WO2008065906A1 - Light guide body and illumination device - Google Patents

Light guide body and illumination device Download PDF

Info

Publication number
WO2008065906A1
WO2008065906A1 PCT/JP2007/072223 JP2007072223W WO2008065906A1 WO 2008065906 A1 WO2008065906 A1 WO 2008065906A1 JP 2007072223 W JP2007072223 W JP 2007072223W WO 2008065906 A1 WO2008065906 A1 WO 2008065906A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical path
path changing
incident
light guide
Prior art date
Application number
PCT/JP2007/072223
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Sugiyama
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008065906A1 publication Critical patent/WO2008065906A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side

Definitions

  • the present invention relates to an illumination device for illuminating an object, for example, an illumination device for illuminating a liquid crystal display panel included in a liquid crystal display device, and a light guide provided in the illumination device.
  • a surface illumination type illumination device called a backlight device is used for illumination of a transparent liquid crystal display panel provided in a liquid crystal display device such as a liquid crystal display device and a liquid crystal television device.
  • Liquid crystal display devices used as display means for mobile terminal devices such as mobile phone devices and personal digital assistance (abbreviated as PDA) are plate-shaped light guides (hereinafter referred to as “light guide plates”) as surface illumination type illumination devices.
  • An edge light type illuminating device in which a light source is provided opposite to one side portion is used.
  • CCFL Cold Cathode Fluorescent Lamp
  • CCFL Cold Cathode Fluorescent Lamp
  • Reasons such as ease of thinning and consideration for the environment, light-emitting diodes ( Replacement with Light Emitting Diode (abbreviation LED) is progressing. Since LEDs are highly directional, when they are used as the light source of an edge-light type lighting device, a difference in brightness occurs between the part of the light guide plate facing the LED and the other parts, resulting in uneven brightness. Due to this uneven brightness, the display quality of the liquid crystal display device is degraded.
  • FIG. 16A is a plan view showing an example of the configuration of the conventional light guide plate 100
  • FIG. 16B is an enlarged plan view showing the introduction portion 101 of the light guide plate 100 shown in FIG. 16A
  • FIG. 17 is shown in FIG. 16A.
  • 2 is a plan view schematically showing a light guide plate 100.
  • FIG. FIG. 17 shows a case where three introduction parts 101 are provided for easy understanding.
  • the light guide plate 100 includes a plurality of introduction portions 101 at a portion where light is incident from the light source 102 in order to suppress luminance unevenness.
  • each introduction unit 101 the light incident from the light source 102 is collected by the light collection unit 103, and the inclined surface 104 of the light diffusion unit 104 is collected. Reflected by a and incident on the reflecting surface 105. The light incident on the reflecting surface 105 is reflected by the reflecting surface 105, is emitted from the introduction unit 101 in parallel with the light guide direction A, and enters the daylighting unit 106.
  • Japanese Patent Application Laid-Open No. 2005-135844 discloses that as a technology related to suppressing uneven brightness, an optical element is provided between the light guide plate and the light source, and the light emitting surface of the light source of this optical element is in contact with the light source plate.
  • FIG. 18 is an enlarged plan view showing another example of the configuration of the conventional light guide plate 110.
  • the light guide plate 110 has a hole 113 in which, for example, a triangular prism-shaped hole is formed in the incident region S1 facing the light source 112 of the one side 111.
  • a plurality of hole portions 113 are continuously formed along the end surface 111 a of the one side portion 111.
  • FIG. 19 is an enlarged plan view showing still another example of the configuration of the conventional light guide plate 120.
  • a light guide plate 120 shown in FIG. 19 has a hole 113 similar to that of the light guide plate 110 shown in FIG. In the light guide plate 120 shown in FIG. 19, the number of the hole portions 113 is smaller than that of the light guide plate 110 shown in FIG. 18, and the plurality of hole portions 113 are formed at intervals.
  • the introduction unit 101 is provided separately from the force lighting unit 106 that can suppress uneven luminance in the lighting unit 106.
  • the part provided with the introduction part 101 is an invalid display area 107 that cannot be used for illumination, and is arranged in an area outside the display area in the display device.
  • width dimension W increases.
  • width dimension W of the introduction portion 101 is, the greater the light guide direction A of the introduction portion 101 is.
  • length dimension H of the introduction part 101 causes the enlargement of the invalid display area 107 including the introduction part 101 and the light source 102 which are the areas! . Therefore, the technique disclosed in Japanese Patent Application Laid-Open No. 2004-192937 is difficult to reduce in design.
  • an optical element is provided between the light guide plate and the light source.
  • the diffusion prism of the optical element from the light source is emitted toward the light guide plate, the light cannot be guided to a region outside the incident region where the light incident surface of the optical element is formed. Therefore, even if the technique disclosed in Japanese Patent Laid-Open No. 2005-135844 is applied to the light guide plate and a diffusing prism is formed in the incident region of the light guide plate, light cannot be guided to the region outside the incident region.
  • a light guide plate 110 shown in FIG. The hole 113 is formed continuously.
  • the hole 113 is continuously formed as described above, the light 114 incident on the hole 113 from the light source 112 is refracted when passing through the boundary 113 a of the hole 113.
  • the light that has passed through the boundary 113a of the hole 113 enters the hole 113 adjacent to the hole 113.
  • a part of the light incident on the adjacent hole 113 is reflected by the adjacent hole 113 and is totally reflected in some cases, and is directed to the inward direction of the incident region S 1 by a reference numeral 115 which is a direction.
  • the light 114 incident on the hole 113 is refracted and passes through the boundary 113a of the two or more holes 113, and then reflected by the hole 113 to generate an inward force or force on the inside of the incident region S1. It may also proceed in the direction of the solid line indicated by reference numeral 115.
  • FIG. 20 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide plate 110.
  • FIG. 20 shows a simulation result when one light source 112 is used.
  • each straight line extending radially from the light source 112 is the light of the light incident on the light guide plate 110. Showing the road.
  • the light incident from the light source 112 is less guided to the region S2 outside the incident region of the one side 111, and the region outside the projection region S3 of the light source 112. It is clear that less light is guided to S4. Therefore, in the technique shown in FIG. 18, a difference in luminance occurs between the incident region S1 on one side 111 and the region S2 outside the incident region, resulting in uneven luminance. Further, the light guide plate 120 shown in FIG. 19 has a luminance difference between the projection region S3 of the light source 112 near the one side 111 and the region S4 outside the projection region. Holes 113 are formed at intervals.
  • the light 114 incident on the holes 113 does not enter the other holes 113 after passing through the boundary 113a. Then, the directional force is directed outward from the incident area S 1 and proceeds in the direction of the solid line indicated by reference numeral 121, which reaches the area S 2 outside the incident area S 1 on the one side portion 111.
  • the force that can prevent reflection by the adjacent hole 113 the light 122 incident on the incident region S1 between the two adjacent holes 113 does not enter the hole 113. It proceeds without changing the direction of travel when incident, and does not reach the region S2 outside the incident region S1 of the one side 111. Therefore, since the amount of light reaching the region S2 outside the incident region is small, the difference in luminance between the incident region S1 and the region S2 outside the incident region cannot be sufficiently suppressed, and the luminance unevenness is sufficiently reduced. I can't suppress it.
  • FIG. 21 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide plate 120.
  • FIG. 21 shows a simulation result when one light source 112 is used.
  • each straight line extending radially from the light source 112 indicates the optical path of the light incident on the light guide plate 120.
  • the objective of this invention is providing the light guide which can suppress the brightness nonuniformity when light injects from a part of one side part, and an illuminating device provided with the same.
  • the present invention is a light guide that diffuses and emits incident light
  • One side has an incident region provided with a light source facing the light source
  • a first optical path changing unit that directly irradiates light from a light source and refracts the incident light so that an absolute value of an angle formed with a reference line perpendicular to an end surface of one side is increased; and one side Is formed at a position that is spaced from the end face of the light source and avoids the light path of the light that has passed through the first light path changing section, and allows the light incident from the light source to be perpendicular to the end face of one side.
  • a second optical path changing unit that reflects or refracts so that the absolute value of the formed angle is large.
  • At least one of the first and second optical path changing portions is formed by forming a hole in one side portion.
  • the holes are preferably filled with a filler.
  • emission prevention part which prevents that the light incident from the light source radiate
  • the emission preventing portion is formed by forming the end surface of the other side portion into a curved surface convex outwardly.
  • the emission preventing portion is preferably formed by forming a notch on the other side portion.
  • this invention is an illuminating device provided with the light guide of the said this invention, and the light source which is provided facing the incident area of a light guide, and injects light into an incident area.
  • FIG. 1 is a plan view showing a part of the light guide according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing the light guide according to the first embodiment of the present invention.
  • FIG. 3 is an exploded perspective view showing an exploded view of the lighting device 2 including the light guide according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining dimensions and arrangement intervals of the first and second optical path changing units shown in FIG.
  • FIG. 5 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide according to the first embodiment.
  • FIG. 6 is a plan view showing a part of a light guide in which a hole formed in the first and second optical path changing portions is filled with a filler.
  • FIG. 7 is a plan view showing a part of the light guide according to the second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the light refraction state on the third and fourth second optical path changing surfaces of the second optical path changing unit.
  • FIG. 9 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide body according to the second embodiment.
  • FIG. 10 is a plan view showing a part of the light guide according to the third embodiment of the present invention.
  • FIG. 11 is a plan view showing a part of the light guide according to the fourth embodiment of the present invention.
  • FIG. 12 is a plan view showing a part of the light guide according to the fifth embodiment of the present invention.
  • FIG. 13 is a plan view showing a light guide according to a sixth embodiment of the present invention.
  • FIG. 14 is a plan view showing a light guide body having an emission preventing portion formed by forming a notch in the side portion.
  • FIG. 15 is a plan view showing a light guide according to a seventh embodiment of the present invention.
  • FIG. 16A is a plan view showing an example of the configuration of a conventional light guide plate
  • FIG. 16B is an enlarged plan view showing an introduction portion of the light guide plate shown in FIG. 16A.
  • FIG. 17 is a plan view schematically showing the light guide plate shown in FIG. 16A.
  • FIG. 18 is an enlarged plan view showing a configuration of another conventional light guide plate.
  • FIG. 19 is an enlarged plan view showing a configuration of a light guide plate of still another conventional example.
  • FIG. 20 is a diagram illustrating a simulation result of a light guide state of light incident on a light guide plate of another conventional example.
  • FIG. 21 is a diagram illustrating a simulation result of a light guide state of light incident on a light guide plate of still another example of the related art.
  • FIG. 1 is a plan view showing a part of the light guide 1 according to the first embodiment of the present invention
  • FIG. 2 is a plan view showing the light guide 1 according to the first embodiment of the present invention
  • FIG. 3 is an exploded perspective view showing the illuminating device 2 including the light guide 1 according to the first embodiment of the present invention in an exploded manner.
  • FIG. 1 shows an enlarged view of one side 11 of the light guide 1 shown in FIG.
  • the light guide 1 is provided, for example, in the illumination device 2 shown in FIG.
  • the illuminating device 2 shown in FIG. 3 is a device for illuminating an object with illumination light, and is provided in a transmissive liquid crystal display device, for example, and used as a backlight device that illuminates a liquid crystal display panel.
  • the illuminating device 2 is provided facing the liquid crystal display panel, and the liquid crystal display panel, which is an object, illuminates the liquid crystal display panel as an object from the side opposite to the side on which the operator views the display screen.
  • the illumination device 2 is not limited to the illumination of the liquid crystal display panel, but may be used for illumination of other objects or innomination.
  • the illuminating device 2 shown in FIG. 3 is an edge light type illuminating device in which a light source 12 is provided to face one side 11 of the light guide 1.
  • the illumination device 2 includes the light guide 1 of the present embodiment and a light emitting element 12 that is a light source.
  • a plurality of light emitting elements 12 are provided, more specifically, three.
  • the light emitting element 12 that is a light source emits light radially toward the light guide 1.
  • the light emitting element 12 is realized by a light emitting diode (abbreviated as LED), for example.
  • the light guide 1 has a flat plate shape, and the surfaces on both sides in the thickness direction are main surfaces la and lb.
  • the light guide 1 diffuses light incident from the first side 11 which is one side, and at least one of the two main surfaces la and lb, one main surface in the present embodiment. Emits from la.
  • one main surface la from which the light is emitted is referred to as an emission surface la
  • the other main surface opposite to the emission surface la is referred to as a back surface lb.
  • the light guide 1 has a parallel plate shape, and the surfaces on both sides in the thickness direction, which are the emission surface la and the back surface lb, of the light guide 1 are formed in planes substantially parallel to each other.
  • the shape of the light guide 1 is a parallel plate shape in which the surfaces on both sides in the thickness direction are parallel to each other in the present embodiment.
  • the shape is not limited to this. It may be a wedge shape that is inclined with respect to the surface on the other side in the thickness direction, or a shape in which a parallel plate portion and a wedge portion are combined.
  • the thickness direction of the light guide 1 is defined as the Z direction, one direction perpendicular to the Z direction is defined as the X direction, and the direction perpendicular to the Z direction and the X direction is defined as the Y direction.
  • these X, ⁇ , and ⁇ directions are represented by arrows X, ⁇ , and ⁇ .
  • the light guide 1 has a rectangular plate shape whose long side is parallel to the flange direction.
  • one side Z1 is the direction perpendicular to the paper surface, and the direction of force toward the front side of the paper surface.
  • the first side portion 11 of the light guide 1 is a short side on one side of the ridge direction, out of two short sides parallel to the X direction. More specifically, the light guide 1 includes a light guide body 25 and a reflective layer 26.
  • the reflection layer 26 is formed on the end surfaces of the side portions on both sides in the X direction of the light guide body 25, and is the side portions on both sides in the X direction of the light guide body 1 together with the side portions on both sides in the X direction of the light guide body 25. 2 and 3 side parts 27 and 28 are formed. The second and third side portions 27 and 28 of the light guide 1 correspond to a reflecting portion.
  • the reflective layer 26 is formed so as to have a reflectance of approximately 1.0 with respect to incident light.
  • a material having high light reflectivity and a reflectance close to 1.0 is used. Examples of such a material include silver (Ag) and aluminum (A1).
  • the reflective layer 26 is realized by a thin film having a reflectance close to 1.0, for example.
  • the light guide body 25 has translucency and is made of a translucent material such as translucent resin such as acrylic resin and polycarbonate resin.
  • the light guide 1 has an incident area in which a light emitting element 12 as a light source is opposed to a first side 11.
  • the incident region SI has a first optical path changing unit 21 and a second optical path changing unit 22 shown in FIG.
  • the incident region S 1 on the first side portion 11 is indicated by a right-down oblique line
  • the region S 2 outside the incident region on the first side portion 11 is indicated by a left-down oblique line.
  • the lighting device 2 since the lighting device 2 includes the three light emitting elements 12, three incident regions S1 are formed.
  • the incident area S 1 of the first side portion 11 is an area where the light emitting surface 12a of the light emitting element 12 as the light source in the light guide 1 is projected onto the other Y2 in the Y direction (hereinafter referred to as “projection area of the light emitting element 12”). This region is included in S 3 and is included in the first side portion 11 in the projection region S 3 of the light emitting element 12.
  • the area S2 outside the incident area of the first side portion 11 is included in the area S4 outside the projection area of the light emitting element 12 in the light guide 1, and the area S4 outside the projection area of the light emitting element 12 is within the area S4.
  • 1 side 1 1 is an area included in 1
  • the first optical path changing unit 21 is formed so that light is directly incident from the light emitting element 12.
  • the first optical path changing portion 21 is formed by forming a hole in the first side portion 11 of the light guide 1, more specifically, a through hole penetrating the first side portion 11 in the thickness direction.
  • a hole whose opening shape in the XY plane that is a virtual plane perpendicular to the Z direction that is the thickness direction of the light guide 1 is trapezoidal is formed. ing.
  • the hole of the first hole portion 21 has a uniform shape in the Z direction, and is a trapezoid arranged in the XY plane perpendicular to the Z direction.
  • the upper base and the lower base are the end faces of the first side portion 11 (Hereinafter sometimes referred to as “first side end face”)
  • first side end face An isosceles trapezoid that is parallel to 11a and is located on the first side end face 11a side of the upper base is longer in the Z direction. is there.
  • first optical path changing surface 23a and a second first optical path changing surface 23b are formed in the first optical path changing unit 21.
  • the planes formed by extending the oblique sides of the trapezoid arranged in the XY plane perpendicular to the Z direction in the direction correspond to the first and second first optical path changing surfaces 23a and 23b.
  • the first and second first optical path changing surfaces 23a and 23b are formed to have the same dimensions.
  • the first and second first optical path changing surfaces 23a, 23b are planes inclined from the first side end surface 11a, which is the end surface of the first side portion 11, and the first and second first optical path changing surfaces 23a, 23b It is formed so that the opening area in the ZX plane which is a virtual plane parallel to the first side end face 1 la of the hole 21 is small.
  • the first first optical path changing surface 23a is the second first optical path changing surface 23b. It is formed on one XI side than the X direction.
  • the first first optical path changing surface 23a is formed so as to incline from the imaginary plane perpendicular to the first side end surface 11a toward the other X2 side in the X direction as it is farther from the first side end surface 11a.
  • the second first optical path changing surface 23b is formed so as to be inclined toward the XI side in the X direction from a virtual plane perpendicular to the first side end surface 11a as the distance from the first side end surface 11a increases.
  • the first optical path changing unit 21 is formed to have a refractive index higher than the refractive index in the hole. Since the hole formed in the first optical path changing unit 21 is a cavity in this embodiment, the refractive index in the hole is about 1.0, which is substantially equal to the refractive index of air.
  • the first optical path changing unit 21 is included in the light guide body 25, and the light guide body 25 is formed of a material having a refractive index higher than that of air, specifically, a light-transmitting resin such as talyl resin. .
  • the first optical path changing surface 23 is formed so that the opening area in the ZX plane parallel to the first side end surface 11a of the hole of the first hole portion 21 decreases as the distance from the first side end surface 11a increases.
  • the light incident on the first optical path changing surface 23 is bent so as to be bent toward the Y1 side in the Y direction, and is guided to the region S2 outside the incident region S1 of the first side portion 11.
  • the first optical path changing unit 21 refracts the light directly incident from the light emitting element 12 so that the absolute value of the angle formed with the reference line L perpendicular to the first side end surface 11a is increased.
  • the first optical path changing unit 21 is positive (+) on the other side in the X direction from the reference line L perpendicular to the first end surface 11a, and negative (one) on the XI side in the X direction.
  • the incident light is refracted so that the angle between the optical path 30 and the reference line L is larger than the absolute value I ⁇ 1 I of ⁇ 1.
  • the light incident from the light emitting element 12 is guided to the region S2 outside the incident region S1 of the first side portion 11.
  • the second optical path changing unit 22 is formed at a position away from the first side end surface 11a, which is the end surface of the first side unit 11, and avoiding the optical path 31 of the light that has passed through the first optical path changing unit 21. Is done.
  • the second optical path changing portion 22 is formed by forming a hole in the first side portion 11 of the light guide 1, more specifically, a through hole penetrating the first side portion 11 in the thickness direction. In the present embodiment, the holes formed in the first and second optical path changing portions 21 and 22 are formed continuously.
  • the second hole portion 22 which is the second optical path changing portion is connected to the hole of the first hole portion 21, and the light guide 1 A hole having a trapezoidal opening in the XY plane perpendicular to the Z direction, which is the thickness direction, is formed.
  • the hole of the second hole portion 22 has a uniform shape in the heel direction, and is a trapezoid arranged on the heel plane perpendicular to the heel direction. More specifically, the upper base and the lower base are parallel to the first side end face 11a. In this case, an isosceles trapezoid with a lower bottom, which is arranged closer to the first side end face 11a than the upper base, extends in the Z direction.
  • two planar second optical path changing surfaces 24, that is, a first second optical path changing surface 24a and a second second optical path changing surface 24b are formed.
  • the planes formed by extending the oblique sides of the trapezoid arranged in the XY plane perpendicular to the Z direction in the direction correspond to the first and second second optical path changing surfaces 24a and 24b.
  • the first and second second optical path changing surfaces 24a and 24b are formed to have the same dimensions.
  • the first and second second optical path changing surfaces 24a, 24b are planes inclined from a virtual plane parallel to the first side end surface 11a that is the end surface of the first side portion 11, and from the first side end surface 11a. Accordingly, the opening area in the ZX plane parallel to the first side end surface 11a of the hole of the second hole portion 22 is increased.
  • the first second optical path changing surface 24a is formed closer to the XI side in the X direction than the second second optical path changing surface 24b.
  • the first second optical path changing surface 24a is formed so as to incline from the imaginary plane perpendicular to the first side end surface 11a toward the one XI side in the X direction as the distance from the first side end surface 11a increases.
  • the second second optical path changing surface 24b is formed so as to be inclined from the imaginary plane perpendicular to the first side end surface 11a toward the other X2 side in the X direction as it is farther from the first side end surface 11a.
  • the first optical path changing surface 23 and the second optical path changing surface 24 are positive (+) on the other side in the X direction from the reference line L perpendicular to the first side end surface 11a, and negative on the one side in the X direction.
  • the angle between the second optical path change surface 24 and the reference line L is the absolute value of ⁇ 2 I ⁇ 2 I force S
  • the angle between the first optical path change surface 23 and the reference line L ⁇ It is formed so as to be larger than the absolute value I ⁇ 1 I of 1.
  • the second optical path changing unit 22 is formed to have a refractive index higher than the refractive index in the hole. Since the hole formed in the second optical path changing unit 22 is a cavity in this embodiment, the refractive index in the hole is about 1.0, which is substantially equal to the refractive index of air.
  • the first optical path changing unit 21 is included in the light guide body 25, and the light guide body 25 is made of a material having a refractive index higher than air, specifically, an It is made of a translucent resin such as a ruthenium resin.
  • the second optical path changing surface 24 is formed so that the opening area in the ZX plane parallel to the first side end surface 11a of the hole of the second hole portion 22 increases as the distance from the first side end surface 11a increases.
  • the light incident on the first optical path changing surface 23 is reflected so as to be bent toward the Y1 side in the Y direction, and is guided to the region S2 outside the incident region S1 of the first side portion 11.
  • the second optical path changing unit 22 reflects the light incident from the light emitting element 12 so that the angle formed by the reference line L perpendicular to the first side end face 11a is increased. That is, when the second optical path changing unit 22 is positive (+) on the other side in the X direction and negative (one) on the one side in the X direction from the reference line L perpendicular to the first side end surface 11a, the second optical path changing unit 22 The angle formed between the optical path 33 of the light reflected by the optical path changing unit 22 and the reference line L / 3 2 absolute value I / 3 2 I force of light incident on the second optical path changing unit 22 from the light emitting element 12 The incident light is reflected so that the angle between the optical path 32 and the reference line L is larger than the absolute value I / 3 1 I of / 31. Thereby, the light force incident from the light emitting element 12 is guided to the region S2 outside the incident region S1 of the first side portion 11.
  • An angle between the optical path and the reference line L refers to the intersection between the optical path and the reference line L, and the reference line L between the optical path and the reference line L on the other side in the Y direction, that is, the light guide direction side. It is an angle.
  • the “angle between the optical path change plane and the reference line L” refers to the reference line L on the other side of the light guide direction with respect to the intersection of the optical path change plane and the reference line L in the Y direction, which is closer to the light guide direction. Is the angle formed by the optical path change plane.
  • FIG. 4 is a diagram for explaining the dimensions and arrangement intervals of the first and second optical path changing units 21 and 22 shown in FIG.
  • the dimensions and arrangement intervals of the first and second optical path changing sections 21 and 22 are selected according to the dimension wO in the X direction of the light emitting surface 12a of the light emitting element 12 as the light source.
  • the maximum dimension wl in the X direction of the second optical path changing unit 22 is selected as 80.O ⁇ m
  • the dimension W 2 in the X direction of the opening end of the connecting portion 34 between the optical path changing portion 21 of 1 and the second optical path changing portion 22 is selected as 10.O ⁇ m
  • the X of the first optical path changing portion 21 The maximum dimension w3 in the direction is chosen as 15. 3 111
  • the dimension hi in the Y direction of the second optical path changer 22 is chosen as 35.O ⁇ m
  • the dimension h2 in the Y direction of the first optical path changer 21 Is 15. O ⁇ m
  • the arrangement interval p between the first and second optical path changing units 21 and 22 is selected to be 100.0 m.
  • the dimensions and arrangement intervals of the first and second optical path changing units 21 and 22 are not limited to the above values.
  • the maximum dimension wl in the X direction of the second optical path changing unit 22 is the first and second second optical path changing surfaces 24a and 24b of the second hole 22 which is the second optical path changing unit.
  • the remaining inner wall 24c is the dimension in the X direction of the remaining inner wall surface 24c
  • the maximum dimension w3 in the X direction of the first optical path changing section 21 is the first side of the first hole 21 that is the first optical path changing section. It is the dimension in the X direction of the opening edge on the end face 11a side.
  • the arrangement interval p of the first optical path changing portions 21 is set in the X direction of the opening end portion on the first side end face 11a side of the two adjacent first optical path changing portions 21 in the XY plane perpendicular to the thickness direction Z.
  • the arrangement distance p of the second optical path changing sections 22 is the distance between the centers in the X direction of the inner wall surface 24c of the two adjacent second optical path changing sections 22. This is the distance between the centers.
  • the first and second optical path changing units 21 and 22 are the X direction of the remaining inner wall surface 24c excluding the first and second second optical path changing surfaces 24a and 24b of the second optical path changing unit 22. Are arranged symmetrically with respect to a virtual plane that is perpendicular to the first side end face 11a, so that the arrangement interval p of the first optical path changing unit 21 and the arrangement interval p of the second optical path changing unit 22 are Are in agreement!
  • the light guide 1 of the present embodiment has the first and second optical path changing units 21 and 22 in the incident region S 1 of the first side portion 11.
  • the first optical path changing unit 21 is refracted by the first optical path changing unit 21 to be refracted by the first side part.
  • the incident area S1 is guided to the area S2 outside the incident area S1, and the light incident on the second optical path changing section 22 is reflected by the second optical path changing section 22 to be the area outside the incident area S1 on the first side section 11. Can lead to S2.
  • the luminance difference between the incident area S1 of the first side portion 11 and the area S2 outside the incident area S1 can be reduced, and uneven luminance can be suppressed.
  • a plurality of hole portions 113 into which light is directly incident from the light source 112 are continuously formed on the side portion 11! /, So that two adjacent hole portions 113 are formed.
  • one hole 113 is located in the optical path of the light 115 that has passed through the other hole 113. Therefore, it passes through the hole 113 other than the hole 113 formed at both ends in the X direction of the incident region S1.
  • the optical path of the light 115 is changed in the other hole 113, the light 114 incident on the intermediate portion between both ends in the X direction of the incident area S1 from the light source 112 enters the area S2 outside the incident area S1. It is difficult to guide.
  • a plurality of holes 113 similar to those of the light guide plate 110 are formed at one side 111 at intervals, so that the holes 113 and the holes in the incident region S1 are formed.
  • the light 122 incident on the portion between the light source 113 and the light 113 travels toward the projection region S3 of the light source 112 of the light guide plate 120 without changing the optical path and in the traveling direction when the light is incident. Therefore, the light 122 incident on the light guide plate 120 between the hole 113 and the hole 113 cannot be guided to the region S2 outside the incident region S1.
  • the second optical path changing unit 22 since the second optical path changing unit 22 is provided at a distance from the first side end surface 11a, there is no difference between the first optical path changing unit 21 and the first optical path changing unit 21.
  • the light incident on the light guide 1 in the meantime can be reflected by the second optical path changing unit 22 and guided to the region S2 outside the incident region S1.
  • the second optical path changing unit 22 is formed at a position avoiding the optical path 31 of the light that has passed through the first optical path changing unit 21, so that the optical path of the light that has passed through the first optical path changing unit 21 It is possible to prevent 31 from being changed by the second optical path changing unit 22. Therefore, in the present embodiment, more light can be guided to the region S2 outside the incident region than the light guide plate 110 shown in FIG. 18 and the light guide plate 120 shown in FIG.
  • the difference in brightness between the area S2 and the area S2 outside the incident area is made smaller, and the brightness S is further reduced by the power S.
  • FIG. 5 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide 1 according to the first embodiment.
  • FIG. 5 shows the simulation results when one light emitting element 12 is used.
  • the absolute value I ⁇ 1 is set to 10 °
  • the absolute value I ⁇ 2 I of the angle ⁇ 2 formed by the second optical path changing surface 24 and the reference line L is set to 45 °.
  • each straight line extending radially from the light emitting element 12 indicates the optical path of the light incident on the light guide 1.
  • the light emitting element 12 It can be seen that the incident light spreads throughout the first side 11. Therefore, in the present embodiment, as shown in FIG. 5, the luminance difference between the incident region S1 of the first side portion 11 and the region S2 outside the incident region can be reduced, and uneven luminance can be suppressed.
  • the light incident from the light emitting element 12 spreads to the area S4 outside the projection area S3 of the light emitting element 12 that extends only by the first side portion 11. Yes. Therefore, in the present embodiment, it is possible to suppress uneven brightness over the entire light guide 1.
  • the light guide 1 has the second and third side portions 27 and 28 on both sides in the X direction as reflection portions, so the second and third side portions 27 and 28 on both sides in the X direction.
  • Light incident on 28 can be reflected by the second and third side portions 27 and 28, which are reflection portions, and guided to the inside.
  • the first and second optical path changing units 21 and 22 light incident on the reflecting units 27 and 28 can be reflected and guided to the inside. Therefore, leakage of light from the sides on both sides in the X direction can be prevented, so that the force S for increasing the utilization efficiency of the light incident from the light emitting element 12 can be reduced.
  • the first and second optical path changing portions 21 and 22 are formed by forming holes in the first side portion 11. Therefore, the first and second optical path changing units 21 and 22 can be easily realized.
  • the lighting device 2 shown in FIG. 3 is configured by including the light guide 1 of the present embodiment described above.
  • the illuminating device 2 includes a plurality of diffusion sheets 13 and 16 and prism sheets 14 and 15 on the emission surface la side of the light guide 1 and in this embodiment, and reflects on the rear lb side of the light guide 1.
  • Seat 17 is provided.
  • a first diffusion sheet 13, a first prism sheet 14, a second prism sheet 15, and a second diffusion sheet 16 are laminated in this order on the emission surface la of the light guide 1.
  • the illumination device 2 light is incident on the first side portion 11 of the light guide 1 from the light emitting element 12, and the incident light is reflected inside the light guide 1 and on each of the sheets 13 to 17. Then, the light is repeatedly bent and emitted to one side Z1 in the Z direction perpendicular to the emission surface la of the light guide 1. Since the light guide 1 includes the first and second optical path changing units 21 and 22, uneven brightness in the first side unit 11 is suppressed. Therefore, a suitable lighting device 2 is realized.
  • Light guide of this embodiment In the lighting device 2 having 1, even if the number of light emitting elements 12 as light sources is reduced and the arrangement interval of the light emitting elements 12 is increased, the difference in luminance between the incident region S1 and the region S2 outside the incident region is reduced. Since it is possible to reduce the brightness unevenness by reducing the number, it is possible to reduce the number of light emitting elements 12 and reduce the cost by IJ.
  • a lighting device 2 as, for example, a backlight device of a liquid crystal display device, it is possible to easily cope with an increase in the size of the display screen of the liquid crystal display device.
  • a liquid crystal display device capable of displaying is realized.
  • the illumination device 2 including the light guide 1 of the present embodiment it is possible to realize an increase in the size of the display screen of the liquid crystal display device without degrading the display quality.
  • the holes formed in the first hole 21 that is the first optical path changing unit and the second hole 22 that is the second optical path changing unit are hollow.
  • a certain force S, the hole is filled with filler 41 as shown in FIG.
  • FIG. 6 is a plan view showing a part of the light guide 40 in which the holes 41 formed in the first and second optical path changing portions 21 and 22 are filled with the filler 41.
  • the refractive index of the filler 41 is selected to be different from that of the light guide body 25. By changing the refractive index of the filler 41, the refraction angle and critical angle of the light passing through the first and second optical path changing sections 21 and 22 can be adjusted.
  • the force S is used to adjust the optical path of the light that has passed through the second optical path changing units 21 and 22.
  • the optical path of the light that has passed through the first and second optical path changing portions 21 and 22 is filled.
  • the refractive index of the material 41 can be adjusted.
  • the first and second optical path changing units 21 and 22 can be realized, which can more reliably guide more light incident on the incident region S 1 to the region S 2 outside the incident region of the first side portion 11.
  • the power to do S As a result, the difference in luminance between the incident region S 1 of the first side portion 11 of the light guide 1 and the region S2 other than the incident region S 1 can be further reduced, and uneven luminance can be more reliably suppressed. Touch with force S.
  • first optical path changing sections 21 are formed.
  • the plurality of first optical path changing units 21 have the same shape in this embodiment.
  • a certain force S not limited to this, may be different shapes.
  • the arrangement interval P in the X direction may be equal or different.
  • a plurality of, more specifically, two second optical path changing units 22 are formed.
  • the plurality of second optical path changing units 22 is not limited to the force S having the same shape in the present embodiment, and may have different shapes.
  • the arrangement interval p in the X direction may be an equal interval or may be different.
  • the opening shape in the XY plane perpendicular to the thickness direction Z of the hole that realizes the first and second optical path changing portions 21 and 22 is not limited to the trapezoidal shape, and may be another polygonal shape such as a triangular shape.
  • the shape may include a curved surface.
  • FIG. 7 is a plan view showing a part of the light guide 50 according to the second embodiment of the present invention.
  • the other configurations except for the first and second optical path changing units 2 1 and 22 in the first embodiment are the same, and thus the same reference numerals are used for the same configurations. The explanation is omitted.
  • the second optical path changing unit 52 is spaced from the first side end surface 11a, which is the end surface of the first side unit 11, in the same manner as the second optical path changing unit 22 in the first embodiment. In addition, it is formed at a position that avoids the optical path 57b of the light that has passed through the first optical path changing unit 51. Further, the first and second optical path changing units 51 and 52 are provided with holes in the first side portion 11 of the light guide 50, similarly to the first and second optical path changing units 21 and 22 in the first embodiment. More specifically, it is formed by forming a through hole. Also in this embodiment, the holes formed in the first and second optical path changing portions 5 1 and 52 are formed in a row.
  • the hole formed in the first hole 51 that is the first optical path changing unit is the same as the hole formed in the first hole 21 that is the first optical path changing unit in the first embodiment in the Z direction.
  • the trapezoid is arranged in the XY plane perpendicular to the Z direction, and more specifically, the upper and lower bases are parallel to the first side end face 11a and the first side end face is higher than the upper base. It is a columnar shape with an isosceles trapezoid with a long bottom bottom arranged on the 11a side and extending in the Z direction.
  • the first optical path changing unit 51 includes two planar optical path changing surfaces 53, that is, the first first optical path changing surface 53a and the second first optical path changing surface. A further surface 53b is formed.
  • the second hole portion 52 which is the second optical path changing portion, is continuous with the hole of the first hole portion 51, and the opening shape in the XY plane perpendicular to the Z direction that is the thickness direction of the light guide 50 is triangular.
  • a hole is formed.
  • the hole of the second hole 52 has a uniform shape in the Z direction, and is a triangle arranged in the XY plane perpendicular to the Z direction, more specifically, the base is parallel to the first side end surface 11a and is a vertex. Is a triangular prism shape in which the isosceles triangles arranged in the Y direction other than the bottom side on the other side Y2 side, that is, on the side opposite to the first side end face 1 la, extend in the Z direction.
  • the second optical path changing unit 52 includes four planar second optical path changing surfaces 54, 55, that is, a first second optical path changing surface 54a, a second second optical path changing surface 54b, and a third second optical path changing surface.
  • An optical path changing surface 55a and a fourth second optical path changing surface 55b are formed.
  • the plane formed by extending the hypotenuse of the triangle arranged in the XY plane perpendicular to the Z direction in the Z direction corresponds to the first and second second optical path changing surfaces 54a and 54b, and the base is in the Z direction.
  • the first and second second optical path changing surfaces 54a and 54b are planes inclined from a virtual plane parallel to the first side end surface 11a that is the end surface of the first side portion 11, and from the first side end surface 11a. Accordingly, the opening area in a virtual plane parallel to the first side end face 11a of the hole of the second hole portion 52 is reduced.
  • the first second optical path changing surface 54a is formed closer to the XI side in the X direction than the second second optical path changing surface 54b.
  • the first second optical path changing surface 54a is formed so as to incline from the imaginary plane perpendicular to the first side end surface 11a toward the other side X2 in the X direction as the distance from the first side end surface 11a increases.
  • the second second optical path changing surface 54b is formed so as to incline from the imaginary plane perpendicular to the first side end surface 11a toward the XI side in the X direction as the distance from the first side end surface 11a increases.
  • the light that is directly incident on the second optical path changing unit 52 from the light emitting element 12 is transmitted to the first optical path changing unit 51 from the light emitting element 12 on the first and second second optical path changing surfaces 54a and 54b. Similar to the directly incident light 56a, the light is refracted so that the absolute value of the angle formed with the reference line perpendicular to the end surface 11a of the first side portion 11 is increased.
  • the second optical path changing unit 52 is positive (+) on the other X2 side in the X direction from the reference line L perpendicular to the first side end surface 11a, and negative (one) on the XI side in the X direction.
  • the incident light is refracted to be larger than the absolute value I ⁇ ⁇ I of the angle ⁇ 1 formed by the optical path 56 of the light incident on the reference line L.
  • the light incident on the first and second second optical path changing surfaces 54a and 54b is refracted by the first and second second optical path changing surfaces 54a and 54b so as to be bent in the Y direction side Y1 side.
  • the light is guided to the portion on the other side Y2 in the Y direction from the first side portion 11 that is the region S2 outside the incident region.
  • the first optical path changing surface 53 and the second optical path changing surface 54 are positive (+) on the other side in the X direction from the reference line L perpendicular to the first side end surface 11a, and negative on the one side in the X direction.
  • the angle between the second optical path change surface 54 and the reference line L In (1), the angle between the second optical path change surface 54 and the reference line L.
  • FIG. 8 is a view for explaining the light refraction state on the third and fourth second optical path changing surfaces 55a and 55b of the second optical path changing section 52.
  • FIG. The third and fourth second optical path changing surfaces 55a and 55b are formed in parallel to the first side end surface 11a.
  • the light incident on the third and fourth second optical path changing surfaces 55a and 55b is guided to the region S2 outside the incident region through two refractions as shown in FIG. More specifically, the light incident on the third and fourth second optical path changing surfaces 55a and 55b is bent at the third and fourth second optical path changing surfaces 55a and 55b in the Y direction and on the Y1 side.
  • the light is bent and emitted, and the emitted light enters the first or second second optical path changing surfaces 54a and 54b, and is further refracted and bent so as to be bent in the Y direction on the Y1 side. Guided to area S 2 outside the area.
  • the second optical path changing unit 52 is incident on the light that has entered from the light emitting element 12 through a part other than the second optical path changing unit 52 of the first side part 11 and has passed through the second optical path changing unit 52.
  • the absolute value of the angle ⁇ 3 formed by the reference line L I ⁇ 3 Refracts incident light so that it is larger than I.
  • the dimensions and arrangement intervals of the first and second optical path changing sections 51 and 52 are the same as those of the first and second optical path changing sections 21 and 22 in the first embodiment.
  • the light emitting surface 12a of a certain light emitting element 12 is selected according to the dimension wO in the X direction.
  • the maximum dimension wl ′ in the X direction of the second optical path changing unit 52 is selected as 66.7 111.
  • the dimension W 2 'in the X direction of the opening end of the connecting portion 44 between the first optical path changing section 51 and the second optical path changing section 52 is selected as 27.2 111, and the X of the first optical path changing section 51
  • the maximum dimension w3 'in the direction is chosen to be 35.Om
  • the dimension h1' in the Y direction of the second optical path changing part 52 is chosen to be 33.4 111
  • the dimension h2 ′ is selected to be 22.011 m
  • the arrangement interval p of the first optical path changing unit 51 and the arrangement interval P ′ of the second optical path changing unit 52 are each selected to be 90 ⁇ 0 m.
  • the dimensions and arrangement intervals of the first and second optical path changing sections 51 and 52 are not limited to the above values! /.
  • the maximum dimension wl ′ in the X direction of the second optical path changing unit 52 is equal to that of the fourth second optical path changing surface 55b from the X direction end XI side of the third second optical path changing surface 55a.
  • X direction The dimension in the X direction of the portion extending on the other X2 side, and the maximum dimension w3 ′ in the X direction of the first optical path changing unit 51 is the first dimension of the first hole 51 that is the first optical path changing unit. It is the dimension in the X direction of the opening end on the side end face 1 la side.
  • the light guide 50 of the present embodiment includes the first and second optical path changing units 51 and 52, the first light among the light incident on the incident region S1 from the light emitting element 12 is the first.
  • the light directly incident on the optical path changing unit 51 is refracted by the first optical path changing unit 51 and guided to the region S2 outside the incident region S1 of the first side part 11 and incident on the second optical path changing unit 52.
  • the incident light can be refracted by the second optical path changing unit 52 and guided to the region S2 outside the incident region S1 of the first side portion 11. Therefore, the luminance difference between the incident region S1 of the first side portion 11 and the region S2 outside the incident region can be reduced, and uneven luminance can be suppressed.
  • the second optical path changing unit 51 refracts the light incident on the first and second second optical path changing surfaces 54a and 54b so as to be bent in the Y direction side Y1 side, thereby projecting the projection region of the light emitting element 12. Lead to outside area S4. Therefore, in the light guide 50 according to the present embodiment, the light that travels in the traveling direction at the time of incident light out of the light incident from the light emitting element 12 as compared with the light guide plate 120 shown in FIG. 19 described above. Can be reduced.
  • the hole 113 shown in FIG. 19 and the first and second optical path changing parts 51 and 52 shown in FIG. Assuming that the spacing is equal to each other, the light that travels without changing the traveling direction out of the light that enters the hole 113 shown in FIG.
  • the light is incident on a region (S5 + S6) obtained by adding S5 and the region S6 indicated by the slanting line to the right.
  • the light incident on the region S5 is guided to the region S4 outside the projection region by the first and second second optical path changing surfaces 54a and 54b, so the traveling direction is not changed.
  • the light traveling to is only the light incident on the region S6. Therefore, in the present embodiment, more light can be guided to the region S4 outside the projection region than the light guide plate 120 shown in FIG.
  • a region S5 illustrated in FIG. 8 is a remaining region excluding the projection regions of the third and fourth second optical path changing surfaces 55a and 55b, among the projection regions of the second optical path changing unit 52.
  • the region S6 is a partial projection region in which the first and second optical path changing portions 51 and 52 of the first side portion 11 are also! / And misaligned.
  • FIG. 9 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide 50 according to the second embodiment.
  • FIG. 9 shows the simulation results when one light emitting element 12 is used.
  • each straight line extending radially from the light emitting element 12 indicates the optical path of the light incident on the light guide 50.
  • the incident region S1 of the first side portion 11 and the incident light are compared with the light guide plate 110 shown in FIG. 18 and the light guide plate 120 shown in FIG. It can be seen that the luminance difference with the region S2 outside the region can be made smaller, and the luminance unevenness can be further suppressed.
  • FIG. 10 is a plan view showing a part of the light guide 60 according to the third embodiment of the present invention.
  • the other configurations except for the first and second optical path changing units 21 and 22 in the first embodiment are the same, and thus the same reference numerals are used for the same configurations. The description is omitted.
  • the first and second optical path changing units 61 and 62 are arranged on the first side of the light guide 60 in the same manner as the first and second optical path changing units 21 and 22 in the first embodiment. It is formed by forming a hole in the part 11, more specifically, a through hole.
  • the holes formed in the first and second optical path changing portions 61, 62 are not continuous and are formed separately in the first hole portion 61, which is the first optical path changing portion, A hole having a triangular opening in the XY plane, which is a virtual plane perpendicular to the Z direction, which is the thickness direction of the light guide 60, is formed.
  • the hole of the first hole 61 has a uniform shape in the Z direction and is a triangle arranged on the XY plane perpendicular to the Z direction, more specifically, the base is parallel to the first side end surface 11a and the apex. Is a triangular prism shape in which an isosceles triangle arranged in the Y direction on the other side in the Y direction from the bottom side, that is, on the side opposite to the first side end face 1 la, extends in the Z direction.
  • first optical path changing unit 61 two planar first optical path changing surfaces 63, that is, a first first optical path changing surface 63a and a second first optical path changing surface 63b are formed.
  • the first and second first optical path changing surfaces 63a and 63b are formed in the same manner as the first and second first optical path changing surfaces 23a and 23b in the first embodiment.
  • a hole having a triangular opening shape in the XY plane perpendicular to the Z direction that is the thickness direction of the light guide 60 is formed.
  • the hole of the second hole 62 has a uniform shape in the Z direction and is a triangle arranged in the XY plane perpendicular to the Z direction. More specifically, the base is parallel to the first side end face 11a and the apex is It is a triangular prism shape that extends in the Z direction from an isosceles triangle that is arranged on the one side Y1 in the Y direction from the bottom side, that is, on the first side end face 11a side.
  • two planar second optical path changing surfaces 64 that is, a first second optical path changing surface 64a and a second second optical path changing surface 64b are formed.
  • the first and second second optical path changing surfaces 64a and 64b are formed in the same manner as the first and second second optical path changing surfaces 24a and 24b in the first embodiment.
  • the holes forming the first and second optical path changing units 61 and 62 are formed separately, and the first and second optical path changing units 61 and 62 are provided separately. like this By separately providing the first and second optical path changing units 61 and 62, the first and second optical path changing units 61 and 62 can be realized in a simple shape. Accordingly, the light guide 60 can be easily manufactured.
  • the second optical path changing unit 62 is formed at a position that is spaced from the end surface 11a of the first side part 11 and avoids the optical path of the light that has passed through the first optical path changing unit 61.
  • the second optical path changing unit 62 includes the center line in the X direction of the second optical path changing unit 62 in the virtual plane including the center line in the X direction of the first optical path changing unit 61. When arranged in such a manner, a part of the second optical path changing unit 62 is formed so as to overlap a part of the first optical path changing unit 61.
  • FIG. 11 is a plan view showing a part of the light guide 70 according to the fourth embodiment of the present invention.
  • the configuration other than the second optical path changing unit 62 in the third embodiment shown in FIG. 10 is the same, and thus the same configuration is denoted by the same reference numeral. The description is omitted.
  • the second optical path changing unit 71 is the same inner wall of the hole as the second optical path changing unit 62 in the third embodiment, that is, the first and second second optical path changing surfaces 64a, 64b.
  • a reflective layer 72; The reflective layer 72 is formed so as to have a reflectance of approximately 1.0 with respect to incident light, as with the reflective layer 26 in the first embodiment.
  • the reflective layer 72 on the inner wall of the hole formed in the second optical path changing section 71, the light incident on the first and second second optical path changing surfaces 64a and 64b from almost all directions can be substantially reduced. All can be reflected. Accordingly, since the second light path changing unit 71 can guide more light to the incident region S1 of the first side portion 11, the space between the incident region S1 of the first side portion 11 and the region S2 outside the incident region can be reduced. The difference in brightness between the two is reduced, and the unevenness in brightness is further suppressed with the force S.
  • FIG. 12 is a plan view showing a part of the light guide body 75 according to the fifth embodiment of the present invention.
  • the other configurations except for the second optical path changing unit 62 in the third embodiment shown in FIG. 10 are the same, and thus the same configurations are denoted by the same reference numerals. The description is omitted.
  • the second optical path changing unit 76 is the second light in the third embodiment.
  • the first side portion 11 of the light guide 75 is formed by forming a hole, more specifically, a through hole.
  • a hole having a triangular opening shape in the XY plane perpendicular to the Z direction that is the thickness direction of the light guide 75 is formed.
  • the hole of the second hole 76 has a uniform shape in the Z direction, and is a triangle arranged in the XY plane perpendicular to the Z direction. More specifically, the base is parallel to the first side end face 11a and the apex is This is a triangular columnar shape in which an isosceles triangle arranged in the Y direction on the other side in the Y direction from the bottom side, that is, on the side opposite to the first side end face 11a, extends in the Z direction.
  • two planar second optical path changing surfaces 77 that is, a first second optical path changing surface 77a and a second second optical path changing surface 77b are formed.
  • the first and second second optical path changing surfaces 77a and 77b are formed in the same manner as the first and second second optical path changing surfaces 54a and 54b in the second embodiment shown in FIG.
  • the holes forming the first and second optical path changing units 61 and 76 are formed separately, and the first and second optical path changing units 61 and 76 are formed. Are provided separately. Therefore, since the first and second optical path changing sections 61 and 76 can be realized with a simple shape, the light guide 75 can be easily manufactured.
  • the second optical path changing unit 76 is formed at a position that is spaced from the end surface 11a of the first side part 11 and avoids the optical path of the light that has passed through the first optical path changing unit 61. .
  • the second optical path changing unit 76 includes the center line in the X direction of the second optical path changing unit 76 in the virtual plane including the center line in the X direction of the first optical path changing unit 61. When arranged in such a manner, a part of the second optical path changing unit 76 is formed so as to overlap a part of the first optical path changing unit 61.
  • FIG. 13 is a plan view showing a light guide body 80 according to the sixth embodiment of the present invention.
  • the light guide 80 according to the first embodiment shown in FIG. 2 is the same as the light guide 80 according to the first embodiment shown in FIG. Therefore, the same reference numerals are assigned to the same components and the description thereof is omitted.
  • the light guide 80 includes an emission preventing portion 81 on the other side portions except the first side portion 11, more specifically on the second and third side portions 27 and 28 on both sides in the X direction.
  • Have Output prevention part 8 1 is formed by forming the end surfaces of the side portions 27 and 28 on both sides in the X direction, which are end surfaces of the other side portions, into curved surfaces convex outward.
  • the light guide body 80 of the present embodiment has the emission preventing portions 81 on the side portions 27 and 28 on both sides in the X direction, which are the other side portions except the first side portion 11, and therefore enters from the light emitting element 12. It is possible to prevent the emitted light from being emitted to the outside. Therefore, the utilization efficiency of the light incident from the light emitting element 12 can be increased.
  • the emission preventing portion 81 is formed by forming the end surfaces of the side portions 27 and 28 on both sides in the X direction to have outwardly convex curved surfaces. It can prevent more reliably that light is radiate
  • the emission preventing portion is not limited to the configuration formed by forming the end surface into a curved surface convex outward as in the emission preventing portion 81 shown in FIG.
  • it may be formed by forming notches in other side portions except the first side portion 11, for example, the side portions 27 and 28 on both sides in the X direction.
  • FIG. 14 is a plan view showing a light guide 85 having an emission preventing portion 86 formed by forming a notch in the side portion.
  • the emission preventing portion 86 can be easily realized by forming the emission preventing portion 86 by forming a notch in the side portion.
  • the light use efficiency can be improved even if the side layer cannot be provided with a reflective layer for some reason, for example, cost reduction or manufacturing. There is an effect.
  • FIG. 15 is a plan view showing a light guide 90 according to the seventh embodiment of the present invention.
  • the light guide 90 of the present embodiment has the same configuration as the light guide 1 of the first embodiment shown in FIG. 2 except that the two main surfaces 90a and 90b are formed in a rough surface shape. Therefore, the same reference numerals are given to the same components, and the description will be omitted.
  • both main surfaces 90a and 90b are roughened. Is formed. Of these two main surfaces 90a and 90b, the main surface 90a on the Z1 side in the Z direction is the emission surface, and the main surface 90b on the other side in the Z direction is the back surface.
  • the exit surface 90a and the back surface 90b which are the main surfaces, are formed into rough surfaces. Therefore, the light incident on the exit surface 90a and the back surface 90b can be diffused. As a result, it is possible to suppress uneven brightness on the exit surface 90a.
  • a dot-shaped recess 91 is formed on the entire surface of the light guide 90 where the main surfaces 90a and 90b are formed.
  • the main surfaces 90a and 90b are formed in a rough surface shape.
  • the rough main surfaces 90a and 90b are not limited to this, and may be formed by forming convex portions on the surface portion, for example.
  • the shape of the concave portion 91 and the convex portion formed on the surface portion is not limited to a dot shape, and may be a grain shape, for example.
  • the rough main surfaces 90a and 90b may be formed by forming grooves on the surface portion.
  • the cross-sectional shape of the groove is, for example, V-shaped or cylindrical.
  • the light guide has, on one side, an incident region that is provided to face the light source, and has a first optical path changing unit and a second optical path changing unit in the incident region, Light incident from one side is diffused and emitted from at least one main surface. Light from the light source is directly incident on the first optical path changing unit, and the absolute value of the angle formed by the first optical path changing unit and the reference line perpendicular to the end surface of one side is large. Refracted to be.
  • the second optical path changing unit is formed at a position that is spaced from the end face of one side and avoids the optical path of the light that has passed through the first optical path changing unit.
  • the light incident on the incident area from the light source the light that is directly incident on the first optical path changing section is refracted by the first optical path changing section, and the area outside the incident area on one side portion.
  • the light incident on the second optical path changing unit can be reflected or refracted by the second optical path changing unit and guided to an area outside the incident area on one side. Therefore, the incident area on one side and It is possible to realize a light guide body that can reduce the difference in luminance from the region outside the incident region and suppress uneven luminance.
  • the present invention since at least one of the first and second optical path changing portions is formed by forming a hole in one side portion, it can be easily realized. According to the present invention, since the hole that realizes at least one of the first and second optical path changing portions is filled with the filler, the light passing through the optical path changing portion is filled. The refraction angle and critical angle can be adjusted by the refractive index of the filler. Therefore, since the optical path of the light that has passed through the optical path changing portion can be adjusted by the refractive index of the filler, it is possible to reliably guide the light incident on the incident region to a region outside the incident region on one side. A possible optical path changing unit can be realized. As a result, the difference in luminance between the incident region on one side of the light guide and the region other than the incident region can be reduced more reliably, and thus uneven luminance can be more reliably suppressed. it can.
  • the light guide has the emission preventing portion on the other side portion except the one side portion. As a result, it is possible to prevent the light incident from the light source from being emitted to the outside, so that the utilization efficiency of the light incident from the light source can be increased.
  • the emission preventing portion is formed by forming the end surface of the other side portion into a curved surface that is convex outward. As a result, it is possible to more reliably prevent light incident from the light source from being emitted to the outside.
  • the emission preventing portion is formed by forming a notch on the other side portion, it can be easily realized.
  • the present invention since at least one of the main surfaces is formed into a rough surface, light incident on the main surface can be diffused. As a result, it is possible to suppress uneven brightness on the main surface that emits light incident from one side.
  • the light guide has the reflecting portion that reflects the incident light on the other surface portion except the surface portion on which the main surface that emits the light incident from one side portion is formed.
  • the light incident on the other surface portion can be reflected by the reflecting portion and guided to the inside, so that the utilization efficiency of the light incident from the light source can be increased.
  • an illuminating device including the above-described excellent light guide and light source.
  • a suitable illumination device is realized.

Abstract

A light guide body in which luminance variation when light is caused to enter the light guide body from a portion of one side of the body is minimized. The light body (1) has a first light path change section (21) and second light path change section (22) that are in that incident region (S1) of a first side (11) where light emitting elements (12) are arranged facing each other. The first light path change section (21) is formed such that light enters directly to it from the light emitting elements (12) and refracts the incident light such that the absolute value of the angle formed between the light and a reference line (L) perpendicular to an end surface (11a) of the first side (11) is greater. The second light path change section (22) is formed at a position away from the end surface (11a) of the first side (11) and other than the position of a light path (31) of light having passed the first light path change section (21). Light emitted from the light emitting elements (12) is reflected such that the absolute value of the angle formed between the light and the reference line (L) perpendicular to the end surface (11a) of the first side is greater.

Description

明 細 書  Specification
導光体および照明装置  Light guide and lighting device
技術分野  Technical field
[0001] 本発明は、対象物を照明するための照明装置であって、たとえば液晶表示装置が 備える液晶表示パネルを照明するための照明装置、およびそれに備えられる導光体 に関する。  The present invention relates to an illumination device for illuminating an object, for example, an illumination device for illuminating a liquid crystal display panel included in a liquid crystal display device, and a light guide provided in the illumination device.
背景技術  Background art
[0002] 液晶ディスプレイ装置および液晶テレビジョン装置などの液晶表示装置に備わる透 過型の液晶表示パネルの照明には、バックライト装置と呼ばれる面照射型の照明装 置が用いられる。携帯電話装置およびピーディーエー(Personal Digital Assistance ; 略称 PDA)などの携帯端末装置の表示手段として用いられる液晶表示装置では、面 照射型の照明装置として、板状の導光体 (以下「導光板」ということがある)の一側部 に対向して光源が設けられるエッジライト式の照明装置が用いられる。  A surface illumination type illumination device called a backlight device is used for illumination of a transparent liquid crystal display panel provided in a liquid crystal display device such as a liquid crystal display device and a liquid crystal television device. Liquid crystal display devices used as display means for mobile terminal devices such as mobile phone devices and personal digital assistance (abbreviated as PDA) are plate-shaped light guides (hereinafter referred to as “light guide plates”) as surface illumination type illumination devices. An edge light type illuminating device in which a light source is provided opposite to one side portion is used.
ノ ックライト装置の光源としては、これまで広く冷陰極管(Cold Cathode Fluorescent Lamp ;略称 CCFL)が使われてきた力 薄型化の図り易さ、環境への配慮といった理 由力、ら、発光ダイオード(Light Emitting Diode:略称 LED)への置換えが進んでいる 。 LEDは指向性が強いので、 LEDをエッジライト式の照明装置の光源として用いると 、導光板の LEDに対向している部分とそれ以外の部分との間に輝度の差が生じて輝 度むらが発生し易ぐこの輝度むらによって液晶表示装置の表示品質が低下すると いう問題が生じる。  Cold Cathode Fluorescent Lamp (abbreviated as CCFL) has been widely used as a light source for knocklight devices. Reasons such as ease of thinning and consideration for the environment, light-emitting diodes ( Replacement with Light Emitting Diode (abbreviation LED) is progressing. Since LEDs are highly directional, when they are used as the light source of an edge-light type lighting device, a difference in brightness occurs between the part of the light guide plate facing the LED and the other parts, resulting in uneven brightness. Due to this uneven brightness, the display quality of the liquid crystal display device is degraded.
従来の導光板の一例が、特開 2004— 192937号公報に開示されている。図 16A は従来の導光板 100の構成の一例を示す平面図であり、図 16Bは図 16Aに示す導 光板 100の導入部 101を拡大して示す平面図であり、図 17は図 16Aに示す導光板 100を模式的に示す平面図である。図 17では、理解を容易にするために、 3つの導 入部 101が設けられる場合を示す。導光板 100は、輝度むらを抑制するために、光 源 102から光が入射される部分に複数の導入部 101を有する。各導入部 101におい て、光源 102から入射された光は集光部 103で集光され、光拡散部 104の斜面 104 aで反射されて反射面 105に入射する。反射面 105に入射した光は反射面 105で反 射されて導入部 101から導光方向 Aに平行に出射され、採光部 106に入射する。 導光板に関する技術ではないが、特開 2005— 135844号公報には、輝度むらの 抑制に関する技術として、導光板と光源との間に光学素子を設け、この光学素子の 光源の光出射面と接触する光入射面に、拡散プリズムたとえばシリンドリカルレンズを 形成して、光源から入射される光を拡散プリズムで拡散させる技術が開示されて!/、る 従来の導光板の他の例力 特開 2003— 215346号公報、特開 2004— 259688 号公報および特開 2006— 154292号公報に開示されている。図 18は、従来の導光 板 110の構成の他の例を拡大して示す平面図である。導光板 110は、輝度むらを抑 制するために、一側部 111の光源 112に対向する入射領域 S 1に、たとえば三角柱 状の孔が形成される孔部 113を有している。図 18に示す導光板 110では、複数の孔 部 113が、一側部 111の端面 111aに沿って連続して形成されている。 An example of a conventional light guide plate is disclosed in Japanese Patent Application Laid-Open No. 2004-192937. 16A is a plan view showing an example of the configuration of the conventional light guide plate 100, FIG. 16B is an enlarged plan view showing the introduction portion 101 of the light guide plate 100 shown in FIG. 16A, and FIG. 17 is shown in FIG. 16A. 2 is a plan view schematically showing a light guide plate 100. FIG. FIG. 17 shows a case where three introduction parts 101 are provided for easy understanding. The light guide plate 100 includes a plurality of introduction portions 101 at a portion where light is incident from the light source 102 in order to suppress luminance unevenness. In each introduction unit 101, the light incident from the light source 102 is collected by the light collection unit 103, and the inclined surface 104 of the light diffusion unit 104 is collected. Reflected by a and incident on the reflecting surface 105. The light incident on the reflecting surface 105 is reflected by the reflecting surface 105, is emitted from the introduction unit 101 in parallel with the light guide direction A, and enters the daylighting unit 106. Although not related to the light guide plate, Japanese Patent Application Laid-Open No. 2005-135844 discloses that as a technology related to suppressing uneven brightness, an optical element is provided between the light guide plate and the light source, and the light emitting surface of the light source of this optical element is in contact with the light source plate. A technique for forming a diffusion prism such as a cylindrical lens on the light incident surface and diffusing the light incident from the light source with the diffusion prism is disclosed! No. 215346, JP-A 2004-259688 and JP-A 2006-154292. FIG. 18 is an enlarged plan view showing another example of the configuration of the conventional light guide plate 110. In order to suppress uneven brightness, the light guide plate 110 has a hole 113 in which, for example, a triangular prism-shaped hole is formed in the incident region S1 facing the light source 112 of the one side 111. In the light guide plate 110 shown in FIG. 18, a plurality of hole portions 113 are continuously formed along the end surface 111 a of the one side portion 111.
図 19は、従来の導光板 120の構成のさらに他の例を拡大して示す平面図である。 図 19に示す導光板 120は、図 18に示す導光板 110と同様の孔部 113を有する。図 19に示す導光板 120では、図 18に示す導光板 110に比べて孔部 113の数が少なく なっており、複数の孔部 113は間隔をあけて形成されている。  FIG. 19 is an enlarged plan view showing still another example of the configuration of the conventional light guide plate 120. A light guide plate 120 shown in FIG. 19 has a hole 113 similar to that of the light guide plate 110 shown in FIG. In the light guide plate 120 shown in FIG. 19, the number of the hole portions 113 is smaller than that of the light guide plate 110 shown in FIG. 18, and the plurality of hole portions 113 are formed at intervals.
図 16および図 17に示す導光板 100では、採光部 106における輝度むらを抑制す ることは可能である力 採光部 106とは別に導入部 101を設けることが必要である。こ の導入部 101が設けられる部分は、照明に使用できな!/、無効表示領域 107であり、 表示装置では表示領域外の領域に配置される。  In the light guide plate 100 shown in FIGS. 16 and 17, it is necessary to provide the introduction unit 101 separately from the force lighting unit 106 that can suppress uneven luminance in the lighting unit 106. The part provided with the introduction part 101 is an invalid display area 107 that cannot be used for illumination, and is arranged in an area outside the display area in the display device.
特開 2004— 192937号公報に開示の技術では、液晶表示装置の表示画面の大 型化およびコストダウンのための光源数の削減などの理由によって光源 102の配置 間隔が広くなると、導入部 101の導光方向 Aに垂直な方向における幅寸法(以下、単 に「幅寸法」という) Wが大きくなる。特開 2004— 192937号公報に開示の技術では 、反射面 105で光を導光方向 Aに平行に反射させるので、導入部 101の幅寸法 Wが 大きくなるほど、導入部 101の導光方向 Aに平行な方向における長さ寸法(以下、単 に「長さ寸法」とレ、う) Hを大きくすることが必要である。 この導入部 101の長さ寸法 Hの増大は、照明装置にお!/、て照明に使用できな!/、領 域である導入部 101と光源 102とを含む無効表示領域 107の拡大を招く。したがつ て、特開 2004— 192937号公報に開示の技術には、設計上小型化が図り難ぐまた
Figure imgf000005_0001
In the technique disclosed in Japanese Patent Application Laid-Open No. 2004-192937, if the arrangement interval of the light sources 102 is widened for reasons such as an increase in the size of the display screen of the liquid crystal display device and a reduction in the number of light sources for cost reduction, The width dimension in the direction perpendicular to the light guide direction A (hereinafter simply referred to as “width dimension”) W increases. In the technique disclosed in Japanese Patent Application Laid-Open No. 2004-192937, light is reflected by the reflecting surface 105 in parallel to the light guide direction A. Therefore, the larger the width dimension W of the introduction portion 101 is, the greater the light guide direction A of the introduction portion 101 is. It is necessary to increase the length dimension in the parallel direction (hereinafter simply referred to as “length dimension”). The increase in the length dimension H of the introduction part 101 causes the enlargement of the invalid display area 107 including the introduction part 101 and the light source 102 which are the areas! . Therefore, the technique disclosed in Japanese Patent Application Laid-Open No. 2004-192937 is difficult to reduce in design.
Figure imgf000005_0001
特開 2005— 135844号公報に開示の技術では、導光板と光源との間に光学素子 が設けられるので、照明装置が大型化するという問題がある。また光源から光学素子 の拡散プリズムに入射される光は、導光板に向かって出射されるので、光学素子の 光入射面が形成される入射領域外の領域に光を導くことはできない。したがって特開 2005— 135844号公報に開示の技術を導光板に適用し、導光板の入射領域に拡 散プリズムを形成しても、入射領域外の領域に光を導くことはできない。  In the technique disclosed in Japanese Patent Laid-Open No. 2005-135844, an optical element is provided between the light guide plate and the light source. In addition, since light incident on the diffusion prism of the optical element from the light source is emitted toward the light guide plate, the light cannot be guided to a region outside the incident region where the light incident surface of the optical element is formed. Therefore, even if the technique disclosed in Japanese Patent Laid-Open No. 2005-135844 is applied to the light guide plate and a diffusing prism is formed in the incident region of the light guide plate, light cannot be guided to the region outside the incident region.
特開 2003— 215346号公報、特開 2004— 259688号公報および特開 2006— 1 54292号公報に開示の技術のように孔部を形成する場合、たとえば図 18に示す導 光板 110では、複数の孔部 113が連続して形成されている。このように孔部 113が連 続して形成されている場合、光源 112から孔部 113に入射される光 114は、孔部 11 3の境界部 113aを通過するときに屈折される。孔部 113の境界部 113aを通過した 光は、その孔部 113に隣接する孔部 113に入射する。この隣接する孔部 113に入射 した光は、隣接する孔部 113で一部が反射され、場合によっては全反射され、入射 領域 S 1の内方に向力、う方向である参照符 115で示される実線の方向に進む。また 孔部 113に入射される光 114は、 2つ以上の孔部 113の境界部 113aを屈折されて 通過した後、孔部 113で反射されて、入射領域 S1の内方に向力、う参照符号 115で 示される実線の方向に進むこともある。  When holes are formed as in the techniques disclosed in Japanese Patent Laid-Open Nos. 2003-215346, 2004-259688, and 2006-154292, for example, a light guide plate 110 shown in FIG. The hole 113 is formed continuously. When the hole 113 is continuously formed as described above, the light 114 incident on the hole 113 from the light source 112 is refracted when passing through the boundary 113 a of the hole 113. The light that has passed through the boundary 113a of the hole 113 enters the hole 113 adjacent to the hole 113. A part of the light incident on the adjacent hole 113 is reflected by the adjacent hole 113 and is totally reflected in some cases, and is directed to the inward direction of the incident region S 1 by a reference numeral 115 which is a direction. Proceed in the direction of the solid line shown. The light 114 incident on the hole 113 is refracted and passes through the boundary 113a of the two or more holes 113, and then reflected by the hole 113 to generate an inward force or force on the inside of the incident region S1. It may also proceed in the direction of the solid line indicated by reference numeral 115.
このように孔部 113が連続して形成されて!/、る場合、導光板 110に入射した光が 1 度または何度か孔部 113の境界部 113aを通過した後、境界部 113aで入射領域 S1 の内方に向かって反射されやすい。したがって、孔部 113に入射される光を一側部 1 11の入射領域 S1外の領域 S2に導くことは困難である。  In this way, when the hole 113 is continuously formed! /, The light incident on the light guide plate 110 passes through the boundary 113a of the hole 113 once or several times, and then enters the boundary 113a. It tends to be reflected toward the inside of area S1. Therefore, it is difficult to guide the light incident on the hole 113 to the region S2 outside the incident region S1 of the one side portion 111.
図 20は、導光板 110に入射された光の導光状態のシミュレーション結果を示す図 である。図 20では、光源 112を 1つとした場合のシミュレーション結果を示す。図 20 において光源 112から放射状に延びる各直線は、導光板 110に入射された光の光 路を示す。 FIG. 20 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide plate 110. FIG. 20 shows a simulation result when one light source 112 is used. In FIG. 20, each straight line extending radially from the light source 112 is the light of the light incident on the light guide plate 110. Showing the road.
図 20に示すシミュレーション結果から、導光板 110では、光源 112から入射される 光を一側部 111の入射領域外の領域 S2に導かれる光が少なぐまた光源 112の投 影領域 S3外の領域 S4に導かれる光も少ないことが明らかである。したがって図 18に 示される技術では、一側部 111の入射領域 S 1と入射領域外の領域 S2との間に輝度 の差が生じ、輝度むらが生じてしまう。また一側部 111寄りの部分の光源 112の投影 領域 S3と投影領域外の領域 S4との間にも輝度の差が生じ、輝度むらが生じてしまう 図 19に示す導光板 120では、複数の孔部 113が間隔をあけて形成されている。こ のように間隔をあけて複数の孔部 113が形成されている場合、孔部 113に入射する 光 114は、境界部 113aを通過した後、他の孔部 113に入射せずに、そのまま、入射 領域 S 1の外方に向力、う方向である参照符 121で示される実線方向に進み、一側部 1 11の入射領域 S1外の領域 S2に到達する。  From the simulation results shown in FIG. 20, in the light guide plate 110, the light incident from the light source 112 is less guided to the region S2 outside the incident region of the one side 111, and the region outside the projection region S3 of the light source 112. It is clear that less light is guided to S4. Therefore, in the technique shown in FIG. 18, a difference in luminance occurs between the incident region S1 on one side 111 and the region S2 outside the incident region, resulting in uneven luminance. Further, the light guide plate 120 shown in FIG. 19 has a luminance difference between the projection region S3 of the light source 112 near the one side 111 and the region S4 outside the projection region. Holes 113 are formed at intervals. When a plurality of holes 113 are formed at such intervals, the light 114 incident on the holes 113 does not enter the other holes 113 after passing through the boundary 113a. Then, the directional force is directed outward from the incident area S 1 and proceeds in the direction of the solid line indicated by reference numeral 121, which reaches the area S 2 outside the incident area S 1 on the one side portion 111.
このように導光板 120では、隣接する孔部 113による反射を防ぐことはできる力 隣 接する 2つの孔部 113間の入射領域 S1に入射される光 122は孔部 113に入射しな いので、入射されたときの進行方向を変えることなぐそのまま進み、一側部 111の入 射領域 S 1外の領域 S2には到達しない。したがって、入射領域外の領域 S2に到達 する光の量が少ないので、入射領域 S 1と入射領域外の領域 S2との間における輝度 の差を充分に抑えることはできず、輝度むらを充分に抑制することはできなレ、。  Thus, in the light guide plate 120, the force that can prevent reflection by the adjacent hole 113, the light 122 incident on the incident region S1 between the two adjacent holes 113 does not enter the hole 113. It proceeds without changing the direction of travel when incident, and does not reach the region S2 outside the incident region S1 of the one side 111. Therefore, since the amount of light reaching the region S2 outside the incident region is small, the difference in luminance between the incident region S1 and the region S2 outside the incident region cannot be sufficiently suppressed, and the luminance unevenness is sufficiently reduced. I can't suppress it.
図 21は、導光板 120に入射された光の導光状態のシミュレーション結果を示す図 である。図 21では、光源 112を 1つとした場合のシミュレーション結果を示す。図 21 において光源 112から放射状に延びる各直線は、導光板 120に入射された光の光 路を示す。  FIG. 21 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide plate 120. FIG. 21 shows a simulation result when one light source 112 is used. In FIG. 21, each straight line extending radially from the light source 112 indicates the optical path of the light incident on the light guide plate 120.
図 21に示すシミュレーション結果から、導光板 120では、導光板 110に比べて、光 源 112の投影領域外の領域 S4のうち、入射領域外の領域 S2のより広い範囲に光が 導かれるが、その量は少ないことがわかる。したがって、図 19に示される技術では、 前述のように一側部 111の入射領域 S1と入射領域外の領域 S2との間の輝度の差を 充分に低減することができず、輝度のむらを充分に抑制することができない。また一 側部 111寄りの部分の光源 112の投影領域 S3と投影領域外の領域 S4との間の輝 度の差も充分に低減できないので、導光板 120全体における輝度むらについても充 分に抑制することができなレ、。 From the simulation results shown in FIG. 21, in the light guide plate 120, light is guided to a wider range of the region S2 outside the incident region in the region S4 outside the projection region of the light source 112 than in the light guide plate 110. It can be seen that the amount is small. Therefore, in the technique shown in FIG. 19, the difference in luminance between the incident region S1 on one side 111 and the region S2 outside the incident region cannot be sufficiently reduced as described above, and the luminance unevenness is sufficiently increased. Can not be suppressed. One more Since the difference in brightness between the projection area S3 of the light source 112 near the side 111 and the area S4 outside the projection area cannot be reduced sufficiently, the brightness unevenness of the entire light guide plate 120 can be sufficiently suppressed. I ca n’t.
発明の開示 Disclosure of the invention
本発明の目的は、一側部の一部分から光を入射させるときの輝度むらを抑制するこ とのできる導光体およびそれを備える照明装置を提供することである。  The objective of this invention is providing the light guide which can suppress the brightness nonuniformity when light injects from a part of one side part, and an illuminating device provided with the same.
本発明は、入射される光を拡散させて出射する導光体であって、  The present invention is a light guide that diffuses and emits incident light,
光が入射される一側部と、  One side where light is incident;
拡散された光を出射する少なくとも一方の主面とを含み、  Including at least one main surface that emits diffused light,
一側部は、光源が対向して設けられる入射領域を有し、  One side has an incident region provided with a light source facing the light source,
入射領域には、  In the incident area,
光源から光が直接入射され、その入射する光を一側部の端面に対して垂直な基準 線との成す角度の絶対値が大きくなるように屈折させる第 1の光路変更部と、 一側部の端面から間隔をあけて、かつ第 1の光路変更部を通過した光の光路を避 けた位置に形成され、光源から入射される光を一側部の端面に対して垂直な基準線 との成す角度の絶対値が大きくなるように反射または屈折させる第 2の光路変更部と を有することを特徴とする導光体である。  A first optical path changing unit that directly irradiates light from a light source and refracts the incident light so that an absolute value of an angle formed with a reference line perpendicular to an end surface of one side is increased; and one side Is formed at a position that is spaced from the end face of the light source and avoids the light path of the light that has passed through the first light path changing section, and allows the light incident from the light source to be perpendicular to the end face of one side. And a second optical path changing unit that reflects or refracts so that the absolute value of the formed angle is large.
また本発明において、第 1および第 2の光路変更部のうち、少なくともいずれか一方 は、一側部に孔を形成することによって形成されることが好ましい。  In the present invention, it is preferable that at least one of the first and second optical path changing portions is formed by forming a hole in one side portion.
また本発明において、孔には、充填材が充填されていることが好ましい。  In the present invention, the holes are preferably filled with a filler.
また本発明において、一側部を除く他の側部には、光源から入射された光が外部 に出射することを防止する出射防止部を有することが好ましい。  Moreover, in this invention, it is preferable to have the radiation | emission prevention part which prevents that the light incident from the light source radiate | emits outside in the other side part except one side part.
また本発明において、出射防止部は、他の側部の端面が外方に凸の湾曲面に形 成されることによって形成されること力 S好まし!/、。  In the present invention, the emission preventing portion is formed by forming the end surface of the other side portion into a curved surface convex outwardly.
また本発明において、出射防止部は、他の側部に切欠きを形成することによって形 成されることが好ましい。  In the present invention, the emission preventing portion is preferably formed by forming a notch on the other side portion.
また本発明において、少なくともいずれか一方の主面は、粗面状に形成されている ことが好ましい。 また本発明におレ、て、一側部から入射される光を出射する主面が形成される表面 部を除く他の表面部には、入射する光を反射させる反射部を有することが好まし!/、。 また本発明は、前記本発明の導光体と、導光体の入射領域に対向して設けられ、 入射領域に光を入射する光源とを備えることを特徴とする照明装置である。 In the present invention, it is preferable that at least one of the main surfaces is formed into a rough surface. In the present invention, it is preferable that the other surface portion except the surface portion on which the main surface for emitting light incident from one side is formed has a reflecting portion for reflecting incident light. Better!/,. Moreover, this invention is an illuminating device provided with the light guide of the said this invention, and the light source which is provided facing the incident area of a light guide, and injects light into an incident area.
図面の簡単な説明 Brief Description of Drawings
本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。  Objects, features and advantages of the present invention will become more apparent from the following detailed description and drawings.
図 1は、本発明の第 1の実施形態である導光体の一部を示す平面図である。  FIG. 1 is a plan view showing a part of the light guide according to the first embodiment of the present invention.
図 2は、本発明の第 1の実施形態である導光体を示す平面図である。  FIG. 2 is a plan view showing the light guide according to the first embodiment of the present invention.
図 3は、本発明の第 1の実施形態である導光体を備える照明装置 2を分解して示す 分解斜視図である。  FIG. 3 is an exploded perspective view showing an exploded view of the lighting device 2 including the light guide according to the first embodiment of the present invention.
図 4は、図 1に示す第 1および第 2の光路変更部の寸法および配置間隔を説明する ための図である。  FIG. 4 is a diagram for explaining dimensions and arrangement intervals of the first and second optical path changing units shown in FIG.
図 5は、第 1の実施形態の導光体に入射された光の導光状態のシミュレーション結 果を示す図である。  FIG. 5 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide according to the first embodiment.
図 6は、第 1および第 2の光路変更部に形成される孔に充填材が充填された導光体 の一部を示す平面図である。  FIG. 6 is a plan view showing a part of a light guide in which a hole formed in the first and second optical path changing portions is filled with a filler.
図 7は、本発明の第 2の実施形態の導光体の一部を示す平面図である。  FIG. 7 is a plan view showing a part of the light guide according to the second embodiment of the present invention.
図 8は、第 2の光路変更部の第 3および第 4の第 2光路変更面における光の屈折状 態を説明するための図である。  FIG. 8 is a diagram for explaining the light refraction state on the third and fourth second optical path changing surfaces of the second optical path changing unit.
図 9は、第 2の実施形態の導光体に入射された光の導光状態のシミュレーション結 果を示す図である。  FIG. 9 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide body according to the second embodiment.
図 10は、本発明の第 3の実施形態の導光体の一部を示す平面図である。  FIG. 10 is a plan view showing a part of the light guide according to the third embodiment of the present invention.
図 11は、本発明の第 4の実施形態の導光体の一部を示す平面図である。  FIG. 11 is a plan view showing a part of the light guide according to the fourth embodiment of the present invention.
図 12は、本発明の第 5の実施形態の導光体の一部を示す平面図である。  FIG. 12 is a plan view showing a part of the light guide according to the fifth embodiment of the present invention.
図 13は、本発明の第 6の実施形態の導光体を示す平面図である。  FIG. 13 is a plan view showing a light guide according to a sixth embodiment of the present invention.
図 14は、側部に切欠きを形成して形成される出射防止部を有する導光体を示す平 面図である。 図 15は、本発明の第 7の実施形態の導光体を示す平面図である。 FIG. 14 is a plan view showing a light guide body having an emission preventing portion formed by forming a notch in the side portion. FIG. 15 is a plan view showing a light guide according to a seventh embodiment of the present invention.
図 16Aは従来の導光板の構成の一例を示す平面図であり、図 16Bは図 16Aに示 す導光板の導入部を拡大して示す平面図である。  FIG. 16A is a plan view showing an example of the configuration of a conventional light guide plate, and FIG. 16B is an enlarged plan view showing an introduction portion of the light guide plate shown in FIG. 16A.
図 17は、図 16Aに示す導光板を模式的に示す平面図である。  FIG. 17 is a plan view schematically showing the light guide plate shown in FIG. 16A.
図 18は、従来の他の例の導光板の構成を拡大して示す平面図である。  FIG. 18 is an enlarged plan view showing a configuration of another conventional light guide plate.
図 19は、従来のさらに他の例の導光板の構成を拡大して示す平面図である。 図 20は、従来の他の例の導光板に入射された光の導光状態のシミュレーション結 果を示す図である。  FIG. 19 is an enlarged plan view showing a configuration of a light guide plate of still another conventional example. FIG. 20 is a diagram illustrating a simulation result of a light guide state of light incident on a light guide plate of another conventional example.
図 21は、従来のさらに他の例の導光板に入射された光の導光状態のシミュレーシ ヨン結果を示す図である。  FIG. 21 is a diagram illustrating a simulation result of a light guide state of light incident on a light guide plate of still another example of the related art.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下図面を参考にして本発明の好適な実施形態を詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
図 1は本発明の第 1の実施形態である導光体 1の一部を示す平面図であり、図 2は 本発明の第 1の実施形態である導光体 1を示す平面図であり、図 3は本発明の第 1の 実施形態である導光体 1を備える照明装置 2を分解して示す分解斜視図である。図 1 では、図 2に示す導光体 1の一側部 11を拡大して示す。  FIG. 1 is a plan view showing a part of the light guide 1 according to the first embodiment of the present invention, and FIG. 2 is a plan view showing the light guide 1 according to the first embodiment of the present invention. FIG. 3 is an exploded perspective view showing the illuminating device 2 including the light guide 1 according to the first embodiment of the present invention in an exploded manner. FIG. 1 shows an enlarged view of one side 11 of the light guide 1 shown in FIG.
導光体 1は、たとえば図 3に示す照明装置 2に備えられる。図 3に示す照明装置 2は 、対象物を照明光によって照明するための装置であって、たとえば透過型の液晶表 示装置に備えられ、液晶表示パネルを照明するバックライト装置として用いられる。液 晶表示装置において照明装置 2は、液晶表示パネルに対向して設けられ、液晶表示 装置の操作者が表示画面を見る側とは反対側から、対象物である液晶表示パネルを 照明する。照明装置 2は、液晶表示パネルの照明に限定されず、他の対象物の照明 またはイノレミネーシヨンなどに使用されてもよい。  The light guide 1 is provided, for example, in the illumination device 2 shown in FIG. The illuminating device 2 shown in FIG. 3 is a device for illuminating an object with illumination light, and is provided in a transmissive liquid crystal display device, for example, and used as a backlight device that illuminates a liquid crystal display panel. In the liquid crystal display device, the illuminating device 2 is provided facing the liquid crystal display panel, and the liquid crystal display panel, which is an object, illuminates the liquid crystal display panel as an object from the side opposite to the side on which the operator views the display screen. The illumination device 2 is not limited to the illumination of the liquid crystal display panel, but may be used for illumination of other objects or innomination.
図 3に示す照明装置 2は、導光体 1の一側部 11に対向して光源 12が設けられるェ ッジライト式の照明装置である。照明装置 2は、本実施形態の導光体 1と、光源である 発光素子 12とを備える。本実施形態では、発光素子 12は複数、より詳細には 3つが 設けられる。光源である発光素子 12は、導光体 1に向けて放射状に光を出射する。 発光素子 12は、たとえば発光ダイオード(略称 LED)によって実現される。 図 3に示すように、導光体 1は、平板状であり、その厚み方向両側の表面が主面 la , lbである。導光体 1は、一側部である第 1側部 11から入射される光を拡散させて、 2 つの主面 la, lbのうち、少なくとも一方の主面、本実施形態では一方の主面 laから 出射する。以下、この光が出射される一方の主面 laを出射面 laといい、出射面 laと 反対側の他方の主面を背面 lbという。 The illuminating device 2 shown in FIG. 3 is an edge light type illuminating device in which a light source 12 is provided to face one side 11 of the light guide 1. The illumination device 2 includes the light guide 1 of the present embodiment and a light emitting element 12 that is a light source. In the present embodiment, a plurality of light emitting elements 12 are provided, more specifically, three. The light emitting element 12 that is a light source emits light radially toward the light guide 1. The light emitting element 12 is realized by a light emitting diode (abbreviated as LED), for example. As shown in FIG. 3, the light guide 1 has a flat plate shape, and the surfaces on both sides in the thickness direction are main surfaces la and lb. The light guide 1 diffuses light incident from the first side 11 which is one side, and at least one of the two main surfaces la and lb, one main surface in the present embodiment. Emits from la. Hereinafter, one main surface la from which the light is emitted is referred to as an emission surface la, and the other main surface opposite to the emission surface la is referred to as a back surface lb.
本実施形態では、導光体 1は、平行平板状であり、導光体 1の出射面 laおよび背 面 lbである厚み方向両側の表面は、相互にほぼ平行な平面に形成される。このよう に導光体 1の形状は、本実施形態では厚み方向両側の表面が相互に平行な形状で ある平行平板状であるが、これに限定されず、たとえば、厚み方向一方側の表面が 厚み方向他方側の表面に対して傾斜する形状である楔状、または平行平板状の部 分と楔状の部分とが組み合わされた形状であってもよい。  In the present embodiment, the light guide 1 has a parallel plate shape, and the surfaces on both sides in the thickness direction, which are the emission surface la and the back surface lb, of the light guide 1 are formed in planes substantially parallel to each other. As described above, the shape of the light guide 1 is a parallel plate shape in which the surfaces on both sides in the thickness direction are parallel to each other in the present embodiment. However, the shape is not limited to this. It may be a wedge shape that is inclined with respect to the surface on the other side in the thickness direction, or a shape in which a parallel plate portion and a wedge portion are combined.
導光体 1の厚み方向を Z方向と定義し、 Z方向に垂直な一方向を X方向と定義し、 Z 方向および X方向に垂直な方向を Y方向と定義する。各図において、これら X、 Υ、 Ζ 方向を矢符 X、 Υ、 Ζで表す。  The thickness direction of the light guide 1 is defined as the Z direction, one direction perpendicular to the Z direction is defined as the X direction, and the direction perpendicular to the Z direction and the X direction is defined as the Y direction. In each figure, these X, Υ, and Ζ directions are represented by arrows X, Υ, and Ζ.
導光体 1は、図 2に示すように、長辺が Υ方向に平行な長方形板状である。図 2にお いて Ζ方向一方 Z1は、紙面に垂直な方向のうち、紙面手前側に向力、う方向である。 導光体 1の第 1側部 11は、 X方向に平行な 2つの短辺のうち、 Υ方向一方側の短辺 である。導光体 1は、より詳細には、導光体本体 25と反射層 26とを含む。  As shown in FIG. 2, the light guide 1 has a rectangular plate shape whose long side is parallel to the flange direction. In Fig. 2, one side Z1 is the direction perpendicular to the paper surface, and the direction of force toward the front side of the paper surface. The first side portion 11 of the light guide 1 is a short side on one side of the ridge direction, out of two short sides parallel to the X direction. More specifically, the light guide 1 includes a light guide body 25 and a reflective layer 26.
反射層 26は、導光体本体 25の X方向両側の側部の端面に形成され、導光体本体 25の X方向両側の側部とともに導光体 1の X方向両側の側部である第 2および第 3側 部 27, 28を構成する。この導光体 1の第 2および第 3側部 27, 28が、反射部に相当 する。反射層 26は、入射する光に対して、ほぼ 1. 0に近い反射率を有するように形 成される。反射層 26の材料としては、光反射性が高ぐ反射率が 1. 0に近い材料が 用いられ、このような材料としては、たとえば銀 (Ag)、アルミニウム (A1)などが挙げら れる。反射層 26は、たとえば反射率が 1. 0に近い薄膜によって実現される。導光体 本体 25は、透光性を有し、たとえばアクリル樹脂およびポリカーボネート樹脂などの 透光性樹脂などの透光性材料によって形成される。  The reflection layer 26 is formed on the end surfaces of the side portions on both sides in the X direction of the light guide body 25, and is the side portions on both sides in the X direction of the light guide body 1 together with the side portions on both sides in the X direction of the light guide body 25. 2 and 3 side parts 27 and 28 are formed. The second and third side portions 27 and 28 of the light guide 1 correspond to a reflecting portion. The reflective layer 26 is formed so as to have a reflectance of approximately 1.0 with respect to incident light. As the material of the reflective layer 26, a material having high light reflectivity and a reflectance close to 1.0 is used. Examples of such a material include silver (Ag) and aluminum (A1). The reflective layer 26 is realized by a thin film having a reflectance close to 1.0, for example. The light guide body 25 has translucency and is made of a translucent material such as translucent resin such as acrylic resin and polycarbonate resin.
導光体 1は、第 1側部 11に、光源である発光素子 12が対向して設けられる入射領 域 S Iを有し、この入射領域 SIに、図 1に示す第 1の光路変更部 21および第 2の光 路変更部 22を有する。図 2では、第 1側部 11の入射領域 S 1を右下がりの斜線で示 し、第 1側部 11の入射領域外の領域 S2を左下がりの斜線で示す。本実施形態では 、照明装置 2は 3つの発光素子 12を備えるので、 3つの入射領域 S1が形成される。 第 1側部 11の入射領域 S 1は、導光体 1のうち、光源である発光素子 12の光出射 面 12aが Y方向他方 Y2に投影される領域 (以下「発光素子 12の投影領域」という) S 3に含まれ、この発光素子 12の投影領域 S3の中で第 1側部 11に含まれる領域であ る。第 1側部 11の入射領域外の領域 S2は、導光体 1のうち、発光素子 12の投影領 域外の領域 S4に含まれ、この発光素子 12の投影領域外の領域 S4の中で第 1側部 1 1に含まれる領域である。 The light guide 1 has an incident area in which a light emitting element 12 as a light source is opposed to a first side 11. The incident region SI has a first optical path changing unit 21 and a second optical path changing unit 22 shown in FIG. In FIG. 2, the incident region S 1 on the first side portion 11 is indicated by a right-down oblique line, and the region S 2 outside the incident region on the first side portion 11 is indicated by a left-down oblique line. In the present embodiment, since the lighting device 2 includes the three light emitting elements 12, three incident regions S1 are formed. The incident area S 1 of the first side portion 11 is an area where the light emitting surface 12a of the light emitting element 12 as the light source in the light guide 1 is projected onto the other Y2 in the Y direction (hereinafter referred to as “projection area of the light emitting element 12”). This region is included in S 3 and is included in the first side portion 11 in the projection region S 3 of the light emitting element 12. The area S2 outside the incident area of the first side portion 11 is included in the area S4 outside the projection area of the light emitting element 12 in the light guide 1, and the area S4 outside the projection area of the light emitting element 12 is within the area S4. 1 side 1 1 is an area included in 1
図 1に示すように、第 1の光路変更部 21は、発光素子 12から光が直接入射されるよ うに形成される。第 1の光路変更部 21は、導光体 1の第 1側部 11に孔、より詳細には 第 1側部 11を厚み方向に貫通する透孔を形成することによって形成される。第 1の光 路変更部である第 1孔部 21には、導光体 1の厚み方向である Z方向に垂直な仮想一 平面である XY平面における開口形状が台形状である孔が形成されている。第 1孔部 21の孔は、 Z方向に一様な形状であり、 Z方向に垂直な XY平面に配置された台形、 より詳細には上底および下底が第 1側部 11の端面(以下「第 1側端面」ということがあ る) 11aに平行であって上底よりも第 1側端面 11a側に配置される下底が長い等脚台 形を Z方向に延ばした柱状形状である。  As shown in FIG. 1, the first optical path changing unit 21 is formed so that light is directly incident from the light emitting element 12. The first optical path changing portion 21 is formed by forming a hole in the first side portion 11 of the light guide 1, more specifically, a through hole penetrating the first side portion 11 in the thickness direction. In the first hole portion 21 that is the first optical path changing portion, a hole whose opening shape in the XY plane that is a virtual plane perpendicular to the Z direction that is the thickness direction of the light guide 1 is trapezoidal is formed. ing. The hole of the first hole portion 21 has a uniform shape in the Z direction, and is a trapezoid arranged in the XY plane perpendicular to the Z direction. More specifically, the upper base and the lower base are the end faces of the first side portion 11 ( (Hereinafter sometimes referred to as “first side end face”) An isosceles trapezoid that is parallel to 11a and is located on the first side end face 11a side of the upper base is longer in the Z direction. is there.
第 1の光路変更部 21には、平面状の 2つの第 1光路変更面 23、すなわち第 1の第 1光路変更面 23aおよび第 2の第 1光路変更面 23bが形成される。前述の Z方向に垂 直な XY平面に配置される台形の斜辺を 方向に延ばして形成される平面が、第 1お よび第 2の第 1光路変更面 23a, 23bに相当する。本実施形態では、第 1および第 2 の第 1光路変更面 23a, 23bは、各寸法が相互に同一に形成される。  In the first optical path changing unit 21, two planar first optical path changing surfaces 23, that is, a first first optical path changing surface 23a and a second first optical path changing surface 23b are formed. The planes formed by extending the oblique sides of the trapezoid arranged in the XY plane perpendicular to the Z direction in the direction correspond to the first and second first optical path changing surfaces 23a and 23b. In the present embodiment, the first and second first optical path changing surfaces 23a and 23b are formed to have the same dimensions.
第 1および第 2の第 1光路変更面 23a, 23bは、第 1側部 11の端面である第 1側端 面 11aから傾斜する平面であり、第 1側端面 11aから遠ざかるにしたがって、第 1孔部 21の孔の第 1側端面 1 laと平行な仮想一平面である ZX平面における開口面積が小 さくなるように形成される。第 1の第 1光路変更面 23aは、第 2の第 1光路変更面 23b よりも X方向一方 XI側に形成される。第 1の第 1光路変更面 23aは、第 1側端面 11a から遠ざかるにしたがって、第 1側端面 11aに垂直な仮想一平面から X方向他方 X2 側に傾斜するように形成されている。第 2の第 1光路変更面 23bは、第 1側端面 11a から遠ざかるにしたがって、第 1側端面 11aに垂直な仮想一平面から X方向一方 XI 側に傾斜するように形成されている。 The first and second first optical path changing surfaces 23a, 23b are planes inclined from the first side end surface 11a, which is the end surface of the first side portion 11, and the first and second first optical path changing surfaces 23a, 23b It is formed so that the opening area in the ZX plane which is a virtual plane parallel to the first side end face 1 la of the hole 21 is small. The first first optical path changing surface 23a is the second first optical path changing surface 23b. It is formed on one XI side than the X direction. The first first optical path changing surface 23a is formed so as to incline from the imaginary plane perpendicular to the first side end surface 11a toward the other X2 side in the X direction as it is farther from the first side end surface 11a. The second first optical path changing surface 23b is formed so as to be inclined toward the XI side in the X direction from a virtual plane perpendicular to the first side end surface 11a as the distance from the first side end surface 11a increases.
第 1の光路変更部 21は、孔内の屈折率よりも高い屈折率を有するように形成される 。第 1の光路変更部 21に形成される孔は、本実施形態では空洞であるので、孔内の 屈折率は空気の屈折率に略等しぐ約 1. 0である。第 1の光路変更部 21は、導光体 本体 25に含まれ、導光体本体 25は空気よりも屈折率の高い材料、具体的にはアタリ ル樹脂などの透光性樹脂で形成される。  The first optical path changing unit 21 is formed to have a refractive index higher than the refractive index in the hole. Since the hole formed in the first optical path changing unit 21 is a cavity in this embodiment, the refractive index in the hole is about 1.0, which is substantially equal to the refractive index of air. The first optical path changing unit 21 is included in the light guide body 25, and the light guide body 25 is formed of a material having a refractive index higher than that of air, specifically, a light-transmitting resin such as talyl resin. .
第 1光路変更面 23は、第 1側端面 11aから遠ざかるにしたがって、第 1孔部 21の孔 の第 1側端面 11aと平行な ZX平面における開口面積が小さくなるように形成されて いるので、第 1光路変更面 23に入射する光は、 Y方向一方 Y1側に屈曲するように屈 折され、第 1側部 11の入射領域 S1外の領域 S2に導かれる。  The first optical path changing surface 23 is formed so that the opening area in the ZX plane parallel to the first side end surface 11a of the hole of the first hole portion 21 decreases as the distance from the first side end surface 11a increases. The light incident on the first optical path changing surface 23 is bent so as to be bent toward the Y1 side in the Y direction, and is guided to the region S2 outside the incident region S1 of the first side portion 11.
このように第 1の光路変更部 21は、発光素子 12から直接入射される光を第 1側端 面 11aに垂直な基準線 Lとの成す角度の絶対値が大きくなるように屈折させる。つま り、第 1の光路変更部 21は、第 1側端面 11aに対して垂直な基準線 Lから X方向他方 側を正( + )、 X方向一方 XI側を負(一)としたとき、第 1の光路変更部 21を通過した 光の光路 31と基準線 Lとの成す角度 α 2の絶対値 I « 2 I力 S、発光素子 12から第 1 の光路変更部 21に入射する光の光路 30と基準線 Lとの成す角度《1の絶対値 I α 1 Iよりも大きくなるように、入射する光を屈折させる。これによつて、発光素子 12から 入射される光が、第 1側部 11の入射領域 S1外の領域 S2に導かれる。  As described above, the first optical path changing unit 21 refracts the light directly incident from the light emitting element 12 so that the absolute value of the angle formed with the reference line L perpendicular to the first side end surface 11a is increased. In other words, the first optical path changing unit 21 is positive (+) on the other side in the X direction from the reference line L perpendicular to the first end surface 11a, and negative (one) on the XI side in the X direction. The absolute value of the angle α2 between the optical path 31 of the light that has passed through the first optical path changing section 21 and the reference line L I «2 I force S, the light incident on the first optical path changing section 21 from the light emitting element 12 The incident light is refracted so that the angle between the optical path 30 and the reference line L is larger than the absolute value I α 1 I of << 1. Thereby, the light incident from the light emitting element 12 is guided to the region S2 outside the incident region S1 of the first side portion 11.
第 2の光路変更部 22は、第 1側部 11の端面である第 1側端面 11aから間隔をあけ て、かつ第 1の光路変更部 21を通過した光の光路 31を避けた位置に形成される。第 2の光路変更部 22は、導光体 1の第 1側部 11に孔、より詳細には第 1側部 11を厚み 方向に貫通する透孔を形成することによって形成される。本実施形態では、第 1およ び第 2の光路変更部 21 , 22に形成される孔は連なって形成されている。  The second optical path changing unit 22 is formed at a position away from the first side end surface 11a, which is the end surface of the first side unit 11, and avoiding the optical path 31 of the light that has passed through the first optical path changing unit 21. Is done. The second optical path changing portion 22 is formed by forming a hole in the first side portion 11 of the light guide 1, more specifically, a through hole penetrating the first side portion 11 in the thickness direction. In the present embodiment, the holes formed in the first and second optical path changing portions 21 and 22 are formed continuously.
第 2の光路変更部である第 2孔部 22には、第 1孔部 21の孔に連なって、導光体 1の 厚み方向である Z方向に垂直な XY平面における開口形状が台形状である孔が形成 されている。第 2孔部 22の孔は、 Ζ方向に一様な形状であり、 Ζ方向に垂直な ΧΥ平 面に配置された台形、より詳細には上底および下底が第 1側端面 11aに平行であつ て上底よりも第 1側端面 11a側に配置される下底が短い等脚台形を Z方向に延ばし た柱状形状である。 The second hole portion 22 which is the second optical path changing portion is connected to the hole of the first hole portion 21, and the light guide 1 A hole having a trapezoidal opening in the XY plane perpendicular to the Z direction, which is the thickness direction, is formed. The hole of the second hole portion 22 has a uniform shape in the heel direction, and is a trapezoid arranged on the heel plane perpendicular to the heel direction. More specifically, the upper base and the lower base are parallel to the first side end face 11a. In this case, an isosceles trapezoid with a lower bottom, which is arranged closer to the first side end face 11a than the upper base, extends in the Z direction.
第 2の光路変更部 22には、平面状の 2つの第 2光路変更面 24、すなわち第 1の第 2光路変更面 24aおよび第 2の第 2光路変更面 24bが形成される。前述の Z方向に垂 直な XY平面に配置される台形の斜辺を 方向に延ばして形成される平面が、第 1お よび第 2の第 2光路変更面 24a, 24bに相当する。本実施形態では、第 1および第 2 の第 2光路変更面 24a, 24bは、各寸法が相互に同一に形成される。  In the second optical path changing unit 22, two planar second optical path changing surfaces 24, that is, a first second optical path changing surface 24a and a second second optical path changing surface 24b are formed. The planes formed by extending the oblique sides of the trapezoid arranged in the XY plane perpendicular to the Z direction in the direction correspond to the first and second second optical path changing surfaces 24a and 24b. In the present embodiment, the first and second second optical path changing surfaces 24a and 24b are formed to have the same dimensions.
第 1および第 2の第 2光路変更面 24a, 24bは、第 1側部 11の端面である第 1側端 面 11aに平行な仮想一平面から傾斜する平面であり、第 1側端面 11aから遠ざかるに したがって、第 2孔部 22の孔の第 1側端面 11aと平行な ZX平面における開口面積が 大きくなるように形成される。第 1の第 2光路変更面 24aは、第 2の第 2光路変更面 24 bよりも X方向一方 XI側に形成される。第 1の第 2光路変更面 24aは、第 1側端面 11 aから遠ざかるにしたがって、第 1側端面 11aに垂直な仮想一平面から X方向一方 XI 側に傾斜するように形成されている。第 2の第 2光路変更面 24bは、第 1側端面 11a から遠ざかるにしたがって、第 1側端面 11aに垂直な仮想一平面から X方向他方 X2 側に傾斜するように形成されている。  The first and second second optical path changing surfaces 24a, 24b are planes inclined from a virtual plane parallel to the first side end surface 11a that is the end surface of the first side portion 11, and from the first side end surface 11a. Accordingly, the opening area in the ZX plane parallel to the first side end surface 11a of the hole of the second hole portion 22 is increased. The first second optical path changing surface 24a is formed closer to the XI side in the X direction than the second second optical path changing surface 24b. The first second optical path changing surface 24a is formed so as to incline from the imaginary plane perpendicular to the first side end surface 11a toward the one XI side in the X direction as the distance from the first side end surface 11a increases. The second second optical path changing surface 24b is formed so as to be inclined from the imaginary plane perpendicular to the first side end surface 11a toward the other X2 side in the X direction as it is farther from the first side end surface 11a.
本実施形態では、第 1光路変更面 23および第 2光路変更面 24は、第 1側端面 11a に対して垂直な基準線 Lから X方向他方側を正(+ )、 X方向一方側を負(一)としたと き、第 2光路変更面 24と基準線 Lとの成す角度 Θ 2の絶対値 I Θ 2 I 力 S、第 1光路変 更面 23と基準線 Lとの成す角度 θ 1の絶対値 I Θ 1 Iよりも大きくなるように形成され ている。  In the present embodiment, the first optical path changing surface 23 and the second optical path changing surface 24 are positive (+) on the other side in the X direction from the reference line L perpendicular to the first side end surface 11a, and negative on the one side in the X direction. In (1), the angle between the second optical path change surface 24 and the reference line L is the absolute value of Θ 2 I Θ 2 I force S, the angle between the first optical path change surface 23 and the reference line L θ It is formed so as to be larger than the absolute value I Θ 1 I of 1.
第 2の光路変更部 22は、孔内の屈折率よりも高い屈折率を有するように形成される 。第 2の光路変更部 22に形成される孔は、本実施形態では空洞であるので、孔内の 屈折率は空気の屈折率に略等しぐ約 1. 0である。第 1の光路変更部 21は、導光体 本体 25に含まれ、導光体本体 25は空気よりも屈折率の高い材料、具体的にはアタリ ル樹脂などの透光性樹脂で形成される。 The second optical path changing unit 22 is formed to have a refractive index higher than the refractive index in the hole. Since the hole formed in the second optical path changing unit 22 is a cavity in this embodiment, the refractive index in the hole is about 1.0, which is substantially equal to the refractive index of air. The first optical path changing unit 21 is included in the light guide body 25, and the light guide body 25 is made of a material having a refractive index higher than air, specifically, an It is made of a translucent resin such as a ruthenium resin.
第 2光路変更面 24は、第 1側端面 11aから遠ざかるにしたがって、第 2孔部 22の孔 の第 1側端面 11aと平行な ZX平面における開口面積が大きくなるように形成されて いるので、第 1光路変更面 23に入射する光は、 Y方向一方 Y1側に屈曲するように反 射され、第 1側部 11の入射領域 S1外の領域 S2に導かれる。  The second optical path changing surface 24 is formed so that the opening area in the ZX plane parallel to the first side end surface 11a of the hole of the second hole portion 22 increases as the distance from the first side end surface 11a increases. The light incident on the first optical path changing surface 23 is reflected so as to be bent toward the Y1 side in the Y direction, and is guided to the region S2 outside the incident region S1 of the first side portion 11.
このように第 2の光路変更部 22は、発光素子 12から入射される光を第 1側端面 11a に対して垂直な基準線 Lとの成す角度が大きくなるように反射させる。つまり、第 2の 光路変更部 22は、第 1側端面 11aに対して垂直な基準線 Lから X方向他方側を正( + )、 X方向一方側を負(一)としたとき、第 2の光路変更部 22で反射された光の光路 33と基準線 Lとの成す角度 /3 2の絶対値 I /3 2 I力 発光素子 12から第 2の光路変 更部 22に入射する光の光路 32と基準線 Lとの成す角度 /3 1の絶対値 I /3 1 Iよりも 大きくなるように、入射する光を反射させる。これによつて、発光素子 12から入射され る光力 第 1側部 11の入射領域 S 1外の領域 S2に導かれる。  As described above, the second optical path changing unit 22 reflects the light incident from the light emitting element 12 so that the angle formed by the reference line L perpendicular to the first side end face 11a is increased. That is, when the second optical path changing unit 22 is positive (+) on the other side in the X direction and negative (one) on the one side in the X direction from the reference line L perpendicular to the first side end surface 11a, the second optical path changing unit 22 The angle formed between the optical path 33 of the light reflected by the optical path changing unit 22 and the reference line L / 3 2 absolute value I / 3 2 I force of light incident on the second optical path changing unit 22 from the light emitting element 12 The incident light is reflected so that the angle between the optical path 32 and the reference line L is larger than the absolute value I / 3 1 I of / 31. Thereby, the light force incident from the light emitting element 12 is guided to the region S2 outside the incident region S1 of the first side portion 11.
「光路と基準線 Lとの成す角度」とは、光路と基準線 Lとの交点を基準として、この交 点よりも Y方向他方 Y2側すなわち導光方向側の基準線 Lと光路との成す角度のこと である。また「光路変更面と基準線 Lとの成す角度」とは、光路変更面と基準線しとの 交点を基準として、この交点よりも導光方向側である Y方向他方 Y2側の基準線 Lと光 路変更面との成す角度のことである。  “An angle between the optical path and the reference line L” refers to the intersection between the optical path and the reference line L, and the reference line L between the optical path and the reference line L on the other side in the Y direction, that is, the light guide direction side. It is an angle. The “angle between the optical path change plane and the reference line L” refers to the reference line L on the other side of the light guide direction with respect to the intersection of the optical path change plane and the reference line L in the Y direction, which is closer to the light guide direction. Is the angle formed by the optical path change plane.
図 4は、図 1に示す第 1および第 2の光路変更部 21 , 22の寸法および配置間隔を 説明するための図である。第 1および第 2の光路変更部 21 , 22の寸法および配置間 隔は、光源である発光素子 12の光出射面 12aの X方向における寸法 wOに応じて選 ば'れる。  FIG. 4 is a diagram for explaining the dimensions and arrangement intervals of the first and second optical path changing units 21 and 22 shown in FIG. The dimensions and arrangement intervals of the first and second optical path changing sections 21 and 22 are selected according to the dimension wO in the X direction of the light emitting surface 12a of the light emitting element 12 as the light source.
たとえば、発光素子 12の光出射面 12aの X方向における寸法 wOが 2. 5mm程度 である場合、第 2の光路変更部 22の X方向における最大寸法 wlは 80. O ^ mに選 ばれ、第 1の光路変更部 21と第 2の光路変更部 22との連結部 34の開口端部の X方 向における寸法 W2は 10. O ^ mに選ばれ、第 1の光路変更部 21の X方向における 最大寸法 w3は 15. 3 111に選ばれ、第 2の光路変更部 22の Y方向における寸法 hi は 35. O ^ mに選ばれ、第 1の光路変更部 21の Y方向における寸法 h2は 15. O ^ m に選ばれ、第 1および第 2の光路変更部 21 , 22の配置間隔 pはそれぞれ 100. 0 mに選ばれる。第 1および第 2の光路変更部 21 , 22の各寸法および配置間隔は、前 記値に限定されるものではなレ、。 For example, when the dimension wO in the X direction of the light emitting surface 12a of the light emitting element 12 is about 2.5 mm, the maximum dimension wl in the X direction of the second optical path changing unit 22 is selected as 80.O ^ m, The dimension W 2 in the X direction of the opening end of the connecting portion 34 between the optical path changing portion 21 of 1 and the second optical path changing portion 22 is selected as 10.O ^ m, and the X of the first optical path changing portion 21 The maximum dimension w3 in the direction is chosen as 15. 3 111, the dimension hi in the Y direction of the second optical path changer 22 is chosen as 35.O ^ m, and the dimension h2 in the Y direction of the first optical path changer 21 Is 15. O ^ m And the arrangement interval p between the first and second optical path changing units 21 and 22 is selected to be 100.0 m. The dimensions and arrangement intervals of the first and second optical path changing units 21 and 22 are not limited to the above values.
本実施形態では、第 2の光路変更部 22の X方向における最大寸法 wlは、第 2の 光路変更部である第 2孔部 22の第 1および第 2の第 2光路変更面 24a, 24bを除く残 余の内壁面 24cの X方向における寸法であり、第 1の光路変更部 21の X方向におけ る最大寸法 w3は、第 1の光路変更部である第 1孔部 21の第 1側端面 11a側の開口 端部の X方向における寸法である。  In the present embodiment, the maximum dimension wl in the X direction of the second optical path changing unit 22 is the first and second second optical path changing surfaces 24a and 24b of the second hole 22 which is the second optical path changing unit. The remaining inner wall 24c is the dimension in the X direction of the remaining inner wall surface 24c, and the maximum dimension w3 in the X direction of the first optical path changing section 21 is the first side of the first hole 21 that is the first optical path changing section. It is the dimension in the X direction of the opening edge on the end face 11a side.
また第 1の光路変更部 21の配置間隔 pは、厚み方向 Zに垂直な XY平面において、 隣接する 2つの第 1の光路変更部 21の第 1側端面 11a側の開口端部の X方向にお ける中心間距離であり、第 2の光路変更部 22の配置間隔 pは、厚み方向 Zに垂直な XY平面において、隣接する 2つの第 2の光路変更部 22の内壁面 24cの X方向にお ける中心間距離である。本実施形態において第 1および第 2の光路変更部 21 , 22は 、第 2の光路変更部 22の第 1および第 2の第 2光路変更面 24a, 24bを除く残余の内 壁面 24cの X方向における中央を通り、第 1側端面 11aに垂直な仮想一平面に関し て対称に形成されているので、第 1の光路変更部 21の配置間隔 pと第 2の光路変更 部 22の配置間隔 pとは一致して!/、る。  Further, the arrangement interval p of the first optical path changing portions 21 is set in the X direction of the opening end portion on the first side end face 11a side of the two adjacent first optical path changing portions 21 in the XY plane perpendicular to the thickness direction Z. In the XY plane perpendicular to the thickness direction Z, the arrangement distance p of the second optical path changing sections 22 is the distance between the centers in the X direction of the inner wall surface 24c of the two adjacent second optical path changing sections 22. This is the distance between the centers. In the present embodiment, the first and second optical path changing units 21 and 22 are the X direction of the remaining inner wall surface 24c excluding the first and second second optical path changing surfaces 24a and 24b of the second optical path changing unit 22. Are arranged symmetrically with respect to a virtual plane that is perpendicular to the first side end face 11a, so that the arrangement interval p of the first optical path changing unit 21 and the arrangement interval p of the second optical path changing unit 22 are Are in agreement!
以上のように本実施形態の導光体 1は、第 1側部 11の入射領域 S 1に第 1および第 2の光路変更部 21 , 22を有する。これによつて、発光素子 12から入射領域 S1に入 射される光のうち、第 1の光路変更部 21に直接入射される光を第 1の光路変更部 21 で屈折させて第 1側部 11の入射領域 S1外の領域 S2に導くとともに、第 2の光路変更 部 22に入射される光を第 2の光路変更部 22で反射させて第 1側部 11の入射領域 S 1外の領域 S2に導くことができる。したがって、第 1側部 11の入射領域 S1と入射領域 S 1外の領域 S2との間の輝度の差を小さくし、輝度のむらを抑制することができる。 前述の図 18に示す導光板 110では、光源 112から光が直接入射される複数の孔 部 113がー側部 11に連続して形成されて!/、るので、隣接する 2つの孔部 113のうち 、一方の孔部 113は、他方の孔部 113を通過した光 115の光路中に位置する。した がって、入射領域 S 1の X方向両端部に形成される孔部 113以外の孔部 113を通過 した光 115は、他の孔部 113で光路が変更されてしまうので、光源 112から入射領域 S 1の X方向両端部間の中間部に入射される光 114を入射領域 S1外の領域 S2に導 くことは困難である。 As described above, the light guide 1 of the present embodiment has the first and second optical path changing units 21 and 22 in the incident region S 1 of the first side portion 11. As a result, of the light incident on the incident region S1 from the light emitting element 12, the light directly incident on the first optical path changing unit 21 is refracted by the first optical path changing unit 21 to be refracted by the first side part. 11 The incident area S1 is guided to the area S2 outside the incident area S1, and the light incident on the second optical path changing section 22 is reflected by the second optical path changing section 22 to be the area outside the incident area S1 on the first side section 11. Can lead to S2. Therefore, the luminance difference between the incident area S1 of the first side portion 11 and the area S2 outside the incident area S1 can be reduced, and uneven luminance can be suppressed. In the light guide plate 110 shown in FIG. 18 described above, a plurality of hole portions 113 into which light is directly incident from the light source 112 are continuously formed on the side portion 11! /, So that two adjacent hole portions 113 are formed. Of these, one hole 113 is located in the optical path of the light 115 that has passed through the other hole 113. Therefore, it passes through the hole 113 other than the hole 113 formed at both ends in the X direction of the incident region S1. Since the optical path of the light 115 is changed in the other hole 113, the light 114 incident on the intermediate portion between both ends in the X direction of the incident area S1 from the light source 112 enters the area S2 outside the incident area S1. It is difficult to guide.
また前述の図 19に示す導光板 120では、導光板 110と同様の複数の孔部 113が 間隔をあけて一側部 111に形成されてレ、るので、入射領域 S1の孔部 113と孔部 11 3との間の部分に入射された光 122は、光路が変更されず、入射されたときの進行方 向のまま、導光板 120の光源 112の投影領域 S3に向かって進む。したがって、孔部 113と孔部 113との間の導光板 120に入射された光 122を入射領域 S1外の領域 S2 に導くことはできない。  In the light guide plate 120 shown in FIG. 19, a plurality of holes 113 similar to those of the light guide plate 110 are formed at one side 111 at intervals, so that the holes 113 and the holes in the incident region S1 are formed. The light 122 incident on the portion between the light source 113 and the light 113 travels toward the projection region S3 of the light source 112 of the light guide plate 120 without changing the optical path and in the traveling direction when the light is incident. Therefore, the light 122 incident on the light guide plate 120 between the hole 113 and the hole 113 cannot be guided to the region S2 outside the incident region S1.
これに対し、本実施形態では、第 1側端面 11aから間隔をあけて第 2の光路変更部 22が設けられているので、第 1の光路変更部 21と第 1の光路変更部 21との間の導 光体 1に入射された光を第 2の光路変更部 22で反射させて、入射領域 S 1外の領域 S2に導くことができる。また第 2の光路変更部 22は、第 1の光路変更部 21を通過し た光の光路 31を避けた位置に形成されているので、第 1の光路変更部 21を通過し た光の光路 31が第 2の光路変更部 22で変更されてしまうことを防ぐことができる。 したがって本実施形態では、前述の図 18に示す導光板 110および図 19に示す導 光板 120に比べて、より多くの光を入射領域外の領域 S2に導くことができるので、入 射領域 S 1と入射領域外の領域 S2との間の輝度の差をより小さくし、輝度むらを一層 才卬制すること力 Sでさる。  On the other hand, in the present embodiment, since the second optical path changing unit 22 is provided at a distance from the first side end surface 11a, there is no difference between the first optical path changing unit 21 and the first optical path changing unit 21. The light incident on the light guide 1 in the meantime can be reflected by the second optical path changing unit 22 and guided to the region S2 outside the incident region S1. The second optical path changing unit 22 is formed at a position avoiding the optical path 31 of the light that has passed through the first optical path changing unit 21, so that the optical path of the light that has passed through the first optical path changing unit 21 It is possible to prevent 31 from being changed by the second optical path changing unit 22. Therefore, in the present embodiment, more light can be guided to the region S2 outside the incident region than the light guide plate 110 shown in FIG. 18 and the light guide plate 120 shown in FIG. The difference in brightness between the area S2 and the area S2 outside the incident area is made smaller, and the brightness S is further reduced by the power S.
図 5は、第 1の実施形態の導光体 1に入射された光の導光状態のシミュレーション 結果を示す図である。図 5は、発光素子 12を 1つとした場合のシミュレーション結果で ある。図 5では、図 4に示す光出射面 12aの X方向における寸法 wOが 2. 5mmの発 光素子 12を用い、図 4における各寸法 m]を (wl , w2, w3, hi , h2, p) = (80. 0, 10. 0, 15. 3, 35. 0, 15. 0, 100. 0)とし、図 1に示す第 1光路変更面 23と基 準線 Lとの成す角度 θ 1の絶対値 I Θ 1 Iを 10° とし、第 2光路変更面 24と基準線 Lとの成す角度 Θ 2の絶対値 I Θ 2 Iを 45° とした場合を示す。図 5において発光素 子 12から放射状に延びる各直線は、導光体 1に入射された光の光路を示す。  FIG. 5 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide 1 according to the first embodiment. FIG. 5 shows the simulation results when one light emitting element 12 is used. In Fig. 5, a light emitting element 12 with a dimension wO of 2.5 mm in the X direction of the light emitting surface 12a shown in Fig. 4 is used, and each dimension m] in Fig. 4 is set to (wl, w2, w3, hi, h2, p ) = (80. 0, 10. 0, 15. 3, 35. 0, 15. 0, 100. 0), and the angle θ 1 between the first optical path changing surface 23 and the reference line L shown in FIG. In this example, the absolute value I Θ 1 is set to 10 °, and the absolute value I Θ 2 I of the angle Θ 2 formed by the second optical path changing surface 24 and the reference line L is set to 45 °. In FIG. 5, each straight line extending radially from the light emitting element 12 indicates the optical path of the light incident on the light guide 1.
図 5に示すシミュレーション結果から、本実施形態の導光体 1では、発光素子 12か ら入射された光が第 1側部 11全体に広がっていることがわかる。したがって本実施形 態では、図 5に示すように、第 1側部 11の入射領域 S1と入射領域外の領域 S2との間 の輝度の差を小さくし、輝度のむらを抑制することができる。 From the simulation results shown in FIG. 5, in the light guide 1 of this embodiment, the light emitting element 12 It can be seen that the incident light spreads throughout the first side 11. Therefore, in the present embodiment, as shown in FIG. 5, the luminance difference between the incident region S1 of the first side portion 11 and the region S2 outside the incident region can be reduced, and uneven luminance can be suppressed.
また本実施形態の導光体 1では、図 5に示すように、第 1側部 11だけでなぐ発光 素子 12の投影領域 S3外の領域 S4まで、発光素子 12から入射された光が広がって いる。したがって本実施形態では、導光体 1全体にわたる輝度のむらを抑制すること ができる。  Further, in the light guide 1 of the present embodiment, as shown in FIG. 5, the light incident from the light emitting element 12 spreads to the area S4 outside the projection area S3 of the light emitting element 12 that extends only by the first side portion 11. Yes. Therefore, in the present embodiment, it is possible to suppress uneven brightness over the entire light guide 1.
また本実施形態では、導光体 1は、 X方向両側の第 2および第 3側部 27, 28が反 射部として構成されているので、 X方向両側の第 2および第 3側部 27, 28に入射する 光を反射部である第 2および第 3側部 27, 28で反射させて内部に導くことができる。 たとえば第 1および第 2の光路変更部 21 , 22を通過した光のうち、反射部 27, 28に 入射する光を反射させて内部に導くことができる。したがって、 X方向両側の側部から の光の漏れを防ぐことができるので、発光素子 12から入射された光の利用効率を高 めること力 Sでさる。  In the present embodiment, the light guide 1 has the second and third side portions 27 and 28 on both sides in the X direction as reflection portions, so the second and third side portions 27 and 28 on both sides in the X direction. Light incident on 28 can be reflected by the second and third side portions 27 and 28, which are reflection portions, and guided to the inside. For example, out of the light that has passed through the first and second optical path changing units 21 and 22, light incident on the reflecting units 27 and 28 can be reflected and guided to the inside. Therefore, leakage of light from the sides on both sides in the X direction can be prevented, so that the force S for increasing the utilization efficiency of the light incident from the light emitting element 12 can be reduced.
また本実施形態では、第 1および第 2の光路変更部 21 , 22は、第 1側部 11に孔を 形成することによって形成される。したがって第 1および第 2の光路変更部 21 , 22を 容易に実現することができる。  In the present embodiment, the first and second optical path changing portions 21 and 22 are formed by forming holes in the first side portion 11. Therefore, the first and second optical path changing units 21 and 22 can be easily realized.
以上に述べた本実施形態の導光体 1を備えて、図 3に示す照明装置 2が構成され る。照明装置 2は、導光体 1の出射面 la側に複数、本実施形態では 2枚の拡散シー ト 13, 16およびプリズムシート 14, 15をそれぞれ備え、導光体 1の背面 lb側に反射 シート 17を備える。導光体 1の出射面 laには、第 1拡散シート 13、第 1プリズムシート 14、第 2プリズムシート 15および第 2拡散シート 16が、この順に積層して設けられて いる。  The lighting device 2 shown in FIG. 3 is configured by including the light guide 1 of the present embodiment described above. The illuminating device 2 includes a plurality of diffusion sheets 13 and 16 and prism sheets 14 and 15 on the emission surface la side of the light guide 1 and in this embodiment, and reflects on the rear lb side of the light guide 1. Seat 17 is provided. A first diffusion sheet 13, a first prism sheet 14, a second prism sheet 15, and a second diffusion sheet 16 are laminated in this order on the emission surface la of the light guide 1.
照明装置 2によれば、発光素子 12から導光体 1の第 1側部 11に光が入射され、こ の入射された光が導光体 1の内部および各シート 13〜; 17において、反射および屈 折を繰返し、導光体 1の出射面 laに垂直な Z方向一方 Z1に出射される。導光体 1は 、第 1および第 2の光路変更部 21 , 22を有するので、第 1側部 11における輝度のむ らが抑制される。したがって、好適な照明装置 2が実現される。本実施形態の導光体 1を備える照明装置 2では、光源である発光素子 12の個数が削減されて発光素子 1 2の配置間隔が広がっても、入射領域 S1と入射領域外の領域 S2との間の輝度の差 を小さくし、輝度むらを抑制することができるので、発光素子 12の個数を削減し、コス 卜を肖 IJ減すること力でさる。 According to the illumination device 2, light is incident on the first side portion 11 of the light guide 1 from the light emitting element 12, and the incident light is reflected inside the light guide 1 and on each of the sheets 13 to 17. Then, the light is repeatedly bent and emitted to one side Z1 in the Z direction perpendicular to the emission surface la of the light guide 1. Since the light guide 1 includes the first and second optical path changing units 21 and 22, uneven brightness in the first side unit 11 is suppressed. Therefore, a suitable lighting device 2 is realized. Light guide of this embodiment In the lighting device 2 having 1, even if the number of light emitting elements 12 as light sources is reduced and the arrangement interval of the light emitting elements 12 is increased, the difference in luminance between the incident region S1 and the region S2 outside the incident region is reduced. Since it is possible to reduce the brightness unevenness by reducing the number, it is possible to reduce the number of light emitting elements 12 and reduce the cost by IJ.
このような照明装置 2をたとえば液晶表示装置のバックライト装置として用いることに よって、液晶表示装置の表示画面の大型化に容易に対応することができ、表示画面 が大型化されても高品質の表示を行なうことのできる液晶表示装置が実現される。つ まり、本実施形態の導光体 1を備える照明装置 2を用いることによって、表示品位を低 下させることなぐ液晶表示装置の表示画面の大型化を実現することができる。  By using such a lighting device 2 as, for example, a backlight device of a liquid crystal display device, it is possible to easily cope with an increase in the size of the display screen of the liquid crystal display device. A liquid crystal display device capable of displaying is realized. In other words, by using the illumination device 2 including the light guide 1 of the present embodiment, it is possible to realize an increase in the size of the display screen of the liquid crystal display device without degrading the display quality.
以上に述べた本実施形態の導光体 1では、第 1の光路変更部である第 1孔部 21お よび第 2の光路変更部である第 2孔部 22に形成される孔は空洞である力 S、孔には図 6に示すように充填材 41が充填されて!/、てもよ!/、。  In the light guide 1 of the present embodiment described above, the holes formed in the first hole 21 that is the first optical path changing unit and the second hole 22 that is the second optical path changing unit are hollow. A certain force S, the hole is filled with filler 41 as shown in FIG.
図 6は、第 1および第 2の光路変更部 21 , 22に形成される孔に充填材 41が充填さ れた導光体 40の一部を示す平面図である。充填材 41の屈折率は、導光体本体 25 と異なる屈折率に選ばれる。充填材 41の屈折率を変化させることによって、第 1およ び第 2の光路変更部 21 , 22を通過するときの光の屈折角および臨界角を調整するこ とができるので、第 1および第 2の光路変更部 21 , 22を通過した光の光路を調整す ること力 Sでさる。  FIG. 6 is a plan view showing a part of the light guide 40 in which the holes 41 formed in the first and second optical path changing portions 21 and 22 are filled with the filler 41. The refractive index of the filler 41 is selected to be different from that of the light guide body 25. By changing the refractive index of the filler 41, the refraction angle and critical angle of the light passing through the first and second optical path changing sections 21 and 22 can be adjusted. The force S is used to adjust the optical path of the light that has passed through the second optical path changing units 21 and 22.
このように第 1および第 2の光路変更部 21 , 22に形成される孔に充填材 41を充填 することによって、第 1および第 2の光路変更部 21 , 22を通過した光の光路を充填材 41の屈折率によって調整することができる。  In this way, by filling the holes formed in the first and second optical path changing portions 21 and 22 with the filler 41, the optical path of the light that has passed through the first and second optical path changing portions 21 and 22 is filled. The refractive index of the material 41 can be adjusted.
したがって、入射領域 S 1に入射される光を第 1側部 11の入射領域外の領域 S2に より確実に、またより多く導くことのできる第 1および第 2の光路変更部 21 , 22を実現 すること力 Sできる。これによつて、導光体 1の第 1側部 11の入射領域 S 1と入射領域 S 1以外の領域 S2との間の輝度の差をより小さくし、輝度のむらをより確実に抑制する こと力 Sでさる。  Therefore, the first and second optical path changing units 21 and 22 can be realized, which can more reliably guide more light incident on the incident region S 1 to the region S 2 outside the incident region of the first side portion 11. The power to do S. As a result, the difference in luminance between the incident region S 1 of the first side portion 11 of the light guide 1 and the region S2 other than the incident region S 1 can be further reduced, and uneven luminance can be more reliably suppressed. Touch with force S.
また本実施形態の導光体 1では、第 1の光路変更部 21は、複数、より詳細には 2つ が形成されている。複数の第 1の光路変更部 21は、本実施形態では同一の形状で ある力 S、これに限定されず、異なる形状であってもよい。第 1の光路変更部 21が 3つ 以上形成される場合、 X方向における配置間隔 Pは、等間隔でもよぐまた異なってい てもよい。 Further, in the light guide 1 of the present embodiment, a plurality of, more specifically two, first optical path changing sections 21 are formed. The plurality of first optical path changing units 21 have the same shape in this embodiment. A certain force S, not limited to this, may be different shapes. When three or more first optical path changing portions 21 are formed, the arrangement interval P in the X direction may be equal or different.
また本実施形態の導光体 1では、第 2の光路変更部 22は、複数、より詳細には 2つ が形成されている。複数の第 2の光路変更部 22は、本実施形態では同一の形状で ある力 S、これに限定されず、異なる形状であってもよい。第 2の光路変更部 22が 3つ 以上形成される場合、 X方向における配置間隔 pは、等間隔でもよぐまた異なってい てもよい。  In the light guide 1 of the present embodiment, a plurality of, more specifically, two second optical path changing units 22 are formed. The plurality of second optical path changing units 22 is not limited to the force S having the same shape in the present embodiment, and may have different shapes. When three or more second optical path changing units 22 are formed, the arrangement interval p in the X direction may be an equal interval or may be different.
また第 1および第 2の光路変更部 21 , 22を実現する孔の厚み方向 Zに垂直な XY 平面における開口形状は、台形状に限定されず、たとえば三角形状などの他の多角 形状であってもよぐ曲面が含まれる形状であってもよい。  Further, the opening shape in the XY plane perpendicular to the thickness direction Z of the hole that realizes the first and second optical path changing portions 21 and 22 is not limited to the trapezoidal shape, and may be another polygonal shape such as a triangular shape. The shape may include a curved surface.
図 7は、本発明の第 2の実施形態の導光体 50の一部を示す平面図である。本実施 形態の導光体 50において、第 1の実施形態における第 1および第 2の光路変更部 2 1 , 22を除くその他の構成は同様であるので、同様の構成には同一の参照符号を付 し、説明を省略する。  FIG. 7 is a plan view showing a part of the light guide 50 according to the second embodiment of the present invention. In the light guide 50 of the present embodiment, the other configurations except for the first and second optical path changing units 2 1 and 22 in the first embodiment are the same, and thus the same reference numerals are used for the same configurations. The explanation is omitted.
本実施形態において、第 2の光路変更部 52は、第 1の実施形態における第 2の光 路変更部 22と同様に、第 1側部 11の端面である第 1側端面 11aから間隔をあけて、 かつ第 1の光路変更部 51を通過した光の光路 57bを避けた位置に形成される。また 第 1および第 2の光路変更部 51 , 52は、第 1の実施形態における第 1および第 2の光 路変更部 21 , 22と同様に、導光体 50の第 1側部 11に孔、より詳細には透孔を形成 することによって形成される。本実施形態においても、第 1および第 2の光路変更部 5 1 , 52に形成される孔は連なって形成されている。  In the present embodiment, the second optical path changing unit 52 is spaced from the first side end surface 11a, which is the end surface of the first side unit 11, in the same manner as the second optical path changing unit 22 in the first embodiment. In addition, it is formed at a position that avoids the optical path 57b of the light that has passed through the first optical path changing unit 51. Further, the first and second optical path changing units 51 and 52 are provided with holes in the first side portion 11 of the light guide 50, similarly to the first and second optical path changing units 21 and 22 in the first embodiment. More specifically, it is formed by forming a through hole. Also in this embodiment, the holes formed in the first and second optical path changing portions 5 1 and 52 are formed in a row.
第 1の光路変更部である第 1孔部 51に形成される孔は、第 1の実施形態における 第 1の光路変更部である第 1孔部 21に形成される孔と同様に、 Z方向に一様な形状 であり、 Z方向に垂直な XY平面に配置された台形、より詳細には上底および下底が 第 1側端面 1 1aに平行であって上底よりも第 1側端面 11a側に配置される下底が長い 等脚台形を Z方向に延ばした柱状形状である。第 1の光路変更部 51には、平面状の 2つの光路変更面 53、すなわち第 1の第 1光路変更面 53aおよび第 2の第 1光路変 更面 53bが形成される。 The hole formed in the first hole 51 that is the first optical path changing unit is the same as the hole formed in the first hole 21 that is the first optical path changing unit in the first embodiment in the Z direction. The trapezoid is arranged in the XY plane perpendicular to the Z direction, and more specifically, the upper and lower bases are parallel to the first side end face 11a and the first side end face is higher than the upper base. It is a columnar shape with an isosceles trapezoid with a long bottom bottom arranged on the 11a side and extending in the Z direction. The first optical path changing unit 51 includes two planar optical path changing surfaces 53, that is, the first first optical path changing surface 53a and the second first optical path changing surface. A further surface 53b is formed.
第 2の光路変更部である第 2孔部 52には、第 1孔部 51の孔に連なって、導光体 50 の厚み方向である Z方向に垂直な XY平面における開口形状が三角形状である孔が 形成されている。第 2孔部 52の孔は、 Z方向に一様な形状であり、 Z方向に垂直な X Y平面に配置された三角形、より詳細には底辺が第 1側端面 11aに平行であって頂 点が底辺よりも Y方向他方 Y2側、すなわち第 1側端面 1 laと反対側に配置される二 等辺三角形を Z方向に延ばした三角柱状形状である。  The second hole portion 52, which is the second optical path changing portion, is continuous with the hole of the first hole portion 51, and the opening shape in the XY plane perpendicular to the Z direction that is the thickness direction of the light guide 50 is triangular. A hole is formed. The hole of the second hole 52 has a uniform shape in the Z direction, and is a triangle arranged in the XY plane perpendicular to the Z direction, more specifically, the base is parallel to the first side end surface 11a and is a vertex. Is a triangular prism shape in which the isosceles triangles arranged in the Y direction other than the bottom side on the other side Y2 side, that is, on the side opposite to the first side end face 1 la, extend in the Z direction.
第 2の光路変更部 52には、平面状の 4つの第 2光路変更面 54, 55、すなわち第 1 の第 2光路変更面 54a、第 2の第 2光路変更面 54b、第 3の第 2光路変更面 55aおよ び第 4の第 2光路変更面 55bが形成される。前述の Z方向に垂直な XY平面に配置さ れる三角形の斜辺を Z方向に延ばして形成される平面が、第 1および第 2の第 2光路 変更面 54a, 54bに相当し、底辺を Z方向に延ばして形成される平面の X方向両側の 端部が、第 3および第 4の第 2光路変更面 55a, 55bに相当する。  The second optical path changing unit 52 includes four planar second optical path changing surfaces 54, 55, that is, a first second optical path changing surface 54a, a second second optical path changing surface 54b, and a third second optical path changing surface. An optical path changing surface 55a and a fourth second optical path changing surface 55b are formed. The plane formed by extending the hypotenuse of the triangle arranged in the XY plane perpendicular to the Z direction in the Z direction corresponds to the first and second second optical path changing surfaces 54a and 54b, and the base is in the Z direction. The ends on both sides in the X direction of the plane formed to extend to correspond to the third and fourth second optical path changing surfaces 55a and 55b.
第 1および第 2の第 2光路変更面 54a, 54bは、第 1側部 11の端面である第 1側端 面 11aに平行な仮想一平面から傾斜する平面であり、第 1側端面 11aから遠ざかるに したがって、第 2孔部 52の孔の第 1側端面 11aと平行な仮想一平面における開口面 積が小さくなるように形成される。第 1の第 2光路変更面 54aは、第 2の第 2光路変更 面 54bよりも X方向一方 XI側に形成される。第 1の第 2光路変更面 54aは、第 1側端 面 11aから遠ざかるにしたがって、第 1側端面 11aに垂直な仮想一平面から X方向他 方 X2側に傾斜するように形成されている。第 2の第 2光路変更面 54bは、第 1側端面 11aから遠ざかるにしたがって、第 1側端面 11aに垂直な仮想一平面から X方向一方 XI側に傾斜するように形成されている。  The first and second second optical path changing surfaces 54a and 54b are planes inclined from a virtual plane parallel to the first side end surface 11a that is the end surface of the first side portion 11, and from the first side end surface 11a. Accordingly, the opening area in a virtual plane parallel to the first side end face 11a of the hole of the second hole portion 52 is reduced. The first second optical path changing surface 54a is formed closer to the XI side in the X direction than the second second optical path changing surface 54b. The first second optical path changing surface 54a is formed so as to incline from the imaginary plane perpendicular to the first side end surface 11a toward the other side X2 in the X direction as the distance from the first side end surface 11a increases. The second second optical path changing surface 54b is formed so as to incline from the imaginary plane perpendicular to the first side end surface 11a toward the XI side in the X direction as the distance from the first side end surface 11a increases.
したがって、第 2の光路変更部 52に発光素子 12から直接入射される光は、第 1お よび第 2の第 2光路変更面 54a, 54bにおいて、第 1の光路変更部 51に発光素子 12 から直接入射される光 56aと同様に、第 1側部 11の端面 11aに垂直な基準線しとの 成す角度の絶対値が大きくなるように屈折される。  Therefore, the light that is directly incident on the second optical path changing unit 52 from the light emitting element 12 is transmitted to the first optical path changing unit 51 from the light emitting element 12 on the first and second second optical path changing surfaces 54a and 54b. Similar to the directly incident light 56a, the light is refracted so that the absolute value of the angle formed with the reference line perpendicular to the end surface 11a of the first side portion 11 is increased.
このように第 2の光路変更部 52は、第 1側端面 11aに対して垂直な基準線 Lから X 方向他方 X2側を正( + )、X方向一方 XI側を負(一)としたとき、発光素子 12から直 接入射して第 2の光路変更部 52を通過した光の光路 57と基準線 Lとの成す角度 γ 2 の絶対値 | γ 2 |力 S、発光素子 12から第 2の光路変更部 52に入射する光の光路 56 と基準線 Lとの成す角度 γ 1の絶対値 I γ ΐ Iよりも大きくなるように、入射する光を 屈折させる。つまり、第 1および第 2の第 2光路変更面 54a, 54bに入射する光は、第 1および第 2の第 2光路変更面 54a, 54bで Y方向一方 Y1側に屈曲するように屈折さ れて、導光体 50の発光素子 12の投影領域外の領域 S4のうち、入射領域外の領域 S 2である第 1側部 11よりも Y方向他方 Y2側の部分に導かれる。 Thus, the second optical path changing unit 52 is positive (+) on the other X2 side in the X direction from the reference line L perpendicular to the first side end surface 11a, and negative (one) on the XI side in the X direction. Directly from light emitting element 12 The absolute value of the angle γ 2 formed between the optical path 57 of the light that has been incident and passed through the second optical path changing unit 52 and the reference line L | γ 2 | force S, from the light emitting element 12 to the second optical path changing unit 52 The incident light is refracted to be larger than the absolute value I γ γ I of the angle γ 1 formed by the optical path 56 of the light incident on the reference line L. In other words, the light incident on the first and second second optical path changing surfaces 54a and 54b is refracted by the first and second second optical path changing surfaces 54a and 54b so as to be bent in the Y direction side Y1 side. Thus, in the region S4 outside the projection region of the light emitting element 12 of the light guide 50, the light is guided to the portion on the other side Y2 in the Y direction from the first side portion 11 that is the region S2 outside the incident region.
本実施形態では、第 1光路変更面 53および第 2光路変更面 54は、第 1側端面 11a に対して垂直な基準線 Lから X方向他方側を正(+ )、 X方向一方側を負(一)としたと き、第 2光路変更面 54と基準線 Lとの成す角度 Θ 2の絶対値 I Θ 2 I力 S、第 1光路変 更面 53と基準線 Lとの成す角度 θ 1の絶対値 I Θ 1 Iよりも大きくなるように形成され ている。  In the present embodiment, the first optical path changing surface 53 and the second optical path changing surface 54 are positive (+) on the other side in the X direction from the reference line L perpendicular to the first side end surface 11a, and negative on the one side in the X direction. In (1), the angle between the second optical path change surface 54 and the reference line L. The absolute value of Θ 2 I Θ 2 I force S, the angle between the first optical path change surface 53 and the reference line L θ It is formed so as to be larger than the absolute value I Θ 1 I of 1.
図 8は、第 2の光路変更部 52の第 3および第 4の第 2光路変更面 55a, 55bにおけ る光の屈折状態を説明するための図である。第 3および第 4の第 2光路変更面 55a, 55bは、第 1側端面 11aに平行に形成される。第 3および第 4の第 2光路変更面 55a , 55bに入射する光は、図 8に示すように二回の屈折を経て入射領域外の領域 S2に 導かれる。より詳細には、第 3および第 4の第 2光路変更面 55a, 55bに入射した光は 、第 3および第 4の第 2光路変更面 55a, 55bで Y方向一方 Y1側に屈曲するように屈 折されて出射し、この出射した光が第 1または第 2の第 2光路変更面 54a, 54bに入 射して、さらに Y方向一方 Y1側に屈曲するように屈折されて出射し、入射領域外の 領域 S 2に導かれる。  FIG. 8 is a view for explaining the light refraction state on the third and fourth second optical path changing surfaces 55a and 55b of the second optical path changing section 52. FIG. The third and fourth second optical path changing surfaces 55a and 55b are formed in parallel to the first side end surface 11a. The light incident on the third and fourth second optical path changing surfaces 55a and 55b is guided to the region S2 outside the incident region through two refractions as shown in FIG. More specifically, the light incident on the third and fourth second optical path changing surfaces 55a and 55b is bent at the third and fourth second optical path changing surfaces 55a and 55b in the Y direction and on the Y1 side. The light is bent and emitted, and the emitted light enters the first or second second optical path changing surfaces 54a and 54b, and is further refracted and bent so as to be bent in the Y direction on the Y1 side. Guided to area S 2 outside the area.
このように第 2の光路変更部 52は、発光素子 12から第 1側部 11の第 2の光路変更 部 52以外の部分を介して入射して第 2の光路変更部 52を通過した光の光路 59と基 準線 Lとの成す角度 γ 4の絶対値 I γ 4 I力 S、発光素子 12から入射する光の光路 5 8と基準線 Lとの成す角度 γ 3の絶対値 I γ 3 Iよりも大きくなるように、入射する光を 屈折させる。  In this way, the second optical path changing unit 52 is incident on the light that has entered from the light emitting element 12 through a part other than the second optical path changing unit 52 of the first side part 11 and has passed through the second optical path changing unit 52. The absolute value of the angle γ 4 formed by the optical path 59 and the reference line L I γ 4 I force S, the optical path 5 8 of the light incident from the light emitting element 12 The absolute value of the angle γ 3 formed by the reference line L I γ 3 Refracts incident light so that it is larger than I.
第 1および第 2の光路変更部 51 , 52の寸法および配置間隔は、第 1の実施形態に おける第 1および第 2の光路変更部 21 , 22の寸法および配置間隔と同様に、光源で ある発光素子 12の光出射面 12aの X方向における寸法 wOに応じて選ばれる。 The dimensions and arrangement intervals of the first and second optical path changing sections 51 and 52 are the same as those of the first and second optical path changing sections 21 and 22 in the first embodiment. The light emitting surface 12a of a certain light emitting element 12 is selected according to the dimension wO in the X direction.
たとえば、発光素子 12の光出射面 12aの X方向における寸法 wOが 2. 5mm程度 である場合、第 2の光路変更部 52の X方向における最大寸法 wl 'は 66. 7 111に選 ばれ、第 1の光路変更部 51と第 2の光路変更部 52との連結部 44の開口端部の X方 向における寸法 W2'は 27. 2 111に選ばれ、第 1の光路変更部 51の X方向における 最大寸法 w3 'は 35. O mに選ばれ、第 2の光路変更部 52の Y方向における寸法 h 1 'は 33. 4 111に選ばれ、第 1の光路変更部 51の Y方向における寸法 h2'は 22. 0 11 mに選ばれ、第 1の光路変更部 51の配置間隔 pおよび第 2の光路変更部 52の配 置間隔 P'はそれぞれ 90· 0 mに選ばれる。第 1および第 2の光路変更部 51 , 52の 各寸法および配置間隔は、前記値に限定されるものではな!/、。 For example, when the dimension wO in the X direction of the light emitting surface 12a of the light emitting element 12 is about 2.5 mm, the maximum dimension wl ′ in the X direction of the second optical path changing unit 52 is selected as 66.7 111. The dimension W 2 'in the X direction of the opening end of the connecting portion 44 between the first optical path changing section 51 and the second optical path changing section 52 is selected as 27.2 111, and the X of the first optical path changing section 51 The maximum dimension w3 'in the direction is chosen to be 35.Om, the dimension h1' in the Y direction of the second optical path changing part 52 is chosen to be 33.4 111, and the first optical path changing part 51 in the Y direction The dimension h2 ′ is selected to be 22.011 m, and the arrangement interval p of the first optical path changing unit 51 and the arrangement interval P ′ of the second optical path changing unit 52 are each selected to be 90 · 0 m. The dimensions and arrangement intervals of the first and second optical path changing sections 51 and 52 are not limited to the above values! /.
本実施形態では、第 2の光路変更部 52の X方向における最大寸法 wl 'は、第 3の 第 2光路変更面 55aの X方向一方 XI側の端から第 4の第 2光路変更面 55bの X方向 他方 X2側の端にわたる部分の X方向における寸法であり、第 1の光路変更部 51の X 方向における最大寸法 w3'は、第 1の光路変更部である第 1孔部 51の第 1側端面 1 la側の開口端部の X方向における寸法である。  In the present embodiment, the maximum dimension wl ′ in the X direction of the second optical path changing unit 52 is equal to that of the fourth second optical path changing surface 55b from the X direction end XI side of the third second optical path changing surface 55a. X direction The dimension in the X direction of the portion extending on the other X2 side, and the maximum dimension w3 ′ in the X direction of the first optical path changing unit 51 is the first dimension of the first hole 51 that is the first optical path changing unit. It is the dimension in the X direction of the opening end on the side end face 1 la side.
以上のように本実施形態の導光体 50は、第 1および第 2の光路変更部 51 , 52を有 するので、発光素子 12から入射領域 S 1に入射される光のうち、第 1の光路変更部 5 1に直接入射される光を第 1の光路変更部 51で屈折させて第 1側部 11の入射領域 S 1外の領域 S2に導くとともに、第 2の光路変更部 52に入射される光を第 2の光路変 更部 52で屈折させて第 1側部 11の入射領域 S1外の領域 S2に導くことができる。し たがって、第 1側部 11の入射領域 S1と入射領域外の領域 S2との間の輝度の差を小 さくし、輝度のむらを抑制することができる。  As described above, since the light guide 50 of the present embodiment includes the first and second optical path changing units 51 and 52, the first light among the light incident on the incident region S1 from the light emitting element 12 is the first. The light directly incident on the optical path changing unit 51 is refracted by the first optical path changing unit 51 and guided to the region S2 outside the incident region S1 of the first side part 11 and incident on the second optical path changing unit 52. The incident light can be refracted by the second optical path changing unit 52 and guided to the region S2 outside the incident region S1 of the first side portion 11. Therefore, the luminance difference between the incident region S1 of the first side portion 11 and the region S2 outside the incident region can be reduced, and uneven luminance can be suppressed.
また第 2の光路変更部 51は、第 1および第 2の第 2光路変更面 54a, 54bに入射す る光を、 Y方向一方 Y1側に屈曲するように屈折させ、発光素子 12の投影領域外の 領域 S4に導く。したがって、本実施形態の導光体 50では、前述の図 19に示す導光 板 120に比べて、発光素子 12から入射される光のうち、入射されたときの進行方向 のまま進行する光を低減することができる。  Further, the second optical path changing unit 51 refracts the light incident on the first and second second optical path changing surfaces 54a and 54b so as to be bent in the Y direction side Y1 side, thereby projecting the projection region of the light emitting element 12. Lead to outside area S4. Therefore, in the light guide 50 according to the present embodiment, the light that travels in the traveling direction at the time of incident light out of the light incident from the light emitting element 12 as compared with the light guide plate 120 shown in FIG. 19 described above. Can be reduced.
図 19に示す孔部 113、および図 7に示す第 1および第 2の光路変更部 51 , 52の配 置間隔が互いに等しいと仮定した場合、図 19に示す孔部 113に発光素子 112から 入射される光のうち、進行方向を変えずに進む光は、図 8において左下がりの斜線で 示される領域 S5と右下がりの斜線で示される領域 S6とを足し合せた領域(S5 + S6) に入射する光となる。 The hole 113 shown in FIG. 19 and the first and second optical path changing parts 51 and 52 shown in FIG. Assuming that the spacing is equal to each other, the light that travels without changing the traveling direction out of the light that enters the hole 113 shown in FIG. The light is incident on a region (S5 + S6) obtained by adding S5 and the region S6 indicated by the slanting line to the right.
これに対し、本実施形態では、領域 S5に入射する光については、第 1および第 2の 第 2光路変更面 54a, 54bで投影領域外の領域 S4に導かれるので、進行方向を変 えずに進む光は、領域 S6に入射する光のみになる。したがって、本実施形態では、 図 19に示す導光板 120に比べて、より多くの光を投影領域外の領域 S4に導くことが できる。  On the other hand, in the present embodiment, the light incident on the region S5 is guided to the region S4 outside the projection region by the first and second second optical path changing surfaces 54a and 54b, so the traveling direction is not changed. The light traveling to is only the light incident on the region S6. Therefore, in the present embodiment, more light can be guided to the region S4 outside the projection region than the light guide plate 120 shown in FIG.
図 8に示す領域 S5は、第 2の光路変更部 52の投影領域のうち、第 3および第 4の 第 2光路変更面 55a, 55bの投影領域を除く残余の領域である。領域 S6は、第 1側 部 11の第 1および第 2の光路変更部 51 , 52の!/、ずれも形成されて!/、な!/、部分の投 影領域である。  A region S5 illustrated in FIG. 8 is a remaining region excluding the projection regions of the third and fourth second optical path changing surfaces 55a and 55b, among the projection regions of the second optical path changing unit 52. The region S6 is a partial projection region in which the first and second optical path changing portions 51 and 52 of the first side portion 11 are also! / And misaligned.
図 9は、第 2の実施形態の導光体 50に入射された光の導光状態のシミュレーション 結果を示す図である。図 9は、発光素子 12を 1つとした場合のシミュレーション結果で ある。図 9では、図 8に示す光出射面 12aの X方向における寸法 wOが 2. 5mmの発 光素子 12を用い、図 8における各寸法 m]を (wl ', w2' , w3' , hi ' , h2', ρ' ) = (66. 7, 27. 2, 35. 0, 33. 4, 22. 0, 90. 0)とし、図 7に示す第 1光路変更面 5 3と基準線 Lとの成す角度 θ 1の絶対値 I θ 1 Iを 10° とし、第 1および第 2の第 2光 路変更面 54a, 54bと基準線 Lとの成す角度 Θ 2の絶対値 | Θ 2 |を 45° とした場合 を示す。図 9において発光素子 12から放射状に延びる各直線は、導光体 50に入射 された光の光路を示す。図 9に示すシミュレーション結果から、本実施形態の導光体 50では、前述の図 18に示す導光板 110および図 19に示す導光板 120に比べて、 第 1側部 11の入射領域 S1と入射領域外の領域 S2との間の輝度の差をより小さくし、 輝度のむらを一層抑制することができることがわかる。  FIG. 9 is a diagram illustrating a simulation result of a light guide state of light incident on the light guide 50 according to the second embodiment. FIG. 9 shows the simulation results when one light emitting element 12 is used. In Fig. 9, a light emitting element 12 with a dimension wO in the X direction of the light emitting surface 12a shown in Fig. 8 of 2.5 mm is used, and each dimension m] in Fig. 8 is set to (wl ', w2', w3 ', hi' , h2 ', ρ') = (66. 7, 27. 2, 35. 0, 33. 4, 22. 0, 90. 0), the first optical path changing surface 5 3 and reference line L shown in Fig. 7 The absolute value of the angle θ1 I θ 1 I is 10 °, and the angle between the first and second optical path change surfaces 54a, 54b and the reference line L is the absolute value of Θ 2 | Θ 2 | In this case, the angle is 45 °. In FIG. 9, each straight line extending radially from the light emitting element 12 indicates the optical path of the light incident on the light guide 50. From the simulation result shown in FIG. 9, in the light guide 50 of the present embodiment, the incident region S1 of the first side portion 11 and the incident light are compared with the light guide plate 110 shown in FIG. 18 and the light guide plate 120 shown in FIG. It can be seen that the luminance difference with the region S2 outside the region can be made smaller, and the luminance unevenness can be further suppressed.
図 10は、本発明の第 3の実施形態の導光体 60の一部を示す平面図である。本実 施形態の導光体 60において、第 1の実施形態における第 1および第 2の光路変更部 21 , 22を除くその他の構成は同様であるので、同様の構成には同一の参照符号を 付し、説明を省略する。 FIG. 10 is a plan view showing a part of the light guide 60 according to the third embodiment of the present invention. In the light guide 60 of the present embodiment, the other configurations except for the first and second optical path changing units 21 and 22 in the first embodiment are the same, and thus the same reference numerals are used for the same configurations. The description is omitted.
本実施形態において、第 1および第 2の光路変更部 61 , 62は、第 1の実施形態に おける第 1および第 2の光路変更部 21 , 22と同様に、導光体 60の第 1側部 11に孔、 より詳細には透孔を形成することによって形成される。本実施形態では、第 1および 第 2の光路変更部 61 , 62に形成される孔は、連なっておらず、別々に形成されてい 第 1の光路変更部である第 1孔部 61には、導光体 60の厚み方向である Z方向に垂 直な仮想一平面である XY平面における開口形状が三角形状である孔が形成されて いる。第 1孔部 61の孔は、 Z方向に一様な形状であり、 Z方向に垂直な XY平面に配 置された三角形、より詳細には底辺が第 1側端面 11aに平行であって頂点が底辺より も Y方向他方 Y2側、すなわち第 1側端面 1 laと反対側に配置される二等辺三角形を Z方向に延ばした三角柱状形状である。  In the present embodiment, the first and second optical path changing units 61 and 62 are arranged on the first side of the light guide 60 in the same manner as the first and second optical path changing units 21 and 22 in the first embodiment. It is formed by forming a hole in the part 11, more specifically, a through hole. In the present embodiment, the holes formed in the first and second optical path changing portions 61, 62 are not continuous and are formed separately in the first hole portion 61, which is the first optical path changing portion, A hole having a triangular opening in the XY plane, which is a virtual plane perpendicular to the Z direction, which is the thickness direction of the light guide 60, is formed. The hole of the first hole 61 has a uniform shape in the Z direction and is a triangle arranged on the XY plane perpendicular to the Z direction, more specifically, the base is parallel to the first side end surface 11a and the apex. Is a triangular prism shape in which an isosceles triangle arranged in the Y direction on the other side in the Y direction from the bottom side, that is, on the side opposite to the first side end face 1 la, extends in the Z direction.
第 1の光路変更部 61には、平面状の 2つの第 1光路変更面 63、すなわち第 1の第 1光路変更面 63aおよび第 2の第 1光路変更面 63bが形成される。第 1および第 2の 第 1光路変更面 63a, 63bは、第 1の実施形態における第 1および第 2の第 1光路変 更面 23a, 23bと同様に形成される。  In the first optical path changing unit 61, two planar first optical path changing surfaces 63, that is, a first first optical path changing surface 63a and a second first optical path changing surface 63b are formed. The first and second first optical path changing surfaces 63a and 63b are formed in the same manner as the first and second first optical path changing surfaces 23a and 23b in the first embodiment.
第 2の光路変更部である第 2孔部 62には、導光体 60の厚み方向である Z方向に垂 直な XY平面における開口形状が三角形状である孔が形成されている。第 2孔部 62 の孔は、 Z方向に一様な形状であり、 Z方向に垂直な XY平面に配置された三角形、 より詳細には底辺が第 1側端面 11aに平行であって頂点が底辺よりも Y方向一方 Y1 側、すなわち第 1側端面 11a側に配置される二等辺三角形を Z方向に延ばした三角 柱状形状である。  In the second hole portion 62 that is the second optical path changing portion, a hole having a triangular opening shape in the XY plane perpendicular to the Z direction that is the thickness direction of the light guide 60 is formed. The hole of the second hole 62 has a uniform shape in the Z direction and is a triangle arranged in the XY plane perpendicular to the Z direction. More specifically, the base is parallel to the first side end face 11a and the apex is It is a triangular prism shape that extends in the Z direction from an isosceles triangle that is arranged on the one side Y1 in the Y direction from the bottom side, that is, on the first side end face 11a side.
第 2の光路変更部 62には、平面状の 2つの第 2光路変更面 64、すなわち第 1の第 2光路変更面 64aおよび第 2の第 2光路変更面 64bが形成される。第 1および第 2の 第 2光路変更面 64a, 64bは、第 1の実施形態における第 1および第 2の第 2光路変 更面 24a, 24bと同様に形成される。  In the second optical path changing unit 62, two planar second optical path changing surfaces 64, that is, a first second optical path changing surface 64a and a second second optical path changing surface 64b are formed. The first and second second optical path changing surfaces 64a and 64b are formed in the same manner as the first and second second optical path changing surfaces 24a and 24b in the first embodiment.
本実施形態では、第 1および第 2の光路変更部 61 , 62を形成する孔が別々に形成 されており、第 1および第 2の光路変更部 61 , 62が別々に設けられている。このよう に第 1および第 2の光路変更部 61 , 62を別々に設けることによって、第 1および第 2 の光路変更部 61 , 62を単純な形状で実現することができる。したがって、導光体 60 の製作が容易になる。 In the present embodiment, the holes forming the first and second optical path changing units 61 and 62 are formed separately, and the first and second optical path changing units 61 and 62 are provided separately. like this By separately providing the first and second optical path changing units 61 and 62, the first and second optical path changing units 61 and 62 can be realized in a simple shape. Accordingly, the light guide 60 can be easily manufactured.
本実施形態においても第 2の光路変更部 62は、第 1側部 11の端面 11aから間隔を あけて、かつ第 1の光路変更部 61を通過した光の光路を避けた位置に形成される。 本実施形態では、第 2の光路変更部 62は、第 1の光路変更部 61の X方向における 中心線を含む仮想平面内に、第 2の光路変更部 62の X方向における中心線が含ま れるように配置したときに、第 2の光路変更部 62の一部分が第 1の光路変更部 61の 一部分と重なるように形成される。  Also in the present embodiment, the second optical path changing unit 62 is formed at a position that is spaced from the end surface 11a of the first side part 11 and avoids the optical path of the light that has passed through the first optical path changing unit 61. . In the present embodiment, the second optical path changing unit 62 includes the center line in the X direction of the second optical path changing unit 62 in the virtual plane including the center line in the X direction of the first optical path changing unit 61. When arranged in such a manner, a part of the second optical path changing unit 62 is formed so as to overlap a part of the first optical path changing unit 61.
図 11は、本発明の第 4の実施形態の導光体 70の一部を示す平面図である。本実 施形態の導光体 70において、図 10に示す第 3の実施形態における第 2の光路変更 部 62を除くその他の構成は同様であるので、同様の構成には同一の参照符号を付 し、説明を省略する。  FIG. 11 is a plan view showing a part of the light guide 70 according to the fourth embodiment of the present invention. In the light guide 70 of the present embodiment, the configuration other than the second optical path changing unit 62 in the third embodiment shown in FIG. 10 is the same, and thus the same configuration is denoted by the same reference numeral. The description is omitted.
本実施形態では、第 2の光路変更部 71は、第 3の実施形態における第 2の光路変 更部 62と同様の孔の内壁、すなわち第 1および第 2の第 2光路変更面 64a, 64bに 反射層 72を有する。反射層 72は、第 1の実施形態における反射層 26と同様に、入 射する光に対して、ほぼ 1. 0に近い反射率を有するように形成される。  In the present embodiment, the second optical path changing unit 71 is the same inner wall of the hole as the second optical path changing unit 62 in the third embodiment, that is, the first and second second optical path changing surfaces 64a, 64b. A reflective layer 72; The reflective layer 72 is formed so as to have a reflectance of approximately 1.0 with respect to incident light, as with the reflective layer 26 in the first embodiment.
このように第 2の光路変更部 71に形成される孔の内壁に反射層 72を形成すること によって、第 1および第 2の第 2光路変更面 64a, 64bにあらゆる方向から入射する光 をほぼ全て反射させることができる。したがって、第 2の光路変更部 71によって第 1側 部 11の入射領域 S1により多くの光を導くことができるので、第 1側部 11の入射領域 S 1と入射領域外の領域 S2との間の輝度の差をより小さくし、輝度のむらを一層抑制す ること力 Sでさる。  Thus, by forming the reflective layer 72 on the inner wall of the hole formed in the second optical path changing section 71, the light incident on the first and second second optical path changing surfaces 64a and 64b from almost all directions can be substantially reduced. All can be reflected. Accordingly, since the second light path changing unit 71 can guide more light to the incident region S1 of the first side portion 11, the space between the incident region S1 of the first side portion 11 and the region S2 outside the incident region can be reduced. The difference in brightness between the two is reduced, and the unevenness in brightness is further suppressed with the force S.
図 12は、本発明の第 5の実施形態の導光体 75の一部を示す平面図である。本実 施形態の導光体 75において、図 10に示す第 3の実施形態における第 2の光路変更 部 62を除くその他の構成は同様であるので、同様の構成には同一の参照符号を付 し、説明を省略する。  FIG. 12 is a plan view showing a part of the light guide body 75 according to the fifth embodiment of the present invention. In the light guide 75 of the present embodiment, the other configurations except for the second optical path changing unit 62 in the third embodiment shown in FIG. 10 are the same, and thus the same configurations are denoted by the same reference numerals. The description is omitted.
本実施形態において、第 2の光路変更部 76は、第 3の実施形態における第 2の光 路変更部 62と同様に、導光体 75の第 1側部 11に孔、より詳細には透孔を形成する ことによって形成される。 In the present embodiment, the second optical path changing unit 76 is the second light in the third embodiment. Similarly to the path changing unit 62, the first side portion 11 of the light guide 75 is formed by forming a hole, more specifically, a through hole.
第 2の光路変更部である第 2孔部 76には、導光体 75の厚み方向である Z方向に垂 直な XY平面における開口形状が三角形状である孔が形成されている。第 2孔部 76 の孔は、 Z方向に一様な形状であり、 Z方向に垂直な XY平面に配置された三角形、 より詳細には底辺が第 1側端面 11aに平行であって頂点が底辺よりも Y方向他方 Y2 側、すなわち第 1側端面 11aと反対側に配置される二等辺三角形を Z方向に延ばし た三角柱状形状である。  In the second hole portion 76 that is the second optical path changing portion, a hole having a triangular opening shape in the XY plane perpendicular to the Z direction that is the thickness direction of the light guide 75 is formed. The hole of the second hole 76 has a uniform shape in the Z direction, and is a triangle arranged in the XY plane perpendicular to the Z direction. More specifically, the base is parallel to the first side end face 11a and the apex is This is a triangular columnar shape in which an isosceles triangle arranged in the Y direction on the other side in the Y direction from the bottom side, that is, on the side opposite to the first side end face 11a, extends in the Z direction.
第 2の光路変更部 76には、平面状の 2つの第 2光路変更面 77、すなわち第 1の第 2光路変更面 77aおよび第 2の第 2光路変更面 77bが形成される。第 1および第 2の 第 2光路変更面 77a, 77bは、図 7に示す第 2の実施形態における第 1および第 2の 第 2光路変更面 54a, 54bと同様に形成される。  In the second optical path changing unit 76, two planar second optical path changing surfaces 77, that is, a first second optical path changing surface 77a and a second second optical path changing surface 77b are formed. The first and second second optical path changing surfaces 77a and 77b are formed in the same manner as the first and second second optical path changing surfaces 54a and 54b in the second embodiment shown in FIG.
本実施形態では、第 3の実施形態と同様に、第 1および第 2の光路変更部 61 , 76 を形成する孔が別々に形成されており、第 1および第 2の光路変更部 61 , 76が別々 に設けられている。したがって、第 1および第 2の光路変更部 61 , 76を単純な形状で 実現することができるので、導光体 75を容易に製作することができる。  In the present embodiment, as in the third embodiment, the holes forming the first and second optical path changing units 61 and 76 are formed separately, and the first and second optical path changing units 61 and 76 are formed. Are provided separately. Therefore, since the first and second optical path changing sections 61 and 76 can be realized with a simple shape, the light guide 75 can be easily manufactured.
本実施形態においても第 2の光路変更部 76は、第 1側部 11の端面 11aから間隔を あけて、かつ第 1の光路変更部 61を通過した光の光路を避けた位置に形成される。 本実施形態では、第 2の光路変更部 76は、第 1の光路変更部 61の X方向における 中心線を含む仮想平面内に、第 2の光路変更部 76の X方向における中心線が含ま れるように配置したときに、第 2の光路変更部 76の一部分が第 1の光路変更部 61の 一部分と重なるように形成される。  Also in the present embodiment, the second optical path changing unit 76 is formed at a position that is spaced from the end surface 11a of the first side part 11 and avoids the optical path of the light that has passed through the first optical path changing unit 61. . In the present embodiment, the second optical path changing unit 76 includes the center line in the X direction of the second optical path changing unit 76 in the virtual plane including the center line in the X direction of the first optical path changing unit 61. When arranged in such a manner, a part of the second optical path changing unit 76 is formed so as to overlap a part of the first optical path changing unit 61.
図 13は、本発明の第 6の実施形態の導光体 80を示す平面図である。本実施形態 の導光体 80は、反射層 26を有さず、 X方向両側の側部に出射防止部 81を有するこ と以外は、図 2に示す第 1の実施形態の導光体 1と同様の構成を有するので、同様の 構成には同一の参照符号を付し、説明を省略する。  FIG. 13 is a plan view showing a light guide body 80 according to the sixth embodiment of the present invention. The light guide 80 according to the first embodiment shown in FIG. 2 is the same as the light guide 80 according to the first embodiment shown in FIG. Therefore, the same reference numerals are assigned to the same components and the description thereof is omitted.
本実施形態の導光体 80は、第 1側部 11を除く他の側部、より詳細には X方向両側 の側部である第 2および第 3側部 27, 28に、出射防止部 81を有する。出射防止部 8 1は、他の側部の端面である X方向両側の側部 27, 28の端面が外方に凸の湾曲面 に形成されることによって形成される。 The light guide 80 according to the present embodiment includes an emission preventing portion 81 on the other side portions except the first side portion 11, more specifically on the second and third side portions 27 and 28 on both sides in the X direction. Have Output prevention part 8 1 is formed by forming the end surfaces of the side portions 27 and 28 on both sides in the X direction, which are end surfaces of the other side portions, into curved surfaces convex outward.
このように本実施形態の導光体 80は、第 1側部 11を除く他の側部である X方向両 側の側部 27, 28に出射防止部 81を有するので、発光素子 12から入射された光が 外部に出射することを防止すること力できる。したがって、発光素子 12から入射され た光の利用効率を高めることができる。  As described above, the light guide body 80 of the present embodiment has the emission preventing portions 81 on the side portions 27 and 28 on both sides in the X direction, which are the other side portions except the first side portion 11, and therefore enters from the light emitting element 12. It is possible to prevent the emitted light from being emitted to the outside. Therefore, the utilization efficiency of the light incident from the light emitting element 12 can be increased.
また本実施形態では、出射防止部 81は、 X方向両側の側部 27, 28の端面が外方 に凸の湾曲面に形成されることによって形成されているので、発光素子 12から入射 された光が外部に出射することをより確実に防止することができる。  Further, in the present embodiment, the emission preventing portion 81 is formed by forming the end surfaces of the side portions 27 and 28 on both sides in the X direction to have outwardly convex curved surfaces. It can prevent more reliably that light is radiate | emitted outside.
出射防止部は、図 13に示す出射防止部 81のように端面が外方に凸の湾曲面に形 成されることによって形成される構成に限定されない。たとえば、図 14に示す出射防 止部 86のように、第 1側部 11を除く他の側部、たとえば X方向両側の側部 27, 28に 切欠きを形成することによって形成されてもよい。図 14は、側部に切欠きを形成して 形成される出射防止部 86を有する導光体 85を示す平面図である。図 14に示すよう に、側部に切欠きを形成することによって出射防止部 86を形成することによって、出 射防止部 86を容易に実現することができる。  The emission preventing portion is not limited to the configuration formed by forming the end surface into a curved surface convex outward as in the emission preventing portion 81 shown in FIG. For example, like the emission preventing portion 86 shown in FIG. 14, it may be formed by forming notches in other side portions except the first side portion 11, for example, the side portions 27 and 28 on both sides in the X direction. . FIG. 14 is a plan view showing a light guide 85 having an emission preventing portion 86 formed by forming a notch in the side portion. As shown in FIG. 14, the emission preventing portion 86 can be easily realized by forming the emission preventing portion 86 by forming a notch in the side portion.
このような出射防止部 81 , 86を有していることによって、たとえばコストダウンや製 造上の何らかの理由で側部に反射層を設けることができなくても、光の利用効率を高 められるという効果がある。  By having such emission preventing portions 81 and 86, the light use efficiency can be improved even if the side layer cannot be provided with a reflective layer for some reason, for example, cost reduction or manufacturing. There is an effect.
図 15は、本発明の第 7の実施形態の導光体 90を示す平面図である。本実施形態 の導光体 90は、 2つの主面 90a, 90bが粗面状に形成されていること以外は、図 2に 示す第 1の実施形態の導光体 1と同様の構成を有するので、同様の構成には同一の 参照符号を付し、説明を省略する。  FIG. 15 is a plan view showing a light guide 90 according to the seventh embodiment of the present invention. The light guide 90 of the present embodiment has the same configuration as the light guide 1 of the first embodiment shown in FIG. 2 except that the two main surfaces 90a and 90b are formed in a rough surface shape. Therefore, the same reference numerals are given to the same components, and the description will be omitted.
本実施形態の導光体 90は、厚み方向 Zの両側の表面である主面 90a, 90bのうち 、少なくとも一方の主面、本実施形態では両方の主面 90a, 90bが、粗面状に形成さ れている。この 2つの主面 90a, 90bのうち、 Z方向一方 Z1側の主面 90aが出射面で あり、 Z方向他方 Z2側の主面 90bが背面である。  In the light guide 90 of the present embodiment, at least one of the main surfaces 90a and 90b which are the surfaces on both sides in the thickness direction Z, in the present embodiment, both main surfaces 90a and 90b are roughened. Is formed. Of these two main surfaces 90a and 90b, the main surface 90a on the Z1 side in the Z direction is the emission surface, and the main surface 90b on the other side in the Z direction is the back surface.
このように本実施形態では、主面である出射面 90aおよび背面 90bが粗面状に形 成されているので、出射面 90aおよび背面 90bに入射された光を拡散させることがで きる。これによつて、出射面 90aにおける輝度のむらを抑制することができる。 Thus, in this embodiment, the exit surface 90a and the back surface 90b, which are the main surfaces, are formed into rough surfaces. Therefore, the light incident on the exit surface 90a and the back surface 90b can be diffused. As a result, it is possible to suppress uneven brightness on the exit surface 90a.
本実施形態では、主面 90a, 90bが形成される導光体 90の表面部には、全面にわ たってドット状の凹部 91が形成されている。このように表面部に凹部 91が形成される ことによって、主面 90a, 90bが粗面状に形成される。粗面状の主面 90a, 90bは、こ れに限定されず、たとえば表面部に凸部が形成されることによって形成されてもよい 。表面部に形成される凹部 91および凸部の形状はドット状に限定されず、たとえばシ ボ状であってもよい。また粗面状の主面 90a, 90bは、表面部に溝部が形成されるこ とによって形成されてもよい。溝部の断面形状は、たとえば V字状またはシリンダ状で ある。  In the present embodiment, a dot-shaped recess 91 is formed on the entire surface of the light guide 90 where the main surfaces 90a and 90b are formed. By forming the recess 91 in the surface portion in this manner, the main surfaces 90a and 90b are formed in a rough surface shape. The rough main surfaces 90a and 90b are not limited to this, and may be formed by forming convex portions on the surface portion, for example. The shape of the concave portion 91 and the convex portion formed on the surface portion is not limited to a dot shape, and may be a grain shape, for example. The rough main surfaces 90a and 90b may be formed by forming grooves on the surface portion. The cross-sectional shape of the groove is, for example, V-shaped or cylindrical.
本発明は、その精神または主要な特徴から逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。  The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects, and the scope of the present invention is shown in the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the scope of claims are within the scope of the present invention.
産業上の利用可能性 Industrial applicability
本発明によれば、導光体は、光源が対向して設けられる入射領域を一側部に有し 、この入射領域に第 1の光路変更部と第 2の光路変更部とを有し、一側部から入射さ れる光を拡散させて、少なくとも一方の主面から出射する。第 1の光路変更部には、 光源から光が直接入射され、この入射する光が第 1の光路変更部によって一側部の 端面に対して垂直な基準線との成す角度の絶対値が大きくなるように屈折される。第 2の光路変更部は、一側部の端面から間隔をあけて、かつ第 1の光路変更部を通過 した光の光路を避けた位置に形成され、光源から入射される光を一側部の端面に対 して垂直な基準線との成す角度の絶対値が大きくなるように反射または屈折させる。 これによつて、光源から入射領域に入射される光のうち、第 1の光路変更部に直接入 射される光を第 1の光路変更部で屈折させて一側部の入射領域外の領域に導くとと もに、第 2の光路変更部に入射される光を第 2の光路変更部で反射または屈折させ て一側部の入射領域外の領域に導くことができる。したがって、一側部の入射領域と 入射領域外の領域との間の輝度の差を小さくし、輝度のむらを抑制することのできる 導光体を実現することができる。 According to the present invention, the light guide has, on one side, an incident region that is provided to face the light source, and has a first optical path changing unit and a second optical path changing unit in the incident region, Light incident from one side is diffused and emitted from at least one main surface. Light from the light source is directly incident on the first optical path changing unit, and the absolute value of the angle formed by the first optical path changing unit and the reference line perpendicular to the end surface of one side is large. Refracted to be. The second optical path changing unit is formed at a position that is spaced from the end face of one side and avoids the optical path of the light that has passed through the first optical path changing unit. It is reflected or refracted so that the absolute value of the angle formed with the reference line perpendicular to the end face of the surface becomes large. As a result, of the light incident on the incident area from the light source, the light that is directly incident on the first optical path changing section is refracted by the first optical path changing section, and the area outside the incident area on one side portion. In addition, the light incident on the second optical path changing unit can be reflected or refracted by the second optical path changing unit and guided to an area outside the incident area on one side. Therefore, the incident area on one side and It is possible to realize a light guide body that can reduce the difference in luminance from the region outside the incident region and suppress uneven luminance.
本発明によれば、第 1および第 2の光路変更部のうち、少なくともいずれか一方は、 一側部に孔を形成することによって形成されるので、容易に実現することができる。 本発明によれば、第 1および第 2の光路変更部のうち、少なくともいずれか一方を実 現する孔には、充填材が充填されているので、その光路変更部を通過するときの光 の屈折角および臨界角を充填材の屈折率によって調整することができる。したがって 、その光路変更部を通過した光の光路を充填材の屈折率によって調整することがで きるので、入射領域に入射される光を一側部の入射領域外の領域により確実に導く ことのできる光路変更部を実現することができる。これによつて、導光体の一側部の 入射領域と入射領域以外の領域との間の輝度の差をより確実に小さくすることができ るので、輝度のむらをより確実に抑制することができる。  According to the present invention, since at least one of the first and second optical path changing portions is formed by forming a hole in one side portion, it can be easily realized. According to the present invention, since the hole that realizes at least one of the first and second optical path changing portions is filled with the filler, the light passing through the optical path changing portion is filled. The refraction angle and critical angle can be adjusted by the refractive index of the filler. Therefore, since the optical path of the light that has passed through the optical path changing portion can be adjusted by the refractive index of the filler, it is possible to reliably guide the light incident on the incident region to a region outside the incident region on one side. A possible optical path changing unit can be realized. As a result, the difference in luminance between the incident region on one side of the light guide and the region other than the incident region can be reduced more reliably, and thus uneven luminance can be more reliably suppressed. it can.
本発明によれば、導光体は、一側部を除く他の側部に出射防止部を有する。これ によって、光源から入射された光が外部に出射することを防止することができるので、 光源から入射された光の利用効率を高めることができる。  According to the present invention, the light guide has the emission preventing portion on the other side portion except the one side portion. As a result, it is possible to prevent the light incident from the light source from being emitted to the outside, so that the utilization efficiency of the light incident from the light source can be increased.
本発明によれば、出射防止部は、他の側部の端面が外方に凸の湾曲面に形成さ れることによって形成される。これによつて、光源から入射された光が外部に出射する ことをより確実に防止すること力 Sできる。  According to the present invention, the emission preventing portion is formed by forming the end surface of the other side portion into a curved surface that is convex outward. As a result, it is possible to more reliably prevent light incident from the light source from being emitted to the outside.
本発明によれば、出射防止部は、他の側部に切欠きを形成することによって形成さ れるので、容易に実現することができる。  According to the present invention, since the emission preventing portion is formed by forming a notch on the other side portion, it can be easily realized.
本発明によれば、少なくともいずれか一方の主面は、粗面状に形成されているので 、その主面に入射された光を拡散させることができる。これによつて、一側部から入射 される光を出射する主面における輝度のむらを抑制することができる。  According to the present invention, since at least one of the main surfaces is formed into a rough surface, light incident on the main surface can be diffused. As a result, it is possible to suppress uneven brightness on the main surface that emits light incident from one side.
本発明によれば、導光体は、一側部から入射される光を出射する主面が形成され る表面部を除く他の表面部に、入射する光を反射させる反射部を有する。これによつ て、他の表面部に入射する光を反射部で反射させて内部に導くことができるので、光 源から入射された光の利用効率を高めることができる。  According to the present invention, the light guide has the reflecting portion that reflects the incident light on the other surface portion except the surface portion on which the main surface that emits the light incident from one side portion is formed. As a result, the light incident on the other surface portion can be reflected by the reflecting portion and guided to the inside, so that the utilization efficiency of the light incident from the light source can be increased.
本発明によれば、前述のような優れた導光体と光源とを備えて照明装置が実現され る。これによつて好適な照明装置が実現される。 According to the present invention, an illuminating device is realized including the above-described excellent light guide and light source. The Thereby, a suitable illumination device is realized.

Claims

請求の範囲 The scope of the claims
[1] 入射される光を拡散させて出射する導光体であって、  [1] A light guide that diffuses and emits incident light,
光が入射される一側部と、  One side where light is incident;
拡散された光を出射する少なくとも一方の主面とを含み、  Including at least one main surface that emits diffused light,
一側部は、光源が対向して設けられる入射領域を有し、  One side has an incident region provided with a light source facing the light source,
入射領域には、  In the incident area,
光源から光が直接入射され、その入射する光を一側部の端面に対して垂直な基準 線との成す角度の絶対値が大きくなるように屈折させる第 1の光路変更部と、 一側部の端面から間隔をあけて、かつ第 1の光路変更部を通過した光の光路を避 けた位置に形成され、光源から入射される光を一側部の端面に対して垂直な基準線 との成す角度の絶対値が大きくなるように反射または屈折させる第 2の光路変更部と を有することを特徴とする導光体。  A first optical path changing unit that directly irradiates light from a light source and refracts the incident light so that an absolute value of an angle formed with a reference line perpendicular to an end surface of one side is increased; Is formed at a position that is spaced from the end face of the light source and avoids the light path of the light that has passed through the first light path changing section, and allows light incident from the light source to And a second optical path changing unit that reflects or refracts so that the absolute value of the angle formed becomes large.
[2] 第 1および第 2の光路変更部のうち、少なくともいずれか一方は、一側部に孔を形 成することによって形成されることを特徴とする請求項 1に記載の導光体。 [2] The light guide according to claim 1, wherein at least one of the first and second optical path changing portions is formed by forming a hole in one side portion.
[3] 孔には、充填材が充填されていることを特徴とする請求項 2に記載の導光体。 [3] The light guide according to claim 2, wherein the hole is filled with a filler.
[4] 一側部を除く他の側部には、光源から入射された光が外部に出射することを防止 する出射防止部を有することを特徴とする請求項 1〜3のいずれ力、 1つに記載の導光 体。 [4] The force according to any one of claims 1 to 3, wherein the other side portion excluding the one side portion has an emission preventing portion for preventing light incident from the light source from being emitted to the outside. The light guide described in 1.
[5] 出射防止部は、他の側部の端面が外方に凸の湾曲面に形成されることによって形 成されることを特徴とする請求項 4に記載の導光体。  [5] The light guide according to claim 4, wherein the emission preventing portion is formed by forming an end surface of the other side portion into a curved surface that is convex outward.
[6] 出射防止部は、他の側部に切欠きを形成することによって形成されることを特徴と する請求項 4に記載の導光体。 6. The light guide according to claim 4, wherein the emission preventing part is formed by forming a notch on the other side part.
[7] 少なくともいずれか一方の主面は、粗面状に形成されていることを特徴とする請求 項 1〜6のいずれ力、 1つに記載の導光体。 [7] The light guide according to any one of [1] to [6], wherein at least one main surface is formed into a rough surface.
[8] 一側部から入射される光を出射する主面が形成される表面部を除く他の表面部に は、入射する光を反射させる反射部を有することを特徴とする請求項 1〜7のいずれ 力、 1つに記載の導光体。 [8] The other surface portion excluding the surface portion on which the main surface that emits light incident from one side portion is formed has a reflecting portion that reflects incident light. 7. The light guide according to any one of 7, the power.
[9] 請求項 1〜8のいずれ力、 1つに記載の導光体と、導光体の入射領域に対向して設 けられ、入射領域に光を入射する光源とを備えることを特徴とする照明装置。 [9] The force according to any one of claims 1 to 8, wherein the light guide body according to one and the incident area of the light guide body are opposed to each other. And a light source that makes light incident on the incident area.
PCT/JP2007/072223 2006-11-29 2007-11-15 Light guide body and illumination device WO2008065906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006322489A JP2008140550A (en) 2006-11-29 2006-11-29 Light guide body, and illuminating device
JP2006-322489 2006-11-29

Publications (1)

Publication Number Publication Date
WO2008065906A1 true WO2008065906A1 (en) 2008-06-05

Family

ID=39467699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072223 WO2008065906A1 (en) 2006-11-29 2007-11-15 Light guide body and illumination device

Country Status (2)

Country Link
JP (1) JP2008140550A (en)
WO (1) WO2008065906A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157464A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Surface light source device and display device using the same
EP2686727A2 (en) * 2011-03-14 2014-01-22 LG Innotek Co., Ltd. Display device
EP2708809A1 (en) * 2012-09-14 2014-03-19 Boe Technology Group Co. Ltd. Light guide plate, method for fabricating the same and backlight unit
US9360613B2 (en) 2010-04-28 2016-06-07 Mitsubishi Electric Corporation Planar light source apparatus and display apparatus using same
US9989698B2 (en) 2013-11-29 2018-06-05 Fujitsu Limited Light pipe and electronic apparatus using the same
EP3602152A4 (en) * 2017-03-31 2020-11-04 LEIA Inc. Backlight, multiview display and method employing tapered collimator
US11378729B2 (en) 2018-10-15 2022-07-05 Leia Inc. Backlight, multiview display and method having a grating spreader

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5384924B2 (en) * 2008-12-10 2014-01-08 矢崎総業株式会社 Light guide plate
CN102620209A (en) * 2012-03-29 2012-08-01 深圳市华星光电技术有限公司 Backlight module and liquid crystal display
CN104597553B (en) * 2013-10-30 2017-09-12 纬创资通股份有限公司 Light guide plate
JP6678422B2 (en) * 2015-10-08 2020-04-08 株式会社ユニバーサルエンターテインメント Gaming machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250713A (en) * 1997-12-29 1999-09-17 Nippon Denyo Light guide plate and plane lighting system
JP2001166151A (en) * 1999-12-13 2001-06-22 Rohm Co Ltd Light guide plate, illumination device and liquid crystal display device having the illumination device
JP2001255416A (en) * 2000-03-09 2001-09-21 Citizen Electronics Co Ltd Light guide plate
JP2003195298A (en) * 2001-12-26 2003-07-09 Nissha Printing Co Ltd Edge light type surface light emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250713A (en) * 1997-12-29 1999-09-17 Nippon Denyo Light guide plate and plane lighting system
JP2001166151A (en) * 1999-12-13 2001-06-22 Rohm Co Ltd Light guide plate, illumination device and liquid crystal display device having the illumination device
JP2001255416A (en) * 2000-03-09 2001-09-21 Citizen Electronics Co Ltd Light guide plate
JP2003195298A (en) * 2001-12-26 2003-07-09 Nissha Printing Co Ltd Edge light type surface light emitting device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157464A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Surface light source device and display device using the same
US9360613B2 (en) 2010-04-28 2016-06-07 Mitsubishi Electric Corporation Planar light source apparatus and display apparatus using same
US9557467B2 (en) 2011-03-14 2017-01-31 Lg Innotek Co., Ltd. Display device
CN106226861B (en) * 2011-03-14 2019-05-07 Lg伊诺特有限公司 Display
EP2686727A4 (en) * 2011-03-14 2014-10-22 Lg Innotek Co Ltd Display device
US9304247B2 (en) 2011-03-14 2016-04-05 Lg Innotek Co., Ltd. Display device
CN103534641A (en) * 2011-03-14 2014-01-22 Lg伊诺特有限公司 Display device
CN106226861A (en) * 2011-03-14 2016-12-14 Lg伊诺特有限公司 Display
EP2686727A2 (en) * 2011-03-14 2014-01-22 LG Innotek Co., Ltd. Display device
US10042103B2 (en) 2011-03-14 2018-08-07 Lg Innotek Co., Ltd. Display device
US9958587B2 (en) 2012-09-14 2018-05-01 Boe Technology Group Co., Ltd. Light guide plate, method for fabricating the same and backlight unit
EP2708809A1 (en) * 2012-09-14 2014-03-19 Boe Technology Group Co. Ltd. Light guide plate, method for fabricating the same and backlight unit
US9989698B2 (en) 2013-11-29 2018-06-05 Fujitsu Limited Light pipe and electronic apparatus using the same
EP3602152A4 (en) * 2017-03-31 2020-11-04 LEIA Inc. Backlight, multiview display and method employing tapered collimator
US11048037B2 (en) 2017-03-31 2021-06-29 Leia Inc. Backlight, multiview display and method employing tapered collimator
US11378729B2 (en) 2018-10-15 2022-07-05 Leia Inc. Backlight, multiview display and method having a grating spreader

Also Published As

Publication number Publication date
JP2008140550A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
WO2008065906A1 (en) Light guide body and illumination device
KR100396612B1 (en) Lighting apparatus
JP4980425B2 (en) display
US7980746B2 (en) Hollow type planar illuminating device
TWI362510B (en)
JP4264013B2 (en) Light guide plate, planar illumination device using the same, and liquid crystal display device
JP5198570B2 (en) Lighting device, surface light source device, and liquid crystal display device
JP5295382B2 (en) Planar light source device and display device using the same
JP5409901B2 (en) Planar light source device and display device using the same
TW201231875A (en) Surface light source device and liquid crystal display device
US20130194823A1 (en) Backlight unit
JP2009289701A (en) Lighting device, plane light source device, and liquid crystal display
WO2007029858A1 (en) Surface lighting device and light source unit using it
US8220979B2 (en) Light guide plate and backlight module
TWM284913U (en) Light guide plate, backlight module and liquid crystal display device
JP2002245825A (en) Backlight, liquid crystal display device and electronic equipment
JP2004179062A (en) Illuminating device, photo conductive material and liquid crystal display
JP2005302485A (en) Surface lighting device
JP4645314B2 (en) Light guide plate, edge light type surface light source and liquid crystal display device using the same
JP4014026B2 (en) Surface light source device, image display device, and light guide plate
WO2010001653A1 (en) Light guide unit, planar light source device and liquid crystal display device
JP2004152496A (en) Light guide plate
JP3558321B2 (en) Sidelight type surface light source device and light guide plate
JP4555250B2 (en) Light guide plate and planar illumination device using the same
TWI431327B (en) Color mixing lens and liquid crystal display device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831953

Country of ref document: EP

Kind code of ref document: A1