WO2008066077A1 - Process for production of flakes - Google Patents

Process for production of flakes Download PDF

Info

Publication number
WO2008066077A1
WO2008066077A1 PCT/JP2007/072960 JP2007072960W WO2008066077A1 WO 2008066077 A1 WO2008066077 A1 WO 2008066077A1 JP 2007072960 W JP2007072960 W JP 2007072960W WO 2008066077 A1 WO2008066077 A1 WO 2008066077A1
Authority
WO
WIPO (PCT)
Prior art keywords
flake body
substrate
sol solution
producing
salt
Prior art date
Application number
PCT/JP2007/072960
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Mikami
Mitsuhiro Kawazu
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Publication of WO2008066077A1 publication Critical patent/WO2008066077A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/005Manufacture of flakes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Definitions

  • the present invention relates to a method for producing a flake body using a sol-gel method.
  • a sol solution containing a metal oxide precursor is prepared by adding a hydrolyzable metal compound in an organic solvent containing a catalyst and water, and this metal oxide precursor is dehydrated and condensed. This is a production method in which the reaction is advanced to obtain a gelled metal oxide.
  • the hydrolyzable metal compound metal alkoxide is often used.
  • a method for producing a flake body using a sol-gel method has been put into practical use.
  • a sol solution containing a metal oxide precursor is applied on a flat substrate, and a coating film formed on the substrate is dried.
  • the coating film peels off due to shrinkage caused by drying, and becomes a metal oxide flake.
  • Flakes are used as fillers for plastics, corrosion-resistant linings, etc., and are sometimes blended into paints and inks.
  • the metal oxide flake body has various properties such as aroma, deodorant, deodorant, bactericidal, water-repellent, conductive, and heat-sensitive. Functions can be added.
  • JP-A-4 292430 a solution containing an organometallic compound and an organic dye is applied onto a substrate to form a coating film, and the coating film is peeled off from the substrate to contain an organic dye.
  • a method for obtaining a flake body is disclosed.
  • the organic compound may aggregate or precipitate in the sol solution. Although this phenomenon does not occur during preparation of the solution, it may occur during drying of the coating film.
  • the degree of occurrence of the aggregation or precipitation of the organic compound varies depending on the solvent contained in the sol solution and the affinity between the metal oxide precursor and the organic compound. For example, the affinity between the organic compound and the metal oxide precursor is low! / And evenly dispersed in the sol solution! / In the process of volatilization of the solvent, organic compounds aggregate or precipitate. If the organic compound aggregates or precipitates and the distribution of the organic compound in the flakes becomes non-uniform, the function of the organic compound cannot be effectively exhibited. If a dispersant is used, aggregation or precipitation of organic compounds can be suppressed. However, it is desirable to avoid the use of dispersants because they may remain in the flake body and impair its performance.
  • Japanese Patent Application Laid-Open No. 2006-150300 discloses that an organic compound is prepared by adjusting the amount of water added to a sol solution so that it is sufficient but sufficient for the hydrolysis reaction of a metal compound. It is disclosed to prepare a uniformly dispersed sol solution! If a flake body is produced using this sol solution, a flake body in which an organic compound is uniformly dispersed can be obtained without using a dispersant.
  • An object of the present invention is to provide a method for producing a flake body using a sol-gel method, in which a coating film is easily peeled from a substrate!
  • the present inventors have found that the releasability of a coating film formed on a substrate can be improved by adding an alkali metal salt and / or an alkaline earth metal salt to a sol solution.
  • a hydrolyzable metal compound, an acid catalyst, water, and an organic solvent are mixed to prepare a sol solution containing a metal oxide precursor, and this sol solution is applied onto a substrate. Then, a coating film is formed on the substrate, the coating film is dried, and the coating film is peeled off from the substrate to obtain a flake body, in which the sol solution is coated on the substrate.
  • a method for producing a flake body is provided, further comprising an organic compound and at least one salt selected from the group consisting of alkali metal salts and alkaline earth metal salts.
  • the amount of water added to the sol solution is increased by adding the salt. Even if there are few, the flake body excellent in peelability can be manufactured easily and efficiently.
  • the production method of the present invention is particularly suitable for providing a thin flake body in which an organic compound is uniformly dispersed.
  • FIG. 1 is a block diagram for explaining an example of the method of the present invention.
  • FIG. 2 is a diagram showing a result of observation of an example of a flake body obtained by the method of the present invention with a scanning electron microscope.
  • a hydrolyzable metal compound In the method for producing a flake body of the present invention, first, at least a hydrolyzable metal compound, an acid catalyst, water, and an organic solvent are mixed, and a metal oxide precursor generated by hydrolysis of the metal compound is included. A sol solution is prepared.
  • the type of the organic solvent is not limited, but an organic solvent having high solubility of the metal compound to be used is suitable.
  • the organic solvent alcohols, glycols, cellosonolev (ethylene glycol monoether), and the like can be used.
  • alcohols lower alcohols such as methanol, ethanol and isopropanol are preferred.
  • glycols ethylene glycol, propylene glycol and the like are preferable.
  • the mouth solvs cetyl sorb butyl, butyl mouth solv and the like are preferable.
  • organic solvents with low volatility such as dariserine and hexylene dallicol have the advantage that the decrease in organic solvent due to volatilization can be suppressed.
  • the hydrolyzable metal compound has a functional group as a reaction point to water in the molecule, and can form a metal oxide precursor by hydrolysis reaction.
  • hydrolyzable metal compounds include metal alkoxides, metal carboxylates, nitrates, chlorides and oxychlorides. Among these, the metal alkoxide is easy to control the reaction and easily forms a three-dimensional network structure of the metal oxide at a low temperature.
  • Composing metal compounds The type of metal atom is not limited, but may be silicon, titanium, aluminum, zirconium or the like.
  • the metal alkoxide is represented by the general formula: MR (OR ').
  • M is a metal atom
  • R is an organo group (strictly, an organic group excluding an alkoxyl group)
  • OR ′ is an alkoxyl group.
  • N is a natural number corresponding to the oxidation number of the metal atom
  • m is an integer in the range of 0 ⁇ m ⁇ n.
  • R include an alkyl group, a phenyl group, a acyl group, a methacryloxy group, and an epoxy group.
  • R ′ include an alkyl group, a phenyl group, an acetyl group, and a (poly) oxyalkylene group. Among them, the number of carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group is 1 to An alkyl group of 5 is preferred.
  • Examples of the metal alkoxide (silicon alkoxide) in which the metal atom is silicon include tetraalkoxysilane having four reaction points to water, such as tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane.
  • the use of alkoxysilane A is preferable from the viewpoint of improving the strength of the flake body and the raw material cost.
  • an alkoxysilane having an organo group such as methyltrimethoxysilane or phenyltrimethoxysilane
  • alkoxysilane B is preferable from the viewpoint of improving the stability of the sol solution and the dispersibility of the organic compound.
  • alkoxysilane A and alkoxysilane B may be used in combination.
  • Titanium alkoxides such as tetraisopropoxytitanium are highly reactive and thus gelate immediately after hydrolysis.
  • a chelating agent to an organic solvent in advance to stabilize the metal oxide precursor obtained by the hydrolysis reaction.
  • 0-diketones such as acetyl acetone and 0-keto esters such as acetyl acetoacetate can be preferably used.
  • the metal element contained in the metal compound is not limited to one type, and may be a plurality of types as required.
  • a metal oxide flake body having a desired refractive index can be produced by mixing metal compounds having different metal elements.
  • multiple A sol solution may be prepared by blending these metal compounds, or separately prepared sol solutions may be mixed.
  • the acid catalyst accelerates the hydrolysis reaction of the metal compound and suppresses the gelation of the resulting metal oxide precursor.
  • Protonic acid is preferably used as the acid catalyst.
  • the acid catalyst include nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, citrate, acetic acid, trifluoroacetic acid, trichlorodiacetic acid, p-toluenesulfonic acid, and the like.
  • water is added for the hydrolysis reaction of the metal compound.
  • the amount of water added is preferably 0.5 equivalents or more and 2 equivalents or less based on the number of reaction points of the metal compound with water. If the amount of water added is less than 0.5 equivalent, the hydrolysis reaction of the metal compound may not proceed sufficiently. If the hydrolysis reaction does not proceed sufficiently, the strength of the flake body will be reduced. If this reaction does not proceed sufficiently, the amount of water in the sol solution decreases, and it may be difficult to peel off the flakes from the substrate strength. On the other hand, when the amount of water added exceeds 2 equivalents, it becomes difficult to uniformly disperse the organic compound in the sol solution.
  • the present invention has a high utility value as a supplement to the decrease in the peelability of the coating film that occurs when the amount of water added is limited to the above level. Yes.
  • the amount of water contained in the sol solution varies due to hydrolysis of the metal oxide and subsequent dehydration condensation.
  • the amount of water also varies when an aqueous solution is used as an additive to the sol-gel solution.
  • it is desirable that the water content of the sol solution when applied to the substrate is within a predetermined range.
  • the water content of the final sol solution before application is preferably 10% by mass or less.
  • a film forming solution is prepared from the sol solution obtained above.
  • at least an organic compound and an alkali metal salt and / or an alkaline earth metal salt are added to the sol solution to prepare a film forming solution.
  • the film-forming solution is also a sol solution containing a metal oxide precursor, but here the term “film-forming solution” is used to distinguish these two solutions.
  • the organic compound and the salt may be added in advance to the solution before hydrolysis of the metal compound. In this case, the sol solution obtained by hydrolyzing the metal compound may be directly applied to the substrate.
  • organic compounds should be added to the sol solution in consideration of the fact that there are many substances that become weak to light and heat when dissolved in a solvent and that the stability of the solution may be reduced by the addition of organic compounds. From the viewpoint of solution stability, it is also preferable to prepare the sol solution and add it to this sol solution!
  • the organic compound is added to the flake body in order to impart various functions such as fragrance, deodorizing property, deodorizing property, bactericidal property, water repellency, conductivity, and heat sensitivity.
  • the organic compound include, but are not limited to, compounds such as phthalocyanines, porphyrins, polycyclic aromatics (pyrene, etc.).
  • Organic compounds for imparting the functions exemplified above are often hydrophobic. Although it is not always easy to disperse the hydrophobic organic compound uniformly in the flake body, it can be uniformly dispersed if the amount of water is appropriately controlled as described above. Hydrophobic organic compounds often contain a ring structure of carbon atoms typified by a benzene ring.
  • At least one salt selected from the group consisting of alkali metal salts and alkaline earth metal salts can be used.
  • the at least one salt preferably includes an alkali metal salt.
  • the alkali metal salt preferably includes sodium or potassium.
  • Examples of the alkali metal salt include sodium acetate, potassium acetate, sodium sulfate, and sodium nitrate.
  • Examples of the alkaline earth metal salt include magnesium acetate, calcium acetate, magnesium nitrate, and calcium nitrate.
  • the at least one salt may include acetate, sulfate or nitrate.
  • the amount of the salt added is preferably 0.1 equivalents or more and 1.5 equivalents or less based on the acid catalyst. If the amount of salt added is less than 0.1 equivalent, the effect of the salt may not be sufficiently obtained, and as a result, the flake peelability may not be improved. On the other hand, if the amount of salt added is too large relative to the acid catalyst, the sol solution may move to the alkaline side and the sol solution may be easily gelled. If gelation of the sol solution is to be surely prevented, the amount of salt added should be in the range of 0.;! To 1 equivalent to the acid catalyst. On the other hand, when the peelability should be emphasized, the amount of salt added may be in the range of ! to 1.5 equivalents with respect to the acid catalyst. In general, sol solutions tend to gel easily as their liquidity approaches from alkaline to alkaline.
  • the salt may be added directly to the sol solution. However, in order to mix the salt more uniformly, it is preferable to prepare a solution in which the salt is dissolved in an appropriate solvent in advance and then mix this solution with the sol solution.
  • a preferred solvent for this solution is water.
  • the water content of the sol solution is preferably limited to 10% by mass or less in order not to lower the dispersibility of the organic compound.
  • the salt may be dissolved in an organic solvent containing a small amount of water.
  • an organic acid salt such as sodium acetate or sodium quenate may be used. If an alkali metal salt of an organic acid and / or an alkaline earth metal salt is used, a solution containing only an organic solvent as a solvent can be easily prepared. This organic solvent may be the same as or different from the organic solvent contained in the sol solution.
  • a solution containing an alkali metal salt and / or an alkaline earth metal salt to the sol solution before applying the sol solution onto the substrate.
  • This solution may contain water and an organic solvent as a solvent.
  • An organic compound can also be added to the sol solution before coating on the substrate.
  • the organic compound may be added as the compound itself or in the form of a dispersion or solution.
  • the sol solution may contain other components such as hydroxide, halide, and nitride.
  • a coating film is formed by applying the film forming solution obtained above onto the surface of the substrate. To do.
  • a resin a material having a temperature higher than the boiling point of the organic solvent contained in the film-forming solution and having a heat resistant temperature should be selected.
  • a stainless steel plate is an example of the substrate that is excellent in the flake peelability.
  • the surface of the substrate on which the coating film is formed is preferably smooth.
  • the method of applying the film-forming solution to the substrate may be performed using a known technique!
  • the coating method include spin coating, roll coating, spraying, dating, curtain coating, flow coating, and various printing methods (screen printing, flexographic printing, ink jet method, etc.).
  • a leveling time may be provided as needed between application and drying.
  • the coating film formed on the surface of the substrate is dried.
  • This drying may be carried out by natural drying, but in order to accelerate the dehydration condensation reaction of the metal oxide precursor and facilitate the volatilization of the organic solvent and water, it is possible to carry out the drying by heating with heating of the substrate. It is preferable to do it.
  • the heating temperature should be set lower than the heat resistance temperature of the organic compound contained in the substrate and the coating film.
  • the heating temperature is preferably set higher than the boiling point of the organic solvent contained in the coating film. Examples of preferable heating temperature include 80 ° C to 250 ° C.
  • the dehydration condensation reaction of the metal oxide precursor proceeds in the coating film, and a metal oxide network structure is formed.
  • the coating film contracts, tensile stress is generated, and cracks occur in the coating film.
  • the crack force S is extended, the fine pieces of the coating film are spontaneously peeled off from the substrate, and a flake body is obtained. If the flake body does not peel off naturally, it may be peeled off by applying external force.
  • the peeled flake body may be collected by suction, or may be collected by scraping with a brush, a scraper or the like.
  • the flake body is recovered by blowing compressed air or the like. Alternatively, it may be immersed in a solution and settled in the solution to be collected.
  • a flake body in which the organic compound is uniformly dispersed in the metal oxide and the thickness is thin can be obtained.
  • Thin flake bodies can provide a variety of functions to products that add flake bodies that do not cause problems such as hiding, settling, and sticking out of the coating.
  • FIG. 2 shows the result of observation of an example of the flake body obtained by the production method of the present invention with a scanning electron microscope. The magnification is 1000 times.
  • the water content of the film-forming solution was measured by the Karl Fischer method and found to be 9% by mass.
  • the above-mentioned measurement by the Karl Fischer method is performed by coulometric titration using the “Micro moisture analyzer CA-05” manufactured by Mitsubishi Kasei Kogyo Co., Ltd. and “Aquamicron AX” manufactured by Mitsubishi Chemical Co., Ltd. Implemented by law.
  • the coulometric titration method is a method that uses a detection electrode to measure the number of electrons (current) emitted when iodide ions generated by the reaction of water and an analytical solution return to iodine.
  • the film-forming solution was dropped onto a stainless steel (SUS304) substrate having a size of 100 X 100 mm, and a coating film was formed by a spin coating method.
  • the stainless steel substrate with the coating film was placed in a drying furnace heated to 250 ° C. and heated for 60 seconds. Subsequently, the stainless steel substrate was taken out of the drying furnace, and flake bodies naturally separated from the substrate surface were collected.
  • coating and drying operations were repeated while gradually increasing the rotation speed of the spin coater, and the thinnest flake body that could be naturally peeled was obtained.
  • the thickness of the obtained flake body was measured using a scanning electron microscope (manufactured by Keyence, VE-7800). Here, the thickness of 10 20 flake bodies selected arbitrarily was measured, and the average value was defined as the thickness of the flake bodies (the same applies hereinafter). The thickness of the flake body of Example 1 was 0 ⁇ 64 ⁇ 111.
  • Example 1 In the preparation of the sodium acetate solution, the same solution as in Example 1 was used except that a mixed solution of isopropanol and water prepared by adding the same amount of water instead of sodium acetate was used instead of the sodium acetate solution. The thinnest flake body which can be peeled was obtained. The thickness of this flake body was 1.31 m, which was larger than the thickness of the flake body of Example 1.
  • the thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 1, except that 18.4 g of 0.2 mol / L aqueous citrate solution was used instead of nitric acid as the acid catalyst.
  • the flake body had a thickness of 0.65 m.
  • the thinnest flake body that can be peeled naturally was obtained in the same manner as in Example 2 except that 156 mg of sodium acetate was used instead of 78 mg of sodium acetate.
  • the average thickness of this flake body was 0 ⁇ 59 m.
  • Example 2 Except that 312mg sodium acetate was used instead of 78mg sodium acetate. In the same manner as in Example 2, the thinnest flake body that can be naturally peeled was obtained. The average thickness of the flakes was 0 ⁇ 53 m.
  • the thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 2 except that 128 mg of sodium sulfate was used instead of 78 mg of sodium acetate.
  • the average thickness of this flake body was 0 ⁇ 56 m.
  • the thinnest flake body that can be peeled naturally was obtained in the same manner as in Example 2 except that 256 mg of magnesium nitrate hexahydrate was used instead of 78 mg of sodium acetate.
  • the average thickness of this flake body was 0 ⁇ 69 m.
  • the thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 2 except that 214 mg of magnesium acetate tetrahydrate was used instead of 78 mg of sodium acetate.
  • the average thickness of this flake body was 1 ⁇ 21 111.
  • the thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 2 except that 255 mg of barium acetate was used instead of 78 mg of sodium acetate.
  • the average thickness of this flake body was 1 ⁇ 14 m.
  • the thinnest flake body that can be peeled naturally was obtained in the same manner as in Example 2 except that 38 mg of Disperse Redl was added instead of pyrene.
  • the average thickness of this flake body was 0.56 m.
  • Example 10 In the preparation of the sodium acetate solution, a natural solution was added in the same manner as in Example 9 except that a mixed solution of isopropanol and water prepared by adding the same amount of water instead of sodium acetate was used instead of the sodium acetate solution. The thinnest flake body which can be peeled was obtained. The thickness of this flake body was 1.22 m, which was larger than the thickness of the flake body of Example 9. [Example 10]
  • the thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 2 except that 38 mg of azobenzene was added instead of pyrene.
  • the average thickness of this flake body was 0.36 m.
  • a natural solution was prepared in the same manner as in Example 10 except that a mixed solution of isopropanol and water prepared by adding the same amount of water instead of sodium acetate in the preparation of the sodium acetate solution was used instead of the sodium acetate solution.
  • the thinnest flake body which can be peeled was obtained.
  • the thickness of this flake body was 0.6 m, which was larger than the thickness of the flake body of Example 10.
  • the coating film is thin, the volume shrinkage of the film during drying is small, and therefore the flake body is difficult to peel from the substrate.
  • the amount of water in the sol solution applied onto the substrate is limited in order to uniformly disperse the organic compound, the volume shrinkage of the film during drying is also reduced, and the flaking property of the flake body decreases.
  • the production method of the present invention has a high value and utility value as a supplement to the decrease in the peelability of the coating film from the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

The invention relates to a process for the production of flakes by peeling a coating film from a substrate and aims at improving the peelability of a coating film from a substrate. The invention provides a process which comprises mixing a hydrolyzable metal compound, an acid catalyst, water and an organic solvent to prepare a sol solution containing a metal oxide precursor, applying the sol solution to a substrate to form a coating on the substrate, drying the coating to form a film, and peeling the film from the substrate to form flakes. According to the invention, the sol solution further contains both an organic compound for imparting a function to flakes and an alkali metal salt and/or an alkaline earth metal salt, when applied to a substrate.

Description

明 細 書  Specification
フレーク体の製造方法  Method for producing flake body
技術分野  Technical field
[0001] 本発明は、ゾルゲル法を用いたフレーク体の製造方法に関する。  The present invention relates to a method for producing a flake body using a sol-gel method.
背景技術  Background art
[0002] ゾルゲル法は、触媒と水とを含む有機溶媒中に、加水分解可能な金属化合物を加 えて金属酸化物前駆体を含むゾル溶液を調製し、この金属酸化物前駆体の脱水縮 合反応を進行させ、ゲル化した金属酸化物を得る製造方法である。加水分解可能な 金属化合物としては、金属アルコキシドが用いられることが多レ、。  In the sol-gel method, a sol solution containing a metal oxide precursor is prepared by adding a hydrolyzable metal compound in an organic solvent containing a catalyst and water, and this metal oxide precursor is dehydrated and condensed. This is a production method in which the reaction is advanced to obtain a gelled metal oxide. As the hydrolyzable metal compound, metal alkoxide is often used.
[0003] ゾルゲル法を用いてフレーク体を製造する方法が実用化されている。この方法では 、金属酸化物前駆体を含むゾル溶液を平坦な基体上に塗布し、基体上に形成され た塗布膜を乾燥させる。塗布膜は、乾燥に伴う収縮により基体力 剥離し、金属酸化 物のフレーク体となる。この方法によれば、薄ぐ、耐久性に優れたフレーク体を効率的 に得ること力 Sできる。フレーク体は、プラスチック用充填材、耐食ライニング材などとし て用いられ、塗料、インクなどの中に配合されることもある。  [0003] A method for producing a flake body using a sol-gel method has been put into practical use. In this method, a sol solution containing a metal oxide precursor is applied on a flat substrate, and a coating film formed on the substrate is dried. The coating film peels off due to shrinkage caused by drying, and becomes a metal oxide flake. According to this method, it is possible to efficiently obtain a thin flake body having excellent durability. Flakes are used as fillers for plastics, corrosion-resistant linings, etc., and are sometimes blended into paints and inks.
[0004] 上記の方法においてゾル溶液に有機化合物を添加すれば、金属酸化物のフレー ク体に、芳香性、消臭性、脱臭性、殺菌性、撥水性、導電性、感熱性など様々な機 能を付与することができる。  [0004] When an organic compound is added to the sol solution in the above-described method, the metal oxide flake body has various properties such as aroma, deodorant, deodorant, bactericidal, water-repellent, conductive, and heat-sensitive. Functions can be added.
[0005] 特開平 4 292430号公報には、有機金属化合物および有機色素を含む溶液を 基体上に塗布して塗布膜を形成し、この塗布膜を基体から剥離させることにより、有 機色素を含有するフレーク体を得る方法、が開示されている。  [0005] In JP-A-4 292430, a solution containing an organometallic compound and an organic dye is applied onto a substrate to form a coating film, and the coating film is peeled off from the substrate to contain an organic dye. A method for obtaining a flake body is disclosed.
[0006] しかし、有機色素のような疎水性有機化合物をゾル溶液に添加した場合には特に、 ゾル溶液中で有機化合物が凝集または析出する場合がある。この現象は、溶液の調 製の際には生じなくても、塗布膜の乾燥中に生じることがある。有機化合物の凝集ま たは析出は、ゾル溶液に含まれる溶媒および金属酸化物前駆体と有機化合物との 親和性などに応じて、発生の程度が変化する。例えば、有機化合物と金属酸化物前 駆体との親和性が低!/、と、ゾル溶液中では均一に分散して!/、ても、塗布膜の乾燥時 に溶媒が揮発する過程で有機化合物の凝集または析出が生じる。有機化合物の凝 集または析出が生じ、フレーク体における有機化合物の分布が不均一になると、有 機化合物の機能が効果的に発揮されない。分散剤を用いれば、有機化合物の凝集 または析出を抑制することができる。しかし、分散剤は、フレーク体中に残存してその 性能を損なうことがあるため、その使用を避けることが望ましい。 However, especially when a hydrophobic organic compound such as an organic dye is added to the sol solution, the organic compound may aggregate or precipitate in the sol solution. Although this phenomenon does not occur during preparation of the solution, it may occur during drying of the coating film. The degree of occurrence of the aggregation or precipitation of the organic compound varies depending on the solvent contained in the sol solution and the affinity between the metal oxide precursor and the organic compound. For example, the affinity between the organic compound and the metal oxide precursor is low! / And evenly dispersed in the sol solution! / In the process of volatilization of the solvent, organic compounds aggregate or precipitate. If the organic compound aggregates or precipitates and the distribution of the organic compound in the flakes becomes non-uniform, the function of the organic compound cannot be effectively exhibited. If a dispersant is used, aggregation or precipitation of organic compounds can be suppressed. However, it is desirable to avoid the use of dispersants because they may remain in the flake body and impair its performance.
[0007] 特開 2006— 150300号公報には、ゾル溶液に添加する水の量を、金属化合物の 加水分解反応に十分でありながらも過剰とならないように調整することにより、有機化 合物が均一に分散したゾル溶液を調製することが開示されて!/、る。このゾル溶液を用 いてフレーク体を製造すれば、分散剤を用いなくても、有機化合物が均一に分散し たフレーク体を得ることができる。  [0007] Japanese Patent Application Laid-Open No. 2006-150300 discloses that an organic compound is prepared by adjusting the amount of water added to a sol solution so that it is sufficient but sufficient for the hydrolysis reaction of a metal compound. It is disclosed to prepare a uniformly dispersed sol solution! If a flake body is produced using this sol solution, a flake body in which an organic compound is uniformly dispersed can be obtained without using a dispersant.
[0008] しかし、水分量の少ないゾル溶液を用いると、乾燥後の塗布膜が基体に強固に付 着する。このため、塗布膜が基体力 剥離し難くなる。このような傾向は、塗布膜の膜 厚が小さくなるほど顕著になる。このため、塗布膜の膜厚を大きくする必要があり、得 られるフレーク体の厚みも大きくなる。しかし、厚みが大きいフレーク体を塗料、インク などに添加すると、隠蔽性、沈降性、塗膜力、らの突き出しなどの問題が生じ易くなる。 発明の開示  However, when a sol solution having a small water content is used, the dried coating film is firmly attached to the substrate. For this reason, it becomes difficult for the coating film to be peeled off. Such a tendency becomes more prominent as the coating film thickness becomes smaller. For this reason, it is necessary to increase the thickness of the coating film, and the thickness of the obtained flake body also increases. However, if a flake body having a large thickness is added to a paint, ink or the like, problems such as concealing property, sedimentation property, coating force, and protrusion of the film easily occur. Disclosure of the invention
[0009] 本発明は、ゾルゲル法を用いたフレーク体の製造方法であって、塗布膜が基体か ら剥離しやす!/、製造方法を提供することを目的とする。  [0009] An object of the present invention is to provide a method for producing a flake body using a sol-gel method, in which a coating film is easily peeled from a substrate!
[0010] 本発明者らは、ゾル溶液に、アルカリ金属塩および/またはアルカリ土類金属塩を 添加することにより、基体上に形成した塗布膜の剥離性を改善できることを見出した。 [0010] The present inventors have found that the releasability of a coating film formed on a substrate can be improved by adding an alkali metal salt and / or an alkaline earth metal salt to a sol solution.
[0011] 本発明は、少なくとも、加水分解可能な金属化合物、酸触媒、水、および有機溶媒 を混合して、金属酸化物前駆体を含むゾル溶液を調製し、このゾル溶液を基体上に 塗布して、この基体上に塗布膜を形成し、この塗布膜を乾燥させ、塗布膜を基体から 剥離させてフレーク体を得る、フレーク体の製造方法であって、ゾル溶液が、基体上 に塗布されるときに、有機化合物と、アルカリ金属塩およびアルカリ土類金属塩から なる群から選ばれる少なくとも 1種の塩と、をさらに含む、フレーク体の製造方法を提 供する。  In the present invention, at least a hydrolyzable metal compound, an acid catalyst, water, and an organic solvent are mixed to prepare a sol solution containing a metal oxide precursor, and this sol solution is applied onto a substrate. Then, a coating film is formed on the substrate, the coating film is dried, and the coating film is peeled off from the substrate to obtain a flake body, in which the sol solution is coated on the substrate. When provided, a method for producing a flake body is provided, further comprising an organic compound and at least one salt selected from the group consisting of alkali metal salts and alkaline earth metal salts.
[0012] 本発明によれば、上記の塩を添加することにより、ゾル溶液に添加される水の量が 少なくても、剥離性に優れたフレーク体を容易かつ効率的に製造できる。本発明の 製造方法は、有機化合物が均一に分散した、薄いフレーク体の提供に特に適してい 図面の簡単な説明 [0012] According to the present invention, the amount of water added to the sol solution is increased by adding the salt. Even if there are few, the flake body excellent in peelability can be manufactured easily and efficiently. The production method of the present invention is particularly suitable for providing a thin flake body in which an organic compound is uniformly dispersed.
[0013] [図 1]本発明の方法の一例を説明するブロック図である。  FIG. 1 is a block diagram for explaining an example of the method of the present invention.
[図 2]本発明の方法により得られたフレーク体の一例を、走査型電子顕微鏡により観 察した結果を示す図である。  FIG. 2 is a diagram showing a result of observation of an example of a flake body obtained by the method of the present invention with a scanning electron microscope.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明によるフレーク体の製造方法は、例えば、図 1に示した工程に従って実施す ること力 Sできる。以下、本発明の実施の一形態を、図 1に示した工程に従って説明す [0014] The method for producing a flake body according to the present invention can be carried out according to the process shown in FIG. Hereinafter, one embodiment of the present invention will be described in accordance with the steps shown in FIG.
[0015] [ゾル溶液の調製] [0015] [Preparation of sol solution]
本発明のフレーク体の製造方法では、まず、少なくとも、加水分解可能な金属化合 物、酸触媒、水、および有機溶媒を混合し、金属化合物が加水分解して生じた金属 酸化物前駆体を含むゾル溶液を調製する。  In the method for producing a flake body of the present invention, first, at least a hydrolyzable metal compound, an acid catalyst, water, and an organic solvent are mixed, and a metal oxide precursor generated by hydrolysis of the metal compound is included. A sol solution is prepared.
[0016] 有機溶媒は、その種類が限定されるわけではないが、用いる金属化合物の溶解性 が高いものが適している。有機溶媒としては、アルコール類、グリコール類、セロソノレ ブ(エチレングリコールのモノエーテル)類などを用いることができる。アルコール類と しては、メタノール、エタノール、イソプロパノールなどの低級アルコールが好ましい。 グリコール類としては、エチレングリコール、プロピレングリコールなどが好ましい。セ 口ソルブ類としては、ェチルセ口ソルブ、ブチルセ口ソルブなどが好ましい。なお、ダリ セリン、へキシレンダリコールなどの低揮発性の有機溶媒には、揮発による有機溶媒 の減少を抑制できるという利点がある。  [0016] The type of the organic solvent is not limited, but an organic solvent having high solubility of the metal compound to be used is suitable. As the organic solvent, alcohols, glycols, cellosonolev (ethylene glycol monoether), and the like can be used. As alcohols, lower alcohols such as methanol, ethanol and isopropanol are preferred. As glycols, ethylene glycol, propylene glycol and the like are preferable. As the mouth solvs, cetyl sorb butyl, butyl mouth solv and the like are preferable. Note that organic solvents with low volatility such as dariserine and hexylene dallicol have the advantage that the decrease in organic solvent due to volatilization can be suppressed.
[0017] 加水分解可能な金属化合物は、分子内に水への反応点となる官能基を有し、加水 分解反応により金属酸化物の前駆体を形成できるものである。加水分解可能な金属 化合物としては、金属アルコキシド、金属カルボキシレート、硝酸塩、塩化物、ォキシ 塩化物などを例示できる。この中でも、金属アルコキシドは、反応の制御が容易であ り、低温で金属酸化物の 3次元ネットワーク構造を形成し易い。金属化合物を構成す る金属原子は、その種類を問わないが、珪素、チタン、アルミニウム、ジルコニウムな どであればよい。 [0017] The hydrolyzable metal compound has a functional group as a reaction point to water in the molecule, and can form a metal oxide precursor by hydrolysis reaction. Examples of hydrolyzable metal compounds include metal alkoxides, metal carboxylates, nitrates, chlorides and oxychlorides. Among these, the metal alkoxide is easy to control the reaction and easily forms a three-dimensional network structure of the metal oxide at a low temperature. Composing metal compounds The type of metal atom is not limited, but may be silicon, titanium, aluminum, zirconium or the like.
[0018] 金属アルコキシドは、一般式: MR (OR' ) で示される。ここで、 Mは金属原子で あり、 Rはオルガノ基(厳密には、アルコキシル基を除く有機基)であり、 OR'はアルコ キシル基である。また、 nは金属原子の酸化数に相当する自然数であり、 mは 0≤m <nの範囲の整数である。 Rとしては、アルキル基、フエニル基、ァシル基、メタクリロ キシ基、エポキシ基などが挙げられる。 R'としては、アルキル基、フエニル基、ァセチ ル基、(ポリ)ォキシアルキレン基などが挙げられる力 この中では、メチル基、ェチル 基、プロピル基、イソプロピル基のような炭素数が 1〜5のアルキル基が好ましい。  [0018] The metal alkoxide is represented by the general formula: MR (OR '). Here, M is a metal atom, R is an organo group (strictly, an organic group excluding an alkoxyl group), and OR ′ is an alkoxyl group. N is a natural number corresponding to the oxidation number of the metal atom, and m is an integer in the range of 0≤m <n. Examples of R include an alkyl group, a phenyl group, a acyl group, a methacryloxy group, and an epoxy group. Examples of R ′ include an alkyl group, a phenyl group, an acetyl group, and a (poly) oxyalkylene group. Among them, the number of carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group is 1 to An alkyl group of 5 is preferred.
[0019] 金属原子が珪素である金属アルコキシド(シリコンアルコキシド)としては、例えば、 テトラメトキシシラン、テトラエトキシシラン、テトラプロボキシシランなどの、水への反応 点の数が 4個であるテトラアルコキシシラン(アルコキシシラン A;m = 0)を用いること カできる。アルコキシシラン Aの使用は、フレーク体の強度の向上や、原料コスト等の 観点から好ましい。他方、シリコンアルコキシドとして、メチルトリメトキシシラン、フエ二 ルトリメトキシシランなどの、オルガノ基を有するアルコキシシラン(アルコキシシラン B ; m〉0 ;好ましくは m= lまたは 2)を用いることもできる。アルコキシシラン Bの使用は 、ゾル溶液の安定性および有機化合物の分散性の向上の観点から好ましい。有機 化合物を均一に分散しつつ強度が高ぐコストが安いフレーク体を得るためには、ァ ルコキシシラン Aとアルコキシラン Bとを併用するとよい。  [0019] Examples of the metal alkoxide (silicon alkoxide) in which the metal atom is silicon include tetraalkoxysilane having four reaction points to water, such as tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane. (Alkoxysilane A; m = 0) can be used. The use of alkoxysilane A is preferable from the viewpoint of improving the strength of the flake body and the raw material cost. On the other hand, as the silicon alkoxide, an alkoxysilane having an organo group (alkoxysilane B; m> 0; preferably m = 1 or 2) such as methyltrimethoxysilane or phenyltrimethoxysilane can be used. The use of alkoxysilane B is preferable from the viewpoint of improving the stability of the sol solution and the dispersibility of the organic compound. In order to obtain a flake body having a high strength and a low cost while uniformly dispersing the organic compound, alkoxysilane A and alkoxysilane B may be used in combination.
[0020] テトライソプロポキシチタンのようなチタンアルコキシドは、反応性に富むため、加水 分解した後、すぐにゲル化してしまう。このような反応性の高い金属アルコキシドを用 いる場合には、予め有機溶媒にキレート剤を添加しておき、加水分解反応により得ら れる金属酸化物前駆体を安定化させることが望ましい。キレート剤としては、ァセチル アセトンなどの 0ージケトン類、ァセト酢酸ェチルなどの 0ーケトエステル類を好適に 使用できる。なお、キレート剤としての効果を併せ持つ有機溶媒を用いてもよい。  [0020] Titanium alkoxides such as tetraisopropoxytitanium are highly reactive and thus gelate immediately after hydrolysis. When such highly reactive metal alkoxide is used, it is desirable to add a chelating agent to an organic solvent in advance to stabilize the metal oxide precursor obtained by the hydrolysis reaction. As the chelating agent, 0-diketones such as acetyl acetone and 0-keto esters such as acetyl acetoacetate can be preferably used. In addition, you may use the organic solvent which has the effect as a chelating agent together.
[0021] 金属化合物に含まれる金属元素は、 1種類に限らず、必要に応じて複数種としても よい。例えば、金属元素が互いに異なる金属化合物を混合することにより、所望の屈 折率を有する金属酸化物のフレーク体を製造することが可能である。この場合、複数 の金属化合物を配合してゾル溶液を調製してもよいし、別々に調製したゾル溶液を 混合してもよい。 [0021] The metal element contained in the metal compound is not limited to one type, and may be a plurality of types as required. For example, a metal oxide flake body having a desired refractive index can be produced by mixing metal compounds having different metal elements. In this case, multiple A sol solution may be prepared by blending these metal compounds, or separately prepared sol solutions may be mixed.
[0022] 酸触媒は、金属化合物の加水分解反応を促進し、得られる金属酸化物前駆体の ゲル化を抑制する。酸触媒としては、プロトン酸が好適に用いられる。酸触媒としては 、硝酸、塩酸、硫酸、リン酸、クェン酸、酢酸、トリフルォロ酢酸、トリクロ口酢酸、パラト ルエンスルホン酸などを例示できる。  [0022] The acid catalyst accelerates the hydrolysis reaction of the metal compound and suppresses the gelation of the resulting metal oxide precursor. Protonic acid is preferably used as the acid catalyst. Examples of the acid catalyst include nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, citrate, acetic acid, trifluoroacetic acid, trichlorodiacetic acid, p-toluenesulfonic acid, and the like.
[0023] ゾルゲル法では、金属化合物の加水分解反応のために水が添加される。水の添加 量は、金属化合物の水との反応点の数に対し、 0. 5当量以上 2当量以下が好ましい 。水の添加量が 0. 5当量より少ないと、金属化合物の加水分解反応が十分に進行し ない場合がある。加水分解反応が十分に進行しないと、フレーク体の強度低下を招く 。また、この反応が十分に進行しないと、ゾル溶液の水分量が少なくなるため、基体 力、らフレーク体を剥離することが困難になる場合がある。他方、水の添加量が 2当量 を超えると、ゾル溶液に有機化合物を均一に分散させることが困難になる。本発明は 、水の添加量が上記範囲以外のゾルゲル法にも適用できる力 水の添加量を上記程 度に制限した場合に生じる塗布膜の剥離性の低下を補うものとして、利用価値が高 い。  In the sol-gel method, water is added for the hydrolysis reaction of the metal compound. The amount of water added is preferably 0.5 equivalents or more and 2 equivalents or less based on the number of reaction points of the metal compound with water. If the amount of water added is less than 0.5 equivalent, the hydrolysis reaction of the metal compound may not proceed sufficiently. If the hydrolysis reaction does not proceed sufficiently, the strength of the flake body will be reduced. If this reaction does not proceed sufficiently, the amount of water in the sol solution decreases, and it may be difficult to peel off the flakes from the substrate strength. On the other hand, when the amount of water added exceeds 2 equivalents, it becomes difficult to uniformly disperse the organic compound in the sol solution. The present invention has a high utility value as a supplement to the decrease in the peelability of the coating film that occurs when the amount of water added is limited to the above level. Yes.
[0024] なお、金属酸化物の加水分解やその後の脱水縮合により、ゾル溶液に含まれる水 分量は変動する。また、ゾルゲル溶液への添加物として水溶液を用いた場合にも、 水分量は変動する。有機化合物の分散性を保っためには、基体に塗布する際のゾ ル溶液の水分量を所定の範囲内とすることが望ましい。具体的には、塗布前の最終 的なゾル溶液の水分量 (基体上に塗布するゾル溶液に含まれる水分量)は 10質量 %以下であることが好ましレ、。  [0024] The amount of water contained in the sol solution varies due to hydrolysis of the metal oxide and subsequent dehydration condensation. The amount of water also varies when an aqueous solution is used as an additive to the sol-gel solution. In order to maintain the dispersibility of the organic compound, it is desirable that the water content of the sol solution when applied to the substrate is within a predetermined range. Specifically, the water content of the final sol solution before application (the water content contained in the sol solution applied on the substrate) is preferably 10% by mass or less.
[0025] [膜形成溶液の調製]  [0025] [Preparation of film forming solution]
次に、上記で得たゾル溶液から膜形成溶液を調製する。ここで説明する形態では、 ゾル溶液に、少なくとも、有機化合物と、アルカリ金属塩および/またはアルカリ土類 金属塩とが添加されて膜形成溶液が調製される。膜形成溶液も、金属酸化物前駆体 を含むゾル溶液であるが、ここではこれら 2つの溶液を区別するために「膜形成溶液」 の呼び名を使用する。 [0026] 有機化合物および上記塩は、金属化合物の加水分解前の溶液に予め添加してお いても構わない。この場合は、金属化合物を加水分解して得たゾル溶液をそのまま 基体上に塗布してよい。ただし、有機化合物は、溶媒に溶解させると光や熱に弱くな る物質が多いことや、有機化合物の添加により溶液の安定性が低下する場合がある こと、を考慮すると、ゾル溶液に加えることが好ましぐ上記塩も、溶液の安定性の観 点から、ゾル溶液を調製してからこのゾル溶液に加えることが好まし!/、。 Next, a film forming solution is prepared from the sol solution obtained above. In the embodiment described here, at least an organic compound and an alkali metal salt and / or an alkaline earth metal salt are added to the sol solution to prepare a film forming solution. The film-forming solution is also a sol solution containing a metal oxide precursor, but here the term “film-forming solution” is used to distinguish these two solutions. [0026] The organic compound and the salt may be added in advance to the solution before hydrolysis of the metal compound. In this case, the sol solution obtained by hydrolyzing the metal compound may be directly applied to the substrate. However, organic compounds should be added to the sol solution in consideration of the fact that there are many substances that become weak to light and heat when dissolved in a solvent and that the stability of the solution may be reduced by the addition of organic compounds. From the viewpoint of solution stability, it is also preferable to prepare the sol solution and add it to this sol solution!
[0027] 有機化合物は、フレーク体に、芳香性、消臭性、脱臭性、殺菌性、撥水性、導電性 、感熱性などの様々な機能を付与するために添加される。有機化合物としては、その 種類が制限されるわけではないが、フタロシアニン類、ポルフィリン類、多環芳香族( ピレン等)などの化合物を例示できる。上記に例示した機能を付与するための有機化 合物は、疎水性であることが多い。疎水性有機化合物は、フレーク体中に均一に分 散させることが必ずしも容易でないが、水の量を上記のように適切に制御すれば均一 に分散させること力 Sできる。疎水性有機化合物は、ベンゼン環に代表される炭素原子 の環構造を含むことが多い。  [0027] The organic compound is added to the flake body in order to impart various functions such as fragrance, deodorizing property, deodorizing property, bactericidal property, water repellency, conductivity, and heat sensitivity. Examples of the organic compound include, but are not limited to, compounds such as phthalocyanines, porphyrins, polycyclic aromatics (pyrene, etc.). Organic compounds for imparting the functions exemplified above are often hydrophobic. Although it is not always easy to disperse the hydrophobic organic compound uniformly in the flake body, it can be uniformly dispersed if the amount of water is appropriately controlled as described above. Hydrophobic organic compounds often contain a ring structure of carbon atoms typified by a benzene ring.
[0028] 塩としては、アルカリ金属塩およびアルカリ土類金属塩からなる群より選ばれる少な くとも 1種の塩を用いることができる。この少なくとも 1種の塩は、アルカリ金属塩を含 むこと力 S好ましく、アルカリ金属塩は、ナトリウムまたはカリウムを含むことが好ましい。 アルカリ金属塩としては、酢酸ナトリウム、酢酸カリウム、硫酸ナトリウム、硝酸ナトリウ ムを例示できる。アルカリ土類金属塩としては、酢酸マグネシウム、酢酸カルシウム、 硝酸マグネシウム、硝酸カルシウムを例示できる。上記少なくとも 1種の塩は、酢酸塩 、硫酸塩または硝酸塩を含んでいてもよい。  [0028] As the salt, at least one salt selected from the group consisting of alkali metal salts and alkaline earth metal salts can be used. The at least one salt preferably includes an alkali metal salt. The alkali metal salt preferably includes sodium or potassium. Examples of the alkali metal salt include sodium acetate, potassium acetate, sodium sulfate, and sodium nitrate. Examples of the alkaline earth metal salt include magnesium acetate, calcium acetate, magnesium nitrate, and calcium nitrate. The at least one salt may include acetate, sulfate or nitrate.
[0029] 塩の添加によって塗布膜の剥離性が向上する原因は、現段階では必ずしも明らか ではない。しかし、塩の添加によって、塗布膜におけるゾルからゲルへの反応が促進 され、塗布膜内の応力が大きくなることが剥離性向上に寄与していると考えられる。 膜内の応力が大きくなれば、膜の乾燥に伴って膜にクラックが入りやすくなる。また、 ゾルがゲル化する過程において、アルカリ金属またはアルカリ土類金属がゾルと分離 され、基体と塗布膜との間に偏在している可能性もある。上記金属と基体とは密着性 が低いため、上記金属が膜との界面に偏在していれば膜は剥離しやすくなる。 [0030] 上記塩の添加量は、酸触媒に対して 0. 1当量以上 1. 5当量以下が好ましい。塩の 添加量が 0. 1当量未満であると、塩の効果が十分に得られず、結果としてフレーク体 の剥離性が向上しないことがある。他方、塩の添加量が酸触媒に対して多すぎると、 ゾル溶液がアルカリ性側に移行してゾル溶液がゲル化し易くなることがある。ゾル溶 液のゲル化を確実に防ぐべき場合には、塩の添加量を、酸触媒に対して 0. ;!〜 1当 量の範囲とするとよい。他方、剥離性を重視すべき場合は、塩の添加量を、酸触媒に 対して;!〜 1. 5当量の範囲としてもよい。一般に、ゾル溶液は、その液性が酸性から アルカリ性に近づくにつれて容易にゲル化する傾向にある。 [0029] The reason why the peelability of the coating film is improved by the addition of salt is not always clear at this stage. However, the addition of salt promotes the reaction from the sol to the gel in the coating film, and the increase in stress in the coating film is thought to contribute to the improvement of peelability. If the stress in the film increases, the film tends to crack as the film dries. In the process of gelling the sol, the alkali metal or alkaline earth metal may be separated from the sol and unevenly distributed between the substrate and the coating film. Since the adhesion between the metal and the substrate is low, the film is easy to peel off if the metal is unevenly distributed at the interface with the film. [0030] The amount of the salt added is preferably 0.1 equivalents or more and 1.5 equivalents or less based on the acid catalyst. If the amount of salt added is less than 0.1 equivalent, the effect of the salt may not be sufficiently obtained, and as a result, the flake peelability may not be improved. On the other hand, if the amount of salt added is too large relative to the acid catalyst, the sol solution may move to the alkaline side and the sol solution may be easily gelled. If gelation of the sol solution is to be surely prevented, the amount of salt added should be in the range of 0.;! To 1 equivalent to the acid catalyst. On the other hand, when the peelability should be emphasized, the amount of salt added may be in the range of !! to 1.5 equivalents with respect to the acid catalyst. In general, sol solutions tend to gel easily as their liquidity approaches from alkaline to alkaline.
[0031] 塩は、ゾル溶液に直接添加してもよい。しかし、塩をより均一に混合させるためには 予め塩を適当な溶媒に溶解させた溶液を調製してお!/、て、この溶液とゾル溶液とを 混合することが好ましい。この溶液の好ましい溶媒としては、水が挙げられる。ただし 、溶媒として水を用いる場合には、有機化合物の分散性を低下させないために、ゾル 溶液の水分量を 10質量%以下に制限することが好ましい。このために、塩を少量の 水を含む有機溶媒に溶解させてもよい。塩として、酢酸ナトリウム、クェン酸ナトリウム のような有機酸の塩を用いてもよい。有機酸のアルカリ金属塩および/またはアル力 リ土類金属塩を用いれば、有機溶媒のみを溶媒とする溶液を容易に調製できる。こ の有機溶媒は、ゾル溶液に含まれる有機溶媒と同一のものでもよいし、別のものであ つてもよい。 [0031] The salt may be added directly to the sol solution. However, in order to mix the salt more uniformly, it is preferable to prepare a solution in which the salt is dissolved in an appropriate solvent in advance and then mix this solution with the sol solution. A preferred solvent for this solution is water. However, when water is used as the solvent, the water content of the sol solution is preferably limited to 10% by mass or less in order not to lower the dispersibility of the organic compound. For this purpose, the salt may be dissolved in an organic solvent containing a small amount of water. As the salt, an organic acid salt such as sodium acetate or sodium quenate may be used. If an alkali metal salt of an organic acid and / or an alkaline earth metal salt is used, a solution containing only an organic solvent as a solvent can be easily prepared. This organic solvent may be the same as or different from the organic solvent contained in the sol solution.
[0032] 以上のとおり、本発明では、ゾル溶液を基板上に塗布する前に、ゾル溶液に、アル カリ金属塩および/またはアルカリ土類金属塩を含む溶液を加えることが好ましい。 この溶液は、溶媒として、水および有機溶媒を含んでいてもよい。  [0032] As described above, in the present invention, it is preferable to add a solution containing an alkali metal salt and / or an alkaline earth metal salt to the sol solution before applying the sol solution onto the substrate. This solution may contain water and an organic solvent as a solvent.
[0033] 基板上に塗布する前のゾル溶液には、有機化合物も加えることができる。この有機 化合物は、化合物そのものを加えてもよいし、分散液または溶液の状態で添加しても 構わない。  [0033] An organic compound can also be added to the sol solution before coating on the substrate. The organic compound may be added as the compound itself or in the form of a dispersion or solution.
[0034] なお、本発明の製造方法では、ゾル溶液に、その他の成分、例えば、水酸化物や ハロゲン化物、窒化物を含ませてもよい。  [0034] In the production method of the present invention, the sol solution may contain other components such as hydroxide, halide, and nitride.
[0035] [膜形成溶液の塗布] [0035] [Application of film-forming solution]
次に、上記で得た膜形成溶液を基体の表面に塗布することにより、塗布膜を形成 する。 Next, a coating film is formed by applying the film forming solution obtained above onto the surface of the substrate. To do.
[0036] 基体の材料としては特に制限はなぐガラス、金属、半導体、セラミックス、樹脂など を用いること力 Sできる。ただし、樹脂を用いる場合には、膜形成溶液に含まれる有機 溶媒の沸点よりも高レ、耐熱温度を有する材料を選択すべきである。フレーク体の剥 離性に優れている基体としては、ステンレス鋼板が挙げられる。また、平板状で厚み の均一なフレーク体を得るためには、塗布膜を形成する基体の表面は平滑であるこ とが好ましい。  [0036] Glass, metal, semiconductor, ceramics, resin, and the like, which are not particularly limited, can be used as the base material. However, when using a resin, a material having a temperature higher than the boiling point of the organic solvent contained in the film-forming solution and having a heat resistant temperature should be selected. A stainless steel plate is an example of the substrate that is excellent in the flake peelability. Further, in order to obtain a flat flake having a uniform thickness, the surface of the substrate on which the coating film is formed is preferably smooth.
[0037] 膜形成溶液の基体への塗布方法は、公知の技術を用いて行えばよ!/、。塗布方法と しては、例えば、スピンコート法、ロールコート法、スプレー法、デイツビング法、カーテ ンコート法、フローコート法、各種印刷法 (スクリーン印刷、フレキソ印刷、インクジエツ ト法等)を例示できる。なお、塗布膜厚を均一にするために、塗布してから乾燥するま での間に、必要に応じてレべリング時間を設けてもよい。  [0037] The method of applying the film-forming solution to the substrate may be performed using a known technique! Examples of the coating method include spin coating, roll coating, spraying, dating, curtain coating, flow coating, and various printing methods (screen printing, flexographic printing, ink jet method, etc.). In order to make the coating film thickness uniform, a leveling time may be provided as needed between application and drying.
[0038] [塗布膜の乾燥、剥離]  [0038] [Drying and peeling of coated film]
引き続き、基体の表面に形成された塗布膜を乾燥させる。この乾燥は、自然乾燥に 任せて行ってもよいが、金属酸化物前駆体の脱水縮合反応を促進し、かつ有機溶媒 および水の揮発を容易にするために、基体の加熱を伴う加熱乾燥により行うことが好 ましい。加熱の温度は、基体および塗布膜に含まれる有機化合物の耐熱温度よりも 低く設定すべきである。また、加熱の温度は、塗布膜に含まれる有機溶媒の沸点より も高く設定することが好ましい。好ましい加熱温度としては、 80°C〜250°Cを例示で きる。  Subsequently, the coating film formed on the surface of the substrate is dried. This drying may be carried out by natural drying, but in order to accelerate the dehydration condensation reaction of the metal oxide precursor and facilitate the volatilization of the organic solvent and water, it is possible to carry out the drying by heating with heating of the substrate. It is preferable to do it. The heating temperature should be set lower than the heat resistance temperature of the organic compound contained in the substrate and the coating film. The heating temperature is preferably set higher than the boiling point of the organic solvent contained in the coating film. Examples of preferable heating temperature include 80 ° C to 250 ° C.
[0039] 塗布膜の乾燥が進行する過程で、塗布膜中で金属酸化物前駆体の脱水縮合反応 が進行し、金属酸化物のネットワーク構造が形成される。さらに乾燥が進行すると、塗 布膜が収縮して引張応力が発生し、塗布膜にクラックが発生する。このクラック力 S伸 長すると、塗布膜の微小片が基体から自然剥離して、フレーク体が得られる。フレー ク体が自然剥離しない場合には、外力を加えることによって強制的に剥離させてもよ い。  [0039] In the process of drying the coating film, the dehydration condensation reaction of the metal oxide precursor proceeds in the coating film, and a metal oxide network structure is formed. As drying progresses further, the coating film contracts, tensile stress is generated, and cracks occur in the coating film. When the crack force S is extended, the fine pieces of the coating film are spontaneously peeled off from the substrate, and a flake body is obtained. If the flake body does not peel off naturally, it may be peeled off by applying external force.
[0040] 剥離したフレーク体は、吸引により回収してもよいし、ブラシ、スクレーパーなどを用 いて搔き取って回収してもよい。また、フレーク体は、圧縮空気などを吹き付けて回収 してもよぐ溶液に浸漬させ溶液中を沈降させて回収してもよい。 [0040] The peeled flake body may be collected by suction, or may be collected by scraping with a brush, a scraper or the like. The flake body is recovered by blowing compressed air or the like. Alternatively, it may be immersed in a solution and settled in the solution to be collected.
[0041] 本発明によれば、有機化合物が金属酸化物中に均一に分散し、かつ厚みが薄い フレーク体を得ることができる。薄いフレーク体は、隠蔽性、沈降性、塗膜からの突き 出しなどの問題を引き起こすことなぐフレーク体を添加する製品に様々な機能を付 与できる。図 2に、本発明の製造方法により得られたフレーク体の一例を走査型電子 顕微鏡により観察した結果を示す。撮影倍率は 1000倍である。 [0041] According to the present invention, a flake body in which the organic compound is uniformly dispersed in the metal oxide and the thickness is thin can be obtained. Thin flake bodies can provide a variety of functions to products that add flake bodies that do not cause problems such as hiding, settling, and sticking out of the coating. FIG. 2 shows the result of observation of an example of the flake body obtained by the production method of the present invention with a scanning electron microscope. The magnification is 1000 times.
[0042] 以下、実施例および比較例により、本発明をさらに詳細に説明する。 [0042] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[0043] (実施例 1) [0043] (Example 1)
イソプロノ ノール 68. lg、テトラメトキシラン (東京化成工業社製) 46· 8g、およびメ チルトリメトキシシラン (信越化学工業社製) 4. 65gを混合する。この混合溶液に、 0. lmol/Lの硝酸水溶液 18. 4gを滴下し、 50°Cで 24時間攪拌して、ゾル溶液を調製 した。水の添加量は、アルコキシシランの水との反応点の数に対して 0. 76当量の割 合である。  68. lg of isopronol, 48.6 g of tetramethoxylane (Tokyo Chemical Industry Co., Ltd.), and 4.65 g of methyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.) are mixed. To this mixed solution, 18.4 g of a 0.1 mol / L nitric acid aqueous solution was dropped, and the mixture was stirred at 50 ° C. for 24 hours to prepare a sol solution. The amount of water added is a ratio of 0.76 equivalent to the number of reaction points of alkoxysilane with water.
[0044] 上記のゾル溶液とは別に、酢酸ナトリウム 78mg、イソプロパノール 40g、およびィォ ン交換水 10gを混合して、酢酸ナトリウム溶液を調製した。  [0044] Separately from the above sol solution, 78 mg of sodium acetate, 40 g of isopropanol, and 10 g of ion-exchanged water were mixed to prepare a sodium acetate solution.
[0045] ゾル溶液 10gに、ピレン 38mgと酢酸ナトリウム溶液 5gとを混合し、膜形成溶液を調 製した。この膜形成溶液には、酢酸ナトリウムが、酸触媒である硝酸の含有量に対し て 0. 7当量の割合で添加されていた。  [0045] To 10 g of the sol solution, 38 mg of pyrene and 5 g of a sodium acetate solution were mixed to prepare a film forming solution. To this film forming solution, sodium acetate was added at a ratio of 0.7 equivalent to the content of nitric acid as an acid catalyst.
[0046] 膜形成溶液の水分量をカールフィッシャー法に基づレ、て測定したところ、 9質量% であった。なお、カールフィッシャー法による上記の測定は、三菱化成工業社製「微 量水分測定装置 CA— 05」と、カールフィッシャー分析液である三菱化学社製「ァク アミクロン AX」とを用い、電量滴定法により実施した。電量滴定法は、水と分析液とが 反応して生成したヨウ化物イオンがヨウ素に戻るときに放出する電子の数 (電流)を検 出電極を用いて計測する方法である。  [0046] The water content of the film-forming solution was measured by the Karl Fischer method and found to be 9% by mass. The above-mentioned measurement by the Karl Fischer method is performed by coulometric titration using the “Micro moisture analyzer CA-05” manufactured by Mitsubishi Kasei Kogyo Co., Ltd. and “Aquamicron AX” manufactured by Mitsubishi Chemical Co., Ltd. Implemented by law. The coulometric titration method is a method that uses a detection electrode to measure the number of electrons (current) emitted when iodide ions generated by the reaction of water and an analytical solution return to iodine.
[0047] 膜形成溶液を、 100 X 100mmの大きさのステンレス(SUS304)基板上に滴下し、 スピンコート法により塗布膜を形成した。塗布後 30秒以内に、塗布膜付きのステンレ ス基板を予め 250°Cに昇温してある乾燥炉に入れ、 60秒間加熱した。引き続き、ステ ンレス基板を乾燥炉から取り出し、基板表面から自然剥離したフレーク体を回収した [0048] ここで、スピンコータの回転数を徐々に上げながら、塗布、乾燥の作業を繰り返して 行い、自然剥離可能な最も薄いフレーク体を得た。 [0047] The film-forming solution was dropped onto a stainless steel (SUS304) substrate having a size of 100 X 100 mm, and a coating film was formed by a spin coating method. Within 30 seconds after coating, the stainless steel substrate with the coating film was placed in a drying furnace heated to 250 ° C. and heated for 60 seconds. Subsequently, the stainless steel substrate was taken out of the drying furnace, and flake bodies naturally separated from the substrate surface were collected. [0048] Here, coating and drying operations were repeated while gradually increasing the rotation speed of the spin coater, and the thinnest flake body that could be naturally peeled was obtained.
[0049] 得られたフレーク体の厚みは、走査型電子顕微鏡(キーエンス製、 VE— 7800)を 用いて測定した。ここでは、任意に選択した 10 20個のフレーク体の厚みを測定し 、その平均値をフレーク体の厚みとした(以下において同様)。実施例 1のフレーク体 の厚みは 0· 64〃111であった。  [0049] The thickness of the obtained flake body was measured using a scanning electron microscope (manufactured by Keyence, VE-7800). Here, the thickness of 10 20 flake bodies selected arbitrarily was measured, and the average value was defined as the thickness of the flake bodies (the same applies hereinafter). The thickness of the flake body of Example 1 was 0 · 64〃111.
[0050] (比較例 1)  [0050] (Comparative Example 1)
酢酸ナトリウム溶液の調製において酢酸ナトリウムの代わりに同量の水を添加して 調製したイソプロパノールと水との混合溶液を、酢酸ナトリウム溶液に代えて用いたこ と以外は、実施例 1と同様にして自然剥離可能な最も薄いフレーク体を得た。このフ レーク体の厚みは、 1. 31 mであり、実施例 1のフレーク体の厚みよりも大きくなつた  In the preparation of the sodium acetate solution, the same solution as in Example 1 was used except that a mixed solution of isopropanol and water prepared by adding the same amount of water instead of sodium acetate was used instead of the sodium acetate solution. The thinnest flake body which can be peeled was obtained. The thickness of this flake body was 1.31 m, which was larger than the thickness of the flake body of Example 1.
[0051] (実施例 2) [0051] (Example 2)
酸触媒として硝酸に代えて 0. 2mol/Lのクェン酸水溶液 18. 4gを用いたこと以外 は、実施例 1と同様にして自然剥離可能な最も薄いフレーク体を得た。このフレーク 体の厚みは、 0. 65 mであった。  The thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 1, except that 18.4 g of 0.2 mol / L aqueous citrate solution was used instead of nitric acid as the acid catalyst. The flake body had a thickness of 0.65 m.
[0052] (比較例 2) [0052] (Comparative Example 2)
酢酸ナトリウム溶液の調製において酢酸ナトリウムの代わりに同量の水を添加して 調製したイソプロパノールと水との混合溶液を、酢酸ナトリウム溶液に代えて用いたこ と以外は、実施例 2と同様にして自然剥離可能な最も薄いフレーク体を得た。このフ レーク体の厚みは 2· 02 mであり、実施例 2のフレーク体の厚みよりも大きくなつた。  In the preparation of the sodium acetate solution, natural solution was obtained in the same manner as in Example 2 except that a mixed solution of isopropanol and water prepared by adding the same amount of water instead of sodium acetate was used instead of the sodium acetate solution. The thinnest flake body which can be peeled was obtained. The thickness of the flake body was 2.02 m, which was larger than the thickness of the flake body of Example 2.
[0053] (実施例 3) [0053] (Example 3)
78mgの酢酸ナトリウムの代わりに 156mgの酢酸ナトリウムを用いたこと以外は、実 施例 2と同様にして自然剥離可能な最も薄いフレーク体を得た。このフレーク体の平 均厚みは 0· 59 mであった。  The thinnest flake body that can be peeled naturally was obtained in the same manner as in Example 2 except that 156 mg of sodium acetate was used instead of 78 mg of sodium acetate. The average thickness of this flake body was 0 · 59 m.
[0054] (実施例 4) [Example 4]
78mgの酢酸ナトリウムの代わりに 312mgの酢酸ナトリウムを用いたこと以外は、実 施例 2と同様にして自然剥離可能な最も薄いフレーク体を得た。このフレーク体の平 均厚みは 0· 53 mであった。 Except that 312mg sodium acetate was used instead of 78mg sodium acetate. In the same manner as in Example 2, the thinnest flake body that can be naturally peeled was obtained. The average thickness of the flakes was 0 · 53 m.
[0055] (実施例 5) [Example 5]
78mgの酢酸ナトリウムの代わりに 128mgの硫酸ナトリウムを用いたこと以外は、実 施例 2と同様にして自然剥離可能な最も薄いフレーク体を得た。このフレーク体の平 均厚みは 0· 56 mであった。  The thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 2 except that 128 mg of sodium sulfate was used instead of 78 mg of sodium acetate. The average thickness of this flake body was 0 · 56 m.
[0056] (実施例 6) [Example 6]
78mgの酢酸ナトリウムの代わりに 256mgの硝酸マグネシウム 6水和物を用いたこと 以外は、実施例 2と同様にして自然剥離可能な最も薄いフレーク体を得た。このフレ ーク体の平均厚みは 0· 69 mであった。  The thinnest flake body that can be peeled naturally was obtained in the same manner as in Example 2 except that 256 mg of magnesium nitrate hexahydrate was used instead of 78 mg of sodium acetate. The average thickness of this flake body was 0 · 69 m.
[0057] (実施例 7) [0057] (Example 7)
78mgの酢酸ナトリウムの代わりに 214mgの酢酸マグネシウム 4水和物を用いたこと 以外は、実施例 2と同様にして自然剥離可能な最も薄いフレーク体を得た。このフレ ーク体の平均厚みは 1 · 21 111であった。  The thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 2 except that 214 mg of magnesium acetate tetrahydrate was used instead of 78 mg of sodium acetate. The average thickness of this flake body was 1 · 21 111.
[0058] (実施例 8) [Example 8]
78mgの酢酸ナトリウムの代わりに 255mgの酢酸バリウムを用いたこと以外は、実施 例 2と同様にして自然剥離可能な最も薄いフレーク体を得た。このフレーク体の平均 厚みは 1 · 14 mであった。  The thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 2 except that 255 mg of barium acetate was used instead of 78 mg of sodium acetate. The average thickness of this flake body was 1 · 14 m.
[0059] (実施例 9) [Example 9]
ピレンの代わりに Disperse Redlを 38mg添加したこと以外は実施例 2と同様にして 自然剥離可能な最も薄いフレーク体を得た。このフレーク体の平均厚みは 0. 56 m であった。  The thinnest flake body that can be peeled naturally was obtained in the same manner as in Example 2 except that 38 mg of Disperse Redl was added instead of pyrene. The average thickness of this flake body was 0.56 m.
[0060] (比較例 3) [0060] (Comparative Example 3)
酢酸ナトリウム溶液の調製において酢酸ナトリウムの代わりに同量の水を添加して 調製したイソプロパノールと水との混合溶液を、酢酸ナトリウム溶液に代えて用いたこ と以外は、実施例 9と同様にして自然剥離可能な最も薄いフレーク体を得た。このフ レーク体の厚みは、 1. 22 mであり、実施例 9のフレーク体の厚みよりも大きくなつた [0061] (実施例 10) In the preparation of the sodium acetate solution, a natural solution was added in the same manner as in Example 9 except that a mixed solution of isopropanol and water prepared by adding the same amount of water instead of sodium acetate was used instead of the sodium acetate solution. The thinnest flake body which can be peeled was obtained. The thickness of this flake body was 1.22 m, which was larger than the thickness of the flake body of Example 9. [Example 10]
ピレンの代わりにァゾベンゼンを 38mg添加したこと以外は、実施例 2と同様にして 自然剥離可能な最も薄いフレーク体を得た。このフレーク体の平均厚みは 0. 36 m であった。  The thinnest flake body that can be naturally peeled was obtained in the same manner as in Example 2 except that 38 mg of azobenzene was added instead of pyrene. The average thickness of this flake body was 0.36 m.
[0062] (比較例 4) [0062] (Comparative Example 4)
酢酸ナトリウム溶液の調製において酢酸ナトリウムの代わりに同量の水を添加して 調製したイソプロパノールと水との混合溶液を、酢酸ナトリウム溶液に代えて用いたこ と以外は、実施例 10と同様にして自然剥離可能な最も薄いフレーク体を得た。このフ レーク体の厚みは、 0. 6 mであり、実施例 10のフレーク体の厚みよりも大きくなつた  A natural solution was prepared in the same manner as in Example 10 except that a mixed solution of isopropanol and water prepared by adding the same amount of water instead of sodium acetate in the preparation of the sodium acetate solution was used instead of the sodium acetate solution. The thinnest flake body which can be peeled was obtained. The thickness of this flake body was 0.6 m, which was larger than the thickness of the flake body of Example 10.
[0063] 各実施例、比較例の結果を、塩添加量、水添加量などとともに表 1にまとめて示す。 [0063] The results of each Example and Comparative Example are shown together in Table 1 together with the added amount of salt, the added amount of water and the like.
[0064] [表 1] [0064] [Table 1]
Figure imgf000014_0001
Figure imgf000014_0001
* NaAct :酢酸ナトリウム、 NaS l f : 硫酸ナトリウム、 MgNtr:硝酸マク'ネシゥム 6水和物、* NaAct: Sodium acetate, NaS lf : Sodium sulfate, MgNtr: Mac nitrate Nesium hexahydrate,
MgAct : 酢酸マグネシウム 4水和物、 BaAct : 酢酸ハ'リウム、 DR: D i sperse Red 1 [0065] 実施例および比較例の結果より、ゾル溶液に塩を添加した場合は、塩を添加しな!/、 場合よりも薄いフレーク体を得られることがわかる。なお、ここに提示した実施例およ び比較例では、水の添加量が 0. 7〜0. 8当量の範囲であった力 S、別途実施した同 様の実験により、 0. 5〜2当量の範囲においても、上記実施例と同様、塩の添加によ り最小膜厚が薄くなる傾向が確認されている。 MgAct: Magnesium acetate tetrahydrate, BaAct: Ha'lium acetate, DR: D i sperse Red 1 [0065] From the results of Examples and Comparative Examples, it can be seen that when a salt is added to the sol solution, no salt is added! /, A thinner flake body can be obtained than in the case. In the examples and comparative examples presented here, the force S in which the amount of water added was in the range of 0.7 to 0.8 equivalents, and 0.5 to 2 In the range of equivalents, the tendency that the minimum film thickness tends to be thinned by the addition of salt has been confirmed, as in the above examples.
[0066] 一般に、塗布膜が薄いと、乾燥時の膜の体積収縮量が小さくなるため、フレーク体 は基体から剥離しがたくなる。また、有機化合物を均一に分散させるために、基体上 に塗布するゾル溶液の水分量を制限すると、やはり、乾燥時の膜の体積収縮量が小 さくなつてフレーク体の剥離性が低下する。本発明の製造方法は、基体からの塗布 膜の剥離性の低下を補うものとして、高レ、利用価値を有する。  [0066] Generally, if the coating film is thin, the volume shrinkage of the film during drying is small, and therefore the flake body is difficult to peel from the substrate. In addition, if the amount of water in the sol solution applied onto the substrate is limited in order to uniformly disperse the organic compound, the volume shrinkage of the film during drying is also reduced, and the flaking property of the flake body decreases. The production method of the present invention has a high value and utility value as a supplement to the decrease in the peelability of the coating film from the substrate.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも、加水分解可能な金属化合物、酸触媒、水、および有機溶媒を混合して [1] Mix at least a hydrolyzable metal compound, an acid catalyst, water, and an organic solvent.
、金属酸化物前駆体を含むゾル溶液を調製し、 Preparing a sol solution containing a metal oxide precursor;
前記ゾル溶液を基体上に塗布して、前記基体上に塗布膜を形成し、  Applying the sol solution on a substrate to form a coating film on the substrate;
前記塗布膜を乾燥させ、前記塗布膜を前記基体から剥離させてフレーク体を得る、 フレーク体の製造方法であって、  A method for producing a flake body, wherein the coating film is dried, and the coating film is peeled from the substrate to obtain a flake body,
前記ゾル溶液が、前記基体上に塗布されるときに、有機化合物と、アルカリ金属塩 およびアルカリ土類金属塩からなる群から選ばれる少なくとも 1種の塩と、をさらに含 む、フレーク体の製造方法。  When the sol solution is applied onto the substrate, the flake body further comprises an organic compound and at least one salt selected from the group consisting of an alkali metal salt and an alkaline earth metal salt. Method.
[2] 前記少なくとも 1種の塩がアルカリ金属塩を含み、前記アルカリ金属塩がナトリウム またはカリウムを含む、請求項 1に記載のフレーク体の製造方法。  2. The method for producing a flake body according to claim 1, wherein the at least one salt includes an alkali metal salt, and the alkali metal salt includes sodium or potassium.
[3] 前記少なくとも 1種の塩力 酢酸塩、硫酸塩または硝酸塩を含む、請求項 1に記載 のフレーク体の製造方法。 [3] The method for producing a flake body according to claim 1, comprising at least one salt strength acetate, sulfate or nitrate.
[4] 前記少なくとも 1種の塩の量が前記酸触媒に対して 0. 1当量以上 1. 5当量以下で ある、請求項 1に記載のフレーク体の製造方法。 [4] The method for producing a flake body according to claim 1, wherein the amount of the at least one salt is 0.1 equivalent or more and 1.5 equivalent or less with respect to the acid catalyst.
[5] 前記水の添加量が、前記金属化合物の水との反応点の数に対し、 0. 5当量以上 2 当量以下である、請求項 1に記載のフレーク体の製造方法。 [5] The method for producing a flake body according to claim 1, wherein the amount of water added is 0.5 equivalents or more and 2 equivalents or less with respect to the number of reaction points of the metal compound with water.
[6] 前記基体上に塗布されるときのゾル溶液に含まれる水分量が 10質量%以下である[6] The amount of water contained in the sol solution when coated on the substrate is 10% by mass or less
、請求項 1に記載のフレーク体の製造方法。 The method for producing a flake body according to claim 1.
[7] 前記有機化合物が疎水性有機化合物である、請求項 1に記載のフレーク体の製造 方法。 [7] The method for producing a flake body according to claim 1, wherein the organic compound is a hydrophobic organic compound.
[8] 前記有機化合物が炭素原子の環構造を含む、請求項 1に記載のフレーク体の製 造方法。  [8] The method for producing a flake body according to claim 1, wherein the organic compound contains a ring structure of carbon atoms.
[9] 前記炭素原子の環構造がベンゼン環を含む、請求項 8に記載のフレーク体の製造 方法。  [9] The method for producing a flake body according to claim 8, wherein the ring structure of the carbon atom includes a benzene ring.
[10] 前記ゾル溶液を前記基板上に塗布する前に、  [10] Before applying the sol solution onto the substrate,
前記ゾル溶液に、前記少なくとも 1種の塩を含む溶液を加える、請求項 1に記載の フレーク体の製造方法。 The method for producing a flake body according to claim 1, wherein a solution containing the at least one salt is added to the sol solution.
[11] 前記少なくとも 1種の塩を含む溶液が、溶媒として、水および有機溶媒を含む、請 求項 10に記載のフレーク体の製造方法。 [11] The method for producing a flake body according to claim 10, wherein the solution containing at least one salt contains water and an organic solvent as a solvent.
[12] 前記ゾル溶液を前記基板上に塗布する前に、 [12] Before applying the sol solution onto the substrate,
前記ゾル溶液に前記有機化合物を加える、請求項 1に記載のフレーク体の製造方 法。  The method for producing a flake body according to claim 1, wherein the organic compound is added to the sol solution.
PCT/JP2007/072960 2006-11-28 2007-11-28 Process for production of flakes WO2008066077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006320125 2006-11-28
JP2006-320125 2006-11-28

Publications (1)

Publication Number Publication Date
WO2008066077A1 true WO2008066077A1 (en) 2008-06-05

Family

ID=39467867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072960 WO2008066077A1 (en) 2006-11-28 2007-11-28 Process for production of flakes

Country Status (1)

Country Link
WO (1) WO2008066077A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096494A1 (en) * 2008-01-30 2009-08-06 Nippon Sheet Glass Company, Limited Flaky material containing fluorescent dye, and process for production thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220876A (en) * 1985-07-19 1987-01-29 Nippon Sheet Glass Co Ltd Preparation of silicon dioxide coated film
JPH03285838A (en) * 1990-03-09 1991-12-17 Nippon Sheet Glass Co Ltd Manufacture of flaky glass
JPH0616428A (en) * 1992-05-08 1994-01-25 Tosoh Corp Production of amorphous silica coating film
JPH07330542A (en) * 1994-06-07 1995-12-19 Nippon Sheet Glass Co Ltd Flaky glass, production thereof and cosmetic compounded with the glass
JP2002179430A (en) * 2000-12-08 2002-06-26 Toyota Motor Corp Method for manufacturing thin molding by sol-gel method
JP2005170788A (en) * 2005-01-05 2005-06-30 Nippon Sheet Glass Co Ltd Method of manufacturing flaky metal oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220876A (en) * 1985-07-19 1987-01-29 Nippon Sheet Glass Co Ltd Preparation of silicon dioxide coated film
JPH03285838A (en) * 1990-03-09 1991-12-17 Nippon Sheet Glass Co Ltd Manufacture of flaky glass
JPH0616428A (en) * 1992-05-08 1994-01-25 Tosoh Corp Production of amorphous silica coating film
JPH07330542A (en) * 1994-06-07 1995-12-19 Nippon Sheet Glass Co Ltd Flaky glass, production thereof and cosmetic compounded with the glass
JP2002179430A (en) * 2000-12-08 2002-06-26 Toyota Motor Corp Method for manufacturing thin molding by sol-gel method
JP2005170788A (en) * 2005-01-05 2005-06-30 Nippon Sheet Glass Co Ltd Method of manufacturing flaky metal oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096494A1 (en) * 2008-01-30 2009-08-06 Nippon Sheet Glass Company, Limited Flaky material containing fluorescent dye, and process for production thereof

Similar Documents

Publication Publication Date Title
JP5407068B2 (en) Phosphor particles with coating film and method for producing the same
CN103589336B (en) A kind of self-vulcanizing vinylformic acid heteropolysiloxane nano ceramics protective coating and preparation method thereof
WO2010004814A1 (en) Core-shell particle and method for producing core-shell particle
JP2021105183A (en) Coated pigment
JP2009513741A (en) Silane formulations with high filler content
WO2011120735A1 (en) Formulation suitable for use as an anti-graffiti coating having improved coverage properties
JP6892639B2 (en) Silane-treated forsterite fine particles and a method for producing the same, and an organic solvent dispersion of the silane-treated forsterite fine particles and a method for producing the same.
WO2018001100A1 (en) Water-soluble organosilicon resin and application thereof
Gao et al. Nanoscale silicon dioxide prepared by sol-gel process
JP7171829B2 (en) Aluminum nitride filler
JP2004204175A (en) Coating containing colored pigment particle and substrate with visible light-shading film
JP2006282770A (en) Pigment dispersion for coating and coating composition obtained by using the same
WO2008066077A1 (en) Process for production of flakes
US20240059902A1 (en) Alumina composite sol composition, method for producing the same, and method for producing an alumina composite thin film
JP5589896B2 (en) Method for producing silicate phosphor particles with coating film
JP7414063B2 (en) Method for surface modification of inorganic particles, method for producing dispersion liquid, and dispersion liquid
WO2022133908A1 (en) Ceramic composite coating material, antivirus ceramic composite coating material and preparation method therefor, and coating layer
KR960008249B1 (en) Coating compositions and method for producing them
RU2660664C1 (en) Method for producing structured coatings
JPH05117590A (en) Inorganic coating material
JP2007106936A (en) Composition for use in antistatic film formation
Muhyodin et al. Preparation and characteristics of self-floating silica
CN116987405B (en) Preparation method of special titanium white for printing ink and treating agent thereof
JP7380379B2 (en) Dispersion manufacturing method
JP6238683B2 (en) Conductive particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP