WO2008066066A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2008066066A1
WO2008066066A1 PCT/JP2007/072929 JP2007072929W WO2008066066A1 WO 2008066066 A1 WO2008066066 A1 WO 2008066066A1 JP 2007072929 W JP2007072929 W JP 2007072929W WO 2008066066 A1 WO2008066066 A1 WO 2008066066A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
display panel
display device
scattering layer
Prior art date
Application number
PCT/JP2007/072929
Other languages
French (fr)
Japanese (ja)
Inventor
Yasunari Nagata
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to JP2008547005A priority Critical patent/JPWO2008066066A1/en
Publication of WO2008066066A1 publication Critical patent/WO2008066066A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer

Definitions

  • the present invention relates to a display device including a prism sheet.
  • a liquid crystal display device As a display device for displaying an image, a liquid crystal display device, a cathode ray tube display device, a plasma display device, and the like can be cited. Among them, a liquid crystal display device is widely adopted from the viewpoint of size and power consumption.
  • a liquid crystal display device usually includes a liquid crystal display panel and a backlight for allowing light to enter the liquid crystal display panel.
  • the backlight is configured to emit scattered light that is uniformly incident on the liquid crystal display panel. However, since the light that is emitted from the backlight is scattered, the light emitted from the backlight cannot be sufficiently incident on the liquid crystal display panel. High brightness cannot be secured.
  • a liquid crystal display device has been developed in which a prism for condensing the light emitted from the backlight is arranged between the liquid crystal display panel and the backlight to solve such problems.
  • a prism for condensing the light emitted from the backlight is arranged between the liquid crystal display panel and the backlight to solve such problems.
  • a plurality of pixels arranged at equal pitches on the liquid crystal display panel and prisms having a constant prism pitch interfere optically.
  • optical unevenness appears strongly in the displayed image. Therefore, a technique for suppressing the degree of moire fringes caused by such optical interference has been developed, and is disclosed in, for example, Patent Document 1.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-180834
  • the light passes through a plurality of light scattering layers formed by roughening the surface of the polarizing member.
  • the light is scattered every time it passes through the scattering layer, and the light collecting effect of the prism cannot be sufficiently improved to improve the brightness.
  • the present invention has been conceived under such circumstances, and the degree of moire fringes can be sufficiently suppressed, and the light condensing effect of the prism can be sufficiently connected to improve the luminance.
  • An object is to provide a display device that can be used.
  • a display device includes a display panel, a prism, and a single light scattering layer.
  • the display panel has a plurality of pixels arranged at substantially equal pitches in plan view.
  • the prism is disposed on one main surface side of the display panel.
  • the prism includes a plurality of first inclined surfaces that are inclined with respect to the one main surface of the display panel and a plurality of second inclined surfaces that are inclined at an angle different from the first inclined surface.
  • the light scattering layer described above is disposed between the display panel and the prism or on the other main surface side of the display panel, and has a function of scattering light.
  • the one main surface and the other main surface of the light scattering layer are substantially flat surfaces, respectively, and the one main surface and the other surface of the light scattering layer The main surface is substantially parallel.
  • L is the sum of the planar view lengths of the first inclined surface regions in the arrangement direction of the prisms corresponding to each pixel of the display panel, and the second inclined surface region in the arrangement direction of the prisms corresponding to each pixel of the display panel.
  • R is the sum of the planar lengths of the pixels
  • d (LR) ⁇ A
  • the difference between the maximum value and the minimum value of d calculated every time D is 0 or more and 0.3 or less and the haze value H is 5 or more, and the difference D is greater than 0.3 and 0.7 or less, the haze value H is The difference D is greater than 0.7 and 1 or less, and the haze value H is 20 or more.
  • the haze value H means the ratio of scattered transmitted light to incident light.
  • the substantially equal pitch means that each pitch is within a range of 98% to 102% with respect to the average value of all of them.
  • substantially flat means that the surface roughness force of the target surface is 0.1 ⁇ m or less in terms of the arithmetic average height Ra of standard B0601: 2001.
  • Substantially parallel means that the inclination of the symmetry plane (for example, the other main surface of the scattering layer) with respect to the reference surface (for example, one main surface of the scattering layer) is 2 ° or less.
  • a display device includes a display panel and a prism.
  • the display panel has a plurality of pixels arranged at substantially equal pitches in a plan view.
  • the display panel includes one light scattering layer having a function of scattering light.
  • the one main surface and the other main surface of the light scattering layer are substantially flat surfaces, respectively, and the one main surface and the other main surface of the light scattering layer are Are approximately parallel.
  • the prism is disposed on one main surface side of the display panel. Further, the prism includes a plurality of first inclined surfaces that are inclined with respect to the one main surface of the display panel, and a plurality of second inclined surfaces that are inclined at an angle different from the first inclined surface.
  • the aperture width of the pixel in the arrangement direction of the plurality of pixels of the display panel is A
  • the haze value of the light scattering layer is H
  • the haze value H is 5 or more, and when the difference D is greater than 0.3 and 0.7 or less, the haze value H is 10 or more. If D is greater than 0.7 and less than or equal to 1 and haze value H is greater than 20!
  • the display device includes a display panel, a prism, and one light scattering layer.
  • the display panel has a plurality of pixels arranged at substantially equal pitches in plan view.
  • the prism is disposed on one main surface side of the display panel. Further, the prism has a plurality of first inclined surfaces inclined with respect to one main surface of the display panel and a plurality of second inclined surfaces inclined at different angles from the first inclined surface. .
  • the one light scattering layer is disposed between the display panel and the prism or on the other main surface side of the display panel and has a function of scattering light.
  • one main surface of the light scattering layer in the region corresponding to the pixel, one main surface of the light scattering layer is a substantially flat surface, and the other main surface of the light scattering layer is an uneven surface.
  • the aperture width of the pixel in the arrangement direction of the plurality of pixels of the display panel is A, and the light scattering layer
  • the haze value is H
  • the total sum of the lengths in plan view of the first inclined surface area in the arrangement direction of the prisms corresponding to the respective pixels of the display panel is L
  • a D is 0 or more 0
  • Haze value H is 2 or more at 4 or less
  • difference D is greater than 0.4
  • haze value H is 4 or more at difference 0.7 or less
  • haze value H is at difference D is greater than 0.7 or less than 0.9
  • the difference D is greater than 0.9 and 1 or less
  • the haze value H is 12 or more.
  • the degree of moire fringes caused by optical interference between the display panel and the prism can be sufficiently reduced, so that, for example, it does not pass through a plurality of light scattering layers.
  • moire fringes can be sufficiently suppressed by one light scattering layer.
  • moire fringes caused by light interference are sufficiently weakened, so that it is not necessary to excessively increase the haze value in one light scattering layer in order to sufficiently suppress moire fringes. . Therefore, this display device is suitable for sufficiently suppressing the degree of moire fringes and sufficiently connecting the light collection effect of the prism to the luminance improvement.
  • the liquid crystal display device XI includes a liquid crystal display panel 10, a prism 20, a light scattering layer 30, polarizing members 40 and 41, a knock light 50, and a casing. 60.
  • a configuration for example, a bonding layer required for bonding the respective components is not described, but is provided as necessary.
  • the liquid crystal display panel 10 includes a liquid crystal layer 11, a first base 12, a second base 13, and a sealing member 14.
  • the liquid crystal layer 11 is interposed between the first base 12 and the second base 13, and the liquid crystal layer 11 is sealed with the sealing member 14 to form the display region G. Yes.
  • the liquid crystal layer 11 is a layer that includes liquid crystals that exhibit electrical, optical, mechanical, or magnetic anisotropy and have both solid regularity and liquid fluidity.
  • Examples of the liquid crystal include nematic liquid crystal, cholesteric liquid crystal, and smectic liquid crystal.
  • the liquid crystal layer 11 may be provided with a spacer (not shown) composed of a number of particulate members, for example, to keep the thickness of the liquid crystal layer 11 constant! /.
  • the first base 12 includes a transparent substrate 121, a light shielding layer 122, a color filter 123, a planarization layer 124, and a transparent electrode (not shown), and forms a display region G. It constitutes multiple pixels.
  • the first base 12 faces in a macro-random direction (regularity is
  • the liquid crystal layer 11 may be provided with an alignment film for aligning the liquid crystal molecules of the liquid crystal layer 11 in a predetermined direction.
  • the transparent substrate 121 is a member that supports a light shielding layer 122 and a color filter 123, which will be described later, and contributes to sealing the liquid crystal layer 11.
  • the transparent substrate 121 is configured to be able to appropriately transmit light in a direction intersecting the main surface (for example, in the direction of arrow AB).
  • Examples of the constituent material of the transparent substrate 121 include glass and translucent plastic.
  • the light blocking layer 122 is a member for blocking light (the light transmission amount is set to a predetermined value or less), and is formed on the inner surface 121 a of the transparent substrate 121.
  • the light shielding layer 122 has a plurality of through holes 122a penetrating in the film thickness direction (arrow AB direction). In the present embodiment, the through holes 122a are arranged at a substantially equal pitch at intervals of G in the first arrangement direction (arrow CD direction).
  • It has a mouth width and is arranged at a substantially equal pitch in the second arrangement direction (arrow EF direction).
  • the constituent material of the light shielding layer 122 contains a light shielding member
  • Resin materials metal materials such as chromium, metal oxide materials such as chromium oxide, and alloy materials such as Nikkenole tungsten alloy.
  • examples of the light shielding member include dyes having a high light shielding property (for example, black), pigments having a high light shielding property (for example, black), and carbon. Note that the size of the pixel in this embodiment is the penetration of the light shielding layer 122? It is prescribed from Ll22ai! /
  • the color filter 123 is a member that selectively absorbs light incident on the color filter 123 other than a predetermined wavelength and selectively transmits light having a predetermined wavelength.
  • the color finer 123 is formed on the lower surface 121 a of the transparent substrate 121 exposed from the through hole 122 a of the light shielding layer 122.
  • Examples of the constituent material of the color filter 123 include a resin material added with a dye or pigment.
  • the color filter 123 includes a red color filter (R) that selectively transmits the wavelength of red visible light, a green color filter (G) that selectively transmits the wavelength of green visible light, or the wavelength of blue visible light. For example, a blue color filter (B) that selectively transmits light.
  • the planarization layer 124 is a member that planarizes unevenness caused by disposing the light shielding layer 122, the color filter 123, and the like. As a constituent material of the planarizing layer 124, it has translucency. And a translucent material.
  • the translucent material include an ultraviolet curable resin such as a photosensitive resist material or a thermosetting resin.
  • the transparent electrode (not shown) of the first base 12 has a function of applying a predetermined voltage to the liquid crystal layer 11 positioned between the transparent electrode (not shown) of the second base 13 described later.
  • the constituent material of the transparent electrode in the first substrate 12 include a light-transmitting conductive member such as ITO dndiurn Tin Oxide) or tin oxide.
  • the translucency means a property of transmitting light.
  • the second base 13 includes a transparent substrate 131 and a transparent electrode (not shown), and constitutes a plurality of pixels that form the display region G.
  • the second substrate 13 includes an alignment film or the like for orienting the liquid crystal molecules of the liquid crystal layer 11 in a macroscopic random direction (small regularity) in a predetermined direction. ! /
  • the transparent substrate 131 is a member that supports a transparent electrode (not shown) and contributes to seal the liquid crystal layer 11.
  • the transparent substrate 131 is configured to be able to appropriately transmit light in the film thickness direction (for example, the arrow AB direction) intersecting the main surface.
  • the constituent material of the transparent substrate 131 may be the same as the constituent material of the transparent substrate 121.
  • the transparent electrode (not shown) of the second base 13 is a member that has a function of applying a predetermined voltage to the liquid crystal layer 11 positioned between the transparent electrode (not shown) of the first base 12. Yes, it is configured to transmit light incident from one side (for example, arrow B direction side) to the other side (for example, arrow A direction side).
  • Examples of the constituent material of the transparent electrode in the second base 13 include the same constituent materials as those of the transparent electrode in the first base 12.
  • the sealing member 14 is a member having a function of sealing the liquid crystal layer 11 between the first base 12 and the second base 13.
  • Examples of the constituent material of the sealing member 14 include an epoxy resin and an acrylic resin.
  • the white arrow shown in FIG. 4 represents the light path.
  • the constituent members of the liquid crystal display panel 10 excluding the first substrate 12, the light scattering layer 30, and the polarizing member 40 are omitted from the viewpoint of easy viewing.
  • the prism 20 moves from the arrow B direction side to the arrow A direction side in the film thickness direction of the prism 20.
  • the first inclined surface 20a that is inclined with respect to the one main surface of the liquid crystal display panel 10 is inclined on the one main surface side at an angle different from that of the first inclined surface 20a.
  • the first inclined surface 20a and the second inclined surface 20b are provided alternately at predetermined intervals in the first arrangement direction (arrow CD direction), and P is the average value of the intervals (prism pitch).
  • the length in the first arrangement direction (when viewed from the arrow A direction side toward the arrow B direction side) (plan view length) is L in the region of the first inclined surface 20a, and the second inclined surface
  • the region of 20b is R
  • planar view length L of the first inclined surface 20a of the prism 20 is the second inclined surface
  • the second inclined surface 20b is substantially perpendicular to the first inclined surface 20a substantially equal to the planar view length R of the surface 20b.
  • substantially perpendicular means that the inclination of the second inclined surface 20b with respect to the first inclined surface 20a is not less than 88 ° and not more than 90 °.
  • the first inclined surface 20a is formed to refract light incident perpendicularly to the other main surface 20c of the prism 20 in the right direction (arrow C direction), and the second inclined surface 20b is The light incident perpendicularly to the other main surface 20c of the prism 20 is refracted in the left direction (arrow D direction). For this reason, the light passing through the through-hole 122a varies in light bias with respect to the first arrangement direction depending on the amount of light passing through the first inclined surface 20a and the second inclined surface 20b of the prism 20. For example, in the pixel shown in FIG.
  • the light passing through the pixel includes a lot of light refracted in the right direction. That is, the light passing through the through hole 122a is biased to the right as a whole.
  • the sum of the plan view lengths of the first inclined surface 20a facing each through-hole 122a is L
  • the sum of the plan view lengths of the second tilted surface 20b is When R is R, the deviation d of the light passing through the pixel is derived from Equation 1 below.
  • the constituent material of the prism 20 includes a resin material having translucency.
  • the resin material having translucency include polycarbonate resin, polyester resin, and acrylic resin.
  • the light scattering layer 30 includes a light-transmitting material 31 and a light scattering material 32, and has a function of scattering light passing through the light scattering layer 30.
  • the light scattering layer 30 has a substantially flat one main surface 30a and the other main surface 30b, and the one main surface 30a and the other main surface 30b are formed substantially in parallel.
  • substantially flat means that the surface roughness force of the target surface is an arithmetic average height Ra of SJIS standard B0601: 2001 of 0.1 m or less.
  • Substantially parallel means that the inclination of the symmetry plane (for example, the other main surface of the light scattering layer 30) with respect to the reference surface (for example, the one main surface of the light scattering layer 30) is 2 ° or less.
  • the light scattering layer 30 is located between the liquid crystal display panel 10 and the prism 20.
  • the light transmissive material 31 is a member having a function of transmitting light in the light scattering layer 30.
  • the translucent material 31 include a translucent resin material and the like, and those having adhesive properties are particularly preferable so that a separate adhesive is not required.
  • the resin material include an ultraviolet spring curable resin and a thermosetting resin.
  • the light scattering material 32 is a member that has a function of scattering light in the light scattering layer 30.
  • the light scattering material 32 has at least a part of its surface covered with a light transmissive material 31 and is dispersed in a predetermined state (for example, a substantially uniform state) throughout the light scattering layer 30.
  • the constituent material of the light scattering material 32 include a light transmitting scattering material or a light reflecting material having a refractive index different from that of the light transmitting material 31, and in this embodiment, the light transmitting scattering material is used. It has been adopted.
  • the shape of the light scattering material 32 is not particularly limited, but is preferably particulate from the viewpoint of enhancing light scattering properties.
  • Examples of the translucent scattering material include translucent metal oxides, translucent silicon oxides, translucent resins, and the like.
  • examples of the translucent metal oxide include aluminum oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide.
  • Examples of the translucent silicon oxide include silicon dioxide.
  • Examples of the translucent resin include polyolefin resin and formaldehyde resin.
  • Examples of the light reflecting material include metals or alloys thereof.
  • examples of the metal include iron, aluminum, and silver.
  • Examples of the alloy include aluminum chromium (AlCr), aluminum-neodymium (AlNd), silver-palladium (AgPd), and silver-palladium monocopper (AgP dCu).
  • the polarizing members 40 and 41 are for selectively allowing light oscillating in a predetermined direction to pass therethrough, and each have a substantially flat one main surface and the other main surface.
  • the constituent material of the polarizing members 40 and 41 include iodine-based materials.
  • the polarizing member 41 is configured such that the vibration direction (second vibration direction) of light passing through the polarizing member 41 is orthogonal to the vibration direction (first vibration direction) of light passing through the polarizing member 40. It is configured. Such a configuration is suitable for exhibiting a shirter function of light transmitted through the polarizing members 40 and 41.
  • the nocrite 50 includes a light source 51, a light guide plate 52, and a light reflecting member 53. From one side (arrow B direction side) of the liquid crystal display panel 10 to the other (arrow A direction side) It is a member responsible for the function of irradiating light. As shown in FIG. 1, the backlight 50 in the present embodiment employs an edge light system in which a light source 51 is arranged on the side surface of the light guide plate 52, but the light source 51 is provided on the back side of the liquid crystal display panel 10. Other methods, such as the directly placed method, may be adopted.
  • the light source 51 is configured to emit light toward the light guide plate 52.
  • Examples of the light source 51 include a cold cathode fluorescent lamp (CFU, LED (Light Emitting Diode), halogen lamp, xenon lamp, or EL (Electro-Luminescence).
  • CFU cold cathode fluorescent lamp
  • LED Light Emitting Diode
  • halogen lamp halogen lamp
  • xenon lamp xenon lamp
  • EL Electro-Luminescence
  • the light guide plate 52 transmits light from the light source 51 to the bottom surface of the liquid crystal display panel 10 (surface on the arrow B direction side). It is a member responsible for the function of guiding light substantially uniformly throughout.
  • the light guide plate 52 may be provided with a light diffusing member on the upper surface (surface on the arrow A direction side) of the more uniform planar light emission.
  • Examples of the constituent material of the light guide plate 52 include a transparent resin such as an acrylic resin or a polycarbonate resin.
  • the light reflecting member 53 is a member having a function of reflecting light directed from the light guide plate 52 toward the arrow B direction toward the arrow A direction.
  • the lower surface of the light guide plate 52 (arrow B direction) On the opposite side).
  • the constituent material of the light reflecting member 53 include a metal material or a foamed resin material.
  • the metal material include aluminum and silver.
  • the foamed resin material include those obtained by foaming polyethylene terephthalate resin.
  • the housing 60 is a member that houses the liquid crystal display panel 10, the prism 20, the light scattering layer 30, the polarizing member 40, and the knock light 50.
  • the upper housing 61 and the lower housing 62 are housed in the housing 60. Is included.
  • Examples of the constituent material of the housing 60 include a resin material and a metal material. Examples of the resin material include polycarbonate resin. Examples of metal materials include stainless steel and aluminum.
  • Fig. 7 the point where the surface defining the through-hole 122a of the light shielding layer 122 in the first arrangement direction and the end of the first inclined surface 20a of the prism 20 meet is the origin of the horizontal axis.
  • d is the maximum value.
  • the moire fringes appear stronger as the amplitude of d increases, and the moire fringes appear weaker as the amplitude of d decreases.
  • the shorter the period d the shorter the period in which moire fringes appear, and the longer the period d, the longer the periods in which moire fringes appear.
  • Table 1 shows the results of visual evaluation of the intensity of moire fringes that appear due to optical interference between the prism 20 and the liquid crystal display panel 10 shown in Figs. 7 (a), (b), and (c).
  • Table 2 shows a difference between the haze value H of the light scattering layer 30 and the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel, using the liquid crystal display device XI according to this embodiment.
  • the results of visual evaluation of moiré fringes appearing in the relationship are shown.
  • “ ⁇ ” indicates that the degree of moire fringes can be sufficiently suppressed and no occurrence of image blurring that impedes practical use is observed, and the degree of moire fringes is sufficiently suppressed.
  • Evaluate as “ ⁇ ” if there is a possibility of image blurring that may be practically hindered, but evaluate as “X” if the degree of moire fringes cannot be sufficiently suppressed.
  • Haze value H is 5 or more at 3 or less, difference D is greater than 0.3 and 0.7 or less and haze value H is 10 or more, and difference D is greater than 0.7 and 1 or less and haze value H is 20 or more. It has been clarified that the degree of moire fringes can be sufficiently suppressed by selecting as follows.
  • the degree of moire fringes caused by optical interference between the liquid crystal display panel 10 and the prism 20 can be sufficiently weakened.
  • a plurality of light scattering layers Even if the light is not allowed to pass through, the light scattering layer 30 can sufficiently suppress the moire fringes.
  • moire fringes caused by light interference are sufficiently weakened, so that the haze value H in one light scattering layer 30 does not need to be excessively increased. Therefore, in the liquid crystal display device XI, the degree of moire fringes can be sufficiently suppressed, and the light condensing effect by the prism 20 can be sufficiently connected to the luminance improvement.
  • the haze value of the light scattering layer 30 can be sufficiently suppressed, so that the image blur of the liquid crystal display device XI can also be sufficiently suppressed.
  • a light scattering layer 30 including a light transmissive material 31 and a light scattering material 32 in which at least a part of the surface is covered with the light transmissive material 31 is employed. Therefore, in the liquid crystal display device 1, the haze value H of the light scattering layer 30 can be changed by changing the content ratio of the light scattering material 32 included in the translucent material 31. Therefore, the liquid crystal display device XI is suitable for adjusting the haze value of the light scattering layer 30 while keeping the one main surface and the other main surface of the light scattering layer 30 substantially flat.
  • the light scattering material 32 is made of a light transmitting material having a refractive index different from that of the light transmitting material 31 that covers the light scattering material 32. Therefore, in the liquid crystal display device 1, since reflection on the surface can be suppressed as compared with, for example, a metal light scattering material, incident light is prevented from being reflected backward (incident side). Power S can be. That is, in the liquid crystal display device XI, the luminance can be further increased by reducing the loss of light caused by backscattering.
  • the planar view length L 1S of each first inclined surface 20a of the prism 20 is each second
  • the liquid crystal display device XI is suitable for further suppressing a decrease in light luminance caused by passing through the light scattering layer 30.
  • the second inclined surface 20b is substantially perpendicular to the first inclined surface 20a of the prism 20. According to such a configuration, the mechanical strength of the first principal surface of the prism 20 is reduced due to a sharp angle of the second inclined surface 20b with respect to the first inclined surface 20a, and the first inclined surface 20a (2) It is possible to balance the decrease in the light condensing property of the prism 20 caused by the gentle angle of the inclined surface 20b. Therefore, the liquid crystal display device XI is suitable for achieving both the light condensing property of the prism and the mechanical strength with respect to one main surface of the prism 20.
  • the liquid crystal display device X2 differs from the liquid crystal display device XI in that it further includes a reflective polarizing member 70 disposed between the prism 20 and the light scattering layer 30.
  • the translucent material 31 in the present embodiment is made of a translucent material having adhesiveness, and the polarizing member 40 and the reflective polarizing member 70 are bonded to each other.
  • Other configurations of the liquid crystal display device X2 are the same as those described above for the liquid crystal display device XI.
  • the casing 60 is omitted from the viewpoint of easy viewing.
  • the reflective polarizing member 70 is a member that has a function of selectively passing light in the first vibration direction and reflecting light in the second vibration direction that is different from the vibration direction of the first vibration direction.
  • Examples of the reflective polarizing member 70 include a laminate obtained by laminating a resin material having translucency mixed with cholesteric liquid crystal, or a laminate obtained by laminating a plurality of translucent materials having different refractive indexes. Is mentioned.
  • examples of the light-transmitting resin material include polycarbonate resin, polyester resin, and acrylic resin.
  • the translucent material the same translucent scattering material described as the constituent material of the light scattering material 32 can be cited.
  • Table 3 shows the relationship between the haze value H of the light scattering layer 30 and the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel using the liquid crystal display device X2 according to this embodiment. The results of visual evaluation of visible stripes are shown. The evaluation in Table 3 is based on the same evaluation criteria as in Table 2.
  • the liquid crystal display device X2 includes a reflective polarizing member 70 and a light reflecting member 53. Therefore, in the liquid crystal display device X2, the light that is oscillated in the second vibration direction among the light incident on the reflective polarizing member 70 from the prism 20 is reflected to the light reflecting member 53 side, and the reflected light is reflected on the light reflecting member 53. Thus, the light can be incident on the reflective polarizing member 70 again by being reflected toward the reflective polarizing member 70 side. That is, in the liquid crystal display device X2, the light that vibrates in the second vibration direction becomes light that vibrates in the first vibration direction and passes through the reflective polarizing member 70 until it is reflected by the reflective polarizing member 70 and the light reflecting member 53. Can be made. Therefore, in the liquid crystal display device X2, the light incident on the reflective polarizing member 70 from the backlight 50 can be more efficiently incident on the liquid crystal display panel 10, so that the luminance can be further increased.
  • the liquid crystal display device X2 a translucent resin having adhesiveness is employed as the translucent material 31. That is, in the liquid crystal display device X2, the light scattering layer 30 itself interposed between the liquid crystal display panel 10 and the reflective polarizing member 70 also functions as an adhesive layer. Therefore In the liquid crystal display device X2, an increase in the thickness of the entire device can be suppressed because the adhesive layer is not provided separately from the light scattering layer 30.
  • the reflective polarizing member 70 is interposed between the light scattering layer 30 and the liquid crystal display panel.
  • the liquid crystal display device X2 Oppositely arranged on one main surface of 10. That is, in the liquid crystal display device X2, the light scattering layer 30 is not interposed between the reflection deflecting member 70 and the light reflecting member 53. Therefore, in the liquid crystal display device X2, since the light reflected by the reflective polarizing member 70 that does not pass through the light scattering layer 30 can be incident on the light reflecting member 53, the reflection polarizing member 70 and the light reflecting member 53 It is possible to suppress a decrease in luminance due to scattering of light that is multiply reflected between the two. Therefore, the liquid crystal display device X2 is suitable for improving the luminance by efficiently using the light incident on the reflective polarizing member 70.
  • the planarization layer 124 of the liquid crystal display panel 10 is replaced with a light scattering layer 124 'instead of the light scattering layer 30 of the liquid crystal display device X2.
  • the liquid crystal display device X2 is different from the liquid crystal display device X2.
  • Other configurations of the liquid crystal display device X3 are the same as those described above with respect to the liquid crystal display device X2.
  • the casing 60 is omitted from the viewpoint of easy viewing.
  • the light scattering layer 124 ′ is configured by dispersing a light scattering material (not shown) in the planarization layer 124.
  • a light scattering material not shown
  • the one principal surface and the other principal surface are substantially flat surfaces, and the one principal surface and the other principal surface are each It is almost parallel.
  • substantially flat means that the surface roughness force of the target surface is an arithmetic average height Ra of standard B0601: 2001 of 0.1 m or less.
  • Substantially parallel means that the inclination of the symmetry plane (for example, the other main surface of the light scattering layer 30) with respect to the reference plane (for example, the one main surface of the light scattering layer 30) is 2 ° or less.
  • the constituent material of the light scattering material in the light scattering layer 124 ′ include the same materials as the light scattering material 32 in the light scattering layer 30. In this embodiment, a translucent scattering material is used.
  • Table 4 shows a relationship between the haze value H of the light scattering layer 124 'and the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel using the liquid crystal display device X3 according to this embodiment. The results of visual evaluation of the moire fringes expressed by. The evaluation in Table 4 is based on the same evaluation criteria as in Table 2. [Table 4]
  • Haze value H is 5 or more at 3 or less, difference D is greater than 0.3 and 0.7 or less and haze value H is 10 or more, and difference D is greater than 0.7 and 1 or less and haze value H is 20 or more. It was revealed that the moiré fringes can be sufficiently suppressed by selecting so as to be.
  • the degree of moire fringes caused by optical interference between the liquid crystal display panel 10 and the prism 20 can be sufficiently weakened.
  • a plurality of light scattering layers Even if the light is not allowed to pass through, it is possible to sufficiently suppress moire fringes by the single light scattering layer 124 ′.
  • moire fringes caused by light interference are sufficiently weakened, so that the direct haze H in the one light scattering layer 124 ′ does not need to be excessively increased.
  • the degree of moire fringes can be sufficiently suppressed, and the light condensing effect by the prism 20 can be sufficiently linked to the luminance improvement.
  • the haze value of the light scattering layer 124 ′ can be sufficiently suppressed, so that the image blur of the liquid crystal display device X3 can be sufficiently suppressed.
  • the haze value is preferably 60 or less from the viewpoint of suppressing image blur.
  • the liquid crystal display device X3 employs a light-scattering layer 124 'including a light-transmitting material and a light-scattering material in which at least part of the surface is coated with the light-transmitting material. Therefore, in the liquid crystal display device X3, the haze value H of the light scattering layer 30 can be changed by changing the content ratio of the light scattering material 32 included in the translucent material 31. Therefore, the liquid crystal display device X3 is suitable for adjusting the haze value of the light scattering layer 30 while keeping the one main surface and the other main surface of the light scattering layer 30 substantially flat.
  • the light scattering layer 124 ′ also functions as the planarizing layer 124 for planarizing the unevenness. Therefore, in the liquid crystal display device X3, an increase in the thickness of the liquid crystal display device X3 can be suppressed by eliminating the need to provide a planarizing layer separately from the light scattering layer 124 ′.
  • a deflection member 40 having a light scattering layer 30 ′ obtained by roughening the surface instead of the light scattering layer 30 and the deflection member 40 differs from the liquid crystal display device X2 in that “ Other configurations of the liquid crystal display device X4 are the same as those described above regarding the liquid crystal display device X2. In FIG. 10, the case 60 is omitted from the viewpoint of easy viewing of the drawing.
  • the light scattering layer 30 ′ is configured by roughening the surface of the polarizing member 40 that faces the prism 20.
  • Table 5 shows the relationship between the direct haze H of the light scattering layer 30 'and the difference D between the maximum value and the minimum value D of the light passing through the pixel using the liquid crystal display device X4 according to this embodiment.
  • the results of visual evaluation of mole fringes expressed by The evaluation in Table 5 is based on the same evaluation criteria as in Table 2.
  • the degree of moire fringes caused by optical interference between the liquid crystal display panel 10 and the prism 20 can be sufficiently reduced, so that it is not necessary to pass through a plurality of light scattering layers.
  • moire fringes can be sufficiently suppressed by the single light scattering layer 30 ′.
  • moire fringes caused by optical interference are sufficiently weakened, so that the haze value H in one light scattering layer 30 ′ is not excessively increased to sufficiently suppress moire fringes. That's it. Therefore, the liquid crystal display device X4 can sufficiently suppress the degree of moire fringes and can sufficiently link the light collection effect of the prism 20 to the luminance improvement.
  • the image blur of the liquid crystal display device X4 can also be sufficiently suppressed.
  • the haze value is preferably 35 or less from the viewpoint of suppressing image blur.
  • the liquid crystal display device X5 according to the fifth embodiment of the present invention is different from the liquid crystal display device X4 in that another prism 21 is provided between the liquid crystal display panel 10 and the prism 20.
  • Other configurations of the liquid crystal display device X5 are the same as those described above for the liquid crystal display device X4.
  • the liquid crystal display device X4 will be described.
  • the liquid crystal display devices XI, X2, and X3 may be used.
  • the casing 60 is omitted from the viewpoint of easy viewing of the drawing.
  • the prism 21 is a member having a function of condensing light passing from the arrow B direction side to the arrow A direction side in the film thickness direction.
  • the prism 21 has, on one main surface side thereof, a third inclined surface 21a inclined with respect to the one main surface of the liquid crystal display panel 10, and a fourth inclined surface 2 lb inclined at a different angle from the third inclined surface 21a.
  • the third inclined surface 2 la and the fourth inclined surface 21b are provided alternately and periodically in the second arrangement direction, and the period (prism pitch) is equal to P. Further, the third inclined surface 21a and the fourth inclined surface 21b
  • the extending direction is substantially orthogonal to the extending direction of the first inclined surface 20a and the second inclined surface 20b.
  • substantially orthogonal means that the inclination of the prism groove extending direction of another prism is 88 ° or more and 90 ° or less with respect to the prism groove extending direction of the prism.
  • the third inclined surface 21a is formed so as to refract the light incident perpendicularly to the other main surface 21c of the prism 21 in the right direction (arrow F direction), and the fourth inclined surface 2 lb is the other side of the prism 21. It is formed to refract the light incident perpendicular to the main surface 21c in the left direction (arrow E direction).
  • the constituent material of the prism 21 is the same as the constituent material of the prism 20. Table 6 shows the relationship between P and P when A is 79 m and A is 237 m.
  • P P2 P P2 shows the result of visual evaluation of moire fringes that appear in the relationship.
  • the evaluation in Table 6 is based on the same evaluation criteria as in Table 2.
  • the liquid crystal display device X5 further includes a prism 21. Therefore, the liquid crystal display device X5 can condense the light that has passed through the prism 20 and the other prism 21 while suppressing the deviation with respect to the substantially orthogonal direction. Therefore, the liquid crystal display device X5 is suitable for suppressing variation in luminance due to a difference in viewing angle with respect to the liquid crystal display panel 10.
  • the power described using the liquid crystal display devices XI, X2, X3, X4, and X5 including the liquid crystal display panel 10 as the display device can be obtained even if a display panel without a display panel is employed.
  • the first base 12 of the liquid crystal display panel 10 has the light shielding layer 122, but may not have the light shielding layer 122.
  • Table 7 shows the results of visual evaluation of the moire fringes generated by the above. The evaluation in Table 7 is based on the same evaluation criteria as in Table 2.
  • the prism 20 has the force that the first inclined surface 20a and the second inclined surface 20b are continuously formed.
  • the first inclined surface 20a and the second inclined surface 20b are provided.
  • Other configurations may be used.
  • the prism 20 may have a substantially trapezoidal cross-sectional shape in a plane defined by the first arrangement direction (arrow CD direction) and the thickness direction (arrow AB direction).
  • the planar view lengths of the first inclined surface 20a ′ and the second inclined surface 20b ′ in the first arrangement direction when the one main surface of the prism 20 ′ is viewed in plan are respectively. This is represented by L ', R'.
  • one main surface is a flat surface 20d "w w
  • the light scattering layer 30 of the liquid crystal display device XI is located between the liquid crystal display panel 10 and the prism 20, but the first substrate 1 of the liquid crystal display panel 10 is not limited to such a configuration. Place them so that they face 2! Even with such a configuration, the same effect can be obtained.
  • the force S that forms the light scattering layer 30 ′ by roughening the surface of the polarizing member 40 facing the prism 20 is not limited to this.
  • a surface of the polarizing member 40 facing the prism 20 may be covered with a light scattering layer including a material and a light scattering material whose surface is partially covered with the light transmissive material. According to such a configuration, by changing the size of the light scattering material contained in the translucent material, it is possible to change the direct haze H of the light scattering layer. It is suitable for adjusting the haze value H of the light scattering layer while suppressing the scattering.
  • the force S forming the light scattering layer 30 ′ by roughening the surface of the polarizing member 40 facing the prism 20 is not limited to this.
  • the light scattering layer may be formed by roughening the surface.
  • Table 8 shows the results of visual evaluation of moire fringes caused by the relationship between the haze value H of the polarizing member 41 and the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel.
  • the evaluation in Table 8 is based on the same evaluation criteria as in Table 2.
  • the liquid crystal display devices X3 and X4 are configured to include the reflective polarizing member 70! /, And the force is not limited to such a configuration. Can be configured! /, Brief description of drawings
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display device XI according to a first embodiment of the present invention.
  • FIG. 2A is a perspective view showing a schematic configuration of the liquid crystal display panel 10 shown in FIG. 1
  • FIGS. 2B and 2C are cross-sectional views showing the main configuration of the liquid crystal display panel 10 shown in FIG. It is.
  • FIG. 3A is a perspective view showing a schematic configuration of the prism 20 shown in FIG. 1, and FIG. 3B is an enlarged cross-sectional view of the main part along the Illb-Ilb line of FIG. 3A.
  • FIG. 4 is a schematic diagram showing how light passing through the prism 20 shown in FIG. 3 is refracted.
  • FIG. 5 To explain the deviation d of the light refracted when passing through the prism 20 due to the positional relationship between the through-hole 122a of the light shielding layer 122 shown in FIG. 2 and the prism 20 shown in FIG.
  • FIG. 6 A sectional view showing a schematic configuration of the light scattering layer 30 shown in FIG.
  • FIG. 7A shows the gap G between the through holes 122a of the light shielding layer 122 shown in FIG.
  • FIG. 7B shows an interval G between the through holes 122a of the light shielding layer 122 shown in FIG.
  • FIG. 7C shows a gap G of 99 m between the through holes 122a of the light shielding layer 122 shown in FIG.
  • FIG. 5 is a graph showing a relationship between a position (horizontal axis) and a deviation d (vertical axis) of light passing through a pixel.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a liquid crystal display device X2 according to a second embodiment of the present invention.
  • FIG. 9A is a cross-sectional view showing a schematic configuration of the entire liquid crystal display device X3 according to the third embodiment of the present invention
  • FIG. 9B is a liquid crystal display device according to the third embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of a main part showing a schematic configuration of X3.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a liquid crystal display device X4 according to a fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of a liquid crystal display device X5 according to a fifth embodiment of the present invention.
  • FIG. 12A is a perspective view showing a schematic configuration of the prism 21 shown in FIG. 11, and FIG. 12B is an enlarged cross-sectional view of a main part along the Xllb-Xllb line of FIG. 12A.
  • FIG. 13A is a perspective view showing a schematic configuration of a modified example of the prism 20 in the liquid crystal display devices XI, X2, X3, X4, and X5, and FIG. 13B is along the Xlllb-Xlllb line in FIG. 13A. It is a principal part expanded sectional view.
  • FIG. 14A is a perspective view showing a schematic configuration of a modified example of the prism 20 in the liquid crystal display devices XI, X2, X3, X4, and X5, and FIG. 14B is taken along line XlVb-XlVb in FIG. 14A It is a principal part expanded sectional view.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

[PROBLEM TO BE SOLVED] It is an object to provide a display device comprised of a prism that is possible to reduce Moire fringes. [MEANS FOR SOLVING THE PROBLEMS] A liquid crystal display device (X1) includes a pixel with the aperture width Ap defined in an arrow direction CD, a light scattering layer (30) with a Hayes value H, a prism (20) corresponding to each pixel of a liquid crystal display panel (10) in which a total sum L of plane viewing lengths of a first inclined surface region of the prism (20) is defined in the arrow CD direction and a total sum R of plane viewing lengths of a second inclined surface region of the prism (20) is defined in the arrow CD direction, wherein d=(L-R)/Ap is calculated for every pixel, the Hayes H is not less than 5 in the case where a difference D between the maximum and the minimum of d is not less than 0 but not more than 0.3, the Hayes H is not less than 10 in the case where the difference D is more than 0.3 but not more than 0.7, and the Hayes H is not less than 20 in the case where the difference D is more than 0.7 but not more than 1.

Description

明 細 書  Specification
表示装置  Display device
技術分野  Technical field
[0001] 本発明は、プリズムシートを備える表示装置に関する。  [0001] The present invention relates to a display device including a prism sheet.
背景技術  Background art
[0002] 画像を表示するための表示装置としては、液晶表示装置、ブラウン管表示装置、プ ラズマ表示装置などが挙げられるが、中でもサイズや電力消費の観点から液晶表示 装置が広く採用されている。このような液晶表示装置は、通常、液晶表示パネルと、こ の液晶表示パネルに光を入射するためのバックライトとを備えている。そして、バック ライトは、液晶表示パネルに対して光を均一に入射すベぐ散乱光を出射するように 構成されている。し力もながら、バックライトから出射されたままの光では光が散乱した 状態であるため、バックライトから出射される光を液晶表示パネルに対して充分に入 射させることができず、結果として充分な輝度を確保することができない。そこで、この ような問題を解消すベぐ液晶表示パネルとバックライトとの間にバックライトから出射 される光を集光するためのプリズムを配置した液晶表示装置が開発された。しかしな がら、この構成の液晶表示装置では、液晶表示パネルにお V、て等ピッチで配列形成 される複数の画素と、一定のプリズムピッチで構成されるプリズムとが光学的に干渉し てしまい、表示画像に光学的なムラ (モアレ縞)が強く表れてしまう場合があった。そこ で、このような光学的干渉に起因するモアレ縞の程度が抑制する技術が開発され、 例えば特許文献 1に開示されてレ、る。  [0002] As a display device for displaying an image, a liquid crystal display device, a cathode ray tube display device, a plasma display device, and the like can be cited. Among them, a liquid crystal display device is widely adopted from the viewpoint of size and power consumption. Such a liquid crystal display device usually includes a liquid crystal display panel and a backlight for allowing light to enter the liquid crystal display panel. The backlight is configured to emit scattered light that is uniformly incident on the liquid crystal display panel. However, since the light that is emitted from the backlight is scattered, the light emitted from the backlight cannot be sufficiently incident on the liquid crystal display panel. High brightness cannot be secured. Therefore, a liquid crystal display device has been developed in which a prism for condensing the light emitted from the backlight is arranged between the liquid crystal display panel and the backlight to solve such problems. However, in the liquid crystal display device having this configuration, a plurality of pixels arranged at equal pitches on the liquid crystal display panel and prisms having a constant prism pitch interfere optically. In some cases, optical unevenness (moire fringes) appears strongly in the displayed image. Therefore, a technique for suppressing the degree of moire fringes caused by such optical interference has been developed, and is disclosed in, for example, Patent Document 1.
特許文献 1:特開 2000— 180834号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-180834
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、特許文献 1に開示されて!/、る液晶表示装置にぉレ、て光は、偏光部材 の表面を粗面化処理してなる光散乱層を複数通過するため、この光散乱層を通過す るごとに散乱してしまい、プリズムによる集光効果を輝度向上に充分繋げることができ ない。 [0004] 本発明は、このような事情のもとで考え出されたものであって、モアレ縞の程度を充 分に抑制するとともに、プリズムによる集光効果を輝度向上に充分に繋げることが可 能な表示装置を提供すること、を目的とする。 [0003] However, as disclosed in Patent Document 1, the light passes through a plurality of light scattering layers formed by roughening the surface of the polarizing member. The light is scattered every time it passes through the scattering layer, and the light collecting effect of the prism cannot be sufficiently improved to improve the brightness. [0004] The present invention has been conceived under such circumstances, and the degree of moire fringes can be sufficiently suppressed, and the light condensing effect of the prism can be sufficiently connected to improve the luminance. An object is to provide a display device that can be used.
課題を解決するための手段  Means for solving the problem
[0005] 本発明の第 1の側面に係る表示装置は、表示パネルと、プリズムと、一の光散乱層 とを備えている。前記表示パネルは、平面視において略等ピッチで配列される複数 の画素を有する。前記プリズムは、前記表示パネルの一方主面側に配置されている 。また、前記プリズムは、前記表示パネルの一方主面に対して傾斜する第 1傾斜面と 、該第 1傾斜面と異なる角度で傾斜する第 2傾斜面とをそれぞれ複数有している。前 記一の光散乱層は、前記表示パネルと前記プリズムとの間、あるいは、前記表示パネ ルの他方主面側に配置されており、光を散乱させる機能を担う。また、前記光散乱層 は、画素に対応する領域において、該光散乱層の一方主面と他方主面とがそれぞ れ略平坦面であり、且つ、該光散乱層の一方主面と他方主面とが略平行である。そ して、本発明の第 1の側面に係る表示装置は、前記表示パネルの複数の画素の配列 方向における該画素の開口幅を A、前記光散乱層のへイズ^ Iを H、前記表示パネ [0005] A display device according to the first aspect of the present invention includes a display panel, a prism, and a single light scattering layer. The display panel has a plurality of pixels arranged at substantially equal pitches in plan view. The prism is disposed on one main surface side of the display panel. The prism includes a plurality of first inclined surfaces that are inclined with respect to the one main surface of the display panel and a plurality of second inclined surfaces that are inclined at an angle different from the first inclined surface. The light scattering layer described above is disposed between the display panel and the prism or on the other main surface side of the display panel, and has a function of scattering light. In the light scattering layer, in the region corresponding to the pixel, the one main surface and the other main surface of the light scattering layer are substantially flat surfaces, respectively, and the one main surface and the other surface of the light scattering layer The main surface is substantially parallel. Then, in the display device according to the first aspect of the present invention, the aperture width of the pixel in the arrangement direction of the plurality of pixels of the display panel is A, the haze I of the light scattering layer is H, and the display Panel
P  P
ルの各画素に対応する前記プリズムの配列方向における第 1傾斜面領域の平面視 長さの総和を L、前記表示パネルの各画素に対応する前記プリズムの配列方向にお ける第 2傾斜面領域の平面視長さの総和を Rとするとき、 d= (L-R) ÷Aにより画素  L is the sum of the planar view lengths of the first inclined surface regions in the arrangement direction of the prisms corresponding to each pixel of the display panel, and the second inclined surface region in the arrangement direction of the prisms corresponding to each pixel of the display panel. Where R is the sum of the planar lengths of the pixels, d = (LR) ÷ A
P  P
ごとに算出される dの最大値と最小値との差 Dが 0以上 0. 3以下でヘイズ値 Hを 5以 上とし、差 Dが 0. 3より大きく 0. 7以下でヘイズ値 Hを 10以上とし、差 Dが 0. 7より大 きく 1以下でヘイズ値 Hを 20以上としている。ここで、ヘイズ値 Hとは、入射光に対す る散乱透過光の割合を意味する。略等ピッチとは、各ピッチがそれら全ての平均値に 対して 98%以上 102%以下の範囲内であることを意味する。略平坦とは、対象となる 面の表面粗さ力 規格 B0601: 2001の算術平均高さ Raで 0. 1 μ m以下のものを 意味する。略平行とは、基準面(例えば、散乱層の一方主面)に対する対称面(例え ば散乱層の他方主面)の傾斜が 2° 以下であることを意味する。  The difference between the maximum value and the minimum value of d calculated every time D is 0 or more and 0.3 or less and the haze value H is 5 or more, and the difference D is greater than 0.3 and 0.7 or less, the haze value H is The difference D is greater than 0.7 and 1 or less, and the haze value H is 20 or more. Here, the haze value H means the ratio of scattered transmitted light to incident light. The substantially equal pitch means that each pitch is within a range of 98% to 102% with respect to the average value of all of them. The term “substantially flat” means that the surface roughness force of the target surface is 0.1 μm or less in terms of the arithmetic average height Ra of standard B0601: 2001. Substantially parallel means that the inclination of the symmetry plane (for example, the other main surface of the scattering layer) with respect to the reference surface (for example, one main surface of the scattering layer) is 2 ° or less.
[0006] 本発明の第 2の側面に係る表示装置は、表示パネルおよびプリズムを備えている。 [0006] A display device according to a second aspect of the present invention includes a display panel and a prism.
前記表示パネルは、平面視にお!/、て略等ピッチで配列される複数の画素を有する。 また、前記表示パネルは、光を散乱させる機能を担う一の光散乱層を含んでなる。前 記光散乱層は、画素に対応する領域において、該光散乱層の一方主面と他方主面 とがそれぞれ略平坦面であり、且つ、該光散乱層の一方主面と他方主面とが略平行 である。前記プリズムは、前記表示パネルの一方主面側に配置される。また、前記プ リズムは、前記表示パネルの一方主面に対して傾斜する第 1傾斜面と、該第 1傾斜面 と異なる角度で傾斜する第 2傾斜面とをそれぞれ複数有している。そして、本発明の 第 2の側面に係る表示装置は、前記表示パネルの複数の画素の配列方向における 該画素の開口幅を A、前記光散乱層のヘイズ値を H、前記表示パネルの各画素に p The display panel has a plurality of pixels arranged at substantially equal pitches in a plan view. In addition, the display panel includes one light scattering layer having a function of scattering light. In the light scattering layer, in the region corresponding to the pixel, the one main surface and the other main surface of the light scattering layer are substantially flat surfaces, respectively, and the one main surface and the other main surface of the light scattering layer are Are approximately parallel. The prism is disposed on one main surface side of the display panel. Further, the prism includes a plurality of first inclined surfaces that are inclined with respect to the one main surface of the display panel, and a plurality of second inclined surfaces that are inclined at an angle different from the first inclined surface. In the display device according to the second aspect of the present invention, the aperture width of the pixel in the arrangement direction of the plurality of pixels of the display panel is A, the haze value of the light scattering layer is H, and each pixel of the display panel To p
対応する前記プリズムの配列方向における第 1傾斜面領域の平面視長さの総和を L 、前記表示パネルの各画素に対応する前記プリズムの配列方向における第 2傾斜面 領域の平面視長さの総和を Rとするとき、 d= (L-R) ÷Aにより画素ごとに算出され L is the sum of the planar view lengths of the first inclined surface regions in the corresponding prism array direction, and the sum of the planar view lengths of the second inclined surface regions in the prism array direction corresponding to each pixel of the display panel is L R is calculated for each pixel by d = (LR) ÷ A.
P  P
る dの最大値と最小値との差 Dが 0以上 0. 3以下でヘイズ値 Hを 5以上とし、差 Dが 0 . 3より大きく 0. 7以下でヘイズ値 Hを 10以上とし、差 Dが 0. 7より大きく 1以下でヘイ ズ値 Hを 20以上として!/、る。 Difference between the maximum value and minimum value of d When D is 0 or more and 0.3 or less, the haze value H is 5 or more, and when the difference D is greater than 0.3 and 0.7 or less, the haze value H is 10 or more. If D is greater than 0.7 and less than or equal to 1 and haze value H is greater than 20!
本発明の第 3の側面に係る表示装置は、表示パネルと、プリズムと、一の光散乱層 とを備えている。前記表示パネルは、平面視において略等ピッチで配列される複数 の画素を有する。前記プリズムは、前記表示パネルの一方主面側に配置される。また 、前記プリズムは、前記表示パネルの一方主面に対して傾斜する第 1傾斜面と、該第 1傾斜面と異なる角度で傾斜する第 2傾斜面とをそれぞれ複数有して!/、る。前記一の 光散乱層は、前記表示パネルと前記プリズムとの間、あるいは、前記表示パネルの他 方主面側に配置され、光を散乱させる機能を担う。前記光散乱層は、画素に対応す る領域において、該光散乱層の一方主面が略平坦面であり、且つ、該光散乱層の他 方主面が凹凸面である。そして、本発明の第 3の側面に係る表示装置は、前記表示 パネルの複数の画素の配列方向における該画素の開口幅を A、前記光散乱層の  The display device according to the third aspect of the present invention includes a display panel, a prism, and one light scattering layer. The display panel has a plurality of pixels arranged at substantially equal pitches in plan view. The prism is disposed on one main surface side of the display panel. Further, the prism has a plurality of first inclined surfaces inclined with respect to one main surface of the display panel and a plurality of second inclined surfaces inclined at different angles from the first inclined surface. . The one light scattering layer is disposed between the display panel and the prism or on the other main surface side of the display panel and has a function of scattering light. In the light scattering layer, in the region corresponding to the pixel, one main surface of the light scattering layer is a substantially flat surface, and the other main surface of the light scattering layer is an uneven surface. In the display device according to the third aspect of the present invention, the aperture width of the pixel in the arrangement direction of the plurality of pixels of the display panel is A, and the light scattering layer
P  P
ヘイズ値を H、前記表示パネルの各画素に対応する前記プリズムの配列方向におけ る第 1傾斜面領域の平面視長さの総和を L、前記表示パネルの各画素に対応する前 記プリズムの配列方向における第 2傾斜面領域の平面視長さの総和を Rとするとき、 d= (L-R) ÷Aにより画素ごとに算出される dの最大値と最小値との差 Dが 0以上 0 . 4以下でヘイズ値 Hを 2以上とし、差 Dが 0. 4より大きく 0. 7以下でヘイズ値 Hを 4以 上とし、差 Dが 0. 7より大きく 0. 9以下でヘイズ値 Hを 8以上とし、差 Dが 0. 9より大き く 1以下でヘイズ値 Hを 12以上として!/、る。 The haze value is H, the total sum of the lengths in plan view of the first inclined surface area in the arrangement direction of the prisms corresponding to the respective pixels of the display panel is L, and the prisms corresponding to the respective pixels of the display panel When the sum of the lengths in plan view of the second inclined surface area in the arrangement direction is R, the difference between the maximum and minimum values of d calculated for each pixel by d = (LR) ÷ A D is 0 or more 0 Haze value H is 2 or more at 4 or less, difference D is greater than 0.4, and haze value H is 4 or more at difference 0.7 or less, and haze value H is at difference D is greater than 0.7 or less than 0.9 The difference D is greater than 0.9 and 1 or less, and the haze value H is 12 or more.
発明の効果  The invention's effect
[0008] 本発明の各側面に係る表示装置では、表示パネルとプリズムとの光学的な干渉に より生じるモアレ縞の程度を充分に弱めることができるため、例えば複数の光散乱層 を通過させなくても、一の光散乱層により充分にモアレ縞を抑制することができる。ま た、本表示装置では、光干渉により生じるモアレ縞が充分に弱められているため、モ ァレ縞を充分に抑制するのに一の光散乱層におけるヘイズ値を過度に高めなくて済 む。したがって、本表示装置は、モアレ縞の程度を充分に抑制することができるととも に、プリズムによる集光効果を輝度向上に充分に繋げるうえで好適である。  [0008] In the display device according to each aspect of the present invention, the degree of moire fringes caused by optical interference between the display panel and the prism can be sufficiently reduced, so that, for example, it does not pass through a plurality of light scattering layers. However, moire fringes can be sufficiently suppressed by one light scattering layer. In addition, in this display device, moire fringes caused by light interference are sufficiently weakened, so that it is not necessary to excessively increase the haze value in one light scattering layer in order to sufficiently suppress moire fringes. . Therefore, this display device is suitable for sufficiently suppressing the degree of moire fringes and sufficiently connecting the light collection effect of the prism to the luminance improvement.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明の第 1の実施形態に係る液晶表示装置 XIは、液晶表示パネル 10と、プリズ ム 20と、光散乱層 30と、偏光部材 40, 41と、ノ ックライト 50と、筐体 60とを備えるも のである。本実施形態において、各構成部を接合するのに要する構成 (例えば、接 着層)については、説明を省略するが必要に応じて有しているものとする。  [0009] The liquid crystal display device XI according to the first embodiment of the present invention includes a liquid crystal display panel 10, a prism 20, a light scattering layer 30, polarizing members 40 and 41, a knock light 50, and a casing. 60. In the present embodiment, a configuration (for example, a bonding layer) required for bonding the respective components is not described, but is provided as necessary.
[0010] 液晶表示パネル 10は、液晶層 11と、第 1基体 12と、第 2基体 13と、封止部材 14と を備えている。また、液晶表示パネル 10では、第 1基体 12と第 2基体 13との間に液 晶層 11を介在させ、液晶層 11を封止部材 14によって封止することにより表示領域 G を構成している。  The liquid crystal display panel 10 includes a liquid crystal layer 11, a first base 12, a second base 13, and a sealing member 14. In the liquid crystal display panel 10, the liquid crystal layer 11 is interposed between the first base 12 and the second base 13, and the liquid crystal layer 11 is sealed with the sealing member 14 to form the display region G. Yes.
[0011] 液晶層 11は、電気的、光学的、力学的、あるいは磁気的な異方性を示し、固体の 規則性と液体の流動性とを併せ持つ液晶を含んでなる層である。液晶としては、ネマ ティック液晶、コレステリック液晶、あるいはスメクティック液晶などが挙げられる。なお 、液晶層 11には、該液晶層 11の厚さを一定に保つベぐ例えば多数の粒子状部材 により構成されるスぺーサ(図示せず)を介在させてもよ!/、。  [0011] The liquid crystal layer 11 is a layer that includes liquid crystals that exhibit electrical, optical, mechanical, or magnetic anisotropy and have both solid regularity and liquid fluidity. Examples of the liquid crystal include nematic liquid crystal, cholesteric liquid crystal, and smectic liquid crystal. The liquid crystal layer 11 may be provided with a spacer (not shown) composed of a number of particulate members, for example, to keep the thickness of the liquid crystal layer 11 constant! /.
[0012] 第 1基体 12は、透明基板 121と、遮光層 122と、カラーフィルタ 123と、平坦化層 1 24と、透明電極(図示せず)とを備えており、表示領域 Gを形成する複数の画素を構 成するものである。なお、第 1基体 12は、マクロ的にランダムな方向を向く(規則性が 小さレ、)液晶層 11の液晶分子を所定方向に配向させるための配向膜などを備えてレ、 てもよい。 The first base 12 includes a transparent substrate 121, a light shielding layer 122, a color filter 123, a planarization layer 124, and a transparent electrode (not shown), and forms a display region G. It constitutes multiple pixels. The first base 12 faces in a macro-random direction (regularity is The liquid crystal layer 11 may be provided with an alignment film for aligning the liquid crystal molecules of the liquid crystal layer 11 in a predetermined direction.
[0013] 透明基板 121は、後述する遮光層 122およびカラーフィルタ 123を支持し、かつ、 液晶層 11を封止するのに寄与する部材である。透明基板 121は、その主面に対して 交差する方向(例えば矢印 AB方向)に光を適切に透過することが可能な構成とされ ている。透明基板 121を構成材料としては、ガラスあるいは透光性プラスチックなどが 挙げられる。  The transparent substrate 121 is a member that supports a light shielding layer 122 and a color filter 123, which will be described later, and contributes to sealing the liquid crystal layer 11. The transparent substrate 121 is configured to be able to appropriately transmit light in a direction intersecting the main surface (for example, in the direction of arrow AB). Examples of the constituent material of the transparent substrate 121 include glass and translucent plastic.
[0014] 遮光層 122は、光を遮る(光の透過量を所定値以下にする)ための部材であり、透 明基板 121の内面 121aに形成されている。遮光層 122は、膜厚方向(矢印 AB方向 )に貫通する貫通孔 122aを複数有している。本実施形態において貫通孔 122aは、 第 1配列方向(矢印 CD方向)において Gの間隔で略等ピッチに配列され、 Aの開  The light blocking layer 122 is a member for blocking light (the light transmission amount is set to a predetermined value or less), and is formed on the inner surface 121 a of the transparent substrate 121. The light shielding layer 122 has a plurality of through holes 122a penetrating in the film thickness direction (arrow AB direction). In the present embodiment, the through holes 122a are arranged at a substantially equal pitch at intervals of G in the first arrangement direction (arrow CD direction).
P P  P P
口幅を有し、第 2配列方向(矢印 EF方向)において略等ピッチで配列され、 Aよりも  It has a mouth width and is arranged at a substantially equal pitch in the second arrangement direction (arrow EF direction).
P  P
大きい A の開口幅を有している。遮光層 122の構成材料としては、遮光部材を含有 It has a large A opening width. The constituent material of the light shielding layer 122 contains a light shielding member
P2 P2
する樹脂材料、クロムなどの金属材料、酸化クロムなどの金属酸化物材料、ニッケノレ タングステン合金などの合金材料などが挙げられる。ここで、遮光部材としては、遮 光性の高い色(例えば黒色)の染料、遮光性の高い色(例えば黒色)の顔料、あるい はカーボンなどが挙げられる。なお、本実施形態における画素の大きさは、遮光層 1 22の貫通? Ll22aiこより規定されて!/、る。  Resin materials, metal materials such as chromium, metal oxide materials such as chromium oxide, and alloy materials such as Nikkenole tungsten alloy. Here, examples of the light shielding member include dyes having a high light shielding property (for example, black), pigments having a high light shielding property (for example, black), and carbon. Note that the size of the pixel in this embodiment is the penetration of the light shielding layer 122? It is prescribed from Ll22ai! /
[0015] カラーフィルタ 123は、カラーフィルタ 123に入射した光のうち所定の波長以外のも のを選択的に吸収し、所定の波長のものを選択的に透過させる部材である。カラーフ イノレタ 123は、遮光層 122の貫通孔 122aから露出する透明基板 121の下面 121aに 形成されている。カラーフィルタ 123の構成材料としては、染料あるいは顔料を添カロ した樹脂材料などが挙げられる。カラーフィルタ 123としては、赤色可視光の波長を 選択的に透過させる赤色カラーフィルタ (R)、緑色可視光の波長を選択的に透過さ せる緑色カラーフィルタ(G)、あるいは青色可視光の波長を選択的に透過させる青 色カラーフィルタ(B)などが挙げられる。  The color filter 123 is a member that selectively absorbs light incident on the color filter 123 other than a predetermined wavelength and selectively transmits light having a predetermined wavelength. The color finer 123 is formed on the lower surface 121 a of the transparent substrate 121 exposed from the through hole 122 a of the light shielding layer 122. Examples of the constituent material of the color filter 123 include a resin material added with a dye or pigment. The color filter 123 includes a red color filter (R) that selectively transmits the wavelength of red visible light, a green color filter (G) that selectively transmits the wavelength of green visible light, or the wavelength of blue visible light. For example, a blue color filter (B) that selectively transmits light.
[0016] 平坦化層 124は、遮光層 122およびカラーフィルタ 123などを配置することにより生 じる凹凸を平坦化する部材である。平坦化層 124の構成材料としては、透光性を有 する透光性材料などが挙げられる。ここで、透光性材料としては、感光性レジスト材料 などの紫外線硬化型樹脂あるいは熱硬化性樹脂などが挙げられる。 [0016] The planarization layer 124 is a member that planarizes unevenness caused by disposing the light shielding layer 122, the color filter 123, and the like. As a constituent material of the planarizing layer 124, it has translucency. And a translucent material. Here, examples of the translucent material include an ultraviolet curable resin such as a photosensitive resist material or a thermosetting resin.
[0017] 第 1基体 12の透明電極(図示せず)は、後述の第 2基体 13の透明電極(図示せず) との間に位置する液晶層 11に所定の電圧を印加する機能を担う部材であり、一方側 (例えば矢印 B方向側)から入射した光を他方側(例えば矢印 A方向側)に透過する ように構成されている。第 1基体 12における透明電極の構成材料としては、 ITO dndi urn Tin Oxide)や酸化錫などの透光性を有する導電部材が挙げられる。ここで、透光 性とは、光を透過させる性質を意味する。  [0017] The transparent electrode (not shown) of the first base 12 has a function of applying a predetermined voltage to the liquid crystal layer 11 positioned between the transparent electrode (not shown) of the second base 13 described later. A member that is configured to transmit light incident from one side (for example, arrow B direction side) to the other side (for example, arrow A direction side). Examples of the constituent material of the transparent electrode in the first substrate 12 include a light-transmitting conductive member such as ITO dndiurn Tin Oxide) or tin oxide. Here, the translucency means a property of transmitting light.
[0018] 第 2基体 13は、透明基板 131および透明電極(図示せず)を備えており、表示領域 Gを形成する複数の画素を構成するものである。なお、第 2基体 13は、マクロ的にラ ンダムな方向を向く(規則性が小さい)液晶層 11の液晶分子を所定方向に配向させ るための配向膜などを備えて!/、てもよ!/、。  The second base 13 includes a transparent substrate 131 and a transparent electrode (not shown), and constitutes a plurality of pixels that form the display region G. The second substrate 13 includes an alignment film or the like for orienting the liquid crystal molecules of the liquid crystal layer 11 in a macroscopic random direction (small regularity) in a predetermined direction. ! /
[0019] 透明基板 131は、透明電極(図示せず)を支持し且つ液晶層 11を封止するのに寄 与する部材である。透明基板 131は、その主面に対して交差する膜厚方向(例えば 矢印 AB方向)に光を適切に透過することが可能な構成とされている。透明基板 131 の構成材料としては、透明基板 121の構成材料と同様のものが挙げられる。  The transparent substrate 131 is a member that supports a transparent electrode (not shown) and contributes to seal the liquid crystal layer 11. The transparent substrate 131 is configured to be able to appropriately transmit light in the film thickness direction (for example, the arrow AB direction) intersecting the main surface. The constituent material of the transparent substrate 131 may be the same as the constituent material of the transparent substrate 121.
[0020] 第 2基体 13の透明電極(図示せず)は、第 1基体 12の透明電極(図示せず)との間 に位置する液晶層 11に所定の電圧を印加する機能を担う部材であり、一方側(例え ば矢印 B方向側)から入射した光を他方側(例えば矢印 A方向側)に透過するように 構成されている。第 2基体 13における透明電極の構成材料としては、第 1基体 12に おける透明電極の構成材料と同様のものが挙げられる。  The transparent electrode (not shown) of the second base 13 is a member that has a function of applying a predetermined voltage to the liquid crystal layer 11 positioned between the transparent electrode (not shown) of the first base 12. Yes, it is configured to transmit light incident from one side (for example, arrow B direction side) to the other side (for example, arrow A direction side). Examples of the constituent material of the transparent electrode in the second base 13 include the same constituent materials as those of the transparent electrode in the first base 12.
[0021] 封止部材 14は、第 1基体 12と第 2基体 13との間に液晶層 11を封止する機能を担う 部材である。封止部材 14の構成材料としては、エポキシ樹脂あるいはアクリル樹脂な どが挙げられる。  The sealing member 14 is a member having a function of sealing the liquid crystal layer 11 between the first base 12 and the second base 13. Examples of the constituent material of the sealing member 14 include an epoxy resin and an acrylic resin.
[0022] ここで、図 4に記された白抜きの矢印は、光の経路を表している。また、図 5では、見 易さの観点から、第 1基体 12を除く液晶表示パネル 10の構成部材、光散乱層 30、 および偏光部材 40を省略して!/、る。  Here, the white arrow shown in FIG. 4 represents the light path. In FIG. 5, the constituent members of the liquid crystal display panel 10 excluding the first substrate 12, the light scattering layer 30, and the polarizing member 40 are omitted from the viewpoint of easy viewing.
[0023] プリズム 20は、プリズム 20の膜厚方向において矢印 B方向側から矢印 A方向側に 向けて通過する光を集光させるものであり、その一方主面側に液晶表示パネル 10の 一方主面に対して傾斜する第 1傾斜面 20aと、第 1傾斜面 20aと異なる角度で傾斜す る第 2傾斜面 20bとを複数有している。第 1傾斜面 20aおよび第 2傾斜面 20bは、第 1 配列方向(矢印 CD方向)において交互かつ所定の間隔で設けられており、その間隔 (プリズムピッチ)の平均値を Pとする。また、プリズム 20の一方主面を平面視したとき [0023] The prism 20 moves from the arrow B direction side to the arrow A direction side in the film thickness direction of the prism 20. The first inclined surface 20a that is inclined with respect to the one main surface of the liquid crystal display panel 10 is inclined on the one main surface side at an angle different from that of the first inclined surface 20a. A plurality of second inclined surfaces 20b. The first inclined surface 20a and the second inclined surface 20b are provided alternately at predetermined intervals in the first arrangement direction (arrow CD direction), and P is the average value of the intervals (prism pitch). When one main surface of the prism 20 is viewed in plan
P  P
(矢印 A方向側から矢印 B方向側に向けて見たとき)の第 1配列方向における長さ(平 面視長さ)は、第 1傾斜面 20aの領域が L であり、第 2傾斜面 20bの領域が R である  The length in the first arrangement direction (when viewed from the arrow A direction side toward the arrow B direction side) (plan view length) is L in the region of the first inclined surface 20a, and the second inclined surface The region of 20b is R
W W  W W
。本実施形態において、プリズム 20の第 1傾斜面 20aの平面視長さ L は、第 2傾斜  . In the present embodiment, the planar view length L of the first inclined surface 20a of the prism 20 is the second inclined surface
W  W
面 20bの平面視長さ R に略等しぐ第 1傾斜面 20aに対して第 2傾斜面 20bは略垂  The second inclined surface 20b is substantially perpendicular to the first inclined surface 20a substantially equal to the planar view length R of the surface 20b.
W  W
直に形成されている。ここで、略垂直とは、第 1傾斜面 20aに対する第 2傾斜面 20b の傾斜が 88° 以上 90° 以下であることをいう。  It is formed directly. Here, “substantially perpendicular” means that the inclination of the second inclined surface 20b with respect to the first inclined surface 20a is not less than 88 ° and not more than 90 °.
[0024] 第 1傾斜面 20aは、プリズム 20の他方主面 20cに対して垂直に入射される光を右方 向(矢印 C方向)に屈折させるように形成され、第 2傾斜面 20bは、プリズム 20の他方 主面 20cに対して垂直に入射される光を左方向(矢印 D方向)に屈折させるように形 成されている。そのため、貫通孔 122aを通過する光は、プリズム 20の第 1傾斜面 20 aおよび第 2傾斜面 20bを通過する光の量により、第 1配列方向に対する光の偏りが 変化する。例えば、図 5に示す画素において、貫通孔 122aと対応する領域には、三 つの第 1傾斜面 20aと、二つの第 2傾斜面 20bと、第 2傾斜面 20bの一部とが配置さ れているため、画素を通過する光は右方向に屈折された光を多く含む。つまり、貫通 孔 122aを通過する光は全体的に右方向に偏っている。ここで、プリズム 20の一方主 面を平面視した場合において、各貫通孔 122aに対向する第 1傾斜面 20aの平面視 長さの総和を L、第 2傾斜面 20bの平面視長さの総和を Rとするとき、画素を通過する 光の偏り dは、以下の数式 1により導出される。 [0024] The first inclined surface 20a is formed to refract light incident perpendicularly to the other main surface 20c of the prism 20 in the right direction (arrow C direction), and the second inclined surface 20b is The light incident perpendicularly to the other main surface 20c of the prism 20 is refracted in the left direction (arrow D direction). For this reason, the light passing through the through-hole 122a varies in light bias with respect to the first arrangement direction depending on the amount of light passing through the first inclined surface 20a and the second inclined surface 20b of the prism 20. For example, in the pixel shown in FIG. 5, three first inclined surfaces 20a, two second inclined surfaces 20b, and a part of the second inclined surface 20b are arranged in the region corresponding to the through hole 122a. Therefore, the light passing through the pixel includes a lot of light refracted in the right direction. That is, the light passing through the through hole 122a is biased to the right as a whole. Here, when one principal surface of the prism 20 is viewed in plan, the sum of the plan view lengths of the first inclined surface 20a facing each through-hole 122a is L, and the sum of the plan view lengths of the second tilted surface 20b is When R is R, the deviation d of the light passing through the pixel is derived from Equation 1 below.
Figure imgf000009_0001
Country
Figure imgf000009_0001
[0025] 本実施形態に係る図 5において、各平面視長さの総和 L, Rは、下記の数式 2およ び数式 3により導出されている。 [数 2] In FIG. 5 according to the present embodiment, the total lengths L and R of the respective planar view lengths are derived by the following formulas 2 and 3. [Equation 2]
L =し + Ι_2 + l_3 L = then + Ι_2 + l_3
[0026] [数 3] = Rl + R2 + Γ 3 [0026] [Equation 3] = Rl + R2 + Γ 3
[0027] 貫通孔 122aを通過する光は、この dの値が正の値なら右方向に偏り、負の値なら 左方向に偏る。また、平面視長さ Lと平面視長さ Rとの値が等しい場合は、実質的に 左右の方向に光の偏りの無い光が貫通孔 122aを通過する。なお、プリズム 20の構 成材料としては、透光性を有する樹脂材料などが挙げられる。ここで、透光性を有す る樹脂材料としては、ポリカーボネート樹脂、ポリエステル樹脂、あるいはアクリル樹 脂などが挙げられる。 [0027] The light passing through the through hole 122a is biased to the right if the value of d is positive, and to the left if the value of d is negative. Further, when the values of the plan view length L and the plan view length R are equal, light having no light bias in the left and right directions passes through the through-hole 122a. The constituent material of the prism 20 includes a resin material having translucency. Here, examples of the resin material having translucency include polycarbonate resin, polyester resin, and acrylic resin.
[0028] 光散乱層 30は、透光性材料 31と光散乱材 32とを含んでなり、該光散乱層 30を通 過する光を散乱させる機能を有している。光散乱層 30は、略平坦な一方主面 30aと 他方主面 30bとを有しており、一方主面 30aと他方主面 30bとは、略平行に形成され ている。ここで、略平坦とは、対象となる面の表面粗さ力 SJIS規格 B0601 : 2001の算 術平均高さ Raで 0. 1 m以下のものを意味する。略平行とは、基準面(例えば、光 散乱層 30の一方主面)に対する対称面(例えば光散乱層 30の他方主面)の傾斜が 2° 以下であることを意味する。本実施形態において光散乱層 30は、液晶表示パネ ル 10とプリズム 20との間に位置している。  The light scattering layer 30 includes a light-transmitting material 31 and a light scattering material 32, and has a function of scattering light passing through the light scattering layer 30. The light scattering layer 30 has a substantially flat one main surface 30a and the other main surface 30b, and the one main surface 30a and the other main surface 30b are formed substantially in parallel. Here, “substantially flat” means that the surface roughness force of the target surface is an arithmetic average height Ra of SJIS standard B0601: 2001 of 0.1 m or less. Substantially parallel means that the inclination of the symmetry plane (for example, the other main surface of the light scattering layer 30) with respect to the reference surface (for example, the one main surface of the light scattering layer 30) is 2 ° or less. In the present embodiment, the light scattering layer 30 is located between the liquid crystal display panel 10 and the prism 20.
[0029] 透光性材料 31は、光散乱層 30において光を透過する機能を担う部材である。透 光性材料 31としては、透光性を有する樹脂材料などが挙げられるが、別途接着材を 設けずに済むように接着性を有するものが特に好ましい。ここで、樹脂材料としては、 紫外泉硬化型樹脂あるいは熱硬化型樹脂などが挙げられる。  The light transmissive material 31 is a member having a function of transmitting light in the light scattering layer 30. Examples of the translucent material 31 include a translucent resin material and the like, and those having adhesive properties are particularly preferable so that a separate adhesive is not required. Here, examples of the resin material include an ultraviolet spring curable resin and a thermosetting resin.
[0030] 光散乱材 32は、光散乱層 30において光を散乱させる機能を担う部材である。本実 施形態における光散乱材 32は、その表面の少なくとも一部が透光性材料 31に被覆 されており、光散乱層 30の全体に所定状態 (例えば略均一状態)で分散させられて いる。光散乱材 32の構成材料としては、透光性材料 31とは異なる屈折率の透光性 散乱材あるいは光反射材などが挙げられ、本実施形態においては透光性散乱材が 採用されている。光散乱材 32の形状は、特に限られないが、光散乱性を高める観点 で粒子状とするのが好ましい。透光性散乱材としては、透光性金属酸化物、透光性 シリコン酸化物、あるいは透光性樹脂などが挙げられる。ここで、透光性金属酸化物 としては、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化スズ、酸化インジゥ ム、酸化カドミウム、あるいは酸化アンチモンなどが挙げられる。透光性シリコン酸化 物としては、二酸化シリコンなどが挙げられる。透光性樹脂としては、ポリオレフイン系 樹脂あるいはホルムアルデヒド系樹脂などが挙げられる。また、光反射材としては、金 属あるいはその合金などが挙げられる。ここで、金属としては、鉄、アルミニウム、ある いは銀などが挙げられる。合金としては、アルミニウム クロム(AlCr)、アルミニウム —ネオジゥム(AlNd)、銀一パラジウム(AgPd)、あるいは銀一パラジウム一銅(AgP dCu)などが挙げられる。 The light scattering material 32 is a member that has a function of scattering light in the light scattering layer 30. In the present embodiment, the light scattering material 32 has at least a part of its surface covered with a light transmissive material 31 and is dispersed in a predetermined state (for example, a substantially uniform state) throughout the light scattering layer 30. . Examples of the constituent material of the light scattering material 32 include a light transmitting scattering material or a light reflecting material having a refractive index different from that of the light transmitting material 31, and in this embodiment, the light transmitting scattering material is used. It has been adopted. The shape of the light scattering material 32 is not particularly limited, but is preferably particulate from the viewpoint of enhancing light scattering properties. Examples of the translucent scattering material include translucent metal oxides, translucent silicon oxides, translucent resins, and the like. Here, examples of the translucent metal oxide include aluminum oxide, titanium oxide, zirconium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide. Examples of the translucent silicon oxide include silicon dioxide. Examples of the translucent resin include polyolefin resin and formaldehyde resin. Examples of the light reflecting material include metals or alloys thereof. Here, examples of the metal include iron, aluminum, and silver. Examples of the alloy include aluminum chromium (AlCr), aluminum-neodymium (AlNd), silver-palladium (AgPd), and silver-palladium monocopper (AgP dCu).
[0031] 偏光部材 40, 41は、所定方向に振動する光を選択的に通過させるためのものであ り、それぞれ略平坦な一方主面および他方主面を有している。また、偏光部材 40, 4 1の構成材料としては、ヨウ素系材料などが挙げられる。本実施形態において偏光部 材 41は、偏光部材 41を通過する光の振動方向(第 2振動方向)が、偏光部材 40を 透過する光の振動方向(第 1振動方向)に対して直交するように構成されている。この ような構成によると、偏光部材 40, 41を透過する光のシャツタ機能を発揮するうえで 好適である。 [0031] The polarizing members 40 and 41 are for selectively allowing light oscillating in a predetermined direction to pass therethrough, and each have a substantially flat one main surface and the other main surface. Examples of the constituent material of the polarizing members 40 and 41 include iodine-based materials. In the present embodiment, the polarizing member 41 is configured such that the vibration direction (second vibration direction) of light passing through the polarizing member 41 is orthogonal to the vibration direction (first vibration direction) of light passing through the polarizing member 40. It is configured. Such a configuration is suitable for exhibiting a shirter function of light transmitted through the polarizing members 40 and 41.
[0032] ノ^クライト 50は、光源 51と、導光板 52と、光反射部材 53とを備えており、液晶表 示パネル 10の一方(矢印 B方向側)から他方(矢印 A方向側)に向けて光を照射する 機能を担う部材である。なお、図 1に示すように、本実施形態におけるバックライト 50 は、導光板 52の側面に光源 51を配したエッジライト方式を採用しているものの、液晶 表示パネル 10の裏面側に光源 51を配した直下方式などの他の方式を採用してもよ い。  [0032] The nocrite 50 includes a light source 51, a light guide plate 52, and a light reflecting member 53. From one side (arrow B direction side) of the liquid crystal display panel 10 to the other (arrow A direction side) It is a member responsible for the function of irradiating light. As shown in FIG. 1, the backlight 50 in the present embodiment employs an edge light system in which a light source 51 is arranged on the side surface of the light guide plate 52, but the light source 51 is provided on the back side of the liquid crystal display panel 10. Other methods, such as the directly placed method, may be adopted.
[0033] 光源 51は、導光板 52に向けて光を出射するように構成されている。光源 51として は、冷陰極蛍光ランプ(CFU、 LED (Light Emitting Diode)、ハロゲンランプ、キセノ ンランプ、あるいは EL (Electro-Luminescence)などが挙げられる。  The light source 51 is configured to emit light toward the light guide plate 52. Examples of the light source 51 include a cold cathode fluorescent lamp (CFU, LED (Light Emitting Diode), halogen lamp, xenon lamp, or EL (Electro-Luminescence).
[0034] 導光板 52は、光源 51からの光を液晶表示パネル 10の下面(矢印 B方向側の面) 全体にわたって略均一に光を導く機能を担う部材である。導光板 52には、より均一な 面状発光とすべぐその上面(矢印 A方向側の面)に光拡散部材を設けてもよい。導 光板 52の構成材料としては、アクリル樹脂あるいはポリカーボネート樹脂などの透明 樹脂などが挙げられる。 [0034] The light guide plate 52 transmits light from the light source 51 to the bottom surface of the liquid crystal display panel 10 (surface on the arrow B direction side). It is a member responsible for the function of guiding light substantially uniformly throughout. The light guide plate 52 may be provided with a light diffusing member on the upper surface (surface on the arrow A direction side) of the more uniform planar light emission. Examples of the constituent material of the light guide plate 52 include a transparent resin such as an acrylic resin or a polycarbonate resin.
[0035] 光反射部材 53は、導光板 52から矢印 B方向側に向かう光を矢印 A方向側に向け て反射する機能を担う部材であり、本実施形態において導光板 52の下面(矢印 B方 向側の面)に設けられている。光反射部材 53の構成材料としては、金属材料あるい は発泡させた樹脂材料などが挙げられる。金属材料としては、アルミニウムあるいは 銀などが挙げられる。発泡させた樹脂材料としては、ポリエチレンテレフタラート樹脂 などを発泡させたものなどが挙げられる。  The light reflecting member 53 is a member having a function of reflecting light directed from the light guide plate 52 toward the arrow B direction toward the arrow A direction. In this embodiment, the lower surface of the light guide plate 52 (arrow B direction) On the opposite side). Examples of the constituent material of the light reflecting member 53 include a metal material or a foamed resin material. Examples of the metal material include aluminum and silver. Examples of the foamed resin material include those obtained by foaming polyethylene terephthalate resin.
[0036] 筐体 60は、液晶表示パネル 10と、プリズム 20と、光散乱層 30と、偏光部材 40と、 ノ ックライト 50とを収容する部材であり、上側筐体 61および下側筐体 62を含んで構 成される。筐体 60の構成材料としては、樹脂材料あるいは金属材料などが挙げられ る。樹脂材料としては、ポリカーボネート樹脂などが挙げられる。金属材料としては、 ステンレススチールやアルミニウムなどが挙げられる。  The housing 60 is a member that houses the liquid crystal display panel 10, the prism 20, the light scattering layer 30, the polarizing member 40, and the knock light 50. The upper housing 61 and the lower housing 62 are housed in the housing 60. Is included. Examples of the constituent material of the housing 60 include a resin material and a metal material. Examples of the resin material include polycarbonate resin. Examples of metal materials include stainless steel and aluminum.
[0037] ここで、上記構成の液晶表示装置 XIを用いて、モアレ縞を充分に低減することが できるように、種々の画素を通過する光の偏り dとヘイズ値 Hとの関係を導いた結果を 以下に示す。  [0037] Here, using the liquid crystal display device XI having the above configuration, the relationship between the deviation d of light passing through various pixels and the haze value H was derived so that moire fringes can be sufficiently reduced. The results are shown below.
[0038] 図 7では、第 1配列方向における遮光層 122の貫通孔 122aを規定する面とプリズ ム 20の第 1傾斜面 20aの端とがー致する箇所を横軸の原点としており、このとき dの 値は最大値を示す。図 7のグラフでは、 dの振幅が大きいほどモアレ縞が強く表れ、 d の振幅が小さいほどモアレ縞が弱く表れる。また、図 7のグラフでは、 dの周期が短い ほどモアレ縞の表れる周期が短くなり、 dの周期が長いほどモアレ縞の表れる周期が 長くなる。  [0038] In Fig. 7, the point where the surface defining the through-hole 122a of the light shielding layer 122 in the first arrangement direction and the end of the first inclined surface 20a of the prism 20 meet is the origin of the horizontal axis. When d is the maximum value. In the graph of FIG. 7, the moire fringes appear stronger as the amplitude of d increases, and the moire fringes appear weaker as the amplitude of d decreases. In the graph of FIG. 7, the shorter the period d, the shorter the period in which moire fringes appear, and the longer the period d, the longer the periods in which moire fringes appear.
[0039] 表 1に、図 7 (a) , (b) , (c)に示すプリズム 20および液晶表示パネル 10の光学的な 干渉によって表れたモアレ縞の強弱を目視により評価した結果を示す。  [0039] Table 1 shows the results of visual evaluation of the intensity of moire fringes that appear due to optical interference between the prism 20 and the liquid crystal display panel 10 shown in Figs. 7 (a), (b), and (c).
[表 1]
Figure imgf000013_0001
[table 1]
Figure imgf000013_0001
[0040] 表 1の結果から、プリズムピッチ P力 4 μ ΐη, 50 μ ΐη, 150 μ mの順でモアレが強く  [0040] From the results in Table 1, the moire is strong in the order of prism pitch P force 4 μΐη, 50 μΐη, 150 μm.
p  p
なることが明らかになった。  It became clear that
[0041] 表 2に、本実施形態に係る液晶表示装置 XIを用いて、光散乱層 30のヘイズ値 Hと 、画素を通過する光の偏り dの最大値と最小値との差 Dとの関係によって表れるモア レ縞を目視により評価した結果を示す。表 2においては、モアレ縞の程度を充分に抑 制することができ且つ実用上支障のある画像ボケの発生が見られないものを「〇」とし 、モアレ縞の程度を充分に抑制することができるものの実用上支障のある画像ボケが 発生する場合があるものを「△」とし、モアレ縞の程度を充分に抑制することができな いものを「 X」として評価して!/、る。  [0041] Table 2 shows a difference between the haze value H of the light scattering layer 30 and the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel, using the liquid crystal display device XI according to this embodiment. The results of visual evaluation of moiré fringes appearing in the relationship are shown. In Table 2, “◯” indicates that the degree of moire fringes can be sufficiently suppressed and no occurrence of image blurring that impedes practical use is observed, and the degree of moire fringes is sufficiently suppressed. Evaluate as “△” if there is a possibility of image blurring that may be practically hindered, but evaluate as “X” if the degree of moire fringes cannot be sufficiently suppressed.
[表 2] 光散乱層 30のヘイズ値 H [%]  [Table 2] Haze value of light scattering layer 30 H [%]
0 5 10 20 40 60 80 90  0 5 10 20 40 60 80 90
1 X X X 〇 〇 〇 厶 厶  1 X X X ○ ○ ○ 厶 厶
0.9 X X X 〇 〇 o 厶 Δ  0.9 X X X ○ ○ o 厶 Δ
0.8 X X X 〇 o 〇 Δ △  0.8 X X X ○ o ○ Δ △
0.7 X X 〇 〇 〇 〇 Δ Δ  0.7 X X ○ ○ ○ ○ Δ Δ
0.6 X X 〇 〇 〇 〇 厶 Δ  0.6 X X ○ ○ ○ ○ 厶 Δ
D 0.5 X X 〇 〇 〇 〇 Δ Δ  D 0.5 X X ○ ○ ○ ○ Δ Δ
0.4 X X 〇 O 〇 〇 Δ Δ  0.4 X X ○ O ○ ○ Δ Δ
0.3 X 〇 〇 O 〇 〇 厶 △  0.3 X ○ ○ O ○ ○ 厶 △
0.2 X 〇 o o o o Δ 厶  0.2 X ○ o o o o Δ 厶
0.1 X 〇 O o o 〇 Δ 厶  0.1 X ○ O o o ○ Δ 厶
0 X 〇 O 〇 o 〇 Δ 厶 [0042] 表 2の結果から、画素を通過する光の偏り dの最大値と最小値との差 Dが 0以上 0.0 X ○ O ○ o ○ Δ 厶 [0042] From the results in Table 2, the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel is 0 or more.
3以下でヘイズ値 Hを 5以上とし、差 Dが 0. 3より大きく 0. 7以下でヘイズ値 Hを 10以 上とし、差 Dが 0. 7より大きく 1以下でヘイズ値 Hを 20以上とするように選択することで 、モアレ縞の程度を充分に抑制できることが明らかになった。 Haze value H is 5 or more at 3 or less, difference D is greater than 0.3 and 0.7 or less and haze value H is 10 or more, and difference D is greater than 0.7 and 1 or less and haze value H is 20 or more. It has been clarified that the degree of moire fringes can be sufficiently suppressed by selecting as follows.
[0043] 本実施形態に係る液晶表示装置 XIでは、液晶表示パネル 10とプリズム 20との光 学的な干渉により生じるモアレ縞の程度を充分に弱めることができるため、例えば複 数の光散乱層を通過させなくても、一の光散乱層 30により充分にモアレ縞を抑制す ること力 Sできる。また、液晶表示装置 XIでは、光干渉により生じるモアレ縞が充分に 弱められているため、一の光散乱層 30におけるヘイズ値 Hを過度に高めなくて済む 。したがって、液晶表示装置 XIでは、モアレ縞の程度を充分に抑制することができる とともに、プリズム 20による集光効果を輝度向上に充分に繋げることができる。さらに 、液晶表示装置 XIでは、光散乱層 30のヘイズ値を充分に抑制することができるので 、液晶表示装置 XIの画像ボケも充分に抑制することができる。液晶表示装置 XIに ぉレ、ては、画像ボケを抑制する観点からヘイズ値を 60以下とすることが好まし!/、。  [0043] In the liquid crystal display device XI according to the present embodiment, the degree of moire fringes caused by optical interference between the liquid crystal display panel 10 and the prism 20 can be sufficiently weakened. For example, a plurality of light scattering layers Even if the light is not allowed to pass through, the light scattering layer 30 can sufficiently suppress the moire fringes. Further, in the liquid crystal display device XI, moire fringes caused by light interference are sufficiently weakened, so that the haze value H in one light scattering layer 30 does not need to be excessively increased. Therefore, in the liquid crystal display device XI, the degree of moire fringes can be sufficiently suppressed, and the light condensing effect by the prism 20 can be sufficiently connected to the luminance improvement. Further, in the liquid crystal display device XI, the haze value of the light scattering layer 30 can be sufficiently suppressed, so that the image blur of the liquid crystal display device XI can also be sufficiently suppressed. In contrast to the liquid crystal display device XI, it is preferable to set the haze value to 60 or less from the viewpoint of suppressing image blurring! /.
[0044] 液晶表示装置 XIでは、透光性材料 31と、表面の少なくとも一部が透光性材料 31 に被覆される光散乱材 32を含んでなる光散乱層 30が採用されている。そのため、液 晶表示装置 1では、透光性材料 31に含まれる光散乱材 32の含有率を変えることで、 光散乱層 30のヘイズ値 Hを変更することができる。したがって、液晶表示装置 XIは 、光散乱層 30の一方主面および他方主面を略平坦面に保ちつつ、光散乱層 30の ヘイズ値を調整するうえで好適である。また、液晶表示装置 XIでは、光散乱材 32を 被覆する透光性材料 31とは屈折率の異なる透光性材料により光散乱材 32が構成さ れている。そのため、液晶表示装置 1では、例えば金属製の光散乱材に比べてその 表面での反射を抑制することができるので、入射される光が後方 (入射側)に反射さ れるのを抑制すること力 Sできる。つまり、液晶表示装置 XIでは、後方散乱に起因する 光の損失を低減することにより、その輝度をより高めることができる。  In the liquid crystal display device XI, a light scattering layer 30 including a light transmissive material 31 and a light scattering material 32 in which at least a part of the surface is covered with the light transmissive material 31 is employed. Therefore, in the liquid crystal display device 1, the haze value H of the light scattering layer 30 can be changed by changing the content ratio of the light scattering material 32 included in the translucent material 31. Therefore, the liquid crystal display device XI is suitable for adjusting the haze value of the light scattering layer 30 while keeping the one main surface and the other main surface of the light scattering layer 30 substantially flat. In the liquid crystal display device XI, the light scattering material 32 is made of a light transmitting material having a refractive index different from that of the light transmitting material 31 that covers the light scattering material 32. Therefore, in the liquid crystal display device 1, since reflection on the surface can be suppressed as compared with, for example, a metal light scattering material, incident light is prevented from being reflected backward (incident side). Power S can be. That is, in the liquid crystal display device XI, the luminance can be further increased by reducing the loss of light caused by backscattering.
[0045] 液晶表示装置 XIでは、プリズム 20の各第 1傾斜面 20aの平面視長さ L 1S 各第 2  [0045] In the liquid crystal display device XI, the planar view length L 1S of each first inclined surface 20a of the prism 20 is each second
W  W
傾斜面 20bの平面視長さ R に略等しい。このような構成によると、プリズム 20を透過  It is substantially equal to the planar view length R of the inclined surface 20b. According to such a configuration, the light passes through the prism 20.
W  W
する光の屈折の偏りを低減することができるため、光の偏りにより起因して発生するモ ァレ縞を更に抑制することができる。したがって、液晶表示装置 XIは、光散乱層 30 を通過することに起因する光の輝度低下をより抑制するうえで好適である。 Therefore, it is possible to reduce the deviation of the refraction of the light that is generated. Array stripes can be further suppressed. Therefore, the liquid crystal display device XI is suitable for further suppressing a decrease in light luminance caused by passing through the light scattering layer 30.
[0046] 液晶表示装置 XIでは、プリズム 20の第 1傾斜面 20aに対して第 2傾斜面 20bが略 垂直とされている。このような構成によると、第 1傾斜面 20aに対する第 2傾斜面 20b の角度が急峻になることによって生じるプリズム 20の一方主面に対する機械的な強 度の低下と、第 1傾斜面 20aに対する第 2傾斜面 20bの角度が緩やかになることによ つて生じるプリズム 20の集光性の低下との均衡をとることができる。したがって、液晶 表示装置 XIは、プリズムの集光性とプリズム 20の一方主面に対する機械的な強度と を両立させるうえで好適である。  In the liquid crystal display device XI, the second inclined surface 20b is substantially perpendicular to the first inclined surface 20a of the prism 20. According to such a configuration, the mechanical strength of the first principal surface of the prism 20 is reduced due to a sharp angle of the second inclined surface 20b with respect to the first inclined surface 20a, and the first inclined surface 20a (2) It is possible to balance the decrease in the light condensing property of the prism 20 caused by the gentle angle of the inclined surface 20b. Therefore, the liquid crystal display device XI is suitable for achieving both the light condensing property of the prism and the mechanical strength with respect to one main surface of the prism 20.
[0047] 本発明の第 2の実施形態に係る液晶表示装置 X2は、プリズム 20と光散乱層 30と の間に配置される反射偏光部材 70を更に有する点において、液晶表示装置 XIと異 なる。但し、本実施形態における透光性材料 31は、接着性を有する透光性材料によ り構成されており、偏光部材 40と反射偏光部材 70とを接着している。液晶表示装置 X2の他の構成については、液晶表示装置 XIに関して上述したのと同様である。な お、図 8では、図面の見易さの観点から筐体 60を省略している。  The liquid crystal display device X2 according to the second embodiment of the present invention differs from the liquid crystal display device XI in that it further includes a reflective polarizing member 70 disposed between the prism 20 and the light scattering layer 30. . However, the translucent material 31 in the present embodiment is made of a translucent material having adhesiveness, and the polarizing member 40 and the reflective polarizing member 70 are bonded to each other. Other configurations of the liquid crystal display device X2 are the same as those described above for the liquid crystal display device XI. In FIG. 8, the casing 60 is omitted from the viewpoint of easy viewing.
[0048] 反射偏光部材 70は、第 1振動方向の光を選択的に通過し且つ第 1振動方向と振 動方向が異なる第 2振動方向の光を反射する機能を担う部材である。反射偏光部材 70としては、透光性を有する樹脂材料にコレステリック液晶を混ぜたものを積層して なる積層体、あるいは、屈折率の異なる複数の透光性材料を積層してなる積層体な どが挙げられる。ここで、透光性を有する樹脂材料としては、ポリカーボネート樹脂、 ポリエステル樹脂、あるいはアクリル樹脂などが挙げられる。また、透光性材料として は、光散乱材 32の構成材料として記載した透光性散乱材と同様のものが挙げられる  The reflective polarizing member 70 is a member that has a function of selectively passing light in the first vibration direction and reflecting light in the second vibration direction that is different from the vibration direction of the first vibration direction. Examples of the reflective polarizing member 70 include a laminate obtained by laminating a resin material having translucency mixed with cholesteric liquid crystal, or a laminate obtained by laminating a plurality of translucent materials having different refractive indexes. Is mentioned. Here, examples of the light-transmitting resin material include polycarbonate resin, polyester resin, and acrylic resin. Further, as the translucent material, the same translucent scattering material described as the constituent material of the light scattering material 32 can be cited.
[0049] 表 3に、本実施形態に係る液晶表示装置 X2を用いて、光散乱層 30のヘイズ値 Hと 画素を通過する光の偏り dの最大値および最小値の差 Dとの関係によって表れたモ ァレ縞を目視により評価した結果を示す。なお、表 3の評価は、表 2と同様の評価基 準により行っている。 [0049] Table 3 shows the relationship between the haze value H of the light scattering layer 30 and the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel using the liquid crystal display device X2 according to this embodiment. The results of visual evaluation of visible stripes are shown. The evaluation in Table 3 is based on the same evaluation criteria as in Table 2.
[表 3] 光散乱層 30のヘイズ値 H [%] [Table 3] Haze value of light scattering layer 30 H [%]
0 5 10 20 40 60 80 90  0 5 10 20 40 60 80 90
1 X X X 0 〇 0 Δ Δ  1 X X X 0 〇 0 Δ Δ
0.9 X X X O 〇 〇 Δ 厶  0.9 X X X O ○ ○ Δ 厶
0.8 X X X O 〇 o Δ Δ  0.8 X X X O ○ o Δ Δ
0.7 X X 〇 〇 0 o Δ 厶  0.7 X X ○ ○ 0 o Δ 厶
0.6 X X 0 〇 0 〇 厶 厶  0.6 X X 0 〇 0 〇 厶 厶
D 0.5 X X o 0 0 0 △ Δ  D 0.5 X X o 0 0 0 △ Δ
0.4 X X o 〇 〇 0 Δ Δ  0.4 X X o ○ ○ 0 Δ Δ
0.3 X o o 〇 0 0 Δ 厶  0.3 X o o 〇 0 0 Δ 厶
0.2 X 〇 o O 0 0 Δ 厶  0.2 X ○ o O 0 0 Δ 厶
0.1 X 〇 o O 〇 〇 厶 Δ  0.1 X ○ o O ○ ○ 厶 Δ
0 X 〇 〇 〇 0 〇 Δ Δ  0 X ○ ○ ○ 0 ○ Δ Δ
[0050] 表 3の結果から、画素を通過する光の偏り dの最大値と最小値との差 Dが 0以上 0· 3以下でヘイズ値 Hを 5以上とし、差 Dが 0. 3より大きく 0. 7以下でヘイズ値 Hを 10以 上とし、差 Dが 0. 7より大きく 1以下でヘイズ値 Hを 20以上とするように選択することで 、モアレ縞を充分に抑制できることが明らかになった。 [0050] From the results in Table 3, the difference between the maximum and minimum values of the polarization of light passing through the pixel, D is 0 or more and 0.3 or less, the haze value H is 5 or more, and the difference D is 0.3 It is clear that moire fringes can be sufficiently suppressed by selecting the haze value H to be 10 or more when the difference is greater than 0.7 and the difference D is greater than 0.7 to 1 or less and the haze value H to be 20 or more. Became.
[0051] 液晶表示装置 X2は、反射偏光部材 70と光反射部材 53とを備えている。そのため 、液晶表示装置 X2では、プリズム 20から反射偏光部材 70に入射される光のうち第 2 振動方向に振動する光を光反射部材 53側に反射させるとともに、この反射光を光反 射部材 53によって反射偏光部材 70側に反射させることで、再度反射偏光部材 70に 入射させることができる。つまり、液晶表示装置 X2では、第 2振動方向に振動する光 が第 1振動方向に振動する光となって反射偏光部材 70を通過するまで、反射偏光 部材 70と光反射部材 53とにより多重反射させることができる。したがって、液晶表示 装置 X2では、バックライト 50から反射偏光部材 70に入射される光をより効率的に液 晶表示パネル 10に入射させることができるので、その輝度をより高めることができる。  [0051] The liquid crystal display device X2 includes a reflective polarizing member 70 and a light reflecting member 53. Therefore, in the liquid crystal display device X2, the light that is oscillated in the second vibration direction among the light incident on the reflective polarizing member 70 from the prism 20 is reflected to the light reflecting member 53 side, and the reflected light is reflected on the light reflecting member 53. Thus, the light can be incident on the reflective polarizing member 70 again by being reflected toward the reflective polarizing member 70 side. That is, in the liquid crystal display device X2, the light that vibrates in the second vibration direction becomes light that vibrates in the first vibration direction and passes through the reflective polarizing member 70 until it is reflected by the reflective polarizing member 70 and the light reflecting member 53. Can be made. Therefore, in the liquid crystal display device X2, the light incident on the reflective polarizing member 70 from the backlight 50 can be more efficiently incident on the liquid crystal display panel 10, so that the luminance can be further increased.
[0052] 液晶表示装置 X2では、透光性材料 31として接着性を有する透光性樹脂が採用さ れている。つまり、液晶表示装置 X2では、液晶表示パネル 10と反射偏光部材 70と の間に介在する光散乱層 30自体が接着層としての機能も担うこととなる。したがって 、液晶表示装置 X2では、光散乱層 30とは別に接着層を設けずに済む分、装置全体 の厚みの増加を抑制することができる。 In the liquid crystal display device X2, a translucent resin having adhesiveness is employed as the translucent material 31. That is, in the liquid crystal display device X2, the light scattering layer 30 itself interposed between the liquid crystal display panel 10 and the reflective polarizing member 70 also functions as an adhesive layer. Therefore In the liquid crystal display device X2, an increase in the thickness of the entire device can be suppressed because the adhesive layer is not provided separately from the light scattering layer 30.
[0053] 液晶表示装置 X2では、反射偏光部材 70が光散乱層 30を介して液晶表示パネル  In the liquid crystal display device X2, the reflective polarizing member 70 is interposed between the light scattering layer 30 and the liquid crystal display panel.
10の一方主面に対向配置されている。つまり、液晶表示装置 X2では、反射偏向部 材 70と光反射部材 53との間に光散乱層 30が介在していない。そのため、液晶表示 装置 X2では、光散乱層 30を通過させることなぐ反射偏光部材 70により反射された 光を光反射部材 53に入射することができるので、反射偏光部材 70と光反射部材 53 との間で多重反射させている光が散乱され、輝度が低下してしまうのを抑制すること ができる。したがって、液晶表示装置 X2は、反射偏光部材 70に入射される光を効率 よく利用し、輝度の向上を図るうえで好適である。  Oppositely arranged on one main surface of 10. That is, in the liquid crystal display device X2, the light scattering layer 30 is not interposed between the reflection deflecting member 70 and the light reflecting member 53. Therefore, in the liquid crystal display device X2, since the light reflected by the reflective polarizing member 70 that does not pass through the light scattering layer 30 can be incident on the light reflecting member 53, the reflection polarizing member 70 and the light reflecting member 53 It is possible to suppress a decrease in luminance due to scattering of light that is multiply reflected between the two. Therefore, the liquid crystal display device X2 is suitable for improving the luminance by efficiently using the light incident on the reflective polarizing member 70.
[0054] 本発明の第 3の実施形態に係る液晶表示装置 X3は、液晶表示装置 X2の光散乱 層 30に代えて、液晶表示パネル 10の平坦化層 124を光散乱層 124'とした点にお いて、液晶表示装置 X2と異なる。液晶表示装置 X3の他の構成については、液晶表 示装置 X2に関して上述したのと同様である。なお、図 9では、図面の見易さの観点か ら筐体 60を省略している。  [0054] In the liquid crystal display device X3 according to the third embodiment of the present invention, the planarization layer 124 of the liquid crystal display panel 10 is replaced with a light scattering layer 124 'instead of the light scattering layer 30 of the liquid crystal display device X2. However, it is different from the liquid crystal display device X2. Other configurations of the liquid crystal display device X3 are the same as those described above with respect to the liquid crystal display device X2. In FIG. 9, the casing 60 is omitted from the viewpoint of easy viewing.
[0055] 光散乱層 124'は、平坦化層 124中に光散乱材(図示せず)を分散させることにより 構成している。本実施形態において光散乱層 124'は、遮光層 122の貫通孔 122a に対応する領域において、一方主面と他方主面とがそれぞれ略平坦面であり且つ一 方主面と他方主面とが略平行である。ここで、略平坦とは、対象となる面の表面粗さ 力 規格 B0601 : 2001の算術平均高さ Raで 0. 1 m以下のものを意味する。略 平行とは、基準面(例えば、光散乱層 30の一方主面)に対する対称面(例えば光散 乱層 30の他方主面)の傾斜が 2° 以下であることを意味する。光散乱層 124'におけ る光散乱材の構成材料としては、光散乱層 30における光散乱材 32と同様のものが 挙げられ、本実施形態においては透光性散乱材が採用されている。  The light scattering layer 124 ′ is configured by dispersing a light scattering material (not shown) in the planarization layer 124. In the present embodiment, in the light scattering layer 124 ′, in the region corresponding to the through hole 122a of the light shielding layer 122, the one principal surface and the other principal surface are substantially flat surfaces, and the one principal surface and the other principal surface are each It is almost parallel. Here, “substantially flat” means that the surface roughness force of the target surface is an arithmetic average height Ra of standard B0601: 2001 of 0.1 m or less. Substantially parallel means that the inclination of the symmetry plane (for example, the other main surface of the light scattering layer 30) with respect to the reference plane (for example, the one main surface of the light scattering layer 30) is 2 ° or less. Examples of the constituent material of the light scattering material in the light scattering layer 124 ′ include the same materials as the light scattering material 32 in the light scattering layer 30. In this embodiment, a translucent scattering material is used.
[0056] 表 4に、本実施形態に係る液晶表示装置 X3を用いて、光散乱層 124'のヘイズ値 Hと画素を通過する光の偏り dの最大値および最小値の差 Dとの関係によって表れる モアレ縞を目視により評価した結果を示す。なお、表 4の評価は、表 2と同様の評価 基準により行っている。 [表 4] [0056] Table 4 shows a relationship between the haze value H of the light scattering layer 124 'and the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel using the liquid crystal display device X3 according to this embodiment. The results of visual evaluation of the moire fringes expressed by. The evaluation in Table 4 is based on the same evaluation criteria as in Table 2. [Table 4]
Figure imgf000018_0001
Figure imgf000018_0001
[0057] 表 4の結果から、画素を通過する光の偏り dの最大値と最小値との差 Dが 0以上 0.  [0057] From the results in Table 4, the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel is 0 or more.
3以下でヘイズ値 Hを 5以上とし、差 Dが 0. 3より大きく 0. 7以下でヘイズ値 Hを 10以 上とし、差 Dが 0. 7より大きく 1以下でヘイズ値 Hを 20以上とするように選択することに より、モアレ縞を充分に抑制できることが明らかになった。  Haze value H is 5 or more at 3 or less, difference D is greater than 0.3 and 0.7 or less and haze value H is 10 or more, and difference D is greater than 0.7 and 1 or less and haze value H is 20 or more. It was revealed that the moiré fringes can be sufficiently suppressed by selecting so as to be.
[0058] 本実施形態に係る液晶表示装置 X3では、液晶表示パネル 10とプリズム 20との光 学的な干渉により生じるモアレ縞の程度を充分に弱めることができるため、例えば複 数の光散乱層を通過させなくても、一の光散乱層 124'により充分にモアレ縞を抑制 すること力 Sできる。また、液晶表示装置 X3では、光干渉により生じるモアレ縞が充分 に弱められているため、一の光散乱層 124'におけるヘイズ直 Hを過度に高めなくて 済む。したがって、液晶表示装置 X3では、モアレ縞の程度を充分に抑制することが できるとともに、プリズム 20による集光効果を輝度向上に充分に繋げることができる。 さらに、液晶表示装置 X3では、光散乱層 124'のヘイズ値を充分に抑制することが できるので、液晶表示装置 X3の画像ボケも充分に抑制することができる。液晶表示 装置 X3においては、画像ボケを抑制する観点からヘイズ値を 60以下とすることが好 ましい。 [0059] 液晶表示装置 X3では、透光性材料と、表面の少なくとも一部が透光性材料に被覆 される光散乱材を含んでなる光散乱層 124'が採用されている。そのため、液晶表示 装置 X3では、透光性材料 31に含まれる光散乱材 32の含有率を変えることで、光散 乱層 30のヘイズ値 Hを変更することができる。したがって、液晶表示装置 X3は、光 散乱層 30の一方主面および他方主面を略平坦面に保ちつつ、光散乱層 30のヘイ ズ値を調整するうえで好適である。 [0058] In the liquid crystal display device X3 according to the present embodiment, the degree of moire fringes caused by optical interference between the liquid crystal display panel 10 and the prism 20 can be sufficiently weakened. For example, a plurality of light scattering layers Even if the light is not allowed to pass through, it is possible to sufficiently suppress moire fringes by the single light scattering layer 124 ′. Further, in the liquid crystal display device X3, moire fringes caused by light interference are sufficiently weakened, so that the direct haze H in the one light scattering layer 124 ′ does not need to be excessively increased. Therefore, in the liquid crystal display device X3, the degree of moire fringes can be sufficiently suppressed, and the light condensing effect by the prism 20 can be sufficiently linked to the luminance improvement. Further, in the liquid crystal display device X3, the haze value of the light scattering layer 124 ′ can be sufficiently suppressed, so that the image blur of the liquid crystal display device X3 can be sufficiently suppressed. In the liquid crystal display device X3, the haze value is preferably 60 or less from the viewpoint of suppressing image blur. [0059] The liquid crystal display device X3 employs a light-scattering layer 124 'including a light-transmitting material and a light-scattering material in which at least part of the surface is coated with the light-transmitting material. Therefore, in the liquid crystal display device X3, the haze value H of the light scattering layer 30 can be changed by changing the content ratio of the light scattering material 32 included in the translucent material 31. Therefore, the liquid crystal display device X3 is suitable for adjusting the haze value of the light scattering layer 30 while keeping the one main surface and the other main surface of the light scattering layer 30 substantially flat.
[0060] 液晶表示装置 X3では、光散乱層 124'が凹凸を平坦化するための平坦化層 124と しての機能も担う。したがって、液晶表示装置 X3では、光散乱層 124'とは別に平坦 化層を設けずに済む分、液晶表示装置 X3の厚みの増加を抑制することができる。  In the liquid crystal display device X3, the light scattering layer 124 ′ also functions as the planarizing layer 124 for planarizing the unevenness. Therefore, in the liquid crystal display device X3, an increase in the thickness of the liquid crystal display device X3 can be suppressed by eliminating the need to provide a planarizing layer separately from the light scattering layer 124 ′.
[0061] 本発明の第 4の実施形態に係る液晶表示装置 X4は、光散乱層 30および偏向部材 40に代えて、表面を粗面化処理してなる光散乱層 30'を有する偏向部材 40'とした 点において液晶表示装置 X2と異なる。液晶表示装置 X4の他の構成については、液 晶表示装置 X2に関して上述したのと同様である。なお、図 10では、図面の見易さの 観点から筐体 60を省略して V、る。  In the liquid crystal display device X4 according to the fourth embodiment of the present invention, a deflection member 40 having a light scattering layer 30 ′ obtained by roughening the surface instead of the light scattering layer 30 and the deflection member 40. It differs from the liquid crystal display device X2 in that “ Other configurations of the liquid crystal display device X4 are the same as those described above regarding the liquid crystal display device X2. In FIG. 10, the case 60 is omitted from the viewpoint of easy viewing of the drawing.
[0062] 光散乱層 30'は、偏光部材 40におけるプリズム 20との対向面を粗面化処理するこ とにより構成されている。  The light scattering layer 30 ′ is configured by roughening the surface of the polarizing member 40 that faces the prism 20.
[0063] 表 5に、本実施形態に係る液晶表示装置 X4を用いて、光散乱層 30'のヘイズ直 H と画素を通過する光の偏り dの最大値および最小値の差 Dとの関係によって表れるモ ァレ縞を目視により評価した結果を示す。なお、表 5の評価は、表 2と同様の評価基 準により行っている。  [0063] Table 5 shows the relationship between the direct haze H of the light scattering layer 30 'and the difference D between the maximum value and the minimum value D of the light passing through the pixel using the liquid crystal display device X4 according to this embodiment. The results of visual evaluation of mole fringes expressed by The evaluation in Table 5 is based on the same evaluation criteria as in Table 2.
[表 5] [Table 5]
光散乱層 30'のヘイズ値 H [ ] Haze value of light scattering layer 30 'H []
0 2 4 8 12 16 20 25 35 45 60 0 2 4 8 12 16 20 25 35 45 60
1 X X X X o 〇 〇 〇 o Δ Δ1 X X X X o ○ ○ ○ o Δ Δ
0.9 X X X O o o 〇 o o 厶 厶0.9 X X X O o o ○ o o 厶 厶
0.8 X X X o 〇 o 〇 o o Δ 厶0.8 X X X o ○ o ○ o o Δ 厶
0.7 X X o o o o o o o Δ Δ0.7 X X o o o o o o o Δ Δ
0.6 X X O o 〇 o o o o △ Δ0.6 X X O o ○ o o o o △ Δ
D 0.5 X X O o o 〇 o o o △ 厶D 0.5 X X O o o ○ o o o △ 厶
0.4 X o O o o 〇 o o o 厶 Δ0.4 X o O o o ○ o o o 厶 Δ
0.3 X o O o o 〇 0 〇 o Δ 厶0.3 X o O o o ○ 0 ○ o Δ 厶
0.2 X o o o o o 〇 〇 〇 厶 Δ0.2 X o o o o o ○ ○ ○ 厶 Δ
0.1 X o o o 〇 〇 o o 〇 厶 厶0.1 X o o o ○ ○ o o ○ 厶 厶
0 X O o o 〇 o 〇 〇 〇 厶 Δ 0 X O o o ○ o ○ ○ ○ 厶 Δ
[0064] 表 5の結果から、画素を通過する光の偏り dの最大値と最小値との差 Dが 0以上 0. [0064] From the results in Table 5, the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel is 0 or more.
4以下でヘイズ値 Hを 2以上とし、差 Dが 0. 4より大きく 0. 7以下でヘイズ値 Hを 4以 上とし、差 Dが 0. 7より大きく 0. 9以下でヘイズ値 Hを 8以上とし、差 Dが 0. 9より大き く 1以下でヘイズ値 Hを 12以上とするように選択することで、モアレ縞を充分に抑制で きることが明らかになった。  When haze value H is 2 or more and haze value H is 2 or more, difference D is greater than 0.4 or less than 0.7 and haze value H is 4 or more, and difference D is greater than 0.7 and haze value H is 0.9 or less. It was found that moire fringes can be sufficiently suppressed by selecting 8 or more, selecting the difference D to be greater than 0.9 and 1 or less, and the haze value H to be 12 or more.
[0065] 液晶表示装置 X4では、液晶表示パネル 10とプリズム 20との光学的な干渉により生 じるモアレ縞の程度を充分に弱めることができるため、複数の光散乱層を通過させな くても、一の光散乱層 30'により充分にモアレ縞を抑制することができる。また、液晶 表示装置 X4では、光干渉により生じるモアレ縞が充分に弱められているため、モア レ縞を充分に抑制するのに一の光散乱層 30'におけるヘイズ値 Hを過度に高めなく て済む。したがって、液晶表示装置 X4は、モアレ縞の程度を充分に抑制することが できるとともに、プリズム 20による集光効果を輝度向上に充分に繋げることができる。 さらに、液晶表示装置 X4では、光散乱層 30'のへイズ^ Iを充分に抑制することがで きるので、液晶表示装置 X4の画像ボケも充分に抑制することができる。液晶表示装 置 X4においては、画像ボケを抑制する観点からヘイズ値を 35以下とすることが好ま しい。 [0066] 本発明の第 5の実施形態に係る液晶表示装置 X5は、液晶表示パネル 10とプリズ ム 20との間に別のプリズム 21を有する点において、液晶表示装置 X4と異なる。液晶 表示装置 X5の他の構成については、液晶表示装置 X4に関して上述したのと同様で ある。本実施形態では液晶表示装置 X4を採用して説明するが、液晶表示装置 XI , X2, X3を採用してもよい。なお、図 11では、図面の見易さの観点から筐体 60を省略 している。 [0065] In the liquid crystal display device X4, the degree of moire fringes caused by optical interference between the liquid crystal display panel 10 and the prism 20 can be sufficiently reduced, so that it is not necessary to pass through a plurality of light scattering layers. However, moire fringes can be sufficiently suppressed by the single light scattering layer 30 ′. Further, in the liquid crystal display device X4, moire fringes caused by optical interference are sufficiently weakened, so that the haze value H in one light scattering layer 30 ′ is not excessively increased to sufficiently suppress moire fringes. That's it. Therefore, the liquid crystal display device X4 can sufficiently suppress the degree of moire fringes and can sufficiently link the light collection effect of the prism 20 to the luminance improvement. Furthermore, in the liquid crystal display device X4, since the haze I of the light scattering layer 30 ′ can be sufficiently suppressed, the image blur of the liquid crystal display device X4 can also be sufficiently suppressed. In the liquid crystal display device X4, the haze value is preferably 35 or less from the viewpoint of suppressing image blur. The liquid crystal display device X5 according to the fifth embodiment of the present invention is different from the liquid crystal display device X4 in that another prism 21 is provided between the liquid crystal display panel 10 and the prism 20. Other configurations of the liquid crystal display device X5 are the same as those described above for the liquid crystal display device X4. In the present embodiment, the liquid crystal display device X4 will be described. However, the liquid crystal display devices XI, X2, and X3 may be used. In FIG. 11, the casing 60 is omitted from the viewpoint of easy viewing of the drawing.
[0067] プリズム 21は、その膜厚方向において矢印 B方向側から矢印 A方向側に向けて通 過する光を集光させる機能を担う部材である。プリズム 21は、その一方主面側に液晶 表示パネル 10の一方主面に対して傾斜する第 3傾斜面 21aと、第 3傾斜面 21aと異 なる角度で傾斜する第 4傾斜面 2 lbとを複数有している。第 3傾斜面 2 laおよび第 4 傾斜面 21bは、第 2配列方向において交互かつ周期的に設けられており、その周期 (プリズムピッチ)は、等しく P である。また、第 3傾斜面 21aおよび第 4傾斜面 21bの  [0067] The prism 21 is a member having a function of condensing light passing from the arrow B direction side to the arrow A direction side in the film thickness direction. The prism 21 has, on one main surface side thereof, a third inclined surface 21a inclined with respect to the one main surface of the liquid crystal display panel 10, and a fourth inclined surface 2 lb inclined at a different angle from the third inclined surface 21a. Have more than one. The third inclined surface 2 la and the fourth inclined surface 21b are provided alternately and periodically in the second arrangement direction, and the period (prism pitch) is equal to P. Further, the third inclined surface 21a and the fourth inclined surface 21b
P2  P2
延びる方向は、第 1傾斜面 20aおよび第 2傾斜面 20bの延びる方向に対して略直交 している。ここで、略直交とは、プリズムにおけるプリズム溝の延びる方向に対する別 のプリズムにおけるプリズム溝の延びる方向の傾きが 88° 以上 90° 以下であること を意味する。第 3傾斜面 21aはプリズム 21の他方主面 21cに対して垂直に入射され る光を右方向(矢印 F方向)に屈折させるように形成され、第 4傾斜面 2 lbはプリズム 2 1の他方主面 21cに対して垂直に入射される光を左方向(矢印 E方向)に屈折させる ように形成されている。プリズム 21の構成材料としては、プリズム 20の構成材料と同 様のものが挙げられる。表 6に Aを 79 m、 A を 237 mとしたときの Pと P との  The extending direction is substantially orthogonal to the extending direction of the first inclined surface 20a and the second inclined surface 20b. Here, “substantially orthogonal” means that the inclination of the prism groove extending direction of another prism is 88 ° or more and 90 ° or less with respect to the prism groove extending direction of the prism. The third inclined surface 21a is formed so as to refract the light incident perpendicularly to the other main surface 21c of the prism 21 in the right direction (arrow F direction), and the fourth inclined surface 2 lb is the other side of the prism 21. It is formed to refract the light incident perpendicular to the main surface 21c in the left direction (arrow E direction). The constituent material of the prism 21 is the same as the constituent material of the prism 20. Table 6 shows the relationship between P and P when A is 79 m and A is 237 m.
P P2 P P2 関係によって表れるモアレ縞を目視により評価した結果を示す。なお、表 6の評価は 、表 2と同様の評価基準により行っている。  P P2 P P2 shows the result of visual evaluation of moire fringes that appear in the relationship. The evaluation in Table 6 is based on the same evaluation criteria as in Table 2.
[表 6]
Figure imgf000022_0001
[Table 6]
Figure imgf000022_0001
[0068] 表 6の結果から、液晶表示装置 X5のように複数 (本実施形態では 2つ)のプリズム 2 [0068] From the results in Table 6, a plurality of (two in this embodiment) prisms 2 as in the liquid crystal display device X5.
0, 21を備える場合 ίこ (ま、プリズム 20, 21のうち、各プリズム 20, 21の開口幅 A , A p p などにより上述の他の実施例と同様にして算出される dの最大値と最小値との差 DのIn the case where 0, 21 are provided, the maximum value of d calculated in the same manner as in the other embodiments described above by the aperture widths A, A pp of the prisms 20, 21, etc. Difference from minimum value D
2 2
最も大きいプリズムにおいて、充分にモアレ縞の程度を抑制することが可能なヘイズ 値 Hを有する光散乱層 30 'を採用すればよいことが明ら力、となった。  It has become clear that it is sufficient to employ a light scattering layer 30 ′ having a haze value H that can sufficiently suppress the degree of moire fringes in the largest prism.
[0069] 液晶表示装置 X5は、プリズム 21を更に有している。そのため、液晶表示装置 X5は 、プリズム 20と別のプリズム 21とを通過した光をこの略直交する方向に対する偏りを 抑えて集光させること力できる。したがって、液晶表示装置 X5は、液晶表示パネル 1 0に対する視野角の違いによる輝度のバラツキを抑制するうえで好適である。  The liquid crystal display device X5 further includes a prism 21. Therefore, the liquid crystal display device X5 can condense the light that has passed through the prism 20 and the other prism 21 while suppressing the deviation with respect to the substantially orthogonal direction. Therefore, the liquid crystal display device X5 is suitable for suppressing variation in luminance due to a difference in viewing angle with respect to the liquid crystal display panel 10.
[0070] 以上、本発明の具体的な実施形態を示したが、本発明はこれに限定されるもので はなぐ発明の思想から逸脱しない範囲内で種々の変更が可能である。  While specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.
[0071] 上述の各実施形態では表示装置として、液晶表示パネル 10を備える液晶表示装 置 XI , X2, X3, X4, X5を用いて説明を行った力 これに代えて、他の自発光しな い表示パネルなどを備えるものを採用しても同様の効果を奏することができる。  [0071] In each of the above-described embodiments, the power described using the liquid crystal display devices XI, X2, X3, X4, and X5 including the liquid crystal display panel 10 as the display device. The same effect can be obtained even if a display panel without a display panel is employed.
[0072] 上述の各実施形態において液晶表示パネル 10の第 1基体 12は、遮光層 122を有 しているが、遮光層 122を有していなくてもよい。ここで、液晶表示装置 X4の液晶表 示パネル 10として遮光層 122を有さない液晶表示パネルを採用した場合における、 光散乱層 30 'のヘイズ値 Hと画素を通過する光の偏り dの最大値および最小値の差 Dとの関係によって生じるモアレ縞を目視により評価した結果を表 7に示す。なお、表 7の評価は、表 2と同様の評価基準により行っている。 In each of the above-described embodiments, the first base 12 of the liquid crystal display panel 10 has the light shielding layer 122, but may not have the light shielding layer 122. Here, the liquid crystal display of the LCD display device X4 Relationship between the haze value H of the light scattering layer 30 'and the bias of light passing through the pixel d and the difference D between the maximum and minimum values when a liquid crystal display panel that does not have the light shielding layer 122 is used as the display panel 10 Table 7 shows the results of visual evaluation of the moire fringes generated by the above. The evaluation in Table 7 is based on the same evaluation criteria as in Table 2.
[表 7]  [Table 7]
Figure imgf000023_0001
Figure imgf000023_0001
[0073] 表 7に示されるように、表 5に示す遮光層 122を有する場合と同様の結果が得られ、 同様の効果を奏することがわかった。  [0073] As shown in Table 7, it was found that the same results as those obtained when the light shielding layer 122 shown in Table 5 was obtained were obtained and the same effects were obtained.
[0074] 上述の各実施形態においてプリズム 20は、第 1傾斜面 20aと第 2傾斜面 20bとが連 続的に形成されている力 第 1傾斜面 20aおよび第 2傾斜面 20bを有していれば、そ の他の構成としてもよい。例えば、図 13に示すように、第 1配列方向(矢印 CD方向) と厚み方向(矢印 AB方向)とにより規定される面における断面形状が略台形状のプリ ズム 20,としてもよい。このような構成の場合、プリズム 20'の一方主面を平面視したと きの第 1配列方向における第 1傾斜面 20a'と第 2傾斜面 20b'との平面視長さは、そ れぞれ L ' , R 'により表される。また、図 14に示すように、一方主面に平坦面 20d" w w  [0074] In each of the above-described embodiments, the prism 20 has the force that the first inclined surface 20a and the second inclined surface 20b are continuously formed. The first inclined surface 20a and the second inclined surface 20b are provided. Other configurations may be used. For example, as shown in FIG. 13, the prism 20 may have a substantially trapezoidal cross-sectional shape in a plane defined by the first arrangement direction (arrow CD direction) and the thickness direction (arrow AB direction). In the case of such a configuration, the planar view lengths of the first inclined surface 20a ′ and the second inclined surface 20b ′ in the first arrangement direction when the one main surface of the prism 20 ′ is viewed in plan are respectively. This is represented by L ', R'. As shown in Fig. 14, one main surface is a flat surface 20d "w w
を有するプリズム 20"としてもよい。このような構成の場合、プリズム 20"の一方主面を 平面視したときの第 1配列方向における第 1傾斜面 20a'と第 2傾斜面 20b'との平面 視長さは、それぞれ L " , R "により表される。なお、プリズム 21についても同様の構 In such a configuration, the plane of the first inclined surface 20a ′ and the second inclined surface 20b ′ in the first arrangement direction when the one main surface of the prism 20 ″ is viewed in plan. The visual length is represented by L "and R", respectively. The same structure applies to prism 21.
w w  w w
成変更を行ってもよい。  You may make changes.
[0075] 液晶表示装置 XIの光散乱層 30は、液晶表示パネル 10とプリズム 20との間に位置 しているが、このような構成に限られるものではなぐ液晶表示パネル 10の第 1基体 1 2に対向するように配置して!/、てもよ!/、。このような構成にお!/、ても同様の効果が得ら れる。  [0075] The light scattering layer 30 of the liquid crystal display device XI is located between the liquid crystal display panel 10 and the prism 20, but the first substrate 1 of the liquid crystal display panel 10 is not limited to such a configuration. Place them so that they face 2! Even with such a configuration, the same effect can be obtained.
[0076] 液晶表示装置 X4では、偏光部材 40におけるプリズム 20との対向面を粗面化処理 することによって光散乱層 30 'を形成している力 S、これには限られず、例えば透光性 材料と該透光性材料により表面の一部が被覆される光散乱材とを含んで構成される 光散乱層で偏光部材 40におけるプリズム 20との対向面を被覆するようにしてもよい。 このような構成によると、透光性材料に含有される光散乱材の大きさを変更することに より、光散乱層のヘイズ直 Hを変更することができるため、光散乱層により光が過度に 散乱されるのを抑えつつ、光散乱層のヘイズ値 Hを調整するうえで好適である。  In the liquid crystal display device X4, the force S that forms the light scattering layer 30 ′ by roughening the surface of the polarizing member 40 facing the prism 20 is not limited to this. A surface of the polarizing member 40 facing the prism 20 may be covered with a light scattering layer including a material and a light scattering material whose surface is partially covered with the light transmissive material. According to such a configuration, by changing the size of the light scattering material contained in the translucent material, it is possible to change the direct haze H of the light scattering layer. It is suitable for adjusting the haze value H of the light scattering layer while suppressing the scattering.
[0077] 液晶表示装置 X4では、偏光部材 40におけるプリズム 20との対向面を粗面化処理 することによって光散乱層 30 'を形成している力 S、これには限られず、偏光部材 41の 表面を粗面化処理することによって光散乱層を形成してもよい。ここで、偏光部材 41 のヘイズ値 Hと、画素を通過する光の偏り dの最大値および最小値の差 Dとの関係に よって生じるモアレ縞を目視により評価した結果を表 8に示す。なお、表 8の評価は、 表 2と同様の評価基準により行っている。  In the liquid crystal display device X4, the force S forming the light scattering layer 30 ′ by roughening the surface of the polarizing member 40 facing the prism 20 is not limited to this. The light scattering layer may be formed by roughening the surface. Table 8 shows the results of visual evaluation of moire fringes caused by the relationship between the haze value H of the polarizing member 41 and the difference D between the maximum value and the minimum value of the deviation d of the light passing through the pixel. The evaluation in Table 8 is based on the same evaluation criteria as in Table 2.
[表 8] [Table 8]
偏光部材 41のヘイズ値 H [%] Haze value of polarizing member 41 H [%]
0 2 4 8 12 16 20 25 35 45 60 0 2 4 8 12 16 20 25 35 45 60
1 X X X X o 〇 o 0 o 厶 厶1 X X X X o ○ o 0 o 厶 厶
0.9 X X X o o 〇 o o o 厶 厶0.9 X X X o o ○ o o o 厶 厶
0.8 X X X o o o o o o 厶 厶0.8 X X X o o o o o o 厶 厶
0.7 X X o 〇 o o o o o 厶 厶0.7 X X o ○ o o o o o 厶 厶
0.6 X X 〇 o o o o o 〇 厶 厶0.6 X X ○ o o o o o ○ 厶 厶
D 0.5 X X o o o o o o 〇 厶 ΔD 0.5 X X o o o o o o ○ 厶 Δ
0.4 X 〇 o o o o o 〇 〇 厶 厶0.4 X ○ o o o o o ○ ○ 厶 厶
0.3 X 〇 o o o o 〇 〇 〇 △ Δ0.3 X ○ o o o o ○ ○ ○ △ Δ
0.2 X 〇 o o o 0 o o o 厶 厶0.2 X ○ o o o 0 o o o 厶 厶
0.1 X 〇 o o 〇 0 o o 〇 厶 厶0.1 X ○ o o ○ 0 o o ○ 厶 厶
0 X 〇 o 〇 〇 0 0 〇 〇 Δ 厶 0 X ○ o ○ ○ 0 0 ○ ○ ○ Δ 厶
[0078] 表 8に示されるように、表 5に示す偏向部材 40を粗面化処理する場合と同様の結果 が得られ、同様の効果を奏することがわかった。 [0078] As shown in Table 8, it was found that the same result as that obtained when the deflection member 40 shown in Table 5 was subjected to the roughening treatment was obtained, and the same effect was obtained.
[0079] 液晶表示装置 X3, X4では、反射偏光部材 70を備えた構成となって!/、る力 このよ うな構成に限られるものではなぐ反射偏光部材 70を備えて!/、な!/、構成としてもよ!/、 図面の簡単な説明 [0079] The liquid crystal display devices X3 and X4 are configured to include the reflective polarizing member 70! /, And the force is not limited to such a configuration. Can be configured! /, Brief description of drawings
[0080] [図 1]本発明の第 1の実施形態に係る液晶表示装置 XIの概略構成を示す断面図で ある。  FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display device XI according to a first embodiment of the present invention.
[図 2]図 2Aは、図 1に示す液晶表示パネル 10の概略構成を表す斜視図であり、図 2 B,図 2Cは図 1に示す液晶表示パネル 10の概略構成を表す要部断面図である。  FIG. 2A is a perspective view showing a schematic configuration of the liquid crystal display panel 10 shown in FIG. 1, and FIGS. 2B and 2C are cross-sectional views showing the main configuration of the liquid crystal display panel 10 shown in FIG. It is.
[図 3]図 3Aは、図 1に示すプリズム 20の概略構成を表す斜視図であり、図 3Bは、図 3 Aの Illb— Illb線に沿った要部拡大断面図である。  FIG. 3A is a perspective view showing a schematic configuration of the prism 20 shown in FIG. 1, and FIG. 3B is an enlarged cross-sectional view of the main part along the Illb-Ilb line of FIG. 3A.
[図 4]図 3に示すプリズム 20を通過する光の屈折する様子を表す模式図である。  FIG. 4 is a schematic diagram showing how light passing through the prism 20 shown in FIG. 3 is refracted.
[図 5]図 2に示す遮光層 122の貫通孔 122aと図 1に示すプリズム 20との位置関係に よるプリズム 20を通過する際に屈折した光の第 1配列方向に対する偏り dを説明する ための図である。 園 6]図 1に示す光散乱層 30の概略構成を表す断面図である。 [FIG. 5] To explain the deviation d of the light refracted when passing through the prism 20 due to the positional relationship between the through-hole 122a of the light shielding layer 122 shown in FIG. 2 and the prism 20 shown in FIG. FIG. 6] A sectional view showing a schematic configuration of the light scattering layer 30 shown in FIG.
[図 7]図 7Aは、図 5に示す遮光層 122の貫通孔 122aの間隔 Gを 99 111、該貫通孔 p  [FIG. 7] FIG. 7A shows the gap G between the through holes 122a of the light shielding layer 122 shown in FIG.
122aの開口幅 Aを 79 111、プリズムピッチ Pを 24 mとしたときの、第 1配列方向 p P  First arrangement direction p P when 122a opening width A is 79 111 and prism pitch P is 24 m
に対する位置 (横軸)と画素を通過する光の偏り d (縦軸)との関係を示すグラフでありIt is a graph which shows the relationship between the position (horizontal axis) with respect to and the bias d (vertical axis) of light passing through the pixel
、図 7Bは、図 5に示す遮光層 122の貫通孔 122aの間隔 Gを 99 m、該貫通孔 12 FIG. 7B shows an interval G between the through holes 122a of the light shielding layer 122 shown in FIG.
p  p
2aの開口幅 Aを 79 111、プリズムピッチ Pを 50 mとしたときの、第 1配列方向に対  When the aperture width A of 2a is 79 111 and the prism pitch P is 50 m,
P P  P P
する位置 (横軸)と画素を通過する光の偏り d (縦軸)との関係を示すグラフであり、図It is a graph which shows the relationship between the position (horizontal axis) to perform and the deviation d (vertical axis) of the light which passes a pixel.
7Cは、図 5に示す遮光層 122の貫通孔 122aの間隔 Gを 99 m、該貫通孔 122aの p 7C shows a gap G of 99 m between the through holes 122a of the light shielding layer 122 shown in FIG.
開口幅 Aを 79 μ m、プリズムピッチ Pを 150 μ mとしたときの、第 1配列方向に対す p P P P with respect to the first array direction when aperture width A is 79 μm and prism pitch P is 150 μm
る位置 (横軸)と画素を通過する光の偏り d (縦軸)との関係を示すグラフである。 5 is a graph showing a relationship between a position (horizontal axis) and a deviation d (vertical axis) of light passing through a pixel.
[図 8]本発明の第 2の実施形態に係る液晶表示装置 X2の概略構成を表す断面図で ある。  FIG. 8 is a cross-sectional view showing a schematic configuration of a liquid crystal display device X2 according to a second embodiment of the present invention.
[図 9]図 9Aは、本発明の第 3の実施形態に係る液晶表示装置 X3全体の概略構成を 表す断面図であり、図 9Bは、本発明の第 3の実施形態に係る液晶表示装置 X3の概 略構成を表す要部拡大断面図である。  FIG. 9A is a cross-sectional view showing a schematic configuration of the entire liquid crystal display device X3 according to the third embodiment of the present invention, and FIG. 9B is a liquid crystal display device according to the third embodiment of the present invention. FIG. 3 is an enlarged cross-sectional view of a main part showing a schematic configuration of X3.
[図 10]本発明の第 4の実施形態に係る液晶表示装置 X4の概略構成を表す断面図 である。  FIG. 10 is a cross-sectional view showing a schematic configuration of a liquid crystal display device X4 according to a fourth embodiment of the present invention.
[図 11]本発明の第 5の実施形態に係る液晶表示装置 X5の概略構成を表す断面図 である。  FIG. 11 is a cross-sectional view showing a schematic configuration of a liquid crystal display device X5 according to a fifth embodiment of the present invention.
[図 12]図 12Aは、図 11に示すプリズム 21の概略構成を表す斜視図であり、図 12Bは 、図 12Aの Xllb— Xllb線に沿った要部拡大断面図である。  12A is a perspective view showing a schematic configuration of the prism 21 shown in FIG. 11, and FIG. 12B is an enlarged cross-sectional view of a main part along the Xllb-Xllb line of FIG. 12A.
[図 13]図 13Aは、液晶表示装置 XI , X2, X3, X4, X5におけるプリズム 20の変形例 の概略構成を表す斜視図であり、図 13Bは、図 13Aの Xlllb— Xlllb線に沿った要部 拡大断面図である。  FIG. 13A is a perspective view showing a schematic configuration of a modified example of the prism 20 in the liquid crystal display devices XI, X2, X3, X4, and X5, and FIG. 13B is along the Xlllb-Xlllb line in FIG. 13A. It is a principal part expanded sectional view.
[図 14]図 14Aは、液晶表示装置 XI , X2, X3, X4, X5におけるプリズム 20の変形例 の概略構成を表す斜視図であり、図 14Bは、図 14Aの XlVb— XlVb線に沿った要部 拡大断面図である。  FIG. 14A is a perspective view showing a schematic configuration of a modified example of the prism 20 in the liquid crystal display devices XI, X2, X3, X4, and X5, and FIG. 14B is taken along line XlVb-XlVb in FIG. 14A It is a principal part expanded sectional view.
符号の説明 , X2, X3, X4, X5 液晶表示装置 液晶表示パネル Explanation of symbols , X2, X3, X4, X5 LCD display panel
液晶層  Liquid crystal layer
第 1基体 1st substrate
1 透明基板1 Transparent substrate
2 遮光層2 Shading layer
3 カラーフィノレタ3 Colorfinoleta
4 平坦化層4 Planarization layer
4' 光散乱層 4 'Light scattering layer
第 2基体 Second substrate
1 透明基板 1 Transparent substrate
封止部材 Sealing member
, 20', 20" プリズム , 20 ', 20 "prism
(別の)プリズム (Another) prism
, 30' 光散乱層 , 30 'Light scattering layer
透光性材料  Translucent material
光散乱材 Light scattering material
, 41 偏光部材 , 41 Polarizing member
ノ ックライト  Knock light
光源  Light source
導光板  Light guide plate
光反射部材  Light reflecting member
筐体  Enclosure
上側筐体  Upper housing
下側筐体  Lower housing
反射偏光部材  Reflective polarizing member

Claims

請求の範囲 The scope of the claims
[1] 平面視において略等ピッチで配列される複数の画素を有する表示パネルと、前記表 示パネルの一方主面側に配置されるプリズムと、前記表示パネルと前記プリズムとの 間、あるいは、前記表示パネルの他方主面側に配置され、光を散乱させる機能を担 う一の光散乱層とを備え、  [1] A display panel having a plurality of pixels arranged at substantially equal pitches in a plan view, a prism disposed on one main surface side of the display panel, and between the display panel and the prism, or A light scattering layer disposed on the other main surface side of the display panel and having a function of scattering light;
前記プリズムは、前記表示パネルの一方主面に対して傾斜する第 1傾斜面と、該第 1傾斜面と異なる角度で傾斜する第 2傾斜面とをそれぞれ複数有しており、  The prism has a plurality of first inclined surfaces that are inclined with respect to the one main surface of the display panel, and a plurality of second inclined surfaces that are inclined at different angles from the first inclined surface,
前記光散乱層は、前記画素に対応する領域において、該光散乱層の一方主面と 他方主面とがそれぞれ略平坦面であり且つ該光散乱層の一方主面と他方主面とが 略平行であり、  In the light scattering layer, in the region corresponding to the pixel, the one main surface and the other main surface of the light scattering layer are substantially flat surfaces, and the one main surface and the other main surface of the light scattering layer are approximately Parallel,
前記表示パネルの前記複数の画素の配列方向における該画素の開口幅を A、前 p 記光散乱層のヘイズ値を H、前記表示パネルの各画素に対応する前記プリズムの前 記配列方向における前記第 1傾斜面領域の平面視長さの総和を L、前記表示パネ ルの各画素に対応する前記プリズムの前記配列方向における前記第 2傾斜面領域 の平面視長さの総和を Rとするとき、 d= (L-R) ÷Aにより前記画素ごとに算出され  The aperture width of the pixel in the arrangement direction of the plurality of pixels of the display panel is A, the haze value of the light scattering layer is H, and the prism in the arrangement direction of the prism corresponding to each pixel of the display panel is When the sum of the planar view lengths of the first inclined surface region is L, and R is the sum of the planar view lengths of the second inclined surface region in the arrangement direction of the prism corresponding to each pixel of the display panel. , D = (LR) ÷ A
P  P
る dの最大値と最小値との差 Dが 0以上 0. 3以下で前記ヘイズ値 Hを 5以上とし、該 差 Dが 0. 3より大きく 0. 7以下で前記ヘイズ値 Hを 10以上とし、該差 Dが 0. 7より大 きく 1以下で前記ヘイズ値 Hを 20以上とすることを特徴とする、表示装置。  The difference between the maximum value and the minimum value of d is 0 or more and 0.3 or less, and the haze value H is 5 or more. The difference D is greater than 0.3 and 0.7 or less, and the haze value H is 10 or more. And the difference D is greater than 0.7 and 1 or less, and the haze value H is 20 or more.
[2] 前記表示パネルの一方主面側に配置され、第 1振動方向の光を選択的に通過し且 つ前記第 1振動方向と振動方向が異なる第 2振動方向の光を反射する反射偏光部 材と、前記反射偏光部材および前記プリズムを介して前記表示パネルの一方主面側 に配置される光反射部材とを更に備えていることを特徴とする、請求項 1に記載の表 示装置。 [2] Reflected polarized light that is disposed on one main surface side of the display panel and selectively transmits light in the first vibration direction and reflects light in the second vibration direction that is different from the first vibration direction. The display device according to claim 1, further comprising: a member; and a light reflecting member disposed on one main surface side of the display panel via the reflective polarizing member and the prism. .
[3] 前記光散乱層は、透光性材料と、表面の少なくとも一部が前記透光性材料に被覆さ れる光散乱材とを含んでなることを特徴とする、請求項 1に記載の表示装置。  [3] The light scattering layer according to claim 1, wherein the light scattering layer includes a light-transmitting material and a light-scattering material in which at least a part of a surface is covered with the light-transmitting material. Display device.
[4] 前記透光性材料は接着性を有しており、前記光散乱層は前記表示パネルと前記反 射偏光部材との間に配置されていることを特徴とする、請求項 3に記載の表示装置。  [4] The light-transmitting material has adhesiveness, and the light-scattering layer is disposed between the display panel and the reflective polarizing member. Display device.
[5] 前記光散乱材は、前記透光性材料と屈折率の異なる透光性材料により構成されてい ることを特徴とする、請求項 3に記載の表示装置。 [5] The light scattering material is composed of a light transmissive material having a refractive index different from that of the light transmissive material. The display device according to claim 3, wherein:
[6] 前記各第 1傾斜面の平面視長さは、前記各第 2傾斜面の平面視長さに略等しいこと を特徴とする、請求項 1に記載の表示装置。 [6] The display device according to [1], wherein a length of each of the first inclined surfaces in plan view is substantially equal to a length of each of the second inclined surfaces in plan view.
[7] 前記表示パネルと前記プリズムとの間に配置される別のプリズムを更に有しており、 前記別のプリズムにおけるプリズム溝の延びる方向は、前記プリズムにおけるプリズ ム溝の延びる方向に対して略直交していることを特徴とする、請求項 1に記載の表示 装置。 [7] The apparatus further includes another prism disposed between the display panel and the prism, and the direction in which the prism groove extends in the other prism is relative to the direction in which the prism groove extends in the prism. The display device according to claim 1, wherein the display device is substantially orthogonal.
[8] 平面視において略等ピッチで配列される複数の画素を有する表示パネルと、前記表 示パネルの一方主面側に配置されるプリズムとを備え、  [8] A display panel having a plurality of pixels arranged at a substantially equal pitch in plan view, and a prism disposed on one main surface side of the display panel,
前記表示パネルは、光を散乱させる機能を担う一の光散乱層を含んでなり、 前記光散乱層は、前記画素に対応する領域において、該光散乱層の一方主面と 他方主面とがそれぞれ略平坦面であり且つ該光散乱層の一方主面と他方主面とが 略平行であり、  The display panel includes one light scattering layer having a function of scattering light, and the light scattering layer includes a first main surface and a second main surface of the light scattering layer in a region corresponding to the pixel. Each of which is a substantially flat surface, and one main surface and the other main surface of the light scattering layer are substantially parallel,
前記プリズムは、前記表示パネルの一方主面に対して傾斜する第 1傾斜面と、該第 1傾斜面と異なる角度で傾斜する第 2傾斜面とをそれぞれ複数有しており、  The prism has a plurality of first inclined surfaces that are inclined with respect to the one main surface of the display panel, and a plurality of second inclined surfaces that are inclined at different angles from the first inclined surface,
前記表示パネルの前記複数の画素の配列方向における該画素の開口幅を A、前 p 記光散乱層のヘイズ値を H、前記表示パネルの各画素に対応する前記プリズムの前 記配列方向における前記第 1傾斜面領域の平面視長さの総和を L、前記表示パネ ルの各画素に対応する前記プリズムの前記配列方向における前記第 2傾斜面領域 の平面視長さの総和を Rとするとき、 d= (L-R) ÷Aにより前記画素ごとに算出され  The aperture width of the pixel in the arrangement direction of the plurality of pixels of the display panel is A, the haze value of the light scattering layer is H, and the prism in the arrangement direction of the prism corresponding to each pixel of the display panel is When the sum of the planar view lengths of the first inclined surface region is L, and R is the sum of the planar view lengths of the second inclined surface region in the arrangement direction of the prism corresponding to each pixel of the display panel. , D = (LR) ÷ A
P  P
る dの最大値と最小値との差 Dが 0以上 0. 3以下で前記ヘイズ値 Hを 5以上とし、該 差 Dが 0. 3より大きく 0. 7以下で前記ヘイズ値 Hを 10以上とし、該差 Dが 0. 7より大 きく 1以下で前記ヘイズ値 Hを 20以上とすることを特徴とする、表示装置。  The difference between the maximum value and the minimum value of d is 0 or more and 0.3 or less, and the haze value H is 5 or more. The difference D is greater than 0.3 and 0.7 or less, and the haze value H is 10 or more. And the difference D is greater than 0.7 and 1 or less, and the haze value H is 20 or more.
[9] 前記表示パネルの一方主面側に配置され、第 1振動方向の光を選択的に通過し且 つ前記第 1振動方向と振動方向が異なる第 2振動方向の光を反射する反射偏光部 材と、前記反射偏光部材および前記プリズムを介して前記表示パネルの一方主面側 に配置される光反射部材とを更に備えていることを特徴とする、請求項 8に記載の表 示装置。 [9] Reflected polarized light that is disposed on one main surface side of the display panel and selectively transmits light in the first vibration direction and reflects light in the second vibration direction that is different from the first vibration direction. 9. The display device according to claim 8, further comprising: a member; and a light reflecting member disposed on one main surface side of the display panel via the reflective polarizing member and the prism. .
[10] 前記光散乱層は、透光性材料と、表面の少なくとも一部が前記透光性材料に被覆さ れる光散乱材とを含んでなることを特徴とする、請求項 8に記載の表示装置。 [10] The light scattering layer according to claim 8, wherein the light scattering layer includes a light-transmitting material and a light-scattering material in which at least a part of a surface is covered with the light-transmitting material. Display device.
[11] 前記光散乱材は、前記透光性材料と屈折率の異なる透光性材料により構成されてい ることを特徴とする、請求項 10に記載の表示装置。 11. The display device according to claim 10, wherein the light scattering material is made of a light transmissive material having a refractive index different from that of the light transmissive material.
[12] 前記光散乱層は、凹凸を平坦化するための平坦化層としての機能も担うことを特徴と する、請求項 8に記載の表示装置。 12. The display device according to claim 8, wherein the light scattering layer also functions as a flattening layer for flattening unevenness.
[13] 前記各第 1傾斜面の平面視長さは、前記各第 2傾斜面の平面視長さに略等しいこと を特徴とする、請求項 8に記載の表示装置。 13. The display device according to claim 8, wherein a length of each first inclined surface in plan view is substantially equal to a length of each second inclined surface in plan view.
[14] 前記表示パネルと前記プリズムとの間に配置される別のプリズムを更に有しており、 前記別のプリズムにおけるプリズム溝の延びる方向は、前記プリズムにおけるプリズ ム溝の延びる方向に対して略直交していることを特徴とする、請求項 8に記載の表示 装置。 [14] The apparatus further includes another prism disposed between the display panel and the prism, and the direction in which the prism groove extends in the other prism is relative to the direction in which the prism groove extends in the prism. The display device according to claim 8, wherein the display device is substantially orthogonal.
[15] 平面視において略等ピッチで配列される複数の画素を有する表示パネルと、前記表 示パネルの一方主面側に配置されるプリズムと、前記表示パネルと前記プリズムとの 間、あるいは、前記表示パネルの他方主面側に配置され、光を散乱させる機能を担 う一の光散乱層とを備え、  [15] A display panel having a plurality of pixels arranged at substantially equal pitches in plan view, a prism disposed on one main surface side of the display panel, and between the display panel and the prism, or A light scattering layer disposed on the other main surface side of the display panel and having a function of scattering light;
前記プリズムは、前記表示パネルの一方主面に対して傾斜する第 1傾斜面と、該第 1傾斜面と異なる角度で傾斜する第 2傾斜面とをそれぞれ複数有しており、  The prism has a plurality of first inclined surfaces that are inclined with respect to the one main surface of the display panel, and a plurality of second inclined surfaces that are inclined at different angles from the first inclined surface,
前記光散乱層は、前記画素に対応する領域において、該光散乱層の一方主面が 略平坦面であり且つ該光散乱層の他方主面が凹凸面であり、  In the light scattering layer, in the region corresponding to the pixel, one main surface of the light scattering layer is a substantially flat surface and the other main surface of the light scattering layer is an uneven surface,
前記表示パネルの前記複数の画素の配列方向における該画素の開口幅を A、前 p 記光散乱層のヘイズ値を H、前記表示パネルの各画素に対応する前記プリズムの前 記配列方向における前記第 1傾斜面領域の平面視長さの総和を L、前記表示パネ ルの各画素に対応する前記プリズムの前記配列方向における前記第 2傾斜面領域 の平面視長さの総和を Rとするとき、 d= (L-R) ÷Aにより前記画素ごとに算出され  The aperture width of the pixels in the arrangement direction of the plurality of pixels of the display panel is A, the haze value of the light scattering layer is H, and the prism in the arrangement direction of the prism corresponding to each pixel of the display panel is When the sum of the planar view lengths of the first inclined surface region is L, and the sum of the planar view lengths of the second inclined surface region in the arrangement direction of the prisms corresponding to each pixel of the display panel is R , D = (LR) ÷ A
P  P
る dの最大値と最小値との差 Dが 0以上 0. 4以下で前記ヘイズ値 Hを 2以上とし、該 差 Dが 0. 4より大きく 0. 7以下で前記ヘイズ値 Hを 4以上とし、該差 Dが 0. 7より大き く 0. 9以下で前記ヘイズ値 Hを 8以上とし、該差 Dが 0. 9より大きく 1以下で前記ヘイ ズ値 Hを 12以上とすることを特徴とする、表示装置。 The difference between the maximum value and the minimum value of d is 0 or more and 0.4 or less, and the haze value H is 2 or more. When the difference D is greater than 0.7 and less than 0.9, the haze value H is 8 or more, and when the difference D is greater than 0.9 and 1 or less, the haze value H A display device characterized in that the value H is 12 or more.
[16] 前記表示パネルの一方主面側に配置され、第 1振動方向の光を選択的に通過し且 つ前記第 1振動方向と振動方向が異なる第 2振動方向の光を反射する反射偏光部 材と、前記反射偏光部材および前記プリズムを介して前記表示パネルの一方主面側 に配置される光反射部材とを更に備えていることを特徴とする、請求項 15に記載の 表示装置。 [16] Reflected polarized light that is disposed on one main surface side of the display panel and selectively transmits light in the first vibration direction and reflects light in the second vibration direction that is different from the first vibration direction. 16. The display device according to claim 15, further comprising: a member; and a light reflecting member disposed on one main surface side of the display panel via the reflective polarizing member and the prism.
[17] 前記光散乱層は、透光性材料と、表面の少なくとも一部が前記透光性材料に被覆さ れる光散乱材とを含んでなることを特徴とする、請求項 15に記載の表示装置。  [17] The light scattering layer according to claim 15, wherein the light scattering layer includes a light-transmitting material and a light-scattering material in which at least a part of a surface is covered with the light-transmitting material. Display device.
[18] 前記透光性材料は接着性を有しており、前記光散乱層は前記表示パネルの一方主 面または他方主面に被着されていることを特徴とする、請求項 17に記載の表示装置  18. The light transmitting material according to claim 17, wherein the translucent material has adhesiveness, and the light scattering layer is attached to one main surface or the other main surface of the display panel. Display device
[19] 前記光散乱材は、前記透光性材料と屈折率の異なる透光性材料により構成されてい ることを特徴とする、請求項 17に記載の表示装置。 19. The display device according to claim 17, wherein the light scattering material is made of a light transmissive material having a refractive index different from that of the light transmissive material.
[20] 前記各第 1傾斜面の平面視長さは、前記各第 2傾斜面の平面視長さに略等しいこと を特徴とする、請求項 15に記載の表示装置。 20. The display device according to claim 15, wherein a length of each of the first inclined surfaces in plan view is substantially equal to a length of each of the second inclined surfaces in plan view.
[21] 前記表示パネルと前記プリズムとの間に配置される別のプリズムを更に有しており、 前記別のプリズムにおけるプリズム溝の延びる方向は、前記プリズムにおけるプリズ ム溝の延びる方向に対して略直交していることを特徴とする、請求項 15に記載の表 示装置。 [21] The apparatus further includes another prism disposed between the display panel and the prism, and the direction in which the prism groove extends in the other prism is relative to the direction in which the prism groove extends in the prism. 16. The display device according to claim 15, wherein the display device is substantially orthogonal.
PCT/JP2007/072929 2006-11-29 2007-11-28 Display device WO2008066066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008547005A JPWO2008066066A1 (en) 2006-11-29 2007-11-28 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-321795 2006-11-29
JP2006321795 2006-11-29

Publications (1)

Publication Number Publication Date
WO2008066066A1 true WO2008066066A1 (en) 2008-06-05

Family

ID=39467856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072929 WO2008066066A1 (en) 2006-11-29 2007-11-28 Display device

Country Status (2)

Country Link
JP (1) JPWO2008066066A1 (en)
WO (1) WO2008066066A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799765A2 (en) * 2013-04-30 2014-11-05 LG Display Co., Ltd. Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152377A (en) * 1997-07-31 1999-02-26 Nitto Denko Corp Optical path control platte, surface light source device, polarizing light source device and liquid crystal display device
JP2000180624A (en) * 1998-10-05 2000-06-30 Dainippon Printing Co Ltd Color filter
JP2003279986A (en) * 2002-03-26 2003-10-02 Seiko Epson Corp Liquid crystal display device and electronic appliance
JP2006235014A (en) * 2005-02-23 2006-09-07 Hitachi Displays Ltd Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1152377A (en) * 1997-07-31 1999-02-26 Nitto Denko Corp Optical path control platte, surface light source device, polarizing light source device and liquid crystal display device
JP2000180624A (en) * 1998-10-05 2000-06-30 Dainippon Printing Co Ltd Color filter
JP2003279986A (en) * 2002-03-26 2003-10-02 Seiko Epson Corp Liquid crystal display device and electronic appliance
JP2006235014A (en) * 2005-02-23 2006-09-07 Hitachi Displays Ltd Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799765A2 (en) * 2013-04-30 2014-11-05 LG Display Co., Ltd. Display device
EP2799765A3 (en) * 2013-04-30 2014-11-26 LG Display Co., Ltd. Display device
US9304245B2 (en) 2013-04-30 2016-04-05 Lg Display Co., Ltd. Display device including a light guide bonded to a display panel

Also Published As

Publication number Publication date
JPWO2008066066A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP3873835B2 (en) Liquid crystal display device and electronic device
JP4741887B2 (en) Light source device, display device, and terminal device
KR100800932B1 (en) Display device
JP5512173B2 (en) Liquid crystal display device
US20100283942A1 (en) Illuminating device and liquid crystal display device
US20110205734A1 (en) Optical sheet stack body, illuminating device, and display device
US20110073876A1 (en) Light-emitting device and display
JP2004272256A (en) Optical sheet and liquid crystal display device using same
JP2000075293A (en) Illuminator, touch panel with illumination and reflective liquid crystal display device
CN107479249B (en) Polarized light emitting plate and display device with same
JP2007071953A (en) Display device, terminal device, light source device, and optical member
CN108121114B (en) Display device with dichroic filter
JP2020073996A (en) Display panel, display device and organic electroluminescent display device
US20060109395A1 (en) Area light source device and liquid crystal display device including the same
US8823902B2 (en) Liquid crystal display device
JP5604342B2 (en) Frame covering member
JP2006276621A (en) Electro-optical device, lighting device, and electronic apparatus
WO2010047144A1 (en) Liquid crystal display apparatus
JP2004145155A (en) Liquid crystal display
KR20090055770A (en) Liquid crystal dispaly device
JP2007294465A (en) Lighting system, electro-optic device and electronic equipment
JP2007240903A (en) Optical control element and display device
WO2008066066A1 (en) Display device
WO2010125839A1 (en) Lighting device and displaying device
WO2011027590A1 (en) Backlight device and image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008547005

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832651

Country of ref document: EP

Kind code of ref document: A1