WO2008072502A1 - Exposure method and apparatus, and device manufacturing method - Google Patents

Exposure method and apparatus, and device manufacturing method Download PDF

Info

Publication number
WO2008072502A1
WO2008072502A1 PCT/JP2007/073367 JP2007073367W WO2008072502A1 WO 2008072502 A1 WO2008072502 A1 WO 2008072502A1 JP 2007073367 W JP2007073367 W JP 2007073367W WO 2008072502 A1 WO2008072502 A1 WO 2008072502A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
area
pattern
exposure
light
Prior art date
Application number
PCT/JP2007/073367
Other languages
French (fr)
Japanese (ja)
Inventor
Dai Arai
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2008549249A priority Critical patent/JPWO2008072502A1/en
Publication of WO2008072502A1 publication Critical patent/WO2008072502A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Definitions

  • the present invention relates to an exposure technique for exposing an object through an optical system and a device manufacturing technique using this exposure technique, and relates to various devices such as a semiconductor integrated circuit, a liquid crystal display element, or a thin film magnetic head. It can be applied to transfer a pattern such as a mask onto a substrate in a lithographic process for manufacturing.
  • a wafer (or glass) on which a resist as a photosensitive substrate is applied to a pattern formed on a reticle (or a photomask) via a projection optical system For example, an exposure apparatus such as a batch exposure type projection exposure apparatus such as a stepper or a scanning exposure type projection exposure apparatus such as a scanning stepper is used to transfer the image to each shot area of a plate.
  • an exposure apparatus such as a batch exposure type projection exposure apparatus such as a stepper or a scanning exposure type projection exposure apparatus such as a scanning stepper is used to transfer the image to each shot area of a plate.
  • the reticle pattern is superimposed on the second and subsequent layers on the wafer for exposure, the circuit pattern formed in the previous process in each shot area on the wafer, and the exposure from now on. Therefore, it is necessary to maintain a high overlay accuracy with the reticle pattern image.
  • a laser interferometer that measures the position of a reticle and a stage that drives a wafer with high accuracy
  • a reticle mark that measures the position of a reticle-side alignment mark (reticular mark)
  • It has a alignment microscope and alignment sensor that measures the position of the wafer side alignment mark (wafer mark).
  • ESA enhanced alignment
  • a wafer mark attached to a predetermined shot area on the wafer is used. The array coordinates of each shot area on the wafer with respect to the projection position of the reticle pattern were obtained by statistically processing the measurement results of the positions.
  • the stage is driven to perform exposure based on the array coordinates and the measurement value of the laser interferometer, and thereby each shot area on the wafer (the circuit pattern formed in the previous process).
  • the reticle pattern image was overlaid and exposed! [0004]
  • a wafer mark is formed in advance in each scanning region on the wafer substantially continuously or at a predetermined interval in the scanning direction, and exposure is now performed.
  • An exposure method has also been proposed in which a reticle mark corresponding to the scanning direction is also formed on the reticle.
  • one stage is set so that the positional deviation between the wafer mark and the corresponding reticle mark is measured by a predetermined sensor and the measured positional deviation is corrected.
  • the reticle pattern image was actually superimposed on each shot area on the wafer (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent No. 3084773
  • a laser interferometer is used to measure the stage position with high accuracy.
  • the laser interferometer is configured to move gas in the optical path of the laser beam due to movement of the stage.
  • the measured value may slightly fluctuate.
  • Such fluctuations in measured values are almost within the allowable range for the overlay accuracy that is currently required, but in the future, overlay accuracy will be increased in response to further miniaturization of semiconductor integrated circuits and the like.
  • it is necessary to reduce the influence of fluctuations in the measurement values of the laser interferometer.
  • the present invention is applicable to exposure using a liquid immersion method, and also provides an exposure technique and a device manufacturing technique capable of obtaining high overlay accuracy. aimed to.
  • An exposure method is an exposure method in which a predetermined area (SA1) on an object (P) is irradiated with exposure light via an optical system (PL) to expose the predetermined area.
  • the optical system is in the measurement area (SA2 to SA5) consisting of the predetermined area on the object or the area on the object whose positional relationship is known. Irradiate measurement light without passing through, measure the position information of the specified area, and control the relative positional relationship between the exposure light and the specified area based on the measurement result of the position information! To do.
  • the exposure apparatus includes a predetermined region (SA on the object (P) through the PU).
  • An exposure apparatus that irradiates exposure light to 1) and exposes the predetermined area, and when the exposure light is irradiated to the predetermined area, the predetermined area on the object or the positional relationship with the predetermined area
  • Measuring device 40A to 40D that irradiates the measurement area (SA2 to SA5) consisting of the area on the object with the known area without measuring the optical system and measures the position information of the predetermined area
  • a control device 34, 43, 45 for controlling the relative positional relationship between the exposure light and the predetermined region based on the measurement result of the measurement device.
  • the device manufacturing method according to the present invention uses the exposure apparatus of the present invention.
  • the reference numerals in parentheses attached to the above-mentioned predetermined elements of the present invention are the forces corresponding to the members in the drawings showing an embodiment of the present invention.
  • the elements of the invention are merely illustrated, and the present invention is not limited to the configuration of the embodiment.
  • the relative positional relationship between the exposure light and the predetermined area on the object is controlled using the actual measurement result of the position information of the measurement area on the object.
  • a pattern (image) or the like can be exposed on the predetermined area with high overlay accuracy.
  • the position information of the measurement area is measured without going through the optical system, even when exposure is performed by the immersion method with a liquid interposed between the optical system and the object.
  • the present invention is applicable.
  • the control apparatus controls the exposure light and the exposure light based on the position information of the measurement area obtained by the measurement apparatus.
  • the exposure method of the present invention can be used by controlling the relative positional relationship with a predetermined area. Thereby, the liquid immersion method can be applied and high overlay accuracy can be obtained.
  • the device manufacturing method of the present invention a high overlay accuracy can be obtained when exposure is performed on the second and subsequent layers of a substrate or the like, so that a device having a fine pattern can be manufactured with high accuracy.
  • FIG. 1 is a perspective view showing a projection exposure apparatus used in an example of an embodiment of the present invention.
  • FIG. 2 (A) is a plan view showing reticle R used for exposure of the first layer of substrate P in FIG.
  • FIG. 1 is an enlarged view showing a part of scale pattern 56 of reticle R.
  • FIG. 3 (A) is a plan view showing another example of a scale pattern formed on the reticle R, (B
  • FIG. 4 (A) is a plan view showing an example of the shot arrangement of the substrate P in FIG. 1, (B) is an enlarged plan view showing the yacht area SA of FIG. 4 (A), and (C) is FIG. FIG. 6B is an enlarged plan view showing a part of the scale pattern 56P in (B).
  • FIG. 5A is a perspective view showing a configuration example of the detector 40A included in the exposure apparatus of FIG. 1
  • FIG. 5B is an enlarged view showing an L & S pattern 58YP as a scale pattern
  • FIG. 5C is an L & S pattern. It is a figure which shows detection signal S1Y detected corresponding to 58YP.
  • FIG. 6 (A) is an enlarged view showing another example of the scale pattern, (B) is a diagram showing the detection signal S1Y detected corresponding to the pattern of Fig. 7 (A), (C) and (D) is a diagram showing a signal obtained by separating from the detection signal S1Y.
  • FIG. 7 is a perspective view showing another configuration example of the detector 40A provided in the exposure apparatus of FIG.
  • FIG. 8A is an enlarged view showing an example including an origin pattern as a scale pattern
  • FIG. 8B is an enlarged view showing an example including an absolute position detection pattern as a scale pattern.
  • FIG. 9 is a plan view showing a state where the shot area SA1 on the substrate P in FIG. 1 is exposed.
  • FIG. 10 is an enlarged view showing an example of a scale pattern formed in a shot region on a substrate P in FIG.
  • FIG. 11 is a perspective view showing a main part of another example of the embodiment of the present invention.
  • FIG. 12 is a diagram showing an arrangement of a plurality of detectors 40 A, etc., on a substrate-side scale pattern in another example of an embodiment of the present invention.
  • the present invention is applied to the case where exposure is performed with a scanning exposure type exposure apparatus (projection exposure apparatus) made of a scanning stagger.
  • FIG. 1 shows a schematic configuration of an exposure apparatus EX of this example.
  • the exposure apparatus EX includes an exposure light source 1 and a reticle R (mask) on which a transfer pattern is formed is exposed to exposure light IL ( Illumination optical system 16 that illuminates with exposure beam), reticle stage 21 that drives reticle R, projection optical system PL that projects an image of the pattern of reticle R onto substrate P, and substrate stage that drives substrate P 34, a drive system for these stages, a main control system 41 composed of a computer that comprehensively controls the operation of the entire apparatus, and a processing system for performing various other controls and operations.
  • the exposure light source an ArF excimer laser light source (wavelength: 193 nm) is used.
  • Exposure light sources include KrF excimer laser light source (wavelength 247 nm), ultraviolet pulse laser light source such as F laser light source (wavelength 157 nm), harmonic generation light source of YAG laser, harmonic generation of solid-state laser (semiconductor laser, etc.) Equipment or mercury lamps (i-line etc.) can also be used.
  • KrF excimer laser light source wavelength 247 nm
  • ultraviolet pulse laser light source such as F laser light source (wavelength 157 nm)
  • harmonic generation light source of YAG laser harmonic generation of solid-state laser (semiconductor laser, etc.)
  • Equipment or mercury lamps i-line etc.
  • the exposure light IL pulsed from the exposure light source 1 at the time of exposure passes through the mirror 2, a beam shaping optical system (not shown), the first lens 3A, the mirror 4, and the second lens 3B, and the cross-sectional shape becomes a predetermined shape. After being shaped, the light enters the fly's eye lens 5 as an optical integrator, and the illuminance distribution is made uniform.
  • an aperture for determining illumination conditions On the exit surface of the fly-eye lens 5 (pupil surface of the illumination optical system 16), an aperture for determining illumination conditions by setting the exposure light intensity distribution to a circle, multiple eccentric regions, an annular zone, a small circle, etc. Opening of illumination system with diaphragm ( ⁇ diaphragm) 7A, 7mm, 7C, 7D, etc.
  • An aperture stop member 6 is rotatably arranged by a drive motor 8. The main control system 41 rotates the illumination system aperture stop member 6 via the drive motor 8 to set the illumination conditions.
  • the exposure light IL that has passed through the aperture stop in the illumination system aperture stop member 11 passes through a beam splitter 9 and a relay lens 12A having a low reflectivity, and then a fixed blind (fixed field stop) 13A and a movable blind (movable field of view). Aperture) Pass sequentially through 13B.
  • the movable blind 13B is arranged on a plane almost conjugate with the pattern plane (reticle plane) of the reticle R, and the fixed blind 13A is arranged on a plane slightly defocused from the plane conjugate with the reticle plane.
  • the fixed blind 13A is used to define the illumination area 17R on the reticle surface as a slit-like area elongated in the non-scanning direction perpendicular to the scanning direction of the reticle R.
  • the movable blind 13B is used to close the illumination area 17R in the scanning direction so that unnecessary areas are not exposed at the start and end of the scanning exposure on the exposure area on the substrate P. Is done.
  • the movable blind 13B is further used to define the center and width of the illumination area 17R in the non-scanning direction.
  • the exposure light IL that has passed through the blinds 13A and 13B illuminates the illumination area 17R of the pattern area of the reticle R with a uniform illuminance distribution through the sub condenser lens 12B, the mirror 14 for bending the optical path, and the main condenser lens 15. To do.
  • the exposure light reflected by the beam splitter 9 is received by the integrator sensor 11 including a photoelectric sensor via the condenser lens 10.
  • the detection information of the integrator sensor 11 is supplied to an exposure amount control system 42.
  • the exposure amount control system 42 uses the detection information and information on the transmittance of the optical system from the beam splitter 9 to the substrate P, which is measured in advance.
  • the energy of the exposure light IL on the substrate P is indirectly calculated.
  • the exposure amount control system 42 Based on the integrated value of the calculation result and the control information from the main control system 41, the exposure amount control system 42 emits light from the exposure light source 1 so that an appropriate exposure amount can be obtained on the surface (exposure surface) of the substrate P.
  • the illumination optical system 16 includes members from the exposure light source 1 to the main condenser lens 15.
  • the pattern in the illumination area 17R of the reticle R is projected to the projection magnification / 3 (/ 3 is 1/4, 1/5, etc.) ) Is projected onto a projection area 17P elongated in the non-scanning direction on one shot area SA on the substrate P.
  • the substrate P is a disk-shaped semiconductor substrate (e.g. silicon or SO silicon on insulator) in this example. Eno) is coated with a photoresist (photosensitive material).
  • the projection optical system PL is, for example, a refractive system, but a catadioptric system or the like can also be used.
  • the Z-axis is taken parallel to the optical axis AX of the projection optical system PL, and along the non-scanning direction orthogonal to the scanning direction of the reticle R and the substrate P during scanning exposure in a plane perpendicular to the Z-axis. Take the X axis and take the Y axis along the scanning direction.
  • the reticle R is held by suction on the reticle stage 21, and the reticle stage 21 moves on the reticle base 22 at a constant speed in the Y direction, and for example, a synchronization error (or a pattern image of the reticle R and the substrate P on the substrate P).
  • the reticle R is scanned by slightly moving in the X, Y, and Z axis rotation directions so as to correct the misalignment with the shot area during exposure.
  • Reticle stage 21 is arranged with laser interferometers 23X and 23Y arranged so as to face the reflecting surfaces (or moving mirrors, corner reflectors, etc.) on the X and Y sides of reticle stage 21, for example, with respect to projection optical system PL.
  • the position of 21 is measured and the measured value is supplied to the stage drive system 43 and the main control system 41! /.
  • a scale pattern 56 for measuring positional information of the reticle R in the X direction and the Y direction is formed in the pattern area of the reticle R along the Y direction.
  • a pair of detectors for detecting the position information of the scale pattern 56 via the optical path bending mirror at a position sandwiching the illumination area 17R above the reticle R in the Y direction (scanning direction). 25A and 25B are arranged, and the detection results of the detectors 25A and 25B are supplied to a coordinate measurement / interpolation system 45 including an arithmetic unit.
  • a storage device 46 such as a magnetic disk device is connected to the coordinate measurement / interpolation system 45, and the position information of the reticle R is obtained and supplied to the stage drive system 43 as will be described later.
  • the scale pattern 56 and detectors 25A and 25B constitute an encoder that directly measures the position information of the reticle R (including information on the movement and / or absolute position (origin position) in the pattern area). . Details of this encoder and coordinate measurement / interpolation system 45 will be described later.
  • the method for driving the reticle stage 21 in this example includes first and second drive modes set by the main control system 41 in accordance with an operator's designation.
  • the stage drive system 43 is based on measurement values of the laser interferometers 23X and 23Y and control information from the main control system 41! /, Based on a drive mechanism (not shown) such as a linear motor. Reticle stays through Control the position and speed of the 21.
  • the stage drive system 43 controls the position information of the reticle R output from the coordinate measurement / interpolation system 45 based on the measurement values of the detectors 25A and 25B and the control from the main control system 41.
  • the position and speed of the reticle stage 21 are controlled. If the reticle stage 21 of this example is driven only in the first drive mode, the detectors 25A and 25B can be omitted. When the exposure apparatus of this example is driven only in the second drive mode, the laser interferometers 23X and 24Y are omitted, or the position of the scale is measured by a sensor such as an optical type or a capacitance type. It is possible to substitute a measuring instrument with a coarse resolution.
  • alignment mark 52A and so as to sandwich the pattern area of reticle R in the X direction.
  • reticle alignment microscopes 24A and 24B for detecting the positions of the alignment marks 52A and 52B via optical path bending mirrors are arranged.
  • the detection signals of the reticle alignment microscopes 24A and 24B are supplied to the alignment signal processing system 44, and the alignment signal processing system supplies the main control system 41 with information on the mark position detected by the image processing method.
  • the substrate P is sucked and held on the substrate stage 34 via the substrate holder 31, and the substrate stage 34 moves on the base member 35 at a constant speed in the Y direction, and in the X direction and the Y direction.
  • An XY stage 33 that moves in steps and a Z tilt stage 32 are provided.
  • the Z tilt stage 32 performs focusing and leveling of the substrate P based on the measurement values of the positions in a plurality of positions on the substrate P by an auto focus sensor (not shown).
  • the substrate holder 31 has a force represented by a flat plate in FIG. 1 Actually, the mounting surface of the substrate P of the substrate holder 31 is a recess, and the surface of the substrate P and the substrate holder 31 on the outside thereof are arranged.
  • the surface of is set to almost the same height in the Z direction.
  • the laser beam interferometers 38X and 38Y arranged so as to face the reflecting surfaces (or moving mirrors, etc.) on the side surfaces in the X direction and the Y direction of the substrate stage 34, for example, the substrate stage 34 with reference to the projection optical system PL.
  • the position in the XY plane and the rotation angles around the X, Y, and Z axes are measured, and the measured values are supplied to the stage drive system 43 and the main control system 41.
  • each of the shot areas on the substrate P has a scale pattern 56 on the reticle R in the previous process.
  • a scale pattern corresponding to the image of the reticle scale pattern used in the previous steps is formed!
  • the scale pattern on the substrate P side is, for example, a concavo-convex pattern on which a photoresist is applied.
  • the position information of the scale pattern in the X direction and the Y direction so that the projection region 17P is sandwiched in the Y direction (scanning direction) and the X direction (non-scanning direction) on the side surface of the lower end of the projection optical system PL.
  • a pair of detectors 40A and 40B and a pair of detectors 40C and 40D are arranged for measuring.
  • four detectors 40E, 40F, 40G, and 40G for measuring positional information in the X and Y directions of the scale pattern on the substrate P in the Y side surface direction at the lower end of the projection optical system PL.
  • 40H is arranged, and the detection results of the detectors 40A to 40H are also supplied to the coordinate measurement / interpolation system 45.
  • the configuration and arrangement of the eight detectors 40A to 40H will be described later. From the scale pattern and detectors 40A to 40H formed in each shot area of the substrate P, the position information of the substrate P (including information on the movement amount and / or the absolute position (origin position) in each shot area)
  • An encoder for direct measurement is configured.
  • the driving method of the substrate stage 34 of the present example also has first and second driving modes set by the main control system 41 in accordance with an operator's designation.
  • the stage drive system 43 receives the measurement values from the laser interferometers 38X and 38Y and the main control system 41. Based on the control information, the position and speed of the substrate stage 34 are controlled via a drive mechanism (not shown) such as a linear motor.
  • the stage drive system 43 is based on the measurement values of the detectors 40A to 40H and performs coordinate measurement / interpolation system. Based on the position information of the substrate P output from 45 and the control information from the main control system 41, the position and speed of the substrate stage 34 are controlled.
  • an off-axis imaging type alignment sensor for detecting the position of the alignment mark (substrate mark) on the substrate P 39
  • the detection signal of the alignment sensor 39 is supplied to the alignment signal processing system 44.
  • the alignment signal processing system 44 obtains the arrangement information of all shot areas on the substrate P by the EGA method, for example, based on the detection signal, and supplies it to the main control system 41.
  • the reference position of the image via the projection optical system PL of the pattern of the reticle R in advance (error Information on the positional relationship (baseline amount, etc.) between the alignment mark 39 and the detection position of the alignment sensor 39 is measured and stored. Therefore, a reference mark member 36 on which reference marks 37A, 37B and the like are formed is fixed near the substrate P on the substrate stage 34.
  • the alignment sensor 39 is It is not always necessary to use it. However, in order to set the origin position of the measurement values of the detectors 40A to 40H, it is also possible to use the array coordinates of each shot area of the substrate P detected by the alignment sensor 39.
  • the exposure apparatus EX of this example supplies a liquid such as pure water to a local region (immersion region) between the lens at the tip of the projection optical system PL and the substrate P, and exposes the exposure light IL.
  • a liquid immersion method is used in which the substrate P is exposed through the projection optical system PL and the liquid.
  • a liquid supply device for supplying liquid to the immersion area, and its A liquid recovery apparatus that recovers the liquid in the immersion area may be provided.
  • the illumination optical system 16 irradiates the illumination area 17R with the exposure light IL, and the pattern in the illumination area 17R of the reticle R is projected into one shot area SA on the substrate P via the projection optical system PL.
  • the reticle stage 21 and the substrate stage 34 are driven, the reticle R and the substrate P are synchronously scanned in the Y direction, and the exposure of the exposure light IL is stopped.
  • the operation of stepping the substrate P in the X and Y directions by driving the substrate stage 34 is repeated.
  • the pattern image of the reticle R is exposed to each shot area on the substrate P by the step 'and' scan method.
  • FIG. 2 (A) shows the pattern arrangement of the reticle R.
  • the reticle pattern area 51 is surrounded by a frame-shaped shading band 53 and scanned. It is a rectangular area elongated in the direction SD (Y direction).
  • the pattern area 51 is divided into six subpattern areas 55A to 55F by one scribe line area 54A in the X direction and two scribe line areas 54B and 54C in the Y direction.
  • the same or different circuit patterns are formed in 55A to 55F.
  • the scribe line areas 54A to 54C are areas to be used as cutting boundaries with a width of about 50 11 m when projected onto the substrate P.
  • the scribe line areas 54A to 54C have substantially the same width as the scribe line area 54A.
  • the inner region is also a region that serves as a cutting boundary when projected onto the substrate P. Note that since the image of the edge portion of the movable blind 13B in FIG. 1 is projected onto the shading band 53, the width thereof is somewhat larger than the scribe line region 54A.
  • the pattern area 51 has the force S divided by the three scribe line areas 54A to 54C, the number of divisions of the pattern area 51, and the arrangement of the sub-pattern areas. Is changed, the number and arrangement of the scribe line regions 54A to 54C are also changed.
  • a two-dimensional scale pattern 56 is formed over the entire area in the central scribe line area 54A parallel to the scanning direction (Y direction).
  • the scale pattern 56 has a substantially square light shielding pattern 57 as a background in the X direction (pitch) PX1 and a period in the Y direction PY1 with the light transmitting portion as the background.
  • This is a grid pattern with periodicity in the X and ⁇ directions arranged in.
  • the width of the light shielding pattern 57 in the X direction and the heel direction is usually a force S that is 1/2 of the period PX1 and PY1, for example, when indicating the origin position, the width of the light shielding pattern 57 at a specific position as described later. (Duty ratio) has changed (see Fig. 6 (A)).
  • PX1 pitch
  • PY1 period in the Y direction
  • the scale pattern 56 is similar to the line-and-space pattern in the Y direction with the period PY1 (hereinafter referred to as the L & S pattern) and the L & S pattern with the period PX1 in the X direction. It can be regarded as a superposition of.
  • the period PY1 is 0.1. ⁇ 1 ⁇ m
  • period PX1 is about 0 ⁇ 1-2 m. Since the width of the projected image of the scribe line area 54A in the X direction is about 50 m, the scale pattern 56 can be formed in the X direction for about 50 cycles or more.
  • the position of the reticle R (pattern area 51) in the X direction, the Y direction, And the rotation angle around Z axis can be measured.
  • a Y-axis scale pattern 59Y made of an L & S pattern having a predetermined period in the Y direction is formed in one light shielding band 53 parallel to the Y direction of the reticle R.
  • a two-dimensional scale pattern 56 may be formed in the other light shielding band 53 parallel to the Y direction.
  • the scale pattern 59Y is a pattern in which a large number of light shielding patterns 60Y (normal width is PY1 / 2) long in the X direction are arranged in the Y direction with a period PY1.
  • Measure reticle R (pattern area 51) by measuring one Y-direction position of scale pattern 59Y in Fig.
  • the scale pattern 56 is an L & S pattern with a period PY1 in the Y direction and an L & S pattern with a period PX1 in the X direction.
  • a pattern in which and are arranged in parallel in the X direction may be used.
  • the reticle pattern image of FIG. 2A is exposed to each shot area SA of the first layer of the substrate P of FIG. Then, after pattern formation such as development and etching of the photoresist on the substrate P is performed, the substrate P coated with the photoresist is loaded on the substrate stage 34 in order to perform exposure on the second layer.
  • FIG. 4 (A) shows the substrate P on which the image of the pattern of the reticle R is transferred and the second layer is exposed.
  • the upper surface of the substrate P is X
  • the reticle R scale pattern in Fig. 2 (A) is divided into a number of shot areas SA with a predetermined width in the direction and Y direction, and the center of each shot area SA crosses in the Y direction (scanning direction).
  • Corresponding to the image of A scale pattern 56P on the substrate P side is formed.
  • each shot area SA of the substrate P has scribe lines 54AP to 54C P (corresponding to images of the scribe line areas 54A to 54C of the reticle R in FIG. 2 (A)).
  • scribe lines 54AP to 54C P are divided into six sub-shot areas 55AP to 55FP, and the same or different first layer circuit patterns are formed in the sub-shot areas 55AP to 55FP.
  • Fig. 4 (C) is an enlarged view showing the scale pattern 56P formed over the entire area of the scribe line 54AP parallel to the Y direction of the shot area SA in Fig. 4 (B).
  • the scale pattern 56P is substantially square with the background of the substrate P as the background.
  • a convex (or concave) pattern 57P (represented as a convex pattern in FIG. 5A) is surrounded in the X direction.
  • Phase (Pitch) PX2 A phase-type two-dimensional lattice pattern with periodicity in the X and Y directions arranged in the Y direction with a period of PY2.
  • the periods PX2 and PY2 are values obtained by multiplying the periods PX1 and PY1 in FIG.
  • the scale pattern 56P in Fig. 4 (C) has an approximate L & S pattern 58YP in the Y direction with a period PY2 (a pattern in which a large number of convex or concave line patterns 72Y are arranged in the Y direction) and a period PX2
  • PY2 a pattern in which a large number of convex or concave line patterns 72Y are arranged in the Y direction
  • PX2 a period in which a large number of convex or concave line patterns 72Y are arranged in the Y direction
  • This can be regarded as an overlay with the X-direction L & S pattern 58XP (a pattern in which a number of convex or concave line patterns 72X are arranged in the X direction).
  • the scale pattern 56P in FIG. 4C formed in each shot area SA of the substrate P is regarded as the scale portion of the encoder, and the position of the scale pattern 56P is detected.
  • position information (movement amount and / or absolute position from a predetermined origin) of each shot area SA is measured.
  • the position information of each shot area SA is measured using the scale pattern 56P. This causes fluctuations in the gas in the laser beam optical path of the laser interferometers 38X and 38Y, and even if the measured values of the laser interferometers 38X and 38Y fluctuate, the shot is not affected by the fluctuations.
  • the position information of the area SA can be measured accurately. Therefore, high overlay accuracy can be maintained.
  • the position of the scale pattern 56P in the X and Y directions is detected by the eight detectors 40A to 40H on the side of the substrate P in FIG.
  • FIG. 5 (A) is a perspective view showing a configuration example of the detector 40A.
  • the scale pattern 56P is enlarged in order to facilitate component force.
  • other detectors 40B
  • the configuration of the two detectors 25A and 25B on the 40H and reticle R side is the same as that of the detector 40A.
  • a He—Ne laser (wavelength 633 nm) or a semiconductor laser that emits light from the visible region to the near infrared region (with a collimator lens installed at the exit end), etc.
  • a laser beam in a wavelength region that is non-photosensitive to the photoresist PR on the substrate P emitted from the laser light source 61 is split into a laser beam LB1 and a second laser beam by the beam splitter 62A.
  • This second laser beam is divided into a laser beam LB2 and a fourth laser beam by the beam splitter 62C, and this fourth laser beam is divided into two laser beams LB3 and LB4 by the beam splitter 62D.
  • the two laser beams LB1 and LB2 are incident on the scale pattern 56P on the substrate P while being inclined substantially symmetrically in the Y direction, and the + first-order diffracted light in the Y direction of the laser beam LB1 and the laser beam LB2
  • the interference light LBY with the first-order diffracted light in the Y direction enters the photoelectric detector 64Y such as a photodiode almost vertically from the scale pattern 56P.
  • Scale pattern 56P in Fig. 5 (A) was regarded as Y-direction L & S pattern 58YP (pattern in which line-shaped pattern 72Y was arranged in Y direction with period PY2) as shown in Fig. 5 (B).
  • the detection signal S1Y of the photoelectric detector 64Y is a sine wave signal having a period PY2 (or period PY2 / 2) with respect to the position Y as shown in FIG.
  • the detection signal S1Y of the photoelectric detector 64Y passes through the amplifier 66, and then the high-pass filter (hereinafter referred to as HPF! //) circuit 67A and the low-pass filter (hereinafter referred to as LPF! //) circuit. 67 Input to B.
  • the signal S3Y output from the HPF circuit 67A is supplied to the first input section of the counter 69.
  • a pair of laser beams (not shown) irradiated to the scale pattern 56P at a position 90 degrees out of phase in the Y direction from the laser beams LB1 and LB2 forces.
  • a detection signal S2Y whose phase is shifted by 90 ° with respect to the detection signal S1Y is generated from the interference light generated by this pair of laser beams by an unillustrated photoelectric detector, and this detection signal S2Y is generated by the HPF circuit 67C. To the second input of the counter 69.
  • the signal S4Y output from the LPF circuit 67B is input to the origin signal generator 68, and the origin signal generator 68 resets the counter 69 when the signal S4Y reaches a peak, for example.
  • a home signal is output, and the origin of the counter 69 is set accordingly.
  • the supplied two-phase detection signals S1Y and S2Y are interpolated in about 1000 divisions, and the movement amount in the soil Y direction of the scale pattern 56P relative to the detector 40A is, for example, a resolution of about 0.1 nm to lnm. Then, find the Y coordinate YA with the position where the reset signal is output as the origin. This Y coordinate YA is output to the coordinate measurement / interpolation system 45 in FIG.
  • the Y-direction L & S pattern 58YP (the Y component of the scale pattern 56P) has a central portion in the scanning direction.
  • a set of linear patterns 72YA, 72YB, 72YC, 72YD is included which gradually widens and returns to the normal width again.
  • this signal is input to the HPF circuit 67A and LPF circuit 67B in FIG. 5 (A)
  • the signal S3Y output from the HPF circuit 67A is as shown in FIG. 6 (C), as shown in FIG.
  • the signal S4Y which is the same sine wave signal as the detection signal S1Y and is output by the LPF circuit 67B, is a signal that becomes the apex at the position Y as shown in FIG. 6 (D). Therefore, the origin signal generator 68 in FIG.
  • Counter 69 is reset at position Y where Y is the vertex. As a result, the origin of counter 69
  • the LPF circuit 67B, HPF circuits 67A and 67C, origin signal generator 68, and counter 69 in Fig. 5 (A) constitute the Y-axis detection circuit 70Y, and the same configuration as the X-axis detection circuit 70X is also provided. ing. Note that the signal S3Y and the signal S4Y may be separated after the signal obtained by analog / digital conversion of the detection signal S1Y is Fourier-transformed with respect to the position Y.
  • the two laser beams LB3 and LB4 are incident on the scanore pattern 56P so as to be inclined substantially symmetrically in the X direction.
  • Interference light between the first-order diffracted light and the first-order diffracted light in the X direction of the laser beam LB4 LBX force The light enters the photoelectric detector 64X almost vertically from the pattern 56P for S scale.
  • the scale pattern 56P in Fig. 5 (A) is changed to the L & S pattern with period PX2 in the X direction
  • the detection signal SIX of the photoelectric detector 64X becomes a sine wave signal with a period PX2 (or a period PX2 / 2) with respect to the position X.
  • Detection signal S IX and detection signal S2X with phase shifted by 90 ° obtained from interference light not shown are output to detection circuit 70X.
  • the amount of movement in the ⁇ X direction of scale pattern 56P relative to detector 40A Is obtained as an X coordinate XA with a resolution of about 0.1 nm to 2 nm, for example, and this X coordinate XA is also supplied to the coordinate measurement / interpolation system 45 in FIG.
  • the X coordinate XA is also a signal whose origin is, for example, a portion where the width of the pattern 57P gradually increases in the X direction and becomes the normal width again.
  • a detector 40 ⁇ is configured including an optical system that irradiates the laser beam LB ;! to LB4 onto the substrate P, a Y-axis detection circuit 70Y, and an X-axis detection circuit 70 ⁇ . ing. Further, in this example, each light shielding pattern 57 of the scale pattern 56 on the reticle R in FIG. 2B is formed of a material that reflects the laser beam of the laser light source 61 in FIG. . As a result, a detector having the same configuration as the detector 40 ⁇ in FIG. 5 ( ⁇ ) can be used as the detectors 25 ⁇ and 25 ⁇ for the scale pattern 56 on the reticle R in FIG. 1.
  • the beam splitter 62 ⁇ is disposed between the beam splitters 62 ⁇ and 62C.
  • the second laser beam branched by the beam splitter 62 ⁇ is split into laser beams directed to the laser beam LB5 and the beam splitter 62C by the beam splitter 62 ⁇ .
  • the laser beam LB5 branched by the beam splitter 62 ⁇ is reflected by the mirror 63C, and is irradiated almost perpendicularly to the track having the origin pattern 74 ⁇ on the substrate ⁇ .
  • the detection signal of the photoelectric detector 64S is input to the origin signal generator 71.
  • the origin signal generator 71 is high when the input signal crosses a predetermined threshold level Sth. Generate the origin signal YAS to be level. This origin signal YSA is used to reset (or preset) the count value of the counter 69.
  • the LPF circuit 67B and the origin signal generator 68 of FIG. It is not done. It is also possible to omit the HPF circuits 67A and 67C in FIG. 7 and input the detection signals S 1 Y and S2Y directly to the counter 69.
  • FIG. 8 (A) shows a track 73 adjacent to the track 73YA in which the Y-axis L & S pattern 58YP (the Y component of the scale pattern 56P) is formed in the shot area SA of the substrate P.
  • the state where the origin pattern 74Y is formed on YB is shown.
  • the portion corresponding to the origin pattern 74Y is a light shielding pattern so as to be adjacent to the L & S pattern 58Y in the X direction.
  • a scale pattern is formed.
  • the origin coordinate 74Y can be used as the origin of the substrate P when the laser beam LB5 irradiation area of the detector 40A in FIG.
  • the configuration example of FIG. 7 includes an optical system that irradiates the substrate P with the laser beam LB;! To LB5, a Y-axis detection circuit 70Y, an X-axis detection circuit 70 ⁇ ⁇ , and an origin signal generator 71.
  • Detector 4 OA is configured.
  • the absolute pattern in the Y direction is rough! / And resolution (for example, about 0.1 mm) over the entire area in the Y direction of the scale pattern 56P of the shot area SA on the substrate P in FIG. 4 (B).
  • a non-periodic scale pattern may be provided that can be measured with.
  • FIG. 8 (B) shows a series of bar code 75A, 75B,..., Scale patterns provided on the track 73YB adjacent to the track 73YA on which the Y-axis L & S pattern 58YP is formed.
  • the detection signal (scattered light) obtained from the photoelectric detector 64S by irradiation with the laser beam LB5 in FIG. 7 changes in a nose shape at the rising and falling portions of the uneven pattern, so that an origin signal is generated.
  • the origin signal YAS output from the section 71 is a signal representing the edge of the uneven pattern such as the barcode 75A in FIG. 8B.
  • the absolute position in the Y direction can be roughly measured by setting patterns such as barcodes 75A and 75B so that the edge pattern does not overlap.
  • the substrate stage 34 in FIG. 1 is moved to the substrate loading position or the bridging alignment position, and the substrate P is used by using an alignment sensor (or alignment sensor 39) (not shown).
  • an alignment sensor or alignment sensor 39
  • the position of the substrate P is measured with an accuracy within one cycle such as the scale pattern 56P formed in each shot area on the substrate P. It is also possible. This means that the follow-up accuracy of the substrate P due to the bri alignment is within one cycle of the scale pattern 56P and the like. If the position of the shot area on the substrate P is driven within one cycle such as the scale pattern 56P due to bria alignment, the absolute position within that cycle can be obtained by reading the scale pattern 56P as described above. I can grasp it.
  • the scale pattern detectors 25A and 25B and the detectors 40A to 40H in addition to the method of detecting interference light or scattered light as shown in FIG. Etc. can also be used. Also, the scale pattern provided on each shot area of the substrate P in accordance with the use of a different array such as FIG. 2 (A) or FIG. 3 (A) as the array of scale patterns on the reticle R. The position also changes. Therefore, the scale pattern detectors 25A and 25B and the detectors 40A to 40H are attached to, for example, a slide mechanism (not shown), and the slide mechanism detects the scale according to the position of the scale pattern to be detected. The positions of 25A and 25B and detectors 40A to 40H may be adjusted.
  • the detectors 40A and 40B cause the detection areas 40AD and 40BD (the laser beam LB in FIG. 5A; the area irradiated with! To LB5) to the shot area SA6 in the + Y direction and the Y direction, respectively.
  • the detectors 40C and 40D are arranged so that the position of the scale pattern 56P in the adjacent shot areas SA7 and SA2 can be measured, and the detectors 40C and 40D are respectively adjacent to the shot area SA6—the shot area SA8 and the X direction To measure the position of scale pattern 56P in SA9 Placed in.
  • the detector 40H is arranged so that the position of the scale pattern 56P in the shot area SA1 adjacent to the shot area SA2 in the ⁇ Y direction can be measured by the detection area 40HD, and the detectors 40F and 40G are respectively shot.
  • the pair of detectors 40A and 40B can measure the position of the scale pattern in the shot areas SA7 and SA2 that sandwich the shot area SA6 where the projection area 17P is located in the scanning direction.
  • the pair of detectors 40C and 40D are arranged so that the position of the scale pattern in the shot areas SA8 and SA9 that sandwich the shot area SA6 in the non-scanning direction can be measured.
  • These first detectors 40A to 40D are used to obtain position information of the shot area SA6 to be exposed by interpolation when the shot area SA6 on the substrate P is exposed in the projection area 17P. .
  • the position of the scale pattern is measured in the shot area SA6 where the projection area 17P is located. not going.
  • the scale pattern 56P is a two-dimensional pattern, in order to measure the position information (X direction, Y direction position, and rotation angle) of the shot area SA6, two detectors ( For example, only detectors 40A and 40B) may be used!
  • the relative positional relationship between the shot area SA6 and the surrounding shot areas may be measured in advance before exposure.
  • a pair of detectors 40B and 40E (the detector 40B is shared with the first set) has shot areas SA2 and SA3 sandwiching the shot area SA1 where the detection area 40HD of the detector 40H is located in the scanning direction.
  • the pair of detectors 40F and 40G can measure the position of the scale pattern in the shot areas SA4 and SA5 that sandwich the shot area SA1 in the non-scanning direction. Is arranged.
  • These second set of five detectors 40B and 40E to 40H preliminarily expose the relative positions of the shot area to be exposed (here, the shot area SA1) and the surrounding shot areas SA2 to SA5. Used to measure the positional relationship.
  • the detector shared by the first group and the second group may be any of the detectors 40A to 40D.
  • the scale pattern 56P is a two-dimensional pattern, three detectors (for example, the detector 40H and the detector 40H) are used to measure in advance the relative positional relationship between the shot area SA1 and the surrounding shot areas. Only devices 40B, 40G) may be used. As a result, the total number of detectors used can be reduced to four (for example, detectors 40B, 40D, 40H, and 40G).
  • the stage drive system 43 that does not irradiate the exposure light IL drives the substrate stage 34 in the exposure apparatus EX of FIG.
  • the entire area of the scale pattern 56P in the shot areas SA2, SA3, SA4, SA1 and SA5 on the substrate P is detected with respect to the detection areas of the second set of five detectors 40B and 40E to 40H.
  • Move in the Y direction read the X and Y coordinates of the corresponding scale pattern 56P at the specified sampling rate using the detectors 40B and 40E to 40H, and sequentially read the measured values.
  • the read coordinates are also supplied to the stage drive system 43.
  • the operation of reading the coordinates of the scale pattern 56P on the substrate P by the detectors 40B, 40E to 40H is performed, for example, by using a plurality of predetermined shot areas on the substrate P using the alignment sensor 39 of FIG. When measuring the position of the alignment mark, it may be executed together.
  • exposure is started from a plurality of shot areas arranged in a row in the X direction on the + Y direction side, and then gradually exposed in the yacht area on the Y direction side. .
  • the detection signal power of the detectors 40B and 40E to 40H, and the scale pattern 56P of the shot area of the two rows ahead are detected.
  • ⁇ Detectors 40B and 40E that sandwich) in the Y direction read the X coordinate (XBi and XEi) of scale pattern 56P in shot areas SA2 and SA3, and detect shot area SA1 in the X direction.
  • the instruments 40F and 40G read the Y coordinates (YFi and YGi) of the scale pattern 56P in the shot areas SA4 and SA5.
  • the origin position of the scale pattern 56P in the entire shot area SA of this example is relatively the same position in the shot (such as Y in Fig. 6 (D)).
  • the stage drive system 43 sets the substrate stage so that the Y coordinates (YFi and YGi) of the scale pattern in the shot areas SA4 and SA5 have the same value. Controls the rotation angle around the 34 Z axis.
  • a series of differences between the Y coordinate YHi in the shot area SA1 (here, equal to YFi) and the average X coordinate ( (XBi + XEi) / 2) and shot in the shot areas SA2 and SA3
  • a series of differences ⁇ ⁇ with respect to the X coordinate XHi of the area SA1 is obtained, and these differences ⁇ ⁇ , ⁇ are stored in the storage device 46 in association with the shot area SA1 (prefetching step).
  • the detectors 40C and 40D that sandwich them in the X direction read the Y coordinate (YCi and YDi) of the scale pattern in the shot areas SA4 and SA5, and perform coordinate measurement and interpolation 45 To supply.
  • the stage drive system 43 is used as an example of a shot.
  • the rotation angle around the Z axis of the substrate stage 34 is controlled so that the Y coordinates (YCi and YDi) of the scale pattern in the areas SA4 and SA5 have the same value.
  • the coordinate measurement / interpolation system 45 interpolates the coordinate values of the supplied four scale patterns, and sequentially, the X and Y coordinates of the scale pattern in the shot area SA1 being exposed. Find (XPi, YPi).
  • the substrate stage 34 is adjusted so that the X coordinate XPi of the shot area SA1 becomes a substantially constant value and the Y coordinate YPi changes at a constant speed so that an appropriate exposure amount can be obtained on the substrate P.
  • the stage drive system 43 calculates the coordinates (XRi, YRi) of the reticle R1 (reticle stage 21) corresponding to the coordinates (XPi, YPi) of the shot area SA1.
  • the stage drive system 43 drives the reticle stage 21 based on the measurement values of the laser interferometers 23X and 23Y so that the coordinates of the reticle R1 become (XRi, YRi) (actual scanning exposure process).
  • the reticle R1 on the shot area SA1 on the substrate P is not affected by fluctuations in the measurement values of the laser interferometers 38X and 38Y on the substrate stage 34 side (due to gas fluctuations in the optical path). Pattern images can be overlaid with high accuracy.
  • the above-described pre-reading process may be executed in parallel.
  • FIG. 9 when an image of the pattern of reticle R1 is exposed to shot area SA1 on substrate P, one shot area is separated from shot area SA1 on substrate P in the Y direction.
  • shot area SA10 using detectors 40B, 40E to 40H, This means measuring the relative positional relationship between the shot area SA10 and the four surrounding shot areas. This can improve the throughput of the exposure process for substrate P.
  • FIG. 2A When the pattern 56 for scale 56 is also formed in the pattern region 51 of the reticle R1, as shown in FIG. 2A, in the actual scanning exposure process described above, FIG.
  • the X and Y coordinates of the scale pattern 56 of the reticle R1 may be measured using the detectors 25A and 25B, and the reticle stage 21 may be driven based on the measured values.
  • the overlay accuracy can be improved because there is no influence of fluctuations in the measured values of the laser interferometers 23X and 23Y caused by gas fluctuations in the optical path of the laser interferometers 23X and 23Y on the reticle side. .
  • a predetermined run-up distance may be required to accelerate the reticle stage 21 and the substrate stage 34 of Fig. 1 to the target speed.
  • the detector 40A to 40D may detect the scale pattern in the shot area adjacent in the Y direction with respect to the shot areas SA2 to SA5, and drive the substrate stage 34 and the reticle stage 21 based on the detection result! .
  • the offset of the position of the scale pattern (offset within one cycle) between the shot area in the run-up section and the shot areas SA2 to SA5 is obtained in advance, and the offset is calculated in the run-up section. By adding this value, the effect of misalignment when switching from running to exposure can be reduced.
  • (A1) According to the above-described exposure apparatus EX in FIG. 1, in order to expose the shot area SA1 on the substrate P in FIG. 9 via the projection optical system PL, when the exposure light IL is irradiated to the shot area SA1
  • the laser beam is irradiated from the detectors 40A to 40D without passing through the projection optical system PL into the measurement target area consisting of the shot areas SA2 to SA5 on the substrate P whose positional relationship with the shot area SA1 is known.
  • the position information of the shot areas SA2 to SA5 is measured, and the position information of the shot area SA1 is measured from the measurement results.
  • the substrate stage 34, the coordinate measurement / interpolation system 45, and the stage are measured.
  • the drive system 43 controls the relative positional relationship between the projection area 17P of the exposure light IL and the shot area SA1.
  • the pattern image of the reticle R1 can be exposed with high accuracy on the shot area SA1.
  • a liquid is interposed between the projection optical system PL and the substrate P in order to measure position information by irradiating the measurement target region with a laser beam without passing through the projection optical system PL.
  • the exposure method can also be applied when exposure is performed by a liquid immersion method.
  • the force for measuring the position of the scale pattern 56P in the shot area SA is used for the shot.
  • the position of the area SA may be measured.
  • the photoresist PR on the substrate P is used as the laser beam. It is possible to use light having a wavelength range that does not expose the light. (A3) Further, in the above embodiment, when the shot area SA1 on the substrate P in FIG. 9 is exposed with the exposure light IL, the mechanism including the substrate stage 34 and the stage drive system 43 is relatively moved.
  • the substrate P and the projection region 17P are moved relative to each other in the scanning direction (Y direction) while a part of the shot region SA1 is exposed to the projection region 17P (exposure light IU), and measurement on the substrate P is performed.
  • the target shot areas SA2 to SA5 are irradiated with laser beams from the detectors 40A to 40D, and the positional information of the shot area SA1 is continuously measured. Based on the measurement results, the projection area 17P and the shot area SA1 are Therefore, the overlay accuracy can be improved when performing exposure by the scanning exposure method.
  • the convex or concave pattern 57P (first pattern part) and the characteristics (height, ie, phase) for the laser beam are
  • the base portion (second pattern portion) different from the pattern 57P includes a pattern alternately arranged in the X direction and the Y direction
  • the position of the scale pattern 56P can be easily detected by the detector 40A.
  • the different characteristic may be, for example, the reflectance with respect to the laser beam.
  • the scanning direction of the first pattern part (72YA to 72YD) and the second pattern part (background) is part of the Y-axis L & S pattern 58YP.
  • the detection signal is detected as the laser beam and the measurement target shiyota area move relative to each other in the scanning direction.
  • the reference part is accommodated. Easy to identify. This makes it possible to measure the absolute position of the position where the laser beam of the L & S pattern 58YP with respect to the reference portion is irradiated in the shot area to be measured.
  • the scale pattern 56P force is periodically formed in the direction intersecting the scanning direction (vertical non-scanning direction in Fig. 5 (A)). If the L & S pattern 58XP is included, the L & S pattern 58XP is irradiated with a laser beam, so that the laser beam and the shot area to be measured move relatively in the scanning direction. A periodic detection signal SIX corresponding to the relative displacement in the non-scanning direction with the shot area to be measured can be detected. As a result, the position in the non-scanning direction of the shot area (scale pattern 56P) to be measured can be accurately measured.
  • a non-periodic origin pattern 74 Y in the scanning direction for origin signal detection As a scale pattern, as shown in FIG. 8, apart from the periodic Y-axis L & S pattern 58YP, a non-periodic origin pattern 74 Y in the scanning direction for origin signal detection
  • the origin pattern 74Y is irradiated with a laser beam
  • the laser beam and the shot area to be measured have a specific positional relationship in the scanning direction (here, the edge of the origin pattern 74Y It is possible to detect a state in which the laser beam is irradiated on the part. This makes it possible to measure the absolute position within the shot area to be measured.
  • the shot area force to be measured is shot area S during exposure.
  • the position of the shot area SA1 during the exposure can be measured with high accuracy by interpolation or the like.
  • the shot area force to be measured includes shot areas SA4 and SA5 adjacent in the non-scanning direction to the shot area SA1 being exposed, the position in the scanning direction can be measured with high accuracy.
  • the shot area force of the measurement target includes shot areas SA2 and SA3 that are adjacent to the shot area SA1 in the exposure direction, particularly in the non-scan direction. It can be measured.
  • the shot area SA1 Before the irradiation of the exposure light IL is started, as shown in FIG. 4 (A), the shot areas SA2 to SA5 to be measured and the shot area SA1 to be exposed are irradiated with a laser beam in advance. Thus, it is preferable to detect positional relationship information between the shot areas SA2 to SA5 to be measured and the shot area SA1 to be exposed. As a result, when the shot area SA1 is actually exposed, the position of the shot area SA1 can be interpolated with high accuracy from the position information of the surrounding shot areas SA2 to SA5 to be measured.
  • FIG. 4 (A) a detector for detecting the position of the scale pattern 56P in the shot area SA6 where the projection area 17P is located is not provided.
  • a detector for detecting the position of the scale pattern 56P in the shot area SA6 where the projection area 17P is located is not provided.
  • FIG. 11 is a perspective view showing the vicinity of the projection area 17P by the projection optical system PL of the exposure apparatus of this example.
  • projection is performed on the projection area 17P on the shot area SA on the substrate P.
  • the exposure light IL is irradiated through the shadow optical system PL, the substrate P moves in the + Y direction, for example, and the reticle pattern image is exposed on the yacht area SA.
  • the center of the shot area SA A scale pattern 56P is formed on the scribe line along the Y direction of the part, and a measurement laser beam is incident obliquely between the lower end of the projection optical system PL and the substrate ⁇ , and the scale pattern 56P
  • a detector 78 for reading the positions in the X and Y directions is arranged.
  • the laser beam force emitted from the laser light source 61 is converted into the laser beam LB1 and the second laser beam by the beam splitter 62A.
  • This second laser beam is split into a laser beam LB2 and a fourth laser beam by the beam splitter 62C.
  • the fourth laser beam is reflected by the mirror 63A, it is divided into two laser beams LB3 and LB4 by the beam splitter 62D, and the laser beam LB4 is reflected by the mirror 63B.
  • the two laser beams LB1 and LB2 are incident on the scale pattern 56P on the substrate P while being largely inclined around an axis parallel to the Y axis and substantially symmetrically in the Y direction.
  • the interference light LBY between the + first-order diffracted light of the laser beam LB1 and the first-order folded light of the laser beam LB2 enters the photoelectric detector 64Y.
  • the detection signal of the photoelectric detector 64Y By inputting the detection signal of the photoelectric detector 64Y to a detection circuit similar to the Y-axis detection circuit 70Y in FIG. 5A, the position in the Y direction of the scale pattern 56P can be measured.
  • the two laser beams LB3 and LB4 are inclined substantially symmetrically in the X direction in a state of being largely inclined clockwise around an axis parallel to the X axis with respect to the scale pattern 56P.
  • Incident light LBX between the + 1st order diffracted light of the laser beam LB3 and the 1st order diffracted light of the laser beam LB4 enters the photoelectric detector 64X.
  • the detection signal of the photoelectric detector 64X By inputting the detection signal of the photoelectric detector 64X to a detection circuit similar to the X-axis detection circuit 70X in FIG. 5A, the position in the X direction of the scale pattern 56P can be measured.
  • Other configurations are the same as those of the embodiment of FIG.
  • the shot area SA itself under exposure is set as the measurement target area, and the shot area SA is irradiated with the laser beam from the detector 78 without passing through the projection optical system PL. Then, the position information of the shot area SA is measured. Based on the measurement result, the projection area 17P of the exposure light IL is obtained by the substrate stage 34, the coordinate measurement / interpolation system 45, and the stage drive system 43 in FIG. And the relative positional relationship between the shot area SA and the shot area SA can be controlled. Therefore, the overlay accuracy can be improved, and the present invention can be applied to the case where exposure is performed by a liquid immersion method. Even when exposure is performed by the liquid immersion method, an optical autofocus sensor using the oblique incidence method can be used, and thus the detector 78 can also be used.
  • a detector 401 for reading the scale pattern 56 ⁇ in the shot regions SA14, SA15, SA16, SA17 in a direction adjacent to the + ⁇ ⁇ ⁇ ⁇ direction in the non-scanning direction with respect to the shot region SA6 where the projection region 17P is located 401 , 40J, 40 ⁇ , 40L are installed.
  • the configuration of the detectors 40I to 40L is the same as that of the detector 40A.
  • the projection area 17P on the substrate P shifts to a shot area adjacent in the non-scanning direction every time scanning exposure of one shot area SA is completed.
  • the substrate P side moves relative to the projection region 17P. Therefore, when the projection region 17P gradually shifts to the shot region in the X direction with respect to the substrate P as shown by the locus TPL in FIG. 12, the five detectors 40C, 40E to 40X on the X direction side with respect to the projection region 17P By using the detection result of 4 OH, it is possible to prefetch the relative positional relationship between the shot area exposed by the projection area 17P and the shot area surrounding it.
  • the detection results of the five detectors 40D and 40I to 40L on the + X direction side with respect to the projection area 17P are displayed.
  • the position detection result of the four detectors 40A to 40D surrounding the projection area 17P is used to determine the exposure pattern in the projection area 17P and the shot area to be exposed. Superposition can be performed with high accuracy.
  • the positional relationship between the shot area to be exposed at the same time and the surrounding shot areas at the time of scanning exposure can be obtained. Prefetching is possible, and the throughput of the exposure process is kept high. Since the detectors 40E to 40L can detect the positions in the X direction and the Y direction, respectively, the detectors 40E and 40G and the detectors 40J and 40K can be omitted in the arrangement of FIG.
  • the exposure apparatus of the above embodiment includes an illumination optical system composed of a plurality of lenses, a projection optical system incorporated in the exposure apparatus main body, and optical adjustment, and a reticle stage made up of a large number of mechanical parts. It can be manufactured by attaching a substrate stage to the main body of the exposure apparatus, connecting wiring and piping, and making overall adjustments (electrical adjustment, operation check, etc.). It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
  • the present invention can be similarly applied not only to exposure with a scanning exposure type projection exposure apparatus but also with a batch exposure type projection exposure apparatus.
  • a force using a light-transmitting reticle in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate instead of this reticle,
  • a predetermined light-shielding pattern or phase pattern / dimming pattern
  • this reticle For example, as disclosed in US Pat. No. 6,778,257, an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed is used. Motole.
  • the power for exposing the substrate by projecting the pattern image onto the substrate P using the projection optical system PL is disclosed in International Publication No. WO 2001/035168.
  • an exposure apparatus lithography system
  • a diffraction grating for forming interference fringes that do not require the use of the projection optical system PL can be regarded as an optical system.
  • the semiconductor device has a function function / performance design step, a reticle manufacturing step based on this step, a silicon material,
  • the present invention is not limited to application to a semiconductor device manufacturing process.
  • a liquid crystal display element formed on a square glass plate or the like, or a display device such as a plasma display is manufactured.
  • various devices such as processes, imaging devices (CCD, etc.), micromachines, MEMS (Microelectromechanical Systems), ceramic wafers, etc. as substrates, and DNA chips Widely applicable.
  • the present invention can also be applied to a manufacturing process when manufacturing a mask (photomask, reticle, etc.) in which a mask pattern of various devices is formed using a photolithographic process.

Abstract

An exposure method which can be applied also to liquid immersion exposure is provided, and high alignment accuracy can be obtained through such method. At the time of exposing a shot area (SA1) on a substrate (P) by relatively scanning a substrate (P) and a projection area (17P), in a status where an image of a reticle pattern is projected on the projection area (17P) on the substrate (P) through a projection optical system, measuring light is applied within shot areas (SA2-SA5) adjacent to the shot area (SA1), not through the projection optical system, and position information is measured. Based on the position information of the shot area (SA1) obtained from the measurement results, relative positional relationship between the projection area (17P) and a shot area (SA1) is controlled.

Description

明 細 書  Specification
露光方法及び装置、並びにデバイス製造方法  Exposure method and apparatus, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、光学系を介して物体を露光する露光技術及びこの露光技術を用いるデ バイス製造技術に関し、例えば半導体集積回路、液晶表示素子、又は薄膜磁気へッ ド等の各種デバイスを製造するためのリソグラフイエ程でマスク等のパターンを基板 上に転写するために適用できるものである。  The present invention relates to an exposure technique for exposing an object through an optical system and a device manufacturing technique using this exposure technique, and relates to various devices such as a semiconductor integrated circuit, a liquid crystal display element, or a thin film magnetic head. It can be applied to transfer a pattern such as a mask onto a substrate in a lithographic process for manufacturing.
背景技術  Background art
[0002] 例えば半導体集積回路を製造するためのリソグラフイエ程中で、レチクル (又はフォ トマスク等)に形成されたパターンを投影光学系を介して感光基板としてのレジストが 塗布されたウェハ(又はガラスプレート等)の各ショット領域に転写するために、ステツ パ等の一括露光型の投影露光装置及びスキャニング 'ステツパ等の走査露光型の投 影露光装置等の露光装置が使用されている。これらの露光装置において、ウェハ上 の第 2レイヤ以降にレチクルのパターンを重ねて露光する際には、ウェハ上の各ショ ット領域にそれまでの工程で形成されている回路パターンと、これから露光するレチ クルパターンの像との重ね合わせ精度を高く維持する必要がある。  [0002] For example, in a lithographic process for manufacturing a semiconductor integrated circuit, a wafer (or glass) on which a resist as a photosensitive substrate is applied to a pattern formed on a reticle (or a photomask) via a projection optical system. For example, an exposure apparatus such as a batch exposure type projection exposure apparatus such as a stepper or a scanning exposure type projection exposure apparatus such as a scanning stepper is used to transfer the image to each shot area of a plate. In these exposure apparatuses, when the reticle pattern is superimposed on the second and subsequent layers on the wafer for exposure, the circuit pattern formed in the previous process in each shot area on the wafer, and the exposure from now on. Therefore, it is necessary to maintain a high overlay accuracy with the reticle pattern image.
[0003] そのため、従来より露光装置においては、レチクル及びウェハを駆動するステージ の位置を高精度に計測するレーザ干渉計と、レチクル側のァライメントマーク(レチタ ルマーク)の位置を計測する例えばレチクルァライメント顕微鏡と、ウェハ側のァラィメ ントマーク(ウェハマーク)の位置を計測するァライメントセンサとを備えて!/、た。そして 、例えば特公平 4— 47968号公報に開示されているェンハンスド 'グロ一ノ^いァライ メント(EGA)方式でァライメントを行う場合には、ウェハ上の所定のショット領域に付 設されたウェハマークの位置の計測結果を統計処理することによって、レチクルバタ ーンの投影位置に対するウェハ上の各ショット領域の配列座標を求めてレ、た。その 後、その配列座標及びレーザ干渉計の計測値に基づレ、てステージを駆動して露光 を行うことで、ウェハ上の各ショット領域(それまでの工程で形成されている回路パタ ーン)にレチクルパターンの像が重ね合わせて露光されて!/、た。 [0004] また、特に走査露光型の露光装置において重ね合わせ精度をより高めるために、 予めウェハ上の各ショット領域に走査方向にほぼ連続的に又は所定間隔でウェハマ ークを形成し、これから露光するレチクルにも走査方向に対応するレチクルマークを 形成しておく露光方法も提案されている。この露光方法では、走査露光中に継続し て、所定のセンサでそのウェハマークと対応するレチクルマークとの位置ずれ量を計 測し、計測される位置ずれ量を補正するように例えば一方のステージの位置を調整 することで、ウェハ上の各ショット領域に実際にレチクルパターンの像を重ね合わせ ていた (例えば、特許文献 1参照)。 [0003] Therefore, in conventional exposure apparatuses, a laser interferometer that measures the position of a reticle and a stage that drives a wafer with high accuracy, and a reticle mark that measures the position of a reticle-side alignment mark (reticular mark), for example, are used. It has a alignment microscope and alignment sensor that measures the position of the wafer side alignment mark (wafer mark). For example, in the case of alignment using the enhanced alignment (EGA) method disclosed in Japanese Patent Publication No. 4-47968, a wafer mark attached to a predetermined shot area on the wafer is used. The array coordinates of each shot area on the wafer with respect to the projection position of the reticle pattern were obtained by statistically processing the measurement results of the positions. After that, the stage is driven to perform exposure based on the array coordinates and the measurement value of the laser interferometer, and thereby each shot area on the wafer (the circuit pattern formed in the previous process). ) And the reticle pattern image was overlaid and exposed! [0004] In addition, in order to further improve the overlay accuracy particularly in a scanning exposure type exposure apparatus, a wafer mark is formed in advance in each scanning region on the wafer substantially continuously or at a predetermined interval in the scanning direction, and exposure is now performed. An exposure method has also been proposed in which a reticle mark corresponding to the scanning direction is also formed on the reticle. In this exposure method, for example, one stage is set so that the positional deviation between the wafer mark and the corresponding reticle mark is measured by a predetermined sensor and the measured positional deviation is corrected. By adjusting the position, the reticle pattern image was actually superimposed on each shot area on the wafer (see, for example, Patent Document 1).
特許文献 1:特許第 3084773号公報  Patent Document 1: Japanese Patent No. 3084773
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 従来の露光装置においては、ステージ位置を高精度に計測するためにレーザ干渉 計を使用していたカ、レーザ干渉計はステージの移動等に起因してレーザビームの 光路上の気体の揺らぎが生じると、計測値が僅かに変動することがある。このような計 測値の変動量は、現在必要とされている重ね合わせ精度に対してはほぼ許容範囲 内であるが、今後、半導体集積回路等の一層の微細化に対応して重ね合わせ精度 をより向上させるためには、レーザ干渉計の計測値の変動の影響を軽減する必要が ある。 [0005] In a conventional exposure apparatus, a laser interferometer is used to measure the stage position with high accuracy. The laser interferometer is configured to move gas in the optical path of the laser beam due to movement of the stage. When fluctuation occurs, the measured value may slightly fluctuate. Such fluctuations in measured values are almost within the allowable range for the overlay accuracy that is currently required, but in the future, overlay accuracy will be increased in response to further miniaturization of semiconductor integrated circuits and the like. In order to improve the accuracy, it is necessary to reduce the influence of fluctuations in the measurement values of the laser interferometer.
[0006] また、従来の露光中に継続してレチクルマークとウェハマークとの位置ずれ量を実 際に計測する走査露光型の露光方法によれば、レーザ干渉計の計測値の変動に実 質的に影響されることなぐ重ね合わせ精度を高くできる。しかしながら、この露光方 法は、投影光学系の解像度を高くして、かつ焦点深度を深くするために最近注目さ れている液浸法で露光を行う場合には、適用が困難である力、、又は両マークの位置 ずれ量の計測精度が低下する恐れがある。  [0006] In addition, according to the scanning exposure type exposure method that actually measures the amount of positional deviation between the reticle mark and the wafer mark continuously during the conventional exposure, the variation in the measured value of the laser interferometer is practical. Therefore, it is possible to increase the overlay accuracy without being influenced by the process. However, this exposure method is difficult to apply when exposure is performed by the immersion method, which has recently been attracting attention in order to increase the resolution of the projection optical system and increase the depth of focus. Or, there is a risk that the measurement accuracy of the positional deviation amount of both marks will be reduced.
[0007] 本発明はこのような問題点に鑑み、液浸法で露光を行う際にも適用可能であるとと もに、高い重ね合わせ精度が得られる露光技術及びデバイス製造技術を提供するこ とを目的とする。  In view of such problems, the present invention is applicable to exposure using a liquid immersion method, and also provides an exposure technique and a device manufacturing technique capable of obtaining high overlay accuracy. aimed to.
課題を解決するための手段 [0008] 本発明による露光方法は、光学系(PL)を介して物体 (P)上の所定領域(SA1)に 露光光を照射し、その所定領域を露光する露光方法であって、その所定領域にその 露光光を照射するときに、その物体上のその所定領域又はその所定領域との位置関 係が既知のその物体上の領域よりなる被計測領域(SA2〜SA5)内にその光学系を 介さずに計測光を照射して、その所定領域の位置情報を計測し、その位置情報の計 測結果に基づ!/、て、その露光光とその所定領域との相対位置関係を制御するもので ある。 Means for solving the problem [0008] An exposure method according to the present invention is an exposure method in which a predetermined area (SA1) on an object (P) is irradiated with exposure light via an optical system (PL) to expose the predetermined area. When the area is irradiated with the exposure light, the optical system is in the measurement area (SA2 to SA5) consisting of the predetermined area on the object or the area on the object whose positional relationship is known. Irradiate measurement light without passing through, measure the position information of the specified area, and control the relative positional relationship between the exposure light and the specified area based on the measurement result of the position information! To do.
[0009] また、本発明による露光装置は、光学系(PUを介して物体 (P)上の所定領域(SA  In addition, the exposure apparatus according to the present invention includes a predetermined region (SA on the object (P) through the PU).
1)に露光光を照射し、その所定領域を露光する露光装置であって、その所定領域に その露光光を照射するときに、その物体上のその所定領域又はその所定領域との位 置関係が既知のその物体上の領域よりなる被計測領域(SA2〜SA5)内にその光学 系を介さずに計測光を照射して、その所定領域の位置情報を計測する計測装置 (4 0A〜40D)と、その計測装置の計測結果に基づいて、その露光光とその所定領域と の相対位置関係を制御する制御装置(34, 43, 45)とを備えたものである。  An exposure apparatus that irradiates exposure light to 1) and exposes the predetermined area, and when the exposure light is irradiated to the predetermined area, the predetermined area on the object or the positional relationship with the predetermined area Measuring device (40A to 40D) that irradiates the measurement area (SA2 to SA5) consisting of the area on the object with the known area without measuring the optical system and measures the position information of the predetermined area ) And a control device (34, 43, 45) for controlling the relative positional relationship between the exposure light and the predetermined region based on the measurement result of the measurement device.
また、本発明によるデバイス製造方法は、本発明の露光装置を用いるものである。 なお、以上の本発明の所定要素に付した括弧付き符号は、本発明の一実施形態 を示す図面中の部材に対応している力 各符号は本発明を分力、り易くするために本 発明の要素を例示したに過ぎず、本発明をその実施形態の構成に限定するもので はない。  The device manufacturing method according to the present invention uses the exposure apparatus of the present invention. The reference numerals in parentheses attached to the above-mentioned predetermined elements of the present invention are the forces corresponding to the members in the drawings showing an embodiment of the present invention. The elements of the invention are merely illustrated, and the present invention is not limited to the configuration of the embodiment.
発明の効果  The invention's effect
[0010] 本発明の露光方法によれば、その物体上の被計測領域の位置情報の実際の計測 結果を用いて、その露光光とその物体上の所定領域との相対位置関係を制御するこ とによって、その所定領域上にパターン (像)等を高い重ね合わせ精度で露光できる 。また、その光学系を介さずに、その被計測領域の位置情報を計測しているため、そ の光学系とその物体との間に液体を介在させて液浸法で露光を行う場合にも本発明 が適用できる。  According to the exposure method of the present invention, the relative positional relationship between the exposure light and the predetermined area on the object is controlled using the actual measurement result of the position information of the measurement area on the object. Thus, a pattern (image) or the like can be exposed on the predetermined area with high overlay accuracy. In addition, since the position information of the measurement area is measured without going through the optical system, even when exposure is performed by the immersion method with a liquid interposed between the optical system and the object. The present invention is applicable.
[0011] 本発明の露光装置によれば、その物体の露光時に、その計測装置によって得られ るその被計測領域の位置情報に基づレ、て、その制御装置によってその露光光とその 所定領域との相対位置関係を制御することによって、本発明の露光方法を使用でき る。これによつて、液浸法も適用できるとともに、高い重ね合わせ精度が得られる。 本発明のデバイス製造方法によれば、基板等の第 2レイヤ以降に露光する際に高 い重ね合わせ精度が得られるため、微細パターンを有するデバイスを高精度に製造 できる。 According to the exposure apparatus of the present invention, when the object is exposed, the control apparatus controls the exposure light and the exposure light based on the position information of the measurement area obtained by the measurement apparatus. The exposure method of the present invention can be used by controlling the relative positional relationship with a predetermined area. Thereby, the liquid immersion method can be applied and high overlay accuracy can be obtained. According to the device manufacturing method of the present invention, a high overlay accuracy can be obtained when exposure is performed on the second and subsequent layers of a substrate or the like, so that a device having a fine pattern can be manufactured with high accuracy.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の実施形態の一例で使用される投影露光装置を示す斜視図である。 FIG. 1 is a perspective view showing a projection exposure apparatus used in an example of an embodiment of the present invention.
[図 2] (A)は図 1中の基板 Pの第 1レイヤの露光に使用されるレチクル Rを示す平面図 [FIG. 2] (A) is a plan view showing reticle R used for exposure of the first layer of substrate P in FIG.
、 (B)はレチクル Rのスケール用パターン 56の一部を示す拡大図である。 (B) is an enlarged view showing a part of scale pattern 56 of reticle R. FIG.
[図 3] (A)はレチクル Rに形成されるスケール用パターンの別の例を示す平面図、(B [FIG. 3] (A) is a plan view showing another example of a scale pattern formed on the reticle R, (B
)は図 3 (A)のスケール用パターン 59Yの一部を示す拡大図である。 ) Is an enlarged view showing a part of the scale pattern 59Y of FIG. 3 (A).
[図 4] (A)は図 1中の基板 Pのショット配列の一例を示す平面図、(B)は図 4 (A)のシ ヨット領域 SAを示す拡大平面図、(C)は図 4 (B)中のスケール用パターン 56Pの一 部を示す拡大平面図である。  [FIG. 4] (A) is a plan view showing an example of the shot arrangement of the substrate P in FIG. 1, (B) is an enlarged plan view showing the yacht area SA of FIG. 4 (A), and (C) is FIG. FIG. 6B is an enlarged plan view showing a part of the scale pattern 56P in (B).
[図 5] (A)は図 1の露光装置が備える検出器 40Aの構成例を示す斜視図、(B)はス ケール用パターンとしての L&Sパターン 58YPを示す拡大図、(C)は L&Sパターン 58YPに対応して検出される検出信号 S 1Yを示す図である。  5A is a perspective view showing a configuration example of the detector 40A included in the exposure apparatus of FIG. 1, FIG. 5B is an enlarged view showing an L & S pattern 58YP as a scale pattern, and FIG. 5C is an L & S pattern. It is a figure which shows detection signal S1Y detected corresponding to 58YP.
[図 6] (A)はスケール用パターンの他の例を示す拡大図、(B)は図 7 (A)のパターン に対応して検出される検出信号 S 1Yを示す図、(C)及び (D)は検出信号 S1Yから 分離して得られる信号を示す図である。  [Fig. 6] (A) is an enlarged view showing another example of the scale pattern, (B) is a diagram showing the detection signal S1Y detected corresponding to the pattern of Fig. 7 (A), (C) and (D) is a diagram showing a signal obtained by separating from the detection signal S1Y.
[図 7]図 1の露光装置が備える検出器 40Aの別の構成例を示す斜視図である。  7 is a perspective view showing another configuration example of the detector 40A provided in the exposure apparatus of FIG.
[図 8] (A)はスケール用パターンとして原点パターンを含む例を示す拡大図、(B)は スケール用パターンとして絶対位置検出用のパターンを含む例を示す拡大図である FIG. 8A is an enlarged view showing an example including an origin pattern as a scale pattern, and FIG. 8B is an enlarged view showing an example including an absolute position detection pattern as a scale pattern.
Yes
[図 9]図 1の基板 P上のショット領域 SA1に露光する状態を示す平面図である。  FIG. 9 is a plan view showing a state where the shot area SA1 on the substrate P in FIG. 1 is exposed.
[図 10]図 9の基板 P上のショット領域に形成されるスケール用パターンの一例を示す 拡大図である。  FIG. 10 is an enlarged view showing an example of a scale pattern formed in a shot region on a substrate P in FIG.
[図 11]本発明の実施形態の他の例の要部を示す斜視図である。 [図 12]本発明の実施形態の他の例における基板側のスケール用パターンの複数の 検出器 40A等の配列を示す図である。 FIG. 11 is a perspective view showing a main part of another example of the embodiment of the present invention. FIG. 12 is a diagram showing an arrangement of a plurality of detectors 40 A, etc., on a substrate-side scale pattern in another example of an embodiment of the present invention.
符号の説明  Explanation of symbols
[0013] R, R1…レチクル、 PL…投影光学系、 Ρ· · ·基板、 17Ρ· · ·投影領域、 21 · · ·レチクル ステージ、 25A, 25B…検出器、 34…基板ステージ、 40A〜40H…検出器、 41 · · · 主制御系、 43· · ·ステージ駆動系、 45· · ·座標計測 ·補間系、 56 · · ·レチクル側のスケ ール用パターン、 56Ρ· · ·基板側のスケール用パターン  [0013] R, R1 ... reticle, PL ... projection optical system, 基板 · · substrate, 17Ρ · · projection area, 21 · · · reticle stage, 25A, 25B ... detector, 34 ... substrate stage, 40A to 40H ... Detector 41 · · · Main control system 43 · · Stage drive system 45 · · Coordinate measurement · Interpolation system 56 · · · Reticle scale pattern 56 · · · Board side Scale pattern
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明の好ましい実施形態の一例につき図 1〜図 10を参照して説明する。  [0014] Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to FIGS.
本例は、スキャニング'ステツバよりなる走査露光型の露光装置(投影露光装置)で露 光を行う場合に本発明を適用したものである。  In this example, the present invention is applied to the case where exposure is performed with a scanning exposure type exposure apparatus (projection exposure apparatus) made of a scanning stagger.
図 1は、本例の露光装置 EXの概略構成を示し、この図 1において、露光装置 EXは 、露光光源 1を含み、転写用のパターンが形成されたレチクル R (マスク)を露光光 IL (露光ビーム)で照明する照明光学系 16と、レチクル Rを駆動するレチクルステージ 2 1と、レチクル Rのパターンの像を基板 P上に投影する投影光学系 PLと、基板 Pを駆 動する基板ステージ 34と、それらのステージの駆動系と、装置全体の動作を統括的 に制御するコンピュータよりなる主制御系 41と、その他の種々の制御及び演算等を 行う処理系等とを備えている。露光光源 1としては ArFエキシマレーザ光源 (波長 19 3nm)が使用されている。なお、露光光源としては、 KrFエキシマレーザ光源(波長 2 47nm)、 F レーザ光源(波長 157nm)などの紫外パルスレーザ光源、 YAGレーザ の高調波発生光源、固体レーザ(半導体レーザなど)の高調波発生装置、又は水銀 ランプ (i線等)なども使用できる。  FIG. 1 shows a schematic configuration of an exposure apparatus EX of this example. In FIG. 1, the exposure apparatus EX includes an exposure light source 1 and a reticle R (mask) on which a transfer pattern is formed is exposed to exposure light IL ( Illumination optical system 16 that illuminates with exposure beam), reticle stage 21 that drives reticle R, projection optical system PL that projects an image of the pattern of reticle R onto substrate P, and substrate stage that drives substrate P 34, a drive system for these stages, a main control system 41 composed of a computer that comprehensively controls the operation of the entire apparatus, and a processing system for performing various other controls and operations. As the exposure light source 1, an ArF excimer laser light source (wavelength: 193 nm) is used. Exposure light sources include KrF excimer laser light source (wavelength 247 nm), ultraviolet pulse laser light source such as F laser light source (wavelength 157 nm), harmonic generation light source of YAG laser, harmonic generation of solid-state laser (semiconductor laser, etc.) Equipment or mercury lamps (i-line etc.) can also be used.
[0015] 露光時に露光光源 1からパルス発光された露光光 ILは、ミラー 2、不図示のビーム 整形光学系、第 1レンズ 3A、ミラー 4、及び第 2レンズ 3Bを経て断面形状が所定形状 に整形されて、オプティカル 'インテグレータとしてのフライアイレンズ 5に入射して、 照度分布が均一化される。フライアイレンズ 5の射出面(照明光学系 16の瞳面)には 、露光光の光量分布を円形、複数の偏心領域、輪帯状、小さい円形などに設定して 照明条件を決定するための開口絞り(σ絞り) 7A, 7Β, 7C, 7D等を有する照明系開 口絞り部材 6が、駆動モータ 8によって回転自在に配置されている。主制御系 41が駆 動モータ 8を介して照明系開口絞り部材 6を回転することで、照明条件が設定される [0015] The exposure light IL pulsed from the exposure light source 1 at the time of exposure passes through the mirror 2, a beam shaping optical system (not shown), the first lens 3A, the mirror 4, and the second lens 3B, and the cross-sectional shape becomes a predetermined shape. After being shaped, the light enters the fly's eye lens 5 as an optical integrator, and the illuminance distribution is made uniform. On the exit surface of the fly-eye lens 5 (pupil surface of the illumination optical system 16), an aperture for determining illumination conditions by setting the exposure light intensity distribution to a circle, multiple eccentric regions, an annular zone, a small circle, etc. Opening of illumination system with diaphragm (σ diaphragm) 7A, 7mm, 7C, 7D, etc. An aperture stop member 6 is rotatably arranged by a drive motor 8. The main control system 41 rotates the illumination system aperture stop member 6 via the drive motor 8 to set the illumination conditions.
[0016] 照明系開口絞り部材 11中の開口絞りを通過した露光光 ILは、反射率の小さいビー ムスプリッタ 9及びリレーレンズ 12Aを経て、固定ブラインド(固定視野絞り) 13A及び 可動ブラインド(可動視野絞り) 13Bを順次通過する。可動ブラインド 13Bは、レチク ノレ Rのパターン面(レチクル面)とほぼ共役な面に配置され、固定ブラインド 13Aは、 そのレチクル面と共役な面から僅かにデフォーカスされた面に配置されている。 [0016] The exposure light IL that has passed through the aperture stop in the illumination system aperture stop member 11 passes through a beam splitter 9 and a relay lens 12A having a low reflectivity, and then a fixed blind (fixed field stop) 13A and a movable blind (movable field of view). Aperture) Pass sequentially through 13B. The movable blind 13B is arranged on a plane almost conjugate with the pattern plane (reticle plane) of the reticle R, and the fixed blind 13A is arranged on a plane slightly defocused from the plane conjugate with the reticle plane.
[0017] 固定ブラインド 13Aは、レチクル面の照明領域 17Rをレチクル Rの走査方向に直交 する非走査方向に細長いスリット状の領域に規定するために使用される。可動ブライ ンド 13Bは、基板 P上の露光対象のショット領域への走査露光の開始時及び終了時 に不要な部分への露光が行われないように、照明領域 17Rを走査方向に閉じるため に使用される。可動ブラインド 13Bは、更に照明領域 17Rの非走査方向の中心及び 幅を規定するためにも使用される。ブラインド 13A, 13Bを通過した露光光 ILは、サ ブコンデンサレンズ 12B、光路折り曲げ用のミラー 14、及びメインコンデンサレンズ 1 5を経て、レチクル Rのパターン領域の照明領域 17Rを均一な照度分布で照明する。  The fixed blind 13A is used to define the illumination area 17R on the reticle surface as a slit-like area elongated in the non-scanning direction perpendicular to the scanning direction of the reticle R. The movable blind 13B is used to close the illumination area 17R in the scanning direction so that unnecessary areas are not exposed at the start and end of the scanning exposure on the exposure area on the substrate P. Is done. The movable blind 13B is further used to define the center and width of the illumination area 17R in the non-scanning direction. The exposure light IL that has passed through the blinds 13A and 13B illuminates the illumination area 17R of the pattern area of the reticle R with a uniform illuminance distribution through the sub condenser lens 12B, the mirror 14 for bending the optical path, and the main condenser lens 15. To do.
[0018] 一方、ビームスプリッタ 9で反射された露光光は、集光レンズ 10を介して光電センサ よりなるインテグレータセンサ 11に受光される。インテグレータセンサ 11の検出情報 は露光量制御系 42に供給され、露光量制御系 42は、その検出情報と予め計測され ているビームスプリッタ 9から基板 Pまでの光学系の透過率の情報とを用いて基板 P 上での露光光 ILのエネルギーを間接的に算出する。露光量制御系 42は、その算出 結果の積算値及び主制御系 41からの制御情報に基づいて、基板 Pの表面(露光面) 上で適正露光量が得られるように露光光源 1の発光動作を制御する。露光光源 1か らメインコンデンサレンズ 15までの部材を含んで照明光学系 16が構成されている。  On the other hand, the exposure light reflected by the beam splitter 9 is received by the integrator sensor 11 including a photoelectric sensor via the condenser lens 10. The detection information of the integrator sensor 11 is supplied to an exposure amount control system 42. The exposure amount control system 42 uses the detection information and information on the transmittance of the optical system from the beam splitter 9 to the substrate P, which is measured in advance. The energy of the exposure light IL on the substrate P is indirectly calculated. Based on the integrated value of the calculation result and the control information from the main control system 41, the exposure amount control system 42 emits light from the exposure light source 1 so that an appropriate exposure amount can be obtained on the surface (exposure surface) of the substrate P. To control. The illumination optical system 16 includes members from the exposure light source 1 to the main condenser lens 15.
[0019] 露光光 ILのもとで、レチクル Rの照明領域 17R内のパターンは、両側テレセントリツ クの投影光学系 PLを介して投影倍率 /3 ( /3は例えば 1/4, 1/5等)で、基板 P上の 一つのショット領域 SA上の非走査方向に細長い投影領域 17Pに投影される。基板 P は、本例ではシリコン又は SO silicon on insulator)等の円板状の半導体の基材(ゥ エノ、)上にフォトレジスト (感光材料)を塗布したものである。投影光学系 PLは例えば 屈折系であるが、反射屈折系等も使用できる。以下、図 1において、投影光学系 PL の光軸 AXに平行に Z軸を取り、 Z軸に垂直な平面内で走査露光時のレチクル R及び 基板 Pの走査方向に直交する非走査方向に沿って X軸を取り、その走査方向に沿つ て Y軸を取って説明する。 [0019] Under the exposure light IL, the pattern in the illumination area 17R of the reticle R is projected to the projection magnification / 3 (/ 3 is 1/4, 1/5, etc.) ) Is projected onto a projection area 17P elongated in the non-scanning direction on one shot area SA on the substrate P. The substrate P is a disk-shaped semiconductor substrate (e.g. silicon or SO silicon on insulator) in this example. Eno) is coated with a photoresist (photosensitive material). The projection optical system PL is, for example, a refractive system, but a catadioptric system or the like can also be used. Hereinafter, in FIG. 1, the Z-axis is taken parallel to the optical axis AX of the projection optical system PL, and along the non-scanning direction orthogonal to the scanning direction of the reticle R and the substrate P during scanning exposure in a plane perpendicular to the Z-axis. Take the X axis and take the Y axis along the scanning direction.
[0020] 先ず、レチクル Rはレチクルステージ 21上に吸着保持され、レチクルステージ 21は レチクルベース 22上で Y方向に一定速度で移動すると共に、例えば同期誤差 (又は レチクル Rのパターン像と基板 P上の露光中のショット領域との位置ずれ量)を補正す るように X方向、 Y方向、及び Z軸周りの回転方向に微動して、レチクル Rの走査を行 う。レチクルステージ 21の X方向及び Y方向の側面の反射面(又は移動鏡、コーナリ フレクタ等)に対向するように配置されたレーザ干渉計 23X及び 23Yによって、例え ば投影光学系 PLを基準としてレチクルステージ 21の位置が計測され、計測値はス テージ駆動系 43及び主制御系 41に供給されて!/、る。  First, the reticle R is held by suction on the reticle stage 21, and the reticle stage 21 moves on the reticle base 22 at a constant speed in the Y direction, and for example, a synchronization error (or a pattern image of the reticle R and the substrate P on the substrate P). The reticle R is scanned by slightly moving in the X, Y, and Z axis rotation directions so as to correct the misalignment with the shot area during exposure. Reticle stage 21 is arranged with laser interferometers 23X and 23Y arranged so as to face the reflecting surfaces (or moving mirrors, corner reflectors, etc.) on the X and Y sides of reticle stage 21, for example, with respect to projection optical system PL. The position of 21 is measured and the measured value is supplied to the stage drive system 43 and the main control system 41! /.
[0021] 本例では、さらにレチクル Rのパターン領域中に Y方向に沿って、レチクル Rの X方 向、 Y方向の位置情報を計測するためのスケール用パターン 56が形成されている。 また、レチクル Rの上方の照明領域 17Rを Y方向(走査方向)に挟む位置に、光路折 り曲げ用のミラーを介して、スケール用パターン 56の位置情報を検出するための 1対 の検出器 25A及び 25Bが配置され、検出器 25A, 25Bの検出結果が演算装置を含 む座標計測 ·補間系 45に供給されている。座標計測 ·補間系 45には磁気ディスク装 置等の記憶装置 46が接続され、後述のようにレチクル Rの位置情報を求めてステー ジ駆動系 43に供給する。スケール用パターン 56及び検出器 25A, 25Bからレチク ル Rの位置情報 (移動量及び/又はパターン領域内の絶対位置 (原点位置)の情報 を含む)を直接計測するためのエンコーダが構成されている。このエンコーダ及び座 標計測 ·補間系 45の詳細については後述する。  In this example, a scale pattern 56 for measuring positional information of the reticle R in the X direction and the Y direction is formed in the pattern area of the reticle R along the Y direction. In addition, a pair of detectors for detecting the position information of the scale pattern 56 via the optical path bending mirror at a position sandwiching the illumination area 17R above the reticle R in the Y direction (scanning direction). 25A and 25B are arranged, and the detection results of the detectors 25A and 25B are supplied to a coordinate measurement / interpolation system 45 including an arithmetic unit. A storage device 46 such as a magnetic disk device is connected to the coordinate measurement / interpolation system 45, and the position information of the reticle R is obtained and supplied to the stage drive system 43 as will be described later. The scale pattern 56 and detectors 25A and 25B constitute an encoder that directly measures the position information of the reticle R (including information on the movement and / or absolute position (origin position) in the pattern area). . Details of this encoder and coordinate measurement / interpolation system 45 will be described later.
[0022] 本例のレチクルステージ 21の駆動方法には、オペレータの指定に応じて主制御系 41が設定する第 1及び第 2の 2つの駆動モードがある。その第 1の駆動モードでは、 ステージ駆動系 43は、レーザ干渉計 23X, 23Yの計測値及び主制御系 41からの制 御情報に基づ!/、て、不図示の駆動機構(リニアモータなど)を介してレチクルステー ジ 21の位置及び速度を制御する。一方、第 2の駆動モードでは、ステージ駆動系 43 は、検出器 25A, 25Bの計測値に基づいて座標計測 ·補間系 45から出力されるレチ クル Rの位置情報及び主制御系 41からの制御情報に基づ!/、て、レチクルステージ 2 1の位置及び速度を制御する。仮に本例のレチクルステージ 21が第 1の駆動モード のみで駆動される場合には、検出器 25A, 25Bは省略することができる。また、本例 の露光装置が第 2の駆動モードのみで駆動される場合には、レーザ干渉計 23X, 24 Yを省略するか、又はスケールの位置を光学式、静電容量式等のセンサで読み取る 粗い分解能の計測器で代用することが可能である。 [0022] The method for driving the reticle stage 21 in this example includes first and second drive modes set by the main control system 41 in accordance with an operator's designation. In the first drive mode, the stage drive system 43 is based on measurement values of the laser interferometers 23X and 23Y and control information from the main control system 41! /, Based on a drive mechanism (not shown) such as a linear motor. Reticle stays through Control the position and speed of the 21. On the other hand, in the second drive mode, the stage drive system 43 controls the position information of the reticle R output from the coordinate measurement / interpolation system 45 based on the measurement values of the detectors 25A and 25B and the control from the main control system 41. Based on the information, the position and speed of the reticle stage 21 are controlled. If the reticle stage 21 of this example is driven only in the first drive mode, the detectors 25A and 25B can be omitted. When the exposure apparatus of this example is driven only in the second drive mode, the laser interferometers 23X and 24Y are omitted, or the position of the scale is measured by a sensor such as an optical type or a capacitance type. It is possible to substitute a measuring instrument with a coarse resolution.
[0023] また、レチクル Rのパターン領域を X方向に挟むように、ァライメントマーク 52A及び  [0023] Further, alignment mark 52A and so as to sandwich the pattern area of reticle R in the X direction.
52Bが形成されている。レチクル Rの周辺部の上方には、光路折り曲げ用のミラーを 介してァライメントマーク 52A, 52Bの位置を検出するためのレチクルァライメント顕 微鏡 24A, 24Bが配置されている。レチクルァライメント顕微鏡 24A, 24Bの検出信 号はァライメント信号処理系 44に供給され、ァライメント信号処理系では画像処理方 式等で検出したマーク位置の情報を主制御系 41に供給する。  52B is formed. Above the periphery of the reticle R, reticle alignment microscopes 24A and 24B for detecting the positions of the alignment marks 52A and 52B via optical path bending mirrors are arranged. The detection signals of the reticle alignment microscopes 24A and 24B are supplied to the alignment signal processing system 44, and the alignment signal processing system supplies the main control system 41 with information on the mark position detected by the image processing method.
[0024] 一方、基板 Pは、基板ホルダ 31を介して基板ステージ 34上に吸着保持され、基板 ステージ 34はベース部材 35上で Y方向に一定速度で移動すると共に、 X方向、 Y方 向にステップ移動する XYステージ 33と、 Zチルトステージ 32とを備えている。 Zチルト ステージ 32は、不図示のオートフォーカスセンサによる基板 P上の複数箇所での 方 向の位置の計測値に基づいて、基板 Pのフォーカシング及びレべリングを行う。なお 、基板ホルダ 31は、図 1では平板状に表されている力 実際には、基板ホルダ 31の 基板 Pの載置面は凹部となっており、基板 Pの表面とその外側の基板ホルダ 31の表 面とは Z方向においてほぼ同じ高さに設定されている。また、基板ステージ 34の X方 向及び Y方向の側面の反射面(又は移動鏡等)に対向するように配置されたレーザ 干渉計 38X及び 38Yによって、例えば投影光学系 PLを基準として基板ステージ 34 の XY平面内での位置、及び X軸、 Y軸、 Z軸の周りの回転角が計測され、計測値は ステージ駆動系 43及び主制御系 41に供給されて!/、る。  On the other hand, the substrate P is sucked and held on the substrate stage 34 via the substrate holder 31, and the substrate stage 34 moves on the base member 35 at a constant speed in the Y direction, and in the X direction and the Y direction. An XY stage 33 that moves in steps and a Z tilt stage 32 are provided. The Z tilt stage 32 performs focusing and leveling of the substrate P based on the measurement values of the positions in a plurality of positions on the substrate P by an auto focus sensor (not shown). The substrate holder 31 has a force represented by a flat plate in FIG. 1 Actually, the mounting surface of the substrate P of the substrate holder 31 is a recess, and the surface of the substrate P and the substrate holder 31 on the outside thereof are arranged. The surface of is set to almost the same height in the Z direction. Further, the laser beam interferometers 38X and 38Y arranged so as to face the reflecting surfaces (or moving mirrors, etc.) on the side surfaces in the X direction and the Y direction of the substrate stage 34, for example, the substrate stage 34 with reference to the projection optical system PL. The position in the XY plane and the rotation angles around the X, Y, and Z axes are measured, and the measured values are supplied to the stage drive system 43 and the main control system 41.
[0025] 本例では、さらに基板 Pの第 2レイヤ以降に露光する場合には、基板 P上の各ショッ ト領域にはそれまでの工程にお!/、て、レチクル Rのスケール用パターン 56 (又はそれ までの工程において使用されたレチクルのスケール用パターン)の像に相当するスケ ール用パターンが形成されて!/、る(詳細後述)。基板 P側のスケール用パターンは、 一例として凹凸のパターンであり、その上にフォトレジストが塗布されている。そして、 投影光学系 PLの下端部の側面に、投影領域 17Pを Y方向(走査方向)及び X方向( 非走査方向)に挟むように、そのスケール用パターンの X方向及び Y方向の位置情 報を計測するための 1対の検出器 40A, 40Bと、 1対の検出器 40C, 40Dとが配置さ れている。また、投影光学系 PLの下端部の Y方向の側面方向にも、その基板 P上 のスケール用パターンの X方向及び Y方向の位置情報を計測するための 4つの検出 器 40E, 40F, 40G, 40Hが配置され、検出器 40A〜40Hの検出結果も座標計測 · 補間系 45に供給されている。 8個の検出器 40A〜40Hの構成及び配置については 後述する。基板 Pの各ショット領域に形成されたスケール用パターン及び検出器 40A 〜40Hから、基板 Pの位置情報 (移動量及び/又は各ショット領域内での絶対位置( 原点位置)の情報を含む)を直接計測するためのエンコーダが構成されている。 [0025] In this example, when the exposure is performed on the second and subsequent layers of the substrate P, each of the shot areas on the substrate P has a scale pattern 56 on the reticle R in the previous process. (Or it A scale pattern corresponding to the image of the reticle scale pattern used in the previous steps is formed! The scale pattern on the substrate P side is, for example, a concavo-convex pattern on which a photoresist is applied. Then, the position information of the scale pattern in the X direction and the Y direction so that the projection region 17P is sandwiched in the Y direction (scanning direction) and the X direction (non-scanning direction) on the side surface of the lower end of the projection optical system PL. A pair of detectors 40A and 40B and a pair of detectors 40C and 40D are arranged for measuring. In addition, four detectors 40E, 40F, 40G, and 40G for measuring positional information in the X and Y directions of the scale pattern on the substrate P in the Y side surface direction at the lower end of the projection optical system PL. 40H is arranged, and the detection results of the detectors 40A to 40H are also supplied to the coordinate measurement / interpolation system 45. The configuration and arrangement of the eight detectors 40A to 40H will be described later. From the scale pattern and detectors 40A to 40H formed in each shot area of the substrate P, the position information of the substrate P (including information on the movement amount and / or the absolute position (origin position) in each shot area) An encoder for direct measurement is configured.
[0026] 本例の基板ステージ 34の駆動方法にも、オペレータの指定に応じて主制御系 41 が設定する第 1及び第 2の 2つの駆動モードがある。その第 1の駆動モード(例えば基 板 P上の第 1レイヤに露光する場合に設定される)では、ステージ駆動系 43は、レー ザ干渉計 38X, 38Yの計測値及び主制御系 41からの制御情報に基づ!/、て、不図示 の駆動機構(リニアモータなど)を介して基板ステージ 34の位置及び速度を制御する 。一方、第 2の駆動モード(例えば基板 P上の第 2レイヤ以降に露光する場合に設定 される)では、ステージ駆動系 43は、検出器 40A〜40Hの計測値に基づいて座標 計測 ·補間系 45から出力される基板 Pの位置情報及び主制御系 41からの制御情報 に基づ!/、て、基板ステージ 34の位置及び速度を制御する。  [0026] The driving method of the substrate stage 34 of the present example also has first and second driving modes set by the main control system 41 in accordance with an operator's designation. In the first drive mode (for example, set when exposure is performed on the first layer on the substrate P), the stage drive system 43 receives the measurement values from the laser interferometers 38X and 38Y and the main control system 41. Based on the control information, the position and speed of the substrate stage 34 are controlled via a drive mechanism (not shown) such as a linear motor. On the other hand, in the second drive mode (for example, set when exposure is performed on the second layer and subsequent layers on the substrate P), the stage drive system 43 is based on the measurement values of the detectors 40A to 40H and performs coordinate measurement / interpolation system. Based on the position information of the substrate P output from 45 and the control information from the main control system 41, the position and speed of the substrate stage 34 are controlled.
[0027] また、投影光学系 PLの + Y方向の側面には、基板 P上のァライメントマーク(基板マ ーク)の位置を検出するためのオフ'ァクシス方式で撮像方式のァライメントセンサ 39 が配置されており、ァライメントセンサ 39の検出信号はァライメント信号処理系 44に 供給されている。ァライメント信号処理系 44は、その検出信号に基づいて例えば EG A方式で基板 P上の全部のショット領域の配列情報を求めて主制御系 41に供給する 。この場合、予めレチクル Rのパターンの投影光学系 PLを介した像の基準位置(ァラ ィメントマーク 52A, 52Bの像の中心等)と、ァライメントセンサ 39の検出位置との位 置関係(ベースライン量等)の情報が計測されて、記憶されている。そのために、基板 ステージ 34上の基板 Pの近傍には、基準マーク 37A, 37B等が形成された基準マー ク部材 36が固定されている。 [0027] Further, on the side surface of the projection optical system PL in the + Y direction, an off-axis imaging type alignment sensor for detecting the position of the alignment mark (substrate mark) on the substrate P 39 The detection signal of the alignment sensor 39 is supplied to the alignment signal processing system 44. The alignment signal processing system 44 obtains the arrangement information of all shot areas on the substrate P by the EGA method, for example, based on the detection signal, and supplies it to the main control system 41. In this case, the reference position of the image via the projection optical system PL of the pattern of the reticle R in advance (error Information on the positional relationship (baseline amount, etc.) between the alignment mark 39 and the detection position of the alignment sensor 39 is measured and stored. Therefore, a reference mark member 36 on which reference marks 37A, 37B and the like are formed is fixed near the substrate P on the substrate stage 34.
[0028] なお、本例では、基板 Pの第 2レイヤ以降の露光(重ね合わせ露光)では、検出器 4 0A〜40Hの検出結果(計測値)を用いることができるため、ァライメントセンサ 39は 必ずしも使用する必要はない。ただし、検出器 40A〜40Hの計測値の原点位置を 設定するために、ァライメントセンサ 39で検出される基板 Pの各ショット領域の配列座 標を用いることも可能である。  [0028] In this example, since the detection results (measurement values) of the detectors 40A to 40H can be used in the exposure (superposition exposure) of the second layer and subsequent layers of the substrate P, the alignment sensor 39 is It is not always necessary to use it. However, in order to set the origin position of the measurement values of the detectors 40A to 40H, it is also possible to use the array coordinates of each shot area of the substrate P detected by the alignment sensor 39.
[0029] また、本例の露光装置 EXは、投影光学系 PLの先端のレンズと基板 Pとの間の局所 的な領域 (液浸領域)に純水等の液体を供給し、露光光 ILで投影光学系 PL及び液 体を介して基板 Pを露光する液浸方式であることが好ましい。このためには、例えば 国際公開第 99/49504号パンフレット及び国際公開第 2005/122221号パンフレ ット等に開示されているように、その液浸領域に液体を供給する液体供給装置と、そ の液浸領域の液体を回収する液体回収装置とを設ければよい。  [0029] In addition, the exposure apparatus EX of this example supplies a liquid such as pure water to a local region (immersion region) between the lens at the tip of the projection optical system PL and the substrate P, and exposes the exposure light IL. It is preferable that the liquid immersion method is used in which the substrate P is exposed through the projection optical system PL and the liquid. For this purpose, for example, as disclosed in WO99 / 49504 pamphlet and WO2005 / 122221 pamphlet, a liquid supply device for supplying liquid to the immersion area, and its A liquid recovery apparatus that recovers the liquid in the immersion area may be provided.
[0030] 露光時には、照明光学系 16から露光光 ILを照明領域 17Rに照射して、レチクル R の照明領域 17R内のパターンを投影光学系 PLを介して基板 P上の一つのショット領 域 SA上の投影領域 17Pに投影した状態で、レチクルステージ 21及び基板ステージ 34を駆動して、レチクル Rと基板 Pとを Y方向に同期走査する動作と、露光光 ILの照 射を停止して、基板ステージ 34を駆動して基板 Pを X方向、 Y方向にステップ移動す る動作とが繰り返される。これによつて、ステップ'アンド '·スキャン方式で基板 P上の各 ショット領域にレチクル Rのパターン像が露光される。  [0030] During exposure, the illumination optical system 16 irradiates the illumination area 17R with the exposure light IL, and the pattern in the illumination area 17R of the reticle R is projected into one shot area SA on the substrate P via the projection optical system PL. With projection on the upper projection area 17P, the reticle stage 21 and the substrate stage 34 are driven, the reticle R and the substrate P are synchronously scanned in the Y direction, and the exposure of the exposure light IL is stopped. The operation of stepping the substrate P in the X and Y directions by driving the substrate stage 34 is repeated. As a result, the pattern image of the reticle R is exposed to each shot area on the substrate P by the step 'and' scan method.
[0031] 次に、本例の図 1の露光装置 EXにおける、レチクル Rのスケール用パターン 56及 びその位置を検出するための検出器 25A, 25Bの構成、並びに基板 P上の各ショッ ト領域に形成されたスケール用パターン及びその位置を検出するための検出器 40A 〜40Hの構成等につき詳細に説明する。なお、レチクル Rは基板 Pの第 1レイヤに露 光する場合に使用され、第 2レイヤの露光では別のレチクル R1が使用されるものとす [0032] 図 2 (A)は、レチクル Rのパターン配置を示し、この図 2 (A)にお!/、て、レチクル の パターン領域 51は、枠状の遮光帯 53で囲まれて、走査方向 SD (Y方向)に細長い 矩形領域である。パターン領域 51は、一例として X方向に 1本のスクライブライン領域 54A、及び Y方向に 2本のスクライブライン領域 54B, 54Cによって、 6個のサブパタ ーン領域 55A〜55Fに分割され、サブパターン領域 55A〜55Fには例えば同一又 は異なる回路パターンが形成されている。サブパターン領域 55A〜55F内にはそれ ぞれ必要に応じて、基板 P上に露光された後に基板マークとなるァライメントマークも 形成されている。スクライブライン領域 54A〜54Cは、基板 P上に投影された状態で 幅 50 11 m程度の切断用の境界線となる領域であり、遮光帯 53のうちでスクライブライ ン領域 54Aとほぼ同じ幅の内側の領域も、基板 P上に投影された状態で切断用の境 界となる領域である。なお、遮光帯 53には、図 1の可動ブラインド 13Bのエッジ部の 像が投影されるため、その幅はスクライブライン領域 54Aよりも或る程度広くなつてい [0031] Next, in the exposure apparatus EX of Fig. 1 in this example, the configuration of the scale pattern 56 of the reticle R and detectors 25A and 25B for detecting the position thereof, and each shot region on the substrate P The configuration of the formed scale pattern and detectors 40A to 40H for detecting the position thereof will be described in detail. Note that reticle R is used for exposure to the first layer of substrate P, and another reticle R1 is used for exposure of the second layer. FIG. 2 (A) shows the pattern arrangement of the reticle R. In FIG. 2 (A), the reticle pattern area 51 is surrounded by a frame-shaped shading band 53 and scanned. It is a rectangular area elongated in the direction SD (Y direction). For example, the pattern area 51 is divided into six subpattern areas 55A to 55F by one scribe line area 54A in the X direction and two scribe line areas 54B and 54C in the Y direction. For example, the same or different circuit patterns are formed in 55A to 55F. In the sub-pattern regions 55A to 55F, alignment marks that become substrate marks after being exposed on the substrate P are also formed as necessary. The scribe line areas 54A to 54C are areas to be used as cutting boundaries with a width of about 50 11 m when projected onto the substrate P. Of the light shielding bands 53, the scribe line areas 54A to 54C have substantially the same width as the scribe line area 54A. The inner region is also a region that serves as a cutting boundary when projected onto the substrate P. Note that since the image of the edge portion of the movable blind 13B in FIG. 1 is projected onto the shading band 53, the width thereof is somewhat larger than the scribe line region 54A.
[0033] 本例のレチクル Rは 6個取りであるため、パターン領域 51は 3本のスクライブライン 領域 54A〜54Cで分割されている力 S、パターン領域 51の分割数やそのサブパター ン領域の配列が変更される場合には、スクライブライン領域 54A〜54Cの本数及び 配置も変更される。本例では、スクライブライン領域 54A〜54Cのうち、走査方向(Y 方向)に平行な中央のスクライブライン領域 54A内の全域に、 2次元のスケール用パ ターン 56が形成されて!/、る。 [0033] Since the reticle R in this example is 6 pieces, the pattern area 51 has the force S divided by the three scribe line areas 54A to 54C, the number of divisions of the pattern area 51, and the arrangement of the sub-pattern areas. Is changed, the number and arrangement of the scribe line regions 54A to 54C are also changed. In this example, among the scribe line areas 54A to 54C, a two-dimensional scale pattern 56 is formed over the entire area in the central scribe line area 54A parallel to the scanning direction (Y direction).
[0034] 図 2 (B)に拡大して示すように、スケール用パターン 56は、光透過部を背景として、 ほぼ正方形の遮光パターン 57を X方向に周期(ピッチ) PX1、Y方向に周期 PY1で 配置した X方向、 Υ方向に周期性を持つ格子状パターンである。遮光パターン 57の X方向、 Υ方向の幅は、通常は周期 PX1及び PY1の 1/2である力 S、例えば原点位 置を示す場合には、後述のように特定位置の遮光パターン 57の幅(デューティ比)が 変化している(図 6 (A)参照)。また、図 2 (B)において、スケール用パターン 56は、近 似的に周期 PY1の Y方向のライン'アンド 'スペースパターン(以下、 L&Sパターンと いう。)と、周期 PX1の X方向の L&Sパターンとの重ね合わせとみなすことができる。 スケール用パターン 56を基板 P上に投影した状態で、一例として、周期 PY1は 0. 1 〜1 μ m程度、周期 PX1は 0· 1〜2 m程度である。スクライブライン領域 54Aの投 影像の X方向の幅は 50 m程度であるため、スケール用パターン 56は X方向にも 5 0周期程度以上形成することができる。スケール用パターン 56の 1箇所の Y方向の位 置、及び Y方向に離れた 2箇所の X方向の位置を計測することで、レチクル R (パター ン領域 51)の X方向、 Y方向の位置、及び Z軸周りの回転角を計測できる。 [0034] As shown in an enlarged view in FIG. 2 (B), the scale pattern 56 has a substantially square light shielding pattern 57 as a background in the X direction (pitch) PX1 and a period in the Y direction PY1 with the light transmitting portion as the background. This is a grid pattern with periodicity in the X and Υ directions arranged in. The width of the light shielding pattern 57 in the X direction and the heel direction is usually a force S that is 1/2 of the period PX1 and PY1, for example, when indicating the origin position, the width of the light shielding pattern 57 at a specific position as described later. (Duty ratio) has changed (see Fig. 6 (A)). In FIG. 2 (B), the scale pattern 56 is similar to the line-and-space pattern in the Y direction with the period PY1 (hereinafter referred to as the L & S pattern) and the L & S pattern with the period PX1 in the X direction. It can be regarded as a superposition of. As an example, with the scale pattern 56 projected onto the substrate P, the period PY1 is 0.1. ~ 1 μm, period PX1 is about 0 · 1-2 m. Since the width of the projected image of the scribe line area 54A in the X direction is about 50 m, the scale pattern 56 can be formed in the X direction for about 50 cycles or more. By measuring one position in the Y direction of the scale pattern 56 and two positions in the X direction that are separated in the Y direction, the position of the reticle R (pattern area 51) in the X direction, the Y direction, And the rotation angle around Z axis can be measured.
[0035] なお、図 3 (A)に示すように、レチクル Rの一方の Y方向に平行な遮光帯 53中に Y 方向に所定周期の L&Sパターンよりなる Y軸のスケール用パターン 59Yを形成し、 他方の Y方向に平行な遮光帯 53中に 2次元のスケール用パターン 56を形成しても よい。スケール用パターン 59Yは、図 3 (B)に示すように、 X方向に長い多数の遮光 パターン 60Y (通常の幅は PY1/2)を Y方向に周期 PY1で配列したパターンである 。図 3 (A)のスケール用パターン 59Yの 1箇所の Y方向の位置、及びスケール用パタ ーン 56の 1箇所の X方向、 Y方向の位置を計測することで、レチクル R (パターン領域 51 )の X方向、 Y方向の位置、及び Z軸周りの回転角を計測できる。図 3 (A)のスケー ル用パターンの配列は、例えばパターン領域 51の全体に一つの回路パターンのみ が形成される (スクライブライン領域 54A〜54Cが無い)場合にも、使用することがで きるという利点がある。 [0035] As shown in FIG. 3 (A), a Y-axis scale pattern 59Y made of an L & S pattern having a predetermined period in the Y direction is formed in one light shielding band 53 parallel to the Y direction of the reticle R. A two-dimensional scale pattern 56 may be formed in the other light shielding band 53 parallel to the Y direction. As shown in FIG. 3B, the scale pattern 59Y is a pattern in which a large number of light shielding patterns 60Y (normal width is PY1 / 2) long in the X direction are arranged in the Y direction with a period PY1. Measure reticle R (pattern area 51) by measuring one Y-direction position of scale pattern 59Y in Fig. 3 (A) and one X-direction position and Y-direction position of scale pattern 56. Can measure the position in X and Y directions, and the rotation angle around the Z axis. The arrangement of the scale pattern in FIG. 3A can be used even when only one circuit pattern is formed in the entire pattern area 51 (there is no scribe line area 54A to 54C), for example. There is an advantage.
[0036] また、スケール用パターン 56は遮光パターン 57を 2次元的に配置したパターンで ある力 スケール用パターン 56の代わりに、 Y方向に周期 PY1の L&Sパターンと、 X 方向に周期 PX1の L&Sパターンとを X方向に並列に配置したパターンを使用しても よい。  [0036] In addition, instead of the force scale pattern 56, which is a pattern in which the light shielding patterns 57 are arranged two-dimensionally, the scale pattern 56 is an L & S pattern with a period PY1 in the Y direction and an L & S pattern with a period PX1 in the X direction. A pattern in which and are arranged in parallel in the X direction may be used.
本例では、図 1の基板 Pの第 1レイヤの各ショット領域 SAに図 2 (A)のレチクル の ノ ターンの像が露光される。その後、基板 Pのフォトレジストの現像及びエッチング等 のパターン形成を行った後、第 2レイヤへの露光を行うためにフォトレジストが塗布さ れた基板 Pが基板ステージ 34上にロードされる。  In this example, the reticle pattern image of FIG. 2A is exposed to each shot area SA of the first layer of the substrate P of FIG. Then, after pattern formation such as development and etching of the photoresist on the substrate P is performed, the substrate P coated with the photoresist is loaded on the substrate stage 34 in order to perform exposure on the second layer.
[0037] 図 4 (A)は、レチクル Rのパターンの像の転写が行われて第 2レイヤへの露光が行 われる基板 Pを示し、この図 4 (A)において、基板 Pの上面は X方向、 Y方向に所定 幅で多数のショット領域 SAに区画され、各ショット領域 SAの中央部を Y方向(走査方 向)に横切るように、図 2 (A)のレチクル Rのスケール用パターン 56の像に対応する 基板 P側のスケール用パターン 56Pが形成されている。 [0037] FIG. 4 (A) shows the substrate P on which the image of the pattern of the reticle R is transferred and the second layer is exposed. In FIG. 4 (A), the upper surface of the substrate P is X The reticle R scale pattern in Fig. 2 (A) is divided into a number of shot areas SA with a predetermined width in the direction and Y direction, and the center of each shot area SA crosses in the Y direction (scanning direction). Corresponding to the image of A scale pattern 56P on the substrate P side is formed.
[0038] 基板 Pの各ショット領域 SAは、図 4 (B)に示すように、スクライブライン 54AP〜54C P (図 2 (A)のレチクル Rのスクライブライン領域 54A〜54Cの像に対応する)によって 6個のサブショット領域 55AP〜55FPに分割され、サブショット領域 55AP〜55FP に同一又は異なる第 1レイヤの回路パターンが形成されている。  [0038] As shown in FIG. 4 (B), each shot area SA of the substrate P has scribe lines 54AP to 54C P (corresponding to images of the scribe line areas 54A to 54C of the reticle R in FIG. 2 (A)). Are divided into six sub-shot areas 55AP to 55FP, and the same or different first layer circuit patterns are formed in the sub-shot areas 55AP to 55FP.
図 4 (C)は、図 4 (B)のショット領域 SAの Y方向に平行なスクライブライン 54APの 全域に亘つて形成されているスケール用パターン 56Pを示す拡大図であり、図 4 (C) において、スケール用パターン 56Pは、基板 Pの下地を背景としてほぼ正方形で例え ば凸(又は凹)のパターン 57P (図 5 (A)では凸パターンで表して!/、る)を X方向に周 期(ピッチ) PX2、 Y方向に周期 PY2で配置した X方向、 Y方向に周期性を持つ位相 型の 2次元格子状パターンである。周期 PX2, PY2は、図 2 (B)の周期 PX1 , PY1に 図 1の投影光学系 PLの投影倍率 /3を乗じた値である。また、図 4 (C)のスケール用 パターン 56Pは、近似的に周期 PY2の Y方向の L&Sパターン 58YP (凸又は凹の 多数のライン状パターン 72Yを Y方向に配列したパターン)と、周期 PX2の X方向の L&Sパターン 58XP (凸又は凹の多数のライン状パターン 72Xを X方向に配列した パターン)との重ね合わせとみなすことができる。  Fig. 4 (C) is an enlarged view showing the scale pattern 56P formed over the entire area of the scribe line 54AP parallel to the Y direction of the shot area SA in Fig. 4 (B). In this case, the scale pattern 56P is substantially square with the background of the substrate P as the background. For example, a convex (or concave) pattern 57P (represented as a convex pattern in FIG. 5A) is surrounded in the X direction. Phase (Pitch) PX2, A phase-type two-dimensional lattice pattern with periodicity in the X and Y directions arranged in the Y direction with a period of PY2. The periods PX2 and PY2 are values obtained by multiplying the periods PX1 and PY1 in FIG. 2B by the projection magnification / 3 of the projection optical system PL in FIG. In addition, the scale pattern 56P in Fig. 4 (C) has an approximate L & S pattern 58YP in the Y direction with a period PY2 (a pattern in which a large number of convex or concave line patterns 72Y are arranged in the Y direction) and a period PX2 This can be regarded as an overlay with the X-direction L & S pattern 58XP (a pattern in which a number of convex or concave line patterns 72X are arranged in the X direction).
[0039] 本例では、基板 Pの各ショット領域 SAに形成されている図 4 (C)のスケール用パタ ーン 56Pをエンコーダのスケール部とみなして、スケール用パターン 56Pの位置を検 出することによって各ショット領域 SAの位置情報 (移動量及び/又は所定の原点か らの絶対位置)を計測する。言い換えると、図 1のレーザ干渉計 38X, 38Yの代わり に、スケール用パターン 56Pを用いて各ショット領域 SAの位置情報を計測する。これ によって、レーザ干渉計 38X, 38Yのレーザビームの光路上の気体に揺らぎが生じ て、レーザ干渉計 38X, 38Yの計測値が変動するような場合でも、その揺らぎに影響 されることなく、ショット領域 SAの位置情報を正確に計測できる。従って、重ね合わせ 精度を高く維持できる。スケール用パターン 56Pの X方向、 Y方向の位置は図 1の基 板 P側の 8個の検出器 40A〜40Hによって検出される。  In this example, the scale pattern 56P in FIG. 4C formed in each shot area SA of the substrate P is regarded as the scale portion of the encoder, and the position of the scale pattern 56P is detected. As a result, position information (movement amount and / or absolute position from a predetermined origin) of each shot area SA is measured. In other words, instead of the laser interferometers 38X and 38Y in FIG. 1, the position information of each shot area SA is measured using the scale pattern 56P. This causes fluctuations in the gas in the laser beam optical path of the laser interferometers 38X and 38Y, and even if the measured values of the laser interferometers 38X and 38Y fluctuate, the shot is not affected by the fluctuations. The position information of the area SA can be measured accurately. Therefore, high overlay accuracy can be maintained. The position of the scale pattern 56P in the X and Y directions is detected by the eight detectors 40A to 40H on the side of the substrate P in FIG.
[0040] 図 5 (A)は、検出器 40Aの構成例を示す斜視図であり、図 5 (A)において、スケー ル用パターン 56Pは分力、り易くするために拡大されている。また、他の検出器 40B〜 40H及びレチクル R側の 2つの検出器 25A, 25Bの構成も検出器 40Aと同様であるFIG. 5 (A) is a perspective view showing a configuration example of the detector 40A. In FIG. 5 (A), the scale pattern 56P is enlarged in order to facilitate component force. Also, other detectors 40B ~ The configuration of the two detectors 25A and 25B on the 40H and reticle R side is the same as that of the detector 40A.
Yes
[0041] 図 5 (A)の検出器 40Aにおいて、例えば He— Neレーザ(波長 633nm)又は可視 域から近赤外域で発光する半導体レーザ (射出端にコリメータレンズが設置されてレ、 る)等のレーザ光源 61から射出された基板 P上のフォトレジスト PRに対して非感光性 の波長域のレーザビームが、ビームスプリッタ 62Aによってレーザビーム LB1及び第 2のレーザビームに分かれる。この第 2のレーザビームは、ビームスプリッタ 62Cによ つてレーザビーム LB2及び第 4のレーザビームに分かれ、この第 4のレーザビームは 、ビームスプリッタ 62Dによって 2つのレーザビーム LB3及び LB4に分かれる。そして 、 2つのレーザビーム LB1及び LB2は、基板 P上のスケール用パターン 56Pに対して Y方向にほぼ対称に傾斜して入射し、レーザビーム LB1の Y方向の + 1次回折光と レーザビーム LB2の Y方向の 1次回折光との干渉光 LBYがスケール用パターン 5 6Pからほぼ垂直にフォトダイオード等の光電検出器 64Yに入射する。  [0041] In the detector 40A of FIG. 5A, for example, a He—Ne laser (wavelength 633 nm) or a semiconductor laser that emits light from the visible region to the near infrared region (with a collimator lens installed at the exit end), etc. A laser beam in a wavelength region that is non-photosensitive to the photoresist PR on the substrate P emitted from the laser light source 61 is split into a laser beam LB1 and a second laser beam by the beam splitter 62A. This second laser beam is divided into a laser beam LB2 and a fourth laser beam by the beam splitter 62C, and this fourth laser beam is divided into two laser beams LB3 and LB4 by the beam splitter 62D. Then, the two laser beams LB1 and LB2 are incident on the scale pattern 56P on the substrate P while being inclined substantially symmetrically in the Y direction, and the + first-order diffracted light in the Y direction of the laser beam LB1 and the laser beam LB2 The interference light LBY with the first-order diffracted light in the Y direction enters the photoelectric detector 64Y such as a photodiode almost vertically from the scale pattern 56P.
[0042] 図 5 (A)のスケール用パターン 56Pを、図 5 (B)に示すように Y方向の L&Sパター ン 58YP (ライン状パターン 72Yを周期 PY2で Y方向に配列したパターン)とみなした 場合、光電検出器 64Yの検出信号 S1Yは、図 5 (C)に示すように位置 Yに関して周 期 PY2 (又は周期 PY2/2)の正弦波信号となる。  [0042] Scale pattern 56P in Fig. 5 (A) was regarded as Y-direction L & S pattern 58YP (pattern in which line-shaped pattern 72Y was arranged in Y direction with period PY2) as shown in Fig. 5 (B). In this case, the detection signal S1Y of the photoelectric detector 64Y is a sine wave signal having a period PY2 (or period PY2 / 2) with respect to the position Y as shown in FIG.
図 5 (A)に戻り、光電検出器 64Yの検出信号 S1Yは、増幅器 66を経てハイパスフ ィルタ(以下、 HPFと!/、う)回路 67A及びローパスフィルタ(以下、 LPFと!/、う)回路 67 Bに入力される。 HPF回路 67Aから出力される信号 S3Yはカウンタ 69の第 1入力部 に供給される。また、図 5 (A)の検出器 40Aにおいて、レーザビーム LB1 , LB2力、ら Y方向に位相が 90° ずれた位置でスケール用パターン 56Pに照射される 1対のレー ザビーム(不図示)も使用され、この 1対のレーザビームによる干渉光から不図示の光 電検出器によって、検出信号 S 1Yに対して位相が 90° シフトした検出信号 S2Yが 生成され、この検出信号 S2Yが HPF回路 67Cを介してカウンタ 69の第 2入力部に 供給される。  Returning to Fig. 5 (A), the detection signal S1Y of the photoelectric detector 64Y passes through the amplifier 66, and then the high-pass filter (hereinafter referred to as HPF! //) circuit 67A and the low-pass filter (hereinafter referred to as LPF! //) circuit. 67 Input to B. The signal S3Y output from the HPF circuit 67A is supplied to the first input section of the counter 69. In addition, in the detector 40A of FIG. 5 (A), a pair of laser beams (not shown) irradiated to the scale pattern 56P at a position 90 degrees out of phase in the Y direction from the laser beams LB1 and LB2 forces. A detection signal S2Y whose phase is shifted by 90 ° with respect to the detection signal S1Y is generated from the interference light generated by this pair of laser beams by an unillustrated photoelectric detector, and this detection signal S2Y is generated by the HPF circuit 67C. To the second input of the counter 69.
[0043] また、 LPF回路 67Bから出力される信号 S4Yが原点信号発生部 68に入力され、原 点信号発生部 68では、例えば信号 S4Yがピークとなるときにカウンタ 69に対してリセ ット信号を出力し、これによつてカウンタ 69の原点設定が行われる。カウンタ 69では、 供給される 2相の検出信号 S 1Y及び S2Yを 1000分割程度に内挿して、検出器 40A に対するスケール用パターン 56Pの土 Y方向の移動量を例えば 0. lnm〜lnm程度 の分解能で、そのリセット信号が出力される位置を原点とした Y座標 YAとして求める 。この Y座標 YAは図 1の座標計測 ·補間系 45に出力される。 [0043] Further, the signal S4Y output from the LPF circuit 67B is input to the origin signal generator 68, and the origin signal generator 68 resets the counter 69 when the signal S4Y reaches a peak, for example. A home signal is output, and the origin of the counter 69 is set accordingly. In the counter 69, the supplied two-phase detection signals S1Y and S2Y are interpolated in about 1000 divisions, and the movement amount in the soil Y direction of the scale pattern 56P relative to the detector 40A is, for example, a resolution of about 0.1 nm to lnm. Then, find the Y coordinate YA with the position where the reset signal is output as the origin. This Y coordinate YA is output to the coordinate measurement / interpolation system 45 in FIG.
[0044] この場合、その原点を設定するために、図 6 (A)に示すように、 Y方向の L&Sパタ ーン 58YP (スケール用パターン 56Pの Y成分)の走査方向の中央部には、次第に幅 が広くなつて再び通常の幅に戻る 1組のライン状パターン 72YA, 72YB, 72YC, 7 2YDが含まれている。このとき、対応する図 2 (B)のレチクル Rのスケール用パターン 56においても、 L&Sパターン 58Y中に遮光パターン 57の幅が次第に広くなつてか ら通常の幅に戻る部分 (原点部)がある。  In this case, in order to set the origin, as shown in FIG. 6 (A), the Y-direction L & S pattern 58YP (the Y component of the scale pattern 56P) has a central portion in the scanning direction. A set of linear patterns 72YA, 72YB, 72YC, 72YD is included which gradually widens and returns to the normal width again. At this time, also in the scale pattern 56 of the reticle R in FIG. 2B corresponding to the reticle R, there is a portion (origin portion) in the L & S pattern 58Y that returns to the normal width after the width of the light shielding pattern 57 gradually increases. .
[0045] 図 6 (A)の L&Sパターン 58YPに対応する図 5 (A)の検出信号 S 1Yは、一例として 図 6 (B)に示すように、周期が長い山形の信号が重畳されたようになる。この信号が 図 5 (A)の HPF回路 67A及び LPF回路 67Bに入力されると、 HPF回路 67Aから出 力される信号 S3Yは、図 6 (C)に示すように、図 5 (C)の検出信号 S1Yと同様の正弦 波信号となり、 LPF回路 67B力 出力される信号 S4Yは、図 6 (D)に示すように、位 置 Y で頂点となる信号となる。そこで、図 5 (A)の原点信号発生部 68では、信号 S4 [0045] The detection signal S1Y in Fig. 5 (A) corresponding to the L & S pattern 58YP in Fig. 6 (A), as shown in Fig. 6 (B) as an example, seems to be superimposed with a long-crested signal. become. When this signal is input to the HPF circuit 67A and LPF circuit 67B in FIG. 5 (A), the signal S3Y output from the HPF circuit 67A is as shown in FIG. 6 (C), as shown in FIG. The signal S4Y, which is the same sine wave signal as the detection signal S1Y and is output by the LPF circuit 67B, is a signal that becomes the apex at the position Y as shown in FIG. 6 (D). Therefore, the origin signal generator 68 in FIG.
0 0
Yが頂点となる位置 Y でカウンタ 69をリセットする。これによつて、カウンタ 69の原点  Counter 69 is reset at position Y where Y is the vertex. As a result, the origin of counter 69
0  0
設定が行われる。図 5 (A)の LPF回路 67B、 HPF回路 67A, 67C、原点信号発生 部 68、及びカウンタ 69から Y軸の検出回路 70Yが構成され、これと同じ構成の X軸 の検出回路 70Xも設けられている。なお、検出信号 S 1Yをアナログ/デジタル変換 して得られる信号を位置 Yに関してフーリエ変換した後、信号 S3Yと信号 S4Yとを分 離してもよい。  Settings are made. The LPF circuit 67B, HPF circuits 67A and 67C, origin signal generator 68, and counter 69 in Fig. 5 (A) constitute the Y-axis detection circuit 70Y, and the same configuration as the X-axis detection circuit 70X is also provided. ing. Note that the signal S3Y and the signal S4Y may be separated after the signal obtained by analog / digital conversion of the detection signal S1Y is Fourier-transformed with respect to the position Y.
[0046] 図 5 (A)の検出器 40Aにおいて、 2つのレーザビーム LB3及び LB4は、スケーノレ 用パターン 56Pに対して X方向にほぼ対称に傾斜して入射し、レーザビーム LB3の X方向の + 1次回折光とレーザビーム LB4の X方向の 1次回折光との干渉光 LBX 力 Sスケール用パターン 56Pからほぼ垂直に光電検出器 64Xに入射する。図 5 (A)の スケール用パターン 56Pを、図 5 (B)に示すように X方向に周期 PX2の L&Sパター ン 58XPとみなした場合、光電検出器 64Xの検出信号 SIXは、図 5 (C)に示すように 位置 Xに関して周期 PX2 (又は周期 PX2/2)の正弦波信号となる。検出信号 S IX 及び不図示の干渉光から得られる位相が 90° シフトした検出信号 S2Xが検出回路 70Xに出力され、検出回路 70Xでは、検出器 40Aに対するスケール用パターン 56P の ±X方向の移動量を例えば 0. lnm〜2nm程度の分解能で X座標 XAとして求め 、この X座標 XAも図 1の座標計測 '補間系 45に供給される。 X座標 XAも、例えばパ ターン 57Pの幅が X方向で次第に太くなつて再び通常の幅になる部分を原点とした 信号である。 In the detector 40A of FIG. 5 (A), the two laser beams LB3 and LB4 are incident on the scanore pattern 56P so as to be inclined substantially symmetrically in the X direction. Interference light between the first-order diffracted light and the first-order diffracted light in the X direction of the laser beam LB4 LBX force The light enters the photoelectric detector 64X almost vertically from the pattern 56P for S scale. As shown in Fig. 5 (B), the scale pattern 56P in Fig. 5 (A) is changed to the L & S pattern with period PX2 in the X direction As shown in FIG. 5 (C), the detection signal SIX of the photoelectric detector 64X becomes a sine wave signal with a period PX2 (or a period PX2 / 2) with respect to the position X. Detection signal S IX and detection signal S2X with phase shifted by 90 ° obtained from interference light not shown are output to detection circuit 70X. In detection circuit 70X, the amount of movement in the ± X direction of scale pattern 56P relative to detector 40A Is obtained as an X coordinate XA with a resolution of about 0.1 nm to 2 nm, for example, and this X coordinate XA is also supplied to the coordinate measurement / interpolation system 45 in FIG. The X coordinate XA is also a signal whose origin is, for example, a portion where the width of the pattern 57P gradually increases in the X direction and becomes the normal width again.
[0047] 図 5 (A)において、レーザビーム LB;!〜 LB4を基板 P上に照射する光学系、 Y軸の 検出回路 70Y、及び X軸の検出回路 70Χを含んで検出器 40Αが構成されている。ま た、本例では、図 2 (B)のレチクル R上のスケール用パターン 56の各遮光パターン 5 7は、図 5 (A)のレーザ光源 61のレーザビームを反射する材料から形成されている。 これによつて、図 1のレチクル R上のスケール用パターン 56用の検出器 25Α, 25Βと して、図 5 (Α)の検出器 40Αと同じ構成の検出器を使用できる。  [0047] In FIG. 5A, a detector 40Α is configured including an optical system that irradiates the laser beam LB ;! to LB4 onto the substrate P, a Y-axis detection circuit 70Y, and an X-axis detection circuit 70Χ. ing. Further, in this example, each light shielding pattern 57 of the scale pattern 56 on the reticle R in FIG. 2B is formed of a material that reflects the laser beam of the laser light source 61 in FIG. . As a result, a detector having the same configuration as the detector 40 の in FIG. 5 (Α) can be used as the detectors 25 Α and 25 用 for the scale pattern 56 on the reticle R in FIG. 1.
[0048] なお、図 5 (A)のリニアエンコーダでは、スケール用パターン 56Ρ中に原点パターン 部を設けているため、スケール用パターン 56Ρの他に原点スケール用のトラックを設 ける必要がないとともに、検出器 40Αの光学系の構成が簡単である。これに対して、 原点信号を生成するために、図 5 (A)に対応する部分に同一符号を付した図 7の構 成例で示すように、スケール用パターン 56Ρとは別に原点スケールを設けても良い。 図 7の構成例において、基板 Ρ上のスケール用パターン 56Ρに隣接したトラック (Υ 方向に沿ってスケール用パターンが形成されている領域)に、 Υ方向の原点位置を 示すための非周期的な凸パターンからなる原点パターン 74Υが形成されている。  [0048] In the linear encoder of FIG. 5 (A), since the origin pattern portion is provided in the scale pattern 56mm, it is not necessary to provide a track for the origin scale in addition to the scale pattern 56mm. The configuration of the optical system of the detector 40mm is simple. On the other hand, in order to generate the origin signal, an origin scale is provided separately from the scale pattern 56 mm, as shown in the configuration example of FIG. 7 where the same reference numerals are given to the portions corresponding to FIG. May be. In the configuration example of Fig. 7, the track adjacent to the scale pattern 56Ρ on the substrate Υ (the area where the scale pattern is formed along the Υ direction) is aperiodic to indicate the origin position in the Υ direction. An origin pattern 74 mm made of a convex pattern is formed.
[0049] また、図 7の検出器 40Αにおいて、ビームスプリッタ 62Αと 62Cとの間にビームスプ リツタ 62Βが配置されている。ビームスプリッタ 62Αで分岐された第 2のレーザビーム は、ビームスプリッタ 62Βによってレーザビーム LB5及びビームスプリッタ 62Cに向か うレーザビームに分かれる。ビームスプリッタ 62Βで分岐されたレーザビーム LB5は、 ミラー 63Cで反射されて、基板 Ρ上の原点パターン 74Υのあるトラックにほぼ垂直に 照射される。基板 Ρからのフォトレジスト PRを介した散乱光 LBSは、集光レンズ 65を 介して光電検出器 64Sに集光され、光電検出器 64Sの検出信号は原点信号発生部 71に入力され、原点信号発生部 71では、入力された信号が所定の閾値レベル Sth を横切るときにハイレベルとなる原点信号 YASを生成する。この原点信号 YSAは、 カウンタ 69の計数値をリセット(又はプリセット)するために使用される。 Further, in the detector 40Α of FIG. 7, the beam splitter 62Β is disposed between the beam splitters 62Α and 62C. The second laser beam branched by the beam splitter 62Α is split into laser beams directed to the laser beam LB5 and the beam splitter 62C by the beam splitter 62Β. The laser beam LB5 branched by the beam splitter 62Β is reflected by the mirror 63C, and is irradiated almost perpendicularly to the track having the origin pattern 74Υ on the substrate Ρ. Scattered light from the substrate フ ォ ト through the photoresist PR LBS And the detection signal of the photoelectric detector 64S is input to the origin signal generator 71. The origin signal generator 71 is high when the input signal crosses a predetermined threshold level Sth. Generate the origin signal YAS to be level. This origin signal YSA is used to reset (or preset) the count value of the counter 69.
[0050] なお、図 7の構成例では、スケール用パターン 56Pからの検出信号 S 1Yから原点 信号を生成する必要がないため、図 5 (A)の LPF回路 67B及び原点信号発生部 68 は設けられていない。また、図 7の HPF回路 67A及び 67Cを省略して、検出信号 S 1 Y及び S2Yを直接カウンタ 69に入力することも可能である。  In the configuration example of FIG. 7, since it is not necessary to generate an origin signal from the detection signal S 1Y from the scale pattern 56P, the LPF circuit 67B and the origin signal generator 68 of FIG. It is not done. It is also possible to omit the HPF circuits 67A and 67C in FIG. 7 and input the detection signals S 1 Y and S2Y directly to the counter 69.
[0051] 図 8 (A)は、基板 Pのショット領域 SA内において、 Y軸の L&Sパターン 58YP (スケ ール用パターン 56Pの Y成分)が形成されてレ、るトラック 73YAに隣接するトラック 73 YBに原点パターン 74Yが形成されている状態を示す。この場合には、図 2 (B)のレ チクル R上のスクライブライン領域 54Aにおいても、 L&Sパターン 58Yに対して X方 向に隣接するように、原点パターン 74Yに対応する部分が遮光パターンとなったスケ ール用パターンが形成されている。その原点パターン 74Yが図 7の検出器 40Aのレ 一ザビーム LB5の照射領域を横切るときの基板 Pの Y座標を原点とすることができる [0051] FIG. 8 (A) shows a track 73 adjacent to the track 73YA in which the Y-axis L & S pattern 58YP (the Y component of the scale pattern 56P) is formed in the shot area SA of the substrate P. The state where the origin pattern 74Y is formed on YB is shown. In this case, also in the scribe line area 54A on the reticle R in FIG. 2 (B), the portion corresponding to the origin pattern 74Y is a light shielding pattern so as to be adjacent to the L & S pattern 58Y in the X direction. A scale pattern is formed. The origin coordinate 74Y can be used as the origin of the substrate P when the laser beam LB5 irradiation area of the detector 40A in FIG.
Yes
[0052] 図 7の構成例では、レーザビーム LB;!〜 LB5を基板 P上に照射する光学系、 Y軸 の検出回路 70Y、 X軸の検出回路 70Χ、及び原点信号発生部 71を含んで検出器 4 OAが構成されている。  The configuration example of FIG. 7 includes an optical system that irradiates the substrate P with the laser beam LB;! To LB5, a Y-axis detection circuit 70Y, an X-axis detection circuit 70 検 出, and an origin signal generator 71. Detector 4 OA is configured.
なお、図 4 (B)の基板 P上のショット領域 SAのスケール用パターン 56Pの Y方向の 全域にお!/、て、 Y方向の絶対位置を粗!/、分解能(例えば 0. 1mm程度)で計測でき る非周期的なスケール用パターンを設けてもよい。  Note that the absolute pattern in the Y direction is rough! / And resolution (for example, about 0.1 mm) over the entire area in the Y direction of the scale pattern 56P of the shot area SA on the substrate P in FIG. 4 (B). A non-periodic scale pattern may be provided that can be measured with.
図 8 (B)は、 Y軸の L&Sパターン 58YPが形成されたトラック 73YAに隣接するトラ ック 73YBに、一連のバーコード 75A, 75B,…状のスケール用パターンを設けたも のである。この場合、例えば図 7のレーザビーム LB5の照射によって光電検出器 64S から得られる検出信号 (散乱光)は、凹凸のパターンの立ち上がり部及び立ち下がり 部でノ レス状に変化するため、原点信号発生部 71から出力される原点信号 YASは 、図 8 (B)のバーコード 75A等の凹凸のパターンのエッジ部を表す信号となる。そこ で、そのエッジ部のパターンが重複しないようにバーコード 75A, 75B等のパターン を設定することで、 Y方向の絶対位置を大まかに計測できる。 FIG. 8 (B) shows a series of bar code 75A, 75B,..., Scale patterns provided on the track 73YB adjacent to the track 73YA on which the Y-axis L & S pattern 58YP is formed. In this case, for example, the detection signal (scattered light) obtained from the photoelectric detector 64S by irradiation with the laser beam LB5 in FIG. 7 changes in a nose shape at the rising and falling portions of the uneven pattern, so that an origin signal is generated. The origin signal YAS output from the section 71 is a signal representing the edge of the uneven pattern such as the barcode 75A in FIG. 8B. There Thus, the absolute position in the Y direction can be roughly measured by setting patterns such as barcodes 75A and 75B so that the edge pattern does not overlap.
[0053] その他の原点の決定方法としては、図 1の基板ステージ 34を基板のローデイングポ ジシヨン又はブリアライメントポジションに移動して、不図示のァライメントセンサ(又は ァライメントセンサ 39)を用いて基板 P上の所定のァライメントマーク(基板マーク)の 位置を計測することによって、基板 Pの位置を、基板 P上の各ショット領域に形成され たスケール用パターン 56P等の一周期以内の精度で計測することも考えられる。これ は、基板 Pのブリアライメントによる追い込み精度を、そのスケール用パターン 56P等 の一周期以内にすることを意味する。ブリアライメントにより、基板 Pのショット領域の 位置がスケール用パターン 56P等の一周期以内に追い込まれていれば、その一周 期内での絶対位置は、前述の通りスケール用パターン 56P等を読み取ることにより把 握できる。 [0053] As another method of determining the origin, the substrate stage 34 in FIG. 1 is moved to the substrate loading position or the bridging alignment position, and the substrate P is used by using an alignment sensor (or alignment sensor 39) (not shown). By measuring the position of the predetermined alignment mark (substrate mark) above, the position of the substrate P is measured with an accuracy within one cycle such as the scale pattern 56P formed in each shot area on the substrate P. It is also possible. This means that the follow-up accuracy of the substrate P due to the bri alignment is within one cycle of the scale pattern 56P and the like. If the position of the shot area on the substrate P is driven within one cycle such as the scale pattern 56P due to bria alignment, the absolute position within that cycle can be obtained by reading the scale pattern 56P as described above. I can grasp it.
[0054] なお、スケール用パターンの検出器 25A, 25B、及び検出器 40A〜40Hとしては 、図 5 (A)のような干渉光又は散乱光を検出する方式以外に、例えば画像処理方式 のセンサ等も使用できる。また、レチクル R上のスケール用パターンの配列として、図 2 (A)又は図 3 (A)等の異なる配列を用いるのに応じて、基板 Pの各ショット領域に付 設されるスケール用パターンの位置も変化する。そこで、スケール用パターンの検出 器 25A, 25B、及び検出器 40A〜40Hを、それぞれ例えば不図示のスライド機構に 取り付けて、検出対象のスケール用パターンの位置に応じて、これらのスライド機構 によって検出器 25A, 25B、及び検出器 40A〜40Hの位置を調整してもよい。  As the scale pattern detectors 25A and 25B and the detectors 40A to 40H, in addition to the method of detecting interference light or scattered light as shown in FIG. Etc. can also be used. Also, the scale pattern provided on each shot area of the substrate P in accordance with the use of a different array such as FIG. 2 (A) or FIG. 3 (A) as the array of scale patterns on the reticle R. The position also changes. Therefore, the scale pattern detectors 25A and 25B and the detectors 40A to 40H are attached to, for example, a slide mechanism (not shown), and the slide mechanism detects the scale according to the position of the scale pattern to be detected. The positions of 25A and 25B and detectors 40A to 40H may be adjusted.
[0055] 次に、図 1の基板 P側のスケール用パターンの 8個の検出器 40A〜40Hの配列の 一例を説明するために、図 4 (A)に示すように、投影光学系 PLの投影領域 17Pが或 るショット領域 SA6上に位置しているものとする。このとき、検出器 40A及び 40Bは、 その検出領域 40AD, 40BD (図 5 (A)のレーザビーム LB;!〜 LB5が照射される領 域)によってそれぞれショット領域 SA6に + Y方向及び Y方向に隣接するショット領 域 SA7及び SA2内のスケール用パターン 56Pの位置を計測できるように配置され、 検出器 40C及び 40Dは、それぞれショット領域 SA6に— X方向及び + X方向に隣接 するショット領域 SA8及び SA9内のスケール用パターン 56Pの位置を計測できるよう に配置される。また、検出器 40Hは、その検出領域 40HDによってショット領域 SA2 に—Y方向に隣接するショット領域 SA1内のスケール用パターン 56Pの位置を計測 できるように配置され、検出器 40F及び 40Gは、それぞれショット領域 SA1に—X方 向及び + X方向に隣接するショット領域 SA4及び SA5内のスケール用パターン 56P の位置を計測できるように配置され、検出器 40Eは、ショット領域 SA1に Y方向に 隣接するショット領域 SA3内のスケール用パターン 56Pの位置を計測できるように配 置される。 [0055] Next, in order to explain an example of the arrangement of the eight detectors 40A to 40H on the substrate P-side scale pattern in FIG. 1, as shown in FIG. Assume that the projection area 17P is located on a certain shot area SA6. At this time, the detectors 40A and 40B cause the detection areas 40AD and 40BD (the laser beam LB in FIG. 5A; the area irradiated with! To LB5) to the shot area SA6 in the + Y direction and the Y direction, respectively. The detectors 40C and 40D are arranged so that the position of the scale pattern 56P in the adjacent shot areas SA7 and SA2 can be measured, and the detectors 40C and 40D are respectively adjacent to the shot area SA6—the shot area SA8 and the X direction To measure the position of scale pattern 56P in SA9 Placed in. The detector 40H is arranged so that the position of the scale pattern 56P in the shot area SA1 adjacent to the shot area SA2 in the −Y direction can be measured by the detection area 40HD, and the detectors 40F and 40G are respectively shot. It is arranged so that the position of the scale pattern 56P in the shot areas SA4 and SA5 adjacent to the area SA1 in the X and + X directions can be measured, and the detector 40E is adjacent to the shot area SA1 in the Y direction. Arranged so that the position of scale pattern 56P in area SA3 can be measured.
[0056] 言い換えると、 1対の検出器 40A, 40Bは、投影領域 17Pが位置するショット領域 S A6を走査方向に挟むショット領域 SA7, SA2内のスケール用パターンの位置を計 測できるように、 1対の検出器 40C, 40Dは、そのショット領域 SA6を非走査方向に 挟むショット領域 SA8, SA9内のスケール用パターンの位置を計測できるように配置 されている。これら第 1組の検出器 40A〜40Dは、投影領域 17Pで基板 P上のショッ ト領域 SA6を露光しているときに、補間によって露光対象のショット領域 SA6の位置 情報を求めるために使用される。即ち、本例では、露光中には投影領域 17Pに液浸 法による液体が供給される場合があることを考慮して、投影領域 17Pがあるショット領 域 SA6内ではスケール用パターンの位置計測を行っていない。なお、本例ではスケ ール用パターン 56Pは 2次元パターンであるため、ショット領域 SA6の位置情報(X 方向、 Y方向の位置、及び回転角)を計測するためには、 2つの検出器 (例えば検出 器 40A及び 40B)のみを用いてもよ!/、。  In other words, the pair of detectors 40A and 40B can measure the position of the scale pattern in the shot areas SA7 and SA2 that sandwich the shot area SA6 where the projection area 17P is located in the scanning direction. The pair of detectors 40C and 40D are arranged so that the position of the scale pattern in the shot areas SA8 and SA9 that sandwich the shot area SA6 in the non-scanning direction can be measured. These first detectors 40A to 40D are used to obtain position information of the shot area SA6 to be exposed by interpolation when the shot area SA6 on the substrate P is exposed in the projection area 17P. . That is, in this example, taking into account that liquid by immersion may be supplied to the projection area 17P during exposure, the position of the scale pattern is measured in the shot area SA6 where the projection area 17P is located. not going. In this example, since the scale pattern 56P is a two-dimensional pattern, in order to measure the position information (X direction, Y direction position, and rotation angle) of the shot area SA6, two detectors ( For example, only detectors 40A and 40B) may be used!
[0057] この場合、より正確に露光対象のショット領域 SA6の位置情報を求めるには、予め 露光前に、ショット領域 S A6とその周囲のショット領域との相対位置関係を計測して おけばよい。そのために、 1対の検出器 40B, 40E (検出器 40Bは第 1組と共用され ている)は、検出器 40Hの検出領域 40HDが位置するショット領域 SA1を走査方向 に挟むショット領域 SA2, SA3内のスケール用パターンの位置を計測できるように、 1 対の検出器 40F, 40Gは、そのショット領域 SA1を非走査方向に挟むショット領域 S A4, SA5内のスケール用パターンの位置を計測できるように配置されている。これら 第 2組の 5個の検出器 40B及び 40E〜40Hは、予め露光前に露光対象のショット領 域(ここではショット領域 SA1)と、その周囲のショット領域 SA2〜SA5との相対的位 置関係を計測しておくために使用される。この場合に、第 1組と第 2組とで共用される 検出器は、検出器 40A〜40Dのうちの何れでもよい。また、スケール用パターン 56P は 2次元パターンであるため、ショット領域 SA1とその周囲のショット領域との相対位 置関係を予め計測しておくためには、 3つの検出器 (例えば検出器 40H及び検出器 40B, 40G)のみを用いてもよい。この結果、使用する検出器の個数は全部で 4個( 例えば検出器 40B, 40D, 40H, 40G)に減少できる。 [0057] In this case, in order to obtain the position information of the shot area SA6 to be exposed more accurately, the relative positional relationship between the shot area SA6 and the surrounding shot areas may be measured in advance before exposure. . For this purpose, a pair of detectors 40B and 40E (the detector 40B is shared with the first set) has shot areas SA2 and SA3 sandwiching the shot area SA1 where the detection area 40HD of the detector 40H is located in the scanning direction. The pair of detectors 40F and 40G can measure the position of the scale pattern in the shot areas SA4 and SA5 that sandwich the shot area SA1 in the non-scanning direction. Is arranged. These second set of five detectors 40B and 40E to 40H preliminarily expose the relative positions of the shot area to be exposed (here, the shot area SA1) and the surrounding shot areas SA2 to SA5. Used to measure the positional relationship. In this case, the detector shared by the first group and the second group may be any of the detectors 40A to 40D. In addition, since the scale pattern 56P is a two-dimensional pattern, three detectors (for example, the detector 40H and the detector 40H) are used to measure in advance the relative positional relationship between the shot area SA1 and the surrounding shot areas. Only devices 40B, 40G) may be used. As a result, the total number of detectors used can be reduced to four (for example, detectors 40B, 40D, 40H, and 40G).
[0058] 次に、図 1の露光装置 EXにおいて、基板 Pの第 2レイヤの各ショット領域 SAにレチ クル R1のパターンの像を重ね合わせて露光する場合の動作の一例につき説明する 。以下の動作は、図 1の主制御系 41によって制御される。  Next, in the exposure apparatus EX of FIG. 1, an example of the operation in the case of exposing the pattern image of the reticle R1 on each shot area SA of the second layer of the substrate P will be described. The following operations are controlled by the main control system 41 in FIG.
先ず、図 4 (A)において、基板 P上のショット領域 SA1が露光対象であるとして、図 1の露光装置 EXでは露光光 ILを照射することなぐステージ駆動系 43が基板ステー ジ 34を駆動して、第 2組の 5個の検出器 40B, 40E〜40Hの検出領域に対してそれ ぞれ基板 P上のショット領域 SA2, SA3, SA4, SA1 , SA5内のスケール用パターン 56Pの全域を + Y方向に移動して、検出器 40B, 40E〜40Hによって所定のサンプ リングレートで対応するスケール用パターン 56Pの X座標、 Y座標を読み取り、読み 取った計測値を逐次図 1の座標計測'補間系 45に供給する。その読み取られた座標 は、ステージ駆動系 43にも供給される。  First, in FIG. 4A, assuming that the shot area SA1 on the substrate P is an exposure target, the stage drive system 43 that does not irradiate the exposure light IL drives the substrate stage 34 in the exposure apparatus EX of FIG. Thus, the entire area of the scale pattern 56P in the shot areas SA2, SA3, SA4, SA1 and SA5 on the substrate P is detected with respect to the detection areas of the second set of five detectors 40B and 40E to 40H. Move in the Y direction, read the X and Y coordinates of the corresponding scale pattern 56P at the specified sampling rate using the detectors 40B and 40E to 40H, and sequentially read the measured values. Supply to system 45. The read coordinates are also supplied to the stage drive system 43.
[0059] なお、この検出器 40B, 40E〜40Hによって基板 P上のスケール用パターン 56Pの 座標を読み取る動作は、例えば図 1のァライメントセンサ 39を用いて基板 P上の所定 の複数のショット領域のァライメントマークの位置を計測する際に、合わせて実行する ようにしてもよい。また、図 4 (A)の基板 Pにおいて、例えば + Y方向側の X方向に一 列に配列された複数のショット領域から露光を開始して、次第に Y方向側の列のシ ヨット領域の露光に移行していく場合には、或る列のショット領域の走査露光中に、検 出器 40B, 40E〜40Hの検出信号力、らその 2列先のショット領域のスケール用パタ ーン 56Pの座標を読み取るようにしてもよい。同様に、基板 Pの— Y方向側の列のシ ヨット領域の露光から次第に + Y方向の列のショット領域の露光に移行する場合に備 えて、図 4 (A)の検出器 40Aの + Y方向側に 4個の検出器 (検出器 40E〜40Hと対 称な配置の検出器)を配列してもよレ、。 [0060] 図 4 (A)の場合、中央の検出器 40Hでは、ショット領域 SA1内のスケール用パター ン 56Pの一連の X座標、 Y座標(XHi, YHi) (i= l , 2, · · · )を読み取り、それを Y方向 に挟む検出器 40B及び 40Eでは、ショット領域 SA2及び SA3内のスケール用パター ン 56Pの X座標(XBi及び XEi)を読み取り、ショット領域 SA1を X方向に挟む検出器 40F及び 40Gでは、ショット領域 SA4及び SA5内のスケール用パターン 56Pの Y座 標 (YFi及び YGi)を読み取る。この場合、本例の全部のショット領域 SA内のスケー ル用パターン 56Pの原点位置は、ショット内で相対的に同じ位置(図 6 (D)の Y 等) [0059] The operation of reading the coordinates of the scale pattern 56P on the substrate P by the detectors 40B, 40E to 40H is performed, for example, by using a plurality of predetermined shot areas on the substrate P using the alignment sensor 39 of FIG. When measuring the position of the alignment mark, it may be executed together. In addition, on the substrate P in FIG. 4A, for example, exposure is started from a plurality of shot areas arranged in a row in the X direction on the + Y direction side, and then gradually exposed in the yacht area on the Y direction side. , During scanning exposure of a shot area of a certain row, the detection signal power of the detectors 40B and 40E to 40H, and the scale pattern 56P of the shot area of the two rows ahead are detected. You may make it read a coordinate. Similarly, in the case where the exposure of the shot area in the + Y direction column gradually shifts from the exposure of the shot area in the Y direction side row of the substrate P to + Y of the detector 40A in FIG. 4 (A). It is possible to arrange 4 detectors (detectors arranged symmetrically with detectors 40E to 40H) on the direction side. [0060] In the case of Fig. 4 (A), in the center detector 40H, a series of X and Y coordinates (XHi, YHi) (i = l, 2, · · ·) of the scale pattern 56P in the shot area SA1. · Detectors 40B and 40E that sandwich) in the Y direction read the X coordinate (XBi and XEi) of scale pattern 56P in shot areas SA2 and SA3, and detect shot area SA1 in the X direction. The instruments 40F and 40G read the Y coordinates (YFi and YGi) of the scale pattern 56P in the shot areas SA4 and SA5. In this case, the origin position of the scale pattern 56P in the entire shot area SA of this example is relatively the same position in the shot (such as Y in Fig. 6 (D)).
0 であるため、基板ステージ 34を駆動する際に、ステージ駆動系 43では、一例として、 ショット領域 SA4, SA5内のスケール用パターンの Y座標(YFi及び YGi)が同じ値 になるように基板ステージ 34の Z軸周りの回転角を制御する。  Therefore, when driving the substrate stage 34, the stage drive system 43, as an example, sets the substrate stage so that the Y coordinates (YFi and YGi) of the scale pattern in the shot areas SA4 and SA5 have the same value. Controls the rotation angle around the 34 Z axis.
[0061] 次に、座標計測'補間系 45では、供給された 5つのスケール用パターンの X座標、 Y座標を処理して、ショット領域 SA4, SA5の Y座標の平均値(= (YFi + YGi) /2) (ここでは YFiに等しい)とショット領域 SA1の Y座標 YHiとの一連の差分 ΔΥί、及び ショット領域 SA2, SA3の X座標の平均値(= (XBi + XEi) /2)とショット領域 SA1 の X座標 XHiとの一連の差分 Δ ΧΪを求め、これらの差分 Δ Χί, ΔΥΪを記憶装置 46に ショット領域 SA1に対応させて記憶させる(先読み工程)。同様に、他のいくつかのシ ヨット領域 (先読みされるショット領域)についても、計測された一連の差分(Δ ¾, Δ Yi) (i= l , 2, · · · )を記憶装置 46に記憶させる。  [0061] Next, the coordinate measurement / interpolation system 45 processes the X coordinate and Y coordinate of the supplied five scale patterns, and calculates the average value of the Y coordinates of the shot areas SA4 and SA5 (= (YFi + YGi ) / 2) A series of differences between the Y coordinate YHi in the shot area SA1 (here, equal to YFi) and the average X coordinate (= (XBi + XEi) / 2) and shot in the shot areas SA2 and SA3 A series of differences Δ の with respect to the X coordinate XHi of the area SA1 is obtained, and these differences Δ Χί, ΔΥΪ are stored in the storage device 46 in association with the shot area SA1 (prefetching step). Similarly, a series of measured differences (Δ ¾, Δ Yi) (i = l, 2,...) Are also stored in the storage device 46 for several other sailboat areas (prefetched shot areas). Remember me.
[0062] 次に、図 1のレチクルステージ 21上にレチクル R1をロードして、図 9に示すように、 基板 P上のショット領域 SA1に、レチクル R1のパターンの像を露光する際には、基板 ステージ 34を駆動して投影光学系 PLを介して露光光 ILが照射される投影領域 17P に対してショット領域 SA1を + Y方向に移動するのに同期して、図 1のレチクルステ ージ 21を駆動して対応する方向(例えば—Y方向)にレチクル R1を移動する。この 際に、図 9に示すように、投影領域 17Pを Y方向に挟む検出器 40A及び 40Bでは、 ショット領域 SA2及び SA3内のスケール用パターンの X座標(XAi及び XBi) (i= l , 2, · · · )を読み取り、それを X方向に挟む検出器 40C及び 40Dでは、ショット領域 SA4 及び SA5内のスケール用パターンの Y座標(YCi及び YDi)を読み取って、座標計 測 ·補間系 45に供給する。この場合にも、ステージ駆動系 43は、一例として、ショット 領域 SA4, SA5内のスケール用パターンの Y座標(YCi及び YDi)が同じ値になるよ うに基板ステージ 34の Z軸周りの回転角を制御する。 Next, when the reticle R1 is loaded on the reticle stage 21 of FIG. 1 and a pattern image of the reticle R1 is exposed to the shot area SA1 on the substrate P as shown in FIG. In synchronization with the movement of the shot area SA1 in the + Y direction with respect to the projection area 17P irradiated with the exposure light IL through the projection optical system PL by driving the substrate stage 34, the reticle stage 21 in FIG. To move reticle R1 in the corresponding direction (for example, -Y direction). At this time, as shown in FIG. 9, in the detectors 40A and 40B that sandwich the projection region 17P in the Y direction, the X coordinates (XAi and XBi) (i = l, 2) of the pattern for scale in the shot regions SA2 and SA3 The detectors 40C and 40D that sandwich them in the X direction read the Y coordinate (YCi and YDi) of the scale pattern in the shot areas SA4 and SA5, and perform coordinate measurement and interpolation 45 To supply. Also in this case, the stage drive system 43 is used as an example of a shot. The rotation angle around the Z axis of the substrate stage 34 is controlled so that the Y coordinates (YCi and YDi) of the scale pattern in the areas SA4 and SA5 have the same value.
[0063] 次に、座標計測'補間系 45では、供給された 4つのスケール用パターンの座標値を 補間して、逐次、露光中のショット領域 SA1内のスケール用パターンの X座標、 Y座 標 (XPi, YPi)を求める。具体的に、記憶装置 46に記憶されている一連の差分(Δ Χ i, Δ Υί)と、ショット領域 SA2, SA3内のスケール用パターンの X座標の平均値 ΧΑΒ i ( = (XAi + XBi) /2)と、ショット領域 SA4, SA5内のスケール用パターンの Y座標 の平均値 YCDi ( = (YCi + YDi) /2)とを用いて、座標計測'補間系 45は次のよう にショット領域 SA1の座標 (XPi, YPi) (i= l , 2, · · ·)を計算し、計算結果を逐次ステ ージ駆動系 43に供給する。  [0063] Next, the coordinate measurement / interpolation system 45 interpolates the coordinate values of the supplied four scale patterns, and sequentially, the X and Y coordinates of the scale pattern in the shot area SA1 being exposed. Find (XPi, YPi). Specifically, the series of differences (Δ Χ i, Δ Υί) stored in the storage device 46 and the average value of the X coordinates of the scale patterns in the shot areas SA2 and SA3 ΧΑΒ i (= (XAi + XBi) / 2) and the average Y-coordinate value YCDi (= (YCi + YDi) / 2) of the scale pattern in the shot areas SA4 and SA5, the coordinate measurement 'interpolation system 45 uses the shot area as follows: The SA1 coordinates (XPi, YPi) (i = l, 2, ···) are calculated, and the calculation results are sequentially supplied to the stage drive system 43.
[0064] XPi = XABi + Δ Χί •••( 1Α)  [0064] XPi = XABi + Δ Χί ••• (1Α)
YPi =YCDi+ Δ Υί - - - ( 1B)  YPi = YCDi + Δ Υί---(1B)
ステージ駆動系 43では、ショット領域 SA1の X座標 XPiがほぼ一定値となるように、 かつ Y座標 YPiが基板 P上で適正露光量が得られるような一定速度で変化するように 基板ステージ 34を駆動する。これと同期して、ステージ駆動系 43では、ショット領域 S A1の座標(XPi, YPi)に対応するレチクル R1 (レチクルステージ 21 )の座標(XRi, YRi)を計算する。一例として、原点がショット領域 SA1の中央に設定されている場合 には、レチクル R1の座標(XRi, YRi)は、座標(XPi, YPi)に投影倍率の逆数(1/ /3 )を乗じることで求めること力 Sできる。そして、ステージ駆動系 43では、レーザ干渉 計 23X, 23Yの計測値に基づいて、レチクル R1の座標が(XRi, YRi)となるようにレ チクルステージ 21を駆動する(実際の走査露光工程)。これによつて、基板ステージ 3 4側のレーザ干渉計 38X, 38Yの計測値の変動(光路の気体の揺らぎに起因する) に影響されることなぐ基板 P上のショット領域 SA1上にレチクル R1のパターンの像を 高精度に重ね合わせて露光できる。  In the stage drive system 43, the substrate stage 34 is adjusted so that the X coordinate XPi of the shot area SA1 becomes a substantially constant value and the Y coordinate YPi changes at a constant speed so that an appropriate exposure amount can be obtained on the substrate P. To drive. In synchronization with this, the stage drive system 43 calculates the coordinates (XRi, YRi) of the reticle R1 (reticle stage 21) corresponding to the coordinates (XPi, YPi) of the shot area SA1. As an example, if the origin is set at the center of the shot area SA1, the coordinates (XRi, YRi) of the reticle R1 are multiplied by the reciprocal of the projection magnification (1 // 3) to the coordinates (XPi, YPi). The power you can find with S Then, the stage drive system 43 drives the reticle stage 21 based on the measurement values of the laser interferometers 23X and 23Y so that the coordinates of the reticle R1 become (XRi, YRi) (actual scanning exposure process). As a result, the reticle R1 on the shot area SA1 on the substrate P is not affected by fluctuations in the measurement values of the laser interferometers 38X and 38Y on the substrate stage 34 side (due to gas fluctuations in the optical path). Pattern images can be overlaid with high accuracy.
[0065] また、その実際の走査露光工程において、上記の先読み工程を並行して実行して もよい。これは、例えば図 9において、基板 P上のショット領域 SA1にレチクル R1のパ ターンの像を露光している際に、基板 P上でショット領域 SA1から— Y方向に 1つのシ ヨット領域を隔てたショット領域 SA10において、検出器 40B, 40E〜40Hを用いて、 ショット領域 SA10とその周囲の 4つのショット領域との相対的位置関係を計測してお くことを意味する。これによつて、基板 Pに対する露光工程のスループットを向上でき [0065] In the actual scanning exposure process, the above-described pre-reading process may be executed in parallel. For example, in FIG. 9, when an image of the pattern of reticle R1 is exposed to shot area SA1 on substrate P, one shot area is separated from shot area SA1 on substrate P in the Y direction. In shot area SA10, using detectors 40B, 40E to 40H, This means measuring the relative positional relationship between the shot area SA10 and the four surrounding shot areas. This can improve the throughput of the exposure process for substrate P.
[0066] また、本例において、基板 P上のショット領域 SAに形成されている第 1レイヤの回路 パターンが Y方向に伸縮している場合には、図 10に示すように、ショット領域 SA内の スケール用パターン 56Pの Y成分に相当する Y軸の L&Sパターン 58YPも、伸縮が ない場合の点線で示す位置から実線で示す L&Sパターン 77Yに変位する。この際 に本例では、シフトした L&Sパターン 77Yに基づいて図 1のレチクル R1の Y方向の 位置が制御されるため、シフトした L&Sパターン 77Yの伸縮に合わせてレチクル R1 のパターンの像が伸縮して露光される。従って、極めて高い重ね合わせ精度が得ら れる。 [0066] Further, in this example, when the circuit pattern of the first layer formed in the shot area SA on the substrate P expands and contracts in the Y direction, as shown in FIG. The Y-axis L & S pattern 58YP corresponding to the Y component of the scale pattern 56P is also displaced from the position indicated by the dotted line to the L & S pattern 77Y indicated by the solid line when there is no expansion / contraction. At this time, in this example, the position of the reticle R1 in FIG. 1 in the Y direction is controlled based on the shifted L & S pattern 77Y. Therefore, the pattern image of the reticle R1 expands and contracts according to the expansion and contraction of the shifted L & S pattern 77Y. Exposed. Therefore, extremely high overlay accuracy can be obtained.
[0067] なお、レチクル R1のパターン領域 51内にも、図 2 (A)に示すようにスケール用パタ ーン 56が形成されている場合には、上記の実際の走査露光工程において、図 1の検 出器 25A, 25Bを用いてレチクル R1のスケール用パターン 56の X座標、 Y座標を計 測し、この計測値に基づいてレチクルステージ 21を駆動してもよい。この場合には、 レチクル側のレーザ干渉計 23X, 23Yの光路の気体の揺らぎに起因するレーザ干渉 計 23X, 23Yの計測値の変動の影響を受けることがないため、重ね合わせ精度を向 上できる。  [0067] When the pattern 56 for scale 56 is also formed in the pattern region 51 of the reticle R1, as shown in FIG. 2A, in the actual scanning exposure process described above, FIG. The X and Y coordinates of the scale pattern 56 of the reticle R1 may be measured using the detectors 25A and 25B, and the reticle stage 21 may be driven based on the measured values. In this case, the overlay accuracy can be improved because there is no influence of fluctuations in the measured values of the laser interferometers 23X and 23Y caused by gas fluctuations in the optical path of the laser interferometers 23X and 23Y on the reticle side. .
[0068] また、図 9において、基板 Pの外縁部のショット領域 SA11に露光する場合には、そ のままでは、上記の先読み工程において、図 4 (A)に示すように、先読み対象のショ ット領域 SA11を囲む 4箇所のショット領域に検出器 40B, 40E〜40Hを配置するこ とができない。このような場合には、図 9に示すように、基板 Pのショット領域 SA11に 近接する基板ホルダ 31の上面に、図 4 (B)のスケール用パターン 56Pと同様のスケ ール用パターン 76A及び 76Bを形成しておいてもよい。これによつて、ショット領域 S Al 1につ!/、ても、上記の先読み工程及びこの計測結果を用いる実際の走査露光ェ 程を実 fiすること力 Sできる。  In addition, in FIG. 9, when the exposure is performed on the shot area SA11 at the outer edge of the substrate P, as it is, in the pre-reading process, as shown in FIG. Detectors 40B, 40E to 40H cannot be placed in the four shot areas that surround the shot area SA11. In such a case, as shown in FIG. 9, the scale pattern 76A and the scale pattern 56A similar to the scale pattern 56P in FIG. 76B may be formed. As a result, even in the shot area S Al 1! /, It is possible to actually perform the above-described pre-reading process and the actual scanning exposure process using this measurement result.
[0069] また、走査露光時には、図 1のレチクルステージ 21及び基板ステージ 34を目標と する速度まで加速するために、所定の助走距離が必要とされることがある。このような 場合に、例えば図 9の基板 P上のショット領域 SA1を投影領域 17Pで走査露光する 際には、投影領域 17Pがショット領域 SA1に入って露光光 ILの照射が開始されるま では、検出器 40A〜40Dは、ショット領域 SA2〜SA5に関して Y方向に隣接するシ ヨット領域のスケール用パターンを検出し、この検出結果に基づ!/、て基板ステージ 34 及びレチクルステージ 21を駆動してもよい。このとき、一例として、予め助走区間にあ るショット領域及びショット領域 SA2〜SA5間の、スケール用パターンの位置のオフ セット(1周期内でのオフセット)を求めておき、助走区間ではそのオフセットを加算し ておくことで、助走から露光に切り替わるときの位置ずれの影響を低減できる。 [0069] During scanning exposure, a predetermined run-up distance may be required to accelerate the reticle stage 21 and the substrate stage 34 of Fig. 1 to the target speed. like this In this case, for example, when scanning exposure of the shot area SA1 on the substrate P in FIG. 9 with the projection area 17P, until the projection area 17P enters the shot area SA1 and irradiation of the exposure light IL is started, the detector 40A to 40D may detect the scale pattern in the shot area adjacent in the Y direction with respect to the shot areas SA2 to SA5, and drive the substrate stage 34 and the reticle stage 21 based on the detection result! . At this time, as an example, the offset of the position of the scale pattern (offset within one cycle) between the shot area in the run-up section and the shot areas SA2 to SA5 is obtained in advance, and the offset is calculated in the run-up section. By adding this value, the effect of misalignment when switching from running to exposure can be reduced.
[0070] 次に、上記の本発明の実施形態の作用効果等につき説明する。  [0070] Next, operational effects and the like of the above-described embodiment of the present invention will be described.
(A1)上記の図 1の露光装置 EXによれば、投影光学系 PLを介して図 9の基板 P上 のショット領域 SA1を露光するために、そのショット領域 SA1に露光光 ILを照射する ときに、そのショット領域 SA1との位置関係が既知の基板 P上のショット領域 SA2〜S A5よりなる計測対象の領域内に検出器 40A〜40Dから投影光学系 PLを介さずに レーザビームを照射して、ショット領域 SA2〜SA5の位置情報を計測し、この計測結 果からショット領域 SA1の位置情報を計測し、この計測結果に基づいて、基板ステー ジ 34、座標計測 ·補間系 45、及びステージ駆動系 43によって、露光光 ILの投影領 域 17Pとショット領域 SA1との相対位置関係を制御している。  (A1) According to the above-described exposure apparatus EX in FIG. 1, in order to expose the shot area SA1 on the substrate P in FIG. 9 via the projection optical system PL, when the exposure light IL is irradiated to the shot area SA1 In addition, the laser beam is irradiated from the detectors 40A to 40D without passing through the projection optical system PL into the measurement target area consisting of the shot areas SA2 to SA5 on the substrate P whose positional relationship with the shot area SA1 is known. The position information of the shot areas SA2 to SA5 is measured, and the position information of the shot area SA1 is measured from the measurement results. Based on the measurement results, the substrate stage 34, the coordinate measurement / interpolation system 45, and the stage are measured. The drive system 43 controls the relative positional relationship between the projection area 17P of the exposure light IL and the shot area SA1.
[0071] 従って、レーザ干渉計 38X, 38Yの計測値のみに基づいて基板ステージ 34を駆動 する場合に比べて、ショット領域 SA1上にレチクル R1のパターン像を高い重ね合わ せ精度で露光できる。また、投影光学系 PLを介さずに、その計測対象の領域にレー ザビームを照射して位置情報を計測してレ、るため、投影光学系 PLと基板 Pとの間に 液体を介在させて液浸法で露光を行う場合にも、その露光方法が適用できる。  Therefore, compared with the case where the substrate stage 34 is driven based only on the measurement values of the laser interferometers 38X and 38Y, the pattern image of the reticle R1 can be exposed with high accuracy on the shot area SA1. In addition, a liquid is interposed between the projection optical system PL and the substrate P in order to measure position information by irradiating the measurement target region with a laser beam without passing through the projection optical system PL. The exposure method can also be applied when exposure is performed by a liquid immersion method.
[0072] また、上記の実施形態では、ショット領域 SA内のスケール用パターン 56Pの位置を 計測している力 それ以外にショット領域 SA内に形成されている実際の回路パター ン等を用いてショット領域 S Aの位置を計測するようにしてもよい。  [0072] In the above-described embodiment, the force for measuring the position of the scale pattern 56P in the shot area SA. In addition, the actual circuit pattern or the like formed in the shot area SA is used for the shot. The position of the area SA may be measured.
(A2)露光光 ILと図 5 (A)の検出器 40Aから基板 P上のスケール用パターン 56Pに 照射されるレーザビームとの波長が異なるため、そのレーザビームとしては基板 P上 のフォトレジスト PRを感光させない波長域の光を使用できる。 [0073] (A3)また、上記の実施形態では、図 9の基板 P上のショット領域 SA1を露光光 IL で露光する際に、基板ステージ 34及びステージ駆動系 43を含む相対移動を行う機 構によって、ショット領域 SA1の一部の領域を投影領域 17P (露光光 IUで露光した 状態で、基板 Pと投影領域 17Pとを走査方向(Y方向)に相対移動するとともに、その 基板 P上の計測対象のショット領域 SA2〜SA5に検出器 40A〜40Dからレーザビ ームを照射して、ショット領域 SA1の位置情報を連続的に計測し、その計測結果に 基づいて、投影領域 17Pとショット領域 SA1との相対位置関係を制御している。従つ て、走査露光方式で露光を行う際に、重ね合わせ精度を向上できる。 (A2) Since the wavelength of the exposure light IL and the laser beam irradiated to the scale pattern 56P on the substrate P from the detector 40A in FIG. 5 (A) is different, the photoresist PR on the substrate P is used as the laser beam. It is possible to use light having a wavelength range that does not expose the light. (A3) Further, in the above embodiment, when the shot area SA1 on the substrate P in FIG. 9 is exposed with the exposure light IL, the mechanism including the substrate stage 34 and the stage drive system 43 is relatively moved. As a result, the substrate P and the projection region 17P are moved relative to each other in the scanning direction (Y direction) while a part of the shot region SA1 is exposed to the projection region 17P (exposure light IU), and measurement on the substrate P is performed. The target shot areas SA2 to SA5 are irradiated with laser beams from the detectors 40A to 40D, and the positional information of the shot area SA1 is continuously measured. Based on the measurement results, the projection area 17P and the shot area SA1 are Therefore, the overlay accuracy can be improved when performing exposure by the scanning exposure method.
[0074] (A4)また、ショット領域 SA1と投影領域 17Pとの相対移動量を表すために、その計 測対象のショット領域 SA2〜SA5に形成されているスケール用パターン 56Pを用い 、これにレーザビームを照射して位置検出を行っている。従って、その相対移動量を 高精度に計測できる。  [0074] (A4) Further, in order to represent the relative movement amount between the shot area SA1 and the projection area 17P, the scale pattern 56P formed in the shot areas SA2 to SA5 to be measured is used, and the laser is used for this. Position detection is performed by irradiating a beam. Therefore, the relative movement amount can be measured with high accuracy.
(A5)また、そのスケール用パターン 56P力 図 4 (C)に示すように、凸又は凹のパ ターン 57P (第 1パターン部)と、レーザビームに対する特性 (ここでは高さ、即ち位相 )がそのパターン 57Pとは異なる下地部(第 2パターン部)とが X方向、 Y方向に交互 に配置されたパターンを含む場合、そのスケール用パターン 56Pの位置を検出器 40 Aによって容易に検出できる。なお、その異なる特性は、例えばレーザビームに対す る反射率等でもよい。  (A5) Scale pattern 56P force As shown in Fig. 4 (C), the convex or concave pattern 57P (first pattern part) and the characteristics (height, ie, phase) for the laser beam are When the base portion (second pattern portion) different from the pattern 57P includes a pattern alternately arranged in the X direction and the Y direction, the position of the scale pattern 56P can be easily detected by the detector 40A. The different characteristic may be, for example, the reflectance with respect to the laser beam.
[0075] (A6)また、スケール用パターン 56P力 走査方向に周期的に形成された Y軸の L &Sパターン 58YPを含む場合には、図 5 (A)に示すように、その L&Sパターン 58Y Pに検出器 40Aからレーザビームを照射することにより、そのレーザビームとその計 測対象のショット領域とがその走査方向に相対移動するのに応じて周期的に変化す る検出信号 S1Yを検出することができる。  [0075] (A6) In addition, when the scale pattern 56P force includes the Y-axis L & S pattern 58YP formed periodically in the scanning direction, the L & S pattern 58Y P as shown in FIG. By irradiating a laser beam from the detector 40A to the detector 40A, a detection signal S1Y that periodically changes as the laser beam and the shot area to be measured move relative to each other in the scanning direction is detected. Can do.
[0076] (A7)また、図 6 (A)に示すように、 Y軸の L&Sパターン 58YPの一部に第 1パター ン部(72YA〜72YD)と第 2パターン部(下地)との走査方向の長さの比が他の部分 とは異なる部分(基準部分)がある場合には、そのレーザビームとその計測対象のシ ヨット領域とが走査方向に相対移動するのに応じて、その検出信号 S1Yからその基 準部分を特定するための非周期的な信号 S4Yを分離することで、その基準部分を容 易に特定できる。これによつて、その計測対象のショット領域内で、その基準部分に 対する L&Sパターン 58YPのレーザビームが照射されている位置の絶対位置を計 測できる。 [0076] (A7) Also, as shown in Fig. 6 (A), the scanning direction of the first pattern part (72YA to 72YD) and the second pattern part (background) is part of the Y-axis L & S pattern 58YP. When there is a part (reference part) whose length ratio is different from the other parts, the detection signal is detected as the laser beam and the measurement target shiyota area move relative to each other in the scanning direction. By separating the non-periodic signal S4Y from S1Y to identify the reference part, the reference part is accommodated. Easy to identify. This makes it possible to measure the absolute position of the position where the laser beam of the L & S pattern 58YP with respect to the reference portion is irradiated in the shot area to be measured.
[0077] (A8)図 5 (A)に示すように、スケール用パターン 56P力 走査方向に交差する方 向(図 5 (A)では垂直な非走査方向)に周期的に形成された X軸の L&Sパターン 58 XPを含む場合には、その L&Sパターン 58XPにレーザビームを照射することにより、 そのレーザビームとその計測対象のショット領域とがほぼ走査方向に相対移動する 際に、そのレーザビームとその計測対象のショット領域とのその非走査方向の相対変 位に応じた周期的な検出信号 SIXを検出できる。これによつて、その計測対象のショ ット領域 (スケール用パターン 56P)の非走査方向の位置も正確に計測できる。  [0077] (A8) As shown in Fig. 5 (A), the scale pattern 56P force is periodically formed in the direction intersecting the scanning direction (vertical non-scanning direction in Fig. 5 (A)). If the L & S pattern 58XP is included, the L & S pattern 58XP is irradiated with a laser beam, so that the laser beam and the shot area to be measured move relatively in the scanning direction. A periodic detection signal SIX corresponding to the relative displacement in the non-scanning direction with the shot area to be measured can be detected. As a result, the position in the non-scanning direction of the shot area (scale pattern 56P) to be measured can be accurately measured.
[0078] (A9)また、スケール用パターンとして、図 8に示すように、周期的な Y軸の L&Sパ ターン 58YPとは別に、原点信号検出用の走査方向に非周期的な原点パターン 74 Yを設けた場合には、その原点パターン 74Yにレーザビームを照射することによって 、そのレーザビームとその計測対象のショット領域とがその走査方向で特定の位置関 係(ここでは、原点パターン 74Yのエッジ部にレーザビームが照射されている状態) になった状態を検出できる。これによつて、その計測対象のショット領域内での絶対 位置を計測できる。  (A9) As a scale pattern, as shown in FIG. 8, apart from the periodic Y-axis L & S pattern 58YP, a non-periodic origin pattern 74 Y in the scanning direction for origin signal detection When the origin pattern 74Y is irradiated with a laser beam, the laser beam and the shot area to be measured have a specific positional relationship in the scanning direction (here, the edge of the origin pattern 74Y It is possible to detect a state in which the laser beam is irradiated on the part. This makes it possible to measure the absolute position within the shot area to be measured.
[0079] (A10)また、図 9に示すように、計測対象のショット領域力 露光中のショット領域 S [0079] (A10) Further, as shown in FIG. 9, the shot area force to be measured is shot area S during exposure.
A1に隣接するショット領域 SA2〜SA5を含む場合には、補間等によってその露光 中のショット領域 SA1の位置を高精度に計測できる。 When the shot areas SA2 to SA5 adjacent to A1 are included, the position of the shot area SA1 during the exposure can be measured with high accuracy by interpolation or the like.
(Al l)また、その計測対象のショット領域力 その露光中のショット領域 SA1に非 走査方向に隣接するショット領域 SA4, SA5を含む場合には、特に走査方向の位置 を高精度に計測できる。  (All) Further, when the shot area force to be measured includes shot areas SA4 and SA5 adjacent in the non-scanning direction to the shot area SA1 being exposed, the position in the scanning direction can be measured with high accuracy.
[0080] (A12)また、その計測対象のショット領域力 その露光中のショット領域 SA1に走 查方向に隣接するショット領域 SA2, SA3を含む場合には、特に非走査方向の位置 を高精度に計測できる。 [0080] (A12) In addition, the shot area force of the measurement target includes shot areas SA2 and SA3 that are adjacent to the shot area SA1 in the exposure direction, particularly in the non-scan direction. It can be measured.
(A13)また、図 9に示すように、露光中には、その計測対象のショット領域 SA2〜S (A13) As shown in FIG. 9, during the exposure, the shot areas SA2 to S2 to be measured are exposed.
A5が、その露光対象のショット領域 SA1を含まない場合には、そのショット領域 SA1 に露光光 ILの照射を開始する前に、予め図 4 (A)に示すように、その計測対象のショ ット領域 SA2〜SA5、及びこれから露光対象となるショット領域 SA1にレーザビーム を照射して、その計測対象のショット領域 SA2〜SA5とこれから露光対象となるショッ ト領域 SA1との位置関係情報を検出しておくことが好ましい。これによつて、実際にそ のショット領域 SA1に露光する際に、周囲の計測対象のショット領域 SA2〜SA5の 位置情報からそのショット領域 SA1の位置を高精度に補間できる。 If A5 does not include the shot area SA1 to be exposed, the shot area SA1 Before the irradiation of the exposure light IL is started, as shown in FIG. 4 (A), the shot areas SA2 to SA5 to be measured and the shot area SA1 to be exposed are irradiated with a laser beam in advance. Thus, it is preferable to detect positional relationship information between the shot areas SA2 to SA5 to be measured and the shot area SA1 to be exposed. As a result, when the shot area SA1 is actually exposed, the position of the shot area SA1 can be interpolated with high accuracy from the position information of the surrounding shot areas SA2 to SA5 to be measured.
[0081] (A14)また、図 4 (A)の露光対象のショット領域 SA1の位置情報の計測結果に基 づいて、図 9に示すようにショット領域 SA1を露光するときに、投影光学系 PLの光軸 に交差する方向(図 9では垂直な X方向、 Y方向)での投影領域 17Pとショット領域 S A1との相対位置関係を制御することで、重ね合わせ精度を向上できる。 [0081] (A14) When the shot area SA1 is exposed as shown in FIG. 9 based on the measurement result of the position information of the shot area SA1 to be exposed in FIG. 4 (A), the projection optical system PL By controlling the relative positional relationship between the projection area 17P and the shot area SA1 in the direction intersecting the optical axis (vertical X direction and Y direction in FIG. 9), the overlay accuracy can be improved.
(A15)また、図 1の露光装置 EXにおいて、走査露光方式でレチクル R1のパター ンを投影光学系 PLを介して基板 P上のショット領域 SAに露光する場合に、図 2 (A) のレチクル R1に形成されているスケール用パターン 56にレーザビームを照射して、 そのレチクル R1の位置情報を計測し、そのレチクル R1及びショット領域 SAの位置 情報の計測結果に基づレ、て、レチクル R1と基板 Pとの相対位置関係を制御する場 合には、レチクルステージ 21側のレーザ干渉計 23X, 23Yの計測値の変動の影響 も抑制できる。  (A15) In the exposure apparatus EX of FIG. 1, when the pattern of the reticle R1 is exposed to the shot area SA on the substrate P via the projection optical system PL by the scanning exposure method, the reticle of FIG. The scale pattern 56 formed on R1 is irradiated with a laser beam to measure the position information of reticle R1, and based on the measurement results of the position information of reticle R1 and shot area SA, reticle R1 In the case of controlling the relative positional relationship between the substrate P and the substrate P, the influence of fluctuations in the measurement values of the laser interferometers 23X and 23Y on the reticle stage 21 side can be suppressed.
[0082] 次に、本発明の実施形態の他の例につき図 11を参照して説明する。図 1の実施形 態では、図 4 (A)に示すように、投影領域 17Pが位置するショット領域 SA6内のスケ ール用パターン 56Pの位置を検出する検出器が設けられていないため、予めショット 領域 SA6とその周囲のショット領域との相対位置関係を計測しておくために、複数の 検出器 40A〜40Hを備える必要があった。そこで、本例では、投影領域 17Pが位置 する露光中のショット領域のスケール用パターンの位置を投影光学系 PLを介するこ となく直接計測することとする。  Next, another example of the embodiment of the present invention will be described with reference to FIG. In the embodiment shown in FIG. 1, as shown in FIG. 4 (A), a detector for detecting the position of the scale pattern 56P in the shot area SA6 where the projection area 17P is located is not provided. In order to measure the relative positional relationship between the shot area SA6 and the surrounding shot areas, it was necessary to provide a plurality of detectors 40A to 40H. Therefore, in this example, the position of the scale pattern in the shot area under exposure where the projection area 17P is located is directly measured without using the projection optical system PL.
[0083] 図 11は、本例の露光装置の投影光学系 PLによる投影領域 17Pの近傍を示す斜 視図であり、この図 11において、基板 P上のショット領域 SA上の投影領域 17Pに投 影光学系 PLを介して露光光 ILが照射され、基板 Pが例えば + Y方向に移動して、シ ヨット領域 SA上にレチクルのパターン像が露光される。また、ショット領域 SAの中央 部の Y方向に沿ったスクライブライン上にスケール用パターン 56Pが形成され、投影 光学系 PLの下端と基板 Ρとの間に斜めに計測用のレーザビームを入射させて、スケ ール用パターン 56Pの X方向、 Y方向の位置を読み取るための検出器 78が配置さ れている。 FIG. 11 is a perspective view showing the vicinity of the projection area 17P by the projection optical system PL of the exposure apparatus of this example. In FIG. 11, projection is performed on the projection area 17P on the shot area SA on the substrate P. The exposure light IL is irradiated through the shadow optical system PL, the substrate P moves in the + Y direction, for example, and the reticle pattern image is exposed on the yacht area SA. The center of the shot area SA A scale pattern 56P is formed on the scribe line along the Y direction of the part, and a measurement laser beam is incident obliquely between the lower end of the projection optical system PL and the substrate 、, and the scale pattern 56P A detector 78 for reading the positions in the X and Y directions is arranged.
[0084] 図 5 (A)に対応する部分に同一符号を付した図 11の検出器 78において、レーザ 光源 61から射出されたレーザビーム力 ビームスプリッタ 62Aによってレーザビーム LB1及び第 2のレーザビームに分かれ、この第 2のレーザビームは、ビームスプリッタ 62Cによってレーザビーム LB2及び第 4のレーザビームに分かれる。そして、その第 4のレーザビームは、ミラー 63Aで反射された後、ビームスプリッタ 62Dによって 2つ のレーザビーム LB3及び LB4に分かれ、レーザビーム LB4はミラー 63Bで反射され る。そして、 2つのレーザビーム LB1及び LB2は、基板 P上のスケール用パターン 56 Pに対して、 Y軸に平行な軸の周りに大きく傾斜した状態で、かつ Y方向にほぼ対称 に傾斜して入射し、レーザビーム LB1の + 1次回折光とレーザビーム LB2のー1次回 折光との干渉光 LBYが光電検出器 64Yに入射する。この光電検出器 64Yの検出信 号を図 5 (A)の Y軸の検出回路 70Yと同様の検出回路に入力することによって、スケ ール用パターン 56Pの Y方向の位置を計測できる。  In the detector 78 in FIG. 11 where the same reference numerals are given to the parts corresponding to FIG. 5 (A), the laser beam force emitted from the laser light source 61 is converted into the laser beam LB1 and the second laser beam by the beam splitter 62A. This second laser beam is split into a laser beam LB2 and a fourth laser beam by the beam splitter 62C. Then, after the fourth laser beam is reflected by the mirror 63A, it is divided into two laser beams LB3 and LB4 by the beam splitter 62D, and the laser beam LB4 is reflected by the mirror 63B. Then, the two laser beams LB1 and LB2 are incident on the scale pattern 56P on the substrate P while being largely inclined around an axis parallel to the Y axis and substantially symmetrically in the Y direction. Then, the interference light LBY between the + first-order diffracted light of the laser beam LB1 and the first-order folded light of the laser beam LB2 enters the photoelectric detector 64Y. By inputting the detection signal of the photoelectric detector 64Y to a detection circuit similar to the Y-axis detection circuit 70Y in FIG. 5A, the position in the Y direction of the scale pattern 56P can be measured.
[0085] また、 2つのレーザビーム LB3及び LB4は、スケール用パターン 56Pに対して X軸 に平行な軸の周りに時計周りに大きく傾斜した状態で、かつ X方向にほぼ対称に傾 斜して入射し、レーザビーム LB3の + 1次回折光とレーザビーム LB4のー1次回折 光との干渉光 LBXが光電検出器 64Xに入射する。この光電検出器 64Xの検出信号 を図 5 (A)の X軸の検出回路 70Xと同様の検出回路に入力することによって、スケー ル用パターン 56Pの X方向の位置を計測できる。この他の構成は図 1の実施形態と 同様である。  [0085] Further, the two laser beams LB3 and LB4 are inclined substantially symmetrically in the X direction in a state of being largely inclined clockwise around an axis parallel to the X axis with respect to the scale pattern 56P. Incident light LBX between the + 1st order diffracted light of the laser beam LB3 and the 1st order diffracted light of the laser beam LB4 enters the photoelectric detector 64X. By inputting the detection signal of the photoelectric detector 64X to a detection circuit similar to the X-axis detection circuit 70X in FIG. 5A, the position in the X direction of the scale pattern 56P can be measured. Other configurations are the same as those of the embodiment of FIG.
[0086] 本例によれば、露光中のショット領域 SA内のスケール用パターン 56Pの位置を直 接計測できるため、先読み工程を実施することなぐ直接走査露光を行うことができ、 露光工程のスループットを向上できる。  [0086] According to this example, since the position of the scale pattern 56P in the shot area SA being exposed can be directly measured, direct scanning exposure can be performed without performing the pre-read process, and the throughput of the exposure process Can be improved.
この図 11の実施形態によれば、露光中のショット領域 SA自体を計測対象の領域と して、ショット領域 SAに検出器 78から投影光学系 PLを介さずにレーザビームを照射 して、ショット領域 SAの位置情報を計測し、この計測結果に基づいて、図 1の基板ス テージ 34、座標計測 ·補間系 45、及びステージ駆動系 43によって、露光光 ILの投 影領域 17Pとショット領域 SAとの相対位置関係を制御できる。従って、重ね合わせ 精度を向上できるとともに、液浸法で露光を行う場合にも適用できる。なお、液浸法 で露光を行う場合にも、斜入射方式で光学式のオートフォーカスセンサは使用可能 であるため、同様に検出器 78も使用可能である。 According to the embodiment of FIG. 11, the shot area SA itself under exposure is set as the measurement target area, and the shot area SA is irradiated with the laser beam from the detector 78 without passing through the projection optical system PL. Then, the position information of the shot area SA is measured. Based on the measurement result, the projection area 17P of the exposure light IL is obtained by the substrate stage 34, the coordinate measurement / interpolation system 45, and the stage drive system 43 in FIG. And the relative positional relationship between the shot area SA and the shot area SA can be controlled. Therefore, the overlay accuracy can be improved, and the present invention can be applied to the case where exposure is performed by a liquid immersion method. Even when exposure is performed by the liquid immersion method, an optical autofocus sensor using the oblique incidence method can be used, and thus the detector 78 can also be used.
[0087] 次に、本発明の実施形態のさらに他の例につき図 12を参照して説明する。上記の 図 4 (A)の実施形態では、投影領域 17Pが位置するショット領域 SA6内のスケール 用パターン 56Pの位置を先読みするために、投影領域 17Pに対して走査方向(Y方 向)に隣接する方向に検出器 40E〜40Hが設けられている。これに対して、図 12の 実施形態では、投影領域 17Pが位置するショット領域 SA6に対して非走査方向の X方向 ίこ隣接する方向 ίこ、ショット領域 SA10, SA11 , SA12, SA13内のスゲーノレ 用パターン 56Ρを読み取るための検出器 40Η, 40G, 40Ε, 40Fが設置されている 。また、投影領域 17Pが位置するショット領域 SA6に対して非走査方向の + Χ方向に 隣接する方向に、ショット領域 SA14, SA15, SA16, SA17内のスケール用パター ン 56Ρを読み取るための検出器 401, 40J, 40Κ, 40Lが設置されている。検出器 40 I〜40Lの構成は、検出器 40Aと同様である。  Next, still another example of the embodiment of the present invention will be described with reference to FIG. In the embodiment of FIG. 4A described above, in order to pre-read the position of the scale pattern 56P in the shot area SA6 where the projection area 17P is located, it is adjacent to the projection area 17P in the scanning direction (Y direction). The detectors 40E to 40H are provided in the direction to be operated. On the other hand, in the embodiment shown in FIG. 12, the non-scanning direction X direction is adjacent to the shot area SA6 in which the projection area 17P is located, and the scan lines in the shot areas SA10, SA11, SA12, and SA13 are aligned. Detectors 40Η, 40G, 40Ε, and 40F are installed to read the pattern 56 用. Further, a detector 401 for reading the scale pattern 56Ρ in the shot regions SA14, SA15, SA16, SA17 in a direction adjacent to the + シ ョ ッ ト direction in the non-scanning direction with respect to the shot region SA6 where the projection region 17P is located 401 , 40J, 40Κ, 40L are installed. The configuration of the detectors 40I to 40L is the same as that of the detector 40A.
[0088] この場合、一般に走査露光時には、基板 Pに対して投影領域 17Pは 1つのショット 領域 SAの走査露光が終了する毎に、非走査方向に隣接するショット領域に移行し ていく。なお、実際には投影領域 17Pに対して基板 P側が移動する。従って、図 12の 軌跡 TPLのように、基板 Pに対して投影領域 17Pが次第に—X方向のショット領域に 移行するときには、投影領域 17Pに対して X方向側の 5つの検出器 40C, 40E〜4 OHの検出結果を用いることによって、次に投影領域 17Pによって露光されるショット 領域とそれを囲むショット領域との相対的な位置関係を先読みすることができる。一 方、基板 Pに対して投影領域 17Pが次第に + X方向のショット領域に移行するときに は、投影領域 17Pに対して + X方向側の 5つの検出器 40D, 40I〜40Lの検出結果 を用いることによって、次に投影領域 17Pによって露光されるショット領域とそれを囲 むショット領域との相対的な位置関係を先読みすることができる。従って、その先読み された位置関係を用いて、実際の露光時には、投影領域 17Pを囲む 4つの検出器 4 0A〜40Dの位置検出結果を用いて、投影領域 17P内の露光パターンと、露光対象 のショット領域との重ね合わせを高精度に行うことができる。 In this case, in general, during scanning exposure, the projection area 17P on the substrate P shifts to a shot area adjacent in the non-scanning direction every time scanning exposure of one shot area SA is completed. Actually, the substrate P side moves relative to the projection region 17P. Therefore, when the projection region 17P gradually shifts to the shot region in the X direction with respect to the substrate P as shown by the locus TPL in FIG. 12, the five detectors 40C, 40E to 40X on the X direction side with respect to the projection region 17P By using the detection result of 4 OH, it is possible to prefetch the relative positional relationship between the shot area exposed by the projection area 17P and the shot area surrounding it. On the other hand, when the projection area 17P gradually shifts to the shot area in the + X direction with respect to the substrate P, the detection results of the five detectors 40D and 40I to 40L on the + X direction side with respect to the projection area 17P are displayed. By using it, it is possible to prefetch the relative positional relationship between the shot area exposed by the projection area 17P and the shot area surrounding the shot area. Therefore, look ahead When the actual exposure is performed using the determined positional relationship, the position detection result of the four detectors 40A to 40D surrounding the projection area 17P is used to determine the exposure pattern in the projection area 17P and the shot area to be exposed. Superposition can be performed with high accuracy.
[0089] このように、図 12の配置の先読み用の検出器 40E〜40H、 40I〜40Lを用いること によって、走査露光時に同時に次に露光するショット領域とその周囲のショット領域と の位置関係を先読みすることができ、露光工程のスループットが高く維持される。 なお、検出器 40E〜40Lはそれぞれ X方向、 Y方向の位置を検出できるため、図 1 2の配置においても、例えば検出器 40E, 40G及び検出器 40J, 40Kを省略すること が可能である。 As described above, by using the prefetch detectors 40E to 40H and 40I to 40L having the arrangement shown in FIG. 12, the positional relationship between the shot area to be exposed at the same time and the surrounding shot areas at the time of scanning exposure can be obtained. Prefetching is possible, and the throughput of the exposure process is kept high. Since the detectors 40E to 40L can detect the positions in the X direction and the Y direction, respectively, the detectors 40E and 40G and the detectors 40J and 40K can be omitted in the arrangement of FIG.
[0090] なお、上記の実施の形態の露光装置は、複数のレンズから構成される照明光学系 、投影光学系を露光装置本体に組み込み光学調整をして、多数の機械部品からな るレチクルステージや基板ステージを露光装置本体に取り付けて配線や配管を接続 し、更に総合調整(電気調整、動作確認等)をすることにより製造することができる。な お、その露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行う ことが望ましい。  Note that the exposure apparatus of the above embodiment includes an illumination optical system composed of a plurality of lenses, a projection optical system incorporated in the exposure apparatus main body, and optical adjustment, and a reticle stage made up of a large number of mechanical parts. It can be manufactured by attaching a substrate stage to the main body of the exposure apparatus, connecting wiring and piping, and making overall adjustments (electrical adjustment, operation check, etc.). It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
[0091] なお、本発明は、走査露光型の投影露光装置のみならず、一括露光型の投影露 光装置で露光する場合にも同様に適用することができる。  Note that the present invention can be similarly applied not only to exposure with a scanning exposure type projection exposure apparatus but also with a batch exposure type projection exposure apparatus.
また、上述の実施形態においては、光透過性の基材上に所定の遮光パターン (又 は位相パターン ·減光パターン)を形成した光透過型レチクルを用いている力 このレ チクルに替えて、例えば米国特許第 6, 778, 257号公報に開示されているように、 露光すべきパターンの電子データに基づレ、て透過パターン又は反射パターン、ある いは発光パターンを形成する電子マスクを用いてもょレ、。  In the above-described embodiment, a force using a light-transmitting reticle in which a predetermined light-shielding pattern (or phase pattern / dimming pattern) is formed on a light-transmitting substrate. Instead of this reticle, For example, as disclosed in US Pat. No. 6,778,257, an electronic mask that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed is used. Motole.
[0092] また、上述の実施形態においては、投影光学系 PLを使ってパターン像を基板 P上 に投影することによって基板を露光している力 国際公開第 2001/035168号パン フレットに開示されているように、干渉縞を基板 P上に形成することによって、基板 P上 にライン 'アンド ' ·スペースを露光する露光装置(リソグラフィシステム)にも本発明を適 用すること力 Sできる。この場合、投影光学系 PLを使わなくても良ぐ干渉縞を形成す るための回折格子を光学系とみなすことができる。 [0093] また、上記の実施形態の露光装置を用いて半導体デバイスを製造する場合、この 半導体デバイスは、デバイスの機能.性能設計を行うステップ、このステップに基づい てレチクルを製造するステップ、シリコン材料からウェハを形成するステップ、上記の 実施形態の露光装置によりレチクルのパターンを基板(ウェハ)に露光する工程、露 光した基板を現像する工程、現像した基板の加熱 (キュア)及びエッチング工程など を含む基板処理ステップ、デバイス組み立てステップ (ダイシング工程、ボンディング 工程、パッケージ工程を含む)、並びに検査ステップ等を経て製造される。 In the above-described embodiment, the power for exposing the substrate by projecting the pattern image onto the substrate P using the projection optical system PL is disclosed in International Publication No. WO 2001/035168. As described above, by forming the interference fringes on the substrate P, it is possible to apply the present invention to an exposure apparatus (lithography system) that exposes a line “and” space on the substrate P. In this case, a diffraction grating for forming interference fringes that do not require the use of the projection optical system PL can be regarded as an optical system. [0093] When a semiconductor device is manufactured using the exposure apparatus of the above-described embodiment, the semiconductor device has a function function / performance design step, a reticle manufacturing step based on this step, a silicon material, The step of forming a wafer from the substrate, the step of exposing the reticle pattern onto the substrate (wafer) by the exposure apparatus of the above embodiment, the step of developing the exposed substrate, the heating (curing) of the developed substrate, the etching step, etc. It is manufactured through a substrate processing step, a device assembly step (including a dicing process, a bonding process, and a packaging process) and an inspection step.
[0094] また、本発明は、半導体デバイスの製造プロセスへの適用に限定されることなぐ例 えば、角型のガラスプレート等に形成される液晶表示素子、若しくはプラズマディスプ レイ等のディスプレイ装置の製造プロセスや、撮像素子(CCD等)、マイクロマシーン 、 MEMS(Microelectromechanical Systems:微小電気機械システム)、セラミックスゥ ェハ等を基板として用いる薄膜磁気ヘッド、及び DNAチップ等の各種デバイスの製 造プロセスにも広く適用できる。更に、本発明は、各種デバイスのマスクパターンが形 成されたマスク (フォトマスク、レチクル等)をフォトリソグラフイエ程を用いて製造する 際の、製造工程にも適用することができる。  Further, the present invention is not limited to application to a semiconductor device manufacturing process. For example, a liquid crystal display element formed on a square glass plate or the like, or a display device such as a plasma display is manufactured. Also used in the manufacturing process of various devices such as processes, imaging devices (CCD, etc.), micromachines, MEMS (Microelectromechanical Systems), ceramic wafers, etc. as substrates, and DNA chips Widely applicable. Furthermore, the present invention can also be applied to a manufacturing process when manufacturing a mask (photomask, reticle, etc.) in which a mask pattern of various devices is formed using a photolithographic process.
[0095] なお、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲 で種々の構成を取り得る。また、明細書、特許請求の範囲、図面、及び要約を含む 2 006年 12月 8日付け提出の日本国特許出願第 2006— 331653号の全ての開示内 容は、そっくりそのまま引用して本願に組み込まれている。  [0095] It should be noted that the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention. In addition, the entire disclosure of Japanese Patent Application No. 2006-331653 filed on December 8, 2006, including the description, claims, drawings, and abstract, is incorporated herein by reference in its entirety. It has been incorporated.

Claims

請求の範囲 The scope of the claims
[1] 光学系を介して物体上の所定領域に露光光を照射し、前記所定領域を露光する 露光方法であって、  [1] An exposure method in which exposure light is irradiated onto a predetermined area on an object via an optical system to expose the predetermined area,
前記所定領域に前記露光光を照射するときに、前記物体上の前記所定領域又は 前記所定領域との位置関係が既知の前記物体上の領域よりなる被計測領域内に前 記光学系を介さずに計測光を照射して、前記所定領域の位置情報を計測し、 前記位置情報の計測結果に基づ!/、て、前記露光光と前記所定領域との相対位置 関係を制御することを特徴とする露光方法。  When irradiating the predetermined area with the exposure light, the predetermined area on the object or a measurement area consisting of an area on the object whose positional relationship is known is not passed through the optical system. The measurement light is irradiated to measure the position information of the predetermined area, and the relative positional relationship between the exposure light and the predetermined area is controlled based on the measurement result of the position information. Exposure method.
[2] 前記露光光と前記計測光との波長が異なることを特徴とする請求項 1に記載の露 光方法。 [2] The exposure method according to [1], wherein the exposure light and the measurement light have different wavelengths.
[3] 前記物体上の前記所定領域を前記露光光で露光する際に、前記所定領域の一部 の領域に前記露光光を照射した状態で、前記物体と前記露光光とを所定方向に相 対移動するとともに、  [3] When exposing the predetermined area on the object with the exposure light, the object and the exposure light are phased in a predetermined direction in a state in which the exposure light is irradiated on a part of the predetermined area. While moving against,
前記被計測領域内に前記光学系を介さずに前記計測光を照射して、前記所定領 域の位置情報を連続的に計測し、前記位置情報の計測結果に基づいて、前記露光 光と前記所定領域との相対位置関係を制御することを特徴とする請求項 2に記載の g|光方法。  Irradiating the measurement light into the measurement area without passing through the optical system, continuously measuring position information of the predetermined area, and based on the measurement result of the position information, the exposure light and the 3. The g | light method according to claim 2, wherein a relative positional relationship with a predetermined region is controlled.
[4] 前記物体上の前記所定領域と前記露光光との相対移動量を表すために前記被計 測領域内に形成されている計測用パターンに前記計測光を照射することを特徴とす る請求項 3に記載の露光方法。  [4] The measurement light is irradiated to a measurement pattern formed in the measurement area in order to represent a relative movement amount between the predetermined area on the object and the exposure light. The exposure method according to claim 3.
[5] 前記計測用パターンは、第 1パターン部と、前記計測光に対する特性が前記第 1パ ターン部とは異なる第 2パターン部とが交互に配置されたパターンを含むことを特徴 とする請求項 4に記載の露光方法。 [5] The measurement pattern includes a pattern in which first pattern portions and second pattern portions whose characteristics with respect to the measurement light are different from the first pattern portions are alternately arranged. Item 5. The exposure method according to Item 4.
[6] 前記計測用パターンは、前記第 1パターン部と前記第 2パターン部との高さ又は反 射率が異なるとともに、前記所定方向に周期的に形成されたライン'アンド、スペース パターンを含み、 [6] The measurement pattern includes line-and-space patterns that are different in height or reflectivity between the first pattern portion and the second pattern portion and are periodically formed in the predetermined direction. ,
前記ライン'アンド '·スペースパターンに前記計測光を照射することにより、前記計測 光と前記被計測領域とが前記所定方向に相対移動するのに応じて周期的に変化す る計測信号を検出することを特徴とする請求項 5に記載の露光方法。 By irradiating the measurement light to the line 'and' space pattern, the measurement light and the measurement target region change periodically according to relative movement in the predetermined direction. 6. The exposure method according to claim 5, wherein a measurement signal is detected.
[7] 前記ライン'アンド 'スペースパターンの一部に、前記第 1パターン部と前記第 2バタ ーン部との前記所定方向の長さの比が他の部分とは異なる基準部分があり、 前記計測光と前記被計測領域とが前記所定方向に相対移動するのに応じて、前 記計測信号から前記基準部分を特定するための非周期的信号を分離することを特 徴とする請求項 6に記載の露光方法。 [7] A part of the line 'and' space pattern includes a reference portion in which a ratio of lengths in the predetermined direction between the first pattern portion and the second pattern portion is different from other portions, The non-periodic signal for identifying the reference portion is separated from the measurement signal in accordance with the relative movement of the measurement light and the measurement region in the predetermined direction. 6. The exposure method according to 6.
[8] 前記計測用パターンは、前記所定方向に交差する方向に周期的に形成された周 期的パターンを含み、 [8] The measurement pattern includes a periodic pattern periodically formed in a direction intersecting the predetermined direction,
前記周期的パターンに前記計測光を照射することにより、前記計測光と前記被計 測領域とがほぼ前記所定方向に相対移動する際に、前記計測光と前記被計測領域 との前記所定方向に直交する方向の相対変位に応じた周期的信号を検出することを 特徴とする請求項 4に記載の露光方法。  By irradiating the periodic pattern with the measurement light, when the measurement light and the measurement area are relatively moved in the predetermined direction, the measurement light and the measurement area are moved in the predetermined direction. 5. The exposure method according to claim 4, wherein a periodic signal corresponding to a relative displacement in an orthogonal direction is detected.
[9] 前記計測用パターンは、前記所定方向に非周期的なパターンを含み、 [9] The measurement pattern includes an aperiodic pattern in the predetermined direction,
前記非周期的なパターンに前記計測光を照射することにより、前記計測光と前記 被計測領域とが前記所定方向に特定の位置関係になった状態を検出することを特 徴とする請求項 4に記載の露光方法。  5. The state in which the measurement light and the measurement target region are in a specific positional relationship in the predetermined direction is detected by irradiating the measurement light onto the non-periodic pattern. An exposure method according to 1.
[10] 前記物体上には、前記所定領域と同じ形状の複数の区画領域が規則的に形成さ れ、 [10] A plurality of partitioned areas having the same shape as the predetermined area are regularly formed on the object,
前記被計測領域は、前記所定領域に隣接する前記区画領域を含むことを特徴とす る請求項 3に記載の露光方法。  4. The exposure method according to claim 3, wherein the measurement area includes the partition area adjacent to the predetermined area.
[11] 前記被計測領域は、前記所定領域に対して前記所定方向に交差する方向に隣接 する前記区画領域を含むことを特徴とする請求項 10に記載の露光方法。 11. The exposure method according to claim 10, wherein the measurement area includes the partition area adjacent to the predetermined area in a direction intersecting the predetermined direction.
[12] 前記被計測領域は、前記所定領域に対して前記所定方向に隣接する前記区画領 域を含むことを特徴とする請求項 10又は 11に記載の露光方法。 12. The exposure method according to claim 10, wherein the measurement area includes the partition area adjacent to the predetermined area in the predetermined direction.
[13] 前記被計測領域は、前記所定領域を含まない領域であり、 [13] The measured area is an area not including the predetermined area,
前記所定領域への前記露光光の照射を開始する前に、前記被計測領域及び前記 所定領域に前記計測光を照射し、  Before starting the irradiation of the exposure light to the predetermined area, irradiate the measurement light to the measurement area and the predetermined area,
前記被計測領域と前記所定領域との位置関係情報を検出することを特徴とする請 求項 10から 12のいずれか一項に記載の露光方法。 Detecting positional relationship information between the measurement target area and the predetermined area. Claim 10. The exposure method according to any one of claims 10 to 12.
[14] 前記所定領域の位置情報の計測結果に基づいて、前記光学系の光軸方向に対し て交差する方向での前記露光光と前記所定領域との相対位置関係を制御することを 特徴とする請求項 1から 13のいずれか一項に記載の露光方法。  [14] The relative positional relationship between the exposure light and the predetermined region in a direction intersecting the optical axis direction of the optical system is controlled based on a measurement result of the position information of the predetermined region. The exposure method according to any one of claims 1 to 13.
[15] 前記物体上の前記所定領域を露光する際に、  [15] When exposing the predetermined area on the object,
マスクのパターンの一部を前記光学系を介して前記所定領域の一部に投影した状 態で、前記マスクを前記所定方向に対応する方向に移動するのに同期して、前記物 体を前記所定方向に移動するとともに、  The object is moved in synchronism with the movement of the mask in a direction corresponding to the predetermined direction in a state in which a part of the mask pattern is projected onto a part of the predetermined region through the optical system. While moving in a predetermined direction,
前記マスクのパターンに付設されているマスク側の計測用パターンに計測光を照射 して、前記マスクの位置情報を計測し、  Irradiate measurement light on the mask side measurement pattern attached to the mask pattern to measure the position information of the mask,
前記マスク及び前記所定領域の位置情報の計測結果に基づレ、て、前記マスクと前 記物体との相対位置関係を制御することを特徴とする請求項 4に記載の露光方法。  5. The exposure method according to claim 4, wherein a relative positional relationship between the mask and the object is controlled based on a measurement result of positional information of the mask and the predetermined area.
[16] 光学系を介して物体上の所定領域に露光光を照射し、前記所定領域を露光する 露光装置であって、 [16] An exposure apparatus that irradiates a predetermined area on an object with an exposure light via an optical system to expose the predetermined area,
前記所定領域に前記露光光を照射するときに、前記物体上の前記所定領域又は 前記所定領域との位置関係が既知の前記物体上の領域よりなる被計測領域内に前 記光学系を介さずに計測光を照射して、前記所定領域の位置情報を計測する計測 装置と、  When irradiating the predetermined area with the exposure light, the predetermined area on the object or a measurement area consisting of an area on the object whose positional relationship is known is not passed through the optical system. A measuring device that irradiates the measuring light to measure position information of the predetermined region;
前記計測装置の計測結果に基づ!/、て、前記露光光と前記所定領域との相対位置 関係を制御する制御装置とを備えたことを特徴とする露光装置。  An exposure apparatus comprising: a control device that controls a relative positional relationship between the exposure light and the predetermined region based on a measurement result of the measurement device.
[17] 前記計測装置は、前記計測光として前記露光光と波長の異なる光を照射すること を特徴とする請求項 16に記載の露光装置。  17. The exposure apparatus according to claim 16, wherein the measurement apparatus irradiates light having a wavelength different from that of the exposure light as the measurement light.
[18] 前記物体上の前記所定領域を前記露光光で露光する際に、前記所定領域の一部 の領域に前記露光光を照射した状態で、前記物体と前記露光光とを所定方向に相 対移動する相対移動機構を備え、  [18] When exposing the predetermined area on the object with the exposure light, the object and the exposure light are phased in a predetermined direction in a state in which the exposure light is irradiated on a part of the predetermined area. It has a relative movement mechanism to move against,
前記計測装置は、前記物体と前記所定領域との相対移動中に、前記被計測領域 内に前記光学系を介さずに前記計測光を照射して、前記所定領域の位置情報を連 続的に計測することを特徴とする請求項 17に記載の露光装置。 The measurement device continuously irradiates the measurement area with the measurement light without passing through the optical system during relative movement between the object and the predetermined area, and continuously outputs position information of the predetermined area. 18. The exposure apparatus according to claim 17, wherein measurement is performed.
[19] 前記計測装置は、前記物体上の前記所定領域と前記露光光との相対移動量を表 すために前記被計測領域内に形成されている計測用パターンに前記計測光を照射 することを特徴とする請求項 18に記載の露光装置。 [19] The measurement device irradiates the measurement pattern formed in the measurement target region with the measurement light in order to represent a relative movement amount between the predetermined region on the object and the exposure light. The exposure apparatus according to claim 18, wherein:
[20] 前記計測用パターンは、第 1パターン部と、前記計測光に対する特性が前記第 1パ ターン部とは異なる第 2パターン部とが交互に配置されたパターンを含むことを特徴 とする請求項 19に記載の露光装置。 [20] The measurement pattern includes a pattern in which first pattern portions and second pattern portions having characteristics different from the first pattern portions with respect to the measurement light are alternately arranged. Item 20. The exposure apparatus according to Item 19.
[21] 前記計測用パターンは、前記第 1パターン部と前記第 2パターン部との高さ又は反 射率が異なるとともに、前記所定方向に周期的に形成されたライン'アンド、スペース パターンを含み、 [21] The measurement pattern includes line-and-space patterns that are different in height or reflectivity between the first pattern portion and the second pattern portion and are periodically formed in the predetermined direction. ,
前記計測装置は、前記ライン'アンド ' ·スペースパターンに前記計測光を照射するこ とにより、前記計測光と前記被計測領域とが前記所定方向に相対移動するのに応じ て周期的に変化する計測信号を検出することを特徴とする請求項 20に記載の露光 装置。  The measurement apparatus irradiates the measurement light to the line 'and' space pattern, and periodically changes according to relative movement of the measurement light and the measurement area in the predetermined direction. 21. The exposure apparatus according to claim 20, wherein a measurement signal is detected.
[22] 前記ライン 'アンド ' ·スペースパターンの一部に、前記第 1パターン部と前記第 2バタ ーン部との前記所定方向の長さの比が他の部分とは異なる基準部分があり、 前記計測装置は、前記計測光と前記被計測領域とが前記所定方向に相対移動す るのに応じて、前記計測信号から前記基準部分を特定するための非周期的信号を 分離することを特徴とする請求項 21に記載の露光装置。  [22] A part of the line 'and' space pattern includes a reference portion in which a ratio of lengths in the predetermined direction between the first pattern portion and the second pattern portion is different from other portions. The measurement device separates an aperiodic signal for specifying the reference portion from the measurement signal in response to the measurement light and the measurement region moving relative to each other in the predetermined direction. The exposure apparatus according to claim 21, wherein the exposure apparatus is characterized in that:
[23] 前記計測用パターンは、前記所定方向に交差する方向に周期的に形成された周 期的パターンを含み、 [23] The measurement pattern includes a periodic pattern periodically formed in a direction intersecting the predetermined direction,
前記計測装置は、前記周期的パターンに前記計測光を照射することにより、前記 計測光と前記被計測領域との前記所定方向に直交する方向の相対変位に応じた周 期的信号を検出することを特徴とする請求項 19に記載の露光装置。  The measurement device detects a periodic signal corresponding to a relative displacement in a direction orthogonal to the predetermined direction between the measurement light and the measurement target region by irradiating the periodic pattern with the measurement light. 20. The exposure apparatus according to claim 19, wherein:
[24] 前記計測用パターンは、前記所定方向に非周期的なパターンを含み、 [24] The measurement pattern includes an aperiodic pattern in the predetermined direction,
前記計測装置は、前記非周期的なパターンに前記計測光を照射することにより、前 記計測光と前記被計測領域とが前記所定方向で特定の位置関係になった状態を検 出することを特徴とする請求項 19に記載の露光装置。  The measurement device detects a state in which the measurement light and the measurement region are in a specific positional relationship in the predetermined direction by irradiating the measurement light to the non-periodic pattern. The exposure apparatus according to claim 19, wherein the exposure apparatus is characterized in that:
[25] 前記物体上には、前記所定領域と同じ形状の複数の区画領域が規則的に形成さ れ、 [25] A plurality of partitioned areas having the same shape as the predetermined area are regularly formed on the object. And
前記被計測領域は、前記所定領域に隣接する前記区画領域を含み、 前記計測装置は、前記被計測領域の配置に応じて位置決めされて、前記所定領 域の露光中に前記被計測領域に前記計測光を照射して前記所定領域の位置情報 を計測する第 1検出部を含むことを特徴とする請求項 18に記載の露光装置。  The measurement area includes the partition area adjacent to the predetermined area, and the measurement device is positioned according to the arrangement of the measurement area, and the measurement area is placed in the measurement area during exposure of the predetermined area. 19. The exposure apparatus according to claim 18, further comprising a first detection unit that irradiates measurement light and measures position information of the predetermined region.
[26] 前記被計測領域は、前記所定領域に対して前記所定方向に交差する方向に隣接 する前記区画領域を含み、 [26] The measurement area includes the partition area adjacent to the predetermined area in a direction intersecting the predetermined direction,
前記第 1検出部は、前記物体上の前記露光光の照射領域に対して前記所定方向 に交差する方向にずれた位置に位置決めされる検出部を含むことを特徴とする請求 項 25に記載の露光装置。  26. The detection unit according to claim 25, wherein the first detection unit includes a detection unit positioned at a position shifted in a direction intersecting the predetermined direction with respect to an irradiation region of the exposure light on the object. Exposure device.
[27] 前記被計測領域は、前記所定領域に対して前記所定方向に交差する方向に隣接 する前記区画領域を含み、 [27] The measurement area includes the partition area adjacent to the predetermined area in a direction intersecting the predetermined direction,
前記第 1検出部は、前記物体上の前記露光光の照射領域に対して前記所定方向 にずれた位置に位置決めされる検出部を含むことを特徴とする請求項 25又は 26に 記載の露光装置。  27. The exposure apparatus according to claim 25, wherein the first detection unit includes a detection unit positioned at a position shifted in the predetermined direction with respect to the exposure light irradiation region on the object. .
[28] 前記被計測領域は、前記所定領域を含まな!/、領域であり、 [28] The measured area is an area that does not include the predetermined area! /,
前記計測装置は、  The measuring device is
前記所定領域及び前記被計測領域の配置に応じて位置決めされて、前記所定領 域が露光される前に、前記所定領域及び前記被計測領域に前記計測光を照射して 前記所定領域の位置情報を計測する第 2検出部と、  Positioning according to the arrangement of the predetermined area and the measurement area, and before the predetermined area is exposed, the measurement light is irradiated to the predetermined area and the measurement area, and position information of the predetermined area A second detector for measuring
前記第 2検出部の計測結果を記憶する記憶部とを含むことを特徴とする請求項 25 力も 27の!/、ずれか一項に記載の露光装置。  26. The exposure apparatus according to claim 25, further comprising: a storage unit that stores a measurement result of the second detection unit.
[29] 前記制御装置は、 [29] The control device includes:
前記計測装置の計測結果に基づいて、前記光学系の光軸方向に対して交差する 方向での前記露光光と前記所定領域との相対位置関係を制御することを特徴とする 請求項 16から 28のいずれか一項に記載の露光装置。  29. The relative positional relationship between the exposure light and the predetermined region in a direction intersecting with the optical axis direction of the optical system is controlled based on a measurement result of the measuring device. The exposure apparatus according to any one of the above.
[30] 前記光学系は、マスクのパターンの一部の像を前記所定領域の一部に投影する投 影光学系であり、 前記相対移動機構は、前記マスクを前記所定方向に対応する方向に移動するの に同期して、前記物体を前記所定方向に移動するステージ機構であり、 [30] The optical system is a projection optical system that projects a partial image of a mask pattern onto a part of the predetermined region, The relative movement mechanism is a stage mechanism that moves the object in the predetermined direction in synchronization with the movement of the mask in a direction corresponding to the predetermined direction.
前記マスクのパターンに付設されているマスク側の計測用パターンに計測光を照射 して、前記マスクの位置情報を計測するマスク側の計測装置を備え、  A mask-side measuring device that irradiates measurement light on a mask side attached to the mask pattern and measures positional information of the mask;
前記制御装置は、前記物体側及び前記マスク側の計測装置の計測結果に基づい て、前記マスクと前記物体との相対位置関係を制御することを特徴とする請求項 18 に記載の露光装置。  19. The exposure apparatus according to claim 19, wherein the control device controls a relative positional relationship between the mask and the object based on measurement results of the measurement devices on the object side and the mask side.
請求項 16から 30のいずれか一項に記載の露光装置を用いることを特徴とするデ バイス製造方法。  31. A device manufacturing method using the exposure apparatus according to any one of claims 16 to 30.
PCT/JP2007/073367 2006-12-08 2007-12-04 Exposure method and apparatus, and device manufacturing method WO2008072502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008549249A JPWO2008072502A1 (en) 2006-12-08 2007-12-04 Exposure method and apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006331653 2006-12-08
JP2006-331653 2006-12-08

Publications (1)

Publication Number Publication Date
WO2008072502A1 true WO2008072502A1 (en) 2008-06-19

Family

ID=39511524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073367 WO2008072502A1 (en) 2006-12-08 2007-12-04 Exposure method and apparatus, and device manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2008072502A1 (en)
TW (1) TW200842503A (en)
WO (1) WO2008072502A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251484A (en) * 2009-04-14 2010-11-04 Canon Inc Exposure apparatus, exposure method, and device manufacturing method
JP2012084793A (en) * 2010-10-14 2012-04-26 Nikon Corp Exposure method, server device, exposure device and manufacturing method of device
JP2016505812A (en) * 2012-11-19 2016-02-25 エーエスエムエル ネザーランズ ビー.ブイ. Position measuring system, position measuring system grid and method
US9930887B2 (en) 2011-12-12 2018-04-03 Okayama Prefecture Compound for increasing amino acid content in plant, and use thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137673A (en) * 1977-05-03 1978-12-01 Massachusetts Inst Technology Device for and method of matching plate position
JPS60130742A (en) * 1983-12-19 1985-07-12 Nippon Kogaku Kk <Nikon> Positioning device
JPH06267828A (en) * 1993-03-11 1994-09-22 Toshiba Corp Alignment equipment
JPH0799148A (en) * 1993-09-24 1995-04-11 Nikon Corp Measuring method of accuracy of stepping
JPH07335529A (en) * 1994-06-09 1995-12-22 Nikon Corp Projection exposing device
JPH09152309A (en) * 1995-11-29 1997-06-10 Nikon Corp Method and device for position detection
WO2006025386A1 (en) * 2004-08-31 2006-03-09 Nikon Corporation Aligning method, processing system, substrate loading repeatability measuring method, position measuring method, exposure method, substrate processing apparatus, measuring method and measuring apparatus
JP2007115758A (en) * 2005-10-18 2007-05-10 Nikon Corp Exposure method and exposure apparatus
WO2007097379A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
JP2007324159A (en) * 2006-05-30 2007-12-13 Nikon Corp Mark position measuring device and method, exposure apparatus, and manufacturing method of micro device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137673A (en) * 1977-05-03 1978-12-01 Massachusetts Inst Technology Device for and method of matching plate position
JPS60130742A (en) * 1983-12-19 1985-07-12 Nippon Kogaku Kk <Nikon> Positioning device
JPH06267828A (en) * 1993-03-11 1994-09-22 Toshiba Corp Alignment equipment
JPH0799148A (en) * 1993-09-24 1995-04-11 Nikon Corp Measuring method of accuracy of stepping
JPH07335529A (en) * 1994-06-09 1995-12-22 Nikon Corp Projection exposing device
JPH09152309A (en) * 1995-11-29 1997-06-10 Nikon Corp Method and device for position detection
WO2006025386A1 (en) * 2004-08-31 2006-03-09 Nikon Corporation Aligning method, processing system, substrate loading repeatability measuring method, position measuring method, exposure method, substrate processing apparatus, measuring method and measuring apparatus
JP2007115758A (en) * 2005-10-18 2007-05-10 Nikon Corp Exposure method and exposure apparatus
WO2007097379A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
JP2007324159A (en) * 2006-05-30 2007-12-13 Nikon Corp Mark position measuring device and method, exposure apparatus, and manufacturing method of micro device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251484A (en) * 2009-04-14 2010-11-04 Canon Inc Exposure apparatus, exposure method, and device manufacturing method
JP2012084793A (en) * 2010-10-14 2012-04-26 Nikon Corp Exposure method, server device, exposure device and manufacturing method of device
US9930887B2 (en) 2011-12-12 2018-04-03 Okayama Prefecture Compound for increasing amino acid content in plant, and use thereof
JP2016505812A (en) * 2012-11-19 2016-02-25 エーエスエムエル ネザーランズ ビー.ブイ. Position measuring system, position measuring system grid and method
US9651877B2 (en) 2012-11-19 2017-05-16 Asml Netherlands B.V. Position measurement system, grating for a position measurement system and method

Also Published As

Publication number Publication date
JPWO2008072502A1 (en) 2010-03-25
TW200842503A (en) 2008-11-01

Similar Documents

Publication Publication Date Title
KR100535206B1 (en) Lithographic apparatus and device manufacturing method
JP5571316B2 (en) Lithographic apparatus provided with a plurality of position adjustment devices and position adjustment measurement method
US8351024B2 (en) Lithographic apparatus and device manufacturing method involving a level sensor having a detection grating including three or more segments
JP5516740B2 (en) MOBILE BODY DRIVING METHOD, MOBILE BODY DEVICE, EXPOSURE METHOD, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
JP7147738B2 (en) Measuring device, measuring method, and exposure device
US10678152B2 (en) Layout method, mark detection method, exposure method, measurement device, exposure apparatus, and device manufacturing method
JP2008171960A (en) Position detection device and exposure device
JP5219534B2 (en) Exposure apparatus and device manufacturing method
JP2006157013A (en) Substrate table, method for measuring position of substrate, and lithography equipment
KR20150023319A (en) Method and device for measuring wavefront, and exposure method and device
EP3239776A1 (en) Measurement device and measurement method, exposure device and exposure method, and device production method
WO2010134487A1 (en) Wavefront measuring method and device, and exposure method and device
JP2009075094A (en) Position detection device, position detecting method, exposure device, and device manufacturing method
JP2007251185A (en) Lithographic apparatus, alignment method, and device manufacturing method
US10747120B2 (en) Lithographic method and apparatus
JP3851780B2 (en) Abbe arm calibration system for use in lithographic apparatus
WO2008072502A1 (en) Exposure method and apparatus, and device manufacturing method
JP4071733B2 (en) Lithographic apparatus, device manufacturing method, and computer program
JP5641210B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4248493B2 (en) Overlay detector
JP4543026B2 (en) Pattern alignment method and lithographic apparatus
JPH07335529A (en) Projection exposing device
JP4323388B2 (en) Lithographic apparatus and integrated circuit manufacturing method
JP2017083510A (en) Encoder device and use method thereof, optical device, exposure device and device manufacturing method
JP6748907B2 (en) Measuring apparatus, exposure apparatus, device manufacturing method, and pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549249

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850017

Country of ref document: EP

Kind code of ref document: A1