときの電圧変動を検出する検出回路と、を複数組備え、  An electric contact member facing the tip of the cantilever with a gap; a voltage applying unit for applying a voltage to the cantilever or the electric contact member; and the cantilever deformed according to a temperature change with respect to the electric contact member. A plurality of detection circuits that detect voltage fluctuations when touching or separating
複数組の前記カンチレバーの長さまたは前記カンチレバーの先端部と前記電気接 点部材との間隙が、互いに異なるよう形成されて!/、ることを特徴とする温度センサ。  A temperature sensor characterized in that a plurality of sets of cantilevers have different lengths or gaps between the cantilever tips and the electrical contact members.
[2] 前記カンチレバーは、少なくとも前記電気接点部材に対向する側の層が導電性材 料で形成されてレ、ることを特徴とする請求項 1に記載の温度センサ。 [2] The temperature sensor according to claim 1, wherein the cantilever has at least a layer facing the electrical contact member formed of a conductive material.
[3] 前記カンチレバーは、前記電気接点部材に対向する側の面に、導電性材料からな り、温度変形に応じて前記カンチレバーが変形したときに前記電気接点部材に対し て導通する導通部材が設けられて!/、ることを特徴とする請求項 1に記載の温度セン サ。 [3] The cantilever is made of a conductive material on a surface facing the electric contact member, and a conductive member that conducts to the electric contact member when the cantilever is deformed in response to temperature deformation. The temperature sensor according to claim 1, wherein the temperature sensor is provided! /.
[4] 前記電圧印加部は電源から給電されるコンデンサであり、  [4] The voltage application unit is a capacitor fed from a power source,
前記カンチレバーが前記電気接点部材に接触して前記コンデンサが放電したとき に、前記コンデンサへの前記電源からの給電が行われる給電制御回路をさらに備え ることを特徴とする請求項 1から 3のいずれかに記載の温度センサ。  4. The power supply control circuit according to claim 1, further comprising a power supply control circuit that supplies power from the power source to the capacitor when the cantilever comes into contact with the electrical contact member and the capacitor is discharged. 5. A temperature sensor according to claim 1.
[5] 複数の前記検出回路から発する信号に基づいて、温度をデジタル的に測定する測 定制御回路をさらに備えることを特徴とする請求項 1から 4のいずれかに記載の温度 センサ。 [5] The temperature sensor according to any one of [1] to [4], further comprising a measurement control circuit that digitally measures the temperature based on signals emitted from the plurality of detection circuits.
[6] 前記検出回路は、前記カンチレバーが前記電気接点部材に対して接触または離 間したときの電圧変動を検出することで、各組間での前記カンチレバーの長さまたは 前記カンチレバーの先端部と前記電気接点部材との間隙によって決まる温度ピッチ に相当する温度変化が生じたときのみ、信号を出力することを特徴とする請求項 5に 記載の温度センサ。  [6] The detection circuit detects a voltage variation when the cantilever is in contact with or separated from the electrical contact member, so that the length of the cantilever between each pair or the tip of the cantilever 6. The temperature sensor according to claim 5, wherein a signal is output only when a temperature change corresponding to a temperature pitch determined by a gap with the electrical contact member occurs.
[7] 生体の健康管理を行うシステムであって、 前記生体に装着されて少なくとも温度を含む物理量を測定するとともに、前記測定 の結果をデータとして無線送信するセンサと、 [7] A system for managing the health of a living body, A sensor that is mounted on the living body and measures a physical quantity including at least temperature, and wirelessly transmits a result of the measurement as data;
前記センサから送信された前記データに基づき、前記生体の健康状態に異常が生 じて!/、るか否かの判定を行う判定装置と、を備え、  A determination device that determines whether or not an abnormality has occurred in the health condition of the living body based on the data transmitted from the sensor!
前記センサは、  The sensor is
線膨張率の互いに異なる 2種類の材料を積層してなるバイメタル式のカンチレバー と、  A bimetallic cantilever made by laminating two materials with different linear expansion coefficients,
前記カンチレバーの先端部に間隙を隔てて対向する電気接点部材と、 前記カンチレバーまたは前記電気接点部材に電圧を印加する電圧印加部と、 温度変化に応じて変形した前記カンチレバーが前記電気接点部材に対して接触ま たは離間したときの電圧変動を検出する検出回路と、を複数組備え、  An electric contact member facing the tip of the cantilever with a gap; a voltage applying unit for applying a voltage to the cantilever or the electric contact member; and the cantilever deformed according to a temperature change with respect to the electric contact member. A plurality of detection circuits that detect voltage fluctuations when touching or separating
複数組の前記カンチレバーの長さまたは前記カンチレバーの先端部と前記電気接 点部材との間隙が、互いに異なるよう形成されて!/、ることを特徴とする生体の健康管 理システム。  A living body health management system, wherein a plurality of sets of cantilevers have different lengths or gaps between the cantilever tips and the electrical contact members!
[8] 前記センサは、無線供給された電力を蓄電する遠隔蓄電部を備えることを特徴とす る請求項 7に記載の生体の健康管理システム。  8. The biological health management system according to claim 7, wherein the sensor includes a remote power storage unit that stores wirelessly supplied power.
PCT/JP2007/074064 2006-12-15 2007-12-13 Temperature sensor, living body health managing system WO2008072714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006337854A JP5046092B2 (en) 2006-12-15 2006-12-15 Temperature sensor, living body health management system
JP2006-337854 2006-12-15

Publications (1)

Publication Number Publication Date
WO2008072714A1 true WO2008072714A1 (en) 2008-06-19

Family

ID=39511730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074064 WO2008072714A1 (en) 2006-12-15 2007-12-13 Temperature sensor, living body health managing system

Country Status (2)

Country Link
JP (1) JP5046092B2 (en)
WO (1) WO2008072714A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268108B2 (en) * 2009-03-18 2013-08-21 独立行政法人産業技術総合研究所 Temperature sensor based on MEMS technology and manufacturing method thereof
CN107934904B (en) * 2016-10-12 2019-07-12 清华大学 A kind of actuator and actuating system based on carbon nanotube
CN107933911B (en) * 2016-10-12 2019-07-12 清华大学 A kind of bionic insect
CN107946451B (en) * 2016-10-12 2019-07-12 清华大学 A kind of temperature sensing system
CN107934909B (en) * 2016-10-12 2019-07-12 清华大学 A kind of preparation method of the actuator based on carbon nanotube
CN107932475B (en) * 2016-10-12 2019-07-12 清华大学 A kind of bionic arm and the robot using the bionic arm
CN111839461B (en) * 2020-07-27 2022-11-22 歌尔科技有限公司 Sensor and intelligent wearable equipment
KR102269687B1 (en) * 2020-12-06 2021-06-25 주식회사 알에스팀 System for smart farm management

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878544U (en) * 1981-11-20 1983-05-27 日本電気株式会社 bimetal switch
JPS58158826A (en) * 1982-03-16 1983-09-21 日本電気株式会社 Multiple point temperature sensitive switch
JPH01141534A (en) * 1987-11-28 1989-06-02 Nambu Electric Co Ltd Control device for livestock
JPH07174845A (en) * 1993-12-17 1995-07-14 Omron Corp Code responding method, core responder, and code responding system using the code responder
JP2006058014A (en) * 2004-08-17 2006-03-02 Dainippon Printing Co Ltd Data carrier of noncontact type with temperature change detection function
JP2006208144A (en) * 2005-01-27 2006-08-10 Dainippon Printing Co Ltd Contactless ic tag with memory sensor and environmental security method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917226A (en) * 1997-10-24 1999-06-29 Stmicroelectronics, Inc. Integrated released beam, thermo-mechanical sensor for sensing temperature variations and associated methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878544U (en) * 1981-11-20 1983-05-27 日本電気株式会社 bimetal switch
JPS58158826A (en) * 1982-03-16 1983-09-21 日本電気株式会社 Multiple point temperature sensitive switch
JPH01141534A (en) * 1987-11-28 1989-06-02 Nambu Electric Co Ltd Control device for livestock
JPH07174845A (en) * 1993-12-17 1995-07-14 Omron Corp Code responding method, core responder, and code responding system using the code responder
JP2006058014A (en) * 2004-08-17 2006-03-02 Dainippon Printing Co Ltd Data carrier of noncontact type with temperature change detection function
JP2006208144A (en) * 2005-01-27 2006-08-10 Dainippon Printing Co Ltd Contactless ic tag with memory sensor and environmental security method

Also Published As

Publication number Publication date
JP2008151555A (en) 2008-07-03
JP5046092B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5046092B2 (en) Temperature sensor, living body health management system
US11197641B2 (en) Communication device, abnormality notification system, and abnormality notification method
US7412899B2 (en) MEMS-based monitoring
JP5697233B2 (en) Environmental information measuring apparatus, environmental information measuring system, and environmental information measuring method
US10502676B2 (en) Disposable witness corrosion sensor
JP5071769B2 (en) Acceleration sensor, bird flu monitoring system
US20200219602A1 (en) Medication adherence apparatus and methods of use
KR20160149179A (en) System and method for a capacitive thermometer
CN105043420A (en) Passive wireless sensors
WO2003082112A1 (en) Uterine contraction sensing system and method
CN101476913B (en) Wireless stem flow sensor and its control method
JP4849549B2 (en) Wireless sensor system, living body health management system
KR20200022937A (en) Apparatus for informing excretions and contorl method thereof
WO2008010272A1 (en) Mobile object position detecting system
CN114427879B (en) MEMS respiration monitoring sensing chip, preparation method and sensor assembly
JP2010283587A (en) Sensor network system
WO2018111135A1 (en) Deformation sensor
JP5268108B2 (en) Temperature sensor based on MEMS technology and manufacturing method thereof
JP5896395B2 (en) Acceleration sensor and avian influenza monitoring system
KR101278679B1 (en) Haptics sensing device for multi-point and system including the same
JP4569588B2 (en) Flow line measurement system
EP3474732B1 (en) Device for monitoring patient's vital functions comprising a piezoelectric transducer and a measuring capacitor
JP3995009B2 (en) Position detection system
Olson et al. Piezoresistive strain gauges for use in wireless component monitoring systems
Okada et al. Development of low power technologies for health monitoring system using wireless sensor nodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850580

Country of ref document: EP

Kind code of ref document: A1