WO2008068917A1 - Device for detoxicating semiconductor production exhaust gas - Google Patents

Device for detoxicating semiconductor production exhaust gas Download PDF

Info

Publication number
WO2008068917A1
WO2008068917A1 PCT/JP2007/062396 JP2007062396W WO2008068917A1 WO 2008068917 A1 WO2008068917 A1 WO 2008068917A1 JP 2007062396 W JP2007062396 W JP 2007062396W WO 2008068917 A1 WO2008068917 A1 WO 2008068917A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
abatement
plasma jet
unit
units
Prior art date
Application number
PCT/JP2007/062396
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Kato
Tatsuro Beppu
Hiroshi Imamura
Original Assignee
Kanken Techno Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanken Techno Co., Ltd. filed Critical Kanken Techno Co., Ltd.
Priority to JP2008548169A priority Critical patent/JPWO2008068917A1/en
Publication of WO2008068917A1 publication Critical patent/WO2008068917A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a detoxification device for decomposing and detoxifying semiconductor manufacturing exhaust gas containing PFCs and the like using a non-migration type plasma jet.
  • fluorine compound gases are used as cleaning gases, etching gases, and the like in manufacturing processes of semiconductors and liquid crystals.
  • fluorine compounds are called "PF Cs etc.”
  • exhaust gas O, H, NH, CH, etc. as semiconductor manufacturing exhaust gas (hereinafter simply referred to as “exhaust gas”)
  • the proportion of PFCs and the like in the exhaust gas is larger than that of other gases such as N and Ar.
  • PFCs have a global warming coefficient (GWP) of thousands compared to CO.
  • GWP global warming coefficient
  • the lifetime of the atmosphere which is tens of thousands of times, is as long as thousands to tens of thousands of years compared to CO.
  • Perfluorocarbons typified by F have stable C F bonds (bond energy)
  • the temperature of the plasma jet is approximately several thousand to several tens of thousands of degrees C. by using a diatomic molecular gas such as nitrogen gas or hydrogen gas as the working gas.
  • a diatomic molecular gas such as nitrogen gas or hydrogen gas
  • the atmospheric temperature of the plasma jet will be several thousand degrees Celsius
  • PFCs, especially perfluorocarbons and other difficult-to-decompose exhaust gases are instantly and irreversibly thermally decomposed and removed. be able to.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-205330
  • the life of the plasma jet torch in such an abatement unit is about 3 to 6 months, and when the life of the plasma jet torch comes or for some reason If the torch fails, or if the plasma jet misfires for any reason other than life or failure, the abatement unit must be stopped and maintained. For this reason, it is almost impossible to operate the abatement device continuously for a long period of time (for example, over 6 months). Also, in order to stop and maintain the abatement unit, the operation of the semiconductor manufacturing facility must also be stopped, which makes it difficult to improve the operating rate of the semiconductor manufacturing equipment.
  • the main problem of the present invention is a semiconductor that can reliably and efficiently remove a large flow rate of semiconductor manufacturing exhaust gas containing PFCs and the like, and can operate continuously for a long period of time and is excellent in space saving. It is to provide a production exhaust gas abatement apparatus.
  • the invention described in claim 1 is the following: "Plasma jet torch (18) and plasma jet torch (18) provided on plasma jet ejection side, plasma jet (P) and this plasma jet KP)
  • a reaction cylinder (24) that surrounds the exhaust gas (F) supplied toward the interior and thermally decomposes the exhaust gas (F) is provided inside, and an inlet valve (40) that opens and closes the flow path is provided.
  • a plurality of detoxification units (12) connected to the semiconductor manufacturing apparatus (16) via individual inlet pipes (38) and an outlet valve (35) for opening and closing the flow path are provided, and each reaction cylinder ( 24) a semiconductor production exhaust gas abatement device (10) characterized by comprising an individual outlet pipe (37) communicating with the discharge side end of 24).
  • the plurality of abatement units (12) are connected to the semiconductor manufacturing apparatus (16) via the individual inlet pipe (38) provided with the inlet valve (40) for opening and closing the flow path. Therefore, according to the flow rate of the semiconductor manufacturing exhaust gas (F) discharged from the semiconductor manufacturing equipment (16), the inlet valve (40) of the individual inlet pipe (38) is opened and closed, and the abatement unit used ( The number of 12) can be increased or decreased, and some of the abatement units (12) can be stopped for backup.
  • Pyrolysis can be reliably performed with low energy consumption.
  • the abatement device (10) is configured by a plurality of abatement units (12), a plurality of abatement devices configured by a single abatement unit (12) are installed. Compared to the case, it can be made compact and excellent in space saving.
  • the invention described in claim 2 is the semiconductor manufacturing exhaust gas (F) detoxifying device (10) according to claim 1, wherein the temperature in the reaction tube (24) is , Pressure or plasma jet (P) It is characterized by sensing at least one of the ignition states and automatically controlling the inlet valve (40) based on the sensed information '', so that the abatement unit (12) When trouble occurs, the exhaust gas treatment at the troubled abatement unit (12) is immediately interrupted and the treatment of the exhaust gas (F) can be automatically switched to another abatement unit (12). it can. Therefore, it is possible to prevent the exhaust gas (F) removal treatment capability from being lowered and to reduce the operation management burden of the removal device (10).
  • the invention described in claim 4 is the "detoxification" in the semiconductor manufacturing exhaust gas (F) detoxification device (10) according to any one of claims 1 to 3.
  • Unit (12) n units (where n is an integer greater than or equal to 3) n-1 units (where n is an integer greater than or equal to 3) power supply units (20) are provided, via switch (26)
  • the power supply unit (20) connected to the abatement unit (12) can be switched '', and the power supply unit (20) mounted on the abatement device (10) is thus By reducing the number of the abatement units less than the number of the abatement units (12), the abatement device (10) can be made compact.
  • the invention described in claim 5 is the “detoxification” in the semiconductor manufacturing exhaust gas (F) detoxification device (10) according to any one of claims 1 to 4.
  • the exhaust gas (F) decomposed in the unit (12) is combined with an outlet scrubber (14) to be washed and cooled, and the exhaust gas (F) before decomposition in the abatement unit (12) is discharged to the outlet scrubber ( 14) is provided with a normally closed binos pipe (42) to be supplied to the inlet side.
  • a normally closed binos pipe (42) to be supplied to the inlet side.
  • the plurality of abatement units are connected to the semiconductor manufacturing apparatus via the individual inlet pipe provided with the inlet valve for opening and closing the flow path.
  • the individual inlet pipe provided with the inlet valve for opening and closing the flow path.
  • Pyrolysis can be reliably performed with low energy consumption.
  • a semiconductor production exhaust gas abatement apparatus that can reliably and efficiently remove a large flow rate of semiconductor production exhaust gas containing PFCs and the like, and is capable of continuous operation for a long period of time and is excellent in space saving. be able to.
  • FIG. 1 is a configuration diagram showing an outline of a semiconductor manufacturing exhaust gas abatement apparatus according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a configuration diagram showing an outline of an abatement unit in the present invention.
  • FIG. 4 is a configuration diagram showing an outline of a semiconductor manufacturing exhaust gas abatement apparatus according to another embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing an outline of a semiconductor production exhaust gas abatement apparatus (10) of the present embodiment.
  • 2 is a cross-sectional view taken along the line A— in FIG.
  • the abatement device (10) of the present embodiment is roughly composed of a plurality of (three in this embodiment) abatement units (12) and an output loss scrubber (14). Yes.
  • the abatement unit (12) is an apparatus for thermally decomposing exhaust gas (F) containing PFCs, etc., from which semiconductor manufacturing equipment (16) is also exhausted.
  • FIG. Plasma jet torch (1 8) A plasma abatement machine composed of a power supply unit (20), a working gas supply unit (22), and a reaction tube (24).
  • the plasma jet torch (18) generates a high-temperature plasma jet (P), and has a short cylindrical torch body (18a) that is open on both upper and lower surfaces due to a metal material force such as brass.
  • An anode (18b) is connected to the tip of the torch body (18a), and a rod-shaped force sword (18c) is attached to the inside of the torch body (18a).
  • the anode (18b) is a cylindrical nozzle made of a refractory metal having high conductivity such as copper or tungsten and having a plasma generation chamber (18d) recessed therein.
  • a plasma jet ejection hole (18e) through which the plasma jet (P) generated in the plasma generation chamber (18d) is ejected is formed in the center of the lower surface of the anode (18b).
  • the upper part is provided with a working gas supply port (18D.
  • the force sword (18c) also has a main body made of a high melting point metal having high conductivity such as copper and a tungsten force mixed with trimium or lanthanum, and has an outer diameter toward the tip. This is a rod-shaped member composed of a spindle-shaped distal end portion.
  • the tip of the force sword (18c) is disposed in a plasma generation chamber (18d) recessed in the anode (18b).
  • the power supply unit (20) applies a predetermined discharge voltage to the anode (18b) and the force sword (18c) described above to generate a plasma arc.
  • the power supply unit (20) includes a so-called switch. It is preferable to use a DC power supply device of a ching method.
  • the same number of power supply units (20) as the abatement unit (12) that is always operated are equipped.
  • the power supply unit (20) is connected to the abatement unit (12) through the switch (26). Therefore, operate this switch (26). By doing so, the abatement unit (12) for supplying power can be switched.
  • the working gas feed unit (22) feeds a working gas (G) such as nitrogen, hydrogen or argon into the plasma generation chamber (18d) of the anode (18b).
  • a regulator (22a) that depressurizes the high-pressure working gas (G) stored in a cylinder or the like (not shown), and a working gas feed provided in the regulator (22a) and the anode (18b).
  • a working gas feed pipe (22b) communicating with 18D.
  • the working gas feed pipe (22b) has an amount of working gas (G) fed into the plasma generation chamber (18d).
  • a flow rate control means (28) is attached to control.
  • the reaction cylinder (24) is a straight pipe-type member having both ends that are refractory material strength such as castable, and one end (the upper end in FIG. 3) is connected to the plasma jet torch (30) via the exhaust gas supplier (30).
  • 18) Connected to the end of the plasma jet injection hole (18e) side, which surrounds the plasma jet (P) and the exhaust gas (F), and thermally decomposes the exhaust gas (F) in its internal space It is.
  • the exhaust gas supply device (30) is a member that blows the exhaust gas (F) in a spiral shape and supplies it to the vicinity of the upstream side of the plasma jet (P).
  • the other end of the reaction tube (24) serves as a discharge end of the exhaust gas (F) decomposed in the reaction tube (24).
  • a water tank (34) that stores chemicals and water through a swirling shower (32) that allows the dust in the exhaust gas (F) to flow down while swirling and flushing so that dust in the exhaust gas (F) does not adhere to the tube.
  • the water tank (34) has three partition walls (34a) that are installed in the water so that the upper end is attached to the ceiling surface inside the water tank (34) and the lower end is separated from the bottom force of the water tank (34). ) Is provided.
  • the space in the water tank (34) is isolated from each other, communicating with the internal space of the three reaction tubes (24) and the internal space of one outlet scrubber (14), respectively. It is divided into four spaces (34b). Of these four spaces (34b), each of the three spaces (34b) communicating with the internal space of the reaction tube (24) has an individual outlet pipe having an outlet valve (35) for opening and closing the flow path. One end of (37) is connected, and the other end of the individual outlet pipe (37) is connected to the space (34b) communicating with the internal space of the outlet scrubber (14). That is, the treated exhaust gas (F) from which the reaction cylinder (24) force is also discharged is individually supplied to the outlet scrubber (14) through the individual outlet pipe (37). Note that the individual outlet pipe (37) is cleaned and cooled toward the outlet valve (35). A spray means (not shown) for injecting reject water is attached.
  • the reaction cylinder (24) is provided with a sensor for sensing at least one of temperature, pressure, and plasma jet (P) ignition state in the reaction cylinder (24), Using the information sensed by this sensor, the opening and closing of the inlet valve (40) described later is automatically controlled.
  • each abatement unit (12) is installed in parallel on the water tank (34) [that is, a plurality of reaction tubes (24) are close to each other] (see Figures 1 and 2), the exhaust pipe (30) of each abatement unit (12) is connected to the main pipe (36) through which exhaust gas (F) flows.
  • a plurality of (three in the present example) individual inlet pipes (38) branched from each other are connected to each other.
  • each individual inlet pipe (38) is provided with an inlet valve (40).
  • By opening and closing the powerful inlet valve (40) exhaust gas supply to the abatement unit (12) and Stop is controlled.
  • an inlet valve (40) in the individual inlet pipe (38) it is possible to control the flow of exhaust gas (F) in the individual inlet pipe (38).
  • bypass pipe (42) is connected to the main pipe (36) via a normally closed valve (42a), and the other end of the binose pipe (42) is connected to an output loss scrubber to be described later. It is connected to the inlet side of (14).
  • the outer periphery of the plurality of reaction tubes (24) arranged in parallel on the water tank (34) is surrounded by a heat insulating material (H) made of a material such as rock wool or calcium silicate.
  • each semiconductor manufacturing apparatuses (16) are connected to the main pipe (36) via valves (44), respectively.
  • the number of semiconductor manufacturing equipment (16) connected to the harmful equipment (10) is not limited to this.
  • the individual inlet pipes (38) may be connected to each other while being directly connected to the conductor manufacturing apparatus (16). That is, each of the plurality of abatement units (12) is connected to the semiconductor manufacturing apparatus (16) via the individual inlet pipe (38), and the exhaust gas (F) flow control in each individual inlet pipe (38).
  • the piping structure may be anything as long as it is possible.
  • the output loss scrubber (14) washes the exhaust gas (F) pyrolyzed by the abatement unit (12) with water to remove dust and water-soluble components and cleans it. This is intended to cool the exhaust gas (F), and it faces the straight pipe type scrubber body (48) with the exhaust gas inlet (46) at the lower end in the flow direction of the exhaust gas (F). It consists of a downward spray nozzle (50) that ejects chemicals and water!
  • the outlet scrubber (14) is also erected on the water tank (34) in the same manner as the abatement unit (12), and the spray nozzle (50) force sprayed chemical liquid or water is used in the water tank (34). Is sent to.
  • An exhaust fan that discharges the treated exhaust gas (F) into the atmosphere via a breather (52) for introducing the atmosphere into the exhaust gas (F) is provided at the top outlet of the output loss scrubber (14). 54) is connected.
  • the abatement apparatus (10) When removing the exhaust gas (F) using the abatement apparatus (10) of the present embodiment configured as described above, first, the abatement apparatus (10) (not shown) is turned on. In the example shown in Fig. 1, the flow control of the right and left end abatement units (12) of the three abatement units (12) installed in parallel The means (28) is operated to feed the working gas (G) into the plasma generation chamber (18d).
  • the abatement unit (12) that is operated by switching the switch (26) is connected to the power supply unit (20), the power supply unit (20) is operated, and the plasma of the abatement unit (12) is operated.
  • the jet ignition switch (not shown) turned on, a voltage is applied between the electrodes (18b) and (18c) of the plasma jet torch (18), and the plasma jet outlet (18e) force also ejects the plasma jet (P).
  • the inlet valve (40) of the individual inlet pipe (38) [example shown in FIG. In this case, among the three abatement units (12) installed in parallel, the inlet valves (40) respectively provided in the individual inlet pipes (38) connected to the right and left abatement units (12). )] Is opened, and exhaust gas (F) is supplied into the reaction tube (24). Then, the exhaust gas (F) supplied into the reaction cylinder (24) via the exhaust gas supply device (30) flows down in a spiral shape so as to surround the plasma jet (P) and is heated in the reaction cylinder (24). Disassembled It is.
  • the exhaust gas (F) pyrolyzed by the abatement unit (12) is guided to the exhaust gas inlet (46) of the output loss scrubber (14) via the individual outlet pipe (37). After being washed and cooled by the output loss scrubber (14), it is discharged into the atmosphere through the exhaust fan (54).
  • the plurality of abatement units (12) are provided via the individual inlet pipe (38) provided with the inlet valve (40) for opening and closing the flow path. Since it is connected to the manufacturing equipment (16), the abatement unit (12) used by opening and closing the inlet valve (40) according to the flow rate of the exhaust gas (F) discharged from the semiconductor manufacturing equipment (16).
  • the number of can be increased or decreased. In other words, when the maximum exhaust gas treatment capacity of the abatement unit (12) is 100 liters Z, it is possible to treat exhaust gas (F) of 200 liters Z by operating two such abatement units in parallel. Become. It is also possible to stop some of the multiple abatement units (12) for backup.
  • Exhaust gas (F) can be reliably pyrolyzed with low energy consumption.
  • the abatement device (10) is configured by a plurality of abatement units (12), a plurality of abatement devices configured by a single abatement unit (12) are installed. Compared to the case, the abatement device (10) can be made compact and excellent in space saving.
  • the abatement device (10) may be equipped with a plurality of abatement units (12). For example, it may be 2 or 4 or more.
  • the power supply unit to be installed is shown in the case where two power supply units (20) are provided to the three abatement units (12) via the switch (26) (
  • the number of 20) should be less than the number of abatement units (12), not limited to this, especially the minimum number that can guarantee the target exhaust gas treatment capacity. In this way, the abatement device (10) can be made even more compact.
  • the exhaust gas (F) passing through the reaction cylinder (24) is efficiently thermally decomposed by integrally surrounding the plurality of reaction cylinders (24) with the heat insulating material (H).
  • each reaction tube (24) may be separately surrounded by a heat insulating material (H). It is not necessary to provide a heat insulating material (H).
  • the removal loss scrubber (14) is provided in the abatement apparatus (10) is shown. 1S
  • a separate exhaust gas treatment process is provided in the post-process, and the abatement apparatus (10 ) May only omit PFCs, the output loss scrubber (14) may be omitted as shown in Fig. 4.
  • the exhaust gas (F) is removed from the wet scrubber before being introduced into the abatement unit (12). You can wash it with a bath!

Abstract

A device for detoxicating semiconductor production exhaust gas capable of long-term, continuous operation while exhibiting excellent space saving performance, by which semiconductor production exhaust gas of high flow rate containing PFCs, and the like, can be detoxicated surely and efficiently. The device is characterized by comprising a plurality of detoxization units (12) that consist of a plasma jet torch (18) and a reaction tube (24) provided on the plasma jet ejection side of the plasma jet torch (18) to surround plasma jet (P) and exhaust gas (F) supplied toward the plasma jet (P) and performing thermal decomposition on the exhaust gas (F) internally and that are connected with semiconductor production equipment (16) through each inlet piping (38) provided with an inlet valve (40) for opening/closing the channel, and each outlet piping (37) provided with an outlet valve (35) for opening/closing the channel and communicating with the exhaust side end of each reaction tube (24).

Description

半導体製造排ガスの除害装置  Semiconductor manufacturing exhaust gas abatement system
技術分野  Technical field
[0001] 本発明は、非移行型のプラズマジェットを用いて PFCs等を含む半導体製造排ガス を分解して無害化する除害装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a detoxification device for decomposing and detoxifying semiconductor manufacturing exhaust gas containing PFCs and the like using a non-migration type plasma jet.
背景技術  Background art
[0002] 半導体や液晶等の製造プロセスでは、クリーニングガスやエッチングガスなどとして 様々な種類のフッ素化合物のガスが使用されている。このようなフッ素化合物は「PF Cs等」と称されており、代表的なものとして、 CF  [0002] Various types of fluorine compound gases are used as cleaning gases, etching gases, and the like in manufacturing processes of semiconductors and liquid crystals. Such fluorine compounds are called "PF Cs etc."
4、C F  4, C F
2 6、C F  2 6, C F
3 8、C F  3 8, C F
4 8、C Fなどのパ 5 8 一フルォロカーボン、 CHFなどのハイド口フルォロカーボンおよび SFや NFなどの  4 8, CF, etc. 5 8 Monofluorocarbons, CHF, etc. Hyde mouth fluorocarbons, SF, NF, etc.
3 6 3 無機含フッ素化合物等が挙げられる。  3 6 3 Inorganic fluorine-containing compounds.
[0003] そして、半導体や液晶等の製造プロセスで使用された様々な種類の PFCs等は、キ ャリアガスやパージガス等として使用された Nや Ar或 、は添加ガスとして使用された  [0003] Various types of PFCs used in the manufacturing process of semiconductors and liquid crystals were used as N, Ar, or additive gases used as carrier gas, purge gas, etc.
2  2
O、 Hや NH、 CHなどと共に半導体製造排ガス (以下、単に「排ガス」という。)として O, H, NH, CH, etc. as semiconductor manufacturing exhaust gas (hereinafter simply referred to as “exhaust gas”)
2 2 3 4 2 2 3 4
排出される。  Discharged.
[0004] ここで、前記排ガスにおける PFCs等の占める割合は Nや Arなどの他のガスに比  [0004] Here, the proportion of PFCs and the like in the exhaust gas is larger than that of other gases such as N and Ar.
2  2
ベてわずかではある力 この PFCs等は地球温暖ィ匕係数 (GWP)が COに比べて数千  These PFCs have a global warming coefficient (GWP) of thousands compared to CO.
2  2
〜数万倍と非常に大きぐ大気寿命も COに比べて数千〜数万年と長いことから、大  The lifetime of the atmosphere, which is tens of thousands of times, is as long as thousands to tens of thousands of years compared to CO.
2  2
気中へ少量排出した場合であっても、その影響は甚大なものとなる。さらに、 CFやじ  Even when a small amount is discharged into the air, the effect is enormous. In addition, CF
4 Four
Fを代表とするパーフルォロカーボンは C F結合が安定であるため (結合エネルギPerfluorocarbons typified by F have stable C F bonds (bond energy)
2 6 2 6
一が 130kcalZmolと大きい)、分解が容易でないことが知られている。このため、使 用済みとなった PFCs等を排ガス中から除害する様々な技術の開発が行われている  It is known that decomposition is not easy. For this reason, various technologies have been developed to remove used PFCs from exhaust gas.
[0005] このような難分解性の PFCs等を含む排ガスを除害する技術として、プラズマジエツ トトーチの非移行型電極間に放電電圧を印加してアークを発生させるとともに、この アークに作動ガスを送給して 、わゆる非移行型のプラズマジェットを生成し、生成し たプラズマジェットに向けて排ガスを供給することによって、 PFCs等を超高温のブラ ズマジヱットで熱分解する除害ユニットが提案されている (例えば、特許文献 1参照。 ) [0005] As a technique for removing such exhaust gas containing hardly decomposable PFCs, an arc is generated by applying a discharge voltage between non-transfer electrodes of a plasma jet torch, and a working gas is sent to the arc. To generate a so-called non-migration type plasma jet, and to supply exhaust gas to the generated plasma jet, PFCs etc. A detoxification unit that thermally decomposes with zumajit has been proposed (see, for example, Patent Document 1).
[0006] このプラズマジェットを用いた除害ユニットでは、作動ガスとして窒素ガスや水素ガ スなどの二原子分子ガスを用いることによって、プラズマジェットの温度が概ね数千〜 数万 °C前後 (この場合、プラズマジェットの雰囲気温度も数千 °Cとなる)の超高温となり 、 PFCs等、とりわけパーフルォロカーボンなどの難分解性の排ガスを瞬時且つ不可 逆的に熱分解して除害することができる。 [0006] In this abatement unit using a plasma jet, the temperature of the plasma jet is approximately several thousand to several tens of thousands of degrees C. by using a diatomic molecular gas such as nitrogen gas or hydrogen gas as the working gas. (In this case, the atmospheric temperature of the plasma jet will be several thousand degrees Celsius), and PFCs, especially perfluorocarbons and other difficult-to-decompose exhaust gases are instantly and irreversibly thermally decomposed and removed. be able to.
特許文献 1:特開 2005 - 205330号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-205330
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、このような除害ユニットに出力 15kW未満の小型電源を使用し、この 除害ユニットを用いて、コンパクトで省スペース性に優れ、し力も排ガスの除害効率に 優れた除害装置を構成した場合、 1台の除害装置で処理できる排ガスの量は最大で も概ね 100リットル Z分程度となる。したがって、かかる装置では、「1台の除害装置で looリットル Z分を超えるような大流量の排ガスを除害処理した 、」と云うニーズには 対応できな力つた。 [0007] While using a small power source with an output of less than 15kW for such an abatement unit, this abatement unit is compact and excellent in space saving, and the power is also excellent in exhaust gas abatement efficiency. If a single abatement device is configured, the maximum amount of exhaust gas that can be treated by one abatement device is approximately 100 liters Z at maximum. Therefore, with such a device, it was powerful enough to meet the needs of “a single abatement device removed a large amount of exhaust gas exceeding loo liters Z”.
[0008] また、このような除害ユニットにおけるプラズマジェットトーチの寿命は概ね 3力月〜 6力月程度であることが確認されており、プラズマジェットトーチの寿命が来た場合や 、何らかの原因で該トーチが故障した場合、或いは寿命や故障以外にも何らかの原 因でプラズマジェットが失火した場合には、除害ユニットを止めてメンテナンスしなけ ればならない。このため、除害装置を長期間 (例えば 6力月以上)連続して運転するの は、ほぼ不可能である。また、除害ユニットを止めてメンテナンスするためには、半導 体製造設備の稼働も停止しなければならず、そうすると半導体製造装置の稼働率を 向上させるのが困難になるという問題もあった。  [0008] In addition, it has been confirmed that the life of the plasma jet torch in such an abatement unit is about 3 to 6 months, and when the life of the plasma jet torch comes or for some reason If the torch fails, or if the plasma jet misfires for any reason other than life or failure, the abatement unit must be stopped and maintained. For this reason, it is almost impossible to operate the abatement device continuously for a long period of time (for example, over 6 months). Also, in order to stop and maintain the abatement unit, the operation of the semiconductor manufacturing facility must also be stopped, which makes it difficult to improve the operating rate of the semiconductor manufacturing equipment.
[0009] それゆえに、本発明の主たる課題は、 PFCs等を含む大流量の半導体製造排ガス を確実に且つ効率的に除害できると共に、長期間連続運転が可能で省スペース性 にも優れた半導体製造排ガスの除害装置を提供することである。  [0009] Therefore, the main problem of the present invention is a semiconductor that can reliably and efficiently remove a large flow rate of semiconductor manufacturing exhaust gas containing PFCs and the like, and can operate continuously for a long period of time and is excellent in space saving. It is to provide a production exhaust gas abatement apparatus.
課題を解決するための手段 [0010] 請求の範囲第 1項に記載した発明は、「プラズマジェットトーチ (18)と、プラズマジェ ットトーチ (18)のプラズマジェット噴出側に設けられ、プラズマジェット (P)およびこのプ ラズマジエツ KP)に向けて供給される排ガス (F)を囲繞し、その内部にて排ガス (F)の熱 分解を行なう反応筒 (24)とで構成され、流路を開閉する入口バルブ (40)が設けられた 個別入口配管 (38)を介して半導体製造装置 (16)に接続される複数の除害ユ ット (12) 、および流路を開閉する出口バルブ (35)が設けられ、各反応筒 (24)の排出側端部に 連通する個別出口配管 (37)を具備する」ことを特徴とする半導体製造排ガスの除害 装置 (10)である。 Means for solving the problem [0010] The invention described in claim 1 is the following: "Plasma jet torch (18) and plasma jet torch (18) provided on plasma jet ejection side, plasma jet (P) and this plasma jet KP) A reaction cylinder (24) that surrounds the exhaust gas (F) supplied toward the interior and thermally decomposes the exhaust gas (F) is provided inside, and an inlet valve (40) that opens and closes the flow path is provided. A plurality of detoxification units (12) connected to the semiconductor manufacturing apparatus (16) via individual inlet pipes (38) and an outlet valve (35) for opening and closing the flow path are provided, and each reaction cylinder ( 24) a semiconductor production exhaust gas abatement device (10) characterized by comprising an individual outlet pipe (37) communicating with the discharge side end of 24).
[0011] この発明では、複数の除害ユニット (12)が、流路を開閉する入口バルブ (40)が設け られた個別入口配管 (38)を介して半導体製造装置 (16)に接続されて ヽるので、半導 体製造装置 (16)より排出される半導体製造排ガス (F)の流量に応じて個別入口配管 (3 8)の入口バルブ (40)を開閉し、使用する除害ユニット (12)の数を増減することができる と共に、複数の除害ユニット (12)の一部の運転を停止してバックアップ用とすることも できる。  In the present invention, the plurality of abatement units (12) are connected to the semiconductor manufacturing apparatus (16) via the individual inlet pipe (38) provided with the inlet valve (40) for opening and closing the flow path. Therefore, according to the flow rate of the semiconductor manufacturing exhaust gas (F) discharged from the semiconductor manufacturing equipment (16), the inlet valve (40) of the individual inlet pipe (38) is opened and closed, and the abatement unit used ( The number of 12) can be increased or decreased, and some of the abatement units (12) can be stopped for backup.
[0012] カロえて、入口バルブ (40)を閉操作すると共に、反応筒 (24)の排出側端部に連通する 個別出口配管 (37)に設けられた出口バルブ (35)を閉操作することによって、除害ュ- ット (12)を排ガス (F)の処理フローから完全に縁切りすることができ、除害装置 (10)の運 転によって最もダメージを受ける (すなわち、最もメンテナンスが必要な)除害ユニット( 12)のメンテナンスを除害装置 (10)の運転を停止することなく行うことができる。これに より、除害装置 (10)の長期間連続運転が可能となる。  [0012] Close the inlet valve (40) and close the outlet valve (35) provided in the individual outlet pipe (37) communicating with the discharge side end of the reaction tube (24). This allows the abatement unit (12) to be completely decoupled from the exhaust gas (F) treatment flow and is most damaged by the operation of the abatement unit (10) (i.e. requires the most maintenance). ) Maintenance of the abatement unit (12) can be performed without stopping the operation of the abatement device (10). As a result, the abatement device (10) can be operated continuously for a long time.
[0013] また、除害ユニット (12)としてプラズマジヱットトーチ (18)を備えたプラズマ除害機を 用いているので、 CFの熱分解は勿論、半導体製造プロセスで発生する排ガス (F)を  [0013] Since a plasma abatement machine equipped with a plasma jet torch (18) is used as the abatement unit (12), not only the pyrolysis of CF but also the exhaust gas generated in the semiconductor manufacturing process (F )
4  Four
少ないエネルギー消費量で確実に熱分解することができる。  Pyrolysis can be reliably performed with low energy consumption.
[0014] そして、複数の除害ユニット (12)で除害装置 (10)を構成するようにして 、るので、単 一の除害ユニット (12)で構成された除害装置を複数台設置する場合に比べて、コン パクトで省スペース性に優れたものとすることができる。 [0014] Since the abatement device (10) is configured by a plurality of abatement units (12), a plurality of abatement devices configured by a single abatement unit (12) are installed. Compared to the case, it can be made compact and excellent in space saving.
[0015] 請求の範囲第 2項に記載した発明は、請求の範囲第 1項に記載の半導体製造排ガ ス (F)の除害装置 (10)において、「反応筒 (24)内の温度、圧力又はプラズマジェット (P) 点火状態の少なくとも 1つをセンシングすると共に、センシングされた情報に基づいて 入口バルブ (40)を自動制御するようにした」ことを特徴とするもので、これにより、除害 ユニット (12)で何らかのトラブルが発生した場合、トラブルが発生した除害ユニット (12) での排ガス処理を即座に中断すると共に、当該排ガス (F)の処理を他の除害ユニット( 12)に自動的に切替えることができる。したがって、排ガス (F)の除害処理能力が低下 するのを防止できると共に、当該除害装置 (10)の運転管理負担を軽減することができ る。特に、このような自動制御を行う場合、請求の範囲第 3項に記載したように「除害 ユニット (12)が 3基以上装備されており、隣接する 2基の除害ユニット (12)で挟まれた 除害ユニット (12)を常時停止してバックアップ用とする」のが好ましい。 [0015] The invention described in claim 2 is the semiconductor manufacturing exhaust gas (F) detoxifying device (10) according to claim 1, wherein the temperature in the reaction tube (24) is , Pressure or plasma jet (P) It is characterized by sensing at least one of the ignition states and automatically controlling the inlet valve (40) based on the sensed information '', so that the abatement unit (12) When trouble occurs, the exhaust gas treatment at the troubled abatement unit (12) is immediately interrupted and the treatment of the exhaust gas (F) can be automatically switched to another abatement unit (12). it can. Therefore, it is possible to prevent the exhaust gas (F) removal treatment capability from being lowered and to reduce the operation management burden of the removal device (10). In particular, when performing such automatic control, as described in claim 3, there are three or more abatement units (12) equipped and two abatement units (12) adjacent to each other. It is preferable to always stop the sandwiched abatement unit (12) for backup.
[0016] 請求の範囲第 4項に記載した発明は、請求の範囲第 1項乃至第 3項の何れかに記 載の半導体製造排ガス (F)の除害装置 (10)において、「除害ユニット (12)n基 (但し、 n は 3以上の整数)に対して最大で n— 1基 (但し、 nは 3以上の整数)の電源ユニット (20 )を備え、スィッチ (26)を介して除害ユニット (12)に接続する電源ユニット (20)を切替え るようにした」ことを特徴とするもので、このように除害装置 (10)に搭載する電源ュ-ッ ト (20)の数を除害ユニット (12)の数よりも減ずることによって、除害装置 (10)のコンパクト ィ匕を図ることができる。 [0016] The invention described in claim 4 is the "detoxification" in the semiconductor manufacturing exhaust gas (F) detoxification device (10) according to any one of claims 1 to 3. Unit (12) n units (where n is an integer greater than or equal to 3) n-1 units (where n is an integer greater than or equal to 3) power supply units (20) are provided, via switch (26) The power supply unit (20) connected to the abatement unit (12) can be switched '', and the power supply unit (20) mounted on the abatement device (10) is thus By reducing the number of the abatement units less than the number of the abatement units (12), the abatement device (10) can be made compact.
[0017] 請求の範囲第 5項に記載した発明は、請求の範囲第 1項乃至第 4項の何れかに記 載の半導体製造排ガス (F)の除害装置 (10)において、「除害ユニット (12)で分解処理さ れた排ガス (F)魏合させて洗浄及び冷却する出口スクラバ (14)を備えると共に、除害 ユニット (12)で分解処理前の排ガス (F)を出口スクラバ (14)の入口側に供給する常閉 のバイノス配管 (42)が設けられている」ことを特徴とするもので、このように出ロスクラ ノ^ 14)を設けることにより、大気中へと排出する処理済み排ガス (F)の清浄度をより一 層向上させることができると共に、除害ユニット (12)に何らかのトラブルが発生したとし ても、バイパス配管 (42)を介して排ガス (F)を出ロスクラバ (14)の入口側に供給し洗浄 することによって環境への負荷を最小限に抑えることができる。  [0017] The invention described in claim 5 is the “detoxification” in the semiconductor manufacturing exhaust gas (F) detoxification device (10) according to any one of claims 1 to 4. The exhaust gas (F) decomposed in the unit (12) is combined with an outlet scrubber (14) to be washed and cooled, and the exhaust gas (F) before decomposition in the abatement unit (12) is discharged to the outlet scrubber ( 14) is provided with a normally closed binos pipe (42) to be supplied to the inlet side. '' The cleanliness of the treated exhaust gas (F) can be further improved, and even if some trouble occurs in the abatement unit (12), the exhaust gas (F) is discharged via the bypass pipe (42). By supplying and cleaning the inlet side of the Ross Clava (14), the environmental load can be minimized. The
発明の効果  The invention's effect
[0018] 本発明によれば、複数の除害ユニットは、流路を開閉する入口バルブが設けられた 個別入口配管を介して半導体製造装置に接続されて!ヽるので、半導体製造装置より 排出される半導体製造排ガスの流量に応じて個別入口配管の入口バルブを開閉し 、使用する除害ユニットの数を増減することができると共に、複数の除害ユニットの一 部の運転を停止してバックアップ用とすることもできる。 [0018] According to the present invention, the plurality of abatement units are connected to the semiconductor manufacturing apparatus via the individual inlet pipe provided with the inlet valve for opening and closing the flow path. Depending on the flow rate of discharged semiconductor manufacturing exhaust gas, you can open and close the inlet valves of the individual inlet pipes to increase or decrease the number of abatement units used, and stop some of the abatement units. It can also be used for backup.
[0019] 加えて、入口バルブを閉操作すると共に、反応筒の排出側端部に連通する個別出 口配管に設けられた出口バルブも閉操作することによって、メンテナンスを行なう除 害ユニットを排ガスの処理フロー力も完全に縁切りすることができる。このため、メンテ ナンスに際し、除害装置全体を停止する必要がなぐ除害装置の長期間連続運転が 可能となる。  [0019] In addition, by closing the inlet valve and closing the outlet valve provided in the individual outlet pipe communicating with the discharge side end of the reaction cylinder, the cleaning unit to be maintained can The processing flow force can also be completely cut off. For this reason, it is possible to operate the abatement device for a long period of time without having to stop the entire abatement device during maintenance.
[0020] また、除害ユニットとして非移行型のプラズマジェットトーチを備えたプラズマ除害機 を用いているので、 CFの熱分解は勿論、半導体製造プロセスで発生する排ガスを  [0020] Since a plasma abatement machine equipped with a non-migration type plasma jet torch is used as the abatement unit, not only pyrolysis of CF but also exhaust gas generated in the semiconductor manufacturing process is used.
4  Four
少ないエネルギー消費量で確実に熱分解することができる。  Pyrolysis can be reliably performed with low energy consumption.
[0021] そして、複数の除害ユニットで除害装置を構成するようにして!/、るので、単一の除害 ユニットで構成された除害装置を複数台設置する場合に比べて、除害装置全体をコ ンパタトで省スペース性に優れたものとすることができる。  [0021] Since a plurality of abatement devices are configured with a plurality of abatement units! /, It is possible to remove the abatement devices as compared with the case where a plurality of abatement devices configured with a single abatement unit are installed. The entire harming device can be made compact and excellent in space saving.
[0022] したがって、 PFCs等を含む大流量の半導体製造排ガスを確実に且つ効率的に除 害できると共に、長期間連続運転が可能で省スペース性に優れた半導体製造排ガス の除害装置を提供することができる。 [0022] Accordingly, there is provided a semiconductor production exhaust gas abatement apparatus that can reliably and efficiently remove a large flow rate of semiconductor production exhaust gas containing PFCs and the like, and is capable of continuous operation for a long period of time and is excellent in space saving. be able to.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明における 1の実施例の半導体製造排ガスの除害装置の概要を示した構 成図である。  FIG. 1 is a configuration diagram showing an outline of a semiconductor manufacturing exhaust gas abatement apparatus according to one embodiment of the present invention.
[図 2]図 1における A— A線断面図である。  FIG. 2 is a cross-sectional view taken along line AA in FIG.
[図 3]本発明における除害ユニットの概略を示す構成図である。  FIG. 3 is a configuration diagram showing an outline of an abatement unit in the present invention.
[図 4]本発明における他の実施例の半導体製造排ガスの除害装置の概要を示した構 成図である。  FIG. 4 is a configuration diagram showing an outline of a semiconductor manufacturing exhaust gas abatement apparatus according to another embodiment of the present invention.
符号の説明  Explanation of symbols
[0024] (10)…除害装置 [0024] (10) Detoxification device
(12)…除害ユニット  (12)… Abatement unit
(14)…出口スクラバ (16)· 半導体製造装置 (14)… Exit scrubber (16) · Semiconductor manufacturing equipment
(18)· ··プラズマジェットト、ーチ  (18) ··· Plasmajet,
(20)· ·.電源ユニット  (20) Power unit
(22)· ··作動ガス送給ュ- -ッ卜  (22) ... Working gas supply-
(24)· ··反応筒  (24) ··· Reaction tube
(28)· "スィッチ  (28) · "Switch
(32)· "旋回シャワー  (32) · "Swirl shower
(34)· ··水槽  (34)
(35)· ··出口バルブ  (35) ··· Outlet valve
(36)· ··主配管  (36) ... Main piping
(37)· ··個別出口配管  (37) ··· Individual piping
(38)· ··個別入口配管  (38) ... Individual inlet piping
(40)· ··入口バルブ  (40) ... Inlet valve
(44)· "バルブ  (44) · Valve
(46)· "排ガス導入口  (46) "Exhaust gas inlet
(48)· · ·スクラノ本体  (48)
(50)· "スプレーノス、ノレ  (50) · "Spraynos, Nore
(54)· ··排気ファン  (54) ... Exhaust fan
F- --半導体製造排ガス  F- --Semiconductor manufacturing exhaust gas
Η· ··保温材  Η ··· Insulation
Ρ…プラズマジェット  Ρ ... plasma jet
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 図 1は本実施例の半導体製造排ガスの除害装置 (10)の概要を示した構成図である 。図 2は、図 1における A— Α線断面図である。これらの図が示すように、本実施例の 除害装置 (10)は、大略、複数 (本実施例では 3基)の除害ユニット (12)と、出ロスクラバ( 14)とで構成されている。  FIG. 1 is a configuration diagram showing an outline of a semiconductor production exhaust gas abatement apparatus (10) of the present embodiment. 2 is a cross-sectional view taken along the line A— in FIG. As shown in these figures, the abatement device (10) of the present embodiment is roughly composed of a plurality of (three in this embodiment) abatement units (12) and an output loss scrubber (14). Yes.
[0026] 除害ユニット (12)は、半導体製造装置 (16)力も排出される PFCs等を含む排ガス (F) を熱分解して除害する装置であり、図 3に示すように、大略、プラズマジェットトーチ (1 8)、電源ユニット (20)、作動ガス送給ユニット (22)および反応筒 (24)で構成されたブラ ズマ除害機である。 [0026] The abatement unit (12) is an apparatus for thermally decomposing exhaust gas (F) containing PFCs, etc., from which semiconductor manufacturing equipment (16) is also exhausted. As shown in FIG. Plasma jet torch (1 8) A plasma abatement machine composed of a power supply unit (20), a working gas supply unit (22), and a reaction tube (24).
[0027] プラズマジェットトーチ (18)は、高温のプラズマジェット (P)を生成するものであり、黄 銅などの金属材料力 なり上下両面が開口した短筒状のトーチボディ (18a)を有する 。このトーチボディ (18a)の先端にはアノード (18b)が連設されており、また、トーチボデ ィ (18a)の内部には棒状の力ソード (18c)が取着されている。  [0027] The plasma jet torch (18) generates a high-temperature plasma jet (P), and has a short cylindrical torch body (18a) that is open on both upper and lower surfaces due to a metal material force such as brass. An anode (18b) is connected to the tip of the torch body (18a), and a rod-shaped force sword (18c) is attached to the inside of the torch body (18a).
[0028] アノード (18b)は、銅またはタングステンなどの高い導電性を有する高融点金属で構 成され、内部にプラズマ発生室 (18d)が凹設された円筒状のノズルである。このァノー ド (18b)の下面中心部には前記プラズマ発生室 (18d)内で生成したプラズマジェット (P) を噴出させるプラズマジェット噴出孔 (18e)が貫設されており、アノード (18b)側面の上 部には作動ガス送給口 (18Dが設けられて 、る。  [0028] The anode (18b) is a cylindrical nozzle made of a refractory metal having high conductivity such as copper or tungsten and having a plasma generation chamber (18d) recessed therein. A plasma jet ejection hole (18e) through which the plasma jet (P) generated in the plasma generation chamber (18d) is ejected is formed in the center of the lower surface of the anode (18b). The upper part is provided with a working gas supply port (18D.
[0029] 力ソード (18c)は、銅などの高 、導電性を有する高融点金属からなる本体部と、トリウ ム或 、はランタンを混入させたタングステン力もなり、先端に向けてその外径が紡錘 状に縮径した先端部とで構成された棒状の部材である。この力ソード (18c)の先端部 分は、アノード (18b)内に凹設されたプラズマ発生室 (18d)に配設されている。  [0029] The force sword (18c) also has a main body made of a high melting point metal having high conductivity such as copper and a tungsten force mixed with trimium or lanthanum, and has an outer diameter toward the tip. This is a rod-shaped member composed of a spindle-shaped distal end portion. The tip of the force sword (18c) is disposed in a plasma generation chamber (18d) recessed in the anode (18b).
[0030] なお、アノード (18b)と力ソード (18c)との間には、トーチボディ (18a)を介してこれらの 間で通電(短絡)しな 、ように四フッ化工チレン榭脂ゃセラミックなどの絶縁材料 (図示 せず)が介装されている。また、アノード (18b)および力ソード (18c)の内部には、冷却水 通流路 (図示せず)が設けられており、これらの部材を冷却するようにしている。  [0030] It should be noted that between the anode (18b) and the force sword (18c), there is no conduction (short circuit) between them via the torch body (18a), so that the tetrafluorinated styrene resin is ceramic. Insulating material (not shown) is inserted. A cooling water passage (not shown) is provided inside the anode (18b) and the force sword (18c), and these members are cooled.
[0031] そして、以上のように構成されたアノード (18b)および力ソード (18c)には、所定の放 電電圧を印加してアノード (18b)と力ソード (18c)との間にアークを生起する電源ュニッ ト (20)が接続されている。  [0031] Then, a predetermined discharge voltage is applied to the anode (18b) and the force sword (18c) configured as described above, and an arc is generated between the anode (18b) and the force sword (18c). The resulting power unit (20) is connected.
[0032] 電源ユニット (20)は、上述したアノード (18b)および力ソード (18c)に所定の放電電圧 を印加してプラズマアークを生起させるものであり、電源ユニット (20)には、所謂スイツ チング方式の直流電源装置を用いることが好適である。  [0032] The power supply unit (20) applies a predetermined discharge voltage to the anode (18b) and the force sword (18c) described above to generate a plasma arc. The power supply unit (20) includes a so-called switch. It is preferable to use a DC power supply device of a ching method.
[0033] ここで、本実施例の除害装置 (10)では、図 1に示すように、常時運転する除害ュニッ ト (12)と同じ数の電源ユニット (20)が装備されており、当該電源ユニット (20)はスィッチ( 26)を介して除害ユニット (12)に接続されている。したがって、このスィッチ (26)を操作 することにより、電力を供給する除害ユニット (12)が切替えられるようになつている。 [0033] Here, in the abatement device (10) of the present embodiment, as shown in Fig. 1, the same number of power supply units (20) as the abatement unit (12) that is always operated are equipped. The power supply unit (20) is connected to the abatement unit (12) through the switch (26). Therefore, operate this switch (26). By doing so, the abatement unit (12) for supplying power can be switched.
[0034] 作動ガス送給ユニット (22)は、図 3に示すように、アノード (18b)のプラズマ発生室 (18 d)内に窒素や水素或いはアルゴンなどの作動ガス (G)を送給するものであり、ボンべ 等 (図示せず)に貯蔵された高圧の作動ガス (G)を減圧するレギユレータ (22a)と、この レギユレータ (22a)とアノード (18b)に設けられた作動ガス送給口(18Dとを連通する作動 ガス送給配管 (22b)とを有する。また、作動ガス送給配管 (22b)には、プラズマ発生室( 18d)内に送給する作動ガス (G)の量を制御する流量制御手段 (28)が取付けられてい る。 [0034] As shown in Fig. 3, the working gas feed unit (22) feeds a working gas (G) such as nitrogen, hydrogen or argon into the plasma generation chamber (18d) of the anode (18b). A regulator (22a) that depressurizes the high-pressure working gas (G) stored in a cylinder or the like (not shown), and a working gas feed provided in the regulator (22a) and the anode (18b). And a working gas feed pipe (22b) communicating with 18D. The working gas feed pipe (22b) has an amount of working gas (G) fed into the plasma generation chamber (18d). A flow rate control means (28) is attached to control.
[0035] 反応筒 (24)は、キャスタブルなどの耐火材料力 なる両端が開口した直管型の部材 で、その一端 (図 3における上端)が排ガス供給器 (30)を介してプラズマジェットトーチ( 18)のプラズマジェット噴出孔 (18e)側の端部に接続されており、プラズマジェット (P)と 排ガス (F)とを囲繞し、その内部空間にて排ガス (F)の熱分解を行なうものである。ここ で、排ガス供給器 (30)とは、排ガス (F)をスパイラル状に吹き込んでプラズマジェット (P) の噴出側上流部近傍に供給する部材である。  [0035] The reaction cylinder (24) is a straight pipe-type member having both ends that are refractory material strength such as castable, and one end (the upper end in FIG. 3) is connected to the plasma jet torch (30) via the exhaust gas supplier (30). 18) Connected to the end of the plasma jet injection hole (18e) side, which surrounds the plasma jet (P) and the exhaust gas (F), and thermally decomposes the exhaust gas (F) in its internal space It is. Here, the exhaust gas supply device (30) is a member that blows the exhaust gas (F) in a spiral shape and supplies it to the vicinity of the upstream side of the plasma jet (P).
[0036] この反応筒 (24)の他端は、反応筒 (24)内で分解処理した排ガス (F)の排出端となつ ており、図 1に示すように、管体の内壁面に薬液や水を旋回させながら流下させ、排 ガス (F)中の粉塵が該管体に付着しないよう洗い流す旋回シャワー (32)を介して薬液 や水を貯留する水槽 (34)に接続されている。ここで、水槽 (34)には、上端が水槽 (34) の内側の天井面に取り付けられ、下端が水槽 (34)の底面力 離隔するようにして水中 に配設された 3つの隔壁 (34a)が設けられている。力かる隔壁 (34a)を設けることにより、 水槽 (34)内の空間が 3つの反応筒 (24)の内部空間および 1つの出口スクラバ (14)の内 部空間にそれぞれ連通する、互いに隔離された 4つの空間 (34b)に区画されている。 そして、これら 4つの空間 (34b)のうち、反応筒 (24)の内部空間と連通する 3つの空間( 34b)のそれぞれには、流路を開閉する出口バルブ (35)を備えた個別出口配管 (37)の 一端が接続されており、出口スクラバ (14)の内部空間と連通する空間 (34b)には、個別 出口配管 (37)の他端側が接続されている。つまり、個別出口配管 (37)を介して各反応 筒 (24)力も排出された処理済の排ガス (F)が個別に出口スクラバ (14)へと与えられるよ うになつている。なお、個別出口配管 (37)には、出口バルブ (35)に向けて洗浄及び冷 却用の水を噴射するスプレー手段 (図示せず)が取り付けられている。 [0036] The other end of the reaction tube (24) serves as a discharge end of the exhaust gas (F) decomposed in the reaction tube (24). As shown in FIG. It is connected to a water tank (34) that stores chemicals and water through a swirling shower (32) that allows the dust in the exhaust gas (F) to flow down while swirling and flushing so that dust in the exhaust gas (F) does not adhere to the tube. Here, the water tank (34) has three partition walls (34a) that are installed in the water so that the upper end is attached to the ceiling surface inside the water tank (34) and the lower end is separated from the bottom force of the water tank (34). ) Is provided. By providing a powerful partition wall (34a), the space in the water tank (34) is isolated from each other, communicating with the internal space of the three reaction tubes (24) and the internal space of one outlet scrubber (14), respectively. It is divided into four spaces (34b). Of these four spaces (34b), each of the three spaces (34b) communicating with the internal space of the reaction tube (24) has an individual outlet pipe having an outlet valve (35) for opening and closing the flow path. One end of (37) is connected, and the other end of the individual outlet pipe (37) is connected to the space (34b) communicating with the internal space of the outlet scrubber (14). That is, the treated exhaust gas (F) from which the reaction cylinder (24) force is also discharged is individually supplied to the outlet scrubber (14) through the individual outlet pipe (37). Note that the individual outlet pipe (37) is cleaned and cooled toward the outlet valve (35). A spray means (not shown) for injecting reject water is attached.
[0037] プラズマジェット (P)並びに排ガス (F)を囲繞するこの反応筒 (24)では、その内部空間 に、高温のプラズマジェット (P)によって温められた高温領域が形成される。このため、 反応筒 (24)を流下する排ガス (F)のうちプラズマジェット (P)に直接接触しな力つた未分 解の排ガス (F)もこの高温領域を通過する際に熱分解されることになる。  [0037] In the reaction cylinder (24) surrounding the plasma jet (P) and the exhaust gas (F), a high temperature region heated by the high temperature plasma jet (P) is formed in the internal space. For this reason, of the exhaust gas (F) flowing down the reactor tube (24), the undecomposed exhaust gas (F) that does not directly contact the plasma jet (P) is also thermally decomposed when passing through this high temperature region. It will be.
[0038] また、図示しないが、反応筒 (24)には、反応筒 (24)内の温度、圧力又はプラズマジ ット (P)点火状態の少なくとも 1つをセンシングするセンサが取り付けられており、この センサでセンシングした情報を用いて、後述する入口バルブ (40)の開閉を自動制御 するようにしている。  [0038] Although not shown, the reaction cylinder (24) is provided with a sensor for sensing at least one of temperature, pressure, and plasma jet (P) ignition state in the reaction cylinder (24), Using the information sensed by this sensor, the opening and closing of the inlet valve (40) described later is automatically controlled.
[0039] 本実施例の除害装置 (10)では、上述のような除害ユニット (12)が、水槽 (34)の上に 3 基並列に立設されており [つまり、複数の反応筒 (24)が近接するようになっている] (図 1及び 2参照)、各除害ユニット (12)の排ガス供給器 (30)には、排ガス (F)が通流する主 配管 (36)力ゝら分枝した複数 (本実施例の場合 3本)の個別入口配管 (38)がそれぞれ接 続されている。ここで、この個別入口配管 (38)には、それぞれ入口バルブ (40)が取り 付けられており、力かる入口バルブ (40)を開閉することによって除害ユニット (12)への 排ガスの供給及び停止が制御される。つまり、個別入口配管 (38)にこのような入ロバ ルブ (40)を設けることによって個別入口配管 (38)における排ガス (F)の通流制御が可 能となっている。  [0039] In the abatement device (10) of the present embodiment, three abatement units (12) as described above are installed in parallel on the water tank (34) [that is, a plurality of reaction tubes (24) are close to each other] (see Figures 1 and 2), the exhaust pipe (30) of each abatement unit (12) is connected to the main pipe (36) through which exhaust gas (F) flows. A plurality of (three in the present example) individual inlet pipes (38) branched from each other are connected to each other. Here, each individual inlet pipe (38) is provided with an inlet valve (40). By opening and closing the powerful inlet valve (40), exhaust gas supply to the abatement unit (12) and Stop is controlled. In other words, by providing such an inlet valve (40) in the individual inlet pipe (38), it is possible to control the flow of exhaust gas (F) in the individual inlet pipe (38).
[0040] また、主配管 (36)には常閉弁 (42a)を介してバイパス配管 (42)の一端が接続されてお り、このバイノ ス配管 (42)の他端は後述する出ロスクラバ (14)の入口側に接続されて いる。  [0040] In addition, one end of a bypass pipe (42) is connected to the main pipe (36) via a normally closed valve (42a), and the other end of the binose pipe (42) is connected to an output loss scrubber to be described later. It is connected to the inlet side of (14).
[0041] そして、水槽 (34)上に並列配置された複数の反応筒 (24)の外周は、ロックウールや 珪酸カルシウムなどの材料で構成された保温材 (H)で囲繞されている。  [0041] The outer periphery of the plurality of reaction tubes (24) arranged in parallel on the water tank (34) is surrounded by a heat insulating material (H) made of a material such as rock wool or calcium silicate.
[0042] なお、本実施例では、図 1に示すように、 4台の半導体製造装置 (16)がそれぞれバ ルブ (44)を介して主配管 (36)に接続されて 、るが、除害装置 (10)に接続する半導体 製造装置 (16)の数はこれに限定されるものではない。 In this embodiment, as shown in FIG. 1, four semiconductor manufacturing apparatuses (16) are connected to the main pipe (36) via valves (44), respectively. The number of semiconductor manufacturing equipment (16) connected to the harmful equipment (10) is not limited to this.
[0043] また、半導体製造装置 (16)力も排出された排ガス (F)がー且、主配管 (36)に集合され[0043] In addition, the exhaust gas (F) from which the semiconductor manufacturing equipment (16) is also discharged is collected in the main pipe (36).
、然る後、個別入口配管 (38)に分配される例を示しているが、個別入口配管 (38)を半 導体製造装置 (16)に直結すると共に、各個別入口配管 (38)同士が互いに連通するよ うにしてもよい。つまり、複数の除害ユニット (12)のそれぞれが個別入口配管 (38)を介 して半導体製造装置 (16)に接続され、且つ各個別入口配管 (38)における排ガス (F)の 通流制御が可能な態様であればその配管構造は如何なるものであってもよい。 After that, an example of distribution to the individual inlet pipe (38) is shown. The individual inlet pipes (38) may be connected to each other while being directly connected to the conductor manufacturing apparatus (16). That is, each of the plurality of abatement units (12) is connected to the semiconductor manufacturing apparatus (16) via the individual inlet pipe (38), and the exhaust gas (F) flow control in each individual inlet pipe (38). However, the piping structure may be anything as long as it is possible.
[0044] 出ロスクラバ (14)は、除害ユニット (12)にて熱分解した排ガス (F)を水洗し、粉塵や水 溶性成分を除去して清浄化すると共に、熱分解により高温となった排ガス (F)を冷却 するためのものであり、下端部に排ガス導入口 (46)が設けられた直管型のスクラバ本 体 (48)と、排ガス (F)通流方向に対向するように上方力 薬液や水を噴射する下向き のスプレーノズル (50)とで構成されて!、る。  [0044] The output loss scrubber (14) washes the exhaust gas (F) pyrolyzed by the abatement unit (12) with water to remove dust and water-soluble components and cleans it. This is intended to cool the exhaust gas (F), and it faces the straight pipe type scrubber body (48) with the exhaust gas inlet (46) at the lower end in the flow direction of the exhaust gas (F). It consists of a downward spray nozzle (50) that ejects chemicals and water!
[0045] この出口スクラバ (14)も、除害ユニット (12)と同様に水槽 (34)上に立設されており、ス プレーノズル (50)力 噴射された薬液や水が水槽 (34)に送り込まれる。そして、出ロス クラバ (14)の頂部出口には、大気を排ガス (F)に導入するためのブリーザ一 (52)を介し て、処理済みの排ガス (F)を大気中へ放出する排気ファン (54)が接続されている。  [0045] The outlet scrubber (14) is also erected on the water tank (34) in the same manner as the abatement unit (12), and the spray nozzle (50) force sprayed chemical liquid or water is used in the water tank (34). Is sent to. An exhaust fan that discharges the treated exhaust gas (F) into the atmosphere via a breather (52) for introducing the atmosphere into the exhaust gas (F) is provided at the top outlet of the output loss scrubber (14). 54) is connected.
[0046] 以上のように構成された本実施例の除害装置 (10)を用いて排ガス (F)を除害する際 には、まず、図示しない除害装置 (10)の電源をオンにして、稼働させる除害ユニット (1 2)圆 1に示す例の場合、 3基並列に立設された除害ユニット (12)のうち、右端および 左端の除害ユニット (12)]の流量制御手段 (28)を作動させてプラズマ発生室 (18d)内に 作動ガス (G)を送給する。  When removing the exhaust gas (F) using the abatement apparatus (10) of the present embodiment configured as described above, first, the abatement apparatus (10) (not shown) is turned on. In the example shown in Fig. 1, the flow control of the right and left end abatement units (12) of the three abatement units (12) installed in parallel The means (28) is operated to feed the working gas (G) into the plasma generation chamber (18d).
[0047] 続いて、スィッチ (26)を切替えて稼働させる除害ユニット (12)と電源ユニット (20)とを 接続し、電源ユニット (20)を作動させると共に、除害ユニット (12)のプラズマジェット点 火スィッチ (図示せず)をオンにしてプラズマジェットトーチ (18)の電極 (18b)、(18c)間に 電圧を印加し、プラズマジェット噴出孔 (18e)力もプラズマジェット (P)を噴出させる。  [0047] Subsequently, the abatement unit (12) that is operated by switching the switch (26) is connected to the power supply unit (20), the power supply unit (20) is operated, and the plasma of the abatement unit (12) is operated. With the jet ignition switch (not shown) turned on, a voltage is applied between the electrodes (18b) and (18c) of the plasma jet torch (18), and the plasma jet outlet (18e) force also ejects the plasma jet (P). Let
[0048] そして、反応筒 (24)内の温度力 S排ガス (F)を除害可能な所定の温度に達すると、個 別入口配管 (38)の入口バルブ (40) [図 1に示す例の場合、 3基並列に立設された除 害ユニット (12)のうち、右端および左端の除害ユニット (12)に接続された個別入口配 管 (38)にそれぞれ設けられた入口バルブ (40)]を開けて、反応筒 (24)内に排ガス (F)を 供給する。すると、排ガス供給器 (30)を介して反応筒 (24)内に供給された排ガス (F)は 、プラズマジェット (P)を囲繞するようスノィラル状に流下し、反応筒 (24)内で熱分解さ れる。 [0048] Then, when the temperature force S in the reaction cylinder (24) reaches a predetermined temperature at which the exhaust gas (F) can be detoxified, the inlet valve (40) of the individual inlet pipe (38) [example shown in FIG. In this case, among the three abatement units (12) installed in parallel, the inlet valves (40) respectively provided in the individual inlet pipes (38) connected to the right and left abatement units (12). )] Is opened, and exhaust gas (F) is supplied into the reaction tube (24). Then, the exhaust gas (F) supplied into the reaction cylinder (24) via the exhaust gas supply device (30) flows down in a spiral shape so as to surround the plasma jet (P) and is heated in the reaction cylinder (24). Disassembled It is.
[0049] 以上のように、除害ユニット (12)で熱分解された排ガス (F)は、個別出口配管 (37)を 経由して出ロスクラバ (14)の排ガス導入口 (46)に導かれ、該出ロスクラバー (14)にて 水洗及び冷却された後、排気ファン (54)を介して大気中へと排出される。  [0049] As described above, the exhaust gas (F) pyrolyzed by the abatement unit (12) is guided to the exhaust gas inlet (46) of the output loss scrubber (14) via the individual outlet pipe (37). After being washed and cooled by the output loss scrubber (14), it is discharged into the atmosphere through the exhaust fan (54).
[0050] 本実施例の除害装置 (10)によれば、流路を開閉する入口バルブ (40)が設けられた 個別入口配管 (38)を介して複数の除害ユニット (12)が半導体製造装置 (16)に接続さ れているので、半導体製造装置 (16)より排出される排ガス (F)の流量に応じて入ロバ ルブ (40)を開閉し、使用する除害ユニット (12)の数を増減することができる。つまり、除 害ユニット (12)の最大排ガス処理能力が 100リットル Z分である場合、このような除害 ユニットを 2台並列運転することによって 200リットル Z分の排ガス (F)を処理できるよう になる。また、複数の除害ユニット (12)の一部の運転を停止してバックアップ用とする ことちでさる。  [0050] According to the abatement apparatus (10) of the present embodiment, the plurality of abatement units (12) are provided via the individual inlet pipe (38) provided with the inlet valve (40) for opening and closing the flow path. Since it is connected to the manufacturing equipment (16), the abatement unit (12) used by opening and closing the inlet valve (40) according to the flow rate of the exhaust gas (F) discharged from the semiconductor manufacturing equipment (16). The number of can be increased or decreased. In other words, when the maximum exhaust gas treatment capacity of the abatement unit (12) is 100 liters Z, it is possible to treat exhaust gas (F) of 200 liters Z by operating two such abatement units in parallel. Become. It is also possible to stop some of the multiple abatement units (12) for backup.
[0051] カロえて、入口バルブ (40)を閉操作すると共に、反応筒 (24)の排出側端部に連通する 個別出口配管 (37)に設けられた出口バルブ (35)も閉操作することによって、除害ュ- ット (12)を排ガス (F)の処理フローから完全に縁切りすることができ、除害装置 (10)の運 転によって最もダメージを受ける (すなわち、最もメンテナンスが必要な)除害ユニット( 12)のメンテナンスを除害装置 (10)の運転を停止することなく行うことができる。これに より、除害装置 (10)の長期間連続運転が可能となる。  [0051] Close the inlet valve (40) and close the outlet valve (35) provided in the individual outlet pipe (37) communicating with the discharge side end of the reaction tube (24). This allows the abatement unit (12) to be completely decoupled from the exhaust gas (F) treatment flow and is most damaged by the operation of the abatement unit (10) (i.e. requires the most maintenance). ) Maintenance of the abatement unit (12) can be performed without stopping the operation of the abatement device (10). As a result, the abatement device (10) can be operated continuously for a long time.
[0052] また、除害ユニット (12)として非移行型のプラズマジェットトーチ (18)を備えたプラズ マ除害機を用いているので、 CFの熱分解は勿論、半導体製造プロセスで発生する  [0052] Since a plasma abatement machine equipped with a non-migration type plasma jet torch (18) is used as the abatement unit (12), the thermal decomposition of CF naturally occurs in the semiconductor manufacturing process.
4  Four
排ガス (F)を少ないエネルギー消費量で確実に熱分解することができる。  Exhaust gas (F) can be reliably pyrolyzed with low energy consumption.
[0053] さらに、複数の除害ユニット (12)で除害装置 (10)を構成するようにしているので、単 一の除害ユニット (12)で構成された除害装置を複数台設置する場合に比べて、除害 装置 (10)をコンパクトで省スペース性に優れたものとすることができる。 [0053] Further, since the abatement device (10) is configured by a plurality of abatement units (12), a plurality of abatement devices configured by a single abatement unit (12) are installed. Compared to the case, the abatement device (10) can be made compact and excellent in space saving.
[0054] そして、反応筒 (24)内の温度、圧力又はプラズマジェット (P)点火状態の少なくとも 1 つをセンシングすると共に、センシングされた情報に基づ 、て入口バルブ (40)を自動 制御するようにして ヽるので、除害ユニット (12)で何らかのトラブルが検出された場合 ( 具体的には、反応筒 (24)内の温度が急激に低下したり、反応筒 (24)内の圧力が急変 した場合、或いはプラズマジェット (P)が失火した場合など)、トラブルが発生した除害 ユニット (12)における排ガス処理を即座に中断すると共に、当該排ガス (F)の処理を他 の除害ユ ット (12)に自動的に切替えることができる。このため、排ガス (F)の除害処 理能力が低下するのを防止できると共に、当該除害装置 (10)の運転管理負担を軽減 することができる。 [0054] Then, at least one of temperature, pressure, and plasma jet (P) ignition state in the reaction cylinder (24) is sensed, and the inlet valve (40) is automatically controlled based on the sensed information. Therefore, if any trouble is detected in the abatement unit (12) (specifically, the temperature in the reaction tube (24) suddenly decreases or the pressure in the reaction tube (24) Sudden change Or if the plasma jet (P) misfires), the exhaust gas treatment in the abatement unit (12) where trouble has occurred is immediately interrupted, and the treatment of the exhaust gas (F) is stopped by other abatement units. (12) can be switched automatically. For this reason, it is possible to prevent the exhaust gas (F) removal processing capability from being lowered, and to reduce the operation management burden of the removal device (10).
[0055] なお、上述の実施例では、除害ユニット (12)を 3基設ける場合を示したが、除害装置 (10)に装備する除害ユニット (12)の数は複数であればよぐ例えば 2基であってもよい し 4基以上であってもよい。  [0055] In the above-described embodiment, the case where three abatement units (12) are provided is shown. However, the abatement device (10) may be equipped with a plurality of abatement units (12). For example, it may be 2 or 4 or more.
[0056] また、上述の例では、 3基の除害ユニット (12)に対してスィッチ (26)を介して 2基の電 源ユニット (20)を設ける場合を示した力 設置する電源ユニット (20)の数はこれに限定 されるものではなぐ除害ユニット (12)の数より少ない数、とりわけ目的とする排ガス処 理能力を担保できる最小限の数にするのがよい。こうすることによって、除害装置 (10) をより一層コンパクトなものにすることができる力もである。  [0056] Further, in the above-described example, the power supply unit to be installed is shown in the case where two power supply units (20) are provided to the three abatement units (12) via the switch (26) ( The number of 20) should be less than the number of abatement units (12), not limited to this, especially the minimum number that can guarantee the target exhaust gas treatment capacity. In this way, the abatement device (10) can be made even more compact.
[0057] また、複数の除害ユニット (12)及び出ロスクラバ (14)を並列に配置する場合を示した が (図 1および図 2参照)、除害ユニット (12)及び出ロスクラバ (14)の配置はこれに限定 されるものではなぐ複数の除害ユニット (12)が互いに近接するように配設されるので あれば、除害装置 (10)が設置されるスペースの状況に応じて適宜設計変更可能であ る。ただし、本実施例のように除害ユニット (12)を並列に配置することによってスぺー スの使 、勝手をよくすることができる。  [0057] Although a plurality of abatement units (12) and output loss scrubbers (14) are arranged in parallel (see Figs. 1 and 2), the abatement unit (12) and output loss scrubber (14) However, if a plurality of abatement units (12) are arranged so as to be close to each other, the arrangement of the abatement device is appropriately limited according to the situation of the space where the abatement device (10) is installed. The design can be changed. However, the use of space can be improved by arranging the abatement units (12) in parallel as in this embodiment.
[0058] また、上述の実施例では、複数の反応筒 (24)を保温材 (H)で一体的に囲繞すること によって反応筒 (24)を通過する排ガス (F)を効率よく熱分解する例を示したが、除害対 象となる排ガス (F)の種類によっては各反応筒 (24)をそれぞれ別個に保温材 (H)で囲 繞するようにしてもょ 、し、このような保温材 (H)を設けなくてもよ 、。  In the above-described embodiment, the exhaust gas (F) passing through the reaction cylinder (24) is efficiently thermally decomposed by integrally surrounding the plurality of reaction cylinders (24) with the heat insulating material (H). Although an example is shown, depending on the type of exhaust gas (F) to be removed, each reaction tube (24) may be separately surrounded by a heat insulating material (H). It is not necessary to provide a heat insulating material (H).
[0059] さらに、上述の実施例では、除害装置 (10)に出ロスクラバ (14)を設ける場合を示した 1S 例えば、後工程に別途排ガス処理工程が設けられており、除害装置 (10)が PFCs の分解のみを行えばよい場合には、図 4に示すように出ロスクラバ (14)を省略するよう にしてもよい。  [0059] Further, in the above-described embodiment, the case where the removal loss scrubber (14) is provided in the abatement apparatus (10) is shown. 1S For example, a separate exhaust gas treatment process is provided in the post-process, and the abatement apparatus (10 ) May only omit PFCs, the output loss scrubber (14) may be omitted as shown in Fig. 4.
[0060] そして、必要に応じて、除害ユニット (12)に導入する前に、排ガス (F)を湿式のスクラ バで洗浄するようにしてもよ!、。 [0060] If necessary, the exhaust gas (F) is removed from the wet scrubber before being introduced into the abatement unit (12). You can wash it with a bath!

Claims

請求の範囲 The scope of the claims
[1] プラズマジェットトーチと、前記プラズマジェットトーチのプラズマジェット噴出側に設 けられ、プラズマジェットおよびこのプラズマジェットに向けて供給される排ガスを囲繞 し、その内部にて前記排ガスの熱分解を行なう反応筒とで構成され、流路を開閉する 入口バルブが設けられた個別入口配管を介して半導体製造装置に接続される複数 の除害ユニット、および  [1] A plasma jet torch and a plasma jet torch that is provided on the plasma jet ejection side of the plasma jet torch, surrounds the plasma jet and the exhaust gas supplied to the plasma jet, and thermally decomposes the exhaust gas inside the plasma jet torch A plurality of abatement units connected to the semiconductor manufacturing apparatus via individual inlet pipes configured with reaction tubes and provided with inlet valves for opening and closing the flow paths; and
流路を開閉する出口バルブが設けられ、前記各反応筒の排出側端部に連通する 個別出口配管を具備することを特徴とする半導体製造排ガスの除害装置。  An exhaust gas abatement apparatus for semiconductor manufacturing exhaust gas, comprising an individual outlet pipe provided with an outlet valve for opening and closing a flow path and communicating with a discharge side end portion of each reaction cylinder.
[2] 前記反応筒内の温度、圧力又はプラズマジェット点火状態の少なくとも 1つをセンシ ングすると共に、センシングされた情報に基づ 、て前記入口バルブを自動制御する ようにしたことを特徴とする請求の範囲第 1項に記載の半導体製造排ガスの除害装 置。  [2] It is characterized in that at least one of temperature, pressure and plasma jet ignition state in the reaction cylinder is sensed and the inlet valve is automatically controlled based on sensed information. The semiconductor manufacturing exhaust gas abatement apparatus according to claim 1.
[3] 前記除害ユニットが 3基以上装備されており、隣接する 2基の除害ユニットで挟まれ た除害ユニットを常時停止してバックアップ用とすることを特徴とする請求の範囲第 1 項又は第 2項に記載の半導体製造排ガスの除害装置。  [3] The number of the abatement units is three or more, and the abatement unit sandwiched between two adjacent abatement units is always stopped for backup purposes. Item 2. A semiconductor production exhaust gas abatement apparatus according to item 2.
[4] 前記除害ユニット n基 (但し、 nは 3以上の整数)に対して最大で n— 1基 (但し、 nは 3以上の整数)の電源ユニットを備え、スィッチを介して前記除害ユニットに接続する 電源ユニットを切替えるようにしたことを特徴とする請求の範囲第 1項乃至第 3項の何 れかに記載の半導体製造排ガスの除害装置。  [4] A maximum of n—1 power supply units (where n is an integer of 3 or more) power supply units for the above-mentioned n abatement units (where n is an integer of 3 or more), and the removal unit is connected via a switch. 4. The semiconductor manufacturing exhaust gas abatement apparatus according to any one of claims 1 to 3, wherein the power supply unit connected to the harm unit is switched.
[5] 前記除害ユニットで分解処理された排ガスを集合させて洗浄及び冷却する出ロス クラバを備えると共に、前記除害ユニットで分解処理前の排ガスを出ロスクラバの入 口側に供給する常閉のバイパス配管が設けられていることを特徴とする請求の範囲 第 1項乃至第 4項の何れかに記載の半導体製造排ガスの除害装置。  [5] Provided with an output loss scrubber for collecting and cleaning and cooling the exhaust gas decomposed by the detoxification unit, and normally closing the exhaust gas before decomposition by the detoxification unit to the inlet side of the output loss scrubber The semiconductor manufacturing exhaust gas abatement apparatus according to any one of claims 1 to 4, wherein a bypass piping is provided.
PCT/JP2007/062396 2006-12-01 2007-06-20 Device for detoxicating semiconductor production exhaust gas WO2008068917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008548169A JPWO2008068917A1 (en) 2006-12-01 2007-06-20 Semiconductor manufacturing exhaust gas abatement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006326227 2006-12-01
JP2006-326227 2006-12-01

Publications (1)

Publication Number Publication Date
WO2008068917A1 true WO2008068917A1 (en) 2008-06-12

Family

ID=39491831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062396 WO2008068917A1 (en) 2006-12-01 2007-06-20 Device for detoxicating semiconductor production exhaust gas

Country Status (3)

Country Link
JP (1) JPWO2008068917A1 (en)
TW (1) TW200831178A (en)
WO (1) WO2008068917A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493751A (en) * 2011-08-17 2013-02-20 Edwards Ltd Apparatus for cleaning a gas stream
WO2013072658A1 (en) * 2011-11-19 2013-05-23 Edwards Limited Apparatus for treating a gas stream
US10626374B2 (en) 2013-08-22 2020-04-21 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin Method for producing engineered heart muscle (EHM)
WO2023070980A1 (en) * 2021-10-29 2023-05-04 江苏大学 Variable-diameter acceleration free radical cluster injection synergistic catalytic waste gas treatment apparatus and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103203173A (en) * 2012-01-13 2013-07-17 九威科技有限公司 Exhaust gas treatment device
CN111837215B (en) * 2018-03-26 2024-03-22 株式会社国际电气 Processing apparatus, method for manufacturing semiconductor device, and recording medium
JP6791510B2 (en) * 2018-12-14 2020-11-25 カンケンテクノ株式会社 Exhaust gas plasma abatement method and its equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196862A (en) * 1995-01-24 1996-08-06 Japan Atom Energy Res Inst Oxidation treatment of gaseous decaborane
JPH1190174A (en) * 1997-09-16 1999-04-06 Daido Hoxan Inc Treatment of gaseous nitrogen trifluoride and apparatus used therefor
JP2001115175A (en) * 1999-09-16 2001-04-24 Abb Res Ltd Treatment of gaseous composition containing hydrogen sulfide
JP2005237954A (en) * 2004-01-27 2005-09-08 I'm Pact World:Kk Plasma chemical reactor and purifying/deodorizing equipment using plasma chemical reactor
JP2005279320A (en) * 2004-03-26 2005-10-13 Toshiba Corp Exhaust gas treatment system, exhaust gas treatment method and exhaust gas treatment control system
JP2006314869A (en) * 2005-05-10 2006-11-24 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude System for detoxifying exhaust gas from semiconductor process chamber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3215081B2 (en) * 1997-12-02 2001-10-02 カンケンテクノ株式会社 Apparatus and method for removing exhaust gas from semiconductor manufacturing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196862A (en) * 1995-01-24 1996-08-06 Japan Atom Energy Res Inst Oxidation treatment of gaseous decaborane
JPH1190174A (en) * 1997-09-16 1999-04-06 Daido Hoxan Inc Treatment of gaseous nitrogen trifluoride and apparatus used therefor
JP2001115175A (en) * 1999-09-16 2001-04-24 Abb Res Ltd Treatment of gaseous composition containing hydrogen sulfide
JP2005237954A (en) * 2004-01-27 2005-09-08 I'm Pact World:Kk Plasma chemical reactor and purifying/deodorizing equipment using plasma chemical reactor
JP2005279320A (en) * 2004-03-26 2005-10-13 Toshiba Corp Exhaust gas treatment system, exhaust gas treatment method and exhaust gas treatment control system
JP2006314869A (en) * 2005-05-10 2006-11-24 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude System for detoxifying exhaust gas from semiconductor process chamber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493751A (en) * 2011-08-17 2013-02-20 Edwards Ltd Apparatus for cleaning a gas stream
US10064262B2 (en) 2011-08-17 2018-08-28 Edwards Limited Apparatus for treating a gas stream
WO2013072658A1 (en) * 2011-11-19 2013-05-23 Edwards Limited Apparatus for treating a gas stream
CN103930189A (en) * 2011-11-19 2014-07-16 爱德华兹有限公司 Apparatus for treating a gas stream
KR20140101801A (en) * 2011-11-19 2014-08-20 에드워즈 리미티드 Apparatus for treating a gas stream
JP2015502249A (en) * 2011-11-19 2015-01-22 エドワーズ リミテッド Gas flow treatment equipment
US9346005B2 (en) 2011-11-19 2016-05-24 Edwards Limited Apparatus for treating a gas stream
KR102007549B1 (en) 2011-11-19 2019-10-21 에드워즈 리미티드 Apparatus for treating a gas stream
US10626374B2 (en) 2013-08-22 2020-04-21 Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts, Universitätsmedizin Method for producing engineered heart muscle (EHM)
WO2023070980A1 (en) * 2021-10-29 2023-05-04 江苏大学 Variable-diameter acceleration free radical cluster injection synergistic catalytic waste gas treatment apparatus and method

Also Published As

Publication number Publication date
JPWO2008068917A1 (en) 2010-03-18
TW200831178A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
JP4570506B2 (en) Plasma detoxifier and exhaust gas treatment system using the plasma detoxifier
WO2008068917A1 (en) Device for detoxicating semiconductor production exhaust gas
KR101411964B1 (en) Gas processing apparatus
US9937467B2 (en) Exhaust gas processing device
JP2009226391A (en) Plasma scrubber
KR102023950B1 (en) Apparatus for treating waste gas
WO2006124688A2 (en) Arc plasma jet and method of use for chemical scrubbing system
KR101464997B1 (en) Apparatus for treating exhaust gas
KR20120021651A (en) Apparatus and method for pfcs gas decomposition
KR101226603B1 (en) Apparatus for treating hazardous gas using counterflow of plasma and hazardous gas, method for treating hazardous gas using the same
TW201125632A (en) Plasma gas scrubber equipment
WO2017132186A1 (en) Semiconductor processing system
JP2005205330A (en) Plasma decomposition method of perfluoro compound exhaust gas, plasma decomposition apparatus using the method, and exhaust gas treating system mounted with the apparatus
KR20050075723A (en) Methods and apparatus for disposal of hydrogen from fluorine generation, and fluorine generators including same
JP7021730B1 (en) Semiconductor manufacturing exhaust gas treatment equipment
KR100335737B1 (en) Plasma Scrubbing System for Handling Harmful Gas
WO2022009313A1 (en) Gas processing furnace and exhaust gas processing device in which same is used
JP2010142749A (en) Gas treatment apparatus
KR20130096876A (en) The separation and recycling system for a perfluoro compounds
WO2018221067A1 (en) Exhaust gas decompression detoxification method and device therefor
JP7284546B2 (en) Gas treatment furnace and exhaust gas treatment equipment using the same
WO2022208848A1 (en) Device for treating pfc-containing exhaust gas
KR101777283B1 (en) Device for Processing by Separating Waste Gas
US20230274952A1 (en) Gas treatment system and gas treatment method using the same
JP2006175317A (en) Treatment apparatus of exhaust gas from semiconductor manufacturing process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548169

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07767235

Country of ref document: EP

Kind code of ref document: A1