WO2008065881A1 - Variable valve gear - Google Patents

Variable valve gear Download PDF

Info

Publication number
WO2008065881A1
WO2008065881A1 PCT/JP2007/071997 JP2007071997W WO2008065881A1 WO 2008065881 A1 WO2008065881 A1 WO 2008065881A1 JP 2007071997 W JP2007071997 W JP 2007071997W WO 2008065881 A1 WO2008065881 A1 WO 2008065881A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
valve
cam shaft
valve lifter
lifter
Prior art date
Application number
PCT/JP2007/071997
Other languages
French (fr)
Japanese (ja)
Inventor
Akio Kidooka
Shuichi Ezaki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07831727A priority Critical patent/EP2093389A1/en
Priority to US12/310,974 priority patent/US20100089348A1/en
Publication of WO2008065881A1 publication Critical patent/WO2008065881A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/143Tappets; Push rods for use with overhead camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L1/0532Camshafts overhead type the cams being directly in contact with the driven valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/22Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by rotary motors

Definitions

  • the present invention relates to a variable valve gear that drives a valve of an internal combustion engine.
  • Patent Document 1 discloses an internal combustion engine having a valve drive system that opens and closes a valve by a motor.
  • this conventional valve drive system when an abnormality occurs in the synchronous control between the rotation of the camshaft and the rotation of the crankshaft, the valve opening / closing operation is stopped using the lost motion mechanism, or a small By switching to a low lift cam to drive the valve with the lift amount, evacuation travel is enabled.
  • the applicant has recognized the following documents including the above-mentioned documents as those related to the present invention.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2005-54732
  • Patent Document 2 Japanese Utility Model Publication No. 6-87605
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2004-225562
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2004-225610
  • Patent Document 5 Japanese Patent No. 3359524
  • variable valve apparatus in which a cam drives a valve via a valve lifter is known.
  • the variable valve device if the variable valve device malfunctions and the motor drive may stop while the nose tip of the cam is in contact with the valve lifter, the valve lift It may remain open with the maximum lift.
  • interference between the valve that has stopped in the maximum lift state and the piston that continues to reciprocate can occur.
  • the retraction control provided in the conventional valve drive system described above
  • the mechanism for stopping the opening / closing operation of the valve and the mechanism for switching to the low lift cam are complicated in the variable valve device of the type in which the camshaft is rotationally driven by a motor. It will make it.
  • the interference between the valve and the piston is detected during the transition period after the abnormality of the synchronous control between the camshaft and the crankshaft is detected and switched to the retraction control. Can occur.
  • the present invention has been made to solve the above-described problems, and a motor is used to rotate a cam shaft provided with a cam that pushes a valve urged in a valve closing direction by a valve spring.
  • An object of the present invention is to provide a variable valve device that can reliably eliminate interference between a valve and a piston when an abnormality occurs, using a simple structure in the variable valve device to be driven.
  • a first invention is a variable valve operating apparatus for driving a cam shaft provided with a cam for pushing a valve biased in a valve closing direction by a valve spring by a motor,
  • a valve lifter that comes into contact with the cam is provided between the cam and the valve, and the valve lifter has a tangential direction to the nose tip of the cam as viewed from the axial direction of the cam shaft and the axis of the valve stem. It has a top surface formed so as to be inclined with respect to the orthogonal direction.
  • the direction of inclination of the tangent is directed toward the advancing direction of a contact point between the cam and the valve lifter during normal rotation of the cam.
  • the distance between the tangent and the bottom surface of the valve lifter is reduced.
  • the top surface is formed in a convex curved surface that is convex toward the cam side when viewed from the axial direction of the cam shaft. It is characterized by that.
  • the contact point between the nose tip and the valve lifter is configured to be separated from each other when viewed from the axial direction of the cam shaft.
  • a convex curved surface that is convex toward the cam side.
  • the top surface formed in a shape is formed such that the height from the bottom surface of the valve lifter is the highest on the central axis of the valve lifter,
  • the cam shaft is arranged so that the central axis of the cam shaft and the central axis of the valve lifter do not intersect when viewed from the axial direction of the cam shaft.
  • the cam shaft has a central axis of the cam shaft that intersects an axis of the valve stem when viewed from an axial direction of the cam shaft.
  • the top surface formed in a convex curved shape that is convex toward the cam side has an apex force S at which the height from the bottom surface of the valve lifter is the highest, as viewed from the axial direction of the cam shaft, It is characterized by being formed so as to be offset with respect to the axis.
  • a seventh invention is characterized in that, in the first or second invention, the top surface is an inclined surface having a constant gradient when viewed from the axial direction of the cam shaft.
  • a ninth invention according to any one of the first to eighth inventions, further includes a torque reduction mechanism that generates a reduced torque for reducing the drive torque of the cam shaft,
  • the torque reducing mechanism is characterized in that the reduced torque is configured to be smaller than the torque acting on the camshaft based on the urging force of the valve spring.
  • the urging force of the valve spring is reduced. It will also act in the direction of rotating the cam only in the direction of pushing the force upward. For this reason, according to the present invention, it is possible to favorably avoid that the valve remains open when an abnormality occurs, and to reliably avoid interference between the valve and the piston.
  • the valve spring is attached.
  • the force also acts in the direction of rotating the cam, not only in the direction of pushing the cam upward. For this reason, according to the present invention, it is possible to satisfactorily avoid that the valve remains open when an abnormality occurs, and to reliably avoid interference between the valve and the piston.
  • the eighth aspect of the invention even if an abnormality occurs in the variable valve device such that the driving force of the cam shaft remains in the motor, the urging force of the valve spring rotates the cam. It is allowed to be converted into torque. For this reason, the force S is used to reliably avoid interference between the valve and the piston.
  • variable valve gear including a torque reduction mechanism for reducing the drive torque of the camshaft
  • sufficient urging force of the valve spring is ensured as a torque for rotating the cam. It is possible to reduce the interference between the valve and the piston with the force S.
  • FIG. 1 is a perspective view showing a configuration of a variable valve operating apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a view of the cam shaft viewed from the axial direction in order to explain the detailed configuration of the cam shaft shown in FIG. 1.
  • FIG. 3 is a schematic diagram showing how the valve lifter is driven by a cam.
  • FIG. 4 is a view showing a variable valve apparatus A having a valve lifter of a general shape to be referred for comparison with the configuration of the variable valve apparatus of Embodiment 1 of the present invention.
  • FIG. 5 is a diagram for explaining a characteristic configuration of the first embodiment of the present invention.
  • FIG. 6 is a view showing a first modification of the top shape of the valve lifter and the positional relationship between the valve lifter and the cam shaft.
  • FIG. 7 is a view showing a second modification of the top shape of the valve lifter.
  • FIG. 8 is a flowchart of a routine executed in the second embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a configuration of a torque reduction mechanism provided in the variable valve operating apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a general setting of the reduced torque in the torque reducing mechanism having the same configuration as the torque reducing mechanism shown in FIG. 9.
  • FIG. 11 is a diagram for explaining setting of a reduced torque generated by the torque reduction mechanism according to the third embodiment of the present invention.
  • FIG. 1 the basic configuration of the variable valve operating apparatus 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • FIG. 1 the basic configuration of the variable valve operating apparatus 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
  • FIG. 1 is a perspective view showing a configuration of variable valve operating apparatus 10 according to the first embodiment of the present invention.
  • a variable valve operating apparatus 10 shown in FIG. 1 is an apparatus for driving a valve of an internal combustion engine.
  • the internal combustion engine is configured as a straight IJ 4-cylinder engine.
  • # 1 to # 4 represent the first to fourth cylinders of the internal combustion engine, respectively.
  • the explosion order in this internal combustion engine is assumed to be # 1 ⁇ # 3 ⁇ # 4 ⁇ # 2, as in a general internal combustion engine.
  • the variable valve operating device 10 functions as a device for driving the intake valve of each cylinder, and in FIG. 1, the exhaust valve side is not shown.
  • the variable valve operating apparatus 10 may be configured as a device that drives the exhaust valve of each cylinder instead of or in addition to the intake valve.
  • valve stems 14 are fixed to the valves 12 respectively.
  • a valve lifter 16 is attached to the upper end of the knob stem 14.
  • a biasing force of a valve spring 17 acts on the valve stem 14, and the valve stem 14 is biased in the valve closing direction by the biasing force.
  • the variable valve operating apparatus 10 of the present embodiment is characterized by the shape of the top surface 16a of the valve lifter 16 and the positional relationship between the valve lifter 16 and cams 18 and 20 described later. The characteristic part will be described later with reference to FIG.
  • a corresponding cam 18 or 20 is disposed on the upper part of each valve lifter 16.
  • the cam corresponding to the valve lifter 16 disposed in the # 1 and # 4 cylinders is referred to as a cam 18, and the cam corresponding to the valve lifter 16 disposed in the # 2 and # 3 cylinders.
  • the cam 18 corresponding to # 1 cylinder and # 4 cylinder is fixed to the camshaft 22.
  • the cams 20 corresponding to the # 2 and # 3 cylinders are fixed to a camshaft 24 that is rotatable with respect to the camshaft 22 and is arranged coaxially with the camshaft 22. In other words, in the configuration shown in FIG.
  • the camshaft is shared by the cylinders whose explosion times differ by 360 ° CA. And those camshafts, ie #
  • the camshaft 22 corresponding to the 1 and # 4 cylinders and the camshaft 24 corresponding to the # 2 and # 3 cylinders are configured to be capable of rotating or swinging in the circumferential direction independently of each other. Yes.
  • the cam shaft 22 and the cam shaft 24 are rotatably supported by a support member such as a cylinder head (not shown).
  • a first driven gear 26 is coaxially fixed to one camshaft 22.
  • a first output gear 28 is meshed with the first driven gear 26.
  • the first output gear 28 is fixed to the output shaft of the first motor 30.
  • the first motor 30 is a servo motor capable of controlling the rotation speed and the rotation amount.
  • a DC brushless motor or the like is preferably used as the first motor 30, for example.
  • the first motor 30 includes a rotation angle detection sensor such as a resolver and a rotary encoder for detecting the rotation position (rotation angle). With such a configuration, the torque of the first motor 30 can be transmitted to the camshaft 22 via these gears 26 and 28.
  • a second driven gear 32 is coaxially fixed to the other cam shaft 24.
  • a second output gear 36 is meshed with the second driven gear 32 via an intermediate gear 34.
  • the second output gear 36 is fixed to the output shaft of the second motor 38.
  • the specific configuration of the second motor 38 is the same as that of the first motor 30. According to such a configuration, the torque S of transmitting the torque of the second motor 38 to the camshaft 24 through these gears 32, 34, and 36 is reduced.
  • the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 40! /.
  • Various sensors such as a crank angle sensor and a cam angle sensor, and various actuators such as a first motor 30 and a second motor 38 are connected to the ECU 40.
  • the ECU 40 can control the rotational speed and the rotational amount of the first motor 30 and the second motor 38 based on the sensor outputs. More specifically, by giving a drive command to the motor 30 or the like so that the cam shaft 22 or the like is continuously driven in one direction, the cam shaft 22 or the like can be rotated. Further, the ECU 40 can swing the camshaft 22 and the like by giving a drive command to the motor 30 and the like so that the rotation direction of the motor 30 and the like is reversed while the valve 12 is open.
  • FIG. 2 shows the camshaft 22 in order to explain the detailed configuration of the camshaft 22 shown in FIG. It is the figure seen from the axial direction.
  • the cam 18 (# 1) and the cam 18 (# 4) are fixed to the camshaft 22! /.
  • the # 1 cylinder cam 18 (# 1) has two cam surfaces 18a and 18b having different profiles.
  • the base circle portion 18a which is one cam surface, is formed so that the distance from the center of the cam shaft 22 is constant.
  • the nose portion 18b which is the other cam surface, is formed such that the distance from the center of the cam shaft 22 gradually increases and the distance gradually decreases after exceeding the top portion 18c (the nose tip portion 18c).
  • the # 4 cylinder cam 18 (# 4) also has a base circle portion 18a and a nose portion 18b similar to the cam 18 (# 1).
  • the top 18c of the cam 18 (# 1) and the top 18c of the cam 18 (# 4) are arranged so as to be shifted from each other by 180 ° in the circumferential direction of the cam shaft 22.
  • cam 20 (# 2) and cam 20 (# 3) are also different from cam shaft 22 in cam shaft 24 corresponding to # 2 cylinder and # 3 cylinder. It shall be structured in the same way as the case.
  • FIG. 3 is a schematic diagram showing how the valve lifter 16 is driven by the cam 18.
  • a valve lifter 16 that contacts the cam 18 is disposed between the cam 18 and the valve 12 (see FIG. 1).
  • the valve lifter 16 has a top surface 16 a that contacts the cam 18.
  • FIGS. 3A and 3B show two drive modes of the cam 18.
  • the forward drive mode one of the drive modes, continuously rotates the first motor 30 in one direction.
  • the cam 18 is moved in the forward rotation direction beyond the maximum lift position, that is, beyond the position where the nose tip 18c (top 18c) of the cam 18 contacts the valve lifter 16.
  • This is a drive mode for continuous rotation.
  • the other drive mode, the swing drive mode is as shown in FIG. 3 (B) by switching the rotation direction of the first motor 30 before reaching the maximum lift position in the forward drive mode. In this mode, the cam 18 is reciprocated.
  • the operating angle of the valve 12 is controlled by controlling the rotational speed of the cam 18.
  • the operating angle of the valve 12 and the maximum lift amount can be controlled by controlling the rotational speed of the cam 18 and the angle range in which the cam 18 swings.
  • FIG. 4 is a view showing a variable valve apparatus A having a generally shaped valve lifter that is referred to for comparison with the configuration of the variable valve apparatus 10 of the present embodiment, as viewed from the axial direction of the camshaft. It is a figure.
  • a variable valve apparatus A to be compared with the variable valve apparatus 10 of the present embodiment is a general top surface formed so as to be a plane perpendicular to the axis of the valve stem.
  • a valve lifter having
  • the motor may be stopped.
  • the friction between the force and the valve lifter, the friction between the gears arranged between the motor and the camshaft, and the inertia of the motor! / The rotation of the camshaft
  • the camshaft is basically rotatable. Therefore, when an abnormality occurs in the variable valve device A, if the cam is in contact with the valve lifter at the nose portion other than the tip of the nose (for example, as shown in FIG. 3 (B)), The cam is rotated by the valve spring reaction force, and the valve is returned to the closed state.
  • the configuration in which the above situation occurs is not limited to the case where the top surface of the valve lifter is a flat surface, and even if the top surface is a curved surface other than a flat surface, This is true as long as the direction of the tangent when contacting the surface is a configuration that is perpendicular to the axis of the valve stem.
  • FIG. 5 is a view for explaining a characteristic configuration of the present embodiment, and is a view seen from the axial direction of the cam shaft 22.
  • the tangential force between the nose tip 18c of the cam 18 and the top surface 16a of the valve lifter 16 is orthogonal to the axis of the valve stem 14.
  • the shape of the top surface 16a of the valve lifter 16 is determined so as to be inclined with respect to the direction in which the valve lifter 16 is inclined, and the positional relationship between the valve lifter 16 and the cam shaft 22 is adjusted.
  • the inclination direction of the tangent is directed toward the direction of travel of the contact point between the cam 18 and the valve lifter 16 during the forward rotation of the cam 18 (left direction in FIG. 5).
  • the shape of the top surface 16a of the valve lifter 16 is determined so that the distance from the bottom surface 16b of the valve lifter 16 is reduced, and the positional relationship between the valve lifter 16 and the cam shaft 22 is adjusted.
  • the top surface 16a of the valve lifter 16 is viewed from the axial direction of the cam shaft 22 as shown in FIG. Is formed into a convex curved surface that is convex toward the force 18 side, more specifically, a cylindrical shape.
  • the top surface 16a should be separated from the apex where the height from the bottom surface 16b is the highest, the contact point P between the nose tip 18c and the top surface 16a, and the force cam shaft 22 as viewed from the axial direction.
  • Gu cam The central axis of the shaft 22 is offset with respect to the central axis of the valve lifter 16.
  • the top surface 16a formed in the convex curved shape is formed so that the height of the valve lifter 16 is the highest on the central axis of the valve lifter 16, and the cam shaft 22 is The center axis of the cam shaft 22 is arranged so as to be away from the center axis of the valve lifter 16 when viewed from the axial direction of the cam shaft 22.
  • the offset direction of the central axis of the cam shaft 22 with respect to the central axis of the valve lifter 16 is the traveling direction of the contact point P between the cam 18 and the valve lifter 16 when the cam 18 rotates forward.
  • the arrangement of the cam shaft 22 with respect to the valve lifter 16 is adjusted so as to be on the side.
  • valve lifter 16 is prevented from rotating with respect to the cam 18 so that the tangential direction can always maintain the above-described direction during actual operation of the valve system.
  • a stop mechanism is provided.
  • Such a detent mechanism can be realized by the following configuration, for example. That is, a pin that faces in a direction perpendicular to the axis of the valve stem is made to penetrate the valve lifter. Then, a guide groove for the pin is formed in the cylinder head which is a peripheral member of the valve lifter so as to extend in the axial direction of the valve stem, and the pin is engaged with the guide groove.
  • the tangential force between the nose tip 18c of the cam 18 and the top surface 16a of the valve lifter 16 when viewed from the axial direction of the cam shaft 22 The shape of the top surface 16a of the valve lifter 16 is determined so as to be inclined with respect to the direction orthogonal to the axis, and the positional relationship between the valve lifter 16 and the cam shaft 22 is adjusted. According to such a configuration, even when the nose tip 18c of the cam 18 is in contact with the top surface 16a of the valve lifter 16 when the motor is stopped, the valve spring reaction force pushes the cam 18 upward. It will also act in the direction in which the cam 18 is rotated.
  • the valve spring reaction force acting on the cam 18 is not only the component in the axial direction of the valve stem 14 but also the decomposed component inclined with respect to the axial direction of the valve stem 14 ( (See the arrows in Fig. 5). As a result, when the cam 18 rotates, the valve operates in the valve closing direction.
  • the inclination direction of the tangent line is in the advancing direction (left direction in FIG. 5) of the contact point between the cam 18 and the valve lifter 16 when the cam 18 is rotating forward.
  • the shape of the top surface 16a of the valve lifter 16 is determined so that the distance between the tangent and the bottom surface 16b of the valve lifter 16 becomes smaller as it goes, and the positional relationship between the valve lifter 16 and the camshaft 22 is determined. Has been adjusted.
  • such a configuration is such that the force in the offset direction of the central axis of the cam shaft 22 with respect to the central axis of the valve lifter 16 is the forward direction of the contact point P between the cam 18 and the valve lifter 16 when the cam 18 is rotating forward. This is realized by adjusting the arrangement of the camshaft 22 with respect to the nozzle lifter 16.
  • the cam 18 escapes in the forward rotation direction. Will be started.
  • the final stop position of the cam 18 after such a relief operation is a position immediately after the end of the lift operation of the valve 12 at the normal time.
  • the top surface 16a of the valve lifter 16 has a convex curved shape that protrudes toward the cam 18 when viewed from the axial direction of the cam shaft 22, more specifically, Cylindrical shape
  • the top surface 16a formed in the convex curved shape is formed so that the height of the valve lifter 16 is the highest on the central shaft of the valve lifter 16, and the cam shaft 22 is In view of the axial force of the shaft 22, the cam shaft 22 is arranged so that the central axis is separated from the central axis of the valve lifter 16.
  • the shape of the top surface of the valve lifter and the positional relationship between the valve lifter and the camshaft in the present invention are tangential forces between the nose tip of the cam and the top surface of the valve lifter when viewed from the axial direction of the camshaft. If consideration is given to incline with respect to the direction perpendicular to the axis of the stem, the configuration is not limited to the configuration shown in FIG. 5 described above. For example, FIG. It may be configured as shown in the figure.
  • FIG. 6 is a diagram showing a first modification of the top shape of the valve lifter and the positional relationship between the valve lifter and the cam shaft.
  • the cam shaft 22 is positioned so that the central axis of the cam shaft 22 is positioned on the extension line of the valve stem 14 axis (that is, the central axis of the valve lifter 42) when viewed from the axial direction of the cam shaft 22.
  • Axis 22 is arranged.
  • the top surface 42a of the valve lifter 42 is formed in a convex curved surface that is convex toward the cam 18 as viewed from the axial direction of the cam shaft 22, more specifically, in a cylindrical shape.
  • the top surface 42a formed in a convex curved surface is the apex force at which the height from the bottom surface 42b of the valve lifter 42 is the highest.
  • the offset direction of the apex of the top surface 42a with respect to the central axis of the valve lifter 16 is the traveling direction of the contact point Q between the cam 18 and the valve lifter 16 when the cam 18 is rotating forward.
  • the shape of the top surface 42a is determined so as to be in the reverse direction (right direction in FIG. 6).
  • the anti-rotation mechanism of the valve lifter 42 can have the same force as that described above.
  • FIG. 7 is a diagram showing a second modification of the top shape of the valve lifter.
  • the top surface 44a of the valve lifter 44 is constant in view of the axial force of the camshaft 22. It is formed so that it may become the inclined surface which has the following gradient.
  • the inclination direction of the top surface 44a is such that the distance from the bottom surface 44b of the valve lifter 44 decreases as the direction of travel of the contact point R between the cam 18 and the valve lifter 44 during the forward rotation of the cam 18 is increased.
  • the cam 18 is released in the forward rotation direction. It becomes like this.
  • the anti-rotation mechanism of the valve lifter 44 can have the same force as that described above.
  • Embodiment 2 of the present invention will be described with reference to FIG.
  • the system of the present embodiment can be realized by causing the ECU 40 to execute a routine shown in FIG. 8 to be described later using the hardware configuration shown in FIGS. 1 to 3 and FIG. That ’s right.
  • the abnormality that occurred in the variable valve operating system 10 is that the motor power supply is completely turned off, the configuration shown in FIG.
  • the power supply may not be completely turned off, and the motor may still be able to drive the cam 18.
  • the cam 18 pressing the valve 12 the driving torque of the cam shaft 22 by the motor and the torque acting on the cam shaft 22 based on the biasing force of the valve spring 17 are balanced. As a result, the valve 12 stops in a lifted state.
  • the driving reaction force when electrically driving the sliding cam 18 is ensured so that interference between the valve 12 and the piston can be surely avoided. More specifically, the power supply to the motor is stopped when the current command value (torque command value) given to the motor by the ECU 40 reaches a predetermined value when the value exceeds the predetermined value.
  • FIG. 8 is a flowchart of a routine executed by the ECU 40 in order to realize the above function.
  • the routine shown in FIG. 8 first, whether or not the camshaft 22 is stopped. It is determined according to the force S and the output of the cam angle sensor (step 100). As a result, if it is determined that the camshaft 22 is in a stopped state, then a current command value that the ECU 40 gives to the motor is acquired (step 102).
  • step 104 it is determined whether or not the current command value acquired in step 102 is equal to or greater than a predetermined value.
  • a predetermined value is set to such a value that it can be determined whether or not the lift amount of the valve 12 is increased to such an extent that the interference between the valve 12 and the piston occurs! /, The
  • step 104 If it is determined in step 104 that the current command value is equal to or greater than the predetermined value, the power supply to the motor is stopped (step 106).
  • the current command value of the cam 18 is greater than or equal to a predetermined value under the situation where the camshaft 22 is in a stopped state, so that the valve 12 and the piston If it is determined that there is a possibility of interference, the power supply to the motor is stopped. That is, the urging force of the valve spring 17 is allowed to be converted into torque that rotates the cam 18. Further, the shape of the valve lifter 16 of the present embodiment and the positional relationship between the valve lifter 16 and the cam shaft 22 are configured in the same manner as in FIG.
  • the valve 12 related to the position of the contact point between the nose portion 18b of the cam 18 and the top surface 16a is lifted when the motor is stopped. It is possible to avoid being kept in a state. As described above, according to the control of the present embodiment, it is possible to reliably avoid the interference between the valve 12 and the piston regardless of the abnormal state of the variable valve apparatus 10.
  • the “power supply control means” according to the eighth aspect of the present invention is realized by the ECU 40 executing the routine processing shown in FIG. Yes.
  • FIG. 9 is a diagram for explaining the configuration of the torque reduction mechanism 52 provided in the variable valve operating apparatus 50 according to the third embodiment of the present invention. More specifically, FIG. 9 (A) shows a view of the variable valve operating device 50 viewed from the axial direction of the camshaft 22, and FIG. 9 (B) shows the variable valve operating device 50 of FIG. The figure seen from the direction of arrow A in (A) is shown. In FIG. 9, the same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof is omitted or simplified.
  • the variable valve operating apparatus 50 of the present embodiment is configured in the same manner as the variable valve operating apparatus 10 of the first embodiment described above, except that the torque reducing mechanism 52 shown in Fig. 9 is provided. .
  • the torque reduction mechanism 52 is a mechanism that generates a reduction torque for reducing the drive torque when the cam shaft 22 or the like is driven by the motor 30 or the like.
  • the torque reduction mechanism 52 includes an anti-phase cam 54 and an urging mechanism 58 that applies an urging force of a spring 56 to the anti-phase cam 54.
  • the torque reduction mechanism 52 is provided at each end of the two cam shafts 22 and 24 provided in the variable valve operating device 50. Since such a configuration of the torque reduction mechanism 52 is known, a detailed description thereof will be omitted here.
  • FIG. 10 is a diagram for explaining a general setting of the reduction torque in the torque reduction mechanism having the same configuration as that of the torque reduction mechanism 52 shown in FIG.
  • the waveform shown by the solid line in FIG. 10 shows the change in the drive torque of the cam shaft during one rotation of the cam shaft when such a torque reduction mechanism is not used.
  • the cam shaft drive torque is mainly the torque acting on the cam shaft based on the urging force of the valve spring, excluding friction between the cam and the valve lifter. For this reason, the drive torque of the camshaft gradually increases as the cam rotates and pushes down the valve while piled on the valve spring force, and shows the maximum value before the maximum lift position.
  • the drive torque of the camshaft then starts to decrease and instantaneously becomes zero at the maximum lift position. After exceeding the maximum lift position, the valve spring reaction force assists the cam rotation. For this reason, the camshaft torque becomes a negative value, and once it reaches the negative peak value, it approaches zero as the valve is closed. ⁇ .
  • the reduction torque generated by the torque reduction mechanism is generally the valve spring as shown by the waveform shown by the broken line in FIG. 10 which reduces the drive torque of the cam shaft as described above. Based on the urging force, the torque applied to the camshaft is given as a reverse torque. In other words, these torques act so as to cancel each other, as shown in FIG.
  • Such setting of the reduction torque is realized by appropriately adjusting the profile of the anti-phase cam 54 and the biasing force of the spring 56. When such reduced torque is applied, the final camshaft drive torque by the motor is theoretically zero (excluding friction) when the cam is at an arbitrary rotational position.
  • FIG. 11 is a diagram for explaining the setting of the reduced torque generated by the torque reduction mechanism 52 of the present embodiment.
  • the reduced torque generated by the torque reduction mechanism 52 is set as shown in FIG. More specifically, as shown in FIG. 11, the reduction torque generated by the torque reduction mechanism 52 is set to be smaller than the torque acting on the camshaft 22 based on the urging force of the valve spring 17. did.
  • a deductive torque (a waveform indicated by a thick broken line in FIG. 11), which is a composite value of the camshaft acting torque and the reduced torque, acts in a direction repelling the rotation of the cam 18. It becomes like this. In other words, a sufficient urging force of the valve spring 17 is secured as a ⁇ NOREC for rotating the cam 18.
  • the subtraction torque force friction between the cam and the valve lifter, friction between the gears arranged between the motor and the camshaft, and resistance to rotation of the camshaft such as the inertia of the motor is determined so as to be a little larger than the sum of these factors.
  • variable valve gear 50 having the torque reduction mechanism 52 for the purpose of reducing the drive torque of the camshaft 22 and the like a simple configuration can be used when an abnormality occurs. It is possible to reliably avoid the interference between the valve 12 and the piston regardless of the stop position of the cam 18 or the like.

Abstract

A cam shaft (22) etc. having a cam (18) etc. for pushing and moving a valve (12), which is urged in a valve closing direction by a valve spring (17), is driven by a motor (30) etc. A valve lifter (16), in contact with the cam (18) etc., is provided between the valve (12) and the cam (18) etc. The valve lifter (16) has a top surface (16a) formed such that the line tangential to the top surface and a nose top (18c) of the cam (18) inclines relative to the direction perpendicular to the axis of a valve stem (14).

Description

明 細 書  Specification
可変動弁装置  Variable valve gear
技術分野  Technical field
[0001] この発明は、内燃機関のバルブを駆動する可変動弁装置に関する。  [0001] The present invention relates to a variable valve gear that drives a valve of an internal combustion engine.
背景技術  Background art
[0002] 従来、例えば特許文献 1には、モータによってバルブを開閉駆動する弁駆動システ ムを有する内燃機関が開示されている。この従来の弁駆動システムでは、カム軸の回 転とクランク軸の回転との同期制御に異常が発生した場合には、ロストモーション機 構を用いてバルブの開閉動作を停止させるか、或いは、小さなリフト量でバルブを駆 動するための低リフトカムに切り換えることによって、退避走行を可能にしている。 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載す る文献を認識している。  Conventionally, for example, Patent Document 1 discloses an internal combustion engine having a valve drive system that opens and closes a valve by a motor. In this conventional valve drive system, when an abnormality occurs in the synchronous control between the rotation of the camshaft and the rotation of the crankshaft, the valve opening / closing operation is stopped using the lost motion mechanism, or a small By switching to a low lift cam to drive the valve with the lift amount, evacuation travel is enabled. The applicant has recognized the following documents including the above-mentioned documents as those related to the present invention.
[0003] 特許文献 1 :日本特開 2005— 54732号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2005-54732
特許文献 2 :日本実開平 6— 87605号公報  Patent Document 2: Japanese Utility Model Publication No. 6-87605
特許文献 3 :日本特開 2004— 225562号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2004-225562
特許文献 4 :日本特開 2004— 225610号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2004-225610
特許文献 5 :日本特許第 3359524号公報  Patent Document 5: Japanese Patent No. 3359524
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記従来の弁駆動システムのようにカム軸を電動駆動するシステムの一態様として 、バルブリフタを介してカムがバルブを駆動する方式の可変動弁装置が知られている 。そのような方式の可変動弁装置では、可変動弁装置に異常が発生し、カムのノー ズ先端部がバルブリフタに当接した状態でモータの駆動が停止されることがあると、 バルブのリフト量が最大リフトとなる状態で開いたままとなる可能性がある。そして、そ のような状況が生ずると、最大リフト状態で停止したままのバルブと、往復運動を続け てレ、るピストンとの干渉が生じ得る。  [0004] As one aspect of a system for electrically driving a camshaft like the conventional valve drive system described above, a variable valve apparatus in which a cam drives a valve via a valve lifter is known. In such a type of variable valve device, if the variable valve device malfunctions and the motor drive may stop while the nose tip of the cam is in contact with the valve lifter, the valve lift It may remain open with the maximum lift. When such a situation occurs, interference between the valve that has stopped in the maximum lift state and the piston that continues to reciprocate can occur.
[0005] 上記の干渉を回避する目的のみで、上記従来の弁駆動システムが備える退避制御 のための機構、すなわち、バルブの開閉動作を停止させる機構や低リフトカムに切り 換える機構を備えることは、カム軸をモータによって回転駆動する方式の可変動弁装 置において、いたずらに装置構成を複雑化させてしまう。また、上記の退避制御のた めの機構を用いる方式では、カム軸とクランク軸との同期制御の異常を検知した後に 上記退避制御に切り換えられるまでの移行期間中に、バルブとピストンとの干渉が生 じ得る。 [0005] For the purpose of avoiding the above interference, the retraction control provided in the conventional valve drive system described above The mechanism for stopping the opening / closing operation of the valve and the mechanism for switching to the low lift cam are complicated in the variable valve device of the type in which the camshaft is rotationally driven by a motor. It will make it. Further, in the method using the mechanism for the retraction control described above, the interference between the valve and the piston is detected during the transition period after the abnormality of the synchronous control between the camshaft and the crankshaft is detected and switched to the retraction control. Can occur.
[0006] この発明は、上述のような課題を解決するためになされたもので、バルブスプリング によって閉弁方向に付勢されるバルブを押動するカムが設けられたカム軸を、モータ により回転駆動する可変動弁装置において、簡素な構成を用いて、異常発生時にバ ルブとピストンとの干渉を確実に解消し得る可変動弁装置を提供することを目的とす  [0006] The present invention has been made to solve the above-described problems, and a motor is used to rotate a cam shaft provided with a cam that pushes a valve urged in a valve closing direction by a valve spring. An object of the present invention is to provide a variable valve device that can reliably eliminate interference between a valve and a piston when an abnormality occurs, using a simple structure in the variable valve device to be driven.
課題を解決するための手段 Means for solving the problem
[0007] 第 1の発明は、バルブスプリングによって閉弁方向に付勢されるバルブを押動する カムが設けられたカム軸を、モータにより駆動する可変動弁装置であって、  [0007] A first invention is a variable valve operating apparatus for driving a cam shaft provided with a cam for pushing a valve biased in a valve closing direction by a valve spring by a motor,
前記カムと前記バルブとの間に、当該カムと当接するバルブリフタを備え、 前記バルブリフタは、前記カム軸の軸方向から見て、前記カムのノーズ先端部との 接線方向が、バルブステムの軸線と直交する方向に対して傾斜するように形成された 頂面を備えることを特徴とする。  A valve lifter that comes into contact with the cam is provided between the cam and the valve, and the valve lifter has a tangential direction to the nose tip of the cam as viewed from the axial direction of the cam shaft and the axis of the valve stem. It has a top surface formed so as to be inclined with respect to the orthogonal direction.
[0008] また、第 2の発明は、第 1の発明において、前記接線の傾斜方向は、前記カムの正 転時における前記カムと前記バルブリフタとの接触点の進行方向に向力、うにつれ、当 該接線と前記バルブリフタの底面との距離が小さくなる方向であることを特徴とする。  [0008] In addition, in a second invention according to the first invention, the direction of inclination of the tangent is directed toward the advancing direction of a contact point between the cam and the valve lifter during normal rotation of the cam. The distance between the tangent and the bottom surface of the valve lifter is reduced.
[0009] また、第 3の発明は、第 1または第 2の発明において、前記頂面は、前記カム軸の軸 方向から見て、前記カム側に凸となる凸曲面状に形成されていることを特徴とする。  [0009] In addition, in a third invention according to the first or second invention, the top surface is formed in a convex curved surface that is convex toward the cam side when viewed from the axial direction of the cam shaft. It is characterized by that.
[0010] また、第 4の発明は、第 3の発明において、前記カム側に凸となる凸曲面状に形成 された前記頂面において前記バルブリフタの底面からの高さが最も高くなる頂点と、 前記ノーズ先端部と前記バルブリフタとの接触点とが、前記カム軸の軸方向から見て 、離間するように構成されてレ、ることを特徴とする。  [0010] Further, in a fourth invention according to the third invention, in the third invention, an apex in which the height from the bottom surface of the valve lifter is the highest on the top surface formed in a convex curved surface that is convex toward the cam side; The contact point between the nose tip and the valve lifter is configured to be separated from each other when viewed from the axial direction of the cam shaft.
[0011] また、第 5の発明は、第 3または第 4の発明において、前記カム側に凸となる凸曲面 状に形成された前記頂面は、前記バルブリフタの中心軸上で当該バルブリフタの底 面からの高さが最も高くなるように形成されており、 [0011] Further, according to a fifth aspect of the invention, in the third or fourth aspect of the invention, a convex curved surface that is convex toward the cam side. The top surface formed in a shape is formed such that the height from the bottom surface of the valve lifter is the highest on the central axis of the valve lifter,
前記カム軸は、前記カム軸の軸方向から見て、前記カム軸の中心軸と前記バルブリ フタの中心軸とが交差しないように配置されていることを特徴とする。  The cam shaft is arranged so that the central axis of the cam shaft and the central axis of the valve lifter do not intersect when viewed from the axial direction of the cam shaft.
[0012] また、第 6の発明は、第 3または第 4の発明において、前記カム軸は、前記カム軸の 軸方向から見て、前記カム軸の中心軸が前記バルブステムの軸線と交差するように 配置されており、 [0012] Further, according to a sixth aspect of the present invention, in the third or fourth aspect of the invention, the cam shaft has a central axis of the cam shaft that intersects an axis of the valve stem when viewed from an axial direction of the cam shaft. Arranged so that
前記カム側に凸となる凸曲面状に形成された前記頂面は、前記バルブリフタの底 面からの高さが最も高くなる頂点力 S、前記カム軸の軸方向から見て、前記バルブステ ムの軸線に対してオフセットされた位置となるように形成されていることを特徴とする。  The top surface formed in a convex curved shape that is convex toward the cam side has an apex force S at which the height from the bottom surface of the valve lifter is the highest, as viewed from the axial direction of the cam shaft, It is characterized by being formed so as to be offset with respect to the axis.
[0013] また、第 7の発明は、第 1または第 2の発明において、前記頂面は、前記カム軸の軸 方向から見て、一定の勾配を有する傾斜面であることを特徴とする。  [0013] In addition, a seventh invention is characterized in that, in the first or second invention, the top surface is an inclined surface having a constant gradient when viewed from the axial direction of the cam shaft.
[0014] また、第 8の発明は、第 1乃至第 7の発明の何れかにおいて、前記モータが前記力 ム軸を駆動する際に当該モータに与える指令値が所定値に達したときに、当該モー タへの電力供給を停止する電力供給制御手段を更に備えることを特徴とする。  [0014] Further, in an eighth invention according to any one of the first to seventh inventions, when a command value given to the motor when the motor drives the force shaft reaches a predetermined value, The power supply control means for stopping the power supply to the motor is further provided.
[0015] また、第 9の発明は、第 1乃至第 8の発明の何れかにおいて、前記カム軸の駆動ト ルクを低減させる低減トルクを発生するトルク低減機構を更に備え、  [0015] In addition, a ninth invention according to any one of the first to eighth inventions, further includes a torque reduction mechanism that generates a reduced torque for reducing the drive torque of the cam shaft,
前記トルク低減機構は、前記低減トルクが前記バルブスプリングの付勢力に基づ!/、 て前記カム軸に作用するトルクに比して小さくなるように構成されていることを特徴と する。  The torque reducing mechanism is characterized in that the reduced torque is configured to be smaller than the torque acting on the camshaft based on the urging force of the valve spring.
発明の効果  The invention's effect
[0016] 第 1の発明によれば、カムのノーズ先端部がバルブリフタの頂面と接した状態でモ ータによるカム軸の駆動が停止されることがあっても、バルブスプリングの付勢力が力 ムを上方に突き上げる方向だけでなぐカムを回転させる方向にも作用することとなる 。このため、本発明によれば、異常発生時にバルブが開弁状態のままとなることを良 好に回避することができ、バルブとピストンとの干渉を確実に回避することができる。  [0016] According to the first aspect of the invention, even if the drive of the camshaft by the motor is stopped with the nose tip of the cam in contact with the top surface of the valve lifter, the urging force of the valve spring is reduced. It will also act in the direction of rotating the cam only in the direction of pushing the force upward. For this reason, according to the present invention, it is possible to favorably avoid that the valve remains open when an abnormality occurs, and to reliably avoid interference between the valve and the piston.
[0017] 第 2の発明によれば、カムのノーズ先端部がバルブリフタの頂面と接した状態でモ ータによるカム軸の駆動が停止されることがあっても、カムは正転方向に逃がされるよ うになる。このため、本発明によれば、異常発生後の最始動時に、カムとピストンとの 同期を取り易くすることができ、バルブとピストンとの干渉の可能性を低減することが できるようになる。また、始動直後の必要電力の低減も期待することができるようにな [0017] According to the second invention, even if the drive of the camshaft by the motor is stopped with the nose tip of the cam in contact with the top surface of the valve lifter, the cam is in the forward rotation direction. I will escape I will become. For this reason, according to the present invention, it is possible to easily synchronize the cam and the piston at the time of the maximum start after the occurrence of an abnormality, and it is possible to reduce the possibility of interference between the valve and the piston. In addition, it will be possible to expect a reduction in required power immediately after starting.
[0018] 第 3乃至第 7の発明によれば、カムのノーズ先端部がバルブリフタの頂面と接した状 態でモータによるカム軸の駆動が停止されることがあっても、バルブスプリングの付勢 力がカムを上方に突き上げる方向だけでなぐカムを回転させる方向にも作用するこ ととなる。このため、本発明によれば、異常発生時にバルブが開弁状態のままとなるこ とを良好に回避することができ、バルブとピストンとの干渉を確実に回避することがで きる。 [0018] According to the third to seventh inventions, even if the drive of the cam shaft by the motor is stopped with the nose tip of the cam in contact with the top surface of the valve lifter, the valve spring is attached. The force also acts in the direction of rotating the cam, not only in the direction of pushing the cam upward. For this reason, according to the present invention, it is possible to satisfactorily avoid that the valve remains open when an abnormality occurs, and to reliably avoid interference between the valve and the piston.
[0019] 第 8の発明によれば、モータにカム軸の駆動力が残った状態となるような異常が可 変動弁装置に生じた場合であっても、バルブスプリングの付勢力がカムを回転させる トルクに変換されることが許容される。このため、バルブとピストンとの干渉を確実に回 避すること力 Sでさる。  [0019] According to the eighth aspect of the invention, even if an abnormality occurs in the variable valve device such that the driving force of the cam shaft remains in the motor, the urging force of the valve spring rotates the cam. It is allowed to be converted into torque. For this reason, the force S is used to reliably avoid interference between the valve and the piston.
[0020] 第 9の発明によれば、カム軸の駆動トルクを低減させるためのトルク低減機構を備え る可変動弁装置において、十分なバルブスプリングの付勢力を、カムを回転させるト ノレクとして確保すること力 Sでき、これにより、バルブとピストンとの干渉を確実に回避す ること力 Sでさる。  [0020] According to the ninth aspect of the present invention, in the variable valve gear including a torque reduction mechanism for reducing the drive torque of the camshaft, sufficient urging force of the valve spring is ensured as a torque for rotating the cam. It is possible to reduce the interference between the valve and the piston with the force S.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の実施の形態 1の可変動弁装置の構成を示す斜視図である。  FIG. 1 is a perspective view showing a configuration of a variable valve operating apparatus according to a first embodiment of the present invention.
[図 2]第 1図に示すカム軸の詳細な構成を説明するために、カム軸をその軸方向から 見た図である。  FIG. 2 is a view of the cam shaft viewed from the axial direction in order to explain the detailed configuration of the cam shaft shown in FIG. 1.
[図 3]カムによってバルブリフタが駆動される様子を示す模式図である。  FIG. 3 is a schematic diagram showing how the valve lifter is driven by a cam.
[図 4]本発明の実施の形態 1の可変動弁装置の構成との対比のために参照する一般 的な形状のバルブリフタを有する可変動弁装置 Aを示す図である。  FIG. 4 is a view showing a variable valve apparatus A having a valve lifter of a general shape to be referred for comparison with the configuration of the variable valve apparatus of Embodiment 1 of the present invention.
[図 5]本発明の実施の形態 1の特徴的な構成を説明するための図である。  FIG. 5 is a diagram for explaining a characteristic configuration of the first embodiment of the present invention.
[図 6]バルブリフタの頂面形状、およびバルブリフタとカム軸との配置関係についての 第 1変形例を示す図である。 [図 7]バルブリフタの頂面形状についての第 2変形例を示す図である。 FIG. 6 is a view showing a first modification of the top shape of the valve lifter and the positional relationship between the valve lifter and the cam shaft. FIG. 7 is a view showing a second modification of the top shape of the valve lifter.
[図 8]本発明の実施の形態 2において実行されるルーチンのフローチャートである。 FIG. 8 is a flowchart of a routine executed in the second embodiment of the present invention.
[図 9]本発明の実施の形態 3の可変動弁装置が備えるトルク低減機構の構成を説明 するための図である。 FIG. 9 is a diagram for explaining a configuration of a torque reduction mechanism provided in the variable valve operating apparatus according to the third embodiment of the present invention.
[図 10]第 9図に示すトルク低減機構と同様の構成を有するトルク低減機構における低 減トルクの一般的な設定を説明するための図である。  FIG. 10 is a diagram for explaining a general setting of the reduced torque in the torque reducing mechanism having the same configuration as the torque reducing mechanism shown in FIG. 9.
[図 11]本発明の実施の形態 3のトルク低減機構が発する低減トルクの設定を説明す るための図である。  FIG. 11 is a diagram for explaining setting of a reduced torque generated by the torque reduction mechanism according to the third embodiment of the present invention.
符号の説明 Explanation of symbols
10、 50 可変動弁装置 10, 50 Variable valve gear
12 バノレブ 12 Banolev
14 ノ ノレブステム 14 Noreb stem
16、 42、 44 ノ ノレフ、、リフタ 16, 42, 44 Noref, Lifter
16a, 42a, 44a 頂面 16a, 42a, 44a Top surface
16b, 42b, 44b 底面 16b, 42b, 44b Bottom
17 ノ ノレブスプリング 17 Noreb Spring
18、 20 カム 18, 20 cam
18a ベース円部 18a base circle
18b ノーズ部 18b Nose part
18c ノーズ先端部 (頂部) 18c Nose tip (top)
22、 24 カム車由 22, 24 cam cars
30、 38 モータ 30, 38 motor
40 ECU(Electronic Control Unit)  40 ECU (Electronic Control Unit)
52 トルク低減機構  52 Torque reduction mechanism
54 反位相カム  54 Anti-phase cam
56 バネ  56 Spring
58 付勢機構  58 Energizing mechanism
発明を実施するための最良の形態 [0023] 実施の形態 1. BEST MODE FOR CARRYING OUT THE INVENTION [0023] Embodiment 1.
[可変動弁装置の構成]  [Configuration of variable valve system]
以下、第 1図乃至第 3図を参照して、本発明の実施の形態 1の可変動弁装置 10の 基本構成を説明する。  Hereinafter, the basic configuration of the variable valve operating apparatus 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG.
第 1図は、本発明の実施の形態 1の可変動弁装置 10の構成を示す斜視図である。 第 1図に示す可変動弁装置 10は、内燃機関のバルブを駆動するための装置である 。ここでは、内燃機関は、直歹 IJ4気筒型エンジンとして構成されているものとする。第 1 図において、 # 1〜# 4は、それぞれ内燃機関の第 1気筒〜第 4気筒を表している。 この内燃機関における爆発順序は、一般的な内燃機関と同様に、 # 1→# 3→# 4 →# 2であるものとする。尚、本実施形態では、可変動弁装置 10が各気筒の吸気弁 を駆動する装置として機能するものとし、第 1図においては排気弁側の構成について はその図示を省略している。しかし、可変動弁装置 10は、吸気弁に代えて、或いは 吸気弁に加え、各気筒の排気弁を駆動する装置として構成されていてもよい。  FIG. 1 is a perspective view showing a configuration of variable valve operating apparatus 10 according to the first embodiment of the present invention. A variable valve operating apparatus 10 shown in FIG. 1 is an apparatus for driving a valve of an internal combustion engine. Here, it is assumed that the internal combustion engine is configured as a straight IJ 4-cylinder engine. In FIG. 1, # 1 to # 4 represent the first to fourth cylinders of the internal combustion engine, respectively. The explosion order in this internal combustion engine is assumed to be # 1 → # 3 → # 4 → # 2, as in a general internal combustion engine. In the present embodiment, the variable valve operating device 10 functions as a device for driving the intake valve of each cylinder, and in FIG. 1, the exhaust valve side is not shown. However, the variable valve operating apparatus 10 may be configured as a device that drives the exhaust valve of each cylinder instead of or in addition to the intake valve.
[0024] 第 1図に示す構成は、吸気弁として機能する 2つのバルブ 12を気筒毎に備えてい る。ノ ルブ 12には、それぞれバルブステム 14が固定されている。ノ ルブステム 14の 上端部には、バルブリフタ 16が取り付けられている。バルブステム 14には、バルブス プリング 17 (第 5図参照)の付勢力が作用しており、バルブステム 14は、その付勢力 によって閉弁方向に付勢されている。本実施形態の可変動弁装置 10は、バルブリフ タ 16の頂面 16aの形状と、バルブリフタ 16と後述するカム 18、 20との配置関係に特 徴を有している。その特徴部分については、第 5図を参照して後述する。  The configuration shown in FIG. 1 is provided with two valves 12 functioning as intake valves for each cylinder. Valve stems 14 are fixed to the valves 12 respectively. A valve lifter 16 is attached to the upper end of the knob stem 14. A biasing force of a valve spring 17 (see FIG. 5) acts on the valve stem 14, and the valve stem 14 is biased in the valve closing direction by the biasing force. The variable valve operating apparatus 10 of the present embodiment is characterized by the shape of the top surface 16a of the valve lifter 16 and the positional relationship between the valve lifter 16 and cams 18 and 20 described later. The characteristic part will be described later with reference to FIG.
[0025] それぞれのバルブリフタ 16の上部には、対応するカム 18または 20が配置されてい る。第 1図に示すように、ここでは、 # 1および # 4気筒に配置されたバルブリフタ 16 に対応するカムを、カム 18と称し、 # 2および # 3気筒に配置されたバルブリフタ 16 に対応するカムを、カム 20と称して区別している。 # 1気筒および # 4気筒に対応す るカム 18は、カム軸 22に固定されている。 # 2および # 3気筒に対応するカム 20は、 カム軸 22とは互いに回転可能であって、かつ、当該カム軸 22と同軸上に配置された カム軸 24に固定されている。つまり、第 1図に示す構成では、爆発時期が 360° CA だけ異なる気筒毎にカム軸が共用されている。そして、それらのカム軸、すなわち、 # 1および # 4気筒に対応するカム軸 22と、 # 2および # 3気筒に対応するカム軸 24と は、互いに独立して周方向に回転動作または揺動動作が可能となるように構成され ている。尚、カム軸 22およびカム軸 24は、図示しないシリンダヘッド等の支持部材に よって回転可能に支持されている。 A corresponding cam 18 or 20 is disposed on the upper part of each valve lifter 16. As shown in Fig. 1, here, the cam corresponding to the valve lifter 16 disposed in the # 1 and # 4 cylinders is referred to as a cam 18, and the cam corresponding to the valve lifter 16 disposed in the # 2 and # 3 cylinders. Is called Cam 20. The cam 18 corresponding to # 1 cylinder and # 4 cylinder is fixed to the camshaft 22. The cams 20 corresponding to the # 2 and # 3 cylinders are fixed to a camshaft 24 that is rotatable with respect to the camshaft 22 and is arranged coaxially with the camshaft 22. In other words, in the configuration shown in FIG. 1, the camshaft is shared by the cylinders whose explosion times differ by 360 ° CA. And those camshafts, ie # The camshaft 22 corresponding to the 1 and # 4 cylinders and the camshaft 24 corresponding to the # 2 and # 3 cylinders are configured to be capable of rotating or swinging in the circumferential direction independently of each other. Yes. The cam shaft 22 and the cam shaft 24 are rotatably supported by a support member such as a cylinder head (not shown).
[0026] 一方のカム軸 22には、第 1のドリブンギヤ 26が同軸上に固定されている。第 1のドリ ブンギヤ 26には、第 1の出力ギヤ 28が嚙み合わされている。第 1の出力ギヤ 28は、 第 1のモータ 30の出力軸に固定されている。第 1のモータ 30は、回転速度および回 転量の制御が可能なサーボモータである。この第 1のモータ 30としては、例えば DC ブラシレスモータ等が好ましく用いられる。第 1のモータ 30には、その回転位置(回転 角度)を検出するためのレゾルバ、ロータリーエンコーダ等の回転角検出センサが内 蔵されている。このような構成によれば、第 1のモータ 30のトルクを、これらのギヤ 26 および 28を介してカム軸 22に伝達することができる。  A first driven gear 26 is coaxially fixed to one camshaft 22. A first output gear 28 is meshed with the first driven gear 26. The first output gear 28 is fixed to the output shaft of the first motor 30. The first motor 30 is a servo motor capable of controlling the rotation speed and the rotation amount. As the first motor 30, for example, a DC brushless motor or the like is preferably used. The first motor 30 includes a rotation angle detection sensor such as a resolver and a rotary encoder for detecting the rotation position (rotation angle). With such a configuration, the torque of the first motor 30 can be transmitted to the camshaft 22 via these gears 26 and 28.
[0027] 他方のカム軸 24には、第 2のドリブンギヤ 32が同軸上に固定されている。第 2のドリ ブンギヤ 32には、中間ギヤ 34を介して、第 2の出力ギヤ 36が嚙み合わされている。 第 2の出力ギヤ 36は、第 2のモータ 38の出力軸に固定されている。第 2のモータ 38 の具体的な構成は、上記第 1のモータ 30と同様である。このような構成によれば、第 2のモータ 38のトルクを、これらのギヤ 32、 34、および 36を介してカム軸 24に伝達す ること力 Sでさる。  A second driven gear 32 is coaxially fixed to the other cam shaft 24. A second output gear 36 is meshed with the second driven gear 32 via an intermediate gear 34. The second output gear 36 is fixed to the output shaft of the second motor 38. The specific configuration of the second motor 38 is the same as that of the first motor 30. According to such a configuration, the torque S of transmitting the torque of the second motor 38 to the camshaft 24 through these gears 32, 34, and 36 is reduced.
[0028] 第 1図に示すシステムは、 ECU(Electronic Control Unit)40を備えて!/、る。 ECU40 には、クランク角センサやカム角センサ等の図示を省略する各種センサや、第 1のモ ータ 30、第 2のモータ 38等の各種ァクチユエータが接続されている。 ECU40は、そ れらのセンサ出力に基づいて、第 1のモータ 30および第 2のモータ 38の回転速度お よび回転量を制御すること力 Sできる。より具体的には、カム軸 22等が一方向に連続的 に駆動されるように、モータ 30等に駆動指令を与えることにより、カム軸 22等を回転 動作させること力できる。また、 ECU40は、バルブ 12の開弁期間中にモータ 30等の 回転方向が逆転するように、モータ 30等に駆動指令を与えることにより、カム軸 22等 を揺動動作させることができる。  The system shown in FIG. 1 includes an ECU (Electronic Control Unit) 40! /. Various sensors (not shown) such as a crank angle sensor and a cam angle sensor, and various actuators such as a first motor 30 and a second motor 38 are connected to the ECU 40. The ECU 40 can control the rotational speed and the rotational amount of the first motor 30 and the second motor 38 based on the sensor outputs. More specifically, by giving a drive command to the motor 30 or the like so that the cam shaft 22 or the like is continuously driven in one direction, the cam shaft 22 or the like can be rotated. Further, the ECU 40 can swing the camshaft 22 and the like by giving a drive command to the motor 30 and the like so that the rotation direction of the motor 30 and the like is reversed while the valve 12 is open.
[0029] 第 2図は、第 1図に示すカム軸 22の詳細な構成を説明するために、カム軸 22をそ の軸方向から見た図である。上述したように、カム軸 22には、カム 18 ( # 1 )とカム 18 ( # 4)とが固定されて!/、る。第 2図に示すように、 # 1気筒用のカム 18 ( # 1 )は、プロフ ィールの異なる 2つのカム面 18a、 18bを有している。一方のカム面であるベース円部 18aは、カム軸 22の中心からの距離が一定となるように形成されている。他方のカム 面であるノーズ部 18bは、カム軸 22の中心からの距離が次第に大きくなり、頂部 18c ( ノーズ先端部 18c)を越えた後に当該距離が次第に小さくなるように形成されている。 また、 # 4気筒用のカム 18 ( # 4)についても、カム 18 ( # 1 )と同様のベース円部 18a とノーズ部 18bを有している。そして、カム 18 ( # 1 )の頂部 18cとカム 18 ( # 4)の頂部 18cとは、カム軸 22の周方向に互いに 180° ずれるようにして配置されている。ここ では、その詳細な説明を省略するが、 # 2気筒と # 3気筒に対応するカム軸 24にお いても、カム 20 ( # 2)とカム 20 ( # 3)とは、カム軸 22の場合と同様に構成されている ものとする。 FIG. 2 shows the camshaft 22 in order to explain the detailed configuration of the camshaft 22 shown in FIG. It is the figure seen from the axial direction. As described above, the cam 18 (# 1) and the cam 18 (# 4) are fixed to the camshaft 22! /. As shown in FIG. 2, the # 1 cylinder cam 18 (# 1) has two cam surfaces 18a and 18b having different profiles. The base circle portion 18a, which is one cam surface, is formed so that the distance from the center of the cam shaft 22 is constant. The nose portion 18b, which is the other cam surface, is formed such that the distance from the center of the cam shaft 22 gradually increases and the distance gradually decreases after exceeding the top portion 18c (the nose tip portion 18c). The # 4 cylinder cam 18 (# 4) also has a base circle portion 18a and a nose portion 18b similar to the cam 18 (# 1). The top 18c of the cam 18 (# 1) and the top 18c of the cam 18 (# 4) are arranged so as to be shifted from each other by 180 ° in the circumferential direction of the cam shaft 22. Although the detailed explanation is omitted here, cam 20 (# 2) and cam 20 (# 3) are also different from cam shaft 22 in cam shaft 24 corresponding to # 2 cylinder and # 3 cylinder. It shall be structured in the same way as the case.
[0030] 第 3図は、カム 18によってバルブリフタ 16が駆動される様子を示す模式図である。  FIG. 3 is a schematic diagram showing how the valve lifter 16 is driven by the cam 18.
尚、ここでは、カム 18側の構成を利用して説明を行うが、カム 20側の構成についても 同様である。また、本明細書中においては、第 3図以降の図面においても、カム 18側 の構成とカム 20側の構成とに実質的な差異がない場合には、何れか一方のみの説 明のみを行い、他方の説明は省略することがある。  Here, the description will be made using the configuration on the cam 18 side, but the configuration on the cam 20 side is the same. In this specification, in the drawings from FIG. 3 onward, if there is no substantial difference between the configuration on the cam 18 side and the configuration on the cam 20 side, only one of them will be explained. The description of the other may be omitted.
[0031] 第 3図に示すように、カム 18とバルブ 12 (第 1図参照)との間には、カム 18と当接す るバルブリフタ 16が配置される。バルブリフタ 16は、カム 18と当接する頂面 16aを備 えている。カム 18のベース円部 18aとバルブリフタ 16とが当接している場合には、ノ ルブスプリング 17の付勢力により、バルブシート(図示せず)にバルブが密着してポ ートが閉じられる。  As shown in FIG. 3, a valve lifter 16 that contacts the cam 18 is disposed between the cam 18 and the valve 12 (see FIG. 1). The valve lifter 16 has a top surface 16 a that contacts the cam 18. When the base circle portion 18a of the cam 18 and the valve lifter 16 are in contact with each other, the valve is brought into close contact with the valve seat (not shown) by the urging force of the valve spring 17, and the port is closed.
[0032] 第 1のモータ 30の回転運動が上記のギヤ 26、 28を介してカム軸 22に伝達されると 、カム軸 22と一体にカム 18が回転し、ノーズ部 18bがバルブリフタ 16を乗り越える間 にバルブリフタ 16が押し下げられ、バルブ 12がバルブスプリング 17の付勢力に抗し てリフト(開弁)する。  [0032] When the rotational motion of the first motor 30 is transmitted to the camshaft 22 via the gears 26 and 28, the cam 18 rotates integrally with the camshaft 22, and the nose portion 18b gets over the valve lifter 16. In the meantime, the valve lifter 16 is pushed down, and the valve 12 lifts (opens) against the urging force of the valve spring 17.
[0033] また、第 3図(A)および第 3図(B)は、カム 18の 2つの駆動モードを示している。そ の駆動モードの 1つである正転駆動モードは、第 1のモータ 30を一方向に連続回転 させることにより、第 3図(A)に示すようにカム 18を、最大リフト位置、すなわち、カム 1 8のノーズ先端部 18c (頂部 18c)がバルブリフタ 16と接する位置を越えて、正転方向 に連続的に回転させる駆動モードである。また、もう一方の駆動モードである揺動駆 動モードは、正転駆動モードにおける最大リフト位置に達する前に第 1のモータ 30の 回転方向を切り換えることにより、第 3図(B)に示すようにカム 18を往復運動させる駆 動モードである。 FIGS. 3A and 3B show two drive modes of the cam 18. The forward drive mode, one of the drive modes, continuously rotates the first motor 30 in one direction. As shown in FIG. 3 (A), the cam 18 is moved in the forward rotation direction beyond the maximum lift position, that is, beyond the position where the nose tip 18c (top 18c) of the cam 18 contacts the valve lifter 16. This is a drive mode for continuous rotation. The other drive mode, the swing drive mode, is as shown in FIG. 3 (B) by switching the rotation direction of the first motor 30 before reaching the maximum lift position in the forward drive mode. In this mode, the cam 18 is reciprocated.
[0034] 正転駆動モードでは、カム 18の回転速度を制御することでバルブ 12の作用角が制 御される。また、揺動駆動モードでは、カム 18の回転速度とともに、カム 18が揺動す る角度範囲を制御することで、バルブ 12の作用角および最大リフト量を制御すること ができる。  In the forward rotation drive mode, the operating angle of the valve 12 is controlled by controlling the rotational speed of the cam 18. In the swing drive mode, the operating angle of the valve 12 and the maximum lift amount can be controlled by controlling the rotational speed of the cam 18 and the angle range in which the cam 18 swings.
[0035] [本実施形態の特徴部分]  [Characteristics of this embodiment]
次に、第 4図および第 5図を参照して、本実施形態の特徴部分について説明する。 第 4図は、本実施形態の可変動弁装置 10の構成との対比のために参照する一般 的な形状のバルブリフタを有する可変動弁装置 Aを示す図であり、カム軸の軸方向 から見た図である。本実施形態の可変動弁装置 10と対比される可変動弁装置 Aは、 第 4図に示すように、バルブステムの軸線と直交する平面状となるように形成された一 般的な頂面を有するバルブリフタを備えている。  Next, the characteristic part of this embodiment will be described with reference to FIG. 4 and FIG. FIG. 4 is a view showing a variable valve apparatus A having a generally shaped valve lifter that is referred to for comparison with the configuration of the variable valve apparatus 10 of the present embodiment, as viewed from the axial direction of the camshaft. It is a figure. As shown in FIG. 4, a variable valve apparatus A to be compared with the variable valve apparatus 10 of the present embodiment is a general top surface formed so as to be a plane perpendicular to the axis of the valve stem. A valve lifter having
[0036] カム軸の回転とクランク軸の回転との非同期等の何らかの異常が可変動弁装置 A に発生した場合には、モータが停止されることがある。モータが停止状態にあると、力 ムとバルブリフタとの間のフリクション、モータとカム軸間に配置されるギヤの嚙み合わ せのフリクション、およびモータのイナーシャと!/、つたカム軸の回転の抵抗となる要素 はあるものの、カム軸は、基本的には回転自在の状態となる。従って、可変動弁装置 Aに異常が発生した際に、ノーズ先端部以外のノーズ部でカムがバルブリフタに接し ている状態(例えば、第 3図(B)に示すような状態)であれば、バルブスプリング反力 によってカムが回転させられて、バルブは閉弁状態に戻されるようになる。  [0036] If any abnormality such as asynchronous rotation of the camshaft and crankshaft occurs in the variable valve apparatus A, the motor may be stopped. When the motor is stopped, the friction between the force and the valve lifter, the friction between the gears arranged between the motor and the camshaft, and the inertia of the motor! /, The rotation of the camshaft Although there are elements that act as resistance, the camshaft is basically rotatable. Therefore, when an abnormality occurs in the variable valve device A, if the cam is in contact with the valve lifter at the nose portion other than the tip of the nose (for example, as shown in FIG. 3 (B)), The cam is rotated by the valve spring reaction force, and the valve is returned to the closed state.
[0037] しかしながら、バルブリフタの頂面がこのような平面形状である場合にお!/、て、第 4 図に示すように、カムのノーズ先端部がバルブリフタの頂面と当接した状態でモータ によるカム軸の駆動が停止された状態になると、バルブのリフト量が最大リフトとなる 状態で開いたままとなってしまう可能性がある。 [0037] However, when the top surface of the valve lifter has such a planar shape! /, As shown in FIG. 4, the motor with the nose tip of the cam in contact with the top surface of the valve lifter. When the camshaft drive by is stopped, the lift amount of the valve becomes the maximum lift May remain open in a state.
[0038] 上記のような状況が生ずる理由は、第 4図に示す構成の場合には、カムのノーズ先 端部がバルブリフタの頂面と当接する際に、ノーズ先端部と頂面との接線の方向が バルブステムの軸線と直交する方向となることで、バルブスプリング反力(第 4図中の 矢印参照)はカム軸を上方に突き上げる方向にのみ作用し、カムを回転させる方向 には作用しないためである。また、上記のような状況が生ずる構成としては、バルブリ フタの頂面が平面である場合に限らず、仮に頂面が平面以外の曲面であっても、力 ムのノーズ先端部とバルブリフタの頂面とが接した際の接線の方向がバルブステムの 軸線と直交する方向となる構成である限り該当することとなる。  [0038] In the case of the configuration shown in Fig. 4, the above situation occurs when the nose tip end of the cam contacts the top surface of the valve lifter and the tangent line between the nose tip and the top surface Since the direction of is perpendicular to the axis of the valve stem, the valve spring reaction force (see arrow in Fig. 4) acts only in the direction in which the camshaft is pushed upward, and in the direction in which the cam is rotated. It is because it does not. In addition, the configuration in which the above situation occurs is not limited to the case where the top surface of the valve lifter is a flat surface, and even if the top surface is a curved surface other than a flat surface, This is true as long as the direction of the tangent when contacting the surface is a configuration that is perpendicular to the axis of the valve stem.
[0039] 上記のような状況が生ずることがあると、開弁状態のままとなるバルブと、往復運動 を続けているピストンとの干渉が生じ得る。そこで、本実施形態では、以下の第 5図に 示す構成を用いて、バルブが最大リフト状態で停止しないようにした。  [0039] If the above situation may occur, interference between the valve that remains open and the piston that continues to reciprocate may occur. Thus, in this embodiment, the configuration shown in FIG. 5 below is used so that the valve does not stop in the maximum lift state.
[0040] 第 5図は、本実施形態の特徴的な構成を説明するための図であり、カム軸 22の軸 方向から見た図である。第 5図に示すように、本実施形態では、カム軸 22の軸方向か ら見て、カム 18のノーズ先端部 18cとバルブリフタ 16の頂面 16aとの接線方向力 バ ルブステム 14の軸線と直交する方向に対して傾斜するように、バルブリフタ 16の頂面 16aの形状が決定されているとともに、バルブリフタ 16とカム軸 22との配置関係が調 整されている。  FIG. 5 is a view for explaining a characteristic configuration of the present embodiment, and is a view seen from the axial direction of the cam shaft 22. As shown in FIG. 5, in this embodiment, when viewed from the axial direction of the cam shaft 22, the tangential force between the nose tip 18c of the cam 18 and the top surface 16a of the valve lifter 16 is orthogonal to the axis of the valve stem 14. The shape of the top surface 16a of the valve lifter 16 is determined so as to be inclined with respect to the direction in which the valve lifter 16 is inclined, and the positional relationship between the valve lifter 16 and the cam shaft 22 is adjusted.
[0041] そして、その接線の傾斜方向は、カム 18の正転時におけるカム 18とバルブリフタ 1 6との接触点の進行方向(第 5図における左方向)に向力、うにつれ、当該接線とバル ブリフタ 16の底面 16bとの距離が小さくなる方向となるように、バルブリフタ 16の頂面 16aの形状が決定されているとともに、バルブリフタ 16とカム軸 22との配置関係が調 整されている。  [0041] Then, the inclination direction of the tangent is directed toward the direction of travel of the contact point between the cam 18 and the valve lifter 16 during the forward rotation of the cam 18 (left direction in FIG. 5). The shape of the top surface 16a of the valve lifter 16 is determined so that the distance from the bottom surface 16b of the valve lifter 16 is reduced, and the positional relationship between the valve lifter 16 and the cam shaft 22 is adjusted.
[0042] 上述した頂面 16aの形状と上記配置関係の具体的な一例として、本実施形態では 、第 5図に示すように、カム軸 22の軸方向から見て、バルブリフタ 16の頂面 16aを力 ム 18側に凸となる凸曲面状に、より具体的には、円筒状に形成するようにした。そし て、頂面 16aにおいて底面 16bからの高さが最も高くなる頂点と、ノーズ先端部 18cと 頂面 16aとの接触点 Pと力 カム軸 22の軸方向から見て離間するようにすベぐカム 軸 22の中心軸をバルブリフタ 16の中心軸に対してオフセットさせて配置するようにし た。更に付け加えると、本実施形態では、上記凸曲面状に形成された頂面 16aを、バ ルブリフタ 16の中心軸上でバルブリフタ 16の高さが最も高くなるように形成し、また、 カム軸 22を、カム軸 22の軸方向から見て、カム軸 22の中心軸がバルブリフタ 16の中 心軸から離れるように配置するようにした。 [0042] As a specific example of the shape of the top surface 16a and the arrangement relationship described above, in this embodiment, the top surface 16a of the valve lifter 16 is viewed from the axial direction of the cam shaft 22 as shown in FIG. Is formed into a convex curved surface that is convex toward the force 18 side, more specifically, a cylindrical shape. The top surface 16a should be separated from the apex where the height from the bottom surface 16b is the highest, the contact point P between the nose tip 18c and the top surface 16a, and the force cam shaft 22 as viewed from the axial direction. Gu cam The central axis of the shaft 22 is offset with respect to the central axis of the valve lifter 16. In addition, in the present embodiment, the top surface 16a formed in the convex curved shape is formed so that the height of the valve lifter 16 is the highest on the central axis of the valve lifter 16, and the cam shaft 22 is The center axis of the cam shaft 22 is arranged so as to be away from the center axis of the valve lifter 16 when viewed from the axial direction of the cam shaft 22.
[0043] また、第 5図に示す構成では、バルブリフタ 16の中心軸に対するカム軸 22の中心 軸のオフセット方向が、カム 18の正転時におけるカム 18とバルブリフタ 16との接触点 Pの進行方向側となるように、バルブリフタ 16に対するカム軸 22の配置が調整されて いる。 In the configuration shown in FIG. 5, the offset direction of the central axis of the cam shaft 22 with respect to the central axis of the valve lifter 16 is the traveling direction of the contact point P between the cam 18 and the valve lifter 16 when the cam 18 rotates forward. The arrangement of the cam shaft 22 with respect to the valve lifter 16 is adjusted so as to be on the side.
[0044] また、本実施形態では、動弁系の実動時に、上記接線方向が上述した方向を常に 維持できるようにすベぐバルブリフタ 16がカム 18に対して回転するのを防止する廻 り止め機構を備えている。ここでは、詳細な図示は省略することとする力 そのような 廻り止め機構は、例えば、以下のような構成で実現することができる。すなわち、バル ブステムの軸線と直交方向を向くピンをバルブリフタに貫通させるようにする。そして、 バルブリフタの周辺部材であるシリンダヘッドに、バルブステムの軸線方向に延びる ようにピンの案内溝を形成し、その案内溝にピンを係合させるようにする。  In this embodiment, the valve lifter 16 is prevented from rotating with respect to the cam 18 so that the tangential direction can always maintain the above-described direction during actual operation of the valve system. A stop mechanism is provided. Here, the force of which detailed illustration is omitted. Such a detent mechanism can be realized by the following configuration, for example. That is, a pin that faces in a direction perpendicular to the axis of the valve stem is made to penetrate the valve lifter. Then, a guide groove for the pin is formed in the cylinder head which is a peripheral member of the valve lifter so as to extend in the axial direction of the valve stem, and the pin is engaged with the guide groove.
[0045] 以上説明したように、第 5図に示す構成では、カム軸 22の軸方向から見て、カム 18 のノーズ先端部 18cとバルブリフタ 16の頂面 16aとの接線方向力 ノ ルブステム 14の 軸線と直交する方向に対して傾斜するように、バルブリフタ 16の頂面 16aの形状が決 定されているとともに、バルブリフタ 16とカム軸 22との配置関係が調整されている。こ のような構成によれば、モータの停止時に、カム 18のノーズ先端部 18cがバルブリフ タ 16の頂面 16aに接した状態になっても、バルブスプリング反力がカム 18を上方に 突き上げる方向だけでなぐカム 18を回転させる方向にも作用することとなる。  As described above, in the configuration shown in FIG. 5, the tangential force between the nose tip 18c of the cam 18 and the top surface 16a of the valve lifter 16 when viewed from the axial direction of the cam shaft 22 The shape of the top surface 16a of the valve lifter 16 is determined so as to be inclined with respect to the direction orthogonal to the axis, and the positional relationship between the valve lifter 16 and the cam shaft 22 is adjusted. According to such a configuration, even when the nose tip 18c of the cam 18 is in contact with the top surface 16a of the valve lifter 16 when the motor is stopped, the valve spring reaction force pushes the cam 18 upward. It will also act in the direction in which the cam 18 is rotated.
[0046] つまり、上記の構成によれば、カム 18に作用するバルブスプリング反力には、ノ ル ブステム 14の軸線方向の成分だけではなぐバルブステム 14の軸線方向に対して傾 いた分解成分(第 5図に示す矢印参照)が存在することとなる。その結果、カム 18が 回転することで、バルブが閉弁方向に動作することとなる。  That is, according to the above configuration, the valve spring reaction force acting on the cam 18 is not only the component in the axial direction of the valve stem 14 but also the decomposed component inclined with respect to the axial direction of the valve stem 14 ( (See the arrows in Fig. 5). As a result, when the cam 18 rotates, the valve operates in the valve closing direction.
[0047] このため、本実施形態の構成によれば、従来技術が備えるような退避制御のための 機構に頼ることなぐ簡素な構成を用いて、異常発生時にバルブ 12とピストンとの干 渉を機械的に確実に回避させることが可能となる。また、カム軸 22とクランク軸との同 期制御の異常が検知された際にそのような退避制御に切り換えられるまでの移行期 間中に、バルブとピストンとの干渉が生ずることも回避することができる。 [0047] Therefore, according to the configuration of the present embodiment, for evacuation control as provided in the prior art. Using a simple configuration that does not rely on a mechanism, it is possible to mechanically and reliably avoid interference between the valve 12 and the piston when an abnormality occurs. Also, avoid interference between the valve and piston during the transition period until switching to such evacuation control when an abnormality in synchronous control between the camshaft 22 and the crankshaft is detected. Can do.
[0048] また、上述した第 5図に示す構成では、上記接線の傾斜方向が、カム 18の正転時 におけるカム 18とバルブリフタ 16との接触点の進行方向(第 5図における左方向)に 向かうにつれ、当該接線とバルブリフタ 16の底面 16bとの距離が小さくなる方向とな るように、バルブリフタ 16の頂面 16aの形状が決定されているとともに、バルブリフタ 1 6とカム軸 22との配置関係が調整されている。より具体的には、そのような構成は、バ ルブリフタ 16の中心軸に対するカム軸 22の中心軸のオフセット方向力 カム 18の正 転時におけるカム 18とバルブリフタ 16との接触点 Pの進行方向側となるように、ノ ル ブリフタ 16に対するカム軸 22の配置が調整されていることによって実現されている。  Further, in the configuration shown in FIG. 5 described above, the inclination direction of the tangent line is in the advancing direction (left direction in FIG. 5) of the contact point between the cam 18 and the valve lifter 16 when the cam 18 is rotating forward. The shape of the top surface 16a of the valve lifter 16 is determined so that the distance between the tangent and the bottom surface 16b of the valve lifter 16 becomes smaller as it goes, and the positional relationship between the valve lifter 16 and the camshaft 22 is determined. Has been adjusted. More specifically, such a configuration is such that the force in the offset direction of the central axis of the cam shaft 22 with respect to the central axis of the valve lifter 16 is the forward direction of the contact point P between the cam 18 and the valve lifter 16 when the cam 18 is rotating forward. This is realized by adjusting the arrangement of the camshaft 22 with respect to the nozzle lifter 16.
[0049] このような構成によれば、カム 18のノーズ先端部 18cがバルブリフタ 16の頂面 16a に接した状態でモータが停止されることがあった場合に、カム 18は正転方向に逃が されるようになる。その結果、そのような逃がし動作後における最終的なカム 18の停 止位置は、正常時におけるバルブ 12のリフト動作の終了直後の位置となる。このよう なカム 18の逃がし方向への配慮がなされると、以下に示すような優れた効果を奏す ること力 Sでさる。  [0049] According to such a configuration, when the motor is stopped with the nose tip 18c of the cam 18 in contact with the top surface 16a of the valve lifter 16, the cam 18 escapes in the forward rotation direction. Will be started. As a result, the final stop position of the cam 18 after such a relief operation is a position immediately after the end of the lift operation of the valve 12 at the normal time. When consideration is given to the direction in which the cam 18 escapes, it is possible to use the force S to produce the following excellent effects.
[0050] すなわち、本実施形態のように 2つのモータ 30、 38で分担して全気筒の吸気弁を 駆動する構成の場合において、異常発生後の再始動時にカム 18を回転させる際に 、次回のバルブリフトの開始までに、カム角で 60° 程度の余裕力 Sできることとなる。そ の 60° 程度の区間でカム角の位相判定を行うことで、ピストン位相との同期を取り、 バルブ 12とピストンとの干渉の可能性を低減することができるようになる。また、その 6 0° 程度の区間で十分にカム 18の回転速度を高めて、カム 18に運動エネルギを与 えることができるので、始動直後の必要電力の低減も期待することができるようになる  [0050] That is, in the case of the configuration in which the intake valves of all the cylinders are driven by sharing by the two motors 30 and 38 as in the present embodiment, the next time the cam 18 is rotated at the time of restart after occurrence of an abnormality. By the start of the valve lift, a marginal force S of about 60 ° in cam angle can be achieved. By determining the cam angle phase in the section of about 60 °, it is possible to synchronize with the piston phase and reduce the possibility of interference between the valve 12 and the piston. In addition, since the rotational speed of the cam 18 can be sufficiently increased in the section of about 60 ° to impart kinetic energy to the cam 18, a reduction in required power immediately after starting can be expected.
[0051] ところで、上述した実施の形態 1においては、カム軸 22の軸方向から見て、バルブ リフタ 16の頂面 16aをカム 18側に凸となる凸曲面状に、より具体的には、円筒状に形 成するようにし、かつ、上記凸曲面状に形成された頂面 16aを、バルブリフタ 16の中 心軸上でバルブリフタ 16の高さが最も高くなるように形成し、また、カム軸 22を、カム 軸 22の軸方向力も見て、カム軸 22の中心軸がバルブリフタ 16の中心軸から離れるよ うに配置するようにしている。し力もながら、本発明におけるバルブリフタの頂面形状 、およびバルブリフタとカム軸との配置関係は、カム軸の軸方向から見て、カムのノー ズ先端部とバルブリフタの頂面との接線方向力 バルブステムの軸線と直交する方向 に対して傾斜するようにするための配慮がなされていれば、上述した第 5図に示す構 成に限定されるものではなぐ例えば、以下の第 6図または第 7図に示すような構成で あってもよい。 By the way, in the first embodiment described above, the top surface 16a of the valve lifter 16 has a convex curved shape that protrudes toward the cam 18 when viewed from the axial direction of the cam shaft 22, more specifically, Cylindrical shape The top surface 16a formed in the convex curved shape is formed so that the height of the valve lifter 16 is the highest on the central shaft of the valve lifter 16, and the cam shaft 22 is In view of the axial force of the shaft 22, the cam shaft 22 is arranged so that the central axis is separated from the central axis of the valve lifter 16. However, the shape of the top surface of the valve lifter and the positional relationship between the valve lifter and the camshaft in the present invention are tangential forces between the nose tip of the cam and the top surface of the valve lifter when viewed from the axial direction of the camshaft. If consideration is given to incline with respect to the direction perpendicular to the axis of the stem, the configuration is not limited to the configuration shown in FIG. 5 described above. For example, FIG. It may be configured as shown in the figure.
[0052] 第 6図は、バルブリフタの頂面形状、およびバルブリフタとカム軸との配置関係につ いての第 1変形例を示す図である。第 6図に示す構成では、カム軸 22の軸方向から 見て、バルブステム 14の軸線(すなわち、バルブリフタ 42の中心軸)の延長線上に、 カム軸 22の中心軸が位置するように、カム軸 22が配置されている。また、バルブリフ タ 42の頂面 42aは、カム軸 22の軸方向から見て、カム 18側に凸となる凸曲面状に、 より具体的には、円筒状に形成するようにしている。  [0052] FIG. 6 is a diagram showing a first modification of the top shape of the valve lifter and the positional relationship between the valve lifter and the cam shaft. In the configuration shown in FIG. 6, the cam shaft 22 is positioned so that the central axis of the cam shaft 22 is positioned on the extension line of the valve stem 14 axis (that is, the central axis of the valve lifter 42) when viewed from the axial direction of the cam shaft 22. Axis 22 is arranged. Further, the top surface 42a of the valve lifter 42 is formed in a convex curved surface that is convex toward the cam 18 as viewed from the axial direction of the cam shaft 22, more specifically, in a cylindrical shape.
[0053] ただし、上述した第 5図に示す構成とは異なり、凸曲面状に形成された頂面 42aは 、バルブリフタ 42の底面 42bからの高さが最も高くなる頂点力 カム軸 22の軸方向か ら見て、バルブステム 14の軸線(すなわち、バルブリフタ 42の中心軸)に対してオフ セットされた位置となるように形成されて!/、る。  [0053] However, unlike the configuration shown in FIG. 5 described above, the top surface 42a formed in a convex curved surface is the apex force at which the height from the bottom surface 42b of the valve lifter 42 is the highest. The axial direction of the cam shaft 22 From the above, it is formed so as to be offset from the axis of the valve stem 14 (that is, the central axis of the valve lifter 42).
[0054] また、第 6図に示す構成では、バルブリフタ 16の中心軸に対する頂面 42aの頂点の オフセット方向が、カム 18の正転時におけるカム 18とバルブリフタ 16との接触点 Qの 進行方向と逆方向(第 6図における右方向)となるように、頂面 42aの形状が決定され ている。このようなオフセット方向とすることで、カム 18のノーズ先端部 18cがバルブリ フタ 42の頂面 42aに接した状態でモータが停止されることがあった場合に、カム 18は 正転方向に逃がされるようになる。  [0054] In the configuration shown in Fig. 6, the offset direction of the apex of the top surface 42a with respect to the central axis of the valve lifter 16 is the traveling direction of the contact point Q between the cam 18 and the valve lifter 16 when the cam 18 is rotating forward. The shape of the top surface 42a is determined so as to be in the reverse direction (right direction in FIG. 6). By adopting such an offset direction, when the motor may stop while the nose tip 18c of the cam 18 is in contact with the top surface 42a of the valve lifter 42, the cam 18 is released in the forward direction. It comes to be.
尚、バルブリフタ 42の廻り止め機構は、既述した構成と同様とすること力 Sできる。  It should be noted that the anti-rotation mechanism of the valve lifter 42 can have the same force as that described above.
[0055] 第 7図は、バルブリフタの頂面形状についての第 2変形例を示す図である。第 7図 に示す構成では、バルブリフタ 44の頂面 44aは、カム軸 22の軸方向力、ら見て、一定 の勾配を有する傾斜面となるように形成されている。また、この頂面 44aの傾斜方向 は、カム 18の正転時におけるカム 18とバルブリフタ 44との接触点 Rの進行方向に向 力、うにつれ、バルブリフタ 44の底面 44bに対する距離が小さくなる方向とされている。 このような傾斜方向とすることで、カム 18のノーズ先端部 18cがバルブリフタ 44の頂 面 44aに接した状態でモータが停止されることがあった場合に、カム 18は正転方向 に逃がされるようになる。 [0055] FIG. 7 is a diagram showing a second modification of the top shape of the valve lifter. In the configuration shown in FIG. 7, the top surface 44a of the valve lifter 44 is constant in view of the axial force of the camshaft 22. It is formed so that it may become the inclined surface which has the following gradient. In addition, the inclination direction of the top surface 44a is such that the distance from the bottom surface 44b of the valve lifter 44 decreases as the direction of travel of the contact point R between the cam 18 and the valve lifter 44 during the forward rotation of the cam 18 is increased. Has been. By adopting such an inclination direction, when the motor may be stopped with the nose tip 18c of the cam 18 in contact with the top surface 44a of the valve lifter 44, the cam 18 is released in the forward rotation direction. It becomes like this.
尚、バルブリフタ 44の廻り止め機構は、既述した構成と同様とすること力 Sできる。  It should be noted that the anti-rotation mechanism of the valve lifter 44 can have the same force as that described above.
[0056] 実施の形態 2.  [0056] Embodiment 2.
次に、第 8図を参照して、本発明の実施の形態 2について説明する。  Next, Embodiment 2 of the present invention will be described with reference to FIG.
本実施形態のシステムは、第 1図乃至第 3図、および第 5図に示すハードウェア構 成を用いて、 ECU40に後述する第 8図に示すルーチンを実行させることにより実現す ること力 Sでさるあのである。  The system of the present embodiment can be realized by causing the ECU 40 to execute a routine shown in FIG. 8 to be described later using the hardware configuration shown in FIGS. 1 to 3 and FIG. That ’s right.
[0057] [実施の形態 2の特徴部分]  [0057] [Characteristics of Embodiment 2]
可変動弁装置 10に生じた異常の態様が、モータの電源が完全にオフ状態となるも のであった場合には、上述した第 5図に示す構成を採用することで、バルブスプリン グ反力によってカム 18等が回転されることで、バルブ 12とピストンとの干渉を確実に 回避すること力 Sできる。し力もながら、異常の態様によっては、電源が完全にはオフ状 態とはならずに、モータがカム 18を駆動する力が残った状態となり得る。このような状 態では、カム 18がバルブ 12を押し付けた状態で、モータによるカム軸 22の駆動トル クと、バルブスプリング 17の付勢力に基づいてカム軸 22に作用するトルクとが釣り合 うこととなり、バルブ 12がリフトした状態で停止してしまう。  If the abnormality that occurred in the variable valve operating system 10 is that the motor power supply is completely turned off, the configuration shown in FIG. By rotating the cam 18 and the like, it is possible to reliably avoid the interference between the valve 12 and the piston S. However, depending on the state of abnormality, the power supply may not be completely turned off, and the motor may still be able to drive the cam 18. In such a state, with the cam 18 pressing the valve 12, the driving torque of the cam shaft 22 by the motor and the torque acting on the cam shaft 22 based on the biasing force of the valve spring 17 are balanced. As a result, the valve 12 stops in a lifted state.
[0058] その結果、バルブ 12とピストンとの干渉が生ずる可能性がある。そこで、本実施形 態では、上記のような態様での異常発生時においても、バルブ 12とピストンとの干渉 を確実に回避できるようにすベぐカム 18を電動駆動する際の駆動反力が所定値以 上となったときは、より具体的には、 ECU40がモータに与える電流指令値(トルク指令 値)が所定値に達したときは、モータへの電力供給を停止するようにした。  As a result, interference between the valve 12 and the piston may occur. Therefore, in the present embodiment, even when an abnormality occurs in the above-described manner, the driving reaction force when electrically driving the sliding cam 18 is ensured so that interference between the valve 12 and the piston can be surely avoided. More specifically, the power supply to the motor is stopped when the current command value (torque command value) given to the motor by the ECU 40 reaches a predetermined value when the value exceeds the predetermined value.
[0059] 第 8図は、上記の機能を実現するために、 ECU40が実行するルーチンのフローチ ヤートである。第 8図に示すルーチンでは、先ず、カム軸 22が停止状態にあるか否か 力 S、カム角センサの出力に従って判別される(ステップ 100)。その結果、カム軸 22が 停止状態にあると判定された場合には、次いで、 ECU40がモータに与える電流指令 値が取得される(ステップ 102)。 FIG. 8 is a flowchart of a routine executed by the ECU 40 in order to realize the above function. In the routine shown in FIG. 8, first, whether or not the camshaft 22 is stopped. It is determined according to the force S and the output of the cam angle sensor (step 100). As a result, if it is determined that the camshaft 22 is in a stopped state, then a current command value that the ECU 40 gives to the motor is acquired (step 102).
[0060] 次に、上記ステップ 102において取得された電流指令値が所定値以上であるか否 かが判別される(ステップ 104)。カム軸 22が停止状態にあり、かつ、モータに電力が 供給されている状態では、カム 18がバルブ 12をリフトさせている状態でカム 18の位 置が保持されることになる。この際のリフト量がある一定量より大きくなると、バルブ 12 と往復運動を続けているピストンとの干渉が生ずる可能性がある。カム 18がバルブ 1 2を押す際のバルブスプリング反力に起因する駆動反力は、バルブ 12のリフト量が大 きくなるにつれ、バルブスプリング反力が大きくなるため大きくなる。従って、カム 18の 電流指令値は、バルブ 12のリフト量が大きくなるにつれ大きな値となる。本ステップ 1 04における所定値は、バルブ 12とピストンとの干渉が生ずる程度にまでバルブ 12の リフト量が大きくなつて!/、るか否かを判別できるような値に設定されて!/、る。  Next, it is determined whether or not the current command value acquired in step 102 is equal to or greater than a predetermined value (step 104). When the camshaft 22 is in a stopped state and power is supplied to the motor, the position of the cam 18 is held while the cam 18 lifts the valve 12. If the lift amount at this time exceeds a certain amount, interference between the valve 12 and the piston that continues to reciprocate may occur. The driving reaction force caused by the valve spring reaction force when the cam 18 pushes the valve 12 increases as the valve spring reaction force increases as the lift amount of the valve 12 increases. Therefore, the current command value of the cam 18 increases as the lift amount of the valve 12 increases. The predetermined value in step 104 is set to such a value that it can be determined whether or not the lift amount of the valve 12 is increased to such an extent that the interference between the valve 12 and the piston occurs! /, The
[0061] 上記ステップ 104において、電流指令値が上記所定値以上であると判定された場 合には、モータへの電力供給が停止される (ステップ 106)。  [0061] If it is determined in step 104 that the current command value is equal to or greater than the predetermined value, the power supply to the motor is stopped (step 106).
[0062] 以上説明した第 8図に示すルーチンによれば、カム軸 22が停止状態にある状況下 で、カム 18の電流指令値が所定値以上になっていることで、バルブ 12とピストンとの 干渉のおそれがあると判断される場合には、モータへの電力供給が停止される。つま り、バルブスプリング 17の付勢力がカム 18を回転させるトルクに変換されることが許 容される。また、本実施形態のバルブリフタ 16の形状、およびバルブリフタ 16とカム 軸 22との配置関係は、上記第 5図と同様に構成されている。このため、上記のように モータへの電力供給が停止された状態にさえすれば、モータの停止時に、カム 18の ノーズ部 18bと頂面 16aとの接触点の位置に関係なぐバルブ 12がリフト状態に維持 されるのを回避すること力 Sできる。このように、本実施形態の制御によれば、可変動弁 装置 10の異常の態様によらずに、バルブ 12とピストンとの干渉を確実に回避すること ができる。  [0062] According to the routine shown in Fig. 8 described above, the current command value of the cam 18 is greater than or equal to a predetermined value under the situation where the camshaft 22 is in a stopped state, so that the valve 12 and the piston If it is determined that there is a possibility of interference, the power supply to the motor is stopped. That is, the urging force of the valve spring 17 is allowed to be converted into torque that rotates the cam 18. Further, the shape of the valve lifter 16 of the present embodiment and the positional relationship between the valve lifter 16 and the cam shaft 22 are configured in the same manner as in FIG. Therefore, if the power supply to the motor is stopped as described above, the valve 12 related to the position of the contact point between the nose portion 18b of the cam 18 and the top surface 16a is lifted when the motor is stopped. It is possible to avoid being kept in a state. As described above, according to the control of the present embodiment, it is possible to reliably avoid the interference between the valve 12 and the piston regardless of the abnormal state of the variable valve apparatus 10.
[0063] 尚、上述した実施の形態 2においては、 ECU40が上記第 8図に示すルーチンの処 理を実行することにより、前記第 8の発明における「電力供給制御手段」が実現されて いる。 In the second embodiment described above, the “power supply control means” according to the eighth aspect of the present invention is realized by the ECU 40 executing the routine processing shown in FIG. Yes.
[0064] 実施の形態 3.  Embodiment 3.
次に、第 9図乃至第 11図を参照して、本発明の実施の形態 3について説明する。 第 9図は、本発明の実施の形態 3の可変動弁装置 50が備えるトルク低減機構 52の 構成を説明するための図である。より具体的には、第 9図(A)は、可変動弁装置 50を カム軸 22の軸方向から見た図を示し、第 9図(B)は、可変動弁装置 50を第 9図(A) における矢視 Aの方向から見た図を示す。尚、第 9図において、上記第 1図に示す構 成要素と同一の要素については、同一の符号を付してその説明を省略または簡略 する。  Next, Embodiment 3 of the present invention will be described with reference to FIG. 9 to FIG. FIG. 9 is a diagram for explaining the configuration of the torque reduction mechanism 52 provided in the variable valve operating apparatus 50 according to the third embodiment of the present invention. More specifically, FIG. 9 (A) shows a view of the variable valve operating device 50 viewed from the axial direction of the camshaft 22, and FIG. 9 (B) shows the variable valve operating device 50 of FIG. The figure seen from the direction of arrow A in (A) is shown. In FIG. 9, the same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof is omitted or simplified.
[0065] 本実施形態の可変動弁装置 50は、第 9図に示すトルク低減機構 52を備えている 点を除き、上述した実施の形態 1の可変動弁装置 10と同様に構成されている。トルク 低減機構 52は、モータ 30等によってカム軸 22等を駆動する際の駆動トルクを低減さ せるための低減トルクを生じさせる機構である。トルク低減機構 52は、第 9図に示すよ うに、反位相カム 54と、その反位相カム 54にバネ 56の付勢力を与える付勢機構 58と を備えている。トルク低減機構 52は、可変動弁装置 50が備える 2つのカム軸 22、 24 の端部に、それぞれ設けられている。このようなトルク低減機構 52の構成は公知であ るため、ここではその詳細な説明を省略するものとする。  [0065] The variable valve operating apparatus 50 of the present embodiment is configured in the same manner as the variable valve operating apparatus 10 of the first embodiment described above, except that the torque reducing mechanism 52 shown in Fig. 9 is provided. . The torque reduction mechanism 52 is a mechanism that generates a reduction torque for reducing the drive torque when the cam shaft 22 or the like is driven by the motor 30 or the like. As shown in FIG. 9, the torque reduction mechanism 52 includes an anti-phase cam 54 and an urging mechanism 58 that applies an urging force of a spring 56 to the anti-phase cam 54. The torque reduction mechanism 52 is provided at each end of the two cam shafts 22 and 24 provided in the variable valve operating device 50. Since such a configuration of the torque reduction mechanism 52 is known, a detailed description thereof will be omitted here.
[0066] 第 10図は、第 9図に示すトルク低減機構 52と同様の構成を有するトルク低減機構 における低減トルクの一般的な設定を説明するための図である。第 10図中に実線で 示す波形は、そのようなトルク低減機構が利用されない場合において、カム軸が一回 転する間のカム軸の駆動トルクの変化を示している。このカム軸の駆動トルクは、カム とバルブリフタとの間のフリクションなどを除き、バルブスプリングの付勢力に基づいて カム軸に作用するトルクが主となる。このため、カム軸の駆動トルクは、カムが回転し てバルブスプリング力に杭しながらバルブを押し下げていくに従って徐々に増加して いき、最大リフト位置の手前で最大値を示す。カム軸の駆動トルクは、その後は減少 に転じ、最大リフト位置では瞬間的にゼロになる。最大リフト位置を越えた後は、バル ブスプリング反力がカムの回転を助勢する。このため、カム軸トルクは、負の値となり、 一旦、負のピーク値に達した後に、バルブが閉じられていくにつれゼロに近づいてい <。 [0066] FIG. 10 is a diagram for explaining a general setting of the reduction torque in the torque reduction mechanism having the same configuration as that of the torque reduction mechanism 52 shown in FIG. The waveform shown by the solid line in FIG. 10 shows the change in the drive torque of the cam shaft during one rotation of the cam shaft when such a torque reduction mechanism is not used. The cam shaft drive torque is mainly the torque acting on the cam shaft based on the urging force of the valve spring, excluding friction between the cam and the valve lifter. For this reason, the drive torque of the camshaft gradually increases as the cam rotates and pushes down the valve while piled on the valve spring force, and shows the maximum value before the maximum lift position. The drive torque of the camshaft then starts to decrease and instantaneously becomes zero at the maximum lift position. After exceeding the maximum lift position, the valve spring reaction force assists the cam rotation. For this reason, the camshaft torque becomes a negative value, and once it reaches the negative peak value, it approaches zero as the valve is closed. <.
[0067] トルク低減機構が発する低減トルクは、一般的には、上記のようなカム軸の駆動トル クを低減させるベぐ第 10図中に破線で示す波形で表したように、バルブスプリング の付勢力に基づいてカム軸に作用するトルクとは逆向きのトルクとして与えられる。つ まり、これらのトルクは、第 10図に示すように、互いに打ち消し合うように作用する。こ のような低減トルクの設定は、反位相カム 54のプロフィールとバネ 56の付勢力とを適 当に調整することにより実現される。このような低減トルクが与えられると、モータによ る最終的なカム軸の駆動トルクは、カムが任意の回転位置にあるときで理論上は差し 引きゼロ(フリクション分を除く)となる。  [0067] The reduction torque generated by the torque reduction mechanism is generally the valve spring as shown by the waveform shown by the broken line in FIG. 10 which reduces the drive torque of the cam shaft as described above. Based on the urging force, the torque applied to the camshaft is given as a reverse torque. In other words, these torques act so as to cancel each other, as shown in FIG. Such setting of the reduction torque is realized by appropriately adjusting the profile of the anti-phase cam 54 and the biasing force of the spring 56. When such reduced torque is applied, the final camshaft drive torque by the motor is theoretically zero (excluding friction) when the cam is at an arbitrary rotational position.
[0068] その結果、以上説明したような一般的な設定でトルク低減機構が用いられて!/、る場 合には、カムのノーズ部の如何なる位置でバルブリフタと接していても、つまり、カム のノーズ先端部がバルブリフタと接する場合以外であっても、カムを閉弁方向に回転 させるトルクがカム軸に生じないことになり、バルブ力 Sリフトした状態でカムが停止する 可能性がある。このため、バルブとピストンとの干渉が懸念される。  [0068] As a result, when the torque reduction mechanism is used with the general settings as described above! /, The cam can be in contact with the valve lifter at any position of the nose portion of the cam. Even when the tip of the nose is not in contact with the valve lifter, the torque that rotates the cam in the valve closing direction is not generated in the cam shaft, and the cam may stop with the valve force S lifted. For this reason, there is a concern about interference between the valve and the piston.
[0069] 第 11図は、本実施形態のトルク低減機構 52が発する低減トルクの設定を説明する ための図である。本実施形態では、上記の問題を解消するために、トルク低減機構 5 2が発する低減トルクを第 11図に示すような設定とした。より具体的には、第 11図に 示すように、トルク低減機構 52が発する低減トルクが、バルブスプリング 17の付勢力 に基づいてカム軸 22に作用するトルクよりも小さくなるように設定するようにした。この ような設定によれば、上記カム軸作用トルクと低減トルクとの合成値である差し引きト ルク(第 11図中に太い破線で示す波形)が、カム 18の回転に反発する方向に作用 するようになる。つまり、十分なバルブスプリング 17の付勢力を、カム 18を回転させる 卜ノレクとして確保することカでさる。  [0069] FIG. 11 is a diagram for explaining the setting of the reduced torque generated by the torque reduction mechanism 52 of the present embodiment. In the present embodiment, in order to solve the above problems, the reduced torque generated by the torque reduction mechanism 52 is set as shown in FIG. More specifically, as shown in FIG. 11, the reduction torque generated by the torque reduction mechanism 52 is set to be smaller than the torque acting on the camshaft 22 based on the urging force of the valve spring 17. did. According to such a setting, a deductive torque (a waveform indicated by a thick broken line in FIG. 11), which is a composite value of the camshaft acting torque and the reduced torque, acts in a direction repelling the rotation of the cam 18. It becomes like this. In other words, a sufficient urging force of the valve spring 17 is secured as a 卜 NOREC for rotating the cam 18.
[0070] 更に付け加えると、その差し引きトルク力 カムとバルブリフタとの間のフリクション、 モータとカム軸間に配置されるギヤの嚙み合わせのフリクション、およびモータのイナ ーシャといったカム軸の回転の抵抗となる要素を足し合わせた値より少し大きくなるよ うに、トルク低減機構 52が付与する低減トルクが決定されている。  In addition, the subtraction torque force friction between the cam and the valve lifter, friction between the gears arranged between the motor and the camshaft, and resistance to rotation of the camshaft such as the inertia of the motor The reduction torque applied by the torque reduction mechanism 52 is determined so as to be a little larger than the sum of these factors.
[0071] 上記第 11図に示す設定を採用した場合であっても、最大リフト位置付近で上記差 し引きトルクがゼロになる箇所が存在することになる。そこで、本実施形態では、上述 実施の形態 1と同様に、バルブリフタ 16の頂面 16aの形状、およびバルブリフタ 16と カム軸 22との配置関係を、上述した第 5図に示すように構成するようにしている。この ため、上記差し引きトルクがゼロとなる箇所であっても、バルブスプリング反力をカム 1 8を回転させるトルクに振り分けることが可能となる。 [0071] Even when the setting shown in Fig. 11 is adopted, the difference is near the maximum lift position. There will be a place where the drag torque becomes zero. Therefore, in the present embodiment, as in the first embodiment, the shape of the top surface 16a of the valve lifter 16 and the positional relationship between the valve lifter 16 and the cam shaft 22 are configured as shown in FIG. 5 described above. I have to. For this reason, it is possible to distribute the valve spring reaction force to the torque for rotating the cam 18 even at the location where the subtraction torque becomes zero.
以上説明した本実施形態の構成によれば、カム軸 22等の駆動トルクの低減を目的 にトルク低減機構 52を備えている可変動弁装置 50においても、簡素な構成を用い て、異常発生時のカム 18等の停止位置に関係なしに、バルブ 12とピストンとの干渉 を確実に回避させることが可能となる。  According to the configuration of the present embodiment described above, even in the variable valve gear 50 having the torque reduction mechanism 52 for the purpose of reducing the drive torque of the camshaft 22 and the like, a simple configuration can be used when an abnormality occurs. It is possible to reliably avoid the interference between the valve 12 and the piston regardless of the stop position of the cam 18 or the like.

Claims

請求の範囲 The scope of the claims
[1] バルブスプリングによって閉弁方向に付勢されるバルブを押動するカムが設けられ たカム軸を、モータにより駆動する可変動弁装置であって、  [1] A variable valve operating apparatus for driving a cam shaft provided with a cam for pushing a valve biased in a valve closing direction by a valve spring by a motor,
前記カムと前記バルブとの間に、当該カムと当接するバルブリフタを備え、 前記バルブリフタは、前記カム軸の軸方向から見て、前記カムのノーズ先端部との 接線方向が、バルブステムの軸線と直交する方向に対して傾斜するように形成された 頂面を備えることを特徴とする可変動弁装置。  A valve lifter that comes into contact with the cam is provided between the cam and the valve, and the valve lifter has a tangential direction to the nose tip of the cam as viewed from the axial direction of the cam shaft and the axis of the valve stem. A variable valve operating device comprising a top surface formed so as to be inclined with respect to an orthogonal direction.
[2] 前記接線の傾斜方向は、前記カムの正転時における前記カムと前記バルブリフタと の接触点の進行方向に向力、うにつれ、当該接線と前記バルブリフタの底面との距離 力 S小さくなる方向であることを特徴とする請求の範囲第 1項記載の内燃機関の可変動 弁装置。  [2] The inclination direction of the tangent is directed toward the traveling direction of the contact point between the cam and the valve lifter during forward rotation of the cam, and as a result, the distance force S between the tangent and the bottom surface of the valve lifter decreases. 2. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the direction is a direction.
[3] 前記頂面は、前記カム軸の軸方向から見て、前記カム側に凸となる凸曲面状に形 成されていることを特徴とする請求の範囲第 1項または第 2項記載の可変動弁装置。  [3] The range according to claim 1 or 2, wherein the top surface is formed in a convex curved surface that is convex toward the cam side when viewed from the axial direction of the cam shaft. Variable valve gear.
[4] 前記カム側に凸となる凸曲面状に形成された前記頂面において前記バルブリフタ の底面からの高さが最も高くなる頂点と、前記ノーズ先端部と前記バルブリフタとの接 触点とが、前記カム軸の軸方向から見て、離間するように構成されていることを特徴と する請求の範囲第 3項記載の可変動弁装置。 [4] An apex where the height from the bottom surface of the valve lifter is the highest on the top surface formed in a convex curved surface projecting toward the cam side, and a contact point between the nose tip and the valve lifter are 4. The variable valve operating apparatus according to claim 3, wherein the variable valve operating apparatus is configured to be separated from each other when viewed in the axial direction of the cam shaft.
[5] 前記カム側に凸となる凸曲面状に形成された前記頂面は、前記バルブリフタの中 心軸上で当該バルブリフタの底面からの高さが最も高くなるように形成されており、 前記カム軸は、前記カム軸の軸方向から見て、前記カム軸の中心軸と前記バルブリ フタの中心軸とが交差しないように配置されていることを特徴とする請求の範囲第 3 項または第 4項記載の可変動弁装置。 [5] The top surface formed in a convex curved shape that is convex toward the cam side is formed so that the height from the bottom surface of the valve lifter is the highest on the central axis of the valve lifter, 4. The cam shaft according to claim 3, wherein the cam shaft is arranged so that the central axis of the cam shaft and the central axis of the valve lifter do not intersect when viewed from the axial direction of the cam shaft. 4. The variable valve operating device according to item 4.
[6] 前記カム軸は、前記カム軸の軸方向から見て、前記カム軸の中心軸が前記バルブ ステムの軸線と交差するように配置されており、 [6] The cam shaft is disposed so that a central axis of the cam shaft intersects an axis of the valve stem when viewed from an axial direction of the cam shaft,
前記カム側に凸となる凸曲面状に形成された前記頂面は、前記バルブリフタの底 面からの高さが最も高くなる頂点力 S、前記カム軸の軸方向から見て、前記バルブステ ムの軸線に対してオフセットされた位置となるように形成されていることを特徴とする 請求の範囲第 3項または第 4項記載の可変動弁装置。 The top surface formed in a convex curved shape that is convex toward the cam side has an apex force S at which the height from the bottom surface of the valve lifter is the highest, as viewed from the axial direction of the cam shaft, 5. The variable valve operating apparatus according to claim 3, wherein the variable valve operating apparatus is formed so as to be offset from the axis.
[7] 前記頂面は、前記カム軸の軸方向から見て、一定の勾配を有する傾斜面であること を特徴とする請求の範囲第 1項または第 2項記載の可変動弁装置。 [7] The variable valve operating apparatus according to [1] or [2], wherein the top surface is an inclined surface having a constant gradient when viewed from the axial direction of the camshaft.
[8] 前記モータが前記カム軸を駆動する際に当該モータに与える指令値が所定値に達 したときに、当該モータへの電力供給を停止する電力供給制御手段を更に備えるこ とを特徴とする請求の範囲第 1項乃至第 7項の何れか 1項記載の可変動弁装置。  [8] The apparatus further comprises power supply control means for stopping power supply to the motor when a command value given to the motor when the motor drives the camshaft reaches a predetermined value. The variable valve operating apparatus according to any one of claims 1 to 7, wherein:
[9] 前記カム軸の駆動トルクを低減させる低減トルクを発生するトルク低減機構を更に 備え、  [9] A torque reduction mechanism that generates a reduction torque that reduces the drive torque of the camshaft is further provided,
前記トルク低減機構は、前記低減トルクが前記バルブスプリングの付勢力に基づ!/、 て前記カム軸に作用するトルクに比して小さくなるように構成されていることを特徴と する請求の範囲第 1項乃至第 8項の何れか 1項記載の可変動弁装置。  The torque reduction mechanism is configured so that the reduced torque is smaller than a torque acting on the camshaft based on an urging force of the valve spring! 9. The variable valve operating apparatus according to any one of items 1 to 8.
PCT/JP2007/071997 2006-11-28 2007-11-13 Variable valve gear WO2008065881A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07831727A EP2093389A1 (en) 2006-11-28 2007-11-13 Variable valve gear
US12/310,974 US20100089348A1 (en) 2006-11-28 2007-11-13 Variable Valve Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-320350 2006-11-28
JP2006320350A JP2008133770A (en) 2006-11-28 2006-11-28 Variable valve gear

Publications (1)

Publication Number Publication Date
WO2008065881A1 true WO2008065881A1 (en) 2008-06-05

Family

ID=39467676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071997 WO2008065881A1 (en) 2006-11-28 2007-11-13 Variable valve gear

Country Status (5)

Country Link
US (1) US20100089348A1 (en)
EP (1) EP2093389A1 (en)
JP (1) JP2008133770A (en)
CN (1) CN101542078A (en)
WO (1) WO2008065881A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033910A1 (en) * 2012-08-31 2014-03-06 日鍛バルブ株式会社 Direct-action valve lifter for internal combustion engine
US9574468B2 (en) * 2012-10-17 2017-02-21 Toyota Motor Engineering & Manufacturing North America, Inc. Variable valve operation control method and apparatus
DE102013218083A1 (en) * 2013-09-10 2015-04-02 Volkswagen Aktiengesellschaft Valve train for an internal combustion engine
JP6115536B2 (en) * 2014-09-25 2017-04-19 コニカミノルタ株式会社 Image forming apparatus
CN107084013A (en) * 2017-06-21 2017-08-22 浙江春风动力股份有限公司 Engine and its cam assembly
JP7028010B2 (en) * 2018-03-23 2022-03-02 いすゞ自動車株式会社 Internal combustion engine valve train
CN113047920A (en) * 2021-03-26 2021-06-29 深圳臻宇新能源动力科技有限公司 Valve assembly, internal combustion engine, automobile and internal combustion engine circulation control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617610A (en) * 1992-07-03 1994-01-25 Toyota Motor Corp Valve system of internal combustion engine
JPH0687605U (en) 1993-06-01 1994-12-22 ダイハツ工業株式会社 Valve operating system for internal combustion engine
JP3359524B2 (en) 1996-12-27 2002-12-24 株式会社オティックス Variable valve mechanism
JP2004225562A (en) 2003-01-20 2004-08-12 Nissan Motor Co Ltd Valve system of diesel engine
JP2004225610A (en) 2003-01-23 2004-08-12 Riken Corp Valve system valve lifter and structure for valve system type lifter
JP2005054732A (en) 2003-08-06 2005-03-03 Toyota Motor Corp System and method for driving valve for internal combustion engine, and power output device
JP2005171937A (en) * 2003-12-12 2005-06-30 Toyota Motor Corp Valve system
JP2005171786A (en) * 2003-12-08 2005-06-30 Toyota Motor Corp Valve system of internal combustion engine
JP2005315185A (en) * 2004-04-28 2005-11-10 Toyota Motor Corp Variable valve system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921210A (en) * 1998-09-10 1999-07-13 Chrysler Corporation Tappet assembly for the valve train of an internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617610A (en) * 1992-07-03 1994-01-25 Toyota Motor Corp Valve system of internal combustion engine
JPH0687605U (en) 1993-06-01 1994-12-22 ダイハツ工業株式会社 Valve operating system for internal combustion engine
JP3359524B2 (en) 1996-12-27 2002-12-24 株式会社オティックス Variable valve mechanism
JP2004225562A (en) 2003-01-20 2004-08-12 Nissan Motor Co Ltd Valve system of diesel engine
JP2004225610A (en) 2003-01-23 2004-08-12 Riken Corp Valve system valve lifter and structure for valve system type lifter
JP2005054732A (en) 2003-08-06 2005-03-03 Toyota Motor Corp System and method for driving valve for internal combustion engine, and power output device
JP2005171786A (en) * 2003-12-08 2005-06-30 Toyota Motor Corp Valve system of internal combustion engine
JP2005171937A (en) * 2003-12-12 2005-06-30 Toyota Motor Corp Valve system
JP2005315185A (en) * 2004-04-28 2005-11-10 Toyota Motor Corp Variable valve system

Also Published As

Publication number Publication date
JP2008133770A (en) 2008-06-12
EP2093389A1 (en) 2009-08-26
CN101542078A (en) 2009-09-23
US20100089348A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
US8955478B2 (en) Variable valve operating apparatus
JP3494439B2 (en) Variable valve mechanism
WO2008065881A1 (en) Variable valve gear
JP4827865B2 (en) Variable valve operating device for internal combustion engine
JP4046077B2 (en) Valve operating device for internal combustion engine
JP2010138898A (en) Variable valve gear
EP1911941B1 (en) Variable Valve Timing Mechanism for Internal Combustion Engine
US20090107431A1 (en) Variable Valve System For Internal Combustion Engine
JP4049092B2 (en) Valve gear
WO2011074090A1 (en) Control device for internal combustion engine provided with variable valve device
JP5533781B2 (en) Variable valve operating device for internal combustion engine
JP2009215889A (en) Variable valve gear for internal combustion engine
JP2004116365A (en) Controller for variable valve system
JP2000314329A (en) Management device for variable valve system of internal combustion engine at operating sensor failure
JP2007146688A (en) Valve gear for internal combustion engine
JP2006194209A5 (en)
JP4807314B2 (en) Diesel engine
JP2008215239A (en) Variable valve mechanism for internal combustion engine
JP2007292045A (en) Control device for internal combustion engine
JP5516432B2 (en) Variable valve operating apparatus for internal combustion engine and internal combustion engine provided with the same
WO2011086702A1 (en) Variable valve device of internal combustion engine
JP2005315185A (en) Variable valve system
JP3832014B2 (en) Variable valve mechanism
JP2009144687A (en) Variable valve gear of internal combustion engine
JP2006250042A (en) Controller of internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044046.1

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12310974

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007831727

Country of ref document: EP