WO2008068806A1 - Rf electron gun - Google Patents
Rf electron gun Download PDFInfo
- Publication number
- WO2008068806A1 WO2008068806A1 PCT/JP2006/323978 JP2006323978W WO2008068806A1 WO 2008068806 A1 WO2008068806 A1 WO 2008068806A1 JP 2006323978 W JP2006323978 W JP 2006323978W WO 2008068806 A1 WO2008068806 A1 WO 2008068806A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- magnetic field
- correction
- emitter
- electron gun
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 34
- 230000005684 electric field Effects 0.000 claims abstract description 15
- 230000005291 magnetic effect Effects 0.000 claims description 90
- 230000003068 static effect Effects 0.000 claims description 24
- 230000007423 decrease Effects 0.000 claims description 7
- 238000013459 approach Methods 0.000 claims description 6
- 238000010894 electron beam technology Methods 0.000 abstract description 56
- 238000000605 extraction Methods 0.000 description 15
- 238000004088 simulation Methods 0.000 description 6
- 239000003302 ferromagnetic material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 101710162453 Replication factor A Proteins 0.000 description 1
- 102100035729 Replication protein A 70 kDa DNA-binding subunit Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/06—Electron sources; Electron guns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/06—Electron sources; Electron guns
- H01J37/077—Electron guns using discharge in gases or vapours as electron sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/063—Electron sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/063—Electron sources
- H01J2237/06325—Cold-cathode sources
- H01J2237/06366—Gas discharge electron sources
Definitions
- the present invention relates to an RF electron gun, and more particularly to a small RF electron gun that can output an electron beam with high focusing.
- FIG. 8 shows an RF electron gun disclosed in Patent Documents 1 and 2 below.
- the RF electron gun shown in Fig. 8 includes an RF electron gun cavity 101, a force sword 102 that generates thermal electrons, a drift space 103, a vacuum box 105, a slit 106 that determines the energy width of the electron beam 104, and an electron ⁇ electromagnet 107 that deflects beam 104 into ⁇ shape, acceleration tube 108 that further accelerates electron beam 104 extracted from ⁇ electromagnet 107, beam duct 109, beam extraction window 110 that extracts the electron beam from the vacuum to the atmosphere 110, RF A phase shift attenuator 111 for adjusting the phase and amplitude of the microwave supplied to the electron gun cavity 101, a power distributor 112 for distributing the microwave power, a main oscillator 113, an RF source 114 operated by the main oscillator 113, and A pulse modulator 115 for powering the RF source 114;
- the operation is as follows.
- microwaves are supplied to the RF electron gun cavity 101 from the RF source 114 via the power distributor 112 and the phase shift attenuator 111, a microwave electric field is generated in the RF electron gun cavity 101 in the axial direction.
- Thermoelectrons are drawn from the high-temperature force sword 102 placed in
- the electron beam 104 extracted from the force sword 102 is further accelerated by the electric field in the RF electron gun cavity 101 and reaches the entrance of the ⁇ electromagnetic stone 107 through the drift space 103 which is a vacuum duct.
- the electron beam 104 at this time has a continuous energy spectrum up to a predetermined maximum value due to the phase of the microwave.
- the electron beam 104 with various speeds passes through a uniform magnetic field formed by the ⁇ electromagnet 107, momentum dispersion occurs and the beam width widens, so that only electrons in a predetermined energy range can be seen. It can pass between the slits 106 and enters the acceleration tube 108.
- Reference numerals 104a to 104c denote electron beams that can pass through the slit 106.
- the high power microwave is generated by amplifying the low power microwave from the main oscillator 113 with an RF amplifier, and the RF source 114 functions as a microwave amplifier.
- the RF source 114 is normally driven by a pulse and produces a strong peak power.
- the energy spectrum of the electron beam extracted from the RF electron gun cavity 101 is related to the phase of the microwave electric field formed in the RF electron gun cavity 101, and the bunched electron beam on the orbit in the ⁇ electromagnet 107 Accelerated by the acceleration tube 108. Further, a quadrupole magnet that forms a quadrupole magnetic field may be arranged behind the ⁇ electromagnetic stone 107 to bundle the electron beam 104 ⁇ extracted from the ⁇ electromagnet 107.
- Patent Document 1 Japanese Patent Laid-Open No. 7-235399
- Patent Document 2 U.S. Pat.No. 4,641,103
- the conventional RF electron gun needs to separately provide means for emitting and accelerating thermionic electrons and means for selecting a specific energy electron (a electromagnet). It was a large and expensive device. In addition, if a means (quadrupole magnet) for focusing the electron beam is provided behind the means ( ⁇ electromagnet) for selecting electrons of a specific energy, the apparatus becomes larger and more expensive.
- an object of the present invention is to provide a small and inexpensive RF electron gun that can output an electron beam with high focusing.
- the object of the present invention is achieved by the following means.
- the RF electron gun includes a magnet that generates a static main magnetic field, an emitter that emits electrons disposed in a region where the main magnetic field is generated, and the main magnetic field. And an acceleration cavity that generates a high-frequency electric field when microwaves are input, and the magnet has a first region where the static magnetic field is uniform, and the static magnetic field strength decreases monotonously in a predetermined direction.
- the plurality of electrons that form a small second region and also emit the emitter force are moved in a spiral shape around the emitter by the high-frequency electric field and the static magnetic field of the first region. It is characterized by being output after being focused by a static magnetic field of two regions Yes.
- the predetermined direction is a direction in which the Emitter force moves away, and the static magnetic field strength in the second region may monotonously decrease in the static magnetic field strength force in the first region. it can.
- the RF electron gun includes two first correction magnets and two second correction magnets arranged in the vicinity of the second region, and the two first correction magnets are arranged in the second region. Are arranged opposite to each other, generate a static magnetic field parallel to the main magnetic field between them, and the two second correction magnets are arranged opposite to each other with the second region interposed therebetween, A static magnetic field parallel to the main magnetic field is generated between them, and the magnetic pole of the opposing surface of one of the first correction magnets and the magnetic pole of the opposing surface of the other first correction magnet have opposite polarities, The magnetic pole of the opposing surface of the second correction magnet and the magnetic pole of the opposing surface of the other second correction magnet have opposite polarities, and the first correction magnet disposed on the same side with respect to the second region And the magnetic poles of the opposing surfaces of each of the second correction magnets have opposite polarities, and the electrons pass between the first correction magnets.
- the first correction magnet passes between the second correction magnets and the electrons pass between the two first correction magnets, the first correction magnet has a longer passing distance as the energy increases.
- the second correction magnet may be arranged such that the smaller the energy, the longer the passing distance.
- the emitter is disposed on a first wall surface of the acceleration cavity, the first wall surface has a slit through which electrons pass, and the electron emitted by the emitter force is After accelerating in the center direction of the acceleration cavity, approach the first wall surface, pass through the slit on the first wall surface, and pass through the second region formed outside the acceleration cavity. It is out.
- the emitter is disposed on a first wall surface of the acceleration cavity, the first wall surface has a slit through which electrons pass, and the electron emitted by the emitter force is After accelerating toward the center of the acceleration cavity, approach the first wall surface, pass through the slit on the first wall surface and exit to the outside of the acceleration cavity, and then pass the slit on the first wall surface again. Pass through and pass through the second region.
- a small and inexpensive RF electron gun can be realized by disposing the means for emitting and accelerating thermionic electrons in the static magnetic field generating means.
- the electron beam can be further focused by disposing the correction magnet in the static magnetic field generating means.
- the acceleration efficiency of the electrons can be increased, and the current value of the electron beam taken out from the RF electron gun can be increased.
- FIG. 1 is a perspective view showing an RF electron gun according to an embodiment of the present invention.
- FIG. 2 is a horizontal sectional view showing a configuration of an RF electron gun according to an embodiment of the present invention.
- FIG. 3 is a vertical sectional view showing a configuration of an RF electron gun according to an embodiment of the present invention.
- FIG. 4 is a graph showing a magnetic field distribution generated inside the RF electron gun according to the embodiment of the present invention.
- FIG. 5 is a horizontal sectional view showing a part of an RF electron gun according to another embodiment of the present invention.
- FIG. 6 is a diagram showing an electron beam trajectory obtained by a simulation in a state where a correction magnet is not provided in the RF electron gun according to the embodiment of the present invention.
- FIG. 7 is a diagram showing an electron beam trajectory obtained by simulation in a state in which a correction magnet is provided in the RF electron gun according to the embodiment of the present invention.
- FIG. 8 is a plan view showing a configuration of a conventional RF electron gun.
- FIG. 1 is a perspective view showing an RF electron gun according to an embodiment of the present invention.
- the RF electron gun 1 includes a casing unit 10, an RF guide unit 11, and a beam extraction unit 12.
- the XYZ axes that intersect directly as shown in Fig. 1.
- the XYZ axes are the forces shown in the upper right of FIG. 1 and will be described below assuming that the origin is located at the center of the casing 10.
- the RF guide unit 11 is connected to an RF source (not shown) that supplies microwave RF having a predetermined frequency, and functions as a waveguide that transmits the microwave RF.
- the inside of the RF electron gun 1 is maintained in a vacuum, and the beam extraction unit 12 is connected to an accelerator or an external device according to the purpose, and an electron beam generated inside the casing unit 10 as described later. Supplied to the equipment.
- FIG. 2 is a horizontal cross-sectional view through the XY plane of the RF electron gun 1 shown in FIG.
- Fig. 3 is a vertical cross-sectional view through line III-III shown in Fig. 2.
- the casing 10 has two pole pieces 13u and 13d facing each other, coils 14u and 14d wound around the pole pieces 13u and 13d, and an emitter. Accelerating cavity 16 with 15 and first correction magnet Stones 18u and 18d, second correction magnets 19u and 19d, and an extraction pipe 20 are provided.
- the power supply for supplying current to the coils 14u and 14d is omitted.
- the casing 10 and the pole pieces 13u, 13d are formed of a ferromagnetic material (for example, iron, the same shall apply hereinafter), and constitute a magnetic circuit (magnet) together with the coils 14u, 14d.
- a direct current of the same value flows in the coils 14u and 14d in the same direction, and a static magnetic field (also referred to as a main magnetic field) in the Z-axis direction is formed between the opposing pole pieces 13u and 13d.
- the pole piece 13u is provided with two elongated projections 17u on the surface facing the pole piece 13d, and has a symmetrical shape with respect to the XZ plane.
- the pole piece 13d includes two elongated protrusions 17d on the surface facing the pole piece 13u, and has a symmetrical shape with respect to the XZ plane.
- the pole pieces 13u and 13d and the coils 14u and 14d are arranged so as to be symmetric with respect to the XY plane.
- These symmetrical shapes and arrangements, and the convex portions 17u and 17d are for forming a uniform magnetic field distribution (a magnetic field distribution having the same strength and direction) in a predetermined range including the central portion of the casing 10. Is.
- the acceleration cavity 16 is formed in a shape suitable for forming a high-frequency electric field having a predetermined frequency by using a nonmagnetic conductive material. As will be described later, a slit (not shown) is formed on the wall surface of the acceleration cavity 16 to allow the electron e emitted from the emitter 15 to pass therethrough.
- the first correction magnets 18u and 18d are rectangular flat plate-like permanent magnets, which are magnetized almost uniformly in the thickness direction, and are arranged so that the magnetic pole surfaces face each other across the XY plane. Yes.
- the second correction magnets 19u and 19d are also formed and arranged in the same manner as the first correction magnets 18u and 18d. Regarding the polarities of the magnetic poles of these four opposing surfaces, the magnetic poles of the opposing surface of the first correction magnet 18u and the magnetic poles of the opposing surface of the first correction magnet 18d have opposite polarities.
- the magnetic pole and the magnetic pole of the opposing surface of the second correction magnet 19d have opposite polarities, and the magnetic pole of the opposing surface of the first correction magnet 18u and the magnetic pole of the opposing surface of the second correction magnet 19u have opposite polarities. Accordingly, the magnetic poles on the opposing surface of the first correction magnet 18d and the magnetic poles on the opposing surface of the second correction magnet 19d have opposite polarities.
- the first magnet 18u and the second magnet 19u are connected by a yoke made of a ferromagnetic material, and the first magnet 18d and the second magnet 19d are connected by another yoke made of a ferromagnetic material. ing.
- the extraction tube 20 is formed of a ferromagnetic material in a cylindrical shape, and the electron beam from the RF electron gun 1 is Is necessary to stably take out in a predetermined direction. Since the magnetic flux passes through the inside of the cylindrical wall of the extraction tube 20, there is almost no magnetic field inside the extraction tube 20, and the trajectory of the electron beam incident on the extraction tube 20 is along the cylindrical axis of the extraction tube 20. It becomes straight.
- a direct current in the same direction is passed through the coils 14u and 14d to generate a main magnetic field in the Z-axis direction that is uniform within a predetermined range including the center between the opposing pole pieces 13u and 13d.
- the microwave RF from the RF source source is supplied to the acceleration cavity 16 via the RF guide unit 11 and the emitter 15 is heated.
- a high-frequency electric field is generated in the acceleration cavity 16, and electrons emitted from the high-temperature emitter 15 are accelerated by this high-frequency electric field.
- the direction of the high-frequency electric field is designed to be parallel to the Y-axis.
- Electrons emitted from the emitter 15 are subjected to a force by electromagnetic interaction with a high-frequency electric field and a static magnetic field formed between the pole pieces 13u and 13d, and the emitter is centered as shown by a broken line.
- Draw a spiral orbit electron beam S
- the electrons are initially subjected to a force that moves from the emitter 15 toward the center of the accelerating cavity 16 by the electric field.
- the electrons receive a greater force due to the interaction with the main magnetic field and draw an arc-shaped curve. It approaches the wall surface of the acceleration cavity 16 where is placed, passes through the slit formed in the acceleration cavity 16, and goes out of the acceleration cavity 16.
- the electrons then approach the acceleration cavity 16 again, pass through the slit formed in the acceleration cavity 16, pass through the slit formed on the wall opposite to the wall where the emitter 15 is disposed, and enter the extraction tube 20. And output from the beam extraction unit 12.
- the distance of each turn of the rotating electron beam S is an integral multiple of the wavelength of the microwave RF.
- the electrons emitted from the emitter 15 have almost no velocity component in the Z-axis direction and do not spread very much (the spread in the Z-axis direction is less than about 0.1 mm), but the velocity in the XY plane The components are relatively large and their variation is relatively large. Therefore, in the present invention, the electron beam S is focused when passing through the focusing area A1 indicated by the dotted line in FIGS. To that end, it will be described later As described above, the distribution of the main magnetic field formed inside the casing 10 is devised. Further, a correction magnet is preferably arranged inside the housing unit 10.
- FIG. 4 is a graph showing changes in the main magnetic field strength Bz (Z component of the magnetic field) on the Y axis.
- the reference A1 is added to the range on the Y axis in the focusing area A1 for reference.
- the magnetic field intensity distribution force in the normal direction of the electron beam S (the direction perpendicular to the electron velocity direction in the electron trajectory plane) becomes uniform as it moves away from the emitter 15.
- the main magnetic field distribution is formed so as to monotonously decrease from a strong magnetic field strength B0 to a predetermined magnetic field strength B1.
- the pole pieces 13u and 13d are elongated in the X-axis direction, they are on a straight line parallel to the Y-axis within a predetermined distance from the Y-axis, that is, a straight line parallel to the Y-axis passing through the region A1
- the magnetic field strength changes in the same way as the graph in Figure 4.
- the first correction magnets 18u and 18d and the second correction magnets 19u and 19d are arranged above and below the focusing area A1.
- the first correction magnets 18u and 18d and the second correction magnets 19u and 19d have a magnetic pole arrangement similar to the quadrupole magnet as described above. Therefore, the electron beam can be further focused by passing through the first correction magnets 18u and 18d and the second correction magnets 19u and 19d. At this time, the passage distance of electrons between the first correction magnets 18 u and 18 d and between the second correction magnets 19 u and 19 d is changed according to the energy of the electrons.
- FIGS. 6 and 7 are diagrams showing simulation results regarding the RF electron gun according to the embodiment of the present invention.
- FIG. 6 shows a simulation result in a state where the correction magnet is not provided, and FIG.
- time 1Z (2.44 46 GHz).
- X 2 The trajectory was calculated while changing for 2 seconds).
- the spiral solid line starting from Emitter 15 is the boundary of the region through which the electron passes with the final energy between 0.955 and 0.995 MeV (i.e., the innermost and outermost orbits). ).
- the spiral dotted line starting from Emitter 15 represents the boundary of the region through which electrons pass with a final energy of 0.9 to 1. lMeV.
- the electron beam is focused at the portion indicated by the reference symbol C2 included in the focusing region A1, and then the electron beam spreads gradually, but again indicated by the reference symbol D2. It can be seen that the light is focused on the part.
- the spread of the electron beam after being focused at the portion indicated by reference numeral C2 is small (L2 ⁇ L1). This indicates that the acceleration efficiency of the electrons is high, and the spread of the electron beam at the portion indicated by the symbol D2 is also smaller than in FIG. Therefore, if the extraction tube is arranged so that the tube port is located at the portion indicated by reference numeral D2, the correction magnet is provided, and in this case, the correction magnet is provided. The electron beam can be extracted.
- a desirable electron orbit is a portion indicated by a force sign C2 passing between two spiral solid lines, and the inner electron orbit intersects with the outer electron orbit. That is, after being emitted from the emitter 15, the electrons passing through the outermost solid line trajectory pass through the innermost solid line trajectory after passing through the portion indicated by the symbol C2. Conversely, after being emitted from the emitter 15, the electrons passing through the innermost solid line trajectory pass through the outermost solid line trajectory after passing through the portion indicated by the symbol C2. Therefore, as mentioned above, electrons with higher energy ( Before passing through the part indicated by C2, the longer the distance that passes between the first correction magnets 18u and 18d, the smaller the energy (indicated by C2). The distance that passes between the second correction magnets 19u and 19d increases as the electron passes through the outer orbit after passing through the part.
- the uniform main magnetic field strength is 500G
- the correction magnetic field strength generated by the correction magnet is about 150G.
- the magnetic field strength changes monotonously as shown in FIG. If the magnetic field distribution is formed in the region, the regions A2 to A5 can be used as the focusing region.
- the area A 2 is an area shorter in length than the correction area A 1 in FIGS.
- correction magnets may be disposed above and below the region A5.
- FIGS. 2 and 3 show the case where the accelerating cavity 16 and the casing portion 10 are arranged so that the respective central axes coincide with the X axis.
- the present invention is not limited to this arrangement, and the electron beam S If the accelerating cavity 16 and the housing part 10 are arranged so that the main magnetic field distribution can be formed so that the majority of the spiral orbits are located in the main magnetic field and a part passes through the focusing region. Good.
- a static magnetic field is generated inside the casing by an electromagnet using a coil
- the present invention is not limited to this, and a main magnetic field may be formed using a permanent magnet.
- a permanent magnet magnetized in the Z-axis direction may be disposed between the pole piece 13u and the casing 10 and between the pole piece 13d and the casing 10.
- the force described in the case of forming the elongated protrusion in one direction (Y-axis direction) on the surface of the rectangular pole piece is not limited to this.
- Two poles parallel to the X-axis direction and two protrusions parallel to the Y-axis direction may be formed on the surface of one pole piece.
- a convex portion may be formed on the surface.
- a convex part may be formed in a circular ring shape using a cylindrical casing part and a circular pole piece.
- the direction in which the electron beam is extracted is parallel to the incident direction of the microwave RF, but the direction in which the electron beam is extracted can be arbitrarily designed, for example, as illustrated in FIG.
- a tube 20 may be arranged to extract the electron beam in a direction perpendicular to the direction of microwave RF application.
- the present invention is not limited to this, and the correction magnet may have a plate shape with an acute angle greater than 90 degrees or a disk shape.
- one yoke connecting the correction magnet is arranged to connect the first correction magnets 18u and 18d, and the other yoke is arranged to connect the second correction magnets 19u and 19d. But ⁇ .
- the direction of the main magnetic field may be the negative direction of the Z axis. In that case, considering the fact that the spiral trajectory of the electron beam is reversed, the position of the emitter, the shape and position of the slit of the acceleration cavity, the position of the correction magnet and the polarity arrangement should be designed. .
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Sources, Ion Sources (AREA)
- Particle Accelerators (AREA)
Abstract
A small and inexpensive RF electron gun capable of outputting an electron beam with high convergence comprises a housing (10), a magnet consisting of a pole piece (13d) and a coil (14d) to generate a magnetostatic field, an emitter (15) arranged in a region generating the magnetostatic field and emitting electrons (e), an acceleration cavity (16) arranged in a region generating the magnetostatic field and generating a high frequency electric field on receiving a microwave (RF), and correction magnets (18d, 19d), wherein the magnet forms a first region having a uniform magnetostatic field and second regions (A1, A2) where the strength of magnetostatic field varies monotonously, and a plurality of electrons emitted from the emitter (15) are moved spirally (S) by the high frequency electric field and the magnetostatic field in the first region and then converged by the magnetostatic field in the second region (A1) and the correction magnets (18d, 19d) before being outputted.
Description
明 細 書 Specification
RF電子銃 RF electron gun
技術分野 Technical field
[0001] 本発明は、 RF電子銃に関し、特に集束性の高い電子ビームを出力することができ る小型の RF電子銃に関する。 TECHNICAL FIELD [0001] The present invention relates to an RF electron gun, and more particularly to a small RF electron gun that can output an electron beam with high focusing.
背景技術 Background art
[0002] RF電子銃は電子ビームの生成手段として公知である。一例として、下記特許文献 1、 2に開示されている RF電子銃を図 8に示す。 An RF electron gun is known as an electron beam generating means. As an example, FIG. 8 shows an RF electron gun disclosed in Patent Documents 1 and 2 below.
[0003] 図 8に示した RF電子銃は、 RF電子銃空洞 101、熱電子を発生する力ソード 102、 ドリフトスペース 103、真空箱 105、電子ビーム 104のエネルギー幅を決定するスリツ ト 106、電子ビーム 104を α状に偏向する α電磁石 107、 α電磁石 107から取り出さ れた電子ビーム 104をさらに加速する加速管 108、ビームダクト 109、電子ビームを 真空中から大気中に取り出すビーム取出窓 110、 RF電子銃空洞 101に供給される マイクロ波の位相と振幅を調整する移相減衰器 111、マイクロ波電力を分配する電力 分配器 112、主発振器 113、主発振器 113によって動作される RF源 114、及び、 RF 源 114に電力を与えるパルス変調器 115を備えて 、る。 [0003] The RF electron gun shown in Fig. 8 includes an RF electron gun cavity 101, a force sword 102 that generates thermal electrons, a drift space 103, a vacuum box 105, a slit 106 that determines the energy width of the electron beam 104, and an electron Α electromagnet 107 that deflects beam 104 into α shape, acceleration tube 108 that further accelerates electron beam 104 extracted from α electromagnet 107, beam duct 109, beam extraction window 110 that extracts the electron beam from the vacuum to the atmosphere 110, RF A phase shift attenuator 111 for adjusting the phase and amplitude of the microwave supplied to the electron gun cavity 101, a power distributor 112 for distributing the microwave power, a main oscillator 113, an RF source 114 operated by the main oscillator 113, and A pulse modulator 115 for powering the RF source 114;
[0004] その動作は次の通りである。 RF電子銃空洞 101に RF源 114からマイクロ波が電力 分配器 112及び移相減衰器 111を介して供給されると、 RF電子銃空洞 101には軸 方向にマイクロ波電場が生じ、この電場中に置かれた高温度の力ソード 102から熱電 子が引き出される。力ソード 102から引き出された電子ビーム 104はさらに RF電子銃 空洞 101内の電場で加速され、真空ダクトであるドリフトスペース 103を通って α電磁 石 107の入口に達する。このときの電子ビーム 104はマイクロ波の位相により所定の 最大値までの連続的なエネルギースペクトルをもって 、る。この様々な速度が一様で ない電子ビーム 104は、 α電磁石 107によって形成された一様な磁場中を通過する とき運動量分散が起こってビーム幅が広がるので、所定のエネルギー範囲の電子の みがスリット 106の間を通過することができ、加速管 108に入射する。符号 104a〜10 4cはスリット 106を通り抜けることができた電子ビームを表している。 RF電源 114から
の大電力マイクロ波は主発振器 113からの小電力マイクロ波を RF増幅器で増幅して 作られ、 RF源 114はマイクロ波増幅器として機能する。 RF源 114は通常ノ ルス駆動 され、強力な尖頭電力を生み出す。 [0004] The operation is as follows. When microwaves are supplied to the RF electron gun cavity 101 from the RF source 114 via the power distributor 112 and the phase shift attenuator 111, a microwave electric field is generated in the RF electron gun cavity 101 in the axial direction. Thermoelectrons are drawn from the high-temperature force sword 102 placed in The electron beam 104 extracted from the force sword 102 is further accelerated by the electric field in the RF electron gun cavity 101 and reaches the entrance of the α electromagnetic stone 107 through the drift space 103 which is a vacuum duct. The electron beam 104 at this time has a continuous energy spectrum up to a predetermined maximum value due to the phase of the microwave. When the electron beam 104 with various speeds passes through a uniform magnetic field formed by the α electromagnet 107, momentum dispersion occurs and the beam width widens, so that only electrons in a predetermined energy range can be seen. It can pass between the slits 106 and enters the acceleration tube 108. Reference numerals 104a to 104c denote electron beams that can pass through the slit 106. From RF power supply 114 The high power microwave is generated by amplifying the low power microwave from the main oscillator 113 with an RF amplifier, and the RF source 114 functions as a microwave amplifier. The RF source 114 is normally driven by a pulse and produces a strong peak power.
[0005] RF電子銃空洞 101から取り出される電子ビームのエネルギースペクトルは RF電子 銃空洞 101の中にできるマイクロ波電場の位相と関係し、 α電磁石 107中の軌道上 で、バンチングされた電子ビームが加速管 108によって加速される。さらに、 α電磁 石 107の後方に、 α電磁石 107から取り出された電子ビーム 104 ^^束させるため に、四重極磁場を形成する四重極磁石を配置することも行われて ヽる。 [0005] The energy spectrum of the electron beam extracted from the RF electron gun cavity 101 is related to the phase of the microwave electric field formed in the RF electron gun cavity 101, and the bunched electron beam on the orbit in the α electromagnet 107 Accelerated by the acceleration tube 108. Further, a quadrupole magnet that forms a quadrupole magnetic field may be arranged behind the α electromagnetic stone 107 to bundle the electron beam 104 ^^ extracted from the α electromagnet 107.
特許文献 1:特開平 7— 235399号公報 Patent Document 1: Japanese Patent Laid-Open No. 7-235399
特許文献 2 :米国特許第 4, 641, 103号公報 Patent Document 2: U.S. Pat.No. 4,641,103
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0006] 上記したように、従来の RF電子銃は、熱電子を放出して加速する手段と、特定のェ ネルギ一の電子を選択する手段( a電磁石)とを別に設けることが必要であり、大型 で高額な装置であった。また、特定のエネルギーの電子を選択する手段(α電磁石) の後方に、電子ビームを集束する手段(四重極磁石)を設ける場合には、さらに大型 で高額な装置になる。 [0006] As described above, the conventional RF electron gun needs to separately provide means for emitting and accelerating thermionic electrons and means for selecting a specific energy electron (a electromagnet). It was a large and expensive device. In addition, if a means (quadrupole magnet) for focusing the electron beam is provided behind the means (α electromagnet) for selecting electrons of a specific energy, the apparatus becomes larger and more expensive.
[0007] 従って、本発明の目的は、集束性の高い電子ビームを出力することができる小型で 低額な RF電子銃を提供することにある。 Therefore, an object of the present invention is to provide a small and inexpensive RF electron gun that can output an electron beam with high focusing.
課題を解決するための手段 Means for solving the problem
[0008] 本発明の目的は、以下の手段によって達成される。 The object of the present invention is achieved by the following means.
[0009] 即ち、本発明に係る RF電子銃は、静的な主磁場を生成する磁石と、前記主磁場が 生成される領域に配置され、電子を放出するェミッタと、前記主磁場が生成される領 域に配置され、マイクロ波が入力されて高周波電場を生成する加速空洞とを備え、前 記磁石が、静磁場が一様な第 1領域と、静磁場強度が所定方向において単調に減 少する第 2領域とを形成し、前記ェミッタ力も放出される複数の前記電子を、前記高 周波電場および前記第 1領域の静磁場によって、前記ェミッタを中心とする渦巻状に 移動させ、前記第 2領域の静磁場によって集束させた後、出力することを特徴として
いる。 That is, the RF electron gun according to the present invention includes a magnet that generates a static main magnetic field, an emitter that emits electrons disposed in a region where the main magnetic field is generated, and the main magnetic field. And an acceleration cavity that generates a high-frequency electric field when microwaves are input, and the magnet has a first region where the static magnetic field is uniform, and the static magnetic field strength decreases monotonously in a predetermined direction. The plurality of electrons that form a small second region and also emit the emitter force are moved in a spiral shape around the emitter by the high-frequency electric field and the static magnetic field of the first region. It is characterized by being output after being focused by a static magnetic field of two regions Yes.
[0010] 上記 RF電子銃において、前記所定方向は、前記ェミッタ力 遠ざ力る方向であり、 前記第 2領域における静磁場強度は、前記第 1領域の静磁場強度力 単調に減少 することができる。 [0010] In the RF electron gun, the predetermined direction is a direction in which the Emitter force moves away, and the static magnetic field strength in the second region may monotonously decrease in the static magnetic field strength force in the first region. it can.
[0011] また、上記 RF電子銃において、前記第 2領域の近傍に配置された 2つの第 1補正 磁石及び 2つの第 2補正磁石を備え、 2つの前記第 1補正磁石は、前記第 2領域を間 に挟んで対向して配置され、相互間に前記主磁場に平行な静磁場を生成し、 2つの 前記第 2補正磁石は、前記第 2領域を間に挟んで対向して配置され、相互間に前記 主磁場に平行な静磁場を生成し、一方の前記第 1補正磁石の対向面の磁極と他方 の前記第 1補正磁石の対向面の磁極とは逆の極性であり、一方の前記第 2補正磁石 の対向面の磁極と他方の前記第 2補正磁石の対向面の磁極とは逆の極性であり、前 記第 2領域に対して同じ側に配置された前記第 1補正磁石および前記第 2補正磁石 の各々の前記対向面の磁極は逆の極性であり、前記電子は、前記第 1補正磁石の 間を通過した後、前記第 2補正磁石の間を通過し、前記電子が、 2つの前記第 1補正 磁石の間を通過するとき、エネルギーが大きいほど通過距離が長くなるように、前記 第 1補正磁石は配置され、前記電子が、 2つの前記第 2補正磁石の間を通過するとき 、エネルギーが小さいほど通過距離が長くなるように、前記第 2補正磁石は配置され ていることができる。 [0011] Further, the RF electron gun includes two first correction magnets and two second correction magnets arranged in the vicinity of the second region, and the two first correction magnets are arranged in the second region. Are arranged opposite to each other, generate a static magnetic field parallel to the main magnetic field between them, and the two second correction magnets are arranged opposite to each other with the second region interposed therebetween, A static magnetic field parallel to the main magnetic field is generated between them, and the magnetic pole of the opposing surface of one of the first correction magnets and the magnetic pole of the opposing surface of the other first correction magnet have opposite polarities, The magnetic pole of the opposing surface of the second correction magnet and the magnetic pole of the opposing surface of the other second correction magnet have opposite polarities, and the first correction magnet disposed on the same side with respect to the second region And the magnetic poles of the opposing surfaces of each of the second correction magnets have opposite polarities, and the electrons pass between the first correction magnets. After that, when the first correction magnet passes between the second correction magnets and the electrons pass between the two first correction magnets, the first correction magnet has a longer passing distance as the energy increases. When the electrons pass between the two second correction magnets, the second correction magnet may be arranged such that the smaller the energy, the longer the passing distance.
[0012] また、上記 RF電子銃において、前記ェミッタは、前記加速空洞の第 1壁面に配置さ れ、該第 1壁面は、電子を通過させるスリットを有し、前記ェミッタ力 放出された電子 は、前記加速空洞の中心方向に加速された後、前記第 1壁面に接近し、前記第 1壁 面のスリットを通過し、前記加速空洞の外部に形成された前記第 2領域を通過するこ とがでさる。 [0012] In the RF electron gun, the emitter is disposed on a first wall surface of the acceleration cavity, the first wall surface has a slit through which electrons pass, and the electron emitted by the emitter force is After accelerating in the center direction of the acceleration cavity, approach the first wall surface, pass through the slit on the first wall surface, and pass through the second region formed outside the acceleration cavity. It is out.
[0013] また、上記 RF電子銃において、前記ェミッタは、前記加速空洞の第 1壁面に配置さ れ、該第 1壁面は、電子を通過させるスリットを有し、前記ェミッタ力 放出された電子 は、前記加速空洞の中心方向に加速された後、前記第 1壁面に接近し、前記第 1壁 面のスリットを通過して前記加速空洞の外部に出た後、再び前記第 1壁面のスリットを 通過し、前記第 2領域を通過することができる。
発明の効果 [0013] In the RF electron gun, the emitter is disposed on a first wall surface of the acceleration cavity, the first wall surface has a slit through which electrons pass, and the electron emitted by the emitter force is After accelerating toward the center of the acceleration cavity, approach the first wall surface, pass through the slit on the first wall surface and exit to the outside of the acceleration cavity, and then pass the slit on the first wall surface again. Pass through and pass through the second region. The invention's effect
[0014] 本発明によれば、熱電子を放出して加速する手段を、静磁場発生手段の中に配置 することによって、小型で低額な RF電子銃を実現することができる。 According to the present invention, a small and inexpensive RF electron gun can be realized by disposing the means for emitting and accelerating thermionic electrons in the static magnetic field generating means.
[0015] また、主磁場の分布を、電子ビームの渦巻状軌道の一部において、熱電子を放出 する手段カゝら遠ざかるにつれて、磁場強度が単調に減少するように形成することよつ て、電子ビームの集束性を改善することができる。 [0015] In addition, by forming the distribution of the main magnetic field so that the magnetic field strength decreases monotonously as it moves away from the means for emitting thermal electrons in a part of the spiral orbit of the electron beam, The focusing property of the electron beam can be improved.
[0016] また、補正磁石を静磁場発生手段の中に配置することによって、電子ビームをさら に集束させることができる。 [0016] Further, the electron beam can be further focused by disposing the correction magnet in the static magnetic field generating means.
[0017] また、加速空洞から出た直後に電子ビームを集束させることによって、電子の加速 効率を上げ、 RF電子銃から取り出される電子ビームの電流値を増大させることがで きる。 [0017] Further, by focusing the electron beam immediately after exiting the acceleration cavity, the acceleration efficiency of the electrons can be increased, and the current value of the electron beam taken out from the RF electron gun can be increased.
図面の簡単な説明 Brief Description of Drawings
[0018] [図 1]本発明の実施の形態に係る RF電子銃を示す斜視図である。 FIG. 1 is a perspective view showing an RF electron gun according to an embodiment of the present invention.
[図 2]本発明の実施の形態に係る RF電子銃の構成を示す水平断面図である。 FIG. 2 is a horizontal sectional view showing a configuration of an RF electron gun according to an embodiment of the present invention.
[図 3]本発明の実施の形態に係る RF電子銃の構成を示す鉛直断面図である。 FIG. 3 is a vertical sectional view showing a configuration of an RF electron gun according to an embodiment of the present invention.
[図 4]本発明の実施の形態に係る RF電子銃の内部に生成される磁場分布を示すグ ラフである。 FIG. 4 is a graph showing a magnetic field distribution generated inside the RF electron gun according to the embodiment of the present invention.
[図 5]本発明の別の実施の形態に係る RF電子銃の一部を示す水平断面図である。 FIG. 5 is a horizontal sectional view showing a part of an RF electron gun according to another embodiment of the present invention.
[図 6]本発明の実施の形態に係る RF電子銃において補正磁石を備えない状態での シミュレーションによって得られた電子ビームの軌道を示す図である。 FIG. 6 is a diagram showing an electron beam trajectory obtained by a simulation in a state where a correction magnet is not provided in the RF electron gun according to the embodiment of the present invention.
[図 7]本発明の実施の形態に係る RF電子銃において補正磁石を備えた状態でのシ ミュレーシヨンによって得られた電子ビームの軌道を示す図である。 FIG. 7 is a diagram showing an electron beam trajectory obtained by simulation in a state in which a correction magnet is provided in the RF electron gun according to the embodiment of the present invention.
[図 8]従来の RF電子銃の構成を示す平面図である。 FIG. 8 is a plan view showing a configuration of a conventional RF electron gun.
符号の説明 Explanation of symbols
[0019] 1 RF電子銃 [0019] 1 RF electron gun
10 筐体部 10 Enclosure
11 RFガイド部 11 RF guide section
12 ビーム取出部
13u、 13d ポールピース 12 Beam extraction section 13u, 13d pole piece
14u、 14d コイル 14u, 14d coil
15 ェミッタ 15 Emmit
16 加速空洞 16 Acceleration cavity
17u、 17d 凸部 17u, 17d convex
18u、 18d 第 1補正磁石 18u, 18d 1st correction magnet
19u、 19d 第 2補正磁石 19u, 19d 2nd correction magnet
20 取出管 20 Extraction pipe
S 電子ビーム S electron beam
A1〜A5 集束領域 A1 ~ A5 Focusing area
e 電ナ e
RF マイクロ波 RF microwave
Ll、 L2 集束された後の電子ビームの広がり Ll, L2 Electron beam spread after focusing
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、添付の図面を参照して、本発明の実施の形態に関して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0021] 図 1は、本発明の実施の形態に係る RF電子銃を示す斜視図である。本 RF電子銃 1は、筐体部 10、 RFガイド部 11、ビーム取出部 12を備えている。説明の便宜上、直 交する XYZ軸を図 1のように設定する。 XYZ軸は図 1の右上に示されている力 その 原点は筐体部 10の中心に位置するとして、以下説明する。 FIG. 1 is a perspective view showing an RF electron gun according to an embodiment of the present invention. The RF electron gun 1 includes a casing unit 10, an RF guide unit 11, and a beam extraction unit 12. For convenience of explanation, set the XYZ axes that intersect directly as shown in Fig. 1. The XYZ axes are the forces shown in the upper right of FIG. 1 and will be described below assuming that the origin is located at the center of the casing 10.
[0022] RFガイド部 11は、所定の周波数のマイクロ波 RFを供給する RF源(図示せず)に接 続されており、マイクロ波 RFを伝送する導波管として機能する。本 RF電子銃 1の内 部は真空に維持されており、ビーム取出部 12は加速器や目的に応じた外部装置に 接続され、後述するように筐体部 10の内部で発生した電子ビームはそれらの装置に 供給される。 The RF guide unit 11 is connected to an RF source (not shown) that supplies microwave RF having a predetermined frequency, and functions as a waveguide that transmits the microwave RF. The inside of the RF electron gun 1 is maintained in a vacuum, and the beam extraction unit 12 is connected to an accelerator or an external device according to the purpose, and an electron beam generated inside the casing unit 10 as described later. Supplied to the equipment.
[0023] 図 2は、図 1に示した RF電子銃 1の XY平面を通る水平断面図である。図 3は、図 2 に示した III III線を通る鉛直断面図である。図 2、 3に示したように、筐体部 10は内 部に、対向する 2つのポールピース 13u、 13dと、各々のポールピース 13u、 13dの 周囲に巻かれたコイル 14u、 14dと、ェミッタ 15を有する加速空洞 16と、第 1補正磁
石 18u、 18d及び第 2補正磁石 19u、 19dと、取出管 20とを備えている。図 1〜3にお いて、コイル 14u、 14dに電流を流す電源などは省略している。 FIG. 2 is a horizontal cross-sectional view through the XY plane of the RF electron gun 1 shown in FIG. Fig. 3 is a vertical cross-sectional view through line III-III shown in Fig. 2. As shown in FIGS. 2 and 3, the casing 10 has two pole pieces 13u and 13d facing each other, coils 14u and 14d wound around the pole pieces 13u and 13d, and an emitter. Accelerating cavity 16 with 15 and first correction magnet Stones 18u and 18d, second correction magnets 19u and 19d, and an extraction pipe 20 are provided. In Figs. 1 to 3, the power supply for supplying current to the coils 14u and 14d is omitted.
[0024] 筐体部 10及びポールピース 13u、 13dは強磁性材料 (例えば鉄。以下同じ)で形 成されており、コイル 14u、 14dと共に磁気回路(磁石)を構成する。コイル 14u、 14d には、同方向に同じ値の直流電流が流され、対向するポールピース 13u、 13d間に Z 軸方向の静磁場 (主磁場とも記す)が形成される。図 2、 3に示したように、ポールピー ス 13uは、ポールピース 13dに対向する面に、細長い 2つの凸部 17uを備えており、 XZ面に関して対称な形状をしている。同様に、ポールピース 13dは、ポールピース 1 3uに対向する面に、細長い 2つの凸部 17dを備えており、 XZ面に関して対称な形状 をしている。また、ポールピース 13u、 13d、コイル 14u、 14dは、 XY面に関して対称 になるように配置になっている。これらの対称な形状および配置、並びに凸部 17u、 1 7dは、筐体部 10の中央部を含む所定範囲に、一様な磁場分布 (強度及び方向が同 じ磁場分布)を形成するためのものである。 [0024] The casing 10 and the pole pieces 13u, 13d are formed of a ferromagnetic material (for example, iron, the same shall apply hereinafter), and constitute a magnetic circuit (magnet) together with the coils 14u, 14d. A direct current of the same value flows in the coils 14u and 14d in the same direction, and a static magnetic field (also referred to as a main magnetic field) in the Z-axis direction is formed between the opposing pole pieces 13u and 13d. As shown in FIGS. 2 and 3, the pole piece 13u is provided with two elongated projections 17u on the surface facing the pole piece 13d, and has a symmetrical shape with respect to the XZ plane. Similarly, the pole piece 13d includes two elongated protrusions 17d on the surface facing the pole piece 13u, and has a symmetrical shape with respect to the XZ plane. The pole pieces 13u and 13d and the coils 14u and 14d are arranged so as to be symmetric with respect to the XY plane. These symmetrical shapes and arrangements, and the convex portions 17u and 17d are for forming a uniform magnetic field distribution (a magnetic field distribution having the same strength and direction) in a predetermined range including the central portion of the casing 10. Is.
[0025] 加速空洞 16は、非磁性の導電性材料を用いて、所定周波数の高周波電場の形成 に適した形状に形成されている。加速空洞 16の壁面には、後述するようにェミッタ 15 力 放出される電子 eを通過させるために、スリット(図示せず)が形成されて!、る。 [0025] The acceleration cavity 16 is formed in a shape suitable for forming a high-frequency electric field having a predetermined frequency by using a nonmagnetic conductive material. As will be described later, a slit (not shown) is formed on the wall surface of the acceleration cavity 16 to allow the electron e emitted from the emitter 15 to pass therethrough.
[0026] 第 1補正磁石 18u、 18dは、長方形の平板状の永久磁石であり、厚さ方向にほぼ一 様に磁化されており、 XY平面を挟んで磁極面が対向するように配置されている。第 2 補正磁石 19u、 19dも、第 1補正磁石 18u、 18dと同様に形成され、配置されている。 これら 4つの対向面の磁極の極性に関しては、第 1補正磁石 18uの対向面の磁極と 第 1補正磁石 18dの対向面の磁極とが逆の極性であり、第 2補正磁石 19uの対向面 の磁極と第 2補正磁石 19dの対向面の磁極とが逆の極性であり、第 1補正磁石 18u の対向面の磁極と第 2補正磁石 19uの対向面の磁極とが逆の極性である。従って、 第 1補正磁石 18dの対向面の磁極と第 2補正磁石 19dの対向面の磁極とも逆の極性 になっている。なお、図示していないが、第 1磁石 18uと第 2磁石 19uとが強磁性材 料のヨークで接続され、第 1磁石 18dと第 2磁石 19dとが強磁性材料の別のヨークで 接続されている。 [0026] The first correction magnets 18u and 18d are rectangular flat plate-like permanent magnets, which are magnetized almost uniformly in the thickness direction, and are arranged so that the magnetic pole surfaces face each other across the XY plane. Yes. The second correction magnets 19u and 19d are also formed and arranged in the same manner as the first correction magnets 18u and 18d. Regarding the polarities of the magnetic poles of these four opposing surfaces, the magnetic poles of the opposing surface of the first correction magnet 18u and the magnetic poles of the opposing surface of the first correction magnet 18d have opposite polarities. The magnetic pole and the magnetic pole of the opposing surface of the second correction magnet 19d have opposite polarities, and the magnetic pole of the opposing surface of the first correction magnet 18u and the magnetic pole of the opposing surface of the second correction magnet 19u have opposite polarities. Accordingly, the magnetic poles on the opposing surface of the first correction magnet 18d and the magnetic poles on the opposing surface of the second correction magnet 19d have opposite polarities. Although not shown, the first magnet 18u and the second magnet 19u are connected by a yoke made of a ferromagnetic material, and the first magnet 18d and the second magnet 19d are connected by another yoke made of a ferromagnetic material. ing.
[0027] 取出管 20は、強磁性材料で円筒状に形成されており、 RF電子銃 1から電子ビーム
を安定して所定の方向に取り出すために必要である。磁束が取出管 20の円筒壁内 部を通過するので、取出管 20の内側には磁場が殆ど存在せず、取出管 20に入射し た電子ビームの軌道は取出管 20の円筒軸に沿った直線状になる。 [0027] The extraction tube 20 is formed of a ferromagnetic material in a cylindrical shape, and the electron beam from the RF electron gun 1 is Is necessary to stably take out in a predetermined direction. Since the magnetic flux passes through the inside of the cylindrical wall of the extraction tube 20, there is almost no magnetic field inside the extraction tube 20, and the trajectory of the electron beam incident on the extraction tube 20 is along the cylindrical axis of the extraction tube 20. It becomes straight.
[0028] 次に、上記のように構成された RF電子銃 1の動作を説明する。ここでは、 Z軸の正 方向に一様な静磁場が形成され、第 1補正磁石 18u、 18d及び第 2補正磁石 19u、 1 9dの対向する磁極面力 それぞれ N極、 S極、 S極、 N極であるとする。 Next, the operation of the RF electron gun 1 configured as described above will be described. Here, a uniform static magnetic field is formed in the positive direction of the Z-axis, and the opposing magnetic pole surface forces of the first correction magnets 18u, 18d and the second correction magnets 19u, 19d are N pole, S pole, S pole, It is assumed that there are N poles.
[0029] まず、コイル 14u、 14dに同方向の直流電流を流して、対向するポールピース 13u 、 13d間に、中心を含む所定範囲内で一様な Z軸方向の主磁場を生成する。 First, a direct current in the same direction is passed through the coils 14u and 14d to generate a main magnetic field in the Z-axis direction that is uniform within a predetermined range including the center between the opposing pole pieces 13u and 13d.
[0030] この状態で、電子を発生させる。即ち、 RF源カゝらマイクロ波 RFを、 RFガイド部 11を 介して加速空洞 16に供給し、ェミッタ 15を加熱する。これによつて、加速空洞 16に は高周波電場が生じ、高温度のェミッタ 15から放出された電子がこの高周波電場に よって加速される。ここで、高周波電場の方向は Y軸に平行になるように設計されて いる。 In this state, electrons are generated. That is, the microwave RF from the RF source source is supplied to the acceleration cavity 16 via the RF guide unit 11 and the emitter 15 is heated. As a result, a high-frequency electric field is generated in the acceleration cavity 16, and electrons emitted from the high-temperature emitter 15 are accelerated by this high-frequency electric field. Here, the direction of the high-frequency electric field is designed to be parallel to the Y-axis.
[0031] ェミッタ 15から放出された電子は、高周波電場およびポールピース 13u、 13d間に 形成された静磁場との電磁気的相互作用によって力を受け、破線で示すように、エミ ッタを中心とする渦巻状の旋回軌道 (電子ビーム S)を描く。すなわち、電子は、最初 は電場によってェミッタ 15から加速空洞 16の中心方向に移動する力 加速されるに つれて主磁場との相互作用によってより大きな力を受け、円弧状の曲線を描きながら ェミッタ 15が配置された加速空洞 16の壁面に近づき、加速空洞 16に形成されたスリ ットを通過して、加速空洞 16の外に出る。電子は、その後再び加速空洞 16に近づき 、加速空洞 16に形成されたスリットを通過して、ェミッタ 15が配置された壁面に対向 する壁面に形成されたスリットを通過し、取出管 20に入射してビーム取出部 12から 出力する。ここで、旋回する電子ビーム Sの周回毎の距離がマイクロ波 RFの波長の 整数倍になるように設計されて ヽる。 [0031] Electrons emitted from the emitter 15 are subjected to a force by electromagnetic interaction with a high-frequency electric field and a static magnetic field formed between the pole pieces 13u and 13d, and the emitter is centered as shown by a broken line. Draw a spiral orbit (electron beam S). That is, the electrons are initially subjected to a force that moves from the emitter 15 toward the center of the accelerating cavity 16 by the electric field. As the electrons are accelerated, the electrons receive a greater force due to the interaction with the main magnetic field and draw an arc-shaped curve. It approaches the wall surface of the acceleration cavity 16 where is placed, passes through the slit formed in the acceleration cavity 16, and goes out of the acceleration cavity 16. The electrons then approach the acceleration cavity 16 again, pass through the slit formed in the acceleration cavity 16, pass through the slit formed on the wall opposite to the wall where the emitter 15 is disposed, and enter the extraction tube 20. And output from the beam extraction unit 12. Here, it is designed that the distance of each turn of the rotating electron beam S is an integral multiple of the wavelength of the microwave RF.
[0032] このとき、ェミッタ 15から放出される電子は、 Z軸方向には殆ど速度成分を持たず、 あまり広がらない (Z軸方向の広がりは約 0. 1mm未満)が、 XY面内の速度成分は比 較的大きぐそのばらつきも比較的大きい。従って、本発明では、電子ビーム Sが図 2 、 3に点線で示した集束領域 A1を通過するときに集束させる。そのために、後述する
ように筐体部 10の内部に形成される主磁場の分布を工夫する。さらに、望ましくは筐 体部 10の内部に補正磁石を配置する。 [0032] At this time, the electrons emitted from the emitter 15 have almost no velocity component in the Z-axis direction and do not spread very much (the spread in the Z-axis direction is less than about 0.1 mm), but the velocity in the XY plane The components are relatively large and their variation is relatively large. Therefore, in the present invention, the electron beam S is focused when passing through the focusing area A1 indicated by the dotted line in FIGS. To that end, it will be described later As described above, the distribution of the main magnetic field formed inside the casing 10 is devised. Further, a correction magnet is preferably arranged inside the housing unit 10.
[0033] 図 4は、 Y軸上の主磁場強度 Bz (磁場の Z成分)の変化を示すグラフである。図 4に は、参考として集束領域 A1内の Y軸上の範囲に符号 A1を付記している。電子ビー ム Sが通過する集束領域 A1において、電子ビーム Sの法線方向(電子軌道面内で 電子の速度方向に直交する方向)の磁場強度分布力 ェミッタ 15から遠ざかるにつ れて、一様な磁場強度 B0から所定の磁場強度 B1まで単調に減少するように、主磁 場分布を形成する。ここで、ポールピース 13u、 13dは X軸方向に細長く形成されて いるので、 Y軸カゝら所定距離内にある Y軸に平行な直線上、即ち、領域 A1を通る Y 軸に平行な直線上では、磁場強度は図 4のグラフと同様に変化する。このように主磁 場の磁場分布を形成することによって、集束性が不十分な電子ビーム Sが集束領域 A1を通過するとき、電子が通過する場所によって磁場強度が異なるので、静磁場と の相互作用で電子が受ける力が異なることになる。その結果、電子ビーム Sの集束性 を改善することができ、質の高い電子ビーム Sを得ることができる。なお、図 2では、筐 体部 10およびポールピース 13u、 13dの形状によって形成される比較的長い集束領 域 A1を示している力 電子ビーム 束させるにはその一部の領域が使われる。 FIG. 4 is a graph showing changes in the main magnetic field strength Bz (Z component of the magnetic field) on the Y axis. In Fig. 4, the reference A1 is added to the range on the Y axis in the focusing area A1 for reference. In the focusing region A1 through which the electron beam S passes, the magnetic field intensity distribution force in the normal direction of the electron beam S (the direction perpendicular to the electron velocity direction in the electron trajectory plane) becomes uniform as it moves away from the emitter 15. The main magnetic field distribution is formed so as to monotonously decrease from a strong magnetic field strength B0 to a predetermined magnetic field strength B1. Here, since the pole pieces 13u and 13d are elongated in the X-axis direction, they are on a straight line parallel to the Y-axis within a predetermined distance from the Y-axis, that is, a straight line parallel to the Y-axis passing through the region A1 Above, the magnetic field strength changes in the same way as the graph in Figure 4. By forming the magnetic field distribution of the main magnetic field in this way, when the electron beam S with insufficient focusing properties passes through the focusing region A1, the magnetic field strength differs depending on the location where the electrons pass. The force that the electron receives by the action will be different. As a result, the focusing property of the electron beam S can be improved, and a high-quality electron beam S can be obtained. In FIG. 2, a partial region is used for bundling the force electron beam indicating a relatively long focusing region A1 formed by the shape of the casing 10 and the pole pieces 13u and 13d.
[0034] さらに、図 2、 3では、集束領域 A1の上下に、第 1補正磁石 18u、 18d及び第 2補正 磁石 19u、 19dを配置している。第 1補正磁石 18u、 18d及び第 2補正磁石 19u、 19 dは、上記したように四重極磁石に類似する磁極配置をしている。従って、第 1補正 磁石 18u、 18d及び第 2補正磁石 19u、 19dを通過することによって電子ビームをより 一層集束させることができる。このとき、電子のエネルギーに応じて、第 1補正磁石 18 u、 18dの間、及び第 2補正磁石 19u、 19dの間における電子の通過距離を変化させ る。即ち、詳細は後述するが、エネルギーがより大きい電子 (旋回軌道の曲率が大き い軌道を通る電子)が、第 1補正磁石 18u、 18dの間を通過する距離がより長くなるよ うに、第 1補正磁石 18u、 18dを配置する。そして、これとは逆に、エネルギーがより小 さい電子が、第 2補正磁石 19u、 19dの間を通過する距離がより長くなるように、第 2 補正磁石 19u、 19dを配置する。これによつて、エネルギーの大きい電子ほど、大きく 軌道が修正されるので、電子ビーム Sをより一層集束させる効果がある。
[0035] 図 6、 7は、本発明の実施の形態に係る RF電子銃に関するシミュレーション結果を 示す図である。図 6は補正磁石を備えていない状態、図 7は補正磁石 (第 1及び第 2 補正磁石 18d、 19d)を備えている状態でのシミュレーション結果を示す。シミュレ一 シヨンは、ェミッタ 15から放出される電子の初速度を一定 (大きさが 10eV相当)に設 定し、電子の放出位置、及び高周波電磁場の変化に対する位相(時間 = 1Z (2. 44 46GHz X 2)秒の間)を変えて軌道計算を行なった。何れの図においても、ェミッタ 1 5から始まる渦巻状の実線は、最終的なエネルギーが 0. 955〜0. 995MeVとなる 電子が通過する領域の境界 (即ち、最も内側の軌道及び最も外側の軌道)を表す。 ェミッタ 15から始まる渦巻状の点線は、最終的なエネルギーが 0. 9〜1. lMeVとな る電子が通過する領域の境界を表す。 Further, in FIGS. 2 and 3, the first correction magnets 18u and 18d and the second correction magnets 19u and 19d are arranged above and below the focusing area A1. The first correction magnets 18u and 18d and the second correction magnets 19u and 19d have a magnetic pole arrangement similar to the quadrupole magnet as described above. Therefore, the electron beam can be further focused by passing through the first correction magnets 18u and 18d and the second correction magnets 19u and 19d. At this time, the passage distance of electrons between the first correction magnets 18 u and 18 d and between the second correction magnets 19 u and 19 d is changed according to the energy of the electrons. That is, although the details will be described later, the first energy is set so that the electron having the higher energy (the electron passing through the orbit having a large curvature of the orbit) passes through the first correction magnets 18u and 18d. Correcting magnets 18u and 18d are arranged. On the contrary, the second correction magnets 19u and 19d are arranged so that the distance that electrons having lower energy pass between the second correction magnets 19u and 19d is longer. As a result, the higher the energy, the larger the trajectory is corrected. Therefore, the electron beam S is more effectively focused. FIGS. 6 and 7 are diagrams showing simulation results regarding the RF electron gun according to the embodiment of the present invention. FIG. 6 shows a simulation result in a state where the correction magnet is not provided, and FIG. 7 shows a simulation result in a state where the correction magnet (first and second correction magnets 18d and 19d) is provided. The simulation sets the initial velocity of the electrons emitted from the emitter 15 to a constant value (equivalent to a magnitude of 10 eV), and the phase of the electron emission position and the change in the high-frequency electromagnetic field (time = 1Z (2.44 46 GHz). X 2) The trajectory was calculated while changing for 2 seconds). In both figures, the spiral solid line starting from Emitter 15 is the boundary of the region through which the electron passes with the final energy between 0.955 and 0.995 MeV (i.e., the innermost and outermost orbits). ). The spiral dotted line starting from Emitter 15 represents the boundary of the region through which electrons pass with a final energy of 0.9 to 1. lMeV.
[0036] 図 6から、集束領域 A1に含まれる符号 C1で示した部分で電子ビームが集束されて いることが分かる。その後、電子ビームはー且広がるが、再び符号 D1で示した部分 で集束する。従って、符号 D1で示した部分に管口が位置するように取出管 20を配 置すれば、集束性の高 、電子ビームを取り出すことができる。 [0036] From Fig. 6, it can be seen that the electron beam is focused at the portion indicated by reference numeral C1 included in the focusing region A1. After that, the electron beam spreads out and converges again at the part indicated by D1. Therefore, if the extraction tube 20 is arranged so that the tube port is located at the portion indicated by the symbol D1, the electron beam can be extracted with high focusing.
[0037] 図 7においても、図 6と同様に、集束領域 A1に含まれる符号 C2で示した部分で電 子ビームが集束され、その後、電子ビームはー且広がるが、再び符号 D2で示した部 分で集束することが分かる。図 7では、図 6と比較して、符号 C2で示した部分で集束 された後の電子ビームの広がりが小さい(L2<L1)。このことは、電子の加速効率が 高いことを示しており、符号 D2で示した部分での電子ビームの広がりも図 6より小さく なっている。従って、符号 D2で示した部分に管口が位置するように取出管を配置す れば、補正磁石を備えて 、る場合には補正磁石を備えて 、な 、場合よりも集束性の 高 、電子ビームを取り出すことができる。 [0037] In FIG. 7, as in FIG. 6, the electron beam is focused at the portion indicated by the reference symbol C2 included in the focusing region A1, and then the electron beam spreads gradually, but again indicated by the reference symbol D2. It can be seen that the light is focused on the part. In FIG. 7, compared with FIG. 6, the spread of the electron beam after being focused at the portion indicated by reference numeral C2 is small (L2 <L1). This indicates that the acceleration efficiency of the electrons is high, and the spread of the electron beam at the portion indicated by the symbol D2 is also smaller than in FIG. Therefore, if the extraction tube is arranged so that the tube port is located at the portion indicated by reference numeral D2, the correction magnet is provided, and in this case, the correction magnet is provided. The electron beam can be extracted.
[0038] なお、図 7において、望ましい電子軌道は 2本の渦巻状の実線の間を通る力 符号 C2で示した部分で、内側の電子軌道と外側の電子軌道とが交差する。即ち、ェミッタ 15から放出された後、最も外側の実線の軌道を通る電子は、符号 C2で示した部分 を通過した後は、最も内側の実線の軌道を通る。逆に、ェミッタ 15から放出された後 、最も内側の実線の軌道を通る電子は、符号 C2で示した部分を通過した後は、最も 外側の実線の軌道を通る。従って、上記したように、エネルギーがより大きい電子 (符
号 C2で示した部分を通過する前において、より外側の軌道を通る電子)ほど、第 1補 正磁石 18u、 18dの間を通過する距離が長ぐエネルギーがより小さい電子 (符号 C2 で示した部分を通過した後において、より外側の軌道を通る電子)ほど、第 2補正磁 石 19u、 19dの間を通過する距離が長くなつている。 In FIG. 7, a desirable electron orbit is a portion indicated by a force sign C2 passing between two spiral solid lines, and the inner electron orbit intersects with the outer electron orbit. That is, after being emitted from the emitter 15, the electrons passing through the outermost solid line trajectory pass through the innermost solid line trajectory after passing through the portion indicated by the symbol C2. Conversely, after being emitted from the emitter 15, the electrons passing through the innermost solid line trajectory pass through the outermost solid line trajectory after passing through the portion indicated by the symbol C2. Therefore, as mentioned above, electrons with higher energy ( Before passing through the part indicated by C2, the longer the distance that passes between the first correction magnets 18u and 18d, the smaller the energy (indicated by C2). The distance that passes between the second correction magnets 19u and 19d increases as the electron passes through the outer orbit after passing through the part.
[0039] 以上によって、例えば、約 lMeVの電子ビームを取り出すことができる、筐体部 10 の外寸が約 250mm X約 200mm X約 180mmと小型の RF電子銃を実現することが できる。このとき、一様な主磁場強度が 500Gになり、補正磁石によって生成される補 正磁場強度が約 150Gになるようにする。 By the above, for example, it is possible to realize a small RF electron gun that can extract an electron beam of about 1 MeV and has an outer dimension of about 250 mm × about 200 mm × about 180 mm. At this time, the uniform main magnetic field strength is 500G, and the correction magnetic field strength generated by the correction magnet is about 150G.
[0040] 以上、実施の形態を用いて本発明を説明したが、本発明は上記した実施の形態に 限定されず、種々の変更を加えて実施することができ、それらも本発明の技術的範 囲に含まれる。 [0040] Although the present invention has been described above using the embodiments, the present invention is not limited to the above-described embodiments, and can be implemented with various modifications. Included in range.
[0041] 例えば、図 5に示したように、電子ビーム Sの渦巻状軌道の一部を含む領域 A2〜A 5の何れかにおいて、磁場強度が図 4に示したように単調に変化するように磁場分布 を形成すれば、領域 A2〜A5を集束領域として使用することができる。ここで、領域 A 2は図 2、 3の補正領域 A1よりも長さが短い領域である。 For example, as shown in FIG. 5, in any one of the regions A2 to A5 including a part of the spiral orbit of the electron beam S, the magnetic field strength changes monotonously as shown in FIG. If the magnetic field distribution is formed in the region, the regions A2 to A5 can be used as the focusing region. Here, the area A 2 is an area shorter in length than the correction area A 1 in FIGS.
[0042] また、図 5に示した領域 A5は、加速空洞 16の外部に位置するので、領域 A5の上 下に補正磁石を配置してもよい。電子の加速効率の点では、加速空洞 16から出た 直後の電子が通過する領域 A2の上下に補正磁石を配置して、電子ビームを集束さ せることが望ましいが、領域 A5の上下に補正磁石を配置した場合にもある程度の集 束効果が得られる。 [0042] Since the region A5 shown in FIG. 5 is located outside the acceleration cavity 16, correction magnets may be disposed above and below the region A5. In terms of electron acceleration efficiency, it is desirable to place correction magnets above and below the region A2 where electrons immediately after exiting the acceleration cavity 16 pass to focus the electron beam, but the correction magnets above and below the region A5 A certain amount of bundling effect can be obtained even when the is placed.
[0043] また、図 2、 3では、加速空洞 16と筐体部 10とを、各中心軸が X軸に一致するように 配置した場合を示したが、この配置に限らず、電子ビーム Sの渦巻状軌道の大部分 がー様な主磁場中に位置し、一部分が集束領域を通過するように主磁場分布を形 成できるように、加速空洞 16と筐体部 10とを配置すればよい。 FIGS. 2 and 3 show the case where the accelerating cavity 16 and the casing portion 10 are arranged so that the respective central axes coincide with the X axis. However, the present invention is not limited to this arrangement, and the electron beam S If the accelerating cavity 16 and the housing part 10 are arranged so that the main magnetic field distribution can be formed so that the majority of the spiral orbits are located in the main magnetic field and a part passes through the focusing region. Good.
[0044] また、上記ではコイルを用いた電磁石によって、筐体部の内部に静磁場を生成する 場合を説明したが、これに限定されず、永久磁石を用いて主磁場を形成してもよい。 例えば図 3において、ポールピース 13uと筐体部 10との間、およびポールピース 13d と筐体部 10との間に、 Z軸方向に磁ィ匕された永久磁石を配置すればよい。
[0045] また、上記では、直方体のポールピースの表面に、一方向(Y軸方向)に細長い凸 部を形成する場合を説明した力 これに限定されない。 1つのポールピースの表面に 、 X軸方向に平行な 2つの凸部と、 Y軸方向に平行な 2つの凸部とを形成してもよぐ それら 4つの凸部を接続して四角形の環状に凸部を形成してもよい。さらには、円筒 形の筐体部、円形のポールピースを用い、円形の環状に凸部を形成してもよい。 [0044] In the above description, the case where a static magnetic field is generated inside the casing by an electromagnet using a coil has been described. However, the present invention is not limited to this, and a main magnetic field may be formed using a permanent magnet. . For example, in FIG. 3, a permanent magnet magnetized in the Z-axis direction may be disposed between the pole piece 13u and the casing 10 and between the pole piece 13d and the casing 10. [0045] Further, in the above, the force described in the case of forming the elongated protrusion in one direction (Y-axis direction) on the surface of the rectangular pole piece is not limited to this. Two poles parallel to the X-axis direction and two protrusions parallel to the Y-axis direction may be formed on the surface of one pole piece. A convex portion may be formed on the surface. Furthermore, a convex part may be formed in a circular ring shape using a cylindrical casing part and a circular pole piece.
[0046] また、図 1〜3では電子ビームを取り出す方向がマイクロ波 RFの入射方向と平行で あるが、電子ビームを取り出す方向は任意に設計することができ、例えば、図 5のよう に取出管 20を配置して、マイクロ波 RFの印加方向と直交する方向に電子ビームを 取り出してもよい。 In addition, in FIGS. 1 to 3, the direction in which the electron beam is extracted is parallel to the incident direction of the microwave RF, but the direction in which the electron beam is extracted can be arbitrarily designed, for example, as illustrated in FIG. A tube 20 may be arranged to extract the electron beam in a direction perpendicular to the direction of microwave RF application.
[0047] また、補正磁石の形状が直方体である場合を説明したが、これに限らず、角が 90 度よりも鋭角である板状であってもよぐ円板状であってもよい。また、補正磁石を接 続する一方のヨークが、第 1補正磁石 18u、 18dを接続するように配置され、他方のョ 一クが第 2補正磁石 19u、 19dを接続するように配置されて 、てもよ ヽ。 [0047] Although the case where the shape of the correction magnet is a rectangular parallelepiped has been described, the present invention is not limited to this, and the correction magnet may have a plate shape with an acute angle greater than 90 degrees or a disk shape. In addition, one yoke connecting the correction magnet is arranged to connect the first correction magnets 18u and 18d, and the other yoke is arranged to connect the second correction magnets 19u and 19d. But ヽ.
[0048] また、主磁場の方向は Z軸の負方向であってもよい。その場合には、電子ビームの 渦巻状軌道が逆向きになることを考慮して、ェミッタの位置、加速空洞のスリットの形 状および位置、補正磁石の位置及び極性配置などを設計すればょ ヽ。 [0048] The direction of the main magnetic field may be the negative direction of the Z axis. In that case, considering the fact that the spiral trajectory of the electron beam is reversed, the position of the emitter, the shape and position of the slit of the acceleration cavity, the position of the correction magnet and the polarity arrangement should be designed. .
[0049] また、集束領域内において、主磁場の強度が一様な値力も単調に減少するように 磁場分布を生成する場合を説明したが、主磁場の強度が一様な値力 単調に増加 するように集束領域内の磁場分布を生成して電子ビーム^^束させてもょ 、。 [0049] In the focusing area, the case where the magnetic field distribution is generated so that the value of the main magnetic field with a uniform intensity also decreases monotonically has been described. However, the intensity of the main magnetic field with a uniform intensity increases monotonously. To generate a magnetic field distribution in the focusing region and bundle it with an electron beam.
産業上の利用可能性 Industrial applicability
[0050] 本発明によれば、集束性の高!、電子ビームを出力することができる小型で低額な R F電子銃を提供することができる。
[0050] According to the present invention, it is possible to provide a small and inexpensive RF electron gun that has a high focusing property and can output an electron beam.
Claims
[1] 静的な主磁場を生成する磁石と、 [1] a magnet that generates a static main magnetic field;
前記主磁場が生成される領域に配置され、電子を放出するェミッタと、 前記主磁場が生成される領域に配置され、マイクロ波が入力されて高周波電場を 生成する加速空洞とを備え、 An emitter disposed in a region where the main magnetic field is generated and emitting electrons; and an accelerating cavity disposed in the region where the main magnetic field is generated and receiving a microwave to generate a high-frequency electric field;
前記磁石が、静磁場が一様な第 1領域と、静磁場強度が所定方向において単調に 減少する第 2領域とを形成し、 The magnet forms a first region where the static magnetic field is uniform and a second region where the static magnetic field strength monotonously decreases in a predetermined direction,
前記ェミッタから放出される複数の前記電子を、前記高周波電場および前記第 1領 域の静磁場によって、前記ェミッタを中心とする渦巻状に移動させ、前記第 2領域の 静磁場によって集束させた後、出力することを特徴とする RF電子銃。 The plurality of electrons emitted from the emitter are moved in a spiral shape around the emitter by the high-frequency electric field and the static magnetic field in the first region, and are focused by the static magnetic field in the second region. RF electron gun, characterized by output.
[2] 前記所定方向が、前記ェミッタから遠ざかる方向であり、 [2] The predetermined direction is a direction away from the emitter.
前記第 2領域における静磁場強度が、前記第 1領域の静磁場強度から単調に減少 することを特徴とする請求項 1に記載の RF電子銃。 2. The RF electron gun according to claim 1, wherein the static magnetic field strength in the second region monotonously decreases from the static magnetic field strength in the first region.
[3] 前記第 2領域の近傍に配置された 2つの第 1補正磁石及び 2つの第 2補正磁石を 備え、 [3] comprising two first correction magnets and two second correction magnets arranged in the vicinity of the second region,
2つの前記第 1補正磁石が、前記第 2領域を間に挟んで対向して配置され、相互間 に前記主磁場に平行な静磁場を生成し、 The two first correction magnets are arranged opposite to each other with the second region interposed therebetween, and generate a static magnetic field parallel to the main magnetic field between them,
2つの前記第 2補正磁石が、前記第 2領域を間に挟んで対向して配置され、相互間 に前記主磁場に平行な静磁場を生成し、 The two second correction magnets are arranged opposite to each other with the second region interposed therebetween, and generate a static magnetic field parallel to the main magnetic field between them,
一方の前記第 1補正磁石の対向面の磁極と他方の前記第 1補正磁石の対向面の 磁極とが逆の極性であり、 The magnetic pole on the facing surface of one of the first correction magnets and the magnetic pole on the facing surface of the other first correction magnet have opposite polarities,
一方の前記第 2補正磁石の対向面の磁極と他方の前記第 2補正磁石の対向面の 磁極とが逆の極性であり、 The magnetic pole of the opposing surface of one of the second correction magnets and the magnetic pole of the opposing surface of the other second correction magnet have opposite polarities,
前記第 2領域に対して同じ側に配置された前記第 1補正磁石および前記第 2補正 磁石の各々の前記対向面の磁極が逆の極性であり、 The magnetic poles of the facing surfaces of each of the first correction magnet and the second correction magnet arranged on the same side with respect to the second region have opposite polarities,
前記電子が、前記第 1補正磁石の間を通過した後、前記第 2補正磁石の間を通過 し、 The electrons pass between the first correction magnets and then pass between the second correction magnets,
前記電子が、 2つの前記第 1補正磁石の間を通過するとき、エネルギーが大きいほ
ど通過距離が長くなるように、前記第 1補正磁石が配置され、 When the electrons pass between the two first correction magnets, the energy is higher. The first correction magnet is arranged so that the passing distance becomes longer,
前記電子が、 2つの前記第 2補正磁石の間を通過するとき、エネルギーが小さいほ ど通過距離が長くなるように、前記第 2補正磁石が配置されて ヽることを特徴とする請 求項 1又は 2に記載の RF電子銃。 When the electrons pass between the two second correction magnets, the second correction magnet is arranged such that the smaller the energy is, the longer the passing distance is. The RF electron gun according to 1 or 2.
[4] 前記ェミッタが、前記加速空洞の第 1壁面に配置され、 [4] The emitter is disposed on the first wall surface of the acceleration cavity,
該第 1壁面が、電子を通過させるスリットを有し、 The first wall has a slit through which electrons pass;
前記ェミッタから放出された電子が、前記加速空洞の中心方向に加速された後、前 記第 1壁面に接近し、前記第 1壁面のスリットを通過し、前記加速空洞の外部に形成 された前記第 2領域を通過することを特徴とする請求項 1〜3の何れか 1項に記載の RF電子銃。 The electrons emitted from the emitter are accelerated toward the center of the acceleration cavity, then approach the first wall surface, pass through the slit on the first wall surface, and are formed outside the acceleration cavity. The RF electron gun according to any one of claims 1 to 3, wherein the RF electron gun passes through the second region.
[5] 前記ェミッタが、前記加速空洞の第 1壁面に配置され、 [5] The emitter is disposed on a first wall surface of the acceleration cavity,
該第 1壁面が、電子を通過させるスリットを有し、 The first wall has a slit through which electrons pass;
前記ェミッタから放出された電子が、前記加速空洞の中心方向に加速された後、前 記第 1壁面に接近し、前記第 1壁面のスリットを通過して前記加速空洞の外部に出た 後、再び前記第 1壁面のスリットを通過し、前記第 2領域を通過することを特徴とする 請求項 1〜3の何れか 1項に記載の RF電子銃。
After the electrons emitted from the emitter are accelerated toward the center of the acceleration cavity, approach the first wall surface, pass through the slit on the first wall surface, and exit outside the acceleration cavity. The RF electron gun according to any one of claims 1 to 3, wherein the RF electron gun passes through the slit of the first wall surface again and passes through the second region.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/323978 WO2008068806A1 (en) | 2006-11-30 | 2006-11-30 | Rf electron gun |
JP2008548102A JP4900620B2 (en) | 2006-11-30 | 2006-11-30 | RF electron gun |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/323978 WO2008068806A1 (en) | 2006-11-30 | 2006-11-30 | Rf electron gun |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008068806A1 true WO2008068806A1 (en) | 2008-06-12 |
Family
ID=39491728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/323978 WO2008068806A1 (en) | 2006-11-30 | 2006-11-30 | Rf electron gun |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4900620B2 (en) |
WO (1) | WO2008068806A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6041734A (en) * | 1983-04-06 | 1985-03-05 | トムソン−セ−エスエフ | Ultrahigh wave generator electron gun |
JPH1116527A (en) * | 1997-06-25 | 1999-01-22 | Ishikawajima Harima Heavy Ind Co Ltd | Rf electron gun and heating method of its cathode |
JPH1167499A (en) * | 1997-08-27 | 1999-03-09 | Mitsubishi Electric Corp | Linear electron accelerator |
-
2006
- 2006-11-30 WO PCT/JP2006/323978 patent/WO2008068806A1/en active Application Filing
- 2006-11-30 JP JP2008548102A patent/JP4900620B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6041734A (en) * | 1983-04-06 | 1985-03-05 | トムソン−セ−エスエフ | Ultrahigh wave generator electron gun |
JPH1116527A (en) * | 1997-06-25 | 1999-01-22 | Ishikawajima Harima Heavy Ind Co Ltd | Rf electron gun and heating method of its cathode |
JPH1167499A (en) * | 1997-08-27 | 1999-03-09 | Mitsubishi Electric Corp | Linear electron accelerator |
Non-Patent Citations (1)
Title |
---|
JANSSEN D. ET AL.: "RF focussing - an instrument for beam quality improvement is superconducting RF guns", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH A, 2000, pages 34 - 43, XP004210607 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008068806A1 (en) | 2010-03-11 |
JP4900620B2 (en) | 2012-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6847168B1 (en) | Electron gun for a multiple beam klystron using magnetic focusing with a magnetic field corrector | |
EP1793407B1 (en) | Multi-beam klystron apparatus | |
WO2014201285A1 (en) | Linear duoplasmatron | |
US3916239A (en) | High energy beam launching apparatus and method | |
TW202429507A (en) | Drift tube electrode arrangement having direct current optics | |
WO2013077555A1 (en) | Electron cyclotron resonance ion source apparatus and method for boosting extraction current | |
JPH08264127A (en) | Multibeam klystron | |
WO2008068806A1 (en) | Rf electron gun | |
US5506405A (en) | Excitation atomic beam source | |
JP2014529866A (en) | Self-resonant compact X-ray source | |
JP7070980B2 (en) | Klystron | |
JP5565798B2 (en) | Bending electromagnet system with acceleration function | |
KR101977702B1 (en) | Ion source head and ion implantation apparatus including the same | |
US4445070A (en) | Electron gun for producing spiral electron beams and gyrotron devices including same | |
Celona | Microwave Discharge Ion Sources | |
US5694005A (en) | Plasma-and-magnetic field-assisted, high-power microwave source and method | |
WO1997038436A1 (en) | Single-beam and multiple-beam klystrons using periodic permanent magnets for electron beam focusing | |
US11259397B2 (en) | Microwave plasma source | |
JP7497870B2 (en) | Charged particle acceleration device and charged particle acceleration method | |
JP4294158B2 (en) | Charged particle accelerator | |
JP3436352B2 (en) | High frequency electron gun | |
JP6952997B2 (en) | Mirror magnetic field generator and ECR ion source device | |
US12002646B2 (en) | Ion generation device, ion generation method, and ion generation program | |
JP3943578B2 (en) | Circular particle accelerator | |
JP3943568B2 (en) | Circular particle accelerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06833781 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008548102 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06833781 Country of ref document: EP Kind code of ref document: A1 |