WO2011086702A1 - Variable valve device of internal combustion engine - Google Patents

Variable valve device of internal combustion engine Download PDF

Info

Publication number
WO2011086702A1
WO2011086702A1 PCT/JP2010/050508 JP2010050508W WO2011086702A1 WO 2011086702 A1 WO2011086702 A1 WO 2011086702A1 JP 2010050508 W JP2010050508 W JP 2010050508W WO 2011086702 A1 WO2011086702 A1 WO 2011086702A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
intake valve
intake
variable
cam
Prior art date
Application number
PCT/JP2010/050508
Other languages
French (fr)
Japanese (ja)
Inventor
江崎 修一
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/050508 priority Critical patent/WO2011086702A1/en
Priority to JP2011549835A priority patent/JPWO2011086702A1/en
Publication of WO2011086702A1 publication Critical patent/WO2011086702A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to a variable valve operating apparatus for an internal combustion engine.
  • Patent Document 1 discloses a variable valve operating device capable of continuously changing a lift amount and / or an operating angle of a valve (hereinafter simply referred to as an “operating angle”).
  • This conventional variable valve operating device is arranged between a drive cam and a valve, and is arranged between the drive cam and the swing arm.
  • the swing arm is provided with a slider surface that contacts the intermediate member at a position facing the drive cam.
  • the oscillating arm is provided with a lost motion part formed of a surface that is lower than a virtual extension line of the slider surface at the tip of the slider surface.
  • the intermediate member is displaced to a position where it comes into contact with the lost motion part by continuously changing the valve operating angle, and thereby the valve is stopped so that the valve is kept closed. It becomes possible to change the operation state of the valve to the state.
  • the conventional variable valve system is configured such that the valve operating angle is minimized at a position where the closing timing of the intake valve is approximately halfway between the intake top dead center and the intake bottom dead center.
  • the valve stop state can be obtained by moving the intermediate member from the position where the minimum working angle is obtained to the position where it comes into contact with the lost motion section.
  • Japanese Unexamined Patent Publication No. 2008-112458 Japanese Unexamined Patent Publication No. 2007-239551 Japanese Unexamined Patent Publication No. 2008-045460 Japanese Patent No. 3799944 Japanese Special Table 2004-521234
  • variable valve operating apparatus in which the valve operating angle can be continuously changed like the variable valve operating apparatus described in Patent Document 1 described above, in order to obtain the valve stop state, the valve operating angle is continuously set. By changing it, it is necessary to shift the operation state of the valve to the valve stop state.
  • the temperature of the catalyst is high when a fuel cut execution request is issued, it is preferable to quickly shut off fresh air flow into the catalyst in order to suppress deterioration of the noble metal contained in the catalyst.
  • the engine speed is often high, and the valve operating angle is often controlled near the maximum operating angle. Therefore, when fuel cut is actually required under such circumstances, according to the configuration of the conventional variable valve operating apparatus, it takes a long time to shift the valve operating state to the valve stop state. .
  • the present invention has been made to solve the above-described problems, and by continuously changing the lift amount and / or the operating angle of the intake valve, the operation state of the intake valve is changed to the closed state of the intake valve.
  • the variable valve operating device that can be changed to the valve stop state maintained at a constant value, the operation time required for the transition from the valve operation state controlled so as to increase the lift amount and / or the operating angle of the intake valve to the valve stop state is reduced. It is an object of the present invention to provide a variable valve operating apparatus for an internal combustion engine that can be suitably shortened.
  • a first invention is a variable valve operating apparatus for an internal combustion engine,
  • a variable valve operating device capable of changing the operation state of the intake valve to a valve stop state in which the intake valve is maintained in a closed state by continuously changing the lift amount and / or the operating angle of the intake valve,
  • a variable member having a profile that contacts a mating member included in the variable valve operating device;
  • the variable valve operating device changes a lift amount and / or a working angle of the intake valve by changing a contact position of the counterpart member on the profile of the variable member,
  • the profile of the variable member is formed so that the operation state of the intake valve shifts to the valve stop state when the closing timing of the intake valve is within a predetermined range near the intake bottom dead center. It is characterized by.
  • the second invention is the first invention, wherein
  • the internal combustion engine provided with the variable valve operating device is one in which the closing timing of the intake valve is delayed from the intake bottom dead center,
  • the profile of the variable member indicates that the operation state of the intake valve shifts to the valve stop state when the intake valve is closed at a timing retarded from the intake bottom dead center within the predetermined range. It is formed as follows.
  • the third invention is the first or second invention, wherein
  • the variable member is a swinging member that is disposed between a cam that drives the intake valve and the intake valve and swings as the cam rotates
  • the counterpart member is an intermediate member that is disposed between the cam and the swing member and transmits the acting force of the cam to the swing member through the profile.
  • the profile of the swing member includes a slide surface that contacts the intermediate member when the lift amount and / or operating angle of the intake valve is changed within a predetermined continuous variable section, and the swing surface with respect to the slide surface.
  • a lost motion portion that is provided at a distal end portion of the moving member far from the swing center, and that contacts the intermediate member when the operation state of the intake valve is the valve stop state,
  • the lost motion part is formed in a planar shape.
  • 4th invention is 1st or 2nd invention
  • the counterpart member is a swinging member that is disposed between a cam that drives the intake valve and the intake valve and swings as the cam rotates
  • the variable member is a cam member that regulates the posture of the swing member with the cam
  • the profile of the cam member includes a first curve portion that contacts the swing member when the lift amount and / or operating angle of the intake valve is changed within a predetermined continuous variable section, and an operating state of the intake valve.
  • a second curved portion that contacts the rocking member when the valve is in a stopped state, and a third curved portion interposed between the first curved portion and the second curved portion,
  • the third curved portion is formed so as to smoothly connect the first curved portion and the second curved portion.
  • the fifth invention is the first or second invention, wherein
  • the variable valve operating apparatus further includes a swinging member that is disposed between a cam that drives the intake valve and the intake valve, and that swings as the cam rotates.
  • the counterpart member is a control shaft that changes the posture of the swing member according to an axial position;
  • the variable member is a cam member that displaces the control shaft in the axial direction,
  • the profile of the cam member includes a first curve portion that contacts the swing member when the lift amount and / or operating angle of the intake valve is changed within a predetermined continuous variable section, and an operating state of the intake valve.
  • the profile of the variable member is formed so that the operating state of the intake valve shifts to the valve stop state when the closing timing of the intake valve is within a predetermined range near the intake bottom dead center. Yes.
  • the lift of the intake valve is higher than that of a conventional variable valve gear that is configured so that the valve stop state can be obtained at a position where the intake valve closes approximately halfway between the intake top dead center and the intake bottom dead center. It is possible to suitably shorten the operation time required for the transition from the valve operating state controlled to increase the amount and / or the operating angle to the valve stopped state.
  • the flow of fresh air into the catalyst can be promptly blocked by stopping the valve, and the deterioration of the catalyst can be satisfactorily suppressed.
  • the intake valve dead time falls within a predetermined range of the intake valve closing timing.
  • the profile of the variable member is formed so as to shift to the valve stop state when the timing is on the retard side of the point. For this reason, in the internal combustion engine that performs the slow closing Atkinson cycle operation, the closing timing of the intake valve is shifted to the valve stop state while preventing the timing near the intake bottom dead center where the occurrence of knocking is high. Thereby, it becomes possible to promptly shift to the valve stop state while reducing the concern about the occurrence of knocking.
  • the valve is operated from the valve operating state in which the operating angle immediately before shifting to the valve stop state is obtained. It becomes possible to shift to the stop state more quickly.
  • the fourth or fifth aspect of the present invention it is possible to smoothly perform the transition of the operation state of the intake valve between the valve operating state and the valve stop state.
  • the occurrence of sudden changes and torque shocks can be satisfactorily reduced.
  • FIG. 3 is a view of the intake variable valve operating apparatus shown in FIG. 1 as viewed from the axial direction of the cam shaft (and the control shaft) (more specifically, the direction of arrow A in FIG. 2).
  • FIG. 3 is a view of the intake variable valve operating apparatus shown in FIG. 1 as viewed from the axial direction of the cam shaft (and the control shaft) (more specifically, the direction of arrow A in FIG. 2).
  • Embodiment 1 of this invention It is a figure for demonstrating the valve lift characteristic used in Embodiment 1 of this invention in contrast with the valve lift characteristic used conventionally. It is the figure which compared and represented the relationship between valve lift amount and the rotation angle of a control shaft between this-application embodiment and a prior art. It is a figure for demonstrating schematic structure of the intake variable valve operating apparatus in Embodiment 2 of this invention. It is a figure for demonstrating the setting of the profile of the curve disk with which the intake variable valve operating apparatus shown in FIG. 8 is provided. It is a figure for demonstrating schematic structure of the intake variable valve operating apparatus in Embodiment 3 of this invention. It is a figure for demonstrating the structure of the cam type actuator which drives the control shaft shown in FIG. It is a figure for demonstrating the setting of the profile of the curve disk with which the intake variable valve operating apparatus shown in FIG. 10 is provided.
  • FIG. 1 is a diagram for explaining a system configuration of an internal combustion engine 10 according to Embodiment 1 of the present invention.
  • the system of this embodiment includes an internal combustion engine 10.
  • the internal combustion engine 10 is an internal combustion engine that performs an operation using an Atkinson cycle (hereinafter referred to as a “lately closed Atkinson cycle”) realized by delaying the closing timing of the intake valve 28 from the intake bottom dead center.
  • an Atkinson cycle hereinafter referred to as a “lately closed Atkinson cycle”
  • the number of cylinders of the internal combustion engine in the present invention is not particularly limited, here, the internal combustion engine 10 is an inline 4-cylinder engine as an example.
  • a piston 12 In the cylinder of the internal combustion engine 10, a piston 12 is provided.
  • a combustion chamber 14 is formed in the cylinder of the internal combustion engine 10 on the top side of the piston 12.
  • An intake passage 16 and an exhaust passage 18 communicate with the combustion chamber 14.
  • an air flow meter 20 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 16 is provided.
  • a throttle valve 22 is provided downstream of the air flow meter 20.
  • a fuel injection valve 24 for injecting fuel into the intake port of the internal combustion engine 10 is disposed downstream of the throttle valve 22.
  • An ignition plug 26 is attached to the cylinder head provided in the internal combustion engine 10 so as to protrude from the top of the combustion chamber 14 into the combustion chamber 14.
  • the intake port and the exhaust port are respectively provided with an intake valve 28 and an exhaust valve 30 for bringing the combustion chamber 14 and the intake passage 16 or the combustion chamber 14 and the exhaust passage 18 into a conduction state or a cutoff state.
  • the intake valve 28 and the exhaust valve 30 are driven by an intake variable valve operating device 32 and an exhaust valve operating device 34, respectively.
  • a detailed configuration of the intake variable valve operating device 32 will be described later with reference to FIGS. 2 to 5.
  • a catalyst 36 for purifying the exhaust gas is disposed in the exhaust passage 18.
  • the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 40.
  • ECU Electronic Control Unit
  • Various sensors for detecting the operation state of the internal combustion engine 10 such as the air flow meter 20 and the crank angle sensor 42 for detecting the engine speed are connected to the input of the ECU 40.
  • various actuators for controlling the operating state of the internal combustion engine 10 such as the throttle valve 22, the fuel injection valve 24, the spark plug 26, and the intake variable valve operating device 32 are connected to the output of the ECU 40.
  • the ECU 40 controls the operating state of the internal combustion engine 10 based on those sensor outputs.
  • FIG. 2 is a diagram showing a schematic configuration of the intake variable valve operating apparatus 32 shown in FIG. 3 and 4 respectively show the intake variable valve operating apparatus 32 shown in FIG. 1 from the axial direction of the cam shaft 50 (and the control shaft 54) (more specifically, from the direction of arrow A in FIG. 2).
  • FIG. 3 is a diagram when the operation state of the intake valve 28 is in a “valve operating state” to be described later
  • FIG. 4 is a “valve stop state” in which the operation state of the intake valve 28 is described later.
  • the intake variable valve operating apparatus 32 is simply abbreviated as “operating angle” when there is no need to distinguish between the operating angle and the lift amount of the intake valve 28 in accordance with the rotational position of the control shaft 54 to be described later. Is a device that can be continuously changed. Further, the intake variable valve operating device 32 is a valve that maintains the operation state of the intake valve 28 in the closed position (zero lift) by continuously changing (decreasing) the operating angle of the intake valve 28. It is configured so that it can be changed to a stopped state.
  • the intake variable valve operating apparatus 32 includes a drive cam 52 provided on a cam shaft 50 that is rotationally driven by a crankshaft 38 of the internal combustion engine 10, and a control shaft 54 that is disposed in parallel with the cam shaft 50. .
  • the drive cam 52 rotates counterclockwise in FIG.
  • the intake variable valve operating device 32 has a control shaft drive mechanism 56 that can rotate the control shaft 54 within a predetermined angle range.
  • the control shaft drive mechanism 56 includes a worm wheel 58 fixed to one end of the control shaft 54, a worm gear 60 that meshes with the worm wheel 58, and a servo motor 62 that rotationally drives the worm gear 60.
  • the servo motor 62 is connected to the ECU 40 described above via an EDU (Electrical Driver Unit) 64.
  • the ECU 40 is connected with a cam angle sensor 66 that detects the rotation angle of the cam shaft 50 and a control shaft position sensor 68 that detects the rotation position (rotation angle) of the control shaft 54. Has been.
  • the rotation position (rotation angle) of the control shaft 54 can be controlled by controlling the rotation direction and the rotation amount of the servo motor 62.
  • the intake variable valve operating device 32 is a device that can continuously change the operating angle of the intake valve 28 in accordance with the rotational position of the control shaft 54, based on the output value of the control shaft position sensor 68, The operating angle and lift amount of the intake valve 28 can be acquired.
  • the intake variable valve operating device 32 has a swing arm (swing cam arm) 70.
  • the swing arm 70 is installed to be swingable about the control shaft 54.
  • a sliding surface 72 is formed on the swing arm 70 on the side facing the drive cam 52.
  • a first roller 74 and a second roller 76 are disposed between the swing arm 70 and the drive cam 52.
  • the first roller 74 is in contact with the peripheral surface of the drive cam 52
  • the second roller 76 is in contact with the slide surface 72 of the swing arm 70.
  • These rollers 74 and 76 are coaxially arranged and can be rotated independently of each other.
  • the rollers 74 and 76 are supported by the tip of the support arm 78.
  • a control arm 80 protruding downward in FIG. 3 is provided on the control shaft 54, and a base end portion of a support arm 78 is rotatably connected to a distal end portion of the control arm 80.
  • the rollers 74 and 76 can be moved by rotating the control shaft 54. That is, when the control shaft 54 is rotated counterclockwise from the state shown in FIG. 4, the rollers 74 and 76 are pulled by the control arm 80 and the support arm 78, and the swing center of the swing arm 70 (ie, the control shaft). 54 center). Further, when the control shaft 54 is rotated clockwise from a state where the rollers 74 and 76 are close to the swing center, the rollers 74 and 76 move away from the swing center.
  • FIG. 3 shows a state in which the positions of the rollers 74 and 76 are closest to the swing center.
  • the slide surface 72 has a curved surface (for example, a circular arc surface) in which the distance from the center of the drive cam 52 gradually decreases from the tip end side of the swing arm 70 toward the swing center side.
  • a swing cam surface 82 is formed on the swing arm 70 on the opposite side of the slide surface 72.
  • the oscillating cam surface 82 is provided continuously from the non-operating surface (basic circle portion) 82a formed so that the distance from the oscillating center of the oscillating arm 70 is constant, and the non-operating surface 82a.
  • the working surface 82b is formed so that the distance from the moving center gradually increases.
  • the intake variable valve operating apparatus 32 further includes a rocker arm 84 that presses the valve shaft of the intake valve 28 in the lift direction.
  • the rocker arm 84 is disposed below the swing arm 70 in FIG.
  • the rocker arm 84 is provided with a rocker roller 86 so as to face the swing cam surface 82.
  • the rocker roller 86 is rotatably attached to an intermediate portion of the rocker arm 84.
  • One end of the rocker arm 84 is in contact with the valve shaft end of the intake valve 28, and the other end is supported by a hydraulic lash adjuster 88.
  • the intake valve 28 is urged in a closing direction, that is, a direction in which the rocker arm 84 is pushed up by a valve spring (not shown).
  • the rocker roller 86 is pressed against the swing cam surface 82 of the swing arm 70 by this urging force and the hydraulic lash adjuster 88. According to such a configuration, when the drive cam 52 rotates, the cam lift of the drive cam 52 is transmitted to the swing arm 70 via the rollers 74 and 76, so that the swing arm 70 swings.
  • a lost motion portion 92 is formed at the tip of the slide surface 72.
  • the lost motion portion 92 is formed by a surface that is lower than the virtual extension line 90 of the slide surface 72.
  • FIG. 5 is an enlarged perspective view of the tip portion of the swing arm 70. As shown in FIG. 5, the lost motion portion 92 is formed in a planar shape. In the state shown in FIG. 4, the second roller 76 is in contact with the lost motion portion 92. In this state, as will be described later, even if the swing arm 70 swings due to the rotation of the drive cam 52, the intake valve 28 is maintained in the valve closing position.
  • valve operating state when the control shaft 54 is rotated counterclockwise from the valve stop state shown in FIG. 4, the rollers 74 and 76 move in a direction approaching the swing center of the swing arm 70. As a result, the second roller 76 comes into contact with the slide surface 72. In this state, the intake valve 28 opens and closes as the swing cam 70 swings as the drive cam 52 rotates. This state is hereinafter referred to as “valve operating state”.
  • rocker roller contact point When the drive cam 52 is not lifted in the valve operating state, that is, when the basic circle portion of the drive cam 52 is in contact with the first roller 74, the rocker roller 86 is in contact with the non-operation surface 82a of the swing cam surface 82. In contact. Thereby, the intake valve 28 is closed.
  • the drive cam 52 begins to lift and the swing arm 70 begins to swing counterclockwise in FIG. 3, the contact point between the rocker roller 86 and the swing cam surface 82 (hereinafter referred to as “rocker roller contact point”). Is transferred from the non-working surface 82a to the working surface 82b.
  • the rocker roller contact point shifts to the action surface 82b, the rocker arm 84 is pushed down and the intake valve 28 is opened.
  • the rollers 74 and 76 are at a position closest to the swing center of the swing arm 70.
  • the swing range (swing width) of the swing arm 70 is increased.
  • the operating angle of the intake valve 28 increases.
  • the closer to the swing center the smaller the distance between the slide surface 72 and the center of the drive cam 52. Therefore, the position of the swing arm 70 at which the drive cam 52 starts to lift moves counterclockwise in FIG. 3 as the rollers 74 and 76 approach the swing center.
  • the operating angle of the intake valve 28 is continuously increased as the rotational position of the control shaft 54 is displaced more counterclockwise in FIG. Conversely, as the rotational position of the control shaft 54 is displaced more in the clockwise direction in FIG. 3, the operating angle of the intake valve 28 can be continuously reduced. Further, when the rotational position of the control shaft 54 is greatly displaced clockwise until the second roller 76 comes into contact with the lost motion portion 92, the drive cam 52 is rotated as shown in FIG. Accordingly, even if the swing arm 70 swings, the rocker roller contact point remains in the non-working surface 82a and does not reach the working surface 82b. Thereby, the operation state of the intake valve 28 can be shifted to the valve stop state.
  • FIG. 6 is a diagram for explaining the valve lift characteristics used in the first embodiment of the present invention in comparison with the conventionally used valve lift characteristics. More specifically, FIG. 6A shows the valve lift characteristics used in the present embodiment, and FIG. 6B shows the valve lift characteristics used conventionally.
  • the large operating angle ⁇ 1 shown in FIG. 6A is the action of the intake valve 28 used when performing an operation using the slow closing Atkinson cycle (hereinafter abbreviated as “late closing Atkinson cycle operation”). It is a horn.
  • the closing timing of the intake valve 28 is sufficiently retarded to such an extent that the return of intake air to the intake passage 16 occurs intentionally.
  • Such a large operating angle ⁇ ⁇ b> 1 is used in the partial load region of the internal combustion engine 10. More specifically, when the slow closing Atkinson cycle operation is performed in the partial load region, the closing timing of the intake valve 28 is a predetermined range with the large operating angle ⁇ 1 as the upper limit, depending on the required load and the required engine speed. It can be changed within.
  • the large working angle ⁇ 2 shown in FIG. 6A is a working angle used at a high engine speed, and is set so that the internal combustion engine 10 can emit the maximum output. Since this large working angle ⁇ 2 is a value having the above-described character, it is smaller than the large working angle ⁇ 1 depending on the advance angle at the closing timing of the intake valve 28 so that a sufficient amount of air is filled in the cylinder. Is set to
  • the medium operating angle ⁇ 3 shown in FIG. 6A is an operating angle used when low speed torque is requested (when torque is requested in the low speed region of the internal combustion engine 10).
  • an intermediate operating angle ⁇ 3 an example in which the closing timing of the intake valve 28 is retarded from the intake bottom dead center is illustrated.
  • This intermediate operating angle ⁇ 3 is also a value that changes as the closing timing of the intake valve 28 is varied in accordance with the intake air temperature. More specifically, the closing timing of the intake valve 28 is retarded when there is a concern about the occurrence of knocking when the intake air temperature is high, and conversely when the intake air temperature is low. In order to increase the amount of air filled in the cylinder, it is advanced toward the intake bottom dead center.
  • the variable range of the closing timing of the intake valve 28 is set to 180 to 200 ° CA (reference is exhaust top dead center) in terms of crank angle.
  • the operating angle (and lift amount) of the intake valve 28 is continuously varied between the large operating angle ⁇ 1 and the intermediate operating angle ⁇ 3 (see FIG. 3). ).
  • the working angle of the intake valve 28 is variable, as described above, when low-speed torque is required when the slow-closing Atkinson cycle operation using the large working angle ⁇ 1 is performed, the above-described operation is performed.
  • the control shaft 54 is rotationally driven by the servo motor 62 so that the intermediate working angle ⁇ 3 is obtained.
  • the operating angle of the intake valve 28 becomes the required torque due to the delay of the closing timing of the intake valve 28. It will be expanded to a value according to the size.
  • the operating state of the intake valve 28 The profile of the swing arm 70 (the slide surface 72 and the lost motion portion 92) is formed so that the valve suddenly shifts to the valve stop state.
  • the profile of the swing arm 70 indicates that when the closing timing of the intake valve 28 is a timing retarded from the intake bottom dead center within the predetermined range, the operating state of the intake valve 28 is stopped. It is formed to shift to a state.
  • the conventional valve lift characteristic shown in FIG. 6B referred to for comparison with the valve lift characteristic shown in FIG. 6A is realized by accelerating the closing timing of the intake valve with respect to the intake bottom dead center.
  • the present invention is applied to an internal combustion engine that performs an early closing Atkinson cycle operation using an Atkinson cycle (hereinafter referred to as an “early closing Atkinson cycle”).
  • the small operating angle ⁇ 4 in FIG. 6B is the minimum operating angle of the intake valve 28 used when the fast closing Atkinson cycle operation is performed. Note that the large working angle ⁇ 2 and the medium working angle ⁇ 3 in FIG. 6B are the same as those described above.
  • variable valve operating apparatus capable of realizing the conventional valve lift characteristics shown in FIG. 6B is disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-121458.
  • the variable valve operating apparatus as shown in FIG. 6B, when the control shaft is rotationally driven to a position past a valve operating state where a small operating angle ⁇ 4 is obtained, the operating state of the intake valve suddenly changes.
  • the profile of the swing arm is formed so as to shift to the valve stop state.
  • only the amount indicated as “difference from the embodiment of the present application” in FIG. 6B that is, only the difference between the medium operating angle ⁇ 3 and the small operating angle ⁇ 4),
  • the valve is shifted to the valve stop state on the advance side with respect to the timing of the shift to the valve stop state in the present embodiment.
  • FIG. 7 is a diagram showing the relationship between the valve lift amount and the rotation angle of the control shaft in comparison between the embodiment of the present invention and the conventional technology.
  • the intake variable valve operating device 32 performs control so that the operation state of the intake valve 28 shifts to the valve stop state when a fuel cut execution request for the internal combustion engine 10 is issued.
  • the engine speed is often high under conditions where fuel cut is required during deceleration.
  • a valve stop request accompanying a fuel cut execution request is often issued when the operating angle of the intake valve 28 is controlled near the large operating angle ⁇ 2, as shown in FIG.
  • the closing timing of the intake valve 28 approaches the intake bottom dead center, the actual compression ratio of the internal combustion engine 10 increases, so that knocking is likely to occur.
  • the closing timing of the intake valve is in the vicinity of the intake bottom dead center where there is a high risk of occurrence of knocking.
  • the position is controlled to a position past the small operating angle ⁇ 4.
  • knocking is likely to occur during the transition to the valve stop state (in addition, even if the fuel cut is performed at an early stage during the transition to the valve stop state, it remains in the cylinder. Similarly, knocking is likely to occur due to the presence of fuel.
  • the intake variable valve operating apparatus 32 of the present embodiment when the closing timing of the intake valve 28 is at a timing retarded from the intake bottom dead center, the operating state of the intake valve 28 is changed.
  • the profile of the swing arm 70 is formed so that the valve is stopped.
  • the closing timing of the intake valve 28 is shifted to the valve stop state while preventing the timing near the intake bottom dead center from passing, so there is a concern about the occurrence of knocking. This makes it possible to promptly shift to the valve stop state.
  • the lost motion portion 92 included in the profile of the swing arm 70 of the present embodiment is formed in a planar shape.
  • the configuration of the lost motion part is not limited to a planar shape, and curves in the direction opposite to the slide surface 72 from the tip of the slide surface 72 via an inflection point. You may be comprised by the convex surface to do.
  • the rollers 74 and 76 are located closer to the swing center of the swing arm 70 than the configuration of the conventional variable valve apparatus.
  • the operations of the rollers 74 and 76 and the swing arm 70 are performed (see FIG. 4). Thereby, the inertia weight of the swing arm 70 and the rollers 74 and 76 can be reduced, and the mobility of the intake variable valve operating apparatus 32 is improved.
  • the intake valve 28 when the closing timing of the intake valve 28 is a timing retarded from the intake bottom dead center, the intake valve 28 is oscillated so that the operating state of the intake valve 28 becomes the valve stop state.
  • the configuration in which the profile of the arm 70 is formed has been described as an example.
  • the profile of the variable member in the present invention is not necessarily limited to the above. That is, it may be a profile formed so that the operation state of the intake valve becomes a valve stop state when the intake valve close timing is within a predetermined range near the intake bottom dead center.
  • the intake valve close timing The profile of the variable member is formed so that the operating state of the intake valve becomes the valve stop state when the engine is at the intake bottom dead center within the predetermined range or at the advance side of the intake bottom dead center. It may be a configuration.
  • the second roller 76 corresponds to the “mating member” in the first invention
  • the swing arm 70 corresponds to the “variable member” in the first invention.
  • the swing arm 70 corresponds to the “swing member” in the third invention
  • the second roller 76 and the first roller 74 correspond to the “intermediate member” in the third invention.
  • FIG. 8 is a diagram for explaining a schematic configuration of the intake variable valve operating apparatus 100 according to the second embodiment of the present invention.
  • the intake variable valve operating apparatus 100 shown in FIG. 8 mainly includes a cam shaft 104 to which a drive cam 102 is fixed and a transmission element (hereinafter referred to as a “rocker arm”) that presses the valve shaft of the intake valve 106 in the lift direction. ) 108, an adjusting device (hereinafter referred to as “control shaft”) 110 that functions as a control shaft in the present invention, and a drive cam 102, a rocker arm 108, and a control shaft 110. And a turning lever 112 (hereinafter referred to as a “swinging arm”). More specifically, the swing arm 112 is disposed so as to contact the profile of the curved disk 114 provided on the control shaft 110.
  • the basic configuration of the intake variable valve operating apparatus 100 is described in detail, for example, in Japanese Patent Publication No. 2004-521234.
  • FIG. 9 is a view for explaining the profile setting of the curved disk 114 provided in the intake variable valve operating apparatus 100 shown in FIG.
  • the profile of the curved disk 114 indicates that the first curved portion 114a that contacts the swing arm 112 when the operating angle of the intake valve 106 is changed between the large operating angle ⁇ 1 and the intermediate operating angle ⁇ 3.
  • the first curve portion 114a is formed such that the distance from the axis center of the control shaft 110 increases as the distance from the third curve portion 114c increases.
  • the angle ⁇ 1 is configured to be obtained.
  • the second curved portion 114b is a surface that is one step lower than the position where the intermediate working angle ⁇ 3 is realized in the first curved portion 114a, and is formed as an arc-shaped surface that does not change the distance from the center of the control shaft 110. Yes.
  • the 3rd curve part 114c is formed so that between such a 1st curve part 114a and the 2nd curve part 114b may be connected smoothly.
  • the operating angle and lift of the intake valve 106 are changed by changing the posture of the swing arm 112 by changing the rotational position of the curved disk 114 of the control shaft 110.
  • the amount can be continuously changed, and the operation state of the intake valve 106 can be shifted to the valve stop state. More specifically, when the swing arm 112 is in contact with the first curved portion 114a (continuous variable section), the control shaft 110 (curved disc 114) is rotated counterclockwise in FIG. The operating angle of the intake valve 106 can be reduced.
  • control shaft 110 (curved disc 114) is rotated until the portion of the curved disc 114 that contacts the swing arm 112 moves from the first curved portion 114a to the second curved portion 114b via the third curved portion 114c.
  • the operating state of the intake valve 106 can be shifted to the valve stop state after passing through the speed sudden change section from the continuously variable section.
  • the valve is suddenly shifted to the valve stop state at a position past the intermediate operating angle ⁇ 3.
  • the closing timing of the intake valve 106 is retarded from the intake bottom dead center.
  • the third curved portion 114c of the curved disk 114 is formed so as to smoothly connect the first curved portion 114a and the second curved portion 114b. According to such a configuration, it is possible to smoothly shift the operation state of the intake valve 106 between the valve operating state and the valve stop state, and thereby, a sudden change in the operating state of the internal combustion engine 10 can be achieved. And the occurrence of torque shock can be reduced satisfactorily.
  • the swing arm 112 is the “mating member” in the first invention, and the curved disk 114 of the control shaft 110 is the “variable member” in the first invention. It corresponds.
  • the swing arm 112 corresponds to the “swing member” in the fourth invention, and the curved disk 114 corresponds to the “cam member” in the fourth invention.
  • FIG. 10 is a diagram for explaining a schematic configuration of the intake variable valve operating apparatus 120 according to the third embodiment of the present invention.
  • the intake variable valve operating apparatus 120 shown in FIG. 10 is mainly driven in the axial direction, a cam shaft 124 to which the drive cam 122 is fixed, a rocker arm 128 that presses the valve shaft of the intake valve 126 in the lift direction.
  • a control shaft 130 and a swing arm 132 that swings as the drive cam 122 rotates are provided. More specifically, the swing arm 132 includes an input unit 134 including a cam roller 134 a that contacts the drive cam 122, and a swing cam 136 that transmits the acting force of the drive cam 122 to the rocker arm 128.
  • FIG. 11 is a diagram for explaining a configuration of a cam type actuator 138 that drives the control shaft 130 shown in FIG.
  • the cam actuator 138 includes a servo motor 140 and a curved disk 142 provided on the output shaft 140 a of the servo motor 140.
  • One end of the control shaft 130 described above is biased by a spring 144 so that contact with the profile of the curved disk 142 is always maintained.
  • the spring 144 is disposed so as to be interposed between a stopper 130 a provided on the control shaft 130 and a bearing 146 of the control shaft 130.
  • a reduction gear portion may be provided between the servo motor 140 and the curved disk 142.
  • FIG. 12 is a diagram for explaining the profile setting of the curved disk 142 provided in the intake variable valve operating apparatus 120 shown in FIG.
  • the profile of the curved disk 142 shown in FIG. 12 includes a first curved portion 142a, a second curved portion 142b, and a third curved portion 142c.
  • the configuration of each of the curved portions 142a and the like is the same as the configuration of the profile of the curved disk 114 shown in FIG. 9, and therefore detailed description thereof is omitted here.
  • the operating angle of the intake valve 126 is changed by changing the axial position (stroke) of the control shaft 130 by rotationally driving the curved disk 142 by the servo motor 140.
  • the lift amount can be continuously changed, and the operation state of the intake valve 126 can be shifted to the valve stop state. More specifically, in a state where the control shaft 130 is in contact with the first curved portion 142a (continuous variable section), the operating angle of the intake valve 126 is obtained by rotating the curved disc 142 clockwise in FIG. Can be reduced.
  • the curve disk 142 is continuously variable by rotating the curve disk 142 until the portion of the curve disk 142 that contacts the control shaft 130 moves from the first curve portion 142a to the second curve portion 142b via the third curve portion 142c.
  • the operating state of the intake valve 126 can be shifted to the valve stop state after passing through the speed sudden change section from the section.
  • the valve is suddenly shifted to the valve stop state at a position past the intermediate operating angle ⁇ 3.
  • the closing timing of the intake valve 126 is retarded from the intake bottom dead center.
  • the third curved portion 142c of the curved disc 142 is formed so as to smoothly connect the first curved portion 142a and the second curved portion 142b. According to such a configuration, it is possible to smoothly shift the operation state of the intake valve 126 between the valve operating state and the valve stop state, and thereby, the operating state of the internal combustion engine 10 is suddenly changed. And the occurrence of torque shock can be reduced satisfactorily.
  • control shaft 130 corresponds to the “mating member” in the first invention
  • the curved disk 142 corresponds to the “variable member” in the first invention
  • the swing arm 132 having the input part 134 and the swing cam 136 corresponds to the “swing member” in the fifth invention
  • the curved disk 142 corresponds to the “cam member” in the fifth invention. Yes.

Abstract

Provided is a variable valve device of an internal combustion engine, wherein the operation state of an intake valve can be changed to a valve halt state in which the closing of the intake valve is maintained, by continuously changing the lift and/or the working angle of the intake valve. The operation time required to shift the operation state from a valve working state in which the lift and/or the working angle of the intake valve is large, to the valve halt state can be preferably reduced. A swing arm (70) having a profile to be in contact with a second roller (76) is provided. A variable intake valve device (32) is configured so that the contact position of the second roller (76) on the profile of the swing arm (70) varies to change the lift and the working angle of the intake valve (28). The profile of the swing arm (70) is formed so that the operation state of the intake valve (28) is shifted to the valve halt state when the period for closing the intake valve (28) is within a predetermined range in the vicinity of the bottom dead point for sucking air.

Description

内燃機関の可変動弁装置Variable valve operating device for internal combustion engine
 この発明は、内燃機関の可変動弁装置に関する。 This invention relates to a variable valve operating apparatus for an internal combustion engine.
 従来、例えば特許文献1には、バルブのリフト量およびまたは作用角(以下、単に「作用角」と略する)を連続的に変更可能な可変動弁装置が開示されている。この従来の可変動弁装置は、駆動カムとバルブとの間に配置され駆動カムの回転に伴って揺動する揺動アームと、駆動カムと揺動アームとの間に配置され駆動カムの作用力を揺動アームに伝達する中間部材とを備えている。揺動アームには、駆動カムと対向する位置に、中間部材に接触するスライダー面が設けられている。更に、揺動アームには、スライダー面の先に、当該スライダー面の仮想延長線よりも落ち込んだ面で構成されるロストモーション部が設けられている。 Conventionally, for example, Patent Document 1 discloses a variable valve operating device capable of continuously changing a lift amount and / or an operating angle of a valve (hereinafter simply referred to as an “operating angle”). This conventional variable valve operating device is arranged between a drive cam and a valve, and is arranged between the drive cam and the swing arm. An intermediate member for transmitting force to the swing arm. The swing arm is provided with a slider surface that contacts the intermediate member at a position facing the drive cam. Further, the oscillating arm is provided with a lost motion part formed of a surface that is lower than a virtual extension line of the slider surface at the tip of the slider surface.
 上記のような構成によれば、バルブの作用角を連続的に変更させることでロストモーション部と接触する位置にまで中間部材が変位し、これにより、バルブが閉弁状態に維持される弁停止状態にまでバルブの動作状態を変更させることが可能となる。より具体的には、上記従来の可変動弁装置は、吸気バルブの閉じ時期が吸気上死点と吸気下死点のほぼ中間となる位置で、バルブの作用角が最小となるように構成されており、この最小作用角が得られる位置からロストロストモーション部と接触する位置にまで中間部材を移動させることにより、弁停止状態が得られるようになっている。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
According to the above configuration, the intermediate member is displaced to a position where it comes into contact with the lost motion part by continuously changing the valve operating angle, and thereby the valve is stopped so that the valve is kept closed. It becomes possible to change the operation state of the valve to the state. More specifically, the conventional variable valve system is configured such that the valve operating angle is minimized at a position where the closing timing of the intake valve is approximately halfway between the intake top dead center and the intake bottom dead center. The valve stop state can be obtained by moving the intermediate member from the position where the minimum working angle is obtained to the position where it comes into contact with the lost motion section.
The applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
日本特開2008-121458号公報Japanese Unexamined Patent Publication No. 2008-112458 日本特開2007-239551号公報Japanese Unexamined Patent Publication No. 2007-239551 日本特開2008-045460号公報Japanese Unexamined Patent Publication No. 2008-045460 日本特許第3799944号公報Japanese Patent No. 3799944 日本特表2004-521234号公報Japanese Special Table 2004-521234
 上述した特許文献1に記載の可変動弁装置のようにバルブの作用角を連続的に変更可能な可変動弁装置では、上記弁停止状態を得るためには、バルブの作用角を連続的に変更させることにより上記弁停止状態にまでバルブの動作状態を移行させることが必要となる。フューエルカットの実行要求が出された際に触媒の温度が高い場合には、触媒に含まれる貴金属の劣化抑制のために触媒への新気流入を速やかに遮断することが好ましい。しかしながら、特に減速時にフューエルカットが要求される状況下では、エンジン回転数が高いことが多く、このため、バルブの作用角が最大作用角付近に制御されていることが多い。従って、そのような状況下でフューエルカットが実際に要求された場合に、上記従来の可変動弁装置の構成によれば、バルブの動作状態を弁停止状態に移行するために多くの時間を要する。 In the variable valve operating apparatus in which the valve operating angle can be continuously changed like the variable valve operating apparatus described in Patent Document 1 described above, in order to obtain the valve stop state, the valve operating angle is continuously set. By changing it, it is necessary to shift the operation state of the valve to the valve stop state. When the temperature of the catalyst is high when a fuel cut execution request is issued, it is preferable to quickly shut off fresh air flow into the catalyst in order to suppress deterioration of the noble metal contained in the catalyst. However, especially under conditions where fuel cut is required during deceleration, the engine speed is often high, and the valve operating angle is often controlled near the maximum operating angle. Therefore, when fuel cut is actually required under such circumstances, according to the configuration of the conventional variable valve operating apparatus, it takes a long time to shift the valve operating state to the valve stop state. .
 この発明は、上述のような課題を解決するためになされたもので、吸気バルブのリフト量およびまたは作用角を連続的に変更させることにより当該吸気バルブの動作状態を当該吸気バルブが閉弁状態に維持される弁停止状態に変更可能な可変動弁装置において、吸気バルブのリフト量およびまたは作用角が大きくなるように制御されている弁稼動状態から弁停止状態への移行に要する動作時間を好適に短縮することのできる内燃機関の可変動弁装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and by continuously changing the lift amount and / or the operating angle of the intake valve, the operation state of the intake valve is changed to the closed state of the intake valve. In the variable valve operating device that can be changed to the valve stop state maintained at a constant value, the operation time required for the transition from the valve operation state controlled so as to increase the lift amount and / or the operating angle of the intake valve to the valve stop state is reduced. It is an object of the present invention to provide a variable valve operating apparatus for an internal combustion engine that can be suitably shortened.
 第1の発明は、内燃機関の可変動弁装置であって、
 吸気バルブのリフト量およびまたは作用角を連続的に変更させることにより当該吸気バルブの動作状態を当該吸気バルブが閉弁状態に維持される弁停止状態に変更可能な可変動弁装置であって、
 前記可変動弁装置が備える相手部材に接触するプロファイルを有する可変部材を備え、
 前記可変動弁装置は、前記可変部材の前記プロファイル上における前記相手部材の接触位置が変化することにより、前記吸気バルブのリフト量およびまたは作用角が変化するものであって、
 前記可変部材が有する前記プロファイルは、前記吸気バルブの閉じ時期が吸気下死点近傍の所定範囲内にある時に、前記吸気バルブの動作状態が前記弁停止状態へ移行するように形成されていることを特徴とする。
A first invention is a variable valve operating apparatus for an internal combustion engine,
A variable valve operating device capable of changing the operation state of the intake valve to a valve stop state in which the intake valve is maintained in a closed state by continuously changing the lift amount and / or the operating angle of the intake valve,
A variable member having a profile that contacts a mating member included in the variable valve operating device;
The variable valve operating device changes a lift amount and / or a working angle of the intake valve by changing a contact position of the counterpart member on the profile of the variable member,
The profile of the variable member is formed so that the operation state of the intake valve shifts to the valve stop state when the closing timing of the intake valve is within a predetermined range near the intake bottom dead center. It is characterized by.
 また、第2の発明は、第1の発明において、
 前記可変動弁装置を備える内燃機関は、前記吸気バルブの閉じ時期を吸気下死点よりも遅らせたものであって、
 前記可変部材が有する前記プロファイルは、前記吸気バルブの閉じ時期が前記所定範囲内における吸気下死点よりも遅角側の時期である時に、前記吸気バルブの動作状態が前記弁停止状態へ移行するように形成されていることを特徴とする。
The second invention is the first invention, wherein
The internal combustion engine provided with the variable valve operating device is one in which the closing timing of the intake valve is delayed from the intake bottom dead center,
The profile of the variable member indicates that the operation state of the intake valve shifts to the valve stop state when the intake valve is closed at a timing retarded from the intake bottom dead center within the predetermined range. It is formed as follows.
 また、第3の発明は、第1または第2の発明において、
 前記可変部材は、前記吸気バルブを駆動するカムと当該吸気バルブとの間に配置され前記カムの回転に伴って揺動する揺動部材であり、
 前記相手部材は、前記カムと前記揺動部材との間に配置され前記カムの作用力を前記プロファイルを介して前記揺動部材に伝達する中間部材であり、
 前記揺動部材が有する前記プロファイルは、前記吸気バルブのリフト量およびまたは作用角を所定の連続可変区間内で変化させる際に前記中間部材に接触するスライド面と、当該スライド面に対して前記揺動部材における前記揺動中心から遠い先端部に設けられ、前記吸気バルブの動作状態が前記弁停止状態である際に前記中間部材に接触するロストモーション部とを含み、
 前記ロストモーション部は、平面形状で形成されていることを特徴とする。
The third invention is the first or second invention, wherein
The variable member is a swinging member that is disposed between a cam that drives the intake valve and the intake valve and swings as the cam rotates,
The counterpart member is an intermediate member that is disposed between the cam and the swing member and transmits the acting force of the cam to the swing member through the profile.
The profile of the swing member includes a slide surface that contacts the intermediate member when the lift amount and / or operating angle of the intake valve is changed within a predetermined continuous variable section, and the swing surface with respect to the slide surface. A lost motion portion that is provided at a distal end portion of the moving member far from the swing center, and that contacts the intermediate member when the operation state of the intake valve is the valve stop state,
The lost motion part is formed in a planar shape.
 また、第4の発明は、第1または第2の発明において、
 前記相手部材は、前記吸気バルブを駆動するカムと当該吸気バルブとの間に配置され前記カムの回転に伴って揺動する揺動部材であり、
 前記可変部材は、前記カムとの間で前記揺動部材の体勢を規定するカム部材であり、
 前記カム部材が有する前記プロファイルは、前記吸気バルブのリフト量およびまたは作用角を所定の連続可変区間内で変化させる際に前記揺動部材に接触する第1曲線部と、前記吸気バルブの動作状態が前記弁停止状態である際に前記揺動部材に接触する第2曲線部と、前記第1曲線部と前記第2曲線部との間に介在する第3曲線部とを備え、
 前記第3曲線部は、前記第1曲線部と前記第2曲線部との間を滑らかに接続するように形成されていることを特徴とする。
Moreover, 4th invention is 1st or 2nd invention,
The counterpart member is a swinging member that is disposed between a cam that drives the intake valve and the intake valve and swings as the cam rotates,
The variable member is a cam member that regulates the posture of the swing member with the cam,
The profile of the cam member includes a first curve portion that contacts the swing member when the lift amount and / or operating angle of the intake valve is changed within a predetermined continuous variable section, and an operating state of the intake valve. A second curved portion that contacts the rocking member when the valve is in a stopped state, and a third curved portion interposed between the first curved portion and the second curved portion,
The third curved portion is formed so as to smoothly connect the first curved portion and the second curved portion.
 また、第5の発明は、第1または第2の発明において、
 前記可変動弁装置は、前記吸気バルブを駆動するカムと当該吸気バルブとの間に配置され前記カムの回転に伴って揺動する揺動部材を更に備え、
 前記相手部材は、軸方向位置に応じて前記揺動部材の体勢を変更させる制御軸であり、
 前記可変部材は、前記制御軸を軸方向に変位させるカム部材であり、
 前記カム部材が有する前記プロファイルは、前記吸気バルブのリフト量およびまたは作用角を所定の連続可変区間内で変化させる際に前記揺動部材に接触する第1曲線部と、前記吸気バルブの動作状態が前記弁停止状態である際に前記揺動部材に接触する第2曲線部と、前記第1曲線部と前記第2曲線部との間に介在する第3曲線部とを備え、
 前記第3曲線部は、前記第1曲線部と前記第2曲線部との間を滑らかに接続するように形成されていることを特徴とする。
The fifth invention is the first or second invention, wherein
The variable valve operating apparatus further includes a swinging member that is disposed between a cam that drives the intake valve and the intake valve, and that swings as the cam rotates.
The counterpart member is a control shaft that changes the posture of the swing member according to an axial position;
The variable member is a cam member that displaces the control shaft in the axial direction,
The profile of the cam member includes a first curve portion that contacts the swing member when the lift amount and / or operating angle of the intake valve is changed within a predetermined continuous variable section, and an operating state of the intake valve. A second curved portion that contacts the rocking member when the valve is in a stopped state, and a third curved portion interposed between the first curved portion and the second curved portion,
The third curved portion is formed so as to smoothly connect the first curved portion and the second curved portion.
 第1の発明によれば、吸気バルブの閉じ時期が吸気下死点近傍の所定範囲内にある時に吸気バルブの動作状態が弁停止状態へ移行するように、可変部材が有するプロファイルが形成されている。このため、吸気バルブの閉じ時期が吸気上死点と吸気下死点のほぼ中間となる位置で弁停止状態が得られるように構成されている従来の可変動弁装置と比べ、吸気バルブのリフト量およびまたは作用角が大きくなるように制御されている弁稼動状態から弁停止状態への移行に要する動作時間を好適に短縮することが可能となる。これにより、フューエルカットの要求時に、弁停止により触媒への新気流入を速やかに遮断させることができ、触媒の劣化抑制を良好に図ることができる。 According to the first invention, the profile of the variable member is formed so that the operating state of the intake valve shifts to the valve stop state when the closing timing of the intake valve is within a predetermined range near the intake bottom dead center. Yes. For this reason, the lift of the intake valve is higher than that of a conventional variable valve gear that is configured so that the valve stop state can be obtained at a position where the intake valve closes approximately halfway between the intake top dead center and the intake bottom dead center. It is possible to suitably shorten the operation time required for the transition from the valve operating state controlled to increase the amount and / or the operating angle to the valve stopped state. As a result, when a fuel cut is required, the flow of fresh air into the catalyst can be promptly blocked by stopping the valve, and the deterioration of the catalyst can be satisfactorily suppressed.
 また、第2の発明によれば、遅閉じアトキンソンサイクルが適用された内燃機関に本発明の可変動弁装置が適用されている構成において、吸気バルブの閉じ時期が上記所定範囲内における吸気下死点よりも遅角側の時期である時に弁停止状態へ移行するように、可変部材のプロファイルが形成されている。このため、遅閉じアトキンソンサイクル運転を実施する内燃機関において、吸気バルブの閉じ時期がノッキング発生の懸念の高い吸気下死点近傍の時期を通過させないようにしつつ弁停止状態に移行させられる。これにより、ノッキング発生への懸念を軽減しつつ、弁停止状態に速やかに移行させられるようになる。 According to the second aspect of the present invention, in the configuration in which the variable valve gear of the present invention is applied to an internal combustion engine to which the slow closing Atkinson cycle is applied, the intake valve dead time falls within a predetermined range of the intake valve closing timing. The profile of the variable member is formed so as to shift to the valve stop state when the timing is on the retard side of the point. For this reason, in the internal combustion engine that performs the slow closing Atkinson cycle operation, the closing timing of the intake valve is shifted to the valve stop state while preventing the timing near the intake bottom dead center where the occurrence of knocking is high. Thereby, it becomes possible to promptly shift to the valve stop state while reducing the concern about the occurrence of knocking.
 第3の発明によれば、ロストモーション部がスライド面の仮想延長線よりも落ち込んだ凹面で形成されている場合と比べ、弁停止状態に移行する直前の作用角が得られる弁稼動状態から弁停止状態に、より早く移行させることが可能となる。 According to the third aspect of the invention, compared to the case where the lost motion portion is formed as a concave surface that is depressed from the virtual extension line of the slide surface, the valve is operated from the valve operating state in which the operating angle immediately before shifting to the valve stop state is obtained. It becomes possible to shift to the stop state more quickly.
 第4または第5の発明によれば、弁稼動状態と弁停止状態との間での吸気バルブの動作状態の移行を滑らかに行えるようにすることができ、これにより、内燃機関の運転状態の急変やトルクショックの発生を良好に低減することができる。 According to the fourth or fifth aspect of the present invention, it is possible to smoothly perform the transition of the operation state of the intake valve between the valve operating state and the valve stop state. The occurrence of sudden changes and torque shocks can be satisfactorily reduced.
本発明の実施の形態1における内燃機関のシステム構成を説明するための図である。It is a figure for demonstrating the system configuration | structure of the internal combustion engine in Embodiment 1 of this invention. 図1に示す吸気可変動弁装置の概略構成を示す図である。It is a figure which shows schematic structure of the intake variable valve operating apparatus shown in FIG. 図1に示す吸気可変動弁装置をカム軸(および制御軸)の軸方向(より具体的には、図2中の矢視Aの方向)から見た図である。FIG. 3 is a view of the intake variable valve operating apparatus shown in FIG. 1 as viewed from the axial direction of the cam shaft (and the control shaft) (more specifically, the direction of arrow A in FIG. 2). 図1に示す吸気可変動弁装置をカム軸(および制御軸)の軸方向(より具体的には、図2中の矢視Aの方向)から見た図である。FIG. 3 is a view of the intake variable valve operating apparatus shown in FIG. 1 as viewed from the axial direction of the cam shaft (and the control shaft) (more specifically, the direction of arrow A in FIG. 2). 揺動アームの先端部分を拡大した斜視図である。It is the perspective view which expanded the front-end | tip part of the rocking | fluctuating arm. 本発明の実施の形態1において用いられるバルブリフト特性を、従来から用いられているバルブリフト特性と対比して説明するための図である。It is a figure for demonstrating the valve lift characteristic used in Embodiment 1 of this invention in contrast with the valve lift characteristic used conventionally. バルブリフト量と制御軸の回転角との関係を、本願実施形態と従来技術との間で比較して表した図である。It is the figure which compared and represented the relationship between valve lift amount and the rotation angle of a control shaft between this-application embodiment and a prior art. 本発明の実施の形態2における吸気可変動弁装置の概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the intake variable valve operating apparatus in Embodiment 2 of this invention. 図8に示す吸気可変動弁装置が備える曲線ディスクのプロファイルの設定を説明するための図である。It is a figure for demonstrating the setting of the profile of the curve disk with which the intake variable valve operating apparatus shown in FIG. 8 is provided. 本発明の実施の形態3における吸気可変動弁装置の概略構成を説明するための図である。It is a figure for demonstrating schematic structure of the intake variable valve operating apparatus in Embodiment 3 of this invention. 図10に示す制御軸を駆動するカム式アクチュエータの構成を説明するための図である。It is a figure for demonstrating the structure of the cam type actuator which drives the control shaft shown in FIG. 図10に示す吸気可変動弁装置が備える曲線ディスクのプロファイルの設定を説明するための図である。It is a figure for demonstrating the setting of the profile of the curve disk with which the intake variable valve operating apparatus shown in FIG. 10 is provided.
10、100、120 内燃機関
16 吸気通路
18 排気通路
24 燃料噴射弁
26 点火プラグ
28、106、126 吸気バルブ
30 排気バルブ
32 吸気可変動弁装置
36 触媒
40 ECU(Electronic Control Unit)
50、104、124 カム軸
52、102、122 駆動カム
54、110、130 制御軸
56 制御軸駆動機構
62、140 サーボモータ
70、112、132 揺動アーム
72 スライド面
74 第1ローラ
76 第2ローラ
78 支持アーム
80 制御アーム
82 揺動カム面
82a 非作用面
82b 作用面
84、108、128 ロッカーアーム
86 ロッカーローラ
90 仮想延長線
92 ロストモーション部
114、142 曲線ディスク
114a、142a 第1曲線部
114b、142b 第2曲線部
114c、142c 第3曲線部
134 入力部
134a カムローラ
136 揺動カム
138 カム式アクチュエータ
10, 100, 120 Internal combustion engine 16 Intake passage 18 Exhaust passage 24 Fuel injection valve 26 Spark plugs 28, 106, 126 Intake valve 30 Exhaust valve 32 Intake variable valve gear 36 Catalyst 40 ECU (Electronic Control Unit)
50, 104, 124 Cam shafts 52, 102, 122 Drive cams 54, 110, 130 Control shaft 56 Control shaft drive mechanism 62, 140 Servo motors 70, 112, 132 Swing arm 72 Slide surface 74 First roller 76 Second roller 78 Support arm 80 Control arm 82 Swing cam surface 82a Non-operation surface 82b Operation surface 84, 108, 128 Rocker arm 86 Rocker roller 90 Virtual extension line 92 Lost motion part 114, 142 Curved disk 114a, 142a First curve part 114b, 142b Second curve portion 114c, 142c Third curve portion 134 Input portion 134a Cam roller 136 Oscillating cam 138 Cam type actuator
実施の形態1.
[内燃機関のシステム構成]
 図1は、本発明の実施の形態1における内燃機関10のシステム構成を説明するための図である。本実施形態のシステムは、内燃機関10を備えている。内燃機関10は、吸気バルブ28の閉じ時期を吸気下死点よりも遅らせることで実現されるアトキンソンサイクル(以下、「遅閉じアトキンソンサイクル」と称する)を用いた運転を実施する内燃機関である。本発明における内燃機関の気筒数は特に限定されるものではないが、ここでは、内燃機関10は、その一例として、直列4気筒型のエンジンであるものとする。
Embodiment 1 FIG.
[System configuration of internal combustion engine]
FIG. 1 is a diagram for explaining a system configuration of an internal combustion engine 10 according to Embodiment 1 of the present invention. The system of this embodiment includes an internal combustion engine 10. The internal combustion engine 10 is an internal combustion engine that performs an operation using an Atkinson cycle (hereinafter referred to as a “lately closed Atkinson cycle”) realized by delaying the closing timing of the intake valve 28 from the intake bottom dead center. Although the number of cylinders of the internal combustion engine in the present invention is not particularly limited, here, the internal combustion engine 10 is an inline 4-cylinder engine as an example.
 内燃機関10の筒内には、ピストン12が設けられている。内燃機関10の筒内には、ピストン12の頂部側に燃焼室14が形成されている。燃焼室14には、吸気通路16および排気通路18が連通している。 In the cylinder of the internal combustion engine 10, a piston 12 is provided. A combustion chamber 14 is formed in the cylinder of the internal combustion engine 10 on the top side of the piston 12. An intake passage 16 and an exhaust passage 18 communicate with the combustion chamber 14.
 吸気通路16の入口近傍には、吸気通路16に吸入される空気の流量に応じた信号を出力するエアフローメータ20が設けられている。エアフローメータ20の下流には、スロットルバルブ22が設けられている。スロットルバルブ22の下流には、内燃機関10の吸気ポートに燃料を噴射するための燃料噴射弁24が配置されている。また、内燃機関10が備えるシリンダヘッドには、燃焼室14の頂部から燃焼室14内に突出するように点火プラグ26が取り付けられている。吸気ポートおよび排気ポートには、それぞれ、燃焼室14と吸気通路16、或いは燃焼室14と排気通路18を導通状態または遮断状態とするための吸気バルブ28および排気バルブ30が設けられている。 Near the inlet of the intake passage 16, an air flow meter 20 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 16 is provided. A throttle valve 22 is provided downstream of the air flow meter 20. A fuel injection valve 24 for injecting fuel into the intake port of the internal combustion engine 10 is disposed downstream of the throttle valve 22. An ignition plug 26 is attached to the cylinder head provided in the internal combustion engine 10 so as to protrude from the top of the combustion chamber 14 into the combustion chamber 14. The intake port and the exhaust port are respectively provided with an intake valve 28 and an exhaust valve 30 for bringing the combustion chamber 14 and the intake passage 16 or the combustion chamber 14 and the exhaust passage 18 into a conduction state or a cutoff state.
 吸気バルブ28および排気バルブ30は、それぞれ吸気可変動弁装置32および排気動弁装置34により駆動される。吸気可変動弁装置32の詳細な構成については、図2乃至図5を参照して後述する。また、排気通路18には、排気ガスを浄化するための触媒36が配置されている。 The intake valve 28 and the exhaust valve 30 are driven by an intake variable valve operating device 32 and an exhaust valve operating device 34, respectively. A detailed configuration of the intake variable valve operating device 32 will be described later with reference to FIGS. 2 to 5. A catalyst 36 for purifying the exhaust gas is disposed in the exhaust passage 18.
 図1に示すシステムは、ECU(Electronic Control Unit)40を備えている。ECU40の入力には、上述したエアフローメータ20やエンジン回転数を検出するクランク角センサ42等の内燃機関10の運転状態を検出するための各種センサが接続されている。また、ECU40の出力には、上述したスロットルバルブ22、燃料噴射弁24、点火プラグ26、および吸気可変動弁装置32等の内燃機関10の運転状態を制御するための各種アクチュエータが接続されている。ECU40は、それらのセンサ出力に基づいて、内燃機関10の運転状態を制御する。 The system shown in FIG. 1 includes an ECU (Electronic Control Unit) 40. Various sensors for detecting the operation state of the internal combustion engine 10 such as the air flow meter 20 and the crank angle sensor 42 for detecting the engine speed are connected to the input of the ECU 40. Further, various actuators for controlling the operating state of the internal combustion engine 10 such as the throttle valve 22, the fuel injection valve 24, the spark plug 26, and the intake variable valve operating device 32 are connected to the output of the ECU 40. . The ECU 40 controls the operating state of the internal combustion engine 10 based on those sensor outputs.
[可変動弁装置の構成]
 図2は、図1に示す吸気可変動弁装置32の概略構成を示す図である。図3および図4は、それぞれ、図1に示す吸気可変動弁装置32をカム軸50(および制御軸54)の軸方向(より具体的には、図2中の矢視Aの方向)から見た図である。より具体的には、図3は、吸気バルブ28の動作状態が後述する「弁稼動状態」にある場合の図であり、図4は、吸気バルブ28の動作状態が後述する「弁停止状態」にある場合の図である。尚、図2においては、内燃機関10が備える4つの気筒のうちの2つの気筒に関する構成についてのみ示し、残りの気筒に関してはその図示を省略している。
[Configuration of variable valve gear]
FIG. 2 is a diagram showing a schematic configuration of the intake variable valve operating apparatus 32 shown in FIG. 3 and 4 respectively show the intake variable valve operating apparatus 32 shown in FIG. 1 from the axial direction of the cam shaft 50 (and the control shaft 54) (more specifically, from the direction of arrow A in FIG. 2). FIG. More specifically, FIG. 3 is a diagram when the operation state of the intake valve 28 is in a “valve operating state” to be described later, and FIG. 4 is a “valve stop state” in which the operation state of the intake valve 28 is described later. FIG. In FIG. 2, only the configuration relating to two of the four cylinders included in the internal combustion engine 10 is shown, and the remaining cylinders are not shown.
 吸気可変動弁装置32は、後述する制御軸54の回転位置に応じて、吸気バルブ28の作用角およびリフト量(以下、両者を特に区別する必要のない場合は、単に「作用角」と略する)を連続的に変更可能な装置である。更に、吸気可変動弁装置32は、吸気バルブ28の作用角を連続的に変更する(小さくする)ことにより吸気バルブ28の動作状態を吸気バルブ28が閉弁位置(ゼロリフト)に維持される弁停止状態に変更できるように構成されている。 The intake variable valve operating apparatus 32 is simply abbreviated as “operating angle” when there is no need to distinguish between the operating angle and the lift amount of the intake valve 28 in accordance with the rotational position of the control shaft 54 to be described later. Is a device that can be continuously changed. Further, the intake variable valve operating device 32 is a valve that maintains the operation state of the intake valve 28 in the closed position (zero lift) by continuously changing (decreasing) the operating angle of the intake valve 28. It is configured so that it can be changed to a stopped state.
 吸気可変動弁装置32は、内燃機関10のクランク軸38により回転駆動されるカム軸50に設けられた駆動カム52と、カム軸50と平行に配置された制御軸54とを有している。駆動カム52は、図3中で反時計回りに回転する。 The intake variable valve operating apparatus 32 includes a drive cam 52 provided on a cam shaft 50 that is rotationally driven by a crankshaft 38 of the internal combustion engine 10, and a control shaft 54 that is disposed in parallel with the cam shaft 50. . The drive cam 52 rotates counterclockwise in FIG.
 また、吸気可変動弁装置32は、図2に示すように、制御軸54を所定角度範囲内で回転させることのできる制御軸駆動機構56を有している。制御軸駆動機構56は、制御軸54の一端側に固定されたウォームホイール58と、このウォームホイール58に噛み合うウォームギヤ60と、このウォームギヤ60を回転駆動するサーボモータ62とを備えている。サーボモータ62は、EDU(Electrical Driver Unit)64を介して、上述したECU40に接続されている。また、ECU40には、上記クランク角センサ42に加え、カム軸50の回転角度を検知するカム角センサ66と、制御軸54の回転位置(回転角度)を検知する制御軸位置センサ68とが接続されている。このような構成によれば、サーボモータ62の回転方向および回転量を制御することにより、制御軸54の回転位置(回転角度)を制御することができる。また、吸気可変動弁装置32は、制御軸54の回転位置に応じて、吸気バルブ28の作用角を連続的に変更可能な装置であるため、制御軸位置センサ68の出力値に基づいて、吸気バルブ28の作用角およびリフト量を取得することができる。 Further, as shown in FIG. 2, the intake variable valve operating device 32 has a control shaft drive mechanism 56 that can rotate the control shaft 54 within a predetermined angle range. The control shaft drive mechanism 56 includes a worm wheel 58 fixed to one end of the control shaft 54, a worm gear 60 that meshes with the worm wheel 58, and a servo motor 62 that rotationally drives the worm gear 60. The servo motor 62 is connected to the ECU 40 described above via an EDU (Electrical Driver Unit) 64. In addition to the crank angle sensor 42, the ECU 40 is connected with a cam angle sensor 66 that detects the rotation angle of the cam shaft 50 and a control shaft position sensor 68 that detects the rotation position (rotation angle) of the control shaft 54. Has been. According to such a configuration, the rotation position (rotation angle) of the control shaft 54 can be controlled by controlling the rotation direction and the rotation amount of the servo motor 62. Further, since the intake variable valve operating device 32 is a device that can continuously change the operating angle of the intake valve 28 in accordance with the rotational position of the control shaft 54, based on the output value of the control shaft position sensor 68, The operating angle and lift amount of the intake valve 28 can be acquired.
 更に、吸気可変動弁装置32は、揺動アーム(揺動カムアーム)70を有している。揺動アーム70は、制御軸54を中心として揺動可能に設置されている。揺動アーム70には、駆動カム52に対向する側に、スライド面72が形成されている。 Furthermore, the intake variable valve operating device 32 has a swing arm (swing cam arm) 70. The swing arm 70 is installed to be swingable about the control shaft 54. A sliding surface 72 is formed on the swing arm 70 on the side facing the drive cam 52.
 揺動アーム70と駆動カム52との間には、第1ローラ74および第2ローラ76が配置されている。第1ローラ74は、駆動カム52の周面と接触しており、第2ローラ76は、揺動アーム70のスライド面72と接触している。これらのローラ74、76は、同軸上に配置され、互いに独立して回転可能になっている。 A first roller 74 and a second roller 76 are disposed between the swing arm 70 and the drive cam 52. The first roller 74 is in contact with the peripheral surface of the drive cam 52, and the second roller 76 is in contact with the slide surface 72 of the swing arm 70. These rollers 74 and 76 are coaxially arranged and can be rotated independently of each other.
 ローラ74、76は、支持アーム78の先端部に支持されている。制御軸54には、図3中の下方向に突出した制御アーム80が設けられており、この制御アーム80の先端部に支持アーム78の基端部が回動可能に連結されている。これにより、制御軸54を回転させることで、ローラ74、76を移動させることができる。すなわち、図4に示す状態から制御軸54を反時計回りに回転させると、ローラ74、76は、制御アーム80および支持アーム78に引っ張られて、揺動アーム70の揺動中心(すなわち制御軸54の中心)に近づく。また、ローラ74、76が揺動中心に近い位置にある状態から制御軸54を時計回りに回転させると、ローラ74、76は、当該揺動中心から遠ざかる。 The rollers 74 and 76 are supported by the tip of the support arm 78. A control arm 80 protruding downward in FIG. 3 is provided on the control shaft 54, and a base end portion of a support arm 78 is rotatably connected to a distal end portion of the control arm 80. Thereby, the rollers 74 and 76 can be moved by rotating the control shaft 54. That is, when the control shaft 54 is rotated counterclockwise from the state shown in FIG. 4, the rollers 74 and 76 are pulled by the control arm 80 and the support arm 78, and the swing center of the swing arm 70 (ie, the control shaft). 54 center). Further, when the control shaft 54 is rotated clockwise from a state where the rollers 74 and 76 are close to the swing center, the rollers 74 and 76 move away from the swing center.
 図3は、ローラ74、76の位置を上記揺動中心から最も近づけた状態を示している。スライド面72は、揺動アーム70の先端側から揺動中心側に行くほど、駆動カム52の中心との間隔が徐々に狭まるような曲面(例えば円弧面)をなしている。 FIG. 3 shows a state in which the positions of the rollers 74 and 76 are closest to the swing center. The slide surface 72 has a curved surface (for example, a circular arc surface) in which the distance from the center of the drive cam 52 gradually decreases from the tip end side of the swing arm 70 toward the swing center side.
 揺動アーム70におけるスライド面72の反対側には、揺動カム面82が形成されている。揺動カム面82は、揺動アーム70の揺動中心からの距離が一定となるように形成された非作用面(基礎円部)82aと、この非作用面82aから続いて設けられ、揺動中心からの距離が次第に大きくなるように形成された作用面82bとで構成されている。このような揺動アーム70は、図示省略するロストモーションスプリングにより、図3中の時計回りに付勢されている。この付勢力により、揺動アーム70は第2ローラ76に押し当てられており、また、第1ローラ74は駆動カム52に押し当てられている。 A swing cam surface 82 is formed on the swing arm 70 on the opposite side of the slide surface 72. The oscillating cam surface 82 is provided continuously from the non-operating surface (basic circle portion) 82a formed so that the distance from the oscillating center of the oscillating arm 70 is constant, and the non-operating surface 82a. The working surface 82b is formed so that the distance from the moving center gradually increases. Such a swing arm 70 is urged clockwise in FIG. 3 by a lost motion spring (not shown). By this urging force, the swing arm 70 is pressed against the second roller 76, and the first roller 74 is pressed against the drive cam 52.
 吸気可変動弁装置32は、吸気バルブ28の弁軸をリフト方向へ押圧するロッカーアーム84を更に備えている。ロッカーアーム84は、図3中で揺動アーム70の下方に配置されている。ロッカーアーム84には、揺動カム面82に対向するようにロッカーローラ86が設けられている。ロッカーローラ86は、ロッカーアーム84の中間部に回転自在に取り付けられている。ロッカーアーム84の一端は、吸気バルブ28の弁軸端に当接されており、その他端は、油圧式ラッシュアジャスタ88によって支持されている。吸気バルブ28は、図示しないバルブスプリングによって、閉方向、すなわち、ロッカーアーム84を押し上げる方向に付勢されている。ロッカーローラ86は、この付勢力と油圧式ラッシュアジャスタ88とによって、揺動アーム70の揺動カム面82に押し当てられている。このような構成によれば、駆動カム52が回転すると、駆動カム52のカムリフトがローラ74、76を介して揺動アーム70に伝達することにより、揺動アーム70が揺動する。 The intake variable valve operating apparatus 32 further includes a rocker arm 84 that presses the valve shaft of the intake valve 28 in the lift direction. The rocker arm 84 is disposed below the swing arm 70 in FIG. The rocker arm 84 is provided with a rocker roller 86 so as to face the swing cam surface 82. The rocker roller 86 is rotatably attached to an intermediate portion of the rocker arm 84. One end of the rocker arm 84 is in contact with the valve shaft end of the intake valve 28, and the other end is supported by a hydraulic lash adjuster 88. The intake valve 28 is urged in a closing direction, that is, a direction in which the rocker arm 84 is pushed up by a valve spring (not shown). The rocker roller 86 is pressed against the swing cam surface 82 of the swing arm 70 by this urging force and the hydraulic lash adjuster 88. According to such a configuration, when the drive cam 52 rotates, the cam lift of the drive cam 52 is transmitted to the swing arm 70 via the rollers 74 and 76, so that the swing arm 70 swings.
 揺動アーム70には、スライド面72の先に、スライド面72の仮想延長線90よりも落ち込んだ面で構成されるロストモーション部92が形成されている。図5は、揺動アーム70の先端部分を拡大した斜視図である。図5に示すように、ロストモーション部92は、平面形状で形成されている。また、図4に示す状態では、第2ローラ76は、このロストモーション部92と接触している。この状態では、後述するように、駆動カム52が回転することで揺動アーム70が揺動しても、吸気バルブ28が閉弁位置に維持される弁停止状態となる。 In the swing arm 70, a lost motion portion 92 is formed at the tip of the slide surface 72. The lost motion portion 92 is formed by a surface that is lower than the virtual extension line 90 of the slide surface 72. FIG. 5 is an enlarged perspective view of the tip portion of the swing arm 70. As shown in FIG. 5, the lost motion portion 92 is formed in a planar shape. In the state shown in FIG. 4, the second roller 76 is in contact with the lost motion portion 92. In this state, as will be described later, even if the swing arm 70 swings due to the rotation of the drive cam 52, the intake valve 28 is maintained in the valve closing position.
 図4に示す弁停止状態から、制御軸54を反時計回りに回転させると、ローラ74、76が揺動アーム70の揺動中心に近づく方向に移動する。これにより、第2ローラ76がスライド面72と接触する状態となる。この状態では、駆動カム52が回転することで揺動アーム70が揺動するのに伴って、吸気バルブ28が開閉動作する。この状態を以下「弁稼動状態」という。 4, when the control shaft 54 is rotated counterclockwise from the valve stop state shown in FIG. 4, the rollers 74 and 76 move in a direction approaching the swing center of the swing arm 70. As a result, the second roller 76 comes into contact with the slide surface 72. In this state, the intake valve 28 opens and closes as the swing cam 70 swings as the drive cam 52 rotates. This state is hereinafter referred to as “valve operating state”.
 弁稼動状態において、駆動カム52がリフトしていないとき、すなわち駆動カム52の基礎円部が第1ローラ74と接触しているときには、ロッカーローラ86は揺動カム面82の非作用面82aと接触している。これにより、吸気バルブ28は閉じている。そして、駆動カム52がリフトし始め、揺動アーム70が図3中の反時計回りに揺動し始めると、ロッカーローラ86と揺動カム面82との接触点(以下「ロッカーローラ接触点」という)は、非作用面82aから作用面82bへ移行する。ロッカーローラ接触点が作用面82bに移行すると、ロッカーアーム84が押し下げられ、吸気バルブ28が開弁する。 When the drive cam 52 is not lifted in the valve operating state, that is, when the basic circle portion of the drive cam 52 is in contact with the first roller 74, the rocker roller 86 is in contact with the non-operation surface 82a of the swing cam surface 82. In contact. Thereby, the intake valve 28 is closed. When the drive cam 52 begins to lift and the swing arm 70 begins to swing counterclockwise in FIG. 3, the contact point between the rocker roller 86 and the swing cam surface 82 (hereinafter referred to as “rocker roller contact point”). Is transferred from the non-working surface 82a to the working surface 82b. When the rocker roller contact point shifts to the action surface 82b, the rocker arm 84 is pushed down and the intake valve 28 is opened.
 今、ローラ74、76が揺動アーム70の揺動中心に最も近い位置にあるとする。このときには、駆動カム52のカムリフトが揺動中心に近い位置において揺動アーム70に伝達されることになるので、揺動アーム70の揺動範囲(振れ幅)が大きくなる。このため、吸気バルブ28の作用角は、大きくなる。また、前述したように、揺動中心に近いほど、スライド面72と駆動カム52の中心との距離は小さい。よって、駆動カム52がリフトを開始する揺動アーム70の位置は、ローラ74、76が揺動中心に近づくほど、図3中の反時計回り側に移動する。このようなことから、揺動アーム70が揺動を開始した後、ロッカーローラ接触点が作用面82bに移行するまで(つまり吸気バルブ28がリフトし始めるまで)に要する揺動アーム70の回転量は、ローラ74、76が揺動中心に近いほど、小さくなる。このことからも、吸気バルブ28の作用角は、大きくなる。 Suppose now that the rollers 74 and 76 are at a position closest to the swing center of the swing arm 70. At this time, since the cam lift of the drive cam 52 is transmitted to the swing arm 70 at a position close to the swing center, the swing range (swing width) of the swing arm 70 is increased. For this reason, the operating angle of the intake valve 28 increases. Further, as described above, the closer to the swing center, the smaller the distance between the slide surface 72 and the center of the drive cam 52. Therefore, the position of the swing arm 70 at which the drive cam 52 starts to lift moves counterclockwise in FIG. 3 as the rollers 74 and 76 approach the swing center. For this reason, after the swing arm 70 starts swinging, the amount of rotation of the swing arm 70 required until the rocker roller contact point moves to the action surface 82b (that is, until the intake valve 28 starts to lift). Becomes smaller as the rollers 74 and 76 are closer to the swing center. This also increases the operating angle of the intake valve 28.
 逆に、ローラ74、76が揺動アーム70の揺動中心から遠い位置にあるとすると、駆動カム52のカムリフトは、揺動中心から遠い位置において揺動アーム70に伝達されることになる。このため、揺動アーム70の揺動範囲(振れ幅)が小さくなる。また、揺動アーム70が揺動を開始した後、ロッカーローラ接触点が作用面82bに移行するまでに要する揺動アーム70の回転量は、ローラ74、76が揺動中心から遠いほど、大きくなる。これらのことから、ローラ74、76が揺動中心から遠いほど、吸気バルブ28の作用角は小さくなる。 Conversely, if the rollers 74 and 76 are at a position far from the swing center of the swing arm 70, the cam lift of the drive cam 52 is transmitted to the swing arm 70 at a position far from the swing center. For this reason, the swing range (swing width) of the swing arm 70 is reduced. In addition, after the swing arm 70 starts swinging, the amount of rotation of the swing arm 70 required until the rocker roller contact point shifts to the action surface 82b increases as the rollers 74 and 76 become farther from the swing center. Become. For these reasons, the working angle of the intake valve 28 becomes smaller as the rollers 74 and 76 are farther from the swing center.
 以上説明したように、吸気可変動弁装置32では、弁稼動状態において、制御軸54の回転位置を図3中の反時計回り側により大きく変位させるほど、吸気バルブ28の作用角を連続的に大きくすることができ、逆に、制御軸54の回転位置を図3中の時計回り側により大きく変位させるほど、吸気バルブ28の作用角を連続的に小さくすることができる。更に、第2ローラ76がロストモーション部92と接触する位置にまで、制御軸54の回転位置を時計回り側に大きく変位させた場合には、図4に示すように、駆動カム52の回転に伴って揺動アーム70が揺動しても、ロッカーローラ接触点は非作用面82a内に留まり、作用面82bには到達しない状態となる。これにより、吸気バルブ28の動作状態を弁停止状態に移行させることができる。 As described above, in the intake variable valve operating apparatus 32, the operating angle of the intake valve 28 is continuously increased as the rotational position of the control shaft 54 is displaced more counterclockwise in FIG. Conversely, as the rotational position of the control shaft 54 is displaced more in the clockwise direction in FIG. 3, the operating angle of the intake valve 28 can be continuously reduced. Further, when the rotational position of the control shaft 54 is greatly displaced clockwise until the second roller 76 comes into contact with the lost motion portion 92, the drive cam 52 is rotated as shown in FIG. Accordingly, even if the swing arm 70 swings, the rocker roller contact point remains in the non-working surface 82a and does not reach the working surface 82b. Thereby, the operation state of the intake valve 28 can be shifted to the valve stop state.
 図6は、本発明の実施の形態1において用いられるバルブリフト特性を、従来から用いられているバルブリフト特性と対比して説明するための図である。より具体的には、図6(A)は、本実施形態において用いられるバルブリフト特性を示し、図6(B)は、従来から用いられているバルブリフト特性を示している。 FIG. 6 is a diagram for explaining the valve lift characteristics used in the first embodiment of the present invention in comparison with the conventionally used valve lift characteristics. More specifically, FIG. 6A shows the valve lift characteristics used in the present embodiment, and FIG. 6B shows the valve lift characteristics used conventionally.
 先ず、図6(A)中に示す大作用角θ1は、遅閉じアトキンソンサイクルを用いた運転(以下、「遅閉じアトキンソンサイクル運転」と略する)を実施する際に用いられる吸気バルブ28の作用角である。大作用角θ1では、吸気通路16への吸気の吹き返しが意図的に生ずる程度にまで吸気バルブ28の閉じ時期が十分に遅角されている。このような大作用角θ1は、内燃機関10の部分負荷領域において用いられるものである。より具体的には、部分負荷領域において遅閉じアトキンソンサイクル運転を実施する際には、要求負荷および要求エンジン回転数に応じて、吸気バルブ28の閉じ時期が大作用角θ1を上限とする所定範囲内で可変されるようになっている。 First, the large operating angle θ1 shown in FIG. 6A is the action of the intake valve 28 used when performing an operation using the slow closing Atkinson cycle (hereinafter abbreviated as “late closing Atkinson cycle operation”). It is a horn. At the large operating angle θ1, the closing timing of the intake valve 28 is sufficiently retarded to such an extent that the return of intake air to the intake passage 16 occurs intentionally. Such a large operating angle θ <b> 1 is used in the partial load region of the internal combustion engine 10. More specifically, when the slow closing Atkinson cycle operation is performed in the partial load region, the closing timing of the intake valve 28 is a predetermined range with the large operating angle θ1 as the upper limit, depending on the required load and the required engine speed. It can be changed within.
 次に、図6(A)中に示す大作用角θ2は、高エンジン回転数時に使用される作用角であり、内燃機関10が最高出力を発することができるように設定されたものである。この大作用角θ2は、上記の性格を有する値であるため、筒内に十分な空気量が充填されるように、吸気バルブ28の閉じ時期の進角によって上記大作用角θ1よりも小さな値に設定されている。 Next, the large working angle θ2 shown in FIG. 6A is a working angle used at a high engine speed, and is set so that the internal combustion engine 10 can emit the maximum output. Since this large working angle θ2 is a value having the above-described character, it is smaller than the large working angle θ1 depending on the advance angle at the closing timing of the intake valve 28 so that a sufficient amount of air is filled in the cylinder. Is set to
 次に、図6(A)中に示す中作用角θ3は、低速トルクが要求された際(内燃機関10の低速域においてトルクが要求された際)に使用される作用角である。ここでは、そのような中作用角θ3として、吸気バルブ28の閉じ時期が吸気下死点よりも遅角されているものを例示している。この中作用角θ3は、吸気温度に応じて吸気バルブ28の閉じ時期が可変されることで変化する値でもある。より具体的には、吸気バルブ28の閉じ時期は、吸気温度が高い場合にはノッキングの発生が懸念されるため、遅角されるようになっており、逆に、吸気温度が低い場合には筒内に充填される空気量を増やすために吸気下死点に向けて進角されるようになっている。尚、この場合の吸気バルブ28の閉じ時期の可変範囲は、一例として、クランク角度で概ね180~200°CA(基準は排気上死点)に設定される。 Next, the medium operating angle θ3 shown in FIG. 6A is an operating angle used when low speed torque is requested (when torque is requested in the low speed region of the internal combustion engine 10). Here, as such an intermediate operating angle θ3, an example in which the closing timing of the intake valve 28 is retarded from the intake bottom dead center is illustrated. This intermediate operating angle θ3 is also a value that changes as the closing timing of the intake valve 28 is varied in accordance with the intake air temperature. More specifically, the closing timing of the intake valve 28 is retarded when there is a concern about the occurrence of knocking when the intake air temperature is high, and conversely when the intake air temperature is low. In order to increase the amount of air filled in the cylinder, it is advanced toward the intake bottom dead center. In this case, as an example, the variable range of the closing timing of the intake valve 28 is set to 180 to 200 ° CA (reference is exhaust top dead center) in terms of crank angle.
 吸気可変動弁装置32では、上記大作用角θ1から上記中作用角θ3の間で、吸気バルブ28の作用角(およびリフト量)が連続的に可変されるようになっている(図3参照)。このように吸気バルブ28の作用角が可変される内燃機関10では、上述したように、上記大作用角θ1を用いた遅閉じアトキンソンサイクル運転の実施時に低速トルクが要求された場合には、上記中作用角θ3が得られるように、サーボモータ62により制御軸54が回転駆動される。そして、中作用角θ3に制御された後に、内燃機関10の負荷およびエンジン回転数の上昇に伴って、吸気バルブ28の閉じ時期の遅角により吸気バルブ28の作用角が、要求されたトルクの大きさに応じた値にまで拡大されていく。 In the intake variable valve operating apparatus 32, the operating angle (and lift amount) of the intake valve 28 is continuously varied between the large operating angle θ1 and the intermediate operating angle θ3 (see FIG. 3). ). As described above, in the internal combustion engine 10 in which the working angle of the intake valve 28 is variable, as described above, when low-speed torque is required when the slow-closing Atkinson cycle operation using the large working angle θ1 is performed, the above-described operation is performed. The control shaft 54 is rotationally driven by the servo motor 62 so that the intermediate working angle θ3 is obtained. Then, after being controlled to the medium operating angle θ3, as the load of the internal combustion engine 10 and the engine speed increase, the operating angle of the intake valve 28 becomes the required torque due to the delay of the closing timing of the intake valve 28. It will be expanded to a value according to the size.
 また、図6(A)に示すように、低速トルク要求時の中作用角θ3が得られる弁稼動状態を過ぎた位置にまで制御軸54が回転駆動された際に、吸気バルブ28の動作状態が急激に弁停止状態に移行するように、揺動アーム70のプロファイル(スライド面72とロストモーション部92)が形成されている。このような揺動アーム70のプロファイルの設定により、本実施形態では、吸気バルブ28の閉じ時期が吸気下死点近傍の所定範囲内にある時に、吸気バルブ28の動作状態が弁停止状態へ移行するように設定されている。より具体的には、揺動アーム70のプロファイルは、吸気バルブ28の閉じ時期が上記所定範囲内における吸気下死点よりも遅角側の時期である時に、吸気バルブ28の動作状態が弁停止状態へ移行するように形成されている。 Further, as shown in FIG. 6A, when the control shaft 54 is rotationally driven to a position past the valve operating state where the intermediate operating angle θ3 when the low speed torque is requested is obtained, the operating state of the intake valve 28 The profile of the swing arm 70 (the slide surface 72 and the lost motion portion 92) is formed so that the valve suddenly shifts to the valve stop state. With this setting of the swing arm 70 profile, in the present embodiment, when the closing timing of the intake valve 28 is within a predetermined range near the intake bottom dead center, the operating state of the intake valve 28 shifts to the valve stop state. It is set to be. More specifically, the profile of the swing arm 70 indicates that when the closing timing of the intake valve 28 is a timing retarded from the intake bottom dead center within the predetermined range, the operating state of the intake valve 28 is stopped. It is formed to shift to a state.
 一方、図6(A)に示すバルブリフト特性と対比するために参照する図6(B)に示す従来のバルブリフト特性は、吸気バルブの閉じ時期を吸気下死点に対して早めることで実現されるアトキンソンサイクル(ここでは、「早閉じアトキンソンサイクル」と称する)を用いた早閉じアトキンソンサイクル運転を実施する内燃機関に対して適用されたものである。図6(B)中における小作用角θ4は、当該早閉じアトキンソンサイクル運転を実施する際に用いられる吸気バルブ28の最小作用角である。尚、図6(B)中における大作用角θ2および中作用角θ3については、上述したものと同様である。 On the other hand, the conventional valve lift characteristic shown in FIG. 6B referred to for comparison with the valve lift characteristic shown in FIG. 6A is realized by accelerating the closing timing of the intake valve with respect to the intake bottom dead center. The present invention is applied to an internal combustion engine that performs an early closing Atkinson cycle operation using an Atkinson cycle (hereinafter referred to as an “early closing Atkinson cycle”). The small operating angle θ4 in FIG. 6B is the minimum operating angle of the intake valve 28 used when the fast closing Atkinson cycle operation is performed. Note that the large working angle θ2 and the medium working angle θ3 in FIG. 6B are the same as those described above.
 図6(B)に示す従来のバルブリフト特性を実現可能な可変動弁装置は、例えば、日本特開2008-121458号公報に開示されている。当該可変動弁装置では、図6(B)に示すように、小作用角θ4が得られる弁稼動状態を過ぎた位置にまで制御軸が回転駆動された際に、吸気バルブの動作状態が急激に弁停止状態に移行するように、揺動アームのプロファイルが形成されている。このような従来の構成によれば、図6(B)中に「本願実施形態との差」として示されている分だけ(すなわち、中作用角θ3と小作用角θ4との差分だけ)、本実施形態における弁停止状態への移行時期よりも進角側で弁停止状態に移行するようになる。 A variable valve operating apparatus capable of realizing the conventional valve lift characteristics shown in FIG. 6B is disclosed in, for example, Japanese Patent Application Laid-Open No. 2008-121458. In the variable valve operating apparatus, as shown in FIG. 6B, when the control shaft is rotationally driven to a position past a valve operating state where a small operating angle θ4 is obtained, the operating state of the intake valve suddenly changes. The profile of the swing arm is formed so as to shift to the valve stop state. According to such a conventional configuration, only the amount indicated as “difference from the embodiment of the present application” in FIG. 6B (that is, only the difference between the medium operating angle θ3 and the small operating angle θ4), The valve is shifted to the valve stop state on the advance side with respect to the timing of the shift to the valve stop state in the present embodiment.
 図7は、バルブリフト量と制御軸の回転角との関係を、本願実施形態と従来技術との間で比較して表した図である。
 吸気可変動弁装置32は、内燃機関10のフューエルカットの実行要求が出された際に吸気バルブ28の動作状態が弁停止状態に移行するように制御を行う。特に減速時においてフューエルカットが要求される状況下では、エンジン回転数が高いことが多い。その結果、フューエルカットの実行要求に伴う弁停止要求は、図7に示すように、吸気バルブ28の作用角が大作用角θ2付近に制御されている際に出されることが多い。
FIG. 7 is a diagram showing the relationship between the valve lift amount and the rotation angle of the control shaft in comparison between the embodiment of the present invention and the conventional technology.
The intake variable valve operating device 32 performs control so that the operation state of the intake valve 28 shifts to the valve stop state when a fuel cut execution request for the internal combustion engine 10 is issued. In particular, the engine speed is often high under conditions where fuel cut is required during deceleration. As a result, a valve stop request accompanying a fuel cut execution request is often issued when the operating angle of the intake valve 28 is controlled near the large operating angle θ2, as shown in FIG.
 上記のような大作用角θ2に制御されている弁稼動状態から弁停止状態への移行を行う場合、中作用角θ3を過ぎた位置において弁停止状態に急激に移行する本実施形態の構成によれば、小作用角θ4を過ぎた位置にまで作用角の変更が必要になる従来技術の構成に対し、弁停止状態に移行するまでに必要な制御軸の回転角(操作量)が小さくて済むようになる。これにより、上記移行を行う場合において、弁停止状態への移行に要する動作時間を短縮することができる。フューエルカットの実行時に触媒36の劣化抑制を図るためには、触媒36への新気流入を速やかに遮断するべく、できるだけ短い時間で弁停止状態に移行させたい。本実施形態の構成によれば、フューエルカットの要求時に現実に多く行われる大作用角θ2付近に制御されている弁稼動状態から弁停止状態への移行に要する動作時間を良好に短縮させられるので、弁停止により触媒36に新気を流入させない状態を速やかに実現できる。このため、従来技術の構成に対し、フューエルカットの要求時により早いタイミングで触媒36の劣化抑制の懸念を排除した状態としながらフューエルカットを実行に移すことが可能となる。 When the transition from the valve operating state controlled to the large operating angle θ2 as described above to the valve stopped state is performed, the configuration of the present embodiment in which the valve suddenly shifts to the valve stopped state at a position past the intermediate operating angle θ3. Accordingly, the rotation angle (operation amount) of the control shaft required to shift to the valve stop state is small as compared with the configuration of the prior art in which the change of the operation angle is required to a position beyond the small operation angle θ4. It will be over. Thereby, when performing the said transition, the operation time required for the transition to a valve stop state can be shortened. In order to suppress the deterioration of the catalyst 36 during the fuel cut, it is desired to shift to the valve stop state in as short a time as possible in order to quickly shut off the fresh air flow into the catalyst 36. According to the configuration of the present embodiment, it is possible to satisfactorily shorten the operation time required for the transition from the valve operating state controlled near the large operating angle θ2 that is actually performed when a fuel cut is requested to the valve stop state. Thus, it is possible to quickly realize a state in which fresh air does not flow into the catalyst 36 by stopping the valve. For this reason, it becomes possible to shift to the execution of the fuel cut while eliminating the concern about the suppression of the deterioration of the catalyst 36 at an earlier timing than when the fuel cut is requested.
 また、吸気バルブ28の閉じ時期が吸気下死点に近づくにつれ、内燃機関10の実圧縮比が高くなるので、ノッキングが発生し易くなる。上記従来の可変動弁装置の構成によれば、大作用角θ2に制御されている状態から弁停止状態に移行させる場合、吸気バルブの閉じ時期がノッキング発生の懸念の高い吸気下死点近傍の時期を通過したうえで、小作用角θ4を過ぎた位置にまで制御される。その結果、弁停止状態への移行中に、ノッキングが発生し易くなる(また、仮に弁停止状態への移行中に早い段階でフューエルカットが実行されている場合であっても、筒内に残留する燃料の存在によって同様にノッキングが発生し易くなる)。これに対し、本実施形態の吸気可変動弁装置32では、上述したように、吸気バルブ28の閉じ時期が吸気下死点よりも遅角側の時期にある時に、吸気バルブ28の動作状態が弁停止状態となるように揺動アーム70のプロファイルが形成されている。これにより、遅閉じアトキンソンサイクル運転を実施する内燃機関10において、吸気バルブ28の閉じ時期が吸気下死点近傍の時期を通過させないようにしつつ弁停止状態に移行させられるので、ノッキング発生への懸念を軽減しつつ、弁停止状態に速やかに移行させられるようになる。 Also, as the closing timing of the intake valve 28 approaches the intake bottom dead center, the actual compression ratio of the internal combustion engine 10 increases, so that knocking is likely to occur. According to the configuration of the conventional variable valve device described above, when shifting from the state controlled to the large operating angle θ2 to the valve stop state, the closing timing of the intake valve is in the vicinity of the intake bottom dead center where there is a high risk of occurrence of knocking. After passing the time, the position is controlled to a position past the small operating angle θ4. As a result, knocking is likely to occur during the transition to the valve stop state (in addition, even if the fuel cut is performed at an early stage during the transition to the valve stop state, it remains in the cylinder. Similarly, knocking is likely to occur due to the presence of fuel. In contrast, in the intake variable valve operating apparatus 32 of the present embodiment, as described above, when the closing timing of the intake valve 28 is at a timing retarded from the intake bottom dead center, the operating state of the intake valve 28 is changed. The profile of the swing arm 70 is formed so that the valve is stopped. As a result, in the internal combustion engine 10 that performs the slow-closing Atkinson cycle operation, the closing timing of the intake valve 28 is shifted to the valve stop state while preventing the timing near the intake bottom dead center from passing, so there is a concern about the occurrence of knocking. This makes it possible to promptly shift to the valve stop state.
 また、本実施形態の揺動アーム70のプロファイルが有するロストモーション部92は、平面形状で形成されている。これにより、ロストモーション部がスライド面の仮想延長線よりも落ち込んだ凹面で形成されている場合と比べ、中作用角θ3が得られる弁稼動状態から弁停止状態により早く移行させることが可能となる。また、ロストモーション部92を平面形状で形成する方が、凹面形状で形成するよりも製造上の作り勝手が良くなる。尚、弁稼動状態から弁停止状態により早く移行させるという点においては、ロストモーション部の構成は、平面形状に限らず、スライド面72の先端から変曲点を経てスライド面72と逆向きに湾曲する凸面で構成されていてもよい。 Further, the lost motion portion 92 included in the profile of the swing arm 70 of the present embodiment is formed in a planar shape. Thereby, compared with the case where the lost motion part is formed of a concave surface that is depressed more than the virtual extension line of the slide surface, it is possible to make the transition from the valve operating state where the intermediate working angle θ3 is obtained to the valve stopped state earlier. . In addition, it is easier to manufacture the lost motion part 92 in a planar shape than in a concave shape. In addition, in terms of making the transition from the valve operating state to the valve stop state earlier, the configuration of the lost motion part is not limited to a planar shape, and curves in the direction opposite to the slide surface 72 from the tip of the slide surface 72 via an inflection point. You may be comprised by the convex surface to do.
 また、吸気可変動弁装置32によれば、弁停止状態では、上記従来の可変動弁装置の構成に対し、ローラ74、76が揺動アーム70の揺動中心により近い位置にある状態で、ローラ74、76および揺動アーム70の動作が行われるようになる(図4参照)。これにより、揺動アーム70およびローラ74、76の慣性重量を軽減することができ、吸気可変動弁装置32の運動性が向上する。 Further, according to the intake variable valve operating apparatus 32, in the valve stop state, the rollers 74 and 76 are located closer to the swing center of the swing arm 70 than the configuration of the conventional variable valve apparatus. The operations of the rollers 74 and 76 and the swing arm 70 are performed (see FIG. 4). Thereby, the inertia weight of the swing arm 70 and the rollers 74 and 76 can be reduced, and the mobility of the intake variable valve operating apparatus 32 is improved.
 ところで、上述した実施の形態1においては、吸気バルブ28の閉じ時期が吸気下死点よりも遅角側の時期である時に、吸気バルブ28の動作状態が弁停止状態となるように、揺動アーム70のプロファイルが形成されている構成を例に挙げて説明を行った。しかしながら、本発明における可変部材のプロファイルは、必ずしも上記のものに限定されない。すなわち、吸気バルブの閉じ時期が吸気下死点近傍の所定範囲内にある時に当該吸気バルブの動作状態が弁停止状態となるように形成されたプロファイルであればよく、例えば、吸気バルブの閉じ時期が当該所定範囲内において吸気下死点にある時または吸気下死点よりも進角側にある時に、吸気バルブの動作状態が弁停止状態となるように、可変部材のプロファイルが形成されている構成であってもよい。 By the way, in the above-described first embodiment, when the closing timing of the intake valve 28 is a timing retarded from the intake bottom dead center, the intake valve 28 is oscillated so that the operating state of the intake valve 28 becomes the valve stop state. The configuration in which the profile of the arm 70 is formed has been described as an example. However, the profile of the variable member in the present invention is not necessarily limited to the above. That is, it may be a profile formed so that the operation state of the intake valve becomes a valve stop state when the intake valve close timing is within a predetermined range near the intake bottom dead center. For example, the intake valve close timing The profile of the variable member is formed so that the operating state of the intake valve becomes the valve stop state when the engine is at the intake bottom dead center within the predetermined range or at the advance side of the intake bottom dead center. It may be a configuration.
 尚、上述した実施の形態1においては、第2ローラ76が前記第1の発明における「相手部材」に、揺動アーム70が前記第1の発明における「可変部材」に、それぞれ相当している。
 また、揺動アーム70が前記第3の発明における「揺動部材」に、第2ローラ76および第1ローラ74が前記第3の発明における「中間部材」に、それぞれ相当している。
In the first embodiment described above, the second roller 76 corresponds to the “mating member” in the first invention, and the swing arm 70 corresponds to the “variable member” in the first invention. .
The swing arm 70 corresponds to the “swing member” in the third invention, and the second roller 76 and the first roller 74 correspond to the “intermediate member” in the third invention.
実施の形態2.
 次に、図8および図9を参照して、本発明の実施の形態2について説明する。
 図8は、本発明の実施の形態2における吸気可変動弁装置100の概略構成を説明するための図である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 8 is a diagram for explaining a schematic configuration of the intake variable valve operating apparatus 100 according to the second embodiment of the present invention.
 図8に示す吸気可変動弁装置100は、主に、駆動カム102が固定されたカム軸104と、吸気バルブ106の弁軸をリフト方向へ押圧する伝達要素(以下、「ロッカーアーム」と称する)108と、本発明における制御軸として機能する調節装置(以下、「制御軸」と称する)110と、駆動カム102、ロッカーアーム108、および制御軸110という3つの部材によって挟まれるように配置された旋回レバー(以下、「揺動アーム」と称する)112とを備えている。より具体的には、揺動アーム112は、制御軸110に設けられた曲線ディスク114のプロファイルに接触するように配置されている。尚、吸気可変動弁装置100の基本構成については、例えば、日本特表2004-521234号公報において詳述されている。 The intake variable valve operating apparatus 100 shown in FIG. 8 mainly includes a cam shaft 104 to which a drive cam 102 is fixed and a transmission element (hereinafter referred to as a “rocker arm”) that presses the valve shaft of the intake valve 106 in the lift direction. ) 108, an adjusting device (hereinafter referred to as “control shaft”) 110 that functions as a control shaft in the present invention, and a drive cam 102, a rocker arm 108, and a control shaft 110. And a turning lever 112 (hereinafter referred to as a “swinging arm”). More specifically, the swing arm 112 is disposed so as to contact the profile of the curved disk 114 provided on the control shaft 110. Note that the basic configuration of the intake variable valve operating apparatus 100 is described in detail, for example, in Japanese Patent Publication No. 2004-521234.
 図9は、図8に示す吸気可変動弁装置100が備える曲線ディスク114のプロファイルの設定を説明するための図である。
 図9に示すように、曲線ディスク114のプロファイルは、吸気バルブ106の作用角を上記大作用角θ1~中作用角θ3の間で変化させる際に揺動アーム112に接触する第1曲線部114aと、吸気バルブ106の動作状態が弁停止状態である際に揺動アーム112に接触する第2曲線部114bと、第1曲線部114aと第2曲線部114bとの間に介在する第3曲線部114cとを備えている。
FIG. 9 is a view for explaining the profile setting of the curved disk 114 provided in the intake variable valve operating apparatus 100 shown in FIG.
As shown in FIG. 9, the profile of the curved disk 114 indicates that the first curved portion 114a that contacts the swing arm 112 when the operating angle of the intake valve 106 is changed between the large operating angle θ1 and the intermediate operating angle θ3. A second curve portion 114b that contacts the swing arm 112 when the operation state of the intake valve 106 is a valve stop state, and a third curve that is interposed between the first curve portion 114a and the second curve portion 114b. Part 114c.
 より具体的には、第1曲線部114aは、第3曲線部114cからより大きく離れるに従って、制御軸110の軸中心からの距離が遠くなるように形成されており、最も離れた位置において大作用角θ1が得られるように構成されている。第2曲線部114bは、第1曲線部114aにおいて中作用角θ3を実現する位置よりも一段落ち込んだ面であって制御軸110の軸中心からの距離が変化しない円弧状の面として形成されている。そして、第3曲線部114cは、そのような第1曲線部114aと第2曲線部114bとの間を滑らかに接続するように形成されている。 More specifically, the first curve portion 114a is formed such that the distance from the axis center of the control shaft 110 increases as the distance from the third curve portion 114c increases. The angle θ1 is configured to be obtained. The second curved portion 114b is a surface that is one step lower than the position where the intermediate working angle θ3 is realized in the first curved portion 114a, and is formed as an arc-shaped surface that does not change the distance from the center of the control shaft 110. Yes. And the 3rd curve part 114c is formed so that between such a 1st curve part 114a and the 2nd curve part 114b may be connected smoothly.
 以上のような構成を有する吸気可変動弁装置100では、制御軸110の曲線ディスク114の回転位置を変化させることによって揺動アーム112の体勢を変化させることで、吸気バルブ106の作用角およびリフト量を連続的に変更することができ、また、吸気バルブ106の動作状態を弁停止状態に移行させることもできる。より具体的には、揺動アーム112が第1曲線部114aと接触している状態(連続可変区間)では、制御軸110(曲線ディスク114)を図9中で反時計回りに回転させることにより、吸気バルブ106の作用角を小さくすることができる。そして、曲線ディスク114において揺動アーム112と接触する部位が第1曲線部114aから第3曲線部114cを経て第2曲線部114bに移行するようになるまで制御軸110(曲線ディスク114)を回転させることにより、連続可変区間から速度急変区間を経たうえで、吸気バルブ106の動作状態を弁停止状態に移行させることができる。 In the intake variable valve operating apparatus 100 having the above-described configuration, the operating angle and lift of the intake valve 106 are changed by changing the posture of the swing arm 112 by changing the rotational position of the curved disk 114 of the control shaft 110. The amount can be continuously changed, and the operation state of the intake valve 106 can be shifted to the valve stop state. More specifically, when the swing arm 112 is in contact with the first curved portion 114a (continuous variable section), the control shaft 110 (curved disc 114) is rotated counterclockwise in FIG. The operating angle of the intake valve 106 can be reduced. Then, the control shaft 110 (curved disc 114) is rotated until the portion of the curved disc 114 that contacts the swing arm 112 moves from the first curved portion 114a to the second curved portion 114b via the third curved portion 114c. As a result, the operating state of the intake valve 106 can be shifted to the valve stop state after passing through the speed sudden change section from the continuously variable section.
 また、本実施形態においても、上述した実施の形態1と同様に、中作用角θ3を過ぎた位置において弁停止状態に急激に移行するように構成されており、中作用角θ3では、既述したように、吸気バルブ106の閉じ時期が吸気下死点よりも遅角されるようになっている。以上説明した本実施形態の吸気可変動弁装置100に構成においても、弁停止状態への移行に要する動作時間の短縮などの上述した実施の形態1と同様の効果を奏することができる。 Also in the present embodiment, similarly to the above-described first embodiment, the valve is suddenly shifted to the valve stop state at a position past the intermediate operating angle θ3. As described above, the closing timing of the intake valve 106 is retarded from the intake bottom dead center. Even in the configuration of the intake variable valve operating apparatus 100 of the present embodiment described above, the same effects as those of the first embodiment described above, such as shortening of the operation time required for shifting to the valve stop state, can be achieved.
 更に、本実施形態では、第1曲線部114aと第2曲線部114bとの間を滑らかに接続するように、曲線ディスク114の第3曲線部114cが形成されている。このような構成によれば、弁稼動状態と弁停止状態との間での吸気バルブ106の動作状態の移行を滑らかに行えるようにすることができ、これにより、内燃機関10の運転状態の急変やトルクショックの発生を良好に低減することができる。 Furthermore, in the present embodiment, the third curved portion 114c of the curved disk 114 is formed so as to smoothly connect the first curved portion 114a and the second curved portion 114b. According to such a configuration, it is possible to smoothly shift the operation state of the intake valve 106 between the valve operating state and the valve stop state, and thereby, a sudden change in the operating state of the internal combustion engine 10 can be achieved. And the occurrence of torque shock can be reduced satisfactorily.
 尚、上述した実施の形態2においては、揺動アーム112が前記第1の発明における「相手部材」に、制御軸110が有する曲線ディスク114が前記第1の発明における「可変部材」に、それぞれ相当している。
 また、揺動アーム112が前記第4の発明における「揺動部材」に、曲線ディスク114が前記第4の発明における「カム部材」に、それぞれ相当している。
In the second embodiment described above, the swing arm 112 is the “mating member” in the first invention, and the curved disk 114 of the control shaft 110 is the “variable member” in the first invention. It corresponds.
The swing arm 112 corresponds to the “swing member” in the fourth invention, and the curved disk 114 corresponds to the “cam member” in the fourth invention.
実施の形態3.
 次に、図10乃至図12を参照して、本発明の実施の形態3について説明する。
 図10は、本発明の実施の形態3における吸気可変動弁装置120の概略構成を説明するための図である。
Embodiment 3 FIG.
Next, Embodiment 3 of the present invention will be described with reference to FIGS.
FIG. 10 is a diagram for explaining a schematic configuration of the intake variable valve operating apparatus 120 according to the third embodiment of the present invention.
 図10に示す吸気可変動弁装置120は、主に、駆動カム122が固定されたカム軸124と、吸気バルブ126の弁軸をリフト方向へ押圧するロッカーアーム128と、軸方向に駆動される制御軸130と、駆動カム122の回転に伴って揺動する揺動アーム132とを備えている。より具体的には、揺動アーム132は、駆動カム122に接触するカムローラ134aを備える入力部134と、駆動カム122の作用力をロッカーアーム128に伝達する揺動カム136とを備えている。そして、後述するカム式アクチュエータ138によって制御軸130を軸方向に駆動することにより、制御軸130の軸方向位置に応じて、入力部134に対する揺動カム136の搭載角度が変化するように構成されている。尚、吸気可変動弁装置120の基本構成については、例えば、日本特許第3799944号公報において詳述されている。 The intake variable valve operating apparatus 120 shown in FIG. 10 is mainly driven in the axial direction, a cam shaft 124 to which the drive cam 122 is fixed, a rocker arm 128 that presses the valve shaft of the intake valve 126 in the lift direction. A control shaft 130 and a swing arm 132 that swings as the drive cam 122 rotates are provided. More specifically, the swing arm 132 includes an input unit 134 including a cam roller 134 a that contacts the drive cam 122, and a swing cam 136 that transmits the acting force of the drive cam 122 to the rocker arm 128. Then, by driving the control shaft 130 in the axial direction by a cam type actuator 138 to be described later, the mounting angle of the swing cam 136 with respect to the input unit 134 changes according to the axial position of the control shaft 130. ing. The basic configuration of the intake variable valve operating apparatus 120 is described in detail, for example, in Japanese Patent No. 3799944.
 図11は、図10に示す制御軸130を駆動するカム式アクチュエータ138の構成を説明するための図である。
 図11に示すように、カム式アクチュエータ138は、サーボモータ140と、サーボモータ140の出力軸140aに設けられた曲線ディスク142とを備えている。上述した制御軸130の一端は、スプリング144によって曲線ディスク142のプロファイルへの接触が常に維持されるように付勢されている。スプリング144は、制御軸130に設けられたストッパー130aと制御軸130の軸受146との間に介在するように配置されている。尚、サーボモータ140と曲線ディスク142との間に減速ギヤ部を設けるようにしてもよい。
FIG. 11 is a diagram for explaining a configuration of a cam type actuator 138 that drives the control shaft 130 shown in FIG.
As shown in FIG. 11, the cam actuator 138 includes a servo motor 140 and a curved disk 142 provided on the output shaft 140 a of the servo motor 140. One end of the control shaft 130 described above is biased by a spring 144 so that contact with the profile of the curved disk 142 is always maintained. The spring 144 is disposed so as to be interposed between a stopper 130 a provided on the control shaft 130 and a bearing 146 of the control shaft 130. A reduction gear portion may be provided between the servo motor 140 and the curved disk 142.
 図12は、図10に示す吸気可変動弁装置120が備える曲線ディスク142のプロファイルの設定を説明するための図である。
 図12に示す曲線ディスク142のプロファイルは、第1曲線部142a、第2曲線部142b、および第3曲線部142cとを備えている。尚、これらの各曲線部142a等の構成は、上記図9に示す曲線ディスク114のプロファイルの構成と同様であるため、ここではその詳細な説明を省略する。
FIG. 12 is a diagram for explaining the profile setting of the curved disk 142 provided in the intake variable valve operating apparatus 120 shown in FIG.
The profile of the curved disk 142 shown in FIG. 12 includes a first curved portion 142a, a second curved portion 142b, and a third curved portion 142c. The configuration of each of the curved portions 142a and the like is the same as the configuration of the profile of the curved disk 114 shown in FIG. 9, and therefore detailed description thereof is omitted here.
 以上のような構成を有する吸気可変動弁装置120では、サーボモータ140により曲線ディスク142を回転駆動させることによって制御軸130の軸方向位置(ストローク)を変化させることで、吸気バルブ126の作用角およびリフト量を連続的に変更することができ、また、吸気バルブ126の動作状態を弁停止状態に移行させることもできる。より具体的には、制御軸130が第1曲線部142aと接触している状態(連続可変区間)では、曲線ディスク142を図12中で時計回りに回転させることにより、吸気バルブ126の作用角を小さくすることができる。そして、曲線ディスク142において制御軸130と接触する部位が第1曲線部142aから第3曲線部142cを経て第2曲線部142bに移行するようになるまで曲線ディスク142を回転させることにより、連続可変区間から速度急変区間を経たうえで、吸気バルブ126の動作状態を弁停止状態に移行させることができる。 In the intake variable valve operating apparatus 120 having the above-described configuration, the operating angle of the intake valve 126 is changed by changing the axial position (stroke) of the control shaft 130 by rotationally driving the curved disk 142 by the servo motor 140. The lift amount can be continuously changed, and the operation state of the intake valve 126 can be shifted to the valve stop state. More specifically, in a state where the control shaft 130 is in contact with the first curved portion 142a (continuous variable section), the operating angle of the intake valve 126 is obtained by rotating the curved disc 142 clockwise in FIG. Can be reduced. The curve disk 142 is continuously variable by rotating the curve disk 142 until the portion of the curve disk 142 that contacts the control shaft 130 moves from the first curve portion 142a to the second curve portion 142b via the third curve portion 142c. The operating state of the intake valve 126 can be shifted to the valve stop state after passing through the speed sudden change section from the section.
 また、本実施形態においても、上述した実施の形態1と同様に、中作用角θ3を過ぎた位置において弁停止状態に急激に移行するように構成されており、中作用角θ3では、既述したように、吸気バルブ126の閉じ時期が吸気下死点よりも遅角されるようになっている。以上説明した本実施形態の吸気可変動弁装置120に構成においても、弁停止状態への移行に要する動作時間の短縮などの上述した実施の形態1と同様の効果を奏することができる。 Also in the present embodiment, similarly to the above-described first embodiment, the valve is suddenly shifted to the valve stop state at a position past the intermediate operating angle θ3. As described above, the closing timing of the intake valve 126 is retarded from the intake bottom dead center. Even in the configuration of the intake variable valve operating apparatus 120 of the present embodiment described above, the same effects as those of the first embodiment described above, such as shortening of the operation time required for shifting to the valve stop state, can be achieved.
 更に、本実施形態では、第1曲線部142aと第2曲線部142bとの間を滑らかに接続するように、曲線ディスク142の第3曲線部142cが形成されている。このような構成によれば、弁稼動状態と弁停止状態との間での吸気バルブ126の動作状態の移行を滑らかに行えるようにすることができ、これにより、内燃機関10の運転状態の急変やトルクショックの発生を良好に低減することができる。 Furthermore, in the present embodiment, the third curved portion 142c of the curved disc 142 is formed so as to smoothly connect the first curved portion 142a and the second curved portion 142b. According to such a configuration, it is possible to smoothly shift the operation state of the intake valve 126 between the valve operating state and the valve stop state, and thereby, the operating state of the internal combustion engine 10 is suddenly changed. And the occurrence of torque shock can be reduced satisfactorily.
 尚、上述した実施の形態3においては、制御軸130が前記第1の発明における「相手部材」に、曲線ディスク142が前記第1の発明における「可変部材」に、それぞれ相当している。
 また、入力部134および揺動カム136を有する揺動アーム132が前記第5の発明における「揺動部材」に、曲線ディスク142が前記第5の発明における「カム部材」に、それぞれ相当している。
In the third embodiment described above, the control shaft 130 corresponds to the “mating member” in the first invention, and the curved disk 142 corresponds to the “variable member” in the first invention.
Further, the swing arm 132 having the input part 134 and the swing cam 136 corresponds to the “swing member” in the fifth invention, and the curved disk 142 corresponds to the “cam member” in the fifth invention. Yes.

Claims (5)

  1.  吸気バルブのリフト量およびまたは作用角を連続的に変更させることにより当該吸気バルブの動作状態を当該吸気バルブが閉弁状態に維持される弁停止状態に変更可能な可変動弁装置であって、
     前記可変動弁装置が備える相手部材に接触するプロファイルを有する可変部材を備え、
     前記可変動弁装置は、前記可変部材の前記プロファイル上における前記相手部材の接触位置が変化することにより、前記吸気バルブのリフト量およびまたは作用角が変化するものであって、
     前記可変部材が有する前記プロファイルは、前記吸気バルブの閉じ時期が吸気下死点近傍の所定範囲内にある時に、前記吸気バルブの動作状態が前記弁停止状態へ移行するように形成されていることを特徴とする内燃機関の可変動弁装置。
    A variable valve operating device capable of changing the operation state of the intake valve to a valve stop state in which the intake valve is maintained in a closed state by continuously changing the lift amount and / or the operating angle of the intake valve,
    A variable member having a profile that contacts a mating member included in the variable valve operating device;
    The variable valve operating device changes a lift amount and / or a working angle of the intake valve by changing a contact position of the counterpart member on the profile of the variable member,
    The profile of the variable member is formed so that the operation state of the intake valve shifts to the valve stop state when the closing timing of the intake valve is within a predetermined range near the intake bottom dead center. A variable valve operating apparatus for an internal combustion engine characterized by the above.
  2.  前記可変動弁装置を備える内燃機関は、前記吸気バルブの閉じ時期を吸気下死点よりも遅らせることにより実現されるアトキンソンサイクルが適用されたものであって、
     前記可変部材が有する前記プロファイルは、前記吸気バルブの閉じ時期が前記所定範囲内における吸気下死点よりも遅角側の時期である時に、前記吸気バルブの動作状態が前記弁停止状態へ移行するように形成されていることを特徴とする請求項1記載の内燃機関の可変動弁装置。
    The internal combustion engine provided with the variable valve operating device is applied with an Atkinson cycle realized by delaying the closing timing of the intake valve from the intake bottom dead center,
    The profile of the variable member indicates that the operation state of the intake valve shifts to the valve stop state when the intake valve is closed at a timing retarded from the intake bottom dead center within the predetermined range. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the variable valve operating apparatus is configured as described above.
  3.  前記可変部材は、前記吸気バルブを駆動するカムと当該吸気バルブとの間に配置され前記カムの回転に伴って揺動する揺動部材であり、
     前記相手部材は、前記カムと前記揺動部材との間に配置され前記カムの作用力を前記プロファイルを介して前記揺動部材に伝達する中間部材であり、
     前記揺動部材が有する前記プロファイルは、前記吸気バルブのリフト量およびまたは作用角を所定の連続可変区間内で変化させる際に前記中間部材に接触するスライド面と、当該スライド面に対して前記揺動部材における前記揺動中心から遠い先端部に設けられ、前記吸気バルブの動作状態が前記弁停止状態である際に前記中間部材に接触するロストモーション部とを含み、
     前記ロストモーション部は、平面形状で形成されていることを特徴とする請求項1または2記載の内燃機関の可変動弁装置。
    The variable member is a swinging member that is disposed between a cam that drives the intake valve and the intake valve and swings as the cam rotates,
    The counterpart member is an intermediate member that is disposed between the cam and the swing member and transmits the acting force of the cam to the swing member through the profile.
    The profile of the swing member includes a slide surface that contacts the intermediate member when the lift amount and / or operating angle of the intake valve is changed within a predetermined continuous variable section, and the swing surface with respect to the slide surface. A lost motion portion that is provided at a distal end portion of the moving member far from the swing center, and that contacts the intermediate member when the operation state of the intake valve is the valve stop state,
    The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the lost motion portion is formed in a planar shape.
  4.  前記相手部材は、前記吸気バルブを駆動するカムと当該吸気バルブとの間に配置され前記カムの回転に伴って揺動する揺動部材であり、
     前記可変部材は、前記カムとの間で前記揺動部材の体勢を規定するカム部材であり、
     前記カム部材が有する前記プロファイルは、前記吸気バルブのリフト量およびまたは作用角を所定の連続可変区間内で変化させる際に前記揺動部材に接触する第1曲線部と、前記吸気バルブの動作状態が前記弁停止状態である際に前記揺動部材に接触する第2曲線部と、前記第1曲線部と前記第2曲線部との間に介在する第3曲線部とを備え、
     前記第3曲線部は、前記第1曲線部と前記第2曲線部との間を滑らかに接続するように形成されていることを特徴とする請求項1または2記載の内燃機関の可変動弁装置。
    The counterpart member is a swinging member that is disposed between a cam that drives the intake valve and the intake valve and swings as the cam rotates,
    The variable member is a cam member that regulates the posture of the swing member with the cam,
    The profile of the cam member includes a first curve portion that contacts the swing member when the lift amount and / or operating angle of the intake valve is changed within a predetermined continuous variable section, and an operating state of the intake valve. A second curved portion that contacts the rocking member when the valve is in a stopped state, and a third curved portion interposed between the first curved portion and the second curved portion,
    The variable valve for an internal combustion engine according to claim 1 or 2, wherein the third curved portion is formed so as to smoothly connect the first curved portion and the second curved portion. apparatus.
  5.  前記可変動弁装置は、前記吸気バルブを駆動するカムと当該吸気バルブとの間に配置され前記カムの回転に伴って揺動する揺動部材を更に備え、
     前記相手部材は、軸方向位置に応じて前記揺動部材の体勢を変更させる制御軸であり、
     前記可変部材は、前記制御軸を軸方向に変位させるカム部材であり、
     前記カム部材が有する前記プロファイルは、前記吸気バルブのリフト量およびまたは作用角を所定の連続可変区間内で変化させる際に前記揺動部材に接触する第1曲線部と、前記吸気バルブの動作状態が前記弁停止状態である際に前記揺動部材に接触する第2曲線部と、前記第1曲線部と前記第2曲線部との間に介在する第3曲線部とを備え、
     前記第3曲線部は、前記第1曲線部と前記第2曲線部との間を滑らかに接続するように形成されていることを特徴とする請求項1または2記載の内燃機関の可変動弁装置。
    The variable valve operating apparatus further includes a swinging member that is disposed between a cam that drives the intake valve and the intake valve, and that swings as the cam rotates.
    The counterpart member is a control shaft that changes the posture of the swing member according to an axial position;
    The variable member is a cam member that displaces the control shaft in the axial direction,
    The profile of the cam member includes a first curve portion that contacts the swing member when the lift amount and / or operating angle of the intake valve is changed within a predetermined continuous variable section, and an operating state of the intake valve. A second curved portion that contacts the rocking member when the valve is in a stopped state, and a third curved portion interposed between the first curved portion and the second curved portion,
    The variable valve for an internal combustion engine according to claim 1 or 2, wherein the third curved portion is formed so as to smoothly connect the first curved portion and the second curved portion. apparatus.
PCT/JP2010/050508 2010-01-18 2010-01-18 Variable valve device of internal combustion engine WO2011086702A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/050508 WO2011086702A1 (en) 2010-01-18 2010-01-18 Variable valve device of internal combustion engine
JP2011549835A JPWO2011086702A1 (en) 2010-01-18 2010-01-18 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/050508 WO2011086702A1 (en) 2010-01-18 2010-01-18 Variable valve device of internal combustion engine

Publications (1)

Publication Number Publication Date
WO2011086702A1 true WO2011086702A1 (en) 2011-07-21

Family

ID=44304005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050508 WO2011086702A1 (en) 2010-01-18 2010-01-18 Variable valve device of internal combustion engine

Country Status (2)

Country Link
JP (1) JPWO2011086702A1 (en)
WO (1) WO2011086702A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6833522B2 (en) * 2017-01-07 2021-02-24 ダイハツ工業株式会社 Vehicle control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073901A (en) * 1998-09-02 2000-03-07 Nippon Soken Inc Fuel supply control device for internal combustion engine
JP2006299875A (en) * 2005-04-19 2006-11-02 Honda Motor Co Ltd Valve system for internal combustion engine
JP2008121458A (en) * 2006-11-09 2008-05-29 Toyota Motor Corp Variable valve gear
JP2008223677A (en) * 2007-03-14 2008-09-25 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073901A (en) * 1998-09-02 2000-03-07 Nippon Soken Inc Fuel supply control device for internal combustion engine
JP2006299875A (en) * 2005-04-19 2006-11-02 Honda Motor Co Ltd Valve system for internal combustion engine
JP2008121458A (en) * 2006-11-09 2008-05-29 Toyota Motor Corp Variable valve gear
JP2008223677A (en) * 2007-03-14 2008-09-25 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine

Also Published As

Publication number Publication date
JPWO2011086702A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP4827865B2 (en) Variable valve operating device for internal combustion engine
JP4858729B2 (en) Variable valve gear
JPH05306607A (en) Valve system of internal combustion engine
JP4697011B2 (en) Variable valve mechanism
JP2006329022A (en) Intake control device for internal combustion engine
JP4381188B2 (en) Variable valve operating device for internal combustion engine
JP2010270701A (en) Control device for internal combustion engine
CN112539093A (en) Valve timing and lift variable device for internal combustion engine and adjusting mode thereof
JP5273258B2 (en) Control device for internal combustion engine provided with variable valve gear
WO2011086702A1 (en) Variable valve device of internal combustion engine
JP4031973B2 (en) Variable valve operating device for internal combustion engine
JP5533781B2 (en) Variable valve operating device for internal combustion engine
JP4085886B2 (en) Variable valve operating device for internal combustion engine
JP2008121458A (en) Variable valve gear
JP4474058B2 (en) Variable valve operating device for internal combustion engine
JP4367317B2 (en) Variable valve operating device for internal combustion engine
JP5310207B2 (en) Valve system for internal combustion engine
JP4225294B2 (en) Variable valve operating device for internal combustion engine
JP5020339B2 (en) Variable valve operating device for internal combustion engine
JP2006307786A (en) Variable valve mechanism device and controller equipped therewith for internal combustion engine
JP4481294B2 (en) Variable valve opening characteristics internal combustion engine
JP5556932B2 (en) Valve system for internal combustion engine
JP2008095668A (en) Variable valve system-equipped internal combustion engine
JP2007154688A (en) Variable valve gear of internal combustion engine
JP2009275587A (en) Valve system for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011549835

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843060

Country of ref document: EP

Kind code of ref document: A1