WO2008069205A1 - Motor drive control apparatus, electrically driven assist apparatus, and responsiveness feedback control method - Google Patents

Motor drive control apparatus, electrically driven assist apparatus, and responsiveness feedback control method Download PDF

Info

Publication number
WO2008069205A1
WO2008069205A1 PCT/JP2007/073402 JP2007073402W WO2008069205A1 WO 2008069205 A1 WO2008069205 A1 WO 2008069205A1 JP 2007073402 W JP2007073402 W JP 2007073402W WO 2008069205 A1 WO2008069205 A1 WO 2008069205A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotational speed
motor
gain coefficient
speed
rotation speed
Prior art date
Application number
PCT/JP2007/073402
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuyuki Wakabayashi
Hiroshi Ochiai
Original Assignee
Nifco, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nifco, Inc. filed Critical Nifco, Inc.
Publication of WO2008069205A1 publication Critical patent/WO2008069205A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/03Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for very low speeds
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47BTABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
    • A47B46/00Cabinets, racks or shelf units, having one or more surfaces adapted to be brought into position for use by extending or pivoting
    • A47B46/005Cabinets, racks or shelf units, having one or more surfaces adapted to be brought into position for use by extending or pivoting by displacement in a vertical plane; by rotating about a horizontal axis

Definitions

  • the present invention relates to a motor drive control device, an electric assist device, and a responsive feedback control method, and in particular, a motor drive that performs feedback control of the rotation speed of a motor (specifically, the rotation speed of a rotor of a motor).
  • the present invention relates to a control device, an electric assist device including the motor drive control device, and a responsive feedback control method.
  • a hanging cabinet provided in a kitchen or the like for storing articles such as tableware and cooking utensils is generally provided at a high position such as an upper surface of a sink. For this reason, hanging cabinets were inconvenient for loading and unloading heavy and large items.
  • Patent Document 1 discloses an inner box that is moved up and down by an electric lifting mechanism on an outer box that is attached to the wall of the upper surface of a kitchen or the like.
  • An electric elevating hanging cupboard having a configuration in which is provided is described.
  • this electric lifting / lowering cabinet when an article is taken in / out, the inner box is lowered by operating a switch provided in the operation unit, so that the article can be easily taken in / out.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-21298
  • the electric lifting / lowering cabinet described in Patent Document 1 has a position where the inner box can be lowered to a position where an article can be taken in and out, or can be stored in the outer box, when the raising / lowering speed of the inner box is reduced. It took a long time to raise the inner box, and the usability was bad. On the other hand, if the raising / lowering speed of the inner box is increased, the usability is improved, but the raising / lowering distance of the inner box per unit time becomes longer.For example, when an object is sandwiched between the inner box and the outer box. , The ascending / descending distance by which the inner box moves up and down becomes longer until the operator instructs the operation unit to stop the lifting operation of the inner box.
  • a grip portion such as a grip bar is provided in the inner box, and the direction and magnitude of strain generated in the grip bar when a user applies a force to raise and lower the inner box with respect to the grip bar.
  • the target rotation speed of the motor is obtained according to the detection result, and feedback control is performed to control the motor rotation speed so that it matches the target rotation speed.
  • An electric hanging cabinet equipped with an electric assist device that assists the user in raising and lowering the inner box by rotating the motor at a corresponding rotation speed can be considered.
  • PID control is known as one type of such feedback control.
  • This PID control is feedback control that combines P control (proportional control), I control (integral control), and D control (differential control). For example, the deviation (speed difference) of the motor rotation speed from the target rotation speed, An integral value obtained by time-integrating the deviation and a differential value obtained by time-differentiating the deviation are obtained, the obtained deviation, the integral value, and the differential value are added, and a predetermined gain coefficient is obtained for the value obtained by the addition. And the rotational speed of the motor is controlled based on the value obtained by the multiplication.
  • the rotational speed of the motor is controlled by electric suspension rack force PID control equipped with an electric assist device that assists the user in raising and lowering the inner box, and a relatively large value is set for the gain coefficient.
  • a relatively large value is set for the gain coefficient.
  • the raising / lowering speed of raising / lowering may be faster than the raising / lowering speed of the user's hand raising / lowering the grip bar, and the hand may be left behind.
  • the gain coefficient when the gain coefficient is set to a relatively small value, the adjustment amount per unit time of the rotation speed of the motor according to the deviation is small. Even if the target rotational speed vibrates, it is difficult for hunting to occur in the rotational speed of the motor.
  • the present invention has been made to solve the above problems, and hunting the rotational speed of the motor even when the target rotational speed vibrates during low-speed operation while suppressing a decrease in speed responsiveness.
  • An object of the present invention is to provide a motor drive control device, an electric assist device, and a responsive feedback control method that can suppress the occurrence of the above.
  • the invention according to claim 1 detects the rotational speed of the motor.
  • a detection unit configured to acquire a target rotational speed of the motor, and a rotational speed of the motor to be matched with the target rotational speed according to a deviation of the rotational speed of the motor with respect to the target rotational speed.
  • a gain coefficient for amplifying an adjustment amount of the rotation speed of the motor within a range in which an overshoot in which the rotation speed of the motor exceeds the target rotation speed is not generated, A derivation unit that derives a larger value as the rotation speed detected by the step increases, a deviation of the rotation speed detected by the detection unit from the target rotation speed acquired by the acquisition unit, and the A control unit that performs the feed knock control based on the gain coefficient derived by the deriving unit.
  • the derivation unit performs feedback control for controlling the motor rotation speed to match the target rotation speed in accordance with the deviation of the motor rotation speed from the target rotation speed.
  • the gain coefficient that amplifies the adjustment amount of the motor rotation speed is within the range where the motor rotation speed does not cause an overshoot that exceeds the target rotation speed. It is derived so that the higher the rotation speed detected by the above, the larger the value.
  • control unit derives the deviation of the rotational speed detected by the detection unit from the target rotational speed acquired by the acquisition unit that acquires the target rotational speed of the motor, and the derivation unit. Feedback control is performed based on the gain coefficient.
  • the derived gain coefficient is relatively small. Since the adjustment amount per unit time of the rotational speed of the motor is small, the target rotational speed vibrates. Even so, it is possible to suppress the occurrence of hunting in the rotational speed of the motor. In addition, the gain coefficient that is derived as the motor rotational speed increases and the amount of adjustment per unit time of the motor rotational speed also increases, so that a decrease in speed response can be suppressed.
  • the rotational speed of the motor is detected, the target rotational speed of the motor is acquired, and the motor is controlled according to the deviation of the rotational speed of the motor from the target rotational speed.
  • feedback control that controls the rotational speed of the motor to match the target rotational speed
  • overshoot that causes the motor rotational speed to exceed the target rotational speed
  • a gain coefficient that amplifies the adjustment amount of the motor rotation speed within a range that does not occur is derived so that the gain coefficient increases as the detected rotation speed increases, and the deviation of the detected rotation speed from the acquired target rotation speed is derived.
  • Use force S to suppress hunting.
  • control unit includes the deviation, an integral value obtained by time-integrating the deviation, a differential value obtained by time-differentiating the deviation, and the derivation as the feedback control.
  • PID control may be performed based on the gain coefficient derived by the unit.
  • control unit of the present invention adds the deviation, the integral value, and the minute value, and multiplies the gain coefficient by the value obtained by the addition.
  • the PID control may be performed based on the value obtained by the multiplication.
  • the electric assist device includes the motor drive control device according to any one of claims 1 to 3 and the motor drive control device. A motor that is controlled and drives the assist target.
  • the electric assist device operates in the same manner as the invention according to claim 1. Therefore, similarly to the invention according to claim 1, while suppressing a decrease in speed responsiveness, Even if the target rotational speed vibrates during low-speed operation, hunting can be suppressed from occurring in the motor rotational speed. As a result, the user's operation on the assist target can be assisted smoothly.
  • the responsive feedback control method detects the rotational speed of the motor, acquires the target rotational speed of the motor, and obtains the motor with respect to the target rotational speed.
  • an overshoot occurs in which the motor rotational speed exceeds the target rotational speed.
  • a gain coefficient that amplifies the adjustment amount of the rotation speed of the motor within a range that is not to be derived is derived so that the gain coefficient increases as the detected rotation speed increases, and the acquired target rotation speed is derived.
  • the feedback control is performed based on the detected deviation of the rotational speed with respect to the degree and the derived gain coefficient.
  • the rotational speed of the motor is detected, the target rotational speed of the motor is obtained, and the motor rotational speed is deviated according to the deviation of the rotational speed of the motor from the target rotational speed.
  • the amount of adjustment of the rotational speed of the motor must be adjusted within a range where the motor rotational speed does not cause an overshoot that exceeds the target rotational speed.
  • the gain coefficient to be amplified is derived so as to increase as the detected rotational speed increases, and the deviation of the detected rotational speed with respect to the acquired target rotational speed and the feedback control based on the derived gain coefficient! Therefore, hunting occurs in the motor rotation speed even if the target rotation speed vibrates during low-speed operation while suppressing the decrease in speed responsiveness. Door can suppress this and force S, and has an excellent effect that.
  • FIG. 1 is a perspective view showing a configuration of an electric hanging cabinet in a state where a cabinet according to an embodiment is housed.
  • FIG. 2 is a perspective view showing a configuration of an electric hanging cabinet in a state where the cabinet according to the embodiment is lowered.
  • FIG. 3 is an enlarged view showing a detailed configuration of the gear train according to the embodiment.
  • FIG. 4A is a cross-sectional view of a gripping part according to an embodiment.
  • FIG. 4B is a longitudinal sectional view of the gripping part according to the embodiment.
  • FIG. 5 is a block diagram showing the main configuration of the electrical system of the electric hanging cabinet according to the embodiment.
  • FIG. 6 is a schematic diagram showing an example of a data structure of a potential difference target rotation speed conversion table according to the embodiment.
  • FIG. 7] is a block diagram showing a functional configuration of the microcomputer according to the embodiment.
  • FIG. 8 is a graph showing the relationship between changes in the rotational speed of the motor for each gain coefficient.
  • FIG. 9A is a diagram showing an operation when the electric hanging cabinet according to the embodiment is lowered.
  • FIG. 9B is a diagram showing an operation when the cabinet of the electric hanging cabinet according to the embodiment is lowered.
  • FIG. 9C It is a diagram showing an operation when the cabinet of the electric hanging cupboard according to the embodiment is lowered.
  • FIG. 10A is a diagram showing an operation when storing the cabinet of the electric hanging cupboard according to the embodiment.
  • FIG. 10B is a diagram showing an operation when the cabinet of the electric hanging cupboard according to the embodiment is stored.
  • FIG. 10C is a diagram showing an operation when storing the cabinet of the electric hanging cupboard according to the embodiment.
  • FIG. 11 is a flowchart showing a process flow of the drive control program according to the embodiment.
  • FIG. 12A A graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by the PID control according to the embodiment.
  • FIG. 13A is a graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by conventional PID control.
  • FIG. 13B is a graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by conventional PID control.
  • FIG. 14A is a graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by conventional PID control.
  • FIG. 14B is a graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by conventional PID control.
  • FIGS. 1 and 2 show an electric hanging cabinet 10 according to an embodiment of the present invention.
  • this electric hanging cabinet 10 is used for ceiling installation used in a system kitchen.
  • the electric hanging cabinet 10 includes a box-shaped cabinet 12, and the cabinet 12 can store tableware and the like.
  • the cabinet 12 can be stored in a box-shaped storage unit 14 whose front side and rear side are open.
  • a shaft support pin 18 is provided on the side plate 16 of the storage portion 14, and one end portion of the arm 20 is rotatably supported on the shaft support pin 18. Further, an arcuate guide hole 22 is formed in the side plate 16 of the storage portion 14 around the pivot pin 18, and a guide pin 24 attached to the arm 20 is passed through the guide hole 22. ing. Therefore, when the arm 20 rotates around the pivot pin 18, the guide pin 24 is guided along the guide hole 22.
  • the other end of the arm 20 is mounted on a mounting portion 28 provided on the upper rear side of the side plate 26 of the cabinet 12, and the cabinet 12 swings around the pivot pin 18 via the arm 20. It is possible to move.
  • shafts 32 and 34 are spanned between the pair of side plates 16 in the storage portion 14.
  • the shaft 34 is disposed on the front side of the side plate 16 and cannot rotate with respect to the side plate 16. Further, one end of an arm 36 is rotatably supported on the shaft 34, and the other end of the arm 36 is attached to a mounting portion 38 provided on the center side of the side plate 26 of the cabinet 12. The arm 36, together with the arm 20, enables the cabinet 12 to swing.
  • the shaft 32 is rotatably supported with respect to the side plate 16, and the driving force of the motor 40 that can rotate in the forward and reverse directions is transmitted to the shaft 32 via the gear train 42.
  • a worm 44 is directly connected to the rotating shaft of the motor 40, and the driving force from the motor 40 is transmitted to the worm 44.
  • a worm wheel 46A is engaged with the worm 44, and the worm wheel 46A is rotated by the rotation of the worm 44.
  • This worm wheel 46A has a small gear 46B on its body.
  • the small gear 46B is rotated by the rotation of the ohm wheel 46A.
  • the small gear 46B is engaged with the large gear 48A, and the large gear 48A rotates as the small gear 46B rotates.
  • the large gear 48A is provided with a small gear 48B, and the small gear 48B is rotated by the rotation of the large gear 48A.
  • the small gear 48B is engaged with the large gear 50A, and the large gear 50A rotates as the small gear 48B rotates.
  • the large gear 50A is provided with a force / tooth gear 50B on the body, and the force and the bevel gear 50B are rotated by the rotation of the large gear 50A.
  • This force, the bevel gear 50B meshes with the force fixed to the shaft 32, the bevel gear 52, and the rotation of the force and bevel gear 52 causes the shaft 32 to rotate.
  • the motor 40 is provided with an encoder 41.
  • the encoder 41 outputs a noise corresponding to the forward / reverse rotation of the motor 40 and the transfer rate.
  • Power transmission gears 54 are fixed to both ends of the shaft 32 (see Fig. 2).
  • the side plate 16 of the storage portion 14 is provided with a disk-shaped arm swinging shaft plate 56 that rotates about the shaft support pin 18.
  • the arm swinging shaft plate 56 has a guide pin 24 extending therethrough.
  • An arm swinging gear 56A is formed on the outer peripheral surface of the arm swinging shaft plate 56, and the arm swinging gear 56A is driven by power. It is in mesh with transmission gear 54.
  • the arm swinging shaft plate 56 rotates around the shaft support pin 18 by the rotation of the power transmission gear 54, rotates the arm 20 while moving the guide pin 24 along the guide hole 22, and the cabinet. Move 12 up and down. Then, following the movement of the cabinet 12, the arm 36 rotates.
  • the cabinet 12 has a pair of support plates 60 hanging from the lower part of the front surface, and a bar-shaped gripping portion 62 is supported on the support plate 60.
  • the gripping portion 62 is a cylindrical grip 6 made of resin.
  • the metal plate 66 is formed longer than the grip 64, and both ends of the metal plate 66 are fixed to the support plate 60.
  • a gap is provided between the metal plate 66 and the grip 64.
  • the grip 64 has a central portion in the longitudinal direction that is opposed to the front and back surfaces of the metal plate 66, respectively.
  • a convex portion 64A is provided so as to face.
  • leaf springs 68 are disposed in a gap provided between the metal plate 66, one end abuts against the front or back surface of the metal plate 66, and the other end. The portion abuts against the inner peripheral surface of the grip 64 and biases the grip 64 outward. Thereby, the positional relationship between the grip 64 and the metal plate 66 is maintained.
  • a metal part 70 (which may be any conductive member) is provided at the center of the grip 64, and a touch sensor 71 (see FIG. 5) is provided on the metal part 70. It is connected.
  • the touch sensor 71 detects the capacitance of the metal part 70.
  • the touch sensor 71 outputs a low level signal when the detected capacitance is less than a predetermined value, and outputs a high level signal when the detected capacitance exceeds a predetermined value.
  • This predetermined value is set to an appropriate value capable of detecting that the user's hand has touched the metal part 70.
  • a strain sensor 72 is disposed at the center in the longitudinal direction of the metal plate 66 (see FIGS. 4A and 4B) so as to face the convex portion 64A.
  • the user grips the metal part 70 by hand and moves it up and down, so that the convex part 64 ⁇ / b> A contacts the metal plate 66 and the metal plate 66 is distorted.
  • the strain sensor 72 includes a strain gauge (not shown).
  • the resistance value of a strain gauge changes depending on the direction and magnitude of the strain.
  • the strain sensor 72 replaces the change in the resistance value of the strain gauge with the change in the voltage, amplifies it, and outputs it.
  • the strain sensor 72 is distorted according to the strain of the metal plate 66, the voltage level of the output signal changes.
  • the voltage level of the signal output from the strain sensor 72 decreases according to the strain amount when the strain sensor 72 is distorted downward, and increases according to the strain amount when the strain sensor 72 is distorted upward. That is, by detecting the voltage level of the signal output from the strain sensor 72, the stress and direction acting on the grip 64 can be detected.
  • FIG. 5 shows a main configuration of an electric system of the electric hanging cabinet 10 according to the present embodiment.
  • the electric hanging cabinet 10 is capable of amplifying the voltage level of the signal output from the strain sensor 72 by a predetermined factor (1 X 106 times in this embodiment, but from 5000 times). is there) Based on the pulse output from the amplifier circuit 80 and the encoder 41, the rotation speed and rotation direction of the motor 40 are obtained, and the rotation speed and rotation direction and the voltage of the signal amplified by the amplification circuit 80 are obtained.
  • a microcomputer (hereinafter referred to as “microcomputer”) 82 that outputs a speed control signal that controls the rotational speed of the motor 40 based on the level, and a drive circuit 84 that drives the motor 40 to rotate according to the speed control signal. I have.
  • the signal output from the strain sensor 72 has several voltage levels, and the S / N ratio with noise generated in the wiring to which the signal is transmitted cannot be increased.
  • the amplifier circuit 80 is provided as close to the strain sensor 72 as possible to shorten the wiring distance between the amplifier circuit 80 and the strain sensor 72 as much as possible. By performing amplification while suppressing the amount of noise generated as much as possible, the effect of noise is suppressed.
  • the microcomputer 82 has a CPU, ROM, RAM, and the like configured on one chip, and stores a drive control program, a potential difference target rotation speed conversion table, a reference voltage level, and the like, which will be described later, in the ROM in advance.
  • the drive circuit 84 changes the rotational speed of the motor 40 by changing the duty ratio of the drive signal output to the motor 40 in accordance with the speed control signal.
  • FIG. 6 schematically shows an example of the potential difference target rotation speed conversion table stored in the microcomputer 82 according to the present embodiment.
  • the potential difference target rotation speed conversion table stores the target rotation speed for each potential difference, and the value is set so that the target rotation speed increases as the absolute value of the potential difference increases. Is set.
  • the rotation speed is a negative value when the rotation shaft of the motor 40 rotates in the direction of lowering the cabinet 12, and a positive value when the rotation speed of the cabinet 12 is increased. The direction of rotation is also shown.
  • FIG. 7 is a functional block diagram showing a functional configuration of the microcomputer 82 according to the present embodiment.
  • Microcomputer 82 detects target rotational speed acquisition unit 90 for acquiring the target rotational speed, and detects the noise input from encoder 41 for a certain period of time, and the rotational speed and rotational method of motor 40.
  • the rotation speed detection unit 92 detects the rotation speed as a positive or negative value depending on the rotation direction, and the gain coefficient Kp used in PID control based on the rotation speed detected by the rotation speed detection unit 92
  • a gain coefficient deriving unit 94 for deriving and a PID control unit 96 for performing PID control using the derived gain coefficient ⁇ and outputting a speed control signal are provided.
  • the target rotational speed acquisition unit 90 is a voltage obtained by amplifying the signal output from the strain sensor 72 by the amplifier circuit 80 in a state in which no strain is generated in the strain gauge built in the strain sensor 72.
  • the voltage level corresponding to the level is stored in advance as a reference voltage level. Then, when the signal input from the touch sensor 71 becomes a high level, the target rotation speed acquisition unit 90 obtains a potential difference from the voltage level of the signal input from the amplifier circuit 80 with reference to the reference voltage level, and determines the potential difference. Based on the potential difference target rotation speed conversion table, the target rotation speed is acquired.
  • the voltage of the signal output from the strain sensor 72 may change little by little due to changes in the external environment. For this reason, when the signal input from the touch sensor 71 is at a low level, the target rotation speed acquisition unit 90 corrects the stored reference voltage level based on the voltage level of the signal input from the amplifier circuit 80.
  • the gain coefficient deriving unit 94 stores in advance a predetermined conversion function with the rotation speed as an input value and the gain coefficient Kp as an output value.
  • the gain coefficient Kp is calculated from the rotation speed using the conversion function. To derive.
  • the optimum value of the gain coefficient K P is the largest value within a range where no overshoot occurs.
  • the above conversion function indicates that the gain coefficient to be derived increases as the rotational speed of the motor 40 increases within a range in which overshoot does not occur in the rotational speed of the motor 40 when PID control is performed. It is predetermined to become.
  • the gain coefficient deriving unit 94 derives a gain coefficient from the rotation speed using a conversion function.
  • a rotational speed gain coefficient conversion table that defines the relationship between the rotational speed and the gain coefficient so that the gain coefficient derived within the range where overshoot does not occur increases as the rotational speed increases. May be stored in advance, and the gain coefficient Kp may be derived from the rotational speed of the motor 40 based on the rotational speed gain coefficient conversion table.
  • the PID control unit 96 obtains a deviation e of the rotation speed of the motor 40 with respect to the target rotation speed, an integral value obtained by time-integrating the deviation e, and a differential value obtained by time differentiation of the deviation e, respectively.
  • the difference MV, the integral value, and the derivative value are added, and the value MV is obtained by multiplying the value obtained by the addition by the gain coefficient Kp, and the increase or decrease amount of the rotation speed of the motor 40 is determined according to the value MV.
  • a speed control signal for instructing is output.
  • the PID control unit 96 in FIG. 7 shows the flow of PID control in the Laplace transformed form, where Ti is the integration time, Td is the differentiation time, and s is the Laplace operator.
  • the value MV is derived by multiplying the value obtained by the addition by the gain coefficient Kp.
  • the microcomputer 82 is assumed to realize the PID control described above by executing a drive control program.
  • the convex portion 64A (see FIGS. 4A and 4B) provided inside the gripping portion 62 contacts the metal plate 66, and a downward strain is generated in the metal plate 66.
  • the strain sensor 72 also generates downward strain (see Fig. 9B).
  • the microcomputer 82 obtains the target rotation speed based on the voltage level output from the strain sensor 72, and moves the rotation axis of the motor 40 to the cabinet 1 at the target rotation speed by PID control. By rotating 2 in the downward direction, assist the user in the downward movement of the cabinet 12 (see Figure 9C).
  • the microcomputer 82 obtains the target rotation speed based on the voltage level output from the strain sensor 72, and moves the rotation axis of the motor 40 to the cabinet 1 at the target rotation speed by PID control.
  • Rotating 2 in the direction of raising assists the user in raising the cabinet 12 (see Figure 10C).
  • the electric hanging cabinet 10 lifts the cabinet 12 by gripping the metal part 70 of the gripping part 62 by hand without the user performing an operation of separately specifying the assist operation. Since the assist is performed in accordance with the lowering operation, the operability is good.
  • the electric hanging cabinet 10 adjusts the speed at which the cabinet 12 is moved up and down by changing the strain amount of the strain sensor 72 by adjusting the force applied to the metal part 70 by the user. This improves usability.
  • the drive control program is executed when a power supply (not shown) of the electric hanging cabinet 10 is turned on, and ends when the power supply is turned off.
  • step 102 of the figure it is determined whether or not the signal input from the touch sensor 71 is at a high level. If the determination is affirmative, the process proceeds to step 106. If the determination is negative, The process proceeds to step 104 again.
  • step 104 the stored reference voltage level is corrected to the voltage level of the signal input from the amplifier circuit 80, and the process proceeds to step 102 again. That is, the operations of Step 102 to Step 104 are repeated until the user's hand touches the metal part 70. As a result, for example, malfunction caused when strain occurs in the strain sensor 72 due to vibration or the like is prevented.
  • the reference voltage level is corrected in step 104, the voltage of the signal output from the strain sensor 72 due to a change in the external environment, etc. Even in the case of a change, it is possible to accurately detect the potential difference corresponding to the strain caused by gripping the metal part 70 of the gripping part 62 by hand in Step 106 described later.
  • step 106 the potential difference between the voltage levels of the signals input from the amplifier circuit 80 is detected using the stored reference voltage level as a reference.
  • next step 108 based on the potential difference detected in step 106, a target rotational speed corresponding to the potential difference is acquired from the potential difference target rotational speed conversion table. 41, the rotational speed of the motor 40 is detected by detecting the input pulse.
  • the gain coefficient Kp is derived from the rotational speed of the motor 40 detected in the above step 110 using the above-described conversion function. To do.
  • step 114 the deviation e of the rotational speed of the motor 40 detected in step 110 with respect to the target rotational speed derived in step 108, an integrated value obtained by integrating the deviation e over time, and the deviation e as time.
  • Each differentiated differential value is obtained, and the obtained deviation, integral value, and differential value are added, and the value obtained by the addition is multiplied by a gain coefficient Kp to calculate a direct MV.
  • step 116 a speed control signal instructing an increase or decrease in the rotational speed is output according to the value MV calculated in step 114, and the process returns to step 102 described above to continue the process. And execute.
  • FIG. 12A and FIG. 12B show changes in the rotational speed of motor 40 when the rotational speed of motor 40 is controlled by microcomputer 82 according to the present embodiment.
  • the gain coefficient derived by the conversion function becomes a large value as the rotational speed of the motor 40 increases, so as shown in FIG.
  • the target rotational speed is fast! /,
  • the speed responsiveness of the rotational speed of the motor when the rotational speed is changed can be kept good.
  • the electric hanging cabinet 10 increases the strain amount of the strain sensor 72 by applying a large force to the metal part 70 so that the user can raise and lower the cabinet 12 quickly.
  • the gain coefficient derived by the conversion function is a small value, and the cabinet 12 starts to move slowly.
  • the rotation speed of the motor is detected by the detection unit (here, the rotation speed detection unit 92), and is acquired by the acquisition unit (target rotation speed acquisition unit 90).
  • the target rotational speed of the motor is acquired, and the derivation unit (in this case, the gain coefficient derivation unit 94) is configured to match the rotational speed of the motor with the target rotational speed according to the deviation of the rotational speed of the motor from the target rotational speed
  • the detection unit detects a gain coefficient that amplifies the adjustment amount of the motor rotation speed within a range that does not cause an overshoot in which the motor rotation speed exceeds the target rotation speed.
  • control unit 96 calculates the deviation of the rotation speed detected by the detection unit from the target rotation speed acquired by the acquisition unit. Based on the gain coefficient derived by the derivation unit! /, Feedback control is performed! /, So the target rotational speed vibrates during low-speed operation while suppressing a decrease in speed response. However, the occurrence of hunting in the rotational speed of the motor can be suppressed.
  • the force described in the case where the rotational speed of the motor 40 is feedback controlled by PID control.
  • the present invention is not limited to this, for example, other feedback control such as PI control.
  • the rotational speed of the motor 40 may be controlled by Also in this case, the same effects as in the present embodiment can be obtained.
  • the force S described for the case where one gain coefficient Kp is derived from the rotational speed of the motor 40 by a conversion function is not limited to this, for example,
  • the proportional gain coefficient, integral gain coefficient, and differential gain coefficient are derived from the rotation speed by different conversion functions, and the value obtained by multiplying the deviation by the proportional gain coefficient and the integral value obtained by time-integrating the deviation are multiplied by the integral gain coefficient.
  • a value obtained by multiplying the differential gain obtained by differentiating the value and the deviation with a differential gain coefficient may be obtained, and the rotational speed of the motor may be controlled based on the value obtained by adding the respective values.
  • the proportional gain coefficient, integral gain coefficient, and differential gain coefficient can be individually changed according to the rotational speed of 40, the response characteristics of the motor 40 can be controlled with great strength.
  • the force described in the case of assisting the lifting / lowering operation of the cabinet 12 by the driving force of the motor 40 is not limited to this.
  • the present invention may be used for another electric assist device that assists the user's operation with respect to the assist target with the driving force of 40.
  • the present invention can be applied to a motor drive control device that performs feedback control of rotational speed, an electric assist device that includes the motor drive control device, and a responsive feedback control method.

Abstract

A motor drive control apparatus, an electrically driven assist apparatus and a responsiveness feedback control method wherein even if a target rotational speed oscillates during a low speed operation, the occurrence of hunting of the rotational speed of a motor can be suppressed, while the reduction of speed responsiveness being suppressed. A rotational speed determining part (92) determines the rotational speed of a motor (40). A target rotational speed acquiring part (90) acquires a target rotational speed of the motor (40). A gain coefficient deriving part (94) derives a gain coefficient with which the adjustment amount of the rotational speed of the motor (40) is amplified within such a range that there will occur no overshoot that the rotational speed of the motor (40) exceeds the target rotational speed. At this moment, the gain coefficient is derived in such a manner that the higher the determined rotational speed is, the larger value the derived gain coefficient exhibits. A PID control part (96) performs a feedback control of the rotational speed of the motor (40) based on both the deviation of the determined rotational speed from the acquired target rotational speed and the derived gain coefficient.

Description

明 細 書  Specification
モータ駆動制御装置、電動アシスト装置及び応答性フィードバック制御方 法  Motor drive control device, electric assist device, and responsive feedback control method
技術分野  Technical field
[0001] この発明は、モータ駆動制御装置、電動アシスト装置及び応答性フィードバック制 御方法に係り、特に、モータの回転速度はり詳しくは、モータの回転子の回転速度) のフィードバック制御を行うモータ駆動制御装置、当該モータ駆動制御装置を備えた 電動アシスト装置及び応答性フィードバック制御方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a motor drive control device, an electric assist device, and a responsive feedback control method, and in particular, a motor drive that performs feedback control of the rotation speed of a motor (specifically, the rotation speed of a rotor of a motor). The present invention relates to a control device, an electric assist device including the motor drive control device, and a responsive feedback control method.
背景技術  Background art
[0002] 食器類や調理具などの物品を収納するために台所等に設けられている吊戸棚は、 一般的に流し台の上面部など高い位置に設けられている。このため、吊戸棚は重い 物品や大きな物品の出し入れが不便であった。  [0002] A hanging cabinet provided in a kitchen or the like for storing articles such as tableware and cooking utensils is generally provided at a high position such as an upper surface of a sink. For this reason, hanging cabinets were inconvenient for loading and unloading heavy and large items.
[0003] そこで、吊戸棚に対する物品の出し入れを容易にするための技術として、特許文献 1には、台所等の上面部の壁に取付けられる外箱に、電動式昇降機構によって上下 動する内箱を設けた構成とされた電動昇降吊戸棚が記載されている。この電動昇降 吊戸棚では、物品を出し入れする際に、操作部に設けられたスィッチを操作して内箱 を下降させることにより、吊戸棚に対する物品の出し入れを容易なものとしていた。  [0003] Therefore, as a technique for facilitating the taking in and out of articles to and from the hanging cabinet, Patent Document 1 discloses an inner box that is moved up and down by an electric lifting mechanism on an outer box that is attached to the wall of the upper surface of a kitchen or the like. An electric elevating hanging cupboard having a configuration in which is provided is described. In this electric lifting / lowering cabinet, when an article is taken in / out, the inner box is lowered by operating a switch provided in the operation unit, so that the article can be easily taken in / out.
[0004] 尚、上記の日本特開 2005— 21298号公報の記載は、この明細書の記載の一部と する。  [0004] Note that the description in the above Japanese Patent Laid-Open No. 2005-21298 is a part of the description in this specification.
特許文献 1 :特開 2005— 21298号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2005-21298
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、上記特許文献 1に記載の電動昇降吊戸棚は、内箱の昇降速度を低速に した場合、物品を出し入れ可能な位置に内箱を下降させたり、外箱に収納される位 置に内箱を上昇させたりするまでに時間がかかり、使い勝手が悪かった。これに対し 、内箱の昇降速度を速くした場合、使い勝手は向上するものの、単位時間当たりの 内箱の昇降距離が長くなるため、例えば、内箱と外箱の間に物を挟んだ場合に、ュ 一ザが操作部に対して内箱の昇降動作の停止を指示するまでに内箱が昇降する昇 降距離が長くなる。 [0005] By the way, the electric lifting / lowering cabinet described in Patent Document 1 has a position where the inner box can be lowered to a position where an article can be taken in and out, or can be stored in the outer box, when the raising / lowering speed of the inner box is reduced. It took a long time to raise the inner box, and the usability was bad. On the other hand, if the raising / lowering speed of the inner box is increased, the usability is improved, but the raising / lowering distance of the inner box per unit time becomes longer.For example, when an object is sandwiched between the inner box and the outer box. , The ascending / descending distance by which the inner box moves up and down becomes longer until the operator instructs the operation unit to stop the lifting operation of the inner box.
[0006] このため、特許文献 1に記載の電動昇降吊戸棚を適用する場合、昇降速度を低速 にせざるを得な!/、のが実情である。  [0006] Therefore, in the case of applying the electric lifting cabinet described in Patent Document 1, the actual situation is that the lifting speed must be reduced! /.
[0007] そこで、例えば、内箱にグリップバーなどの把持部を設け、ユーザがグリップバーに 対して内箱を昇降させるために力を加えた際の当該グリップバーに生じるひずみの 向き及び大きさを検出し、検出結果に応じてモータの目標回転速度を求め、モータ の回転速度を目標回転速度に一致させるように制御するフィードバック制御を行うこ とにより、グリップバーに対して加えられた力に応じた回転速度でモータを回転させる ことによって、ユーザの内箱に対する昇降動作をアシストする電動アシスト装置を備 えた電動吊戸棚が考えられる。  [0007] Therefore, for example, a grip portion such as a grip bar is provided in the inner box, and the direction and magnitude of strain generated in the grip bar when a user applies a force to raise and lower the inner box with respect to the grip bar. Is detected, and the target rotation speed of the motor is obtained according to the detection result, and feedback control is performed to control the motor rotation speed so that it matches the target rotation speed. An electric hanging cabinet equipped with an electric assist device that assists the user in raising and lowering the inner box by rotating the motor at a corresponding rotation speed can be considered.
[0008] ところで、このようなフィードバック制御の一種として、 PID制御が知られている。この PID制御は、 P制御(比例制御)と I制御 (積分制御)と D制御 (微分制御)を併用した フィードバック制御であり、例えば、 目標回転速度に対するモータの回転速度の偏差 (速度差)、偏差を時間積分した積分値、及び偏差を時間微分した微分値をそれぞ れ求め、当該求めた偏差と積分値と微分値を加算し、当該加算により得られた値に 対して所定のゲイン係数を乗算し、当該乗算により得られた値に基づいてモータの 回転速度を制御している。  Incidentally, PID control is known as one type of such feedback control. This PID control is feedback control that combines P control (proportional control), I control (integral control), and D control (differential control). For example, the deviation (speed difference) of the motor rotation speed from the target rotation speed, An integral value obtained by time-integrating the deviation and a differential value obtained by time-differentiating the deviation are obtained, the obtained deviation, the integral value, and the differential value are added, and a predetermined gain coefficient is obtained for the value obtained by the addition. And the rotational speed of the motor is controlled based on the value obtained by the multiplication.
[0009] この PID制御では、ゲイン係数を比較的大きな値とした場合、偏差に応じたモータ の回転速度の単位時間当たりの調整量が大きいため、一例として図 13Aに示される ように、 目標回転速度が変更された際に、モータの回転速度が目標回転速度に到達 するまでの到達時間が短ぐ速度応答性が高い。  In this PID control, when the gain coefficient is set to a relatively large value, the adjustment amount per unit time of the rotation speed of the motor corresponding to the deviation is large, so that as shown in FIG. 13A as an example, the target rotation When the speed is changed, the time required for the motor speed to reach the target speed is short, and the speed response is high.
[0010] しかしながら、この場合、一例として図 13Bに示されるように、 目標回転速度が振動 した際に、当該振動に伴ってモータの回転速度にハンチングが発生する場合がある 、という問題点があった。  However, in this case, as shown in FIG. 13B as an example, when the target rotational speed vibrates, there is a problem that hunting may occur in the rotational speed of the motor along with the vibration. It was.
[0011] 例えば、上述したユーザの内箱に対する昇降動作をアシストする電動アシスト装置 を備えた電動吊戸棚力 PID制御によりモータの回転速度を制御しており、ゲイン係 数に比較的大きな値が設定されていたとする。この場合に、ユーザがグリップバーに 対して加える力を調整して内箱を緩やかに昇降させようとしたとすると、グリップバー のひずみ量に応じたモータの回転速度の調整量が大きいため、モータの回転に伴つ て内箱が昇降する昇降速度が、グリップバーを昇降させるユーザの手の昇降速度よ りも速くなり、グリップバーに対して手が置き去りとなってしまう場合がある。 [0011] For example, the rotational speed of the motor is controlled by electric suspension rack force PID control equipped with an electric assist device that assists the user in raising and lowering the inner box, and a relatively large value is set for the gain coefficient. Suppose that it was done. In this case, the user However, if you try to lift the inner box slowly by adjusting the force applied to the inner box, the amount of adjustment of the rotation speed of the motor according to the strain amount of the grip bar is large, so the inner box will move as the motor rotates. The raising / lowering speed of raising / lowering may be faster than the raising / lowering speed of the user's hand raising / lowering the grip bar, and the hand may be left behind.
[0012] このように、手が置き去りになると、グリップバーのひずみ量が小さくなつて目標回転 速度が低下し、内箱の昇降速度も低下する。そして、この内箱の昇降速度の低下に よってユーザの手がグリップバーに追いつくことにより、グリップバーのひずみ量が大 きくなつて目標回転速度が上昇し、内箱の昇降速度がユーザの手の昇降速度よりも 再度速くなり、グリップバーに対して手が再度置き去りとなることが繰り返されてしまう 結果、この目標回転速度の振動に伴ってモータの回転速度にハンチングが発生して しまう。 [0012] As described above, when the hand is left behind, the amount of distortion of the grip bar is reduced, the target rotational speed is lowered, and the raising / lowering speed of the inner box is also lowered. Then, when the user's hand catches up with the grip bar due to the lowering of the lifting speed of the inner box, the target rotational speed increases as the strain amount of the grip bar increases, and the lifting speed of the inner box increases. As a result of the speed being raised again faster than the lifting speed and the hands being left behind the grip bar repeatedly, hunting occurs in the rotational speed of the motor along with the vibration of the target rotational speed.
[0013] そして、モータの駆動力によりアシスト対象物に対するユーザの動作をアシストする 電動アシスト装置では、低速動作時に、 目標回転速度の振動に伴ってモータの回転 速度にハンチングが発生すると、アシスト対象物に対するユーザの動作をスムーズに アシストすることはできなレ、。  [0013] Then, in the electric assist device that assists the user's operation with respect to the assist object by the driving force of the motor, if the hunting occurs in the rotation speed of the motor in association with the vibration of the target rotation speed during the low-speed operation, the assist object It is not possible to smoothly assist the user's actions against.
[0014] これに対し、 PID制御では、ゲイン係数を比較的小さな値とした場合、偏差に応じ たモータの回転速度の単位時間当たりの調整量が小さいため、一例として図 14Bに 示されるように、 目標回転速度が振動した場合であっても、モータの回転速度にハン チングが発生しづらい。  On the other hand, in the PID control, when the gain coefficient is set to a relatively small value, the adjustment amount per unit time of the rotation speed of the motor according to the deviation is small. Even if the target rotational speed vibrates, it is difficult for hunting to occur in the rotational speed of the motor.
[0015] しかしながら、この場合、一例として図 14Aに示されるように、 目標回転速度が変更 された際に、モータの回転速度が目標回転速度に到達するまでの到達時間が長くな り、速度応答性が低い、という問題点があった。  However, in this case, as shown in FIG. 14A as an example, when the target rotational speed is changed, the time required for the motor rotational speed to reach the target rotational speed is increased, and the speed response is increased. There was a problem that the property was low.
[0016] 本発明は上記問題点を解決するためになされたものであり、速度応答性の低下を 抑制しつつ、低速動作時に目標回転速度が振動した場合であってもモータの回転 速度にハンチングが発生することを抑制することのできるモータ駆動制御装置、電動 アシスト装置及び応答性フィードバック制御方法を提供することを目的とする。  [0016] The present invention has been made to solve the above problems, and hunting the rotational speed of the motor even when the target rotational speed vibrates during low-speed operation while suppressing a decrease in speed responsiveness. An object of the present invention is to provide a motor drive control device, an electric assist device, and a responsive feedback control method that can suppress the occurrence of the above.
課題を解決するための手段  Means for solving the problem
[0017] 上記目的を達成するため、請求項 1に記載の発明は、モータの回転速度を検出す る検出部と、前記モータの目標回転速度を取得する取得部と、前記目標回転速度に 対する前記モータの回転速度の偏差に応じて前記モータの回転速度を前記目標回 転速度に一致させるように制御するフィードバック制御を行う際に、前記モータの回 転速度が前記目標回転速度を超過するオーバーシュートを発生させない範囲内で、 前記モータの回転速度の調整量を増幅するゲイン係数を、前記検出部により検出さ れた前記回転速度が速いほど大きな値となるように導出する導出部と、前記取得部 により取得された前記目標回転速度に対する前記検出部により検出された前記回転 速度の偏差、及び前記導出部により導出されたゲイン係数に基づいて前記フィード ノ ック制御を行う制御部と、を備えてレ、る。 In order to achieve the above object, the invention according to claim 1 detects the rotational speed of the motor. A detection unit configured to acquire a target rotational speed of the motor, and a rotational speed of the motor to be matched with the target rotational speed according to a deviation of the rotational speed of the motor with respect to the target rotational speed. When performing feedback control to control, a gain coefficient for amplifying an adjustment amount of the rotation speed of the motor within a range in which an overshoot in which the rotation speed of the motor exceeds the target rotation speed is not generated, A derivation unit that derives a larger value as the rotation speed detected by the step increases, a deviation of the rotation speed detected by the detection unit from the target rotation speed acquired by the acquisition unit, and the A control unit that performs the feed knock control based on the gain coefficient derived by the deriving unit.
[0018] 請求項 1記載の発明によれば、導出部により、 目標回転速度に対するモータの回 転速度の偏差に応じてモータの回転速度を目標回転速度に一致させるように制御す るフィードバック制御を行う際に、モータの回転速度が目標回転速度を超過するォー バーシュートを発生させない範囲内で、モータの回転速度の調整量を増幅するゲイ ン係数が、モータの回転速度を検出する検出部により検出された回転速度が速いほ ど大きな値となるように導出される。  [0018] According to the invention of claim 1, the derivation unit performs feedback control for controlling the motor rotation speed to match the target rotation speed in accordance with the deviation of the motor rotation speed from the target rotation speed. When detecting, the gain coefficient that amplifies the adjustment amount of the motor rotation speed is within the range where the motor rotation speed does not cause an overshoot that exceeds the target rotation speed. It is derived so that the higher the rotation speed detected by the above, the larger the value.
[0019] そして、本発明では、制御部により、モータの目標回転速度を取得する取得部によ り取得された目標回転速度に対する検出部により検出された回転速度の偏差、及び 導出部により導出されたゲイン係数に基づいてフィードバック制御が行われる。  In the present invention, the control unit derives the deviation of the rotational speed detected by the detection unit from the target rotational speed acquired by the acquisition unit that acquires the target rotational speed of the motor, and the derivation unit. Feedback control is performed based on the gain coefficient.
[0020] これにより、モータの回転速度が比較的低速の場合は導出されるゲイン係数が比 較的小さぐモータの回転速度の単位時間当たりの調整量が小さいため、 目標回転 速度が振動した場合であってもモータの回転速度にハンチングが発生することを抑 制すること力 Sできる。また、モータの回転速度が高速になるほど導出されるゲイン係数 も大きくなり、モータの回転速度の単位時間当たりの調整量も大きくなるため、速度応 答性の低下を抑制することもできる。  [0020] As a result, when the rotational speed of the motor is relatively low, the derived gain coefficient is relatively small. Since the adjustment amount per unit time of the rotational speed of the motor is small, the target rotational speed vibrates. Even so, it is possible to suppress the occurrence of hunting in the rotational speed of the motor. In addition, the gain coefficient that is derived as the motor rotational speed increases and the amount of adjustment per unit time of the motor rotational speed also increases, so that a decrease in speed response can be suppressed.
[0021] このように請求項 1記載の発明によれば、モータの回転速度を検出すると共に、モ ータの目標回転速度を取得し、 目標回転速度に対するモータの回転速度の偏差に 応じてモータの回転速度を目標回転速度に一致させるように制御するフィードバック 制御を行う際に、モータの回転速度が目標回転速度を超過するオーバーシュートを 発生させない範囲内で、モータの回転速度の調整量を増幅するゲイン係数を、検出 した回転速度が速いほど大きな値となるように導出し、取得した目標回転速度に対す る検出した回転速度の偏差、及び導出したゲイン係数に基づ!/、てフィードバック制御 を行っているので、速度応答性の低下を抑制しつつ、低速動作時に目標回転速度 が振動した場合であってもモータの回転速度にハンチングが発生することを抑制す ること力 Sでさる。 As described above, according to the first aspect of the invention, the rotational speed of the motor is detected, the target rotational speed of the motor is acquired, and the motor is controlled according to the deviation of the rotational speed of the motor from the target rotational speed. When performing feedback control that controls the rotational speed of the motor to match the target rotational speed, overshoot that causes the motor rotational speed to exceed the target rotational speed A gain coefficient that amplifies the adjustment amount of the motor rotation speed within a range that does not occur is derived so that the gain coefficient increases as the detected rotation speed increases, and the deviation of the detected rotation speed from the acquired target rotation speed is derived. And / or feedback control based on the derived gain coefficient, so that even if the target rotational speed oscillates during low-speed operation, the motor rotational speed is controlled while suppressing a decrease in speed responsiveness. Use force S to suppress hunting.
[0022] なお、本発明の制御部は、請求項 2記載のように、前記フィードバック制御として、 前記偏差、前記偏差を時間積分した積分値、前記偏差を時間微分した微分値、及 び前記導出部により導出されたゲイン係数に基づいて PID制御を行うものとしてもよ い。  [0022] Note that, as described in claim 2, the control unit according to the present invention includes the deviation, an integral value obtained by time-integrating the deviation, a differential value obtained by time-differentiating the deviation, and the derivation as the feedback control. PID control may be performed based on the gain coefficient derived by the unit.
[0023] また、本発明の制御部は、請求項 3記載のように、前記偏差と前記積分値と前記微 分値を加算し、当該加算により得られた値に対して前記ゲイン係数を乗算し、当該乗 算により得られた値に基づいて前記 PID制御を行うものとしてもよい。  [0023] In addition, as described in claim 3, the control unit of the present invention adds the deviation, the integral value, and the minute value, and multiplies the gain coefficient by the value obtained by the addition. The PID control may be performed based on the value obtained by the multiplication.
[0024] 一方、上記目的を達成するため、請求項 4記載の電動アシスト装置は、請求項 1乃 至請求項 3の何れか 1項記載のモータ駆動制御装置と、前記モータ駆動制御装置に より制御され、アシスト対象物を駆動するモータと、を備えている。  [0024] On the other hand, in order to achieve the above object, the electric assist device according to claim 4 includes the motor drive control device according to any one of claims 1 to 3 and the motor drive control device. A motor that is controlled and drives the assist target.
[0025] 従って、請求項 4記載の電動アシスト装置によれば、請求項 1記載の発明と同様に 作用するので、請求項 1記載の発明と同様に、速度応答性の低下を抑制しつつ、低 速動作時に目標回転速度が振動した場合であってもモータの回転速度にハンチン グが発生することを抑制することができる。これにより、アシスト対象物に対するユーザ の動作をスムーズにアシストすることができる。  [0025] Therefore, the electric assist device according to claim 4 operates in the same manner as the invention according to claim 1. Therefore, similarly to the invention according to claim 1, while suppressing a decrease in speed responsiveness, Even if the target rotational speed vibrates during low-speed operation, hunting can be suppressed from occurring in the motor rotational speed. As a result, the user's operation on the assist target can be assisted smoothly.
[0026] 一方、上記目的を達成するため、請求項 5記載の応答性フィードバック制御方法は 、モータの回転速度を検出すると共に、前記モータの目標回転速度を取得し、前記 目標回転速度に対する前記モータの回転速度の偏差に応じて前記モータの回転速 度を前記目標回転速度に一致させるように制御するフィードバック制御を行う際に、 前記モータの回転速度が前記目標回転速度を超過するオーバーシュートを発生さ せない範囲内で、前記モータの回転速度の調整量を増幅するゲイン係数を、検出し た前記回転速度が速いほど大きな値となるように導出し、取得した前記目標回転速 度に対する検出した前記回転速度の偏差、及び導出した前記ゲイン係数に基づい て前記フィードバック制御を行って!/、る。 [0026] On the other hand, in order to achieve the above object, the responsive feedback control method according to claim 5 detects the rotational speed of the motor, acquires the target rotational speed of the motor, and obtains the motor with respect to the target rotational speed. When performing feedback control for controlling the motor rotational speed to match the target rotational speed according to the rotational speed deviation, an overshoot occurs in which the motor rotational speed exceeds the target rotational speed. A gain coefficient that amplifies the adjustment amount of the rotation speed of the motor within a range that is not to be derived is derived so that the gain coefficient increases as the detected rotation speed increases, and the acquired target rotation speed is derived. The feedback control is performed based on the detected deviation of the rotational speed with respect to the degree and the derived gain coefficient.
[0027] 従って、請求項 5記載の応答性フィードバック制御方法によれば、請求項 1記載の 発明と同様に作用するので、請求項 1記載の発明と同様に、速度応答性の低下を抑 制しつつ、低速動作時に目標回転速度が振動した場合であってもモータの回転速 度にハンチングが発生することを抑制することができる。 [0027] Therefore, according to the responsive feedback control method according to claim 5, since it operates in the same manner as the invention according to claim 1, a decrease in speed responsiveness is suppressed as in the invention according to claim 1. However, it is possible to suppress the occurrence of hunting in the rotational speed of the motor even when the target rotational speed vibrates during low speed operation.
発明の効果  The invention's effect
[0028] 以上説明したように、本発明によれば、モータの回転速度を検出すると共に、モー タの目標回転速度を取得し、 目標回転速度に対するモータの回転速度の偏差に応 じてモータの回転速度を目標回転速度に一致させるように制御するフィードバック制 御を行う際に、モータの回転速度が目標回転速度を超過するオーバーシュートを発 生させない範囲内で、モータの回転速度の調整量を増幅するゲイン係数を、検出し た回転速度が速いほど大きな値となるように導出し、取得した目標回転速度に対する 検出した回転速度の偏差、及び導出したゲイン係数に基づ!/、てフィードバック制御を 行っているので、速度応答性の低下を抑制しつつ、低速動作時に目標回転速度が 振動した場合であってもモータの回転速度にハンチングが発生することを抑制するこ と力 Sできる、という優れた効果を有する。  [0028] As described above, according to the present invention, the rotational speed of the motor is detected, the target rotational speed of the motor is obtained, and the motor rotational speed is deviated according to the deviation of the rotational speed of the motor from the target rotational speed. When feedback control is performed to control the rotational speed so that it matches the target rotational speed, the amount of adjustment of the rotational speed of the motor must be adjusted within a range where the motor rotational speed does not cause an overshoot that exceeds the target rotational speed. The gain coefficient to be amplified is derived so as to increase as the detected rotational speed increases, and the deviation of the detected rotational speed with respect to the acquired target rotational speed and the feedback control based on the derived gain coefficient! Therefore, hunting occurs in the motor rotation speed even if the target rotation speed vibrates during low-speed operation while suppressing the decrease in speed responsiveness. Door can suppress this and force S, and has an excellent effect that.
図面の簡単な説明  Brief Description of Drawings
[0029] [図 1]実施の形態に係るキャビネットが収納された状態の電動吊戸棚の構成を示す 斜視図である。  FIG. 1 is a perspective view showing a configuration of an electric hanging cabinet in a state where a cabinet according to an embodiment is housed.
[図 2]実施の形態に係るキャビネットが下降した状態の電動吊戸棚の構成を示す斜 視図である。  FIG. 2 is a perspective view showing a configuration of an electric hanging cabinet in a state where the cabinet according to the embodiment is lowered.
[図 3]実施の形態に係るギア列の詳細な構成を示す拡大図である。  FIG. 3 is an enlarged view showing a detailed configuration of the gear train according to the embodiment.
[図 4A]実施の形態に係る把持部の横断面図である。  FIG. 4A is a cross-sectional view of a gripping part according to an embodiment.
[図 4B]実施の形態に係る把持部の縦断面図である。  FIG. 4B is a longitudinal sectional view of the gripping part according to the embodiment.
[図 5]実施の形態に係る電動吊戸棚の電気系の要部構成を示すブロック図である。  FIG. 5 is a block diagram showing the main configuration of the electrical system of the electric hanging cabinet according to the embodiment.
[図 6]実施の形態に係る電位差目標回転速度変換テーブルのデータ構造の一例を 示す模式図である。 園 7]実施の形態に係るマイコンの機能構成を示すブロック図である。 FIG. 6 is a schematic diagram showing an example of a data structure of a potential difference target rotation speed conversion table according to the embodiment. FIG. 7] is a block diagram showing a functional configuration of the microcomputer according to the embodiment.
[図 8]ゲイン係数毎のモータの回転速度の変化の関係を示すグラフである。  FIG. 8 is a graph showing the relationship between changes in the rotational speed of the motor for each gain coefficient.
園 9A]実施の形態に係る電動吊戸棚のキャビネットを下降する際の動作を示す図で ある。 FIG. 9A] is a diagram showing an operation when the electric hanging cabinet according to the embodiment is lowered.
園 9B]実施の形態に係る電動吊戸棚のキャビネットを下降する際の動作を示す図で ある。 [FIG. 9B] FIG. 9B is a diagram showing an operation when the cabinet of the electric hanging cabinet according to the embodiment is lowered.
園 9C]実施の形態に係る電動吊戸棚のキャビネットを下降する際の動作を示す図で ある。 [FIG. 9C] It is a diagram showing an operation when the cabinet of the electric hanging cupboard according to the embodiment is lowered.
園 10A]実施の形態に係る電動吊戸棚のキャビネットを収納する際の動作を示す図 である。 FIG. 10A] is a diagram showing an operation when storing the cabinet of the electric hanging cupboard according to the embodiment.
園 10B]実施の形態に係る電動吊戸棚のキャビネットを収納する際の動作を示す図 である。 FIG. 10B] is a diagram showing an operation when the cabinet of the electric hanging cupboard according to the embodiment is stored.
園 10C]実施の形態に係る電動吊戸棚のキャビネットを収納する際の動作を示す図 である。 FIG. 10C] is a diagram showing an operation when storing the cabinet of the electric hanging cupboard according to the embodiment.
[図 11]実施の形態に係る駆動制御プログラムの処理の流れを示すフローチャートで ある。  FIG. 11 is a flowchart showing a process flow of the drive control program according to the embodiment.
園 12A]実施の形態に係る PID制御によってモータの回転速度を制御した際のモー タの回転速度の変化の一例を示すグラフである。 12A] A graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by the PID control according to the embodiment.
園 12B]実施の形態に係る PID制御によってモータの回転速度を制御した際のモー タの回転速度の変化の一例を示すグラフである。 12B] A graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by the PID control according to the embodiment.
[図 13A]従来の PID制御によってモータの回転速度を制御した際のモータの回転速 度の変化の一例を示すグラフである。  FIG. 13A is a graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by conventional PID control.
[図 13B]従来の PID制御によってモータの回転速度を制御した際のモータの回転速 度の変化の一例を示すグラフである。  FIG. 13B is a graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by conventional PID control.
[図 14A]従来の PID制御によってモータの回転速度を制御した際のモータの回転速 度の変化の一例を示すグラフである。  FIG. 14A is a graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by conventional PID control.
[図 14B]従来の PID制御によってモータの回転速度を制御した際のモータの回転速 度の変化の一例を示すグラフである。 発明を実施するための最良の形態 FIG. 14B is a graph showing an example of a change in the rotation speed of the motor when the rotation speed of the motor is controlled by conventional PID control. BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、以 下では、本発明を電動吊戸棚に適用した場合について説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, the case where the present invention is applied to an electric hanging cabinet will be described.
[0031] 図 1及び図 2には、本発明の実施の形態に係る電動吊戸棚 10が図示されている。  [0031] FIGS. 1 and 2 show an electric hanging cabinet 10 according to an embodiment of the present invention.
[0032] この電動吊戸棚 10は、一例として、システムキッチンに用いられる天井設置用とさ れている。電動吊戸棚 10は、箱状のキャビネット 12を備えており、当該キャビネット 1 2内には食器などが収納可能とされている。このキャビネット 12は、前面側及び後面 側が開放された箱状の収納部 14内に収納可能とされている。  [0032] As an example, this electric hanging cabinet 10 is used for ceiling installation used in a system kitchen. The electric hanging cabinet 10 includes a box-shaped cabinet 12, and the cabinet 12 can store tableware and the like. The cabinet 12 can be stored in a box-shaped storage unit 14 whose front side and rear side are open.
[0033] 収納部 14の側板 16には、軸支ピン 18が設けられており、当該軸支ピン 18には、ァ ーム 20の一端部が回転可能に軸支されている。また、収納部 14の側板 16には、軸 支ピン 18を中心に円弧状のガイド孔 22が形成されており、ガイド孔 22には、アーム 2 0に取付けられたガイドピン 24が揷通されている。このため、軸支ピン 18を中心にァ ーム 20が回転すると、ガイドピン 24がガイド孔 22に沿って案内されることとなる。  A shaft support pin 18 is provided on the side plate 16 of the storage portion 14, and one end portion of the arm 20 is rotatably supported on the shaft support pin 18. Further, an arcuate guide hole 22 is formed in the side plate 16 of the storage portion 14 around the pivot pin 18, and a guide pin 24 attached to the arm 20 is passed through the guide hole 22. ing. Therefore, when the arm 20 rotates around the pivot pin 18, the guide pin 24 is guided along the guide hole 22.
[0034] また、アーム 20の他端部はキャビネット 12の側板 26の後側上部に設けられた装着 部 28に装着されており、キャビネット 12はアーム 20を介して軸支ピン 18を中心に揺 動可能とされている。  [0034] The other end of the arm 20 is mounted on a mounting portion 28 provided on the upper rear side of the side plate 26 of the cabinet 12, and the cabinet 12 swings around the pivot pin 18 via the arm 20. It is possible to move.
[0035] 一方、収納部 14には、一対の側板 16の間にシャフト 32、 34が架け渡されている。  On the other hand, shafts 32 and 34 are spanned between the pair of side plates 16 in the storage portion 14.
シャフト 34は、側板 16の前方側に配置されており、側板 16に対して回転不能となつ ている。また、シャフト 34にはアーム 36の一端部が回転可能に軸支されており、ァー ム 36の他端部はキャビネット 12の側板 26の中央側に設けられた装着部 38に装着さ れており、アーム 36は、アーム 20と共に、キャビネット 12を揺動可能とする。  The shaft 34 is disposed on the front side of the side plate 16 and cannot rotate with respect to the side plate 16. Further, one end of an arm 36 is rotatably supported on the shaft 34, and the other end of the arm 36 is attached to a mounting portion 38 provided on the center side of the side plate 26 of the cabinet 12. The arm 36, together with the arm 20, enables the cabinet 12 to swing.
[0036] 一方、シャフト 32は側板 16に対して回転可能に軸支されており、シャフト 32には、 正逆回転可能なモータ 40の駆動力がギア列 42を介して伝達されるようになっている On the other hand, the shaft 32 is rotatably supported with respect to the side plate 16, and the driving force of the motor 40 that can rotate in the forward and reverse directions is transmitted to the shaft 32 via the gear train 42. ing
Yes
[0037] 図 3に示されるように、モータ 40の回転軸には、ウォーム 44が直結されており、当該 ウォーム 44にはモータ 40からの駆動力が伝達される。このウォーム 44にはウォーム ホイール 46Aが嚙み合っており、ウォームホイール 46Aはウォーム 44の回転によつ て回転する。このウォームホイール 46Aには小ギア 46Bがー体に設けられており、ゥ オームホイール 46Aの回転によって、当該小ギア 46Bが回転する。この小ギア 46B には大ギア 48Aが嚙み合っており、小ギア 46Bの回転に伴って大ギア 48Aが回転す る。この大ギア 48Aには小ギア 48Bがー体に設けられており、大ギア 48Aの回転によ つて、当該小ギア 48Bが回転する。この小ギア 48Bには大ギア 50Aが嚙み合ってお り、小ギア 48Bの回転に伴って大ギア 50Aが回転する。この大ギア 50Aには力、さ歯 車 50Bがー体に設けられており、大ギア 50Aの回転によって、当該力、さ歯車 50Bが 回転する。そして、この力、さ歯車 50Bは、シャフト 32に固定された力、さ歯車 52と嚙み 合っており、当該力、さ歯車 52の回転によって、シャフト 32が回転するようになってい As shown in FIG. 3, a worm 44 is directly connected to the rotating shaft of the motor 40, and the driving force from the motor 40 is transmitted to the worm 44. A worm wheel 46A is engaged with the worm 44, and the worm wheel 46A is rotated by the rotation of the worm 44. This worm wheel 46A has a small gear 46B on its body. The small gear 46B is rotated by the rotation of the ohm wheel 46A. The small gear 46B is engaged with the large gear 48A, and the large gear 48A rotates as the small gear 46B rotates. The large gear 48A is provided with a small gear 48B, and the small gear 48B is rotated by the rotation of the large gear 48A. The small gear 48B is engaged with the large gear 50A, and the large gear 50A rotates as the small gear 48B rotates. The large gear 50A is provided with a force / tooth gear 50B on the body, and the force and the bevel gear 50B are rotated by the rotation of the large gear 50A. This force, the bevel gear 50B, meshes with the force fixed to the shaft 32, the bevel gear 52, and the rotation of the force and bevel gear 52 causes the shaft 32 to rotate.
[0038] また、モータ 40にはエンコーダ 41が設けられている。エンコーダ 41はモータ 40の 正-逆転及び回転送度に応じたノ ルスを出力するものとされている。 Further, the motor 40 is provided with an encoder 41. The encoder 41 outputs a noise corresponding to the forward / reverse rotation of the motor 40 and the transfer rate.
[0039] シャフト 32 (図 2参照。)の両端部には、動力伝達ギア 54が固定されている。一方、 収納部 14の側板 16には、軸支ピン 18を中心に回転する円盤状のアーム揺動用軸 板 56が設けられている。このアーム揺動用軸板 56にはガイドピン 24が貫通しており 、アーム揺動用軸板 56の外周面には、アーム揺動用ギア 56Aが形成されており、こ のアーム揺動用ギア 56Aが動力伝達ギア 54と嚙み合っている。  [0039] Power transmission gears 54 are fixed to both ends of the shaft 32 (see Fig. 2). On the other hand, the side plate 16 of the storage portion 14 is provided with a disk-shaped arm swinging shaft plate 56 that rotates about the shaft support pin 18. The arm swinging shaft plate 56 has a guide pin 24 extending therethrough. An arm swinging gear 56A is formed on the outer peripheral surface of the arm swinging shaft plate 56, and the arm swinging gear 56A is driven by power. It is in mesh with transmission gear 54.
[0040] アーム揺動用軸板 56は、動力伝達ギア 54の回転によって、軸支ピン 18を中心に 回転し、ガイドピン 24をガイド孔 22に沿って移動させながら、アーム 20を回転させ、 キャビネット 12を昇降移動させる。そして、このキャビネット 12の移動に追従して、ァ ーム 36が回転する。  [0040] The arm swinging shaft plate 56 rotates around the shaft support pin 18 by the rotation of the power transmission gear 54, rotates the arm 20 while moving the guide pin 24 along the guide hole 22, and the cabinet. Move 12 up and down. Then, following the movement of the cabinet 12, the arm 36 rotates.
[0041] ところで、キャビネット 12は前面の下部から一対の支持板 60が垂下しており、当該 支持板 60には棒状の把持部 62が支持されている。  By the way, the cabinet 12 has a pair of support plates 60 hanging from the lower part of the front surface, and a bar-shaped gripping portion 62 is supported on the support plate 60.
[0042] 図 4A及び図 4Bに示すように、把持部 62は、樹脂で形成された円筒状のグリップ 6[0042] As shown in FIGS. 4A and 4B, the gripping portion 62 is a cylindrical grip 6 made of resin.
4を備えており、グリップ 64の内部には、平板状の金属プレート 66が設けられている4 and a flat metal plate 66 is provided inside the grip 64.
。この金属プレート 66はグリップ 64よりも長く形成されており、当該金属プレート 66の 両端部が支持板 60に固定されている。 . The metal plate 66 is formed longer than the grip 64, and both ends of the metal plate 66 are fixed to the support plate 60.
[0043] また、金属プレート 66とグリップ 64との間には、隙間が設けられるようになつており、 グリップ 64の長手方向中央部には、金属プレート 66の表面及び裏面にそれぞれ対 面するように凸部 64Aが設けられている。また、グリップ 64の両端部には、金属プレ ート 66との間に設けられた隙間内に板バネ 68が配設され、一端部が金属プレート 6 6の表面或いは裏面に当接し、他端部がグリップ 64の内周面に当接して、グリップ 64 を外側へ向けて付勢している。これにより、グリップ 64と金属プレート 66の位置関係 を保持している。 [0043] Further, a gap is provided between the metal plate 66 and the grip 64. The grip 64 has a central portion in the longitudinal direction that is opposed to the front and back surfaces of the metal plate 66, respectively. A convex portion 64A is provided so as to face. Further, at both ends of the grip 64, leaf springs 68 are disposed in a gap provided between the metal plate 66, one end abuts against the front or back surface of the metal plate 66, and the other end. The portion abuts against the inner peripheral surface of the grip 64 and biases the grip 64 outward. Thereby, the positional relationship between the grip 64 and the metal plate 66 is maintained.
[0044] また、グリップ 64の中央部には、金属部 70 (導電性部材であれば何れあってもよい 。)が設けられており、金属部 70にはタツチセンサ 71 (図 5参照。)が接続されている。 タツチセンサ 71は、金属部 70の静電容量を検出している。タツチセンサ 71は、検出 される静電容量が所定値未満であると、ロー(Low)レベルの信号を出力しており、所 定値以上になると、ハイ(Hight)レベルの信号を出力する。この所定値は、ユーザの 手が金属部 70に接触したことを検出可能な適切な値に定められている。  [0044] In addition, a metal part 70 (which may be any conductive member) is provided at the center of the grip 64, and a touch sensor 71 (see FIG. 5) is provided on the metal part 70. It is connected. The touch sensor 71 detects the capacitance of the metal part 70. The touch sensor 71 outputs a low level signal when the detected capacitance is less than a predetermined value, and outputs a high level signal when the detected capacitance exceeds a predetermined value. This predetermined value is set to an appropriate value capable of detecting that the user's hand has touched the metal part 70.
[0045] 一方、金属プレート 66 (図 4A及び図 4B参照。)の長手方向中央部には、凸部 64A と対面してひずみセンサ 72が配設されている。把持部 62では、ユーザが手で金属 部 70を把持して昇降させることにより、凸部 64Aが金属プレート 66に接触して金属 プレート 66にひずみが発生する。  On the other hand, a strain sensor 72 is disposed at the center in the longitudinal direction of the metal plate 66 (see FIGS. 4A and 4B) so as to face the convex portion 64A. In the gripping part 62, the user grips the metal part 70 by hand and moves it up and down, so that the convex part 64 </ b> A contacts the metal plate 66 and the metal plate 66 is distorted.
[0046] ひずみセンサ 72には、図示しないひずみゲージが内蔵されている。ひずみゲージ は、ひずみの向き及び大きさに応じて抵抗値が変化する。ひずみセンサ 72は、ひず みゲージの抵抗値の変化を電圧の変化に置き換え、それを増幅して出力している。 ひずみセンサ 72は金属プレート 66のひずみに応じてひずむことにより、出力される 信号の電圧レベルが変化する。ひずみセンサ 72から出力される信号の電圧レベル は、ひずみセンサ 72が下方向にひずんだ場合にひずみ量に応じて低下し、上方向 にひずんだ場合にひずみ量に応じて上昇する。すなわち、ひずみセンサ 72から出 力される信号の電圧レベルを検出することにより、グリップ 64に作用する応力及び向 きが検出可能とされている。  [0046] The strain sensor 72 includes a strain gauge (not shown). The resistance value of a strain gauge changes depending on the direction and magnitude of the strain. The strain sensor 72 replaces the change in the resistance value of the strain gauge with the change in the voltage, amplifies it, and outputs it. When the strain sensor 72 is distorted according to the strain of the metal plate 66, the voltage level of the output signal changes. The voltage level of the signal output from the strain sensor 72 decreases according to the strain amount when the strain sensor 72 is distorted downward, and increases according to the strain amount when the strain sensor 72 is distorted upward. That is, by detecting the voltage level of the signal output from the strain sensor 72, the stress and direction acting on the grip 64 can be detected.
[0047] 図 5には、本実施の形態に係る電動吊戸棚 10の電気系の要部構成が示されてい  [0047] FIG. 5 shows a main configuration of an electric system of the electric hanging cabinet 10 according to the present embodiment.
[0048] 同図に示されるように、電動吊戸棚 10は、ひずみセンサ 72より出力される信号の電 圧レベルを所定倍(本実の形態では 1 X 106倍だが、 5000倍から増幅可能である) に増幅する増幅回路 80と、エンコーダ 41から出力されたパルスに基づいてモータ 4 0の回転速度と回転方向を求め、当該回転速度と回転方向及び増幅回路 80によつ て増幅された信号の電圧レベルに基づいてモータ 40の回転速度を制御する速度制 御信号を出力するマイクロコンピュータ(以下「マイコン」という。)82と、速度制御信号 に応じてモータ 40の回転駆動させるドライブ回路 84と、を備えている。 [0048] As shown in the figure, the electric hanging cabinet 10 is capable of amplifying the voltage level of the signal output from the strain sensor 72 by a predetermined factor (1 X 106 times in this embodiment, but from 5000 times). is there) Based on the pulse output from the amplifier circuit 80 and the encoder 41, the rotation speed and rotation direction of the motor 40 are obtained, and the rotation speed and rotation direction and the voltage of the signal amplified by the amplification circuit 80 are obtained. A microcomputer (hereinafter referred to as “microcomputer”) 82 that outputs a speed control signal that controls the rotational speed of the motor 40 based on the level, and a drive circuit 84 that drives the motor 40 to rotate according to the speed control signal. I have.
[0049] なお、ひずみセンサ 72から出力される信号は数 程度の電圧レベルであり、当 該信号が伝送される配線に発生するノイズとの S/N比を大きくとれない。このため、 本実施の形態に係る電動吊戸棚 10では、増幅回路 80をできるだけひずみセンサ 7 2に近い位置に設けて増幅回路 80とひずみセンサ 72との間の配線距離を極力短く し、配線に発生するノイズ量を極力抑制した状態で増幅を行うことにより、ノイズによる 影響を抑制するようにしてレ、る。  [0049] Note that the signal output from the strain sensor 72 has several voltage levels, and the S / N ratio with noise generated in the wiring to which the signal is transmitted cannot be increased. For this reason, in the electric hanging cabinet 10 according to the present embodiment, the amplifier circuit 80 is provided as close to the strain sensor 72 as possible to shorten the wiring distance between the amplifier circuit 80 and the strain sensor 72 as much as possible. By performing amplification while suppressing the amount of noise generated as much as possible, the effect of noise is suppressed.
[0050] マイコン 82は、 CPU, ROM, RAM等が 1チップ上に構成されており、後述する駆 動制御プログラムや電位差目標回転速度変換テーブル、基準電圧レベル等を ROM に予め記憶している。  The microcomputer 82 has a CPU, ROM, RAM, and the like configured on one chip, and stores a drive control program, a potential difference target rotation speed conversion table, a reference voltage level, and the like, which will be described later, in the ROM in advance.
[0051] ドライブ回路 84は、速度制御信号に応じてモータ 40に対して出力する駆動信号の デューティ比を変化させることによりモータ 40の回転速度を変化させる。  [0051] The drive circuit 84 changes the rotational speed of the motor 40 by changing the duty ratio of the drive signal output to the motor 40 in accordance with the speed control signal.
[0052] 図 6には、本実施の形態に係るマイコン 82に記憶された電位差目標回転速度変換 テーブルの一例が模式的に示されている。  FIG. 6 schematically shows an example of the potential difference target rotation speed conversion table stored in the microcomputer 82 according to the present embodiment.
[0053] 同図に示されるように、この電位差目標回転速度変換テーブルには、電位差毎に 目標回転速度が記憶されており、電位差の絶対値が大きくなるほど目標回転速度が 速くなるように値が設定されている。なお、本実施の形態では、回転速度をモータ 40 の回転軸がキャビネット 12を下降させる方向に回転する場合にマイナスの値とし、キ ャビネット 12を上昇させる方向に回転する場合にプラスの値として、回転方向も示し ている。  As shown in the figure, the potential difference target rotation speed conversion table stores the target rotation speed for each potential difference, and the value is set so that the target rotation speed increases as the absolute value of the potential difference increases. Is set. In the present embodiment, the rotation speed is a negative value when the rotation shaft of the motor 40 rotates in the direction of lowering the cabinet 12, and a positive value when the rotation speed of the cabinet 12 is increased. The direction of rotation is also shown.
[0054] 図 7には、本実施の形態に係るマイコン 82の機能的な構成を示す機能ブロック図 が示されている。  FIG. 7 is a functional block diagram showing a functional configuration of the microcomputer 82 according to the present embodiment.
[0055] マイコン 82は、 目標回転速度を取得する目標回転速度取得部 90と、一定時間の 間にエンコーダ 41より入力するノ ルスを検出してモータ 40の回転速度及び回転方 向を求め、回転方向に応じてプラス又はマイナスの値として回転速度を検出する回 転速度検出部 92と、回転速度検出部 92により検出された回転速度に基づいて PID 制御で用いるゲイン係数 Kpを導出するゲイン係数導出部 94と、導出されたゲイン係 数 Κρを用いて PID制御を行って速度制御信号を出力する PID制御部 96と、を備え ている。 [0055] Microcomputer 82 detects target rotational speed acquisition unit 90 for acquiring the target rotational speed, and detects the noise input from encoder 41 for a certain period of time, and the rotational speed and rotational method of motor 40. The rotation speed detection unit 92 detects the rotation speed as a positive or negative value depending on the rotation direction, and the gain coefficient Kp used in PID control based on the rotation speed detected by the rotation speed detection unit 92 A gain coefficient deriving unit 94 for deriving and a PID control unit 96 for performing PID control using the derived gain coefficient Κρ and outputting a speed control signal are provided.
[0056] なお、 目標回転速度取得部 90は、ひずみセンサ 72に内蔵されたひずみゲージに ひずみが発生していない状態で、ひずみセンサ 72から出力された信号が増幅回路 8 0によって増幅された電圧レベルに相当する電圧レベルを、基準電圧レベルとして予 め記憶している。そして、 目標回転速度取得部 90は、タツチセンサ 71から入力され た信号がハイレベルになると、基準電圧レベルを基準として増幅回路 80から入力さ れた信号の電圧レベルとの電位差を求め、当該電位差に基づいて電位差目標回転 速度変換テーブルから目標回転速度を取得する。  Note that the target rotational speed acquisition unit 90 is a voltage obtained by amplifying the signal output from the strain sensor 72 by the amplifier circuit 80 in a state in which no strain is generated in the strain gauge built in the strain sensor 72. The voltage level corresponding to the level is stored in advance as a reference voltage level. Then, when the signal input from the touch sensor 71 becomes a high level, the target rotation speed acquisition unit 90 obtains a potential difference from the voltage level of the signal input from the amplifier circuit 80 with reference to the reference voltage level, and determines the potential difference. Based on the potential difference target rotation speed conversion table, the target rotation speed is acquired.
[0057] また、ひずみセンサ 72から出力される信号の電圧は、外部環境の変化などによつ てわずかずつ変化する場合がある。このため、 目標回転速度取得部 90は、タツチセ ンサ 71から入力された信号がローレベルの場合、増幅回路 80から入力された信号 の電圧レベルに基づき、記憶している基準電圧レベルを補正する。  [0057] The voltage of the signal output from the strain sensor 72 may change little by little due to changes in the external environment. For this reason, when the signal input from the touch sensor 71 is at a low level, the target rotation speed acquisition unit 90 corrects the stored reference voltage level based on the voltage level of the signal input from the amplifier circuit 80.
[0058] ゲイン係数導出部 94は、回転速度を入力値とし、ゲイン係数 Kpを出力値とした所 定の変換関数を予め記憶しており、当該変換関数を用いて回転速度からゲイン係数 Kpを導出する。  [0058] The gain coefficient deriving unit 94 stores in advance a predetermined conversion function with the rotation speed as an input value and the gain coefficient Kp as an output value. The gain coefficient Kp is calculated from the rotation speed using the conversion function. To derive.
[0059] ところで、 PID制御では、図 8に示されるように、ゲイン係数 Kpの値を大きくするとモ ータ 40の回転速度が目標回転速度を超過するオーバーシュートが発生してしまい、 また、ゲイン係数 Kpの値を小さくすると、モータ 40の回転速度が目標回転速度に到 達するまでの到達時間を長くなり、速度応答性が低くなる。従って、このゲイン係数 K Pの最適な値は、オーバーシュートを発生させない範囲内で最も大きな値である。  By the way, in the PID control, as shown in FIG. 8, when the value of the gain coefficient Kp is increased, an overshoot occurs in which the rotational speed of the motor 40 exceeds the target rotational speed. If the value of the coefficient Kp is decreased, the time required for the motor 40 to reach the target rotational speed is lengthened and the speed response is lowered. Therefore, the optimum value of the gain coefficient K P is the largest value within a range where no overshoot occurs.
[0060] そこで、上記変換関数は、 PID制御を行った際にモータ 40の回転速度にオーバー シュートを発生させない範囲内で、モータ 40の回転速度が速くなるほど、導出される ゲイン係数が大きな値となるように予め定められている。なお、本実施の形態に係る ゲイン係数導出部 94は、変換関数を用いて回転速度からゲイン係数を導出するもの としている力 例えば、回転速度が速くなるほど、オーバーシュートを発生させない範 囲内で導出されるゲイン係数が大きな値となるように、回転速度とゲイン係数との関 係を定めた回転速度ゲイン係数変換テーブルを予め記憶させておき、当該回転速 度ゲイン係数変換テーブルに基づいてモータ 40の回転速度からゲイン係数 Kpを導 出するものとしてもよい。 [0060] Therefore, the above conversion function indicates that the gain coefficient to be derived increases as the rotational speed of the motor 40 increases within a range in which overshoot does not occur in the rotational speed of the motor 40 when PID control is performed. It is predetermined to become. The gain coefficient deriving unit 94 according to the present embodiment derives a gain coefficient from the rotation speed using a conversion function. For example, a rotational speed gain coefficient conversion table that defines the relationship between the rotational speed and the gain coefficient so that the gain coefficient derived within the range where overshoot does not occur increases as the rotational speed increases. May be stored in advance, and the gain coefficient Kp may be derived from the rotational speed of the motor 40 based on the rotational speed gain coefficient conversion table.
[0061] また、 PID制御部 96は、 目標回転速度に対するモータ 40の回転速度の偏差 e、偏 差 eを時間積分した積分値、及び偏差 eを時間微分した微分値をそれぞれ求め、当 該求めた偏差と積分値と微分値を加算し、当該加算により得られた値に対してゲイン 係数 Kpを乗算した値 MVを求め、当該値 MVに応じてモータ 40の回転速度の増加 量又は減少量を指示する速度制御信号を出力する。なお、図 7の PID制御部 96に は、ラプラス変換された形式で PID制御の流れが示されており、 Tiは積分時間、 Td は微分時間、 sはラプラス演算子を表わしている。偏差 eに l/ (Ti' S)を乗算すること により積分値を求めると共に、偏差 eに Td' Sを乗算することにより微分値を求めて、 偏差 eと積分値と微分値を加算し、加算により得られた値にゲイン係数 Kpを乗算する ことにより値 MVを導出している。  [0061] Further, the PID control unit 96 obtains a deviation e of the rotation speed of the motor 40 with respect to the target rotation speed, an integral value obtained by time-integrating the deviation e, and a differential value obtained by time differentiation of the deviation e, respectively. The difference MV, the integral value, and the derivative value are added, and the value MV is obtained by multiplying the value obtained by the addition by the gain coefficient Kp, and the increase or decrease amount of the rotation speed of the motor 40 is determined according to the value MV. A speed control signal for instructing is output. The PID control unit 96 in FIG. 7 shows the flow of PID control in the Laplace transformed form, where Ti is the integration time, Td is the differentiation time, and s is the Laplace operator. Multiply the deviation e by l / (Ti 'S) to obtain the integral value, multiply the deviation e by Td' S to obtain the differential value, add the deviation e, the integral value and the differential value, The value MV is derived by multiplying the value obtained by the addition by the gain coefficient Kp.
[0062] ところで、本実施の形態に係るマイコン 82は、上述した PID制御を、駆動制御プロ グラムを実行することによって実現するものとされてレ、る。  By the way, the microcomputer 82 according to the present embodiment is assumed to realize the PID control described above by executing a drive control program.
[0063] 次に、本実施の形態に係る電動吊戸棚 10の作用を説明する。  [0063] Next, the operation of the electric hanging cabinet 10 according to the present embodiment will be described.
[0064] まず、図 9A〜図 9C及び図 10A〜図 10Cを参照して、ユーザがキャビネット 12を昇 降させる際の全体的な動作の流れを説明する。  [0064] First, an overall operation flow when the user raises and lowers the cabinet 12 will be described with reference to FIGS. 9A to 9C and FIGS. 10A to 10C.
[0065] ユーザは、図 9Aに示されるように、収納部 14に収納されたキャビネット 12を下降さ せる場合、把持部 62の金属部 70を手で把持し、把持部 62に対して下方向の力をカロ X·る。  As shown in FIG. 9A, when the user lowers the cabinet 12 stored in the storage unit 14, the user grips the metal part 70 of the gripping part 62 with his hand and moves downward with respect to the gripping part 62. Caro X.
[0066] これにより、把持部 62の内部に設けられた凸部 64A (図 4A及び図 4B参照)が金属 プレート 66に接触して金属プレート 66に下方向のひずみが発生し、金属プレート 66 のひずみに応じてひずみセンサ 72にも下方向のひずみが発生する(図 9B参照。)。  [0066] As a result, the convex portion 64A (see FIGS. 4A and 4B) provided inside the gripping portion 62 contacts the metal plate 66, and a downward strain is generated in the metal plate 66. Depending on the strain, the strain sensor 72 also generates downward strain (see Fig. 9B).
[0067] マイコン 82は、ひずみセンサ 72から出力される電圧レベルに基づいて目標回転速 度を取得し、 PID制御により当該目標回転速度でモータ 40の回転軸をキャビネット 1 2を下降させる方向に回転させることにより、ユーザのキャビネット 12に対する下降動 作をアシストする(図 9C参照。)。 [0067] The microcomputer 82 obtains the target rotation speed based on the voltage level output from the strain sensor 72, and moves the rotation axis of the motor 40 to the cabinet 1 at the target rotation speed by PID control. By rotating 2 in the downward direction, assist the user in the downward movement of the cabinet 12 (see Figure 9C).
[0068] 一方、ユーザは、図 1 OAに示されるように、下降したキャビネット 12を上昇させる場 合、把持部 62の金属部 70を手で把持し、把持部 62に対して上方向の力を加える。 [0068] On the other hand, when the user raises the lowered cabinet 12, as shown in FIG. 1 OA, the user grips the metal part 70 of the grip part 62 with his / her hand and applies upward force to the grip part 62. Add
[0069] これにより、把持部 62の内部に設けられた金属プレート 66に上方向のひずみが発 生し、ひずみセンサ 72にも上方向のひずみが発生する(図 10B参照。)。 [0069] As a result, upward strain is generated in the metal plate 66 provided inside the grip portion 62, and upward strain is also generated in the strain sensor 72 (see FIG. 10B).
[0070] マイコン 82は、ひずみセンサ 72から出力される電圧レベルに基づいて目標回転速 度を取得し、 PID制御により当該目標回転速度でモータ 40の回転軸をキャビネット 1[0070] The microcomputer 82 obtains the target rotation speed based on the voltage level output from the strain sensor 72, and moves the rotation axis of the motor 40 to the cabinet 1 at the target rotation speed by PID control.
2を上昇させる方向に回転させることにより、ユーザのキャビネット 12に対する上昇動 作をアシストする(図 10C参照。)。 Rotating 2 in the direction of raising assists the user in raising the cabinet 12 (see Figure 10C).
[0071] このように、本実施の形態に係る電動吊戸棚 10は、ユーザが別途アシスト動作を指 定する操作を行なうことなぐ把持部 62の金属部 70を手で把持してキャビネット 12を 上昇及び下降させる動作に応じてアシストを行うため、操作性がよい。 [0071] As described above, the electric hanging cabinet 10 according to the present embodiment lifts the cabinet 12 by gripping the metal part 70 of the gripping part 62 by hand without the user performing an operation of separately specifying the assist operation. Since the assist is performed in accordance with the lowering operation, the operability is good.
[0072] また、本実施の形態に係る電動吊戸棚 10は、ユーザが金属部 70に対して加える 力に調整してひずみセンサ 72のひずみ量を変えることにより、キャビネット 12を昇降 させる速度を調整できるため、使い勝手が向上する。 [0072] In addition, the electric hanging cabinet 10 according to the present embodiment adjusts the speed at which the cabinet 12 is moved up and down by changing the strain amount of the strain sensor 72 by adjusting the force applied to the metal part 70 by the user. This improves usability.
[0073] 次に、図 11を参照して、駆動制御プログラムを実行する際のマイコン 82の作用を詳 細に説明する。なお、当該駆動制御プログラムは電動吊戸棚 10の図示しない電源が オンされると実行され、電源がオフされると終了する。 Next, with reference to FIG. 11, the operation of the microcomputer 82 when executing the drive control program will be described in detail. The drive control program is executed when a power supply (not shown) of the electric hanging cabinet 10 is turned on, and ends when the power supply is turned off.
[0074] 同図のステップ 102では、タツチセンサ 71から入力された信号がハイレベルである か否かを判定し、肯定判定となった場合はステップ 106へ移行する一方、否定判定と なった場合は再度ステップ 104へ移行する。 [0074] In step 102 of the figure, it is determined whether or not the signal input from the touch sensor 71 is at a high level. If the determination is affirmative, the process proceeds to step 106. If the determination is negative, The process proceeds to step 104 again.
[0075] ステップ 104では、記憶している基準電圧レベルを、増幅回路 80から入力された信 号の電圧レベルに補正し、再度ステップ 102へ移行する。すなわち、金属部 70にュ 一ザの手が接触されるまでステップ 102〜ステップ 104の動作が繰り返される。これ により、例えば、振動等によってひずみセンサ 72にひずみが発生した場合等におけ る誤動作を防止している。また、本ステップ 104において基準電圧レベルを補正して いるため、外部環境の変化等により、ひずみセンサ 72から出力される信号の電圧が 変化した場合であっても、後述するステップ 106において、把持部 62の金属部 70を 手で把持されたことによるひずみに応じた電位差を正確に検出することができる。 In step 104, the stored reference voltage level is corrected to the voltage level of the signal input from the amplifier circuit 80, and the process proceeds to step 102 again. That is, the operations of Step 102 to Step 104 are repeated until the user's hand touches the metal part 70. As a result, for example, malfunction caused when strain occurs in the strain sensor 72 due to vibration or the like is prevented. In addition, since the reference voltage level is corrected in step 104, the voltage of the signal output from the strain sensor 72 due to a change in the external environment, etc. Even in the case of a change, it is possible to accurately detect the potential difference corresponding to the strain caused by gripping the metal part 70 of the gripping part 62 by hand in Step 106 described later.
[0076] ステップ 106では、記憶している基準電圧レベルを基準として増幅回路 80より入力 する信号の電圧レベルの電位差を検出する。  In step 106, the potential difference between the voltage levels of the signals input from the amplifier circuit 80 is detected using the stored reference voltage level as a reference.
[0077] 次のステップ 108では、ステップ 106において検出した電位差に基づき、電位差目 標回転速度変換テーブルから当該電位差に対応する目標回転速度を取得し、次の ステップ 110では、一定時間の間にエンコーダ 41より入力するパルスを検出すること によりモータ 40の回転速度を検出し、次のステップ 112では、上述した変換関数を用 いて上記ステップ 110において検出されたモータ 40の回転速度からゲイン係数 Kp を導出する。  [0077] In the next step 108, based on the potential difference detected in step 106, a target rotational speed corresponding to the potential difference is acquired from the potential difference target rotational speed conversion table. 41, the rotational speed of the motor 40 is detected by detecting the input pulse. In the next step 112, the gain coefficient Kp is derived from the rotational speed of the motor 40 detected in the above step 110 using the above-described conversion function. To do.
[0078] そして、次のステップ 114では、上記ステップ 108において導出した目標回転速度 に対する上記ステップ 110において検出したモータ 40の回転速度の偏差 e、偏差 e を時間積分した積分値、及び偏差 eを時間微分した微分値をそれぞれ求め、当該求 めた偏差と積分値と微分値を加算し、当該加算により得られた値に対してゲイン係数 Kpを乗算して直 MVを算出する。  [0078] Then, in the next step 114, the deviation e of the rotational speed of the motor 40 detected in step 110 with respect to the target rotational speed derived in step 108, an integrated value obtained by integrating the deviation e over time, and the deviation e as time. Each differentiated differential value is obtained, and the obtained deviation, integral value, and differential value are added, and the value obtained by the addition is multiplied by a gain coefficient Kp to calculate a direct MV.
[0079] 次のステップ 116では、上記ステップ 114において算出した値 MVに応じて回転速 度の増加量又は減少量を指示する速度制御信号を出力し、上述したステップ 102へ 戻り、処理を継続して実行する。  [0079] In the next step 116, a speed control signal instructing an increase or decrease in the rotational speed is output according to the value MV calculated in step 114, and the process returns to step 102 described above to continue the process. And execute.
[0080] ここで、図 12A及び図 12Bには、本実施の形態に係るマイコン 82によってモータ 4 0の回転速度を制御した際のモータ 40の回転速度の変化が示されている。  Here, FIG. 12A and FIG. 12B show changes in the rotational speed of motor 40 when the rotational speed of motor 40 is controlled by microcomputer 82 according to the present embodiment.
[0081] 本実施の形態に係る駆動制御プログラムによる PID制御では、変換関数によって 導出されるゲイン係数がモータ 40の回転速度の増加に伴って大きな値となるため、 図 12Αに示されるように、 目標回転速度が速!/、回転速度に変更された際のモータの 回転速度の速度応答性を良好に保つことができる。  [0081] In the PID control by the drive control program according to the present embodiment, the gain coefficient derived by the conversion function becomes a large value as the rotational speed of the motor 40 increases, so as shown in FIG. The target rotational speed is fast! /, And the speed responsiveness of the rotational speed of the motor when the rotational speed is changed can be kept good.
[0082] また、モータ 40の回転速度が低!/、場合は、変換関数によって導出されるゲイン係 数が比較的小さな値となるため、図 12Bに示されるように、 目標回転速度が振動する 場合であっても、モータの回転速度にハンチングが発生することを抑制することがで きる。 [0083] また、本実施の形態に係る電動吊戸棚 10は、ユーザがキャビネット 12を速く昇降さ せるために金属部 70に対して大きな力を加えてひずみセンサ 72のひずみ量を大き くした場合であっても、モータ 40の回転速度が低速の場合、変換関数によって導出 されるゲイン係数が小さな値であるため、キャビネット 12が緩やかに移動を開始する ので、高齢者等でも扱い易い。 [0082] Further, when the rotational speed of the motor 40 is low! /, The gain coefficient derived by the conversion function becomes a relatively small value, so that the target rotational speed vibrates as shown in FIG. 12B. Even in this case, the occurrence of hunting in the rotational speed of the motor can be suppressed. [0083] In addition, the electric hanging cabinet 10 according to the present embodiment increases the strain amount of the strain sensor 72 by applying a large force to the metal part 70 so that the user can raise and lower the cabinet 12 quickly. However, when the rotational speed of the motor 40 is low, the gain coefficient derived by the conversion function is a small value, and the cabinet 12 starts to move slowly.
[0084] 以上のように本実施の形態によれば、検出部(ここでは、回転速度検出部 92)によ り、モータの回転速度を検出し、取得部(目標回転速度取得部 90)により、モータの 目標回転速度を取得し、導出部(ここでは、ゲイン係数導出部 94)により、 目標回転 速度に対するモータの回転速度の偏差に応じてモータの回転速度を目標回転速度 に一致させるように制御するフィードバック制御を行う際に、モータの回転速度が目 標回転速度を超過するオーバーシュートを発生させない範囲内で、モータの回転速 度の調整量を増幅するゲイン係数を、検出部により検出された回転速度が速いほど 大きな値となるように導出し、制御部(PID制御部 96)により、取得部により取得され た目標回転速度に対する検出部により検出された回転速度の偏差、及び導出部に より導出されたゲイン係数に基づ!/、てフィードバック制御を行って!/、るので、速度応 答性の低下を抑制しつつ、低速動作時に目標回転速度が振動した場合であっても モータの回転速度にハンチングが発生することを抑制することができる。  As described above, according to this embodiment, the rotation speed of the motor is detected by the detection unit (here, the rotation speed detection unit 92), and is acquired by the acquisition unit (target rotation speed acquisition unit 90). The target rotational speed of the motor is acquired, and the derivation unit (in this case, the gain coefficient derivation unit 94) is configured to match the rotational speed of the motor with the target rotational speed according to the deviation of the rotational speed of the motor from the target rotational speed When performing feedback control, the detection unit detects a gain coefficient that amplifies the adjustment amount of the motor rotation speed within a range that does not cause an overshoot in which the motor rotation speed exceeds the target rotation speed. The higher the rotation speed is, the higher the value is derived, and the control unit (PID control unit 96) calculates the deviation of the rotation speed detected by the detection unit from the target rotation speed acquired by the acquisition unit. Based on the gain coefficient derived by the derivation unit! /, Feedback control is performed! /, So the target rotational speed vibrates during low-speed operation while suppressing a decrease in speed response. However, the occurrence of hunting in the rotational speed of the motor can be suppressed.
[0085] なお、本実施の形態では、 PID制御によりモータ 40の回転速度をフィードバック制 御する場合について説明した力 本発明はこれに限定されるものではなぐ例えば、 PI制御などの他のフィードバック制御によりモータ 40の回転速度を制御するものとし てもよい。この場合も、本実施の形態と同様の効果を奏することができる。  In the present embodiment, the force described in the case where the rotational speed of the motor 40 is feedback controlled by PID control. The present invention is not limited to this, for example, other feedback control such as PI control. The rotational speed of the motor 40 may be controlled by Also in this case, the same effects as in the present embodiment can be obtained.
[0086] また、本実施の形態では、モータ 40の回転速度から 1つのゲイン係数 Kpを変換関 数により導出する場合について説明した力 S、本発明はこれに限定されるものではなく 、例えば、回転速度から比例ゲイン係数、積分ゲイン係数、微分ゲイン係数を各々異 なる変換関数により導出し、前記偏差に比例ゲイン係数を乗算した値、前記偏差を 時間積分した積分値に積分ゲイン係数を乗算した値、及び偏差を時間微分した微分 値に微分ゲイン係数を乗算した値をそれぞれ求め、それぞれの値を加算して得られ た値に基づいてモータの回転速度の制御を行うものとしてもよい。これにより、モータ 40の回転速度に応じて比例ゲイン係数、積分ゲイン係数、微分ゲイン係数を個別に 変えることができるため、モータ 40の応答特性を細力べ制御することができる。 Further, in the present embodiment, the force S described for the case where one gain coefficient Kp is derived from the rotational speed of the motor 40 by a conversion function, the present invention is not limited to this, for example, The proportional gain coefficient, integral gain coefficient, and differential gain coefficient are derived from the rotation speed by different conversion functions, and the value obtained by multiplying the deviation by the proportional gain coefficient and the integral value obtained by time-integrating the deviation are multiplied by the integral gain coefficient. A value obtained by multiplying the differential gain obtained by differentiating the value and the deviation with a differential gain coefficient may be obtained, and the rotational speed of the motor may be controlled based on the value obtained by adding the respective values. As a result, the motor Since the proportional gain coefficient, integral gain coefficient, and differential gain coefficient can be individually changed according to the rotational speed of 40, the response characteristics of the motor 40 can be controlled with great strength.
[0087] また、本実施の形態では、モータ 40の駆動力によりキャビネット 12の昇降動作をァ シストする場合について説明した力 本発明はこれに限定されるものではなぐモータFurther, in the present embodiment, the force described in the case of assisting the lifting / lowering operation of the cabinet 12 by the driving force of the motor 40. The present invention is not limited to this.
40の駆動力によりアシスト対象物に対するユーザの動作をアシストする他の電動ァシ スト装置に用いてもよい。 The present invention may be used for another electric assist device that assists the user's operation with respect to the assist target with the driving force of 40.
[0088] その他、本実施の形態で説明した電動吊戸棚 10の構成(図 1〜図 4A及び図 4B参 照。)電動吊戸棚 10の電気系の構成(図 5参照。)、及びマイコン 82の機能的な構成[0088] In addition, the configuration of the electric hanging cabinet 10 described in the present embodiment (see Figs. 1 to 4A and 4B), the electric system configuration of the electric hanging cabinet 10 (see Fig. 5), and the microcomputer 82. Functional configuration
(図 7参照。)は一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可 能であることは言うまでもな!/、。 (Refer to FIG. 7) is an example, and it goes without saying that it can be changed as appropriate without departing from the scope of the present invention! /.
[0089] また、本実施の形態で説明した電位差目標回転速度変換テーブル(図 6参照。)の データ構造も一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能 であることは言うまでもな!/、。 In addition, the data structure of the potential difference target rotation speed conversion table (see FIG. 6) described in the present embodiment is also an example, and it goes without saying that it can be changed as appropriate without departing from the gist of the present invention. ! /
[0090] また、本実施の形態で説明した駆動制御プログラム(図 10A〜図 10C参照。 )の処 理の流れも一例であり、本発明の主旨を逸脱しない範囲内において適宜変更可能 であることは言うまでもな!/、。 In addition, the processing flow of the drive control program (see FIGS. 10A to 10C) described in the present embodiment is also an example, and can be appropriately changed without departing from the gist of the present invention. Needless to say!
産業上の利用可能性  Industrial applicability
[0091] モータの速度応答性の低下を抑制しつつ、低速動作時に目標回転速度が振動し た場合であってもモータの回転速度にハンチングが発生することを抑制することによ つて、モータの回転速度のフィードバック制御を行うモータ駆動制御装置、当該モー タ駆動制御装置を備えた電動アシスト装置及び応答性フィードバック制御方法に適 用できる。 [0091] By suppressing the occurrence of hunting in the rotational speed of the motor even when the target rotational speed vibrates during low-speed operation while suppressing a decrease in the speed responsiveness of the motor, The present invention can be applied to a motor drive control device that performs feedback control of rotational speed, an electric assist device that includes the motor drive control device, and a responsive feedback control method.
符号の説明  Explanation of symbols
[0092] 40 モータ [0092] 40 motor
82 マイコン  82 Microcomputer
90 目標回転速度取得部  90 Target rotation speed acquisition unit
92 回転速度検出部  92 Rotation speed detector
94 ゲイン係数導出部 PID制御部 94 Gain factor deriving section PID controller

Claims

請求の範囲 The scope of the claims
[1] モータの回転速度を検出する検出部と、 [1] a detection unit for detecting the rotation speed of the motor;
前記モータの目標回転速度を取得する取得部と、  An acquisition unit for acquiring a target rotational speed of the motor;
前記目標回転速度に対する前記モータの回転速度の偏差に応じて前記モータの 回転速度を前記目標回転速度に一致させるように制御するフィードバック制御を行う 際に、前記モータの回転速度が前記目標回転速度を超過するオーバーシュートを発 生させない範囲内で、前記モータの回転速度の調整量を増幅するゲイン係数を、前 記検出部により検出された前記回転速度が速いほど大きな値となるように導出する導 出部と、  When performing feedback control for controlling the motor rotational speed to match the target rotational speed according to a deviation of the motor rotational speed with respect to the target rotational speed, the rotational speed of the motor is set to the target rotational speed. The gain coefficient for amplifying the adjustment amount of the rotation speed of the motor within a range that does not cause excessive overshoot is derived so that the gain coefficient increases as the rotation speed detected by the detection unit increases. And outing,
前記取得部により取得された前記目標回転速度に対する前記検出部により検出さ れた前記回転速度の偏差、及び前記導出部により導出されたゲイン係数に基づいて 前記フィードバック制御を行う制御部と、  A control unit that performs the feedback control based on a deviation of the rotation speed detected by the detection unit with respect to the target rotation speed acquired by the acquisition unit, and a gain coefficient derived by the derivation unit;
を備えたモータ駆動制御装置。  A motor drive control device.
[2] 前記制御部は、前記フィードバック制御として、前記偏差、前記偏差を時間積分し た積分値、前記偏差を時間微分した微分値、及び前記導出部により導出されたゲイ ン係数に基づレ、て PID制御を行う  [2] The control unit performs the feedback control based on the deviation, an integral value obtained by time-integrating the deviation, a differential value obtained by time-differentiating the deviation, and a gain coefficient derived by the derivation unit. , PID control
請求項 1記載のモータ駆動制御装置。  The motor drive control device according to claim 1.
[3] 前記制御部は、前記偏差と前記積分値と前記微分値を加算し、当該加算により得 られた値に対して前記ゲイン係数を乗算し、当該乗算により得られた値に基づいて 前記 PID制御を行う [3] The control unit adds the deviation, the integral value, and the differential value, multiplies the value obtained by the addition by the gain coefficient, and based on the value obtained by the multiplication, Perform PID control
請求項 2記載のモータ駆動制御装置。  The motor drive control device according to claim 2.
[4] 請求項 1乃至請求項 3の何れか 1項記載のモータ駆動制御装置と、 [4] The motor drive control device according to any one of claims 1 to 3, and
前記モータ駆動制御装置により制御され、アシスト対象物を駆動するモータと、 を備えた電動アシスト装置。  An electric assist device comprising: a motor that is controlled by the motor drive control device and drives an assist target.
[5] モータの回転速度を検出すると共に、前記モータの目標回転速度を取得し、 前記目標回転速度に対する前記モータの回転速度の偏差に応じて前記モータの 回転速度を前記目標回転速度に一致させるように制御するフィードバック制御を行う 際に、前記モータの回転速度が前記目標回転速度を超過するオーバーシュートを発 生させない範囲内で、前記モータの回転速度の調整量を増幅するゲイン係数を、検 出した前記回転速度が速いほど大きな値となるように導出し、 [5] The rotational speed of the motor is detected, the target rotational speed of the motor is acquired, and the rotational speed of the motor is matched with the target rotational speed according to a deviation of the rotational speed of the motor with respect to the target rotational speed. When the feedback control is performed, an overshoot is generated in which the rotational speed of the motor exceeds the target rotational speed. A gain coefficient that amplifies the adjustment amount of the rotation speed of the motor within a range that is not generated is derived so that the gain value increases as the detected rotation speed increases.
取得した前記目標回転速度に対する検出した前記回転速度の偏差、及び導出し た前記ゲイン係数に基づいて前記フィードバック制御を行う、  The feedback control is performed based on the detected deviation of the rotational speed with respect to the acquired target rotational speed, and the derived gain coefficient.
応答性フィードバック制御方法。  Responsive feedback control method.
PCT/JP2007/073402 2006-12-05 2007-12-04 Motor drive control apparatus, electrically driven assist apparatus, and responsiveness feedback control method WO2008069205A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-328221 2006-12-05
JP2006328221A JP4881138B2 (en) 2006-12-05 2006-12-05 Motor drive control device, electric assist device, and responsive feedback control method

Publications (1)

Publication Number Publication Date
WO2008069205A1 true WO2008069205A1 (en) 2008-06-12

Family

ID=39492091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073402 WO2008069205A1 (en) 2006-12-05 2007-12-04 Motor drive control apparatus, electrically driven assist apparatus, and responsiveness feedback control method

Country Status (3)

Country Link
JP (1) JP4881138B2 (en)
TW (1) TWI382649B (en)
WO (1) WO2008069205A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477413A (en) * 2010-02-02 2011-08-03 Makita Corp Motor control device for electric power tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014880B (en) 2012-12-20 2015-06-24 天津大学 Novel affinity ligand polypeptide library of immunoglobulin G constructed based on protein A affinity model and application of design method
US10034540B1 (en) * 2015-11-25 2018-07-31 Superior Motorized Shelving Systems, LLC Motorized shelf assembly
US10561235B1 (en) 2015-11-25 2020-02-18 Superior Motorized Shelving Systems, LLC Motorized shelf assembly
CN105958873B (en) * 2016-06-13 2018-03-27 西华大学 Water pump nine phase brushless DC motor governing systems and its tandem rotational speed governor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113826A (en) * 1991-10-22 1993-05-07 Fuji Electric Co Ltd Speed controller
JPH1189642A (en) * 1997-09-18 1999-04-06 Matsushita Electric Ind Co Ltd Operation force reducing device
JPH11235069A (en) * 1998-02-09 1999-08-27 Nec Corp Speed controller of motor-driven blind

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096945B2 (en) * 2002-11-26 2008-06-04 三菱電機株式会社 Motor speed control device
TW591883B (en) * 2003-01-24 2004-06-11 Delta Electronics Inc Method of instant estimation of rotor inertia of a load motor
CN100470433C (en) * 2003-04-11 2009-03-18 三菱电机株式会社 Servo controller
TW200631300A (en) * 2006-05-12 2006-09-01 Univ Lunghwa Sci & Technology Control method for senseless permanent magnet synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113826A (en) * 1991-10-22 1993-05-07 Fuji Electric Co Ltd Speed controller
JPH1189642A (en) * 1997-09-18 1999-04-06 Matsushita Electric Ind Co Ltd Operation force reducing device
JPH11235069A (en) * 1998-02-09 1999-08-27 Nec Corp Speed controller of motor-driven blind

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477413A (en) * 2010-02-02 2011-08-03 Makita Corp Motor control device for electric power tool
US8616299B2 (en) 2010-02-02 2013-12-31 Makita Corporation Motor control device, electric power tool, and recording medium
GB2477413B (en) * 2010-02-02 2014-01-01 Makita Corp Motor Control Device, Electric Power Tool, And Program

Also Published As

Publication number Publication date
JP4881138B2 (en) 2012-02-22
TWI382649B (en) 2013-01-11
TW200836471A (en) 2008-09-01
JP2008141923A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
WO2008069205A1 (en) Motor drive control apparatus, electrically driven assist apparatus, and responsiveness feedback control method
JP5848998B2 (en) Transport cart
JP6327198B2 (en) Electric power steering control device
US8024071B2 (en) Robot, controlling device and controlling method for robot, and controlling program for robot-controlling device
US9828022B2 (en) Electric power steering apparatus and method of controlling the same
CN101395056A (en) Electric power steering control system
JP6103164B2 (en) Electric power steering device
JP2016107711A (en) Control device
JP5265155B2 (en) Electric auxiliary device
JP5897645B2 (en) Servo control device that reduces the deflection of the machine tip
JP5871001B2 (en) Exercise device, motor control device, and motor control method
WO2005073818A1 (en) Servo control apparatus
JPH10257791A (en) Motor control device of switching mechanism
JP3235112B2 (en) Motor control device
JP2002053050A (en) Electrical powered steering device
CN112134504A (en) Control device for inertia evaluation and inertia evaluation method
JP3705718B2 (en) Control device for drive mechanism with motor
JP6380114B2 (en) Vehicle seat control device
KR20140031023A (en) Method for controlling torque compensating of mdps system
US9311791B2 (en) Tactile feel control device
JP2007278776A (en) Angular velocity calculation unit
JP4759978B2 (en) Control device for electric power steering device
JP2020055357A (en) Torque controller and power steering system
JP2007093053A (en) Electric assist device
JP2005307563A (en) Safety device for power window

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850050

Country of ref document: EP

Kind code of ref document: A1