WO2008065726A1 - Telomelysin-containing agent for breaking antitumor tolerance - Google Patents

Telomelysin-containing agent for breaking antitumor tolerance Download PDF

Info

Publication number
WO2008065726A1
WO2008065726A1 PCT/JP2006/324316 JP2006324316W WO2008065726A1 WO 2008065726 A1 WO2008065726 A1 WO 2008065726A1 JP 2006324316 W JP2006324316 W JP 2006324316W WO 2008065726 A1 WO2008065726 A1 WO 2008065726A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
antitumor
gene
tumor
cells
Prior art date
Application number
PCT/JP2006/324316
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyoshi Fujiwara
Noriaki Tanaka
Yasuo Urata
Original Assignee
Oncolys Biopharma Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oncolys Biopharma Inc. filed Critical Oncolys Biopharma Inc.
Priority to PCT/JP2006/324316 priority Critical patent/WO2008065726A1/en
Publication of WO2008065726A1 publication Critical patent/WO2008065726A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/255Esters, e.g. nitroglycerine, selenocyanates of sulfoxy acids or sulfur analogues thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/407Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/475Quinolines; Isoquinolines having an indole ring, e.g. yohimbine, reserpine, strychnine, vinblastine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/761Adenovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to an anti-tumor drug resistance overcome agent comprising a recombinant virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence and an E1B gene in this order is incorporated.
  • Cancer cells acquire resistance to anticancer drugs through various molecular mechanisms, such as transporter activation and receptor kinase changes (Bush JA, Li G. Cancer chemoresistance: the relationship between p53 and multidrugtransporters. Int J Cancer 98:, 323 ⁇ 330, 2002.) Although research on anticancer drug resistance has been conducted, there is no solution yet. Cell death due to anticancer drugs is apoptosis, and resistance to anticancer drugs is apoptotic resistance (Schmitt CA, Lowe SW. Apoptosis and chemoresistance in transgenic cancer models.
  • telomerisin adenovirus
  • Cell death by telomerisin is a different mechanism of action from apoptosis.
  • telomerisin and the microtubule agent docetaxel each drug exhibited an independent antitumor effect, and as a result, a combination effect independent of each other was observed in vivo. Disclosure of the invention
  • An object of the present invention is to provide an anti-tumor drug resistance overcome agent comprising a recombinant virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E1B gene in this order is incorporated.
  • telomerisin showed an extremely excellent cell killing effect against antitumor agent-resistant tumor cells, and the present invention was completed. That is, the present invention is as follows.
  • An anti-tumor agent resistance-resolving agent comprising a recombinant virus incorporating a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E1B gene in this order.
  • the promoter for human telomerase is, for example, hTERT.
  • the virus is preferably adenovirus, for example.
  • Antitumor agents are, for example, platinum preparations, microtubule inhibitory activators, alkylating activators, antimetabolite activators, anticancer antibiotics and topoisomerase inhibitory activators as well as their pharmacologically acceptable It is possible to use at least one selected from the group consisting of salts.
  • antitumor agents include docetaxel, .paclitaxel, cisplatin, psulfan, methotrexate, fluorouracil, tegafur, bleomycin, adriamycin, mitomycin C, vinorelbine and irinotecan and their pharmacologically acceptable conditions. And at least one selected from the group consisting of salts.
  • the tumor is, for example, lung cancer, colon cancer, stomach cancer, breast cancer, esophageal cancer, head and neck cancer, liver cancer, pancreas cancer, gallbladder or bile duct cancer, prostate cancer, bladder cancer, cervical cancer, thyroid cancer, And at least one selected from the group consisting of ovarian cancer, leukemia, lymphoma, sarcoma, and mesenchymal tumor.
  • a pharmaceutical composition for combination therapy of a tumor that has acquired antitumor drug resistance comprising a substance having a use.
  • the substance having an antitumor action is, for example, 'docetaxel, pinolerubin, irinotecan and histone deacetylase inhibitory activity inhibitor and their pharmacological (group consisting of this acceptable salt). At least one selected from '.
  • a tumor that has acquired resistance to an antitumor agent comprising administering to a mammal a recombinant virus incorporating a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E1B gene in this order.
  • a method to suppress cell proliferation comprising administering to a mammal a recombinant virus incorporating a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E1B gene in this order.
  • Recombinant virus in which a polynucleotide containing a human telomerase promoter, _E1A gene, IRES sequence and E1B gene in this order is incorporated, and a substance having antitumor activity or pharmacologically acceptable
  • a method of inhibiting the growth of tumor cells that have acquired resistance to an antitumor agent comprising administering to a mammal in combination with a salt.
  • an example of a promoter for human telomerase is hTERT.
  • the virus is preferably an adenovirus.
  • Antitumor agents include, for example, platinum preparations, microtubule inhibitory activators, alkylating activators, antimetabolite activators, anticancer antibiotics and tobodies.Somerase inhibitor activators and their pharmacologically acceptable And at least one selected from the group consisting of possible salts.
  • antineoplastic agents include docetaxel, paclitaxel, cisplatin, psnorephan, methotrexate, funoleolauracinole, tegafunore, preomesin, adriamycin, mitomycin C, vinorelbine and irinotecan and their pharmacologically acceptable conditions. And at least one selected from the group consisting of possible salts.
  • Tumors include, for example, lung cancer, colon cancer, stomach cancer, breast cancer, esophageal cancer, head and neck cancer, liver cancer, knee cancer, gallbladder or bile duct cancer, prostate cancer, bladder cancer, cervical cancer, thyroid And at least one selected from the group consisting of adenocarcinoma, ovarian cancer, leukemia, lymphoma, sarcoma, and mesenchymal tumor.
  • the substance having an antitumor action is, for example, a group consisting of docetaxenole, pinorelbine, irinotecan and histone deacetylase inhibitory activity inhibitors and pharmacologically acceptable salts thereof. At least one selected from. Brief Description of Drawings
  • FIG. 1 shows the structure of OBP-301 (telomerisin) and OBP-401.
  • Figure 2 shows the characterization of drug resistance sublines. a) CDDP, b) Parkitaxel, —
  • FIG. 3 is a diagram in which anticancer agents were administered to various cancer cell resistant strains and the antitumor effect was observed with a microscope.
  • Fig. 4 is a diagram showing the results of an experiment in which cell death was performed.
  • Fig. 5 shows the analysis of MDR1 protein expression by Western blot.
  • FIG. 6 shows the analysis of CAE expression using flow cytometry.
  • FIG. 7 shows the results of an XTT assay performed after infecting a cancer cell resistant strain with OBP-301. 'a) Series A431,' b) Series DU145
  • FIG. 8 shows the results of an experiment in which a cancer cell resistant strain was infected with OBP-301 and then subjected to XTT assembly over time.
  • Fig. 9 shows the results of CBB staining after infection of a cancer cell resistant strain with OBP-301.
  • FIG. 10 is a view observed with a microscope after infecting a cancer cell resistant strain with OBP-301 and OBP-401.
  • FIG. 11 is a view observed with a microscope after infecting a cancer cell resistant strain with OBP-301 and OBP-401. Quantitative real time PCR was used to angularly analyze the intracellular growth of OBP-301.
  • Figure 12 shows the results of an experiment analyzing the intracellular growth of OBP-301 using quantitative real-time PCR. a) A431 series, b) DU145 series Best mode for carrying out the invention
  • the present invention relates to an anti-tumor drug resistance overcome agent comprising a recombinant virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence and an E1B gene in this order is incorporated.
  • a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence and an E1B gene in this order is incorporated.
  • the present invention relates to an anti-tumor agent resistance overcomer that exerts a cell-killing effect on tumor cells that have acquired anti-tumor agent resistance.
  • Anti-tumor drug resistance refers to the fact that the effect of a tumor cell gradually acquires resistance to these anti-tumor drugs when the treatment with the same anti-tumor drug is repeated.
  • Various molecular mechanisms such as transporter activation and receptor kinase changes are involved in the mechanism by which tumor cells acquire antitumor drug resistance.
  • resistance to antitumor agents can be said to be apoptosis resistance.
  • the recombinant virus contained in the antitumor agent resistance overcomer of the present invention starts to proliferate when the telomerase promoter is expressed.
  • the recombinant virus since the expression of telomerase is extremely high in tumor cells as compared with normal cells, the recombinant virus has a feature that it does not grow in normal cells but grows only in tumor cells.
  • the mechanism of cell death that this recombinant virus exerts on tumor cells is different from the mechanism of apoptosis by conventional anti-tumor agents, so that tumor cells are treated with anti-tumor agents. Even if it is controlled, it can proliferate and replicate in the cell without any influence. As a result, as described above, even when resistance to an antitumor agent is acquired in a tumor cell, the tumor cell can be specifically killed. Thus, as a result of repeated use of antitumor agents, tumor cells that have acquired antitumor agent resistance and no longer have a cytocidal effect are administered with the recombinant virus included in the present invention. It can be said that “resistance to anti-tumor agents can be overcome”. Therefore, the recombinant virus included in the present invention is useful as an anti-tumor drug resistance overcomer.
  • the recombinant virus used in the present invention refers to a virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E.1B gene in this order is incorporated into a genome.
  • the virus to be used is not particularly limited, but an adenovirus is preferable from the viewpoint of safety. Among adenoviruses, type 5 adenovirus is particularly preferable from the viewpoint of ease of use.
  • the E1A gene, the IRES sequence and the E1B gene are driven by the human telomerase promoter. Since the expression of telomerase is extremely high in tumor cells as compared with normal cysts, the telomerase promoter is expressed in tumor cells containing telomerase, whereby the recombinant virus included in the present invention grows. As a result, cell damage due to virus growth occurs in the tumor cells, and the recombinant virus used in the present invention can specifically kill the tumor cells.
  • telomerase promoter determines the transcription start site of telomerase and directly regulates its frequency. Telomerase is an enzyme that maintains telomere length by antagonizing shortening during replication of eukaryotic chromosomes.
  • the type of such telomerase promoter is not particularly limited, but for example, a promoter of human telomerase reverse transcriptase QiTERT) is preferable.
  • hTERT is a 1.4 kbp region upstream of its 5 'end, and many transcription factor binding sequences have been confirmed, and this region is thought to be the hTERT promoter. Among them, the 181 bp sequence upstream of the translation start site is downstream. It is an important core region for gene expression.
  • this core area As long as it contains a region, it can be used without limitation, but it is preferable to use an upstream sequence of about 378 bp completely including this core region as the hTERT promoter. It has been confirmed that the gene expression efficiency of this sequence of about 378 bp is equivalent to that of the 181 bp core region alone.
  • the base sequence of such hTERT is not shown in SEQ ID NO: 1.
  • hTERT hybridizes under stringent conditions with DNA consisting of a complementary base sequence to DNA consisting of the base sequence shown in SEQ ID NO: 1 in addition to the base sequence shown in SEQ ID NO: 1, and has hTERT activity Nucleotide base sequences are also included.
  • T stringent conditions for the above hybridization include lxSSC to 2xSSC, 0.1 to 0.5% SDS, and 42 to 68 ° C, and more specifically. For example, after pre-hybridization at ⁇ 68 ° C for 30 minutes or more, washing in 2xSSC, 0.1% SDS at room temperature for 5 to 15 minutes is performed 4 to 6 times. .
  • the ⁇ 1 ⁇ gene, the IRES sequence and the E1B gene are included in this order because the IRES sequence inserted between the E1A gene and the E1B gene is used. This is because the proliferation ability is increased.
  • the £ 1 gene and 18 genes are included in the E1 gene.
  • the E1 gene is one of the early gene (early: E) and late gene (late: L) related to DNA replication of the virus. It codes for a protein involved in the control of transcription of the viral genome.
  • the E1A protein encoded by the E1A gene activates transcription of genes (E1B, E2, E4, etc.) necessary for the production of infectious viruses.
  • the E1B protein encoded by the E1B gene promotes viral replication by helping the late gene (L gene) mRNA accumulate in the cytoplasm of the infected host cell and inhibit host cell protein synthesis. To do.
  • the base sequences of E1A gene and E1B gene are shown in SEQ ID NO: 2 and SEQ ID NO: 3, respectively.
  • E1A and E1B are stringent with DNA consisting of a base sequence complementary to the DNA consisting of the base sequences shown in SEQ ID NO: 2 and SEQ ID NO: 3 in addition to the base sequences shown in SEQ ID NO: 2 and SEQ ID NO: 3, respectively. And a base sequence encoding a protein that hybridizes under various conditions and has E1A and E1B activities, respectively.
  • stringent conditions in the hybridization include, for example, lxSSC to 2xSSC, 0.1 to 0.5% SDS, and 42 to 68. More specifically, after prehybridization at 60 to 68 ° C for 30 minutes or more, wash in 2x SSC, 0.1% SDS at room temperature for 5 to 15 minutes. The conditions for performing 6 times are mentioned.
  • IRESdnternal Ribosome Entry Site is a protein synthesis initiation signal specific to the Picornaviridae family, and since it has a sequence complementary to the 3 'end of 18S ribosomal RNA, it is thought to serve as a ribosome binding site. It has been. It is known that mRNA derived from the Picornaviridae virus is translated via this sequence. The translation efficiency from the IRES sequence is high, and protein synthesis is performed even in the middle of mRNA independent of the cap structure. Therefore, in this virus, both the E 1 A gene and the E 1B gene downstream of the IRES sequence are independently translated by the promoter of human telomerase.
  • the expression of the telomerase promoter is controlled independently by the E1A gene and the E1B gene. Therefore, compared to the case where either the E1A gene or the E1B gene is controlled by the telomerase promoter, virus growth Can be more strictly limited to cells having telomerase activity.
  • the IRES sequence is shown in SEQ ID NO: 4.
  • IRES is highly stringent under stringent conditions with DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 4, with the help of the base sequence shown in SEQ ID NO: 4.
  • a base sequence encoding a protein having IRES activity is also included.
  • stringent conditions in the above hybridization include lxSSC to 2xSSC, 0.1 to 0.5% 'SDS, and 42 to 68 ° C, and more specifically, 30 to 60 to 68 ° C. After prehybridization for at least 5 minutes, the conditions include washing in 2xSSC and 0.1% SDS at room temperature for 5 to 15 minutes, 4 to 6 times.
  • the promoter of human telomerase is located upstream of the E1 gene. This is because proliferation can be promoted in cells having telomerase activity.
  • the gene contained in the recombinant virus of the present invention can be obtained by ordinary genetic engineering techniques. The case where hTERT is used as a human telomerase is described below.
  • E1A-S By performing RT-PCR and / or DNA-PCR from cells expressing the E1 gene, such as 293 cells, using primers such as E1A-S, El A-AS, E1B-S, and E1B-AS After amplifying the E1A gene and E1B gene and confirming the sequence using a known method such as TA cloning, if necessary, the E 1 A and E 1B DNA fragments can be excised with a known restriction enzyme.
  • E1A-IRES-E1B can be inserted into a known vector (eg, pIRES), and then the hTERT promoter sequence excised with a restriction enzyme such as Mul or Bgllll can be inserted upstream of> E1A.
  • a known vector eg, pIRES
  • a restriction enzyme such as Mul or Bgllll
  • telomelysin a virus incorporating the cassette consisting of hTERT-ElA-IRES- ⁇ used in the present invention (FIG. 1a) is referred to as “telomerisin” or “Telomelysin”.
  • the following method can be used.
  • cells such as human colon cancer cell SW620, human lung cancer cell A549, H1299, etc. are plated on a culture plate containing an appropriate culture medium and cultured at 37 ° C in the presence of carbon dioxide.
  • As the culture solution DMEM, MEM, RPMI-1640 or the like generally used for animal cell culture is adopted, and serum, antibiotics, vitamins and the like can be added as necessary.
  • the cultured cells are infected by inoculating a certain amount of the virus, for example, 0.:! To 10 MOI, preferably 0.1 to 1 MOI (multiplicity of infection).
  • MOI is the ratio between the amount of virus (infectious unit) and the number of cells when a certain amount of cultured cells are infected with a certain amount of virus particles, and is used as an index for infecting cells with viruses. To confirm virus growth, collect virus-infected cells, extract DNA, and perform quantitative analysis by performing real-time PCR using a primer that targets the appropriate gene of the virus. be able to. 3. Antitumor agents
  • Antitumor agents refer to drugs that have the effect of inhibiting the growth and proliferation of tumor cells (cancer cells) that become tumor masses as a result of repeated cell division due to disorder of the body's regulatory mechanism and excessive cell proliferation. Also included are drugs that inhibit growth by inhibiting nucleic acid synthesis in cancer cells or inhibiting metabolism. Specifically, the following alkylation activators, antimetabolite activators, antibiotics, microtubule inhibitor activators, platinum preparations, topoisomerase inhibitor activators, etc. Absent. These antitumor agents may form pharmacologically acceptable salts.
  • Alkylation activator This preparation has the effect of introducing an alkyl group into the nucleic acid protein of cancer cells to cause cell damage.
  • alkyl group For example, carbo, kon, psulfan (mustard drug), dimustine ( Nitrosourea)).
  • Antimetabolite active agent This preparation has the action of antagonizing enzymes in the metabolic process and inhibiting cell synthesis, such as methotrexate (folic acid), mercaptopurine, (purine), Examples include cytarabine (pyrimidine), fluorouracil, tegafur, and carmofur.
  • Antibiotic examples include anti-cancer activity, actinomycin D, bleomycin, adriamycin, mitomycin C and the like.
  • Microtubule inhibitory active agent This preparation acts on microtubules and exhibits an antitumor effect. For example, docetaxel, paclitaxel (taxane), vinorelbine, pinklistin, vinblastine (alkaloid) Can be mentioned.
  • Platinum preparation This preparation has an action of inhibiting DNA synthesis by constituting intra-DNA chain or inter-chain bond or DNA protein bond, and examples thereof include cisplatin, alpoplatin, nedaplatin and the like. .
  • Topoisomerase inhibitor Irinotecan (topoisomerase I inhibitor), podophyllotoxin derivative (tobosomerase II inhibitor), which inhibits topoisomerase. What is topoisomerase?
  • the antitumor agent in the present invention is preferably a microtubule inhibitory activity '"herbal agent and a platinum preparation, and more preferably docetaxel and cisbratin, but is not limited thereto. It is not a thing.
  • Docetaxel is classified as a taxane among the above microtubule inhibitors and is mainly applied to the treatment of breast cancer and non-small cell lung cancer.
  • Docetaxel is obtained as a semi-synthetic product from Sewyichii needle extract, which promotes polymerization with tubulin and suppresses microtubule depolymerization as well as microtubule formation and stops cell mitosis. It has a function.
  • Cisbratin is mainly applied to the treatment of testicular tumor, bladder cancer, renal pelvic and ureteral tumor, prostate cancer, ovarian cancer, 'head and neck cancer, lung cancer,' esophageal cancer, cervical cancer.
  • the types of tumor (cancer) cells to which the antitumor agent resistance-resolving agent of the present invention acts are not limited, and all types of tumor cells can be used.
  • leukemia, lymphoma, sarcoma, mesenchymal tumor This is effective.
  • Most of the tumor cells derived from chick tissue show an increase in telomerase activity, and the antitumor agent resistance overcomer of the present invention generally acts on tumor cells whose proliferation has been activated by such telomerase activity. sell.
  • inorganic acid salts for example, hydrochloride, hydrobromide, sulfate, nitrate, perchlorate, phosphate
  • organic acid salts for example, vinegar Acid salt, trifluoroacetate, maleate, oxalate, tartrate, malonate, succinate, fumarate, sulfonate, malate, etc.
  • organic sulfonate eg, methanesulfonate Salts, trifluoromethanesulfonate, ethanesulfonate, benzenesulfonate, toluenesulfonate, etc.
  • amino acid salts eg aspartate, glutamate, etc.
  • quaternary amine salts alkali metal salts (eg, Sodium salt, strong salt, etc.), alkaline earth metal salt (eg, magnesium salt, calcium salt, etc.).
  • the antitumor agent resistance overcomer of the present invention is characterized in that it comprises a recombinant virus in which a polynucleotide containing a human telomerase promoter, an E 1A gene, an IRES sequence, and an E1B gene in this order is incorporated.
  • telomerisin the mechanism of action of cell death by telomerisin on tumor cells is different from the mechanism of action of apoptosis caused by conventional anticancer drugs. This is achieved by the nature of telomerisin, such that even when treated, the cells can proliferate and replicate in the cells without any influence.
  • the anti-tumor agent resistance overcomer of the present invention can be applied to the affected area as it is, or any known method, for example, injection such as vein, muscle, intraperitoneal or subcutaneous, or nasal cavity, oral cavity or It can also be introduced into a living body (target cells or organs) by inhalation from the lung, oral administration, intravascular administration using a catheter or the like.
  • it can be used as it is after handling or squeezing by a method such as freezing, or it can be used as it is, or a known pharmaceutically acceptable carrier such as an excipient, a bulking agent, a binder, a lubricant, etc. (Including buffering agents, tonicity agents, chelating agents, coloring agents, preservatives, fragrances, flavoring agents, sweetening agents, etc.) and the like.
  • the anti-tumor agent resistance overcomer of the present invention includes tablets, capsules, powders, granules, pills, liquids, syrups and other oral administration agents, injections, external preparations, suppositories, eye drops, etc. Depending on the dosage form, it can be administered orally or parenterally. Preferably, local injection into muscles, abdominal cavity, etc., injection into veins, etc. are exemplified. The dose is appropriately selected according to the type of active ingredient, administration route, administration subject, patient age, body weight, sex, symptom and other conditions.
  • the daily dose of the virus included in the present invention is 10 6 to about lOnPFl plaque forming units), preferably about 10 9 to lOuPFU, can be administered once a day, or can be divided into several times. Further, when using the virus of the present invention, it is possible to suppress the immunity of the living body by using a known immunosuppressive agent or the like so that the virus can be easily infected.
  • the virus of the present invention can be used as a pharmaceutical composition in combination with at least one substance having antitumor activity.
  • the substance having an antitumor action of the present invention refers to the growth and proliferation of tumor cells (cancer cells) that become tumor masses as a result of cell proliferation that is disrupted due to disorder of the body's regulatory mechanism and cell overgrowth.
  • tumor cells cancer cells
  • Substances that have the action of suppressing cancer including substances that suppress the nucleic acid synthesis of cancer cells or inhibit metabolism by inhibiting metabolism. Specific examples include the following.
  • Antibiotics actinomycin D, bleomycin, adriamycin, mitomycin C, etc.
  • Substances having microtubule inhibitory activity docetaxel, paclitaxel, pinolenolevin, pinklistin, vinblastine, etc.
  • Substances having topoisomerase inhibitory activity irinotecan, podophyllotoxin derivatives, etc.
  • the substances having antitumor activity include pharmaceutically acceptable salts. Examples of such salts include the salts described above.
  • the dose of the substance having an antitumor activity or a pharmaceutically acceptable salt thereof included in the present invention also depends on the type of active ingredient, administration route, administration subject, patient age, body weight, sex, symptom and other conditions. It is selected appropriately. For example, in the case of docetaxel, usually, once a day in adults, 60mg / m 2 of body surface area over a period of over one hour more than 1 intravenous drip infusion at 3-4 week intervals. The dose may be adjusted according to the symptoms. However, the highest dose once a 70mg / m 2.
  • irinotecan for example, irinotecan hydrochloride is usually administered to an adult once a day, 150 mg / m 2 intravenously 3-4 times at 2-week intervals, and the drug is withdrawn for at least 3 weeks. This can be repeated as one course.
  • the combined use of the recombinant virus contained in the antitumor agent regimen overcomer of the present invention and the substance having an antitumor action can suppress the growth of tumor cells.
  • the mode of combination is not limited to the mode in which the recombinant virus and the substance having an antitumor effect are mixed and administered at the same time, and the mode in which either one is administered first and the other is administered later is also possible. included.
  • both a recombinant virus and an antitumor substance are contained in one treatment schedule, they are included in the “combination” in the present invention. Specifically, the following treatment methods are mentioned, for example.
  • a substance having antitumor activity can be administered after telomerisin is administered.
  • Telomerisin may be administered intratumorally and at the same time a substance having antitumor activity may be administered systemically. In animal experiments, a clear concomitant effect is recognized by simultaneous administration as described above.
  • telomerisin it is also possible to administer telomerisin after administering the substance having antitumor activity. Administration of substances with anti-tumor activity may be short-term or long-term.
  • the antitumor agent resistance overcomer of the present invention is considered to have a very low possibility of causing side effects for the following reasons, and can be said to be a very safe preparation.
  • the virus of the present invention has a proliferative ability, it can be used at a lower concentration than a non-proliferative virus used in normal gene therapy.
  • an XTT assay can be performed.
  • XTT (2,3 bis [2-Methoxy 4-nitro-5-sulfpphenyl] -2H-tetrazolium-5-carboxyanilide inner salt) assay measures the activity of living cells by dehydrogenase of mitochondria in living cells This is a suitable method for monitoring cytotoxicity in vitro. The following is a detailed explanation of the XTT Atsay.
  • the XTT solution shows a yellow color when it does not contain phenol red or when dissolved in a balanced salt solution.
  • the mitochondrial dehydrogenase of the viable cells cleaves the tetrazolium ring of XTT and becomes soluble in aqueous solution. Colored formazan crystals are produced.
  • an electron conjugate substance such as phenazine methosulfate (PMS) is often added to the reaction solution as a reduction accelerator. Then, the cytotoxicity of the desired substance can be measured by measuring the resulting orange solution by the colorimetric method by utilizing the change in the amount of formazan produced by increasing or decreasing the number of cells.
  • the recombinant virus of the present invention is infected at an appropriate concentration (MOI: multiplicity of infection) to various cancer cells cultured in vitro. After culturing the cells under appropriate conditions, various concentrations of antitumor agents are administered to the virus-infected cell culture. After virus infection, after culturing for an appropriate period, the above XTT assembly can be performed to analyze the antitumor effect.
  • MOI multiplicity of infection
  • Adenoviruses infect and enter cells via the Coxsackie virus adenovirus receptor (CAR), but the efficiency of virus infection is reduced in cancer cells that are negative for CAE. Thus, the more CAR expression in cancer cells, the easier adenovirus enters the cancer cells.
  • Whether or not CAR is expressed in tumor cells may be determined by analyzing CAE expression using flow cytometry after culturing various tumor cells under appropriate conditions.
  • the anticancer drug FR901228 (Fujisawa Pharmaceutical Co., Ltd. (currently Astellas Pharma Inc.)) can enhance the expression of CAR in cancer cells.
  • FR901228 when used in combination with the recombinant adenovirus of the present invention, it is preferable in that it also has the action of improving the infection efficiency of the combined recombinant adenovirus in tumor cells.
  • Flow cytometry is a method of measuring the size of individual cells, DNA content, etc. in a cell population by measuring the fluorescence emitted from individual particles by flowing a cell suspension at high speed. Flow cytometry not only analyzes the differences in the relative size, shape, and internal structure of each cell, but also measures fluorescence intensity and type of fluorescence by fluorescent labeling to identify cells. And the abundance ratio of various cells constituting the cell group can be analyzed in a short time.
  • the nucleus Since the cell membrane cannot maintain its state due to cell death, the nucleus is easily stained with PI (propidium iodide) described later. Therefore, the amount of DNA and the cell cycle can be determined from the result of nuclear staining with PI.
  • the effect of the recombinant virus in the anti-tumor drug resistance overcoming agent of the present invention on the target cell cycle is determined by PI using the flow cytometry described above to stain the nucleus. Can be analyzed. Tumor cells are considered to be highly malignant when the proportions of S phase and G2 / M phase in the cell cycle are high. Therefore, it can be said that an antitumor effect is observed if a result that suppresses the ratio of G2 / M phase is obtained.
  • the proliferation of the recombinant virus in the target cell of the antitumor agent resistance overcomer of the present invention can be measured, for example, using quantitative real-time PCR as follows. In other words, after culturing the recombinant virus with an anti-tumor agent for an appropriate period, collect the virus-infected cells, extract the DNA, and use real-time PCR with primers that target the appropriate gene of the virus. By performing the above, it is possible to quantitatively analyze an appropriate gene possessed by the virus.
  • a gene encoding a fluorescent substance is incorporated into the recombinant virus of the present invention
  • cells in which the virus has been propagated are irradiated with excitation light to give a predetermined fluorescence (for example, in the case of GFP). Emits green fluorescence), allowing virus growth in cells to be visualized.
  • a predetermined fluorescence for example, in the case of GFP
  • GFP fluorescence expression is seen in the cell.
  • It is also possible to observe virus-infected cells over time by observing the expression of GFP fluorescence over time using a CCD camera.
  • Cells can also be labeled and detected in real time in the body.
  • the present invention will be further described by way of examples. However, the present invention is not limited to these examples.
  • RT-PCR was performed under the following conditions using RNA extracted from human fetal kidney cells 293 cells using a known method and the following specific primers (E1A-S, El A-AS). The bp E1A gene was amplified.
  • E1A-S 5'-aca ccg gga ctg aaa atg ag-3 '
  • DNA-PCR was performed from the DNA extracted from 293 cells using the following primers (E 1B-S, E 1B-AS) at 4 ° C for 5 min. To amplify the l, 822 bp E 1B gene .
  • the PCR solution composition and reaction conditions were the same as for the E1A gene.
  • E1B-S 5'-ctg acc tea tgg agg ctt gg-3 '(SEQ ID NO: 7)
  • E1B-AS 5 'gcc cac aca ttt cag tac ctc-3' (SEQ ID NO: 8) TA Cloning of each PCR product (TA Cloning Kit Dual Promoter;
  • DNA fragments of 911 bp (ElA) and 1836 bp (ElB) were cut out with the restriction enzyme EcoRI.
  • E1A was inserted into the Mul cleavage site of pIRES Vector I (CLONTECH), and E1B was inserted into the Sail site in the forward direction (E1A-IRES-E1B).
  • a 455 bp hTERT promoter sequence excised with restriction enzymes Mul and Bglll was inserted into the Xhol site upstream of E 1A of E 1A IRES-E 1B in the forward direction (phTERT-E 1A- IRES-E 1B)
  • CMV cytomegalovirus
  • a 4,38 lbp sequence was excised from pSh-hAIB using restriction enzymes I-Ceul and Pl-Scel and inserted into Adeno'X Viral DNA of Adeno-X Expression System (CLONTECH) ⁇ (AdenoX hAIB) AdenoX-hAIB After linearization by treatment with the restriction enzyme Pacl, 293 cells were transfected to produce an infectious recombinant adenovirus (OBP-301; Telomelysin; Telomelysin).
  • Figure la shows a schematic diagram of the duplicate cassette incorporated into telomerisin.
  • pEGFP-l (CLONTECH) was cleaved with Agel / Nhel, smoothed with a talenau fragment, and self-ligated (pEGFP-N2).
  • This pEGFP-N2 was cleaved with Nsil / Aflll, blunted with T4 DNA polymerase, and Bglll site was prepared using Bglll linker. This Bglll fragment was inserted into the BamHI site of pHMl l (pHMl l-EGFP-N2)
  • a 4381 bp sequence was excised from the prepared recombinant gene using restriction enzymes I-Ceul and PI-SceI and inserted into Adeno—X Viral DNA of Adeno—X Expression System (CLONTECH) (AdenoX—hAIB) AdenoX—hAIB After linearization by Pacl treatment, 293 cells were transfected to produce infectious recombinant adenovirus (hereinafter referred to as “OBP-401”) (Fig. Lb).
  • OBP-401 infectious recombinant adenovirus
  • CD431 (cisplatin) is administered to A431 / CDDP2 cells, human prostate cancer cells DU145 cells, and clone 2, 3, and 4 cells that have acquired resistance are administered paclitaxel, and how much antitumor resistance each cell has Confirmed whether to win.
  • cells are seeded at a density of 1,000 cells / well in a 96-well plate, and CDDP 0, 0.1, 1, 3, 10, 30, 50, ⁇ or paclitaxel 0, 0.1, 1, 2, 5, 10, 50, 100 ⁇ was added.
  • a kit Roche Diagnostics
  • the culture solution is removed from the well, and the reaction solution containing the sputum reagent is prepared and added and cultured. About 4 hours later, the absorbance was measured with a microtiter plate (ELISA) reader, the number of viable cells was calculated, and the antitumor effect was confirmed.
  • ELISA microtiter plate
  • the relative resistance of the parent strain was about 3-4 times higher in the A431 system and about 6-7 times higher in the DU145 system (Fig. 2).
  • A431 and CDDP resistance A431 strain the DU145 and paclitaxel-resistant DU145 strain was CDDP 10 mu Micromax respectively, paclitaxel ⁇ infected. The specimen was observed with a microscope on the third day after infection. As a result, a marked antitumor effect was observed in both parental strains, but resistance was confirmed in resistant strains (Fig. 3).
  • A431 / P is the parent strain
  • A431 / CDDP1 and A431 / CDDP2 are resistant strains.
  • Dul45 / P is the parent strain and clones 2-4 are resistant strains. '
  • A431 and CDDP resistant strains, DU145 and paclitaxel resistant strains were infected with CDDP and paclitaxel, respectively, and CBB staining was performed 7 days after infection. As a result, both the parent strains showed a marked antitumor effect, but the resistant strains were also resistant to high concentrations of anticancer drugs (Fig. 4).
  • MDR1 multidrug resistance gene
  • CAR Coxsaki virus-adenovirus receptor
  • A431 and CDDP resistant strains were infected with OBP-301 and OBP-401 at 10 MOI for 2 hours. 5 days after infection Morphological changes and fluorescence expression were observed with an fc fluorescence inverted microscope. As a result, in the bright field, although it was slightly resistant to A431 / P, a marked cell killing effect was observed in the resistant strain. In addition, when the fluorescence of OBP-401 was observed, strong fluorescence was observed in all cell lines, indicating that intracellular proliferation was sufficient (FIG. 10). '
  • DU145 and paclitaxel resistant strains were infected with OBP-301 and OBP-401 at 0.1 MOI for 2 hours, and observed with a microscope on the fifth day after infection.
  • a marked cell killing effect was observed in all parental and resistant strains.
  • fluorescence strong fluorescence was observed in all cell lines, indicating that intracellular proliferation was sufficient (Fig. 11).
  • ABP and 301 were infected with OBP-301 at 0.1 MOI or 1 MOI for 2 hours using PCR. Cells were collected at 2, 24, 48, and 72 hours after infection, DNA was extracted, and viral growth was quantitatively analyzed by real-time PCR.
  • an antitumor agent resistance overcome agent comprising a recombinant virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence and an E1B gene in this order is incorporated.
  • the anti-tumor drug resistance overcomer of the present invention is useful in that it can be applied as a new therapeutic strategy for anti-tumor drug resistant tumors. Sequence listing free text

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

It is intended to provide an agent for breaking antitumor tolerance. This agent for breaking antitumor tolerance is characterized by containing a recombinant virus carrying a polynucleotide, which has a human telomerase promoter, an E1A gene, an IRES sequence and an E1B gene in this order, having been integrated thereinto.

Description

明 細 書 . · テロメライシン含有抗腫瘍剤耐性克服剤 技術分野 '  · · Telomeraicin-containing anti-tumor drug resistance overcoming technology field
本発明は、 ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及び E1B遺伝子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスを含 む、 抗腫瘍剤耐性克服剤に関する。 背景技術  The present invention relates to an anti-tumor drug resistance overcome agent comprising a recombinant virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence and an E1B gene in this order is incorporated. Background art
癌に対する化学療法においては、 抗癌剤耐性克服という大きな課題がある。 癌 細胞はトランスポーターの活性化や受容体キナーゼの変化など、 様々な分子機構 により抗癌剤耐性を獲得する (Bush JA, Li G. Cancer chemoresistance: the relationship between p53 and multidrugtransporters. Int J Cancer 98: , 323· 330, 2002.) 。 この抗癌剤耐性に対する研究がなされているが、 未だ解決策がな いのが現状である。 抗癌剤による細胞死はアポトーシスであり、 抗癌剤耐性はす なわちアポト シス耐性である (Schmitt CA, Lowe SW. Apoptosis and chemoresistance in transgenic cancer models. J Mol Med 80:137-146, 2002.) , 難治癌に対する新しい台療法として、 近年制限増殖型ウィルスが研究開発され ている。 それらは、 抗癌剤とは全く異なる作用 I 序を有すると考えられ、 米国を 中心とした臨床試験では併用されることも多い。 本発明者は、 以前 TERTプロモ 一ターを用いた制限増殖型アデノウイルス製剤を開発した (Kawashima T, Kagawa S, Kobayashi N, ShirakiyaY, Umeoka T, Terais i F, Taki M, Kyo S, Tanaka N, Fujiwara T. Telomerase-specific replication- selective  In chemotherapy for cancer, there is a big problem of overcoming resistance to anticancer drugs. Cancer cells acquire resistance to anticancer drugs through various molecular mechanisms, such as transporter activation and receptor kinase changes (Bush JA, Li G. Cancer chemoresistance: the relationship between p53 and multidrugtransporters. Int J Cancer 98:, 323 · 330, 2002.) Although research on anticancer drug resistance has been conducted, there is no solution yet. Cell death due to anticancer drugs is apoptosis, and resistance to anticancer drugs is apoptotic resistance (Schmitt CA, Lowe SW. Apoptosis and chemoresistance in transgenic cancer models. J Mol Med 80: 137-146, 2002.), In recent years, restricted-proliferative viruses have been researched and developed as new therapies for these diseases. They are thought to have a completely different mechanism of action from anticancer drugs, and are often used in clinical trials centered in the United States. The present inventor has previously developed a restricted growth type adenovirus preparation using the TERT promoter (Kawashima T, Kagawa S, Kobayashi N, Shirakiya Y, Umeoka T, Terais i F, Taki M, Kyo S, Tanaka N, Fujiwara T. Telomerase-specific replication- selective
virotherapyfor human cancer. Clin Cancer Res 10: 285-292, 2004.) 。 このアデ ノウィルスをテロメライシンと名づけた。 テロメライシンによる細胞死はアポト 一シスとは異なる作用機序である。 このテロメライシンと微小管作用剤ドセタキ セルとの併用実験においても各々の薬剤は個々に非依存的な抗腫瘍効果を示し、 その結果、 インビボで相互に非依存的な併用効果が認められた。 発明の開示 virotherapy for human cancer. Clin Cancer Res 10: 285-292, 2004.). This adenovirus was named telomerisin. Cell death by telomerisin is a different mechanism of action from apoptosis. In the combination experiment of telomerisin and the microtubule agent docetaxel, each drug exhibited an independent antitumor effect, and as a result, a combination effect independent of each other was observed in vivo. Disclosure of the invention
本発明は、 ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及び E1B遺伝子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスを含 む、 抗腫瘍剤耐性克服剤を提供することを目的とする。  An object of the present invention is to provide an anti-tumor drug resistance overcome agent comprising a recombinant virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E1B gene in this order is incorporated.
本発明者は、 上記課題を解決するために鋭意研究を行った。 そして、 抗腫瘍剤 耐性腫瘍細胞に対して、 テロメライシンが極めて優れた殺細胞効果を示したこと を見出し、 本発明を完成するに至った。 すなわち、 本発明は以下の通りである。  The present inventor has intensively studied to solve the above problems. And, it was found that telomerisin showed an extremely excellent cell killing effect against antitumor agent-resistant tumor cells, and the present invention was completed. That is, the present invention is as follows.
( 1 ) ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及び E1B遺伝 子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスを含む、 抗腫 瘍剤耐性克服剤。 .  (1) An anti-tumor agent resistance-resolving agent comprising a recombinant virus incorporating a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E1B gene in this order. .
上記の抗腫瘍剤嘛性克服剤において、 ヒ トテロメラーゼのプロモーターは、 例 えば hTERTが挙げられる。 また、 ウィルスは、 例えばアデノウイルスが好まし レ、。 抗腫瘍剤は、 例えば、 白金製剤、 微小管阻害活性剤、 アルキル化活性剤、 代 謝拮抗活性剤、 抗癌作用を有する抗生物質及びトポイソメラーゼ阻害活性剤並び にそれらの薬理学的に許容し得る塩からなる群から選択される少なくとも 1つを 使用することがでぎる。 抗腫瘍剤の具体例としては、 ドセタキセル、 .パクリタキ セル、 シスプラチン、 プスルファン、 メ ト トレキサート、 フルォロウラシル、 テ ガフール、 ブレオマイシン、 アドリアマイシン、 マイ トマイシン C、 ビノレルビ ン及びィリノテカン並びにそれらの薬理学的に許容し得る塩からなる群から選択 される少なくとも 1つが挙げられる。 なお、 腫瘍は、 例えば、 肺癌、 大腸癌、 胃 癌、 乳癌、 食道癌、 頭頸部癌、 肝臓癌、 瞵臓癌、 胆嚢又は胆管癌、 前立腺癌、 膀 胱癌、 子宮頸癌、 甲状腺癌、 卵巣癌、 白血病、 リンパ腫、 肉腫及び間葉系腫瘍か らなる群から選択される少なくとも 1つが挙げられる。  In the above anti-tumor agent fertility overcomer, the promoter for human telomerase is, for example, hTERT. Also, the virus is preferably adenovirus, for example. Antitumor agents are, for example, platinum preparations, microtubule inhibitory activators, alkylating activators, antimetabolite activators, anticancer antibiotics and topoisomerase inhibitory activators as well as their pharmacologically acceptable It is possible to use at least one selected from the group consisting of salts. Specific examples of antitumor agents include docetaxel, .paclitaxel, cisplatin, psulfan, methotrexate, fluorouracil, tegafur, bleomycin, adriamycin, mitomycin C, vinorelbine and irinotecan and their pharmacologically acceptable conditions. And at least one selected from the group consisting of salts. The tumor is, for example, lung cancer, colon cancer, stomach cancer, breast cancer, esophageal cancer, head and neck cancer, liver cancer, pancreas cancer, gallbladder or bile duct cancer, prostate cancer, bladder cancer, cervical cancer, thyroid cancer, And at least one selected from the group consisting of ovarian cancer, leukemia, lymphoma, sarcoma, and mesenchymal tumor.
( 2 ) ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及び E1B遺伝 子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスと、 抗腫瘍作 用を有する物質とを含む、 抗腫瘍剤耐性を獲得した腫瘍の併用療法のための医薬 組成物。 (2) a recombinant virus incorporating a polynucleotide containing a human telomerase promoter, E1A gene, IRES sequence and E1B gene in this order; A pharmaceutical composition for combination therapy of a tumor that has acquired antitumor drug resistance, comprising a substance having a use.
上記の医薬組成物において、 抗腫瘍作用を有する物質は、 例えば、'ドセタキセ ル、 ピノレルビン、 ィリノテカン及びヒストンデァセチラーゼ阻害活性阻害剤並 びにそれらの薬理学的 (こ許容し得る塩からなる群から選択される少なくとも 1つ が挙げられる'。  In the above pharmaceutical composition, the substance having an antitumor action is, for example, 'docetaxel, pinolerubin, irinotecan and histone deacetylase inhibitory activity inhibitor and their pharmacological (group consisting of this acceptable salt). At least one selected from '.
( 3 ) ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及び E1B遺伝 子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスを哺乳動物に 投与することを特徴とする、 抗腫瘍剤耐性 獲得した腫瘍細胞の增殖を抑制する 方法。  (3) A tumor that has acquired resistance to an antitumor agent, comprising administering to a mammal a recombinant virus incorporating a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E1B gene in this order. A method to suppress cell proliferation.
(4 ) ヒ トテロメラーゼのプロモーター、 _E1A遺伝子、 IRES配列及び E1B遺伝 子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスと、 抗腫瘍作 用を有する物質又はそれらの薬理学的に許容し得る塩とを併用して哺乳動物に投 与することを特徴とする、 抗腫瘍剤耐性を獲得した腫瘍細胞の増殖を抑制する方 法。  (4) Recombinant virus in which a polynucleotide containing a human telomerase promoter, _E1A gene, IRES sequence and E1B gene in this order is incorporated, and a substance having antitumor activity or pharmacologically acceptable A method of inhibiting the growth of tumor cells that have acquired resistance to an antitumor agent, comprising administering to a mammal in combination with a salt.
(.5 ) ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及び E1B遺伝 子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスを哺乳動物に 投与することを特徴とする、 抗腫瘍剤耐性を獲得した腫瘍の治療方法。  (.5) Acquiring antitumor drug resistance characterized by administering to a mammal a recombinant virus incorporating a polynucleotide containing a human telomerase promoter, E1A gene, IRES sequence, and E1B gene in this order. How to treat a tumor.
上記(3 )〜( 5 )の方法において、 ヒ トテロメラーゼのプロモーターは、 例えば hTERTが挙げられる。 ウィルスはアデノウイルスであることが好ましい。 抗腫 瘍剤は、 例えば、 白金製剤、 微小管阻害活性剤、 アルキル化活性剤、 代謝拮抗活 性剤、 抗癌作用を有する抗生物質及びトボイ.ソメラーゼ阻害活性剤並びにそれら の薬理学的に許容し得る塩からなる群から選択される少なくとも 1つが挙げられ る。 抗腫瘍剤の具体例としては、 ドセタキセル、 パクリタキセル、 シスプラチン、 プスノレファン、 メ ト トレキサート、 フノレオロウラシノレ、 テガフーノレ、 プレオマイ シン、 アドリアマイシン、 マイ トマイシン C、 ビノレルビン及びイリノテカン並 びにそれらの薬理学的に許容し得る塩からなる群から選択される少なくとも 1つ が挙げられる。 なお、 腫瘍は、 例えば、 肺癌、 大腸癌、 胃癌、 乳癌、 食道癌、 頭 頸部癌、 肝臓癌、 膝臓癌、 胆嚢又は胆管癌、 前立腺癌、 膀胱癌、 子宮頸癌、 甲状 腺癌、 卵巣癌、 白血病、 リンパ腫、 肉腫、 及び間葉系腫瘍からなる群から選択さ れる少なくとも 1つが挙げられる。 In the methods (3) to (5) above, an example of a promoter for human telomerase is hTERT. The virus is preferably an adenovirus. Antitumor agents include, for example, platinum preparations, microtubule inhibitory activators, alkylating activators, antimetabolite activators, anticancer antibiotics and tobodies.Somerase inhibitor activators and their pharmacologically acceptable And at least one selected from the group consisting of possible salts. Specific examples of antineoplastic agents include docetaxel, paclitaxel, cisplatin, psnorephan, methotrexate, funoleolauracinole, tegafunore, preomesin, adriamycin, mitomycin C, vinorelbine and irinotecan and their pharmacologically acceptable conditions. And at least one selected from the group consisting of possible salts. Tumors include, for example, lung cancer, colon cancer, stomach cancer, breast cancer, esophageal cancer, head and neck cancer, liver cancer, knee cancer, gallbladder or bile duct cancer, prostate cancer, bladder cancer, cervical cancer, thyroid And at least one selected from the group consisting of adenocarcinoma, ovarian cancer, leukemia, lymphoma, sarcoma, and mesenchymal tumor.
上記 (4 )の方法においては、 抗腫瘍作用を有する物質は、 例えば、 ドセタキセ ノレ、 ピノレルビン、 ィリノテカン及びヒストンデァセチラーゼ阻害活性阻害剤並 びにそれらの薬理学的に許容し得る塩からなる群から選択される少なくとも 1つ が挙げられる。 図面の簡単な説明  In the method of (4) above, the substance having an antitumor action is, for example, a group consisting of docetaxenole, pinorelbine, irinotecan and histone deacetylase inhibitory activity inhibitors and pharmacologically acceptable salts thereof. At least one selected from. Brief Description of Drawings
図 1は、 OBP-301 (テロメライシン) 及 OBP-401の構造を示す図である。 図 2は、 薬剤耐性サブラインの特徴づけを示す図である。 a) CDDP, b)パク リタキセル ,—  FIG. 1 shows the structure of OBP-301 (telomerisin) and OBP-401. Figure 2 shows the characterization of drug resistance sublines. a) CDDP, b) Parkitaxel, —
図 3は、 各種癌細胞耐性株に抗癌剤を投与して、 抗腫瘍効果を顕微鏡にて観察 した図である。 ,  FIG. 3 is a diagram in which anticancer agents were administered to various cancer cell resistant strains and the antitumor effect was observed with a microscope. ,
図 4は、 細胞死ナツセィを行った実験結果を示す図である。  Fig. 4 is a diagram showing the results of an experiment in which cell death was performed.
図 5は、 ウェスタンブロットにより MDR1タンパク質の発現を解析した図であ る。  Fig. 5 shows the analysis of MDR1 protein expression by Western blot.
図 6は、 フローサイ トメ トリーを用いて、 CAE発現を解析した図である。 図 7は、 癌細胞耐性株に OBP-301を感染させた後に XTTァッセィを行った実 験結果を示す図である。 ' a) A431系,' b) DU145系  Fig. 6 shows the analysis of CAE expression using flow cytometry. FIG. 7 shows the results of an XTT assay performed after infecting a cancer cell resistant strain with OBP-301. 'a) Series A431,' b) Series DU145
. 図 8は、 癌細胞耐性株に OBP-301を感染させた後、 経時的に XTTアツセィを 行った実験結果を示す図である。 a) A431系, b) DU145系 FIG. 8 shows the results of an experiment in which a cancer cell resistant strain was infected with OBP-301 and then subjected to XTT assembly over time. a) A431 series, b) DU145 series
図 9は、 癌細胞耐性株に OBP-301を感染させた後に CBB染色を行った図であ る。  Fig. 9 shows the results of CBB staining after infection of a cancer cell resistant strain with OBP-301.
図 1 0は、 癌細胞耐性株に OBP-301及び OBP-401を感染させた後に顕微鏡に て観察した図である。  FIG. 10 is a view observed with a microscope after infecting a cancer cell resistant strain with OBP-301 and OBP-401.
図 1 1は、 癌細胞耐性株に OBP-301及び OBP-401を感染させた後に顕微鏡に て観察した図である。 定量的 Real time PCRを用いて、 OBP-301の細胞内増殖 を角军析した。 図 1 2は、 定量的 Real time PCRを用いて、 OBP-301の細胞内増殖.を解析し た実験結果を示す図である。 a) A431系, b) DU145系 発明を実施するための最良の形態 FIG. 11 is a view observed with a microscope after infecting a cancer cell resistant strain with OBP-301 and OBP-401. Quantitative real time PCR was used to angularly analyze the intracellular growth of OBP-301. Figure 12 shows the results of an experiment analyzing the intracellular growth of OBP-301 using quantitative real-time PCR. a) A431 series, b) DU145 series Best mode for carrying out the invention
本発明は、 ヒ トテロメラ一ゼのプロモータ一、 E1A遺伝子、 IRES配列及び E1B遺伝子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスを含 む、 抗腫瘍剤耐性克服剤に関する。 以下に本発明を詳細に説明するが、 本発明の 範囲はこれらの説明に拘束されることはなく、 以下の例示以外についても、 本発 明の趣旨を損なわない範囲で適宜変更し実施'し得る。 なお、 本明細書において引 用された全ての刊行物、 例えば先行技術文献、 及び公開公報、 特許公報その他の 特許文献は、 参照として本明細書に組み まれる。  The present invention relates to an anti-tumor drug resistance overcome agent comprising a recombinant virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence and an E1B gene in this order is incorporated. The present invention will be described in detail below, but the scope of the present invention is not limited to these explanations, and the examples other than the following examples are appropriately modified and implemented within a range not impairing the gist of the present invention. obtain. It should be noted that all publications cited in the present specification, for example, prior art documents, and publications, patent gazettes and other patent documents, are incorporated herein by reference.
1 . 本発明の概要 1. Summary of the present invention
本発明は、 抗腫瘍剤耐性を獲得した腫瘍細胞に対する殺細胞効果を発揮する抗 腫瘍剤耐性克服剤に関する。 抗腫瘍剤耐性とは、 同一抗腫瘍剤による治療が反復 されると、 次第にその効果が減弱し、 腫瘍細胞がこれらの抗腫瘍剤に対する耐性 を獲得することをいう。 腫瘍細胞が抗腫瘍剤耐性を獲得するメカニズムとしては、 トランスポーターの活性化や受容体キナーゼの変化など、 様々な分子機構が関与 している。 また、 抗腫瘍剤による細胞死はアポトーシズであるため、 抗腫瘍剤耐 性はアポトーシス耐性といえる。 抗腫瘍剤耐性が生じた場合は、 一般的には、 そ れまで使用してきた抗腫瘍剤を他の薬剤に代えるといった治療方針の変更をせざ るを得ないが、 新たな抗腫瘍剤を用いた治療.を行っても、 再度薬剤耐性が起こる こともあり得るため、 抗腫瘍剤の変更は、 必ずしも効果的であるとはいえない。 ところで、 本発明の抗腫瘍剤耐性克服剤に含まれる組換えウィルスは、 テロメ ラーゼプロモーターが発現することにより増殖が開始される。 ここで、 腫瘍細胞 では正常細胞と比較してテロメラーゼの発現が極めて高いため、 上記組換えウイ ルスは正常細胞では増殖せずに、 腫瘍細胞のみで増殖するという特徴を有する。 さらに、 この組換えウィルスが腫瘍細胞に及ぼす細胞死の作用機序は、 従来の抗 腫瘍剤によるアポトーシスの作用機序とは異なるため、 抗腫瘍剤で腫瘍細胞が処 理された場合でも、 何らその影響を受けずにその細胞内での増殖複製を行うこと ができる。 その結果、 上記のように、 腫瘍細胞において抗腫瘍剤に対する耐性が 獲得された場合でも、 腫瘍細胞を特異的に死滅させることができる。 このように、 抗腫瘍剤の反復使用の結果、 抗腫瘍剤耐性を獲得して、 もはや殺細胞効果が示さ れなくなった腫瘍細胞ほ、 本発明に含まれる組換えウィルスを投与されることで、 「抗腫瘍剤耐性を克服できる」 といえる。 したがって、 本発明に含まれる組換え ウィルスは、 抗腫瘍剤耐性克服剤として有用である。 The present invention relates to an anti-tumor agent resistance overcomer that exerts a cell-killing effect on tumor cells that have acquired anti-tumor agent resistance. Anti-tumor drug resistance refers to the fact that the effect of a tumor cell gradually acquires resistance to these anti-tumor drugs when the treatment with the same anti-tumor drug is repeated. Various molecular mechanisms such as transporter activation and receptor kinase changes are involved in the mechanism by which tumor cells acquire antitumor drug resistance. In addition, since cell death by antitumor agents is apoptosis, resistance to antitumor agents can be said to be apoptosis resistance. When anti-tumor drug resistance occurs, it is generally necessary to change the treatment policy by replacing the anti-tumor drug used so far with other drugs. Even if the treatment used is used, drug resistance may occur again, so changes in antitumor agents are not always effective. By the way, the recombinant virus contained in the antitumor agent resistance overcomer of the present invention starts to proliferate when the telomerase promoter is expressed. Here, since the expression of telomerase is extremely high in tumor cells as compared with normal cells, the recombinant virus has a feature that it does not grow in normal cells but grows only in tumor cells. Furthermore, the mechanism of cell death that this recombinant virus exerts on tumor cells is different from the mechanism of apoptosis by conventional anti-tumor agents, so that tumor cells are treated with anti-tumor agents. Even if it is controlled, it can proliferate and replicate in the cell without any influence. As a result, as described above, even when resistance to an antitumor agent is acquired in a tumor cell, the tumor cell can be specifically killed. Thus, as a result of repeated use of antitumor agents, tumor cells that have acquired antitumor agent resistance and no longer have a cytocidal effect are administered with the recombinant virus included in the present invention. It can be said that “resistance to anti-tumor agents can be overcome”. Therefore, the recombinant virus included in the present invention is useful as an anti-tumor drug resistance overcomer.
2 . 本発明の組換えウィルス ' 2. Recombinant virus of the present invention '
本発明で使用される組換えウィルスは、 ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及び E.1B遺伝子をこの順に含むポリヌクレオチドがゲノ ムに組み込まれたウィルスをいう。 用いられるウィルスは、 特に限定されないが、 安全性等の点からアデノウィルスが好ましい。 また、 アデノウィルスの中でも、 使用の簡便さ等の点からタイプ 5のアデノウィルスが特に好ましい。  The recombinant virus used in the present invention refers to a virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E.1B gene in this order is incorporated into a genome. The virus to be used is not particularly limited, but an adenovirus is preferable from the viewpoint of safety. Among adenoviruses, type 5 adenovirus is particularly preferable from the viewpoint of ease of use.
本発明に使用される組換えウィルスは、 ヒ トテロメラーゼプロモーターにより、 E1A遺伝子、 IRES配列及び E1B遺伝子が駆動される。 腫瘍細胞では正常钾胞と 比較してテロメラーゼの発現が極めて高いため、 テロメラーゼが含まれる腫瘍細 胞においてはテロメラーゼプロモーターが発現し、 これにより本発明に含まれる 組換えウィルスが増殖する。 その結果、 腫瘍細胞内では、 ウィルス増殖による細 胞障害が起こり、 これにより、 本発明に使用される組換えウィルスは腫瘍細胞を 特異的に死滅させることができる。  In the recombinant virus used in the present invention, the E1A gene, the IRES sequence and the E1B gene are driven by the human telomerase promoter. Since the expression of telomerase is extremely high in tumor cells as compared with normal cysts, the telomerase promoter is expressed in tumor cells containing telomerase, whereby the recombinant virus included in the present invention grows. As a result, cell damage due to virus growth occurs in the tumor cells, and the recombinant virus used in the present invention can specifically kill the tumor cells.
「テロメラーゼプロモーター」 は、 テロメ.ラーゼの転写開始部位を決定し、 そ の頻度を直接的に調節する。 テロメラーゼとは、 真核生物染色体の複製時の短縮 に拮抗して、 テロメァ長を維持する酵素である。 このようなテロメラーゼプロモ 一ターの種類は、 特に限定されるものではないが、 例えば、 ヒ トテロメラーゼ逆 転写酵素 QiTERT) のプロモータ一が好ましい。 hTERTは、 その 5'末端の上流 1.4kbpの領域で、 多くの転写因子結合配列が確認されており、 その領域が hTERTプロモーターと考えられるが、 中でも、 翻訳開始部位の上流 181bpの配 列が下流の遺伝子発現に重要なコア領域である。 本発明においては、 このコア領 域を含むものであれば、 限定されずに使用することができるが、 このコア領域を 完全に含む上流 378bp程度の配列を hTERTプロモーターとして使用するのが好 ましい。 この 378bp程度の配列は、 181bpのコア領域単独の場合と比べて、 その 遺伝子発現効率が同等であることが確認されている。 このような hTERTの塩基 配列を配列番号 1に示ず。 The “telomerase promoter” determines the transcription start site of telomerase and directly regulates its frequency. Telomerase is an enzyme that maintains telomere length by antagonizing shortening during replication of eukaryotic chromosomes. The type of such telomerase promoter is not particularly limited, but for example, a promoter of human telomerase reverse transcriptase QiTERT) is preferable. hTERT is a 1.4 kbp region upstream of its 5 'end, and many transcription factor binding sequences have been confirmed, and this region is thought to be the hTERT promoter. Among them, the 181 bp sequence upstream of the translation start site is downstream. It is an important core region for gene expression. In the present invention, this core area As long as it contains a region, it can be used without limitation, but it is preferable to use an upstream sequence of about 378 bp completely including this core region as the hTERT promoter. It has been confirmed that the gene expression efficiency of this sequence of about 378 bp is equivalent to that of the 181 bp core region alone. The base sequence of such hTERT is not shown in SEQ ID NO: 1.
hTERTは、 配列番号 1に示される塩基配列のほか、 配列番号 1に示される塩 基配列からなる DNAに対し相補的な塩基配列よりなる DNAとストリンジヱント な条件でハイブリダイズし、 かつ hTERT活性を有するヌクレオチドの塩基配列 も含まれる。 上記ハイブリダィゼーションに'おい Tストリンジェントな条件とし ては、 たとえば、 lxSSC〜2xSSC、 0.1〜0.5%SDS、 及ぴ 42〜68°Cの条件が挙 げられ、 より詳細には、. 60〜68°Cで 30分以上プレハイブリダィゼーシヨンを行 つた後、 2xSSC、 0.1%SDS中、 室温で 5〜: 15分の洗浄を 4〜6回行う条件が挙げ られる。 .  hTERT hybridizes under stringent conditions with DNA consisting of a complementary base sequence to DNA consisting of the base sequence shown in SEQ ID NO: 1 in addition to the base sequence shown in SEQ ID NO: 1, and has hTERT activity Nucleotide base sequences are also included. Examples of T stringent conditions for the above hybridization include lxSSC to 2xSSC, 0.1 to 0.5% SDS, and 42 to 68 ° C, and more specifically. For example, after pre-hybridization at ~ 68 ° C for 30 minutes or more, washing in 2xSSC, 0.1% SDS at room temperature for 5 to 15 minutes is performed 4 to 6 times. .
本発明において、 Έ1Α遺伝子、 IRES配列及び E1B遺伝子を.この順に含むこと としたのは、 IRES配列を E1A遺伝子と E1B遺伝子との間に挿入したものを使用. すると、 ウィルスが宿主細胞に感染した際に、 増殖能が高くなるためである。 な お、 £1 遺伝子と 18遺伝子は、 E1遺伝子に含まれる遺伝子であるが、 この E1 遺伝子とは、 ウィルスの有する DNA複製に関する初期遺伝子 (early: E) と後期 遺伝子 (late: L) のうちの初期遺伝子の一つをいい、 ウィルスゲノムの転写の制 御に係わるタンパク質をコードしている。 E1A遺伝子によりコードされる E1Aタ ンパク質は、 感染可能なウィルス産生に必要な遺伝子群 (E1B、 E2、 E4等) の 転写を活性化する。 E1B遺伝子でコードされる E1Bタンパク質は、 後期遺伝子 ( L遺伝子) の mRNAが、 感染した宿主細胞の細胞質へ蓄積するのを助け、 宿主細 胞のタンパク質合成を阻害することで、 ウィルスの複製を促進する。 E1A遺伝子、 E1B遺伝子の塩基配列を、 それぞれ配列番号 2及び配列番号 3に示す。  In the present invention, the Έ1Α gene, the IRES sequence and the E1B gene are included in this order because the IRES sequence inserted between the E1A gene and the E1B gene is used. This is because the proliferation ability is increased. The £ 1 gene and 18 genes are included in the E1 gene. The E1 gene is one of the early gene (early: E) and late gene (late: L) related to DNA replication of the virus. It codes for a protein involved in the control of transcription of the viral genome. The E1A protein encoded by the E1A gene activates transcription of genes (E1B, E2, E4, etc.) necessary for the production of infectious viruses. The E1B protein encoded by the E1B gene promotes viral replication by helping the late gene (L gene) mRNA accumulate in the cytoplasm of the infected host cell and inhibit host cell protein synthesis. To do. The base sequences of E1A gene and E1B gene are shown in SEQ ID NO: 2 and SEQ ID NO: 3, respectively.
E1A及び E1Bは、 それぞれ配列番号 2及び配列番号 3に示される塩基配列のほ か、 配列番号 2及び配列番号 3に示される塩基配列からなる DNAに対し相補的 な塩基配列よりなる DNAとストリンジェントな条件でハイブリダイズし、 かつ 各々 E1A及び E1B活性を有するタンパク質をコードする塩基配列も含まれる。 上 記ハイブリダィゼーシヨンにおいてストリンジェントな条件としては、 たとえば、 lxSSC〜2xSSC、 0.1〜0.5%SDS、 及び 42〜68。Cの条件が挙げられ、 より詳細 には、 60〜68°Cで 30分以上プレハイブリダィゼーシヨンを行った後、 2xSSC、 0.1%SDS中、 室温で 5〜: 15分の洗浄を 4〜6回行う条件が挙げられる。 E1A and E1B are stringent with DNA consisting of a base sequence complementary to the DNA consisting of the base sequences shown in SEQ ID NO: 2 and SEQ ID NO: 3 in addition to the base sequences shown in SEQ ID NO: 2 and SEQ ID NO: 3, respectively. And a base sequence encoding a protein that hybridizes under various conditions and has E1A and E1B activities, respectively. Up Examples of stringent conditions in the hybridization include, for example, lxSSC to 2xSSC, 0.1 to 0.5% SDS, and 42 to 68. More specifically, after prehybridization at 60 to 68 ° C for 30 minutes or more, wash in 2x SSC, 0.1% SDS at room temperature for 5 to 15 minutes. The conditions for performing 6 times are mentioned.
IRESdnternal Ribosome Entry Site)とは、 ピコルナウィルス科に特異的なタ ンパク質合成開始シグナルであり、 18Sリボソーム RNAの 3'末端と相補的な配列 があるためリボソーム結合部位としての役割を果たすと考えられている。 ピコル ナウィルス科のウィルス由来 mRNAはこの配列を介して翻訳されることが知ら れている。 IRES配列からの翻訳効率は高く mRNAの途中からでもキャップ構 造非依存的にタンパク質合成が行われる。 したがって、 本ウィルスでは、. ヒ トテ ロメラーゼのプロモーターにより E 1 A遺伝子と IRES配列の下流にある E 1B遺伝 子の両方が独立に翻訳される。 IRESを使用すると、 テロメラーゼプロモーター の発現制御が E1A遺伝子、. E1B遺伝子に独立して及ぶために、 E1A遺伝子あるい は E1B遺伝子のいずれか一方をテロメラーゼプロモーターで制御する場合に比べ て、 ウィルスの増殖をより厳格にテロメラーゼ活性を有する細胞に限定すること ができる。 IRES配列を配列番号 4に示す。  IRESdnternal Ribosome Entry Site) is a protein synthesis initiation signal specific to the Picornaviridae family, and since it has a sequence complementary to the 3 'end of 18S ribosomal RNA, it is thought to serve as a ribosome binding site. It has been. It is known that mRNA derived from the Picornaviridae virus is translated via this sequence. The translation efficiency from the IRES sequence is high, and protein synthesis is performed even in the middle of mRNA independent of the cap structure. Therefore, in this virus, both the E 1 A gene and the E 1B gene downstream of the IRES sequence are independently translated by the promoter of human telomerase. When IRES is used, the expression of the telomerase promoter is controlled independently by the E1A gene and the E1B gene. Therefore, compared to the case where either the E1A gene or the E1B gene is controlled by the telomerase promoter, virus growth Can be more strictly limited to cells having telomerase activity. The IRES sequence is shown in SEQ ID NO: 4.
また、 IRESは、 配列番号 4に示される塩基配列のほ力、 配列番号 4に示され る塩基配列からなる DNAに対し相補的な塩基配列よりなる DNAとストリンジヱ ントな条件でハイ^リダィズし、 かつ IRES活性を有する'タンパク質をコードす る塩基配列も含まれる。 上記ハイブリダィゼーシヨンにおいてストリンジヱント な条件としては、 たとえば、 lxSSC〜2xSSC、 0.1〜0.5%'SDS、 及び 42〜68°C の条件が挙げられ、 より詳細には、 60〜68°Cで 30分以上プレハイブリダィゼー シヨンを行った後、 2xSSC、 0.1%SDS中、 室温で 5〜; 15分の洗浄を 4〜6回行う 条件が挙げられる。  In addition, IRES is highly stringent under stringent conditions with DNA consisting of a base sequence complementary to the DNA consisting of the base sequence shown in SEQ ID NO: 4, with the help of the base sequence shown in SEQ ID NO: 4. In addition, a base sequence encoding a protein having IRES activity is also included. Examples of stringent conditions in the above hybridization include lxSSC to 2xSSC, 0.1 to 0.5% 'SDS, and 42 to 68 ° C, and more specifically, 30 to 60 to 68 ° C. After prehybridization for at least 5 minutes, the conditions include washing in 2xSSC and 0.1% SDS at room temperature for 5 to 15 minutes, 4 to 6 times.
また、 本発明において、 ヒ トテロメラ一ゼのプロモータ一は、 E1遺伝子の上 流に位置する。 テロメラーゼ活性を有する細胞内で増殖を促進することができる からである。 本発明の組換えウィルスに含まれる遺伝子は、 通常の遺伝子工学的手法により 得ることができる。 ヒ トテロメラーゼとして、 hTERTを用いる場合について以 下に説明する。 In the present invention, the promoter of human telomerase is located upstream of the E1 gene. This is because proliferation can be promoted in cells having telomerase activity. The gene contained in the recombinant virus of the present invention can be obtained by ordinary genetic engineering techniques. The case where hTERT is used as a human telomerase is described below.
293細胞等の E1遺伝子を発現している細胞から E1A-S、 El A- AS, E1B-S、 E1B-AS等のプライマーを用いて、 RT-PCR及び/又は DNA-PCRを行うことによ り E1A遺伝子及び E1B遺伝子を増幅し、 必要に応じて TAクローニング等の公知 の方法を用いて配列を確認した後、 公知の制限酵素で E 1 A及び E 1Bの DNA断片 を切り出すことができる。  By performing RT-PCR and / or DNA-PCR from cells expressing the E1 gene, such as 293 cells, using primers such as E1A-S, El A-AS, E1B-S, and E1B-AS After amplifying the E1A gene and E1B gene and confirming the sequence using a known method such as TA cloning, if necessary, the E 1 A and E 1B DNA fragments can be excised with a known restriction enzyme.
次に、 公知のベクター (例えば pIRES等) に E1A-IRES-E1Bを挿入し、 次い で、 Mul、 Bgllll等の制限酵素で切り出した hTERTプロモーター配列を > E1A の上流に挿入すること できる。  Next, E1A-IRES-E1B can be inserted into a known vector (eg, pIRES), and then the hTERT promoter sequence excised with a restriction enzyme such as Mul or Bgllll can be inserted upstream of> E1A.
必要に応じて、 pShuttleなどの公知ベクターに含まれるサイ トメ'ガロウィル ス (CMV)プロモーターを Mfel、 Nhel等の制限酵素により取り除き、 その部位に phTERT-ElA-IRES-ElBから制限酵素 Nhelおよび Notlで切り出した配列を挿入 することができる。 このように、 本発明に使用される hTERT-ElA-IRES-ΕΙΒか らなるカセット (図 l a) を組込んだウィルスを、 本発明では 「テロメライシン 」 又は 「Telomelysin」 とレ、う。 hTERTプロモーターの制御下にアデノウイルス の増殖に必要な E1遺伝子を発現させることによって、 ウィルスを癌細胞特異的 に増殖させることができる。 '  If necessary, remove the Cytogallovirus (CMV) promoter contained in a known vector such as pShuttle with restriction enzymes such as Mfel and Nhel, and use the restriction enzymes Nhel and Notl from phTERT-ElA-IRES-ElB. The cut out sequence can be inserted. Thus, in the present invention, a virus incorporating the cassette consisting of hTERT-ElA-IRES-ΕΙΒ used in the present invention (FIG. 1a) is referred to as “telomerisin” or “Telomelysin”. By expressing the E1 gene required for adenovirus growth under the control of the hTERT promoter, the virus can be propagated specifically for cancer cells. '
, 組換えウィルスを細胞に感染させるには、 例えば、 以下の方法で感染させるこ とができる。 まず、 ヒ ト大腸癌細胞 SW620、 ヒ ト肺癌細胞 A549、 H1299等の細 胞を適当な培養液が入った培養プレートに播き、 炭酸ガス存在下で、 37°Cで培 養する。 培養液は、 動物細胞培養に一般的に使用される DMEM、 MEM、 RPMI-1640などが採用され、 必要応じて血清、 抗生物質、 ビタミン等を添加す ることができる。 培養した細胞に一定量の本ウィルス、 例えば、 0.:!〜 10 MOI、 好ましくは、 0.1〜1 MOI (multiplicity of infection)を接種することにより感染 させる。 MOIとは、 一定量の培養細胞に一定量のウィルス粒子を感染させる場 合のウィルス量 (感染単位) と細胞数の比をいい、 ウィルスを細胞に感染させる 際の指標として用いられる。 なお、 ウィルス増殖を確認するには、 ウィルス感染細胞を回収し、 DNAを抽 出し、 本ウィルスが有する適当な遺伝子を標的とするプライマ一を用いてリアル タイム PCRを行うことで定量的に解析することができる。 3 . 抗腫瘍剤 In order to infect cells with a recombinant virus, for example, the following method can be used. First, cells such as human colon cancer cell SW620, human lung cancer cell A549, H1299, etc. are plated on a culture plate containing an appropriate culture medium and cultured at 37 ° C in the presence of carbon dioxide. As the culture solution, DMEM, MEM, RPMI-1640 or the like generally used for animal cell culture is adopted, and serum, antibiotics, vitamins and the like can be added as necessary. The cultured cells are infected by inoculating a certain amount of the virus, for example, 0.:! To 10 MOI, preferably 0.1 to 1 MOI (multiplicity of infection). MOI is the ratio between the amount of virus (infectious unit) and the number of cells when a certain amount of cultured cells are infected with a certain amount of virus particles, and is used as an index for infecting cells with viruses. To confirm virus growth, collect virus-infected cells, extract DNA, and perform quantitative analysis by performing real-time PCR using a primer that targets the appropriate gene of the virus. be able to. 3. Antitumor agents
抗腫瘍剤とは、 生体の調節機構が乱れて細胞分裂を繰り返し、 細胞が過剰増殖 した結果、 腫瘍塊となるような腫瘍細胞 (癌細胞) の発育や増殖を抑制する作用 を有する薬剤をいい、 癌細胞の核酸合成を抑制したり、 代謝を阻害したり して增 殖を阻止するような薬剤も含まれる。 具体的には、. 以下のようなアルキル化活性 剤、 代謝拮抗活性剤、 抗生物質、 微小管阻害活性剤、 白金製剤、 トポイソメラー ゼ阻害活性剤などが含まれるがこれらに ^定されるものではない。 また、 これら の抗腫瘍剤は薬理学的に許容し得る塩を形成してもよい。  Antitumor agents refer to drugs that have the effect of inhibiting the growth and proliferation of tumor cells (cancer cells) that become tumor masses as a result of repeated cell division due to disorder of the body's regulatory mechanism and excessive cell proliferation. Also included are drugs that inhibit growth by inhibiting nucleic acid synthesis in cancer cells or inhibiting metabolism. Specifically, the following alkylation activators, antimetabolite activators, antibiotics, microtubule inhibitor activators, platinum preparations, topoisomerase inhibitor activators, etc. Absent. These antitumor agents may form pharmacologically acceptable salts.
(i) アルキル化活性剤 : この製剤は、 癌細胞の核酸タンパク質にアルキル基 を導入して細胞障害を起こさせる作用を有するものであり、 例えばカルボ , コン、 プスルファン (マスタード薬) 、 二ムスチン (ニトロソゥレア類) などが挙げられる。 (i) Alkylation activator: This preparation has the effect of introducing an alkyl group into the nucleic acid protein of cancer cells to cause cell damage. For example, carbo, kon, psulfan (mustard drug), dimustine ( Nitrosourea)).
(ϋ) 代謝拮抗活性剤: この製剤は、 代謝過程で酵素に拮抗して、 細胞合成 を阻害する作用 有するものであ'り、 例えばメ トトレキサート (葉酸系) 、 メルカプトプリン、 (プリン系) 、 シタラビン (ピリ ミジン系) 、 フルォ ロウラシル、 テガフール、 カルモフールなどが挙げられる。  (ii) Antimetabolite active agent: This preparation has the action of antagonizing enzymes in the metabolic process and inhibiting cell synthesis, such as methotrexate (folic acid), mercaptopurine, (purine), Examples include cytarabine (pyrimidine), fluorouracil, tegafur, and carmofur.
(iii) 抗生物質:抗癌作用を有する、 ァク.チノマイシン D、 ブレオマイシン、 アドリアマイシン、 マイ トマイシン Cなどが挙げられる。  (iii) Antibiotic: Examples include anti-cancer activity, actinomycin D, bleomycin, adriamycin, mitomycin C and the like.
(iv) 微小管阻害活性剤: この製剤は、 微小管に作用して抗腫瘍効果を示す ものであり、 例えばドセタキセル、 パクリタキセル (タキサン) 、 ビノレ ルビン、 ピンクリスチン、 ビンブラスチン (アルカロイ ド系) などが挙げ られる。 (v) 白金製剤: この製剤は、 DNA鎖内又は鎖間結合あるいは DNAタンパク 質結合を構成して、 DNA合成を阻害する作用を有するものであり、 例えば、 シスブラチン、 アルポプラチン、 ネダプラチンなどが挙げられる。 (iv) Microtubule inhibitory active agent: This preparation acts on microtubules and exhibits an antitumor effect. For example, docetaxel, paclitaxel (taxane), vinorelbine, pinklistin, vinblastine (alkaloid) Can be mentioned. (v) Platinum preparation: This preparation has an action of inhibiting DNA synthesis by constituting intra-DNA chain or inter-chain bond or DNA protein bond, and examples thereof include cisplatin, alpoplatin, nedaplatin and the like. .
(vi) トポイソメラーゼ阻害活性剤: トポイソメラーゼを阻害する、 ィリノ テカン (トポイソメラーゼ I阻害薬) 、 ポドフイロトキシン誘導体 (トボイ ソメラ一ゼ II阻害薬) などが挙げられる。 なお、 トポイソメラーゼとは、  (vi) Topoisomerase inhibitor: Irinotecan (topoisomerase I inhibitor), podophyllotoxin derivative (tobosomerase II inhibitor), which inhibits topoisomerase. What is topoisomerase?
DNAに一時的に切れ目を入れて DNA鎖のリンキング数を変える反応を触 媒する酵素である。 特に、 上記した抗腫瘍剤のうち、 本発明における抗腫瘍剤としては、 微小管阻 害活'『生剤及び白金製剤が好ましく、 さらに、 ドセタキセル及びシスブラチンがよ り好ましいが、 これらに限定されるものではない。  It is an enzyme that catalyzes a reaction that temporarily cuts DNA and changes the linking number of the DNA strand. In particular, among the antitumor agents described above, the antitumor agent in the present invention is preferably a microtubule inhibitory activity '"herbal agent and a platinum preparation, and more preferably docetaxel and cisbratin, but is not limited thereto. It is not a thing.
ドセタキセルとは、 上記微小管阻害薬のうちのタキサン系に分類され、 主に乳 がん、 非小細胞肺癌の治療に適用される。 ドセタキセルは、 セィョウイチイ針葉 抽出物から半合成品として得られ、 チューブリンとの重合を促進して、 微小管形 成と共に、 微小管の脱重合を抑制するほか、 細胞の有糸分裂を停止させる機能を 有する。  Docetaxel is classified as a taxane among the above microtubule inhibitors and is mainly applied to the treatment of breast cancer and non-small cell lung cancer. Docetaxel is obtained as a semi-synthetic product from Sewyichii needle extract, which promotes polymerization with tubulin and suppresses microtubule depolymerization as well as microtubule formation and stops cell mitosis. It has a function.
シスブラチン (CDDP) は、 主として、 睾丸腫瘍、 膀胱がん、 腎盂尿管腫瘍、 前立腺癌、 卵巣癌、 '頭頸部癌、 肺癌、'食道癌、 子宮頸癌の治療に適用される。 本発明の抗腫瘍剤耐性克服剤が作用する腫瘍 (癌) 細胞の種類は、 限定される ものではなく、 あらゆる種類の腫瘍細胞を用いることができる。 例えば、 頭頸部、 胃、 大腸、 肺、 肝、 前立腺、 睥、 食道、 膀眯、 胆嚢又は胆管、 乳房、 子宮、 甲状 腺、 卵巣等における固形癌、 あるいは白血病、 リンパ腫、 肉腫、 間葉系腫瘍等に 有効である。 ヒ 卜の組織由来の腫瘍細胞のほとんどはテロメラーゼ活性の上昇を 示しており、 本発明の抗腫瘍剤耐性克服剤はそのようなテロメラーゼ活性により 増殖が活発になった腫瘍細胞に全般的に作用しうる。 特に、 大腸、 肺、 胃、 食道、 肝臓、 前立腺等に効果がある。  Cisbratin (CDDP) is mainly applied to the treatment of testicular tumor, bladder cancer, renal pelvic and ureteral tumor, prostate cancer, ovarian cancer, 'head and neck cancer, lung cancer,' esophageal cancer, cervical cancer. The types of tumor (cancer) cells to which the antitumor agent resistance-resolving agent of the present invention acts are not limited, and all types of tumor cells can be used. For example, solid cancer in the head and neck, stomach, large intestine, lung, liver, prostate, sputum, esophagus, bladder, gallbladder or bile duct, breast, uterus, thyroid, ovary, etc., or leukemia, lymphoma, sarcoma, mesenchymal tumor This is effective. Most of the tumor cells derived from chick tissue show an increase in telomerase activity, and the antitumor agent resistance overcomer of the present invention generally acts on tumor cells whose proliferation has been activated by such telomerase activity. sell. Particularly effective for large intestine, lung, stomach, esophagus, liver, prostate, etc.
上記抗腫瘍剤の薬理学的に許容し得る塩としては、 無機酸塩 (例えば塩酸塩、 臭化水素酸塩、 硫酸塩、 硝酸塩、 過塩素酸塩、 リン酸塩) 、 有機酸塩 (例えば酢 酸塩、 トリフルォロ酢酸塩、 マレイン酸塩、 シユウ酸塩、 酒石酸塩、 マロン酸塩 、 コハク酸塩 、 フマル酸塩、 クヱン酸塩 、 リンゴ酸塩など) 、 有機スルホン酸 塩 (例えば、 メタンスルホン酸塩、 トリフルォロメタンスルホン酸塩、 エタンス ルホン酸塩、 ベンゼンスルホン酸塩、 トルエンスルホン酸塩など) 、 アミノ酸塩 (例えばァスパラギン酸塩、 グルタミン酸塩など) 、 四級ァミン塩、 アルカリ金 属塩 (例えばナトリゥム塩、 力リゥム塩など) 、 アル力リ土類金属塩 (例えば、 マグネシウム塩、 カルシウム塩など) などが挙げられる。 As the pharmacologically acceptable salts of the above-mentioned antitumor agents, inorganic acid salts (for example, hydrochloride, hydrobromide, sulfate, nitrate, perchlorate, phosphate), organic acid salts (for example, vinegar Acid salt, trifluoroacetate, maleate, oxalate, tartrate, malonate, succinate, fumarate, sulfonate, malate, etc.), organic sulfonate (eg, methanesulfonate Salts, trifluoromethanesulfonate, ethanesulfonate, benzenesulfonate, toluenesulfonate, etc.), amino acid salts (eg aspartate, glutamate, etc.), quaternary amine salts, alkali metal salts (eg, Sodium salt, strong salt, etc.), alkaline earth metal salt (eg, magnesium salt, calcium salt, etc.).
4 . 抗腫瘍剤耐性克服剤 4. Antitumor drug resistance overcomer
( 1 ) 本発明の抗腫瘍剤耐性克服剤は、 ヒ トテロメラーゼのプロモーター、 E 1A 遺伝子、 IRES配列及び E1B遺伝子をこの順に含むポリヌクレオチドが組み込ま れた組換えウィルスを含むことを特徴とする。  (1) The antitumor agent resistance overcomer of the present invention is characterized in that it comprises a recombinant virus in which a polynucleotide containing a human telomerase promoter, an E 1A gene, an IRES sequence, and an E1B gene in this order is incorporated.
これは、 テロメライシンが腫瘍細胞に及ぼす細胞死の作用機序が、 従来の抗が ん剤によるアポトー'シスの作用機序とは異なること、 さらに、 テロメライシン組 換えウィルスは、 抗腫瘍剤で腫瘍細胞が処理された場合でも、 何らその影響を受 けずにその細胞内での増殖複製を行うことができるといった、 テロメライシンの 性質により達成されたものである。  This is because the mechanism of action of cell death by telomerisin on tumor cells is different from the mechanism of action of apoptosis caused by conventional anticancer drugs. This is achieved by the nature of telomerisin, such that even when treated, the cells can proliferate and replicate in the cells without any influence.
本発明の抗腫瘍剤耐性克服剤は、 そのまま患部に適用することもできるし、 あ らゆる公知の方法、 '例えば、 静脈、 筋肉、 腹腔内又は皮下等の注射、 .あるいは鼻 睽、 口腔又は肺からの吸入、 経口投与、 カテーテルなどを用いた血管内投与等に より生体 (対象となる細胞や臓器) に導入することもできる。  The anti-tumor agent resistance overcomer of the present invention can be applied to the affected area as it is, or any known method, for example, injection such as vein, muscle, intraperitoneal or subcutaneous, or nasal cavity, oral cavity or It can also be introduced into a living body (target cells or organs) by inhalation from the lung, oral administration, intravascular administration using a catheter or the like.
また、 例えば凍結などの方法により扱いや.すくした後、 そのまま用いてもよく、 あるいは賦形剤、 増量剤、 結合剤、 滑沢剤等公知の薬学的に許容される担体、 公 知の添加剤 (緩衝剤、 等張化剤、 キレート剤、 着色剤、 保存剤、 香料、 風味剤、 甘味剤等が含まれる。 ) などと混合することができる。  In addition, it can be used as it is after handling or squeezing by a method such as freezing, or it can be used as it is, or a known pharmaceutically acceptable carrier such as an excipient, a bulking agent, a binder, a lubricant, etc. (Including buffering agents, tonicity agents, chelating agents, coloring agents, preservatives, fragrances, flavoring agents, sweetening agents, etc.) and the like.
本発明の抗腫瘍剤耐性克服剤は、 錠剤、 カプセル剤、 散剤、 顆粒剤、 丸剤、 液 剤、 シロップ剤等の経口投与剤、 注射剤、 外用剤、 坐剤、 点眼剤等の非経口投与 剤などの形態に応じて、 経口投与又は非経口投与することができる。 好ましくは、 筋肉、 腹腔等への局部注射、 静脈への注射等が例示される。 投与量は、 有効成分の種類、 投与経路、 投与対象、 患者の年齢、 体重、 性別、 症状その他の条件により適宜選択されるが、 本発明に含まれるウィルスの一日投 与量としては、 106〜: lOnPFl plaque forming units)程度、 好ましくは 109〜 lOuPFU程度とするのがよく、 1 日 1回投与することもでき、 数回に分けて投与 することもできる。 また、 本発明のウィルスを使用する際には、 公知の免疫抑制 剤等を用いることにより、 生体の免疫を抑制し、 該ウィルスが感染し易くするこ ともできる。 The anti-tumor agent resistance overcomer of the present invention includes tablets, capsules, powders, granules, pills, liquids, syrups and other oral administration agents, injections, external preparations, suppositories, eye drops, etc. Depending on the dosage form, it can be administered orally or parenterally. Preferably, local injection into muscles, abdominal cavity, etc., injection into veins, etc. are exemplified. The dose is appropriately selected according to the type of active ingredient, administration route, administration subject, patient age, body weight, sex, symptom and other conditions. The daily dose of the virus included in the present invention is 10 6 to about lOnPFl plaque forming units), preferably about 10 9 to lOuPFU, can be administered once a day, or can be divided into several times. Further, when using the virus of the present invention, it is possible to suppress the immunity of the living body by using a known immunosuppressive agent or the like so that the virus can be easily infected.
( 2 ) 併用療法用医薬組成物 ' (2) Pharmaceutical composition for combination therapy ''
本発明のヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及ひ Έ1Β 遺伝子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスと、 抗腫 瘍作用を有する物質とを併用すれば、 当該抗腫瘍物質に対して耐性を獲得した腫 瘍 (癌) に対する治療効果が回復する。 したがって、 本発明の上記ウィルスは、 少なぐとも 1種の抗腫瘍作用を有する物質と併用して医薬組成物として用いるこ ともできる。  If a recombinant virus incorporating a polynucleotide containing the human telomerase promoter, E1A gene, IRES sequence and ひ 1Β gene in this order in combination with a substance having an antitumor activity is used in combination, the antitumor substance The therapeutic effect on tumors (cancers) that have acquired resistance to cancer is restored. Therefore, the virus of the present invention can be used as a pharmaceutical composition in combination with at least one substance having antitumor activity.
本発明の抗腫瘍作用を有する物質とは、 生体の調節機構が乱れて細胞分裂を繰 り返し、 細胞が過剰増殖した結果、 腫瘍塊となるような腫瘍細胞 (癌細胞) の発 育や増殖を抑制する作用を有する物質をいい、 癌細胞の核酸合成を抑制したり、 代謝を阻害したりして増殖を阻止するような物質も含まれる。 具体的には、 以下. のものが挙げられる。  The substance having an antitumor action of the present invention refers to the growth and proliferation of tumor cells (cancer cells) that become tumor masses as a result of cell proliferation that is disrupted due to disorder of the body's regulatory mechanism and cell overgrowth. Substances that have the action of suppressing cancer, including substances that suppress the nucleic acid synthesis of cancer cells or inhibit metabolism by inhibiting metabolism. Specific examples include the following.
(i) アルキル化活性を有する物質: カルボコン、 プスルファン、 二ムスチン など (i) Substances having alkylation activity: Carbocon, psulfan, dimustine, etc.
(ϋ) 代謝拮抗活性を有する物質: メ トトレキサート、 メルカプトプリン、 シタラビン、 フノレオロウラシ Λ^、 テガフーノレ、 カノレモフーノレなど  (ii) Substances with antimetabolite activity: methotrexate, mercaptopurine, cytarabine, funoleorula Λ ^, tegafunore, canolemofunole, etc.
(iii) 抗生物質:ァクチノマイシン D、 ブレオマイシン、 ア ドリアマイシン、 マイ トマイシン Cなど  (iii) Antibiotics: actinomycin D, bleomycin, adriamycin, mitomycin C, etc.
(iv) 微小管阻害活性を有する物質: ドセタキセル、 パクリタキセル、 ピノ レノレビン、 ピンクリスチン、 ビンブラスチンなど (v) トポイソメラーゼ阻害活性を有する物質:イリノテカン、 ポドフイロ トキシン誘導体など 上記抗腫瘍作用を有する物質には薬学的に許容し得る塩も含まれる。 このよう な塩としては前述した塩が挙げられる。 (iv) Substances having microtubule inhibitory activity: docetaxel, paclitaxel, pinolenolevin, pinklistin, vinblastine, etc. (v) Substances having topoisomerase inhibitory activity: irinotecan, podophyllotoxin derivatives, etc. The substances having antitumor activity include pharmaceutically acceptable salts. Examples of such salts include the salts described above.
本発明に含まれる抗腫瘍作用を有する物質又はその薬学的に許容し得る塩の投 与量も、 有効成分の種類、 投与経路、 投与対象、 患者の年齢、 体重、 性別、 症状 その他の条件により適宜選択される。 例えば、 ドセタキセルの場合は、 通常、 成 人に 1日 1回、 60mg/m2 (体表面積)を 1時間以1上かけて 3〜4週間間隔で点滴静注 する。 なお、 症状により適宜増減することが可能である。 ただし、 1回最高用量 は 70mg/m2とする。 The dose of the substance having an antitumor activity or a pharmaceutically acceptable salt thereof included in the present invention also depends on the type of active ingredient, administration route, administration subject, patient age, body weight, sex, symptom and other conditions. It is selected appropriately. For example, in the case of docetaxel, usually, once a day in adults, 60mg / m 2 of body surface area over a period of over one hour more than 1 intravenous drip infusion at 3-4 week intervals. The dose may be adjusted according to the symptoms. However, the highest dose once a 70mg / m 2.
ビノレルビンの場合は、 例えば、 1回 2.0〜2.5mg/m2を 1週間間隔で静脈内に 緩徐に静注するこ ができる。 イリノテカンの場合は、 例えば、 塩酸イリノテカ ンとして、 通常、 成人に 1日 1回、 150mg/m2を 2週間間隔で 3〜4回点滴静注し、 少なくとも 3週間休薬する。 これを 1クールとして、 投与を繰り返すことができ る,。 In the case of vinorelbine, for example, 2.0 to 2.5 mg / m 2 can be intravenously administered intravenously at weekly intervals. In the case of irinotecan, for example, irinotecan hydrochloride is usually administered to an adult once a day, 150 mg / m 2 intravenously 3-4 times at 2-week intervals, and the drug is withdrawn for at least 3 weeks. This can be repeated as one course.
このように、 本発明の抗腫瘍剤体制克服剤に含まれる組換えウィルスと、 抗腫 瘍作用を有する物質とを併用することにより、 腫瘍細胞の増殖を抑制することが できる。 併用の態様は、 組換えウィルスと抗腫瘍作用を有する物質とを混合して 同時刻に投与する態様に限定されるものではなく、 いずれか一方を先に投与して 他方を後に投与する態様も含まれる。 一つの治療スケジュールの中に、 組換えゥ ィルス及び抗腫瘍作用を有する物質の両者が含まれている限り、 本発明における 「併用」 に含まれる。 具体的には、 例えば、 以下のような治療方法が挙げられる。 (i) テロメライシンを投与した後に抗腫瘍作用を有する物質を投与すること ができる。 培養細胞を用いた実験から、 この方法により顕著な併用効果が 認められることが明らかである。 (ii) テロメライシンを腫瘍内に投与し、 同時に抗腫瘍作用を有する物質を 全身投与してもよい。 動物実験では、 上記のような同時投与により明らか な併用効果が認められている。 Thus, the combined use of the recombinant virus contained in the antitumor agent regimen overcomer of the present invention and the substance having an antitumor action can suppress the growth of tumor cells. The mode of combination is not limited to the mode in which the recombinant virus and the substance having an antitumor effect are mixed and administered at the same time, and the mode in which either one is administered first and the other is administered later is also possible. included. As long as both a recombinant virus and an antitumor substance are contained in one treatment schedule, they are included in the “combination” in the present invention. Specifically, the following treatment methods are mentioned, for example. (i) A substance having antitumor activity can be administered after telomerisin is administered. From experiments using cultured cells, it is clear that a remarkable combined effect is observed by this method. (ii) Telomerisin may be administered intratumorally and at the same time a substance having antitumor activity may be administered systemically. In animal experiments, a clear concomitant effect is recognized by simultaneous administration as described above.
(iii) 抗腫瘍作用を有する物質を投与した後に、 テロメライシンを投与する こともできる。 抗腫瘍作用を有する物質の投与は、 短期投与、 長期投与を 問わない。  (iii) It is also possible to administer telomerisin after administering the substance having antitumor activity. Administration of substances with anti-tumor activity may be short-term or long-term.
( 3 ) 本発明の抗腫瘍剤耐性克服剤は、 以下の理由から、 副作用が生じる可能 性は極めて低いと考えられ、 非常に安全な製剤で るということができる。 (3) The antitumor agent resistance overcomer of the present invention is considered to have a very low possibility of causing side effects for the following reasons, and can be said to be a very safe preparation.
(i) 正常の体細胞ではテ口メラーゼ活†生がほとんどなく、 また、 造血細胞等 の浮遊細胞では本発明のウィルスは感染しにくい。 (i) Normal somatic cells have almost no living lipase activity, and floating cells such as hematopoietic cells are less susceptible to infection with the virus of the present invention.
(ii) 本発明のウィルスは増殖能を有するので、 通常の遺伝子治療で用いら れている非増殖性ウィルスよりも低い濃度で使用することができる。  (ii) Since the virus of the present invention has a proliferative ability, it can be used at a lower concentration than a non-proliferative virus used in normal gene therapy.
(iii) 本発明のウィルスが過剰に投与された場合であっても、 生体内の通常 . の免疫作用によって抗ウィルス作用が働く。  (iii) Even when the virus of the present invention is excessively administered, the antiviral action is exerted by the normal immune action in the living body.
( 4 ) 本発明の抗腫瘍剤耐性克服剤の抗腫瘍作用は以下のように試験を行い検 討することができる。 ' ' . (4) The antitumor action of the antitumor agent resistance overcomer of the present invention can be examined by examining as follows. ''.
. 本発明の抗腫瘍剤耐性克服剤が癌細胞に対して、 どの程度の抗腫瘍効果が認め られるか解析するには、 例えば、 XTTアツセィを行いることができる。 In order to analyze the antitumor effect of the antitumor drug resistance overcomer of the present invention on cancer cells, for example, an XTT assay can be performed.
XTT (2,3 bis [2- Methoxy 4-nitro- 5-sulfpphenyl ]- 2H- tetrazolium- 5- carboxyanilide inner salt)ァッセィは、 生細胞中のミ トコンドリァの脱水素酵素 により生存細胞の活性を測定することを基本原理としており、 インビトロにおけ る細胞毒性をモニターするのに適した方法である。 以下に XTTアツセィについ て具体的に説明する。  XTT (2,3 bis [2-Methoxy 4-nitro-5-sulfpphenyl] -2H-tetrazolium-5-carboxyanilide inner salt) assay measures the activity of living cells by dehydrogenase of mitochondria in living cells This is a suitable method for monitoring cytotoxicity in vitro. The following is a detailed explanation of the XTT Atsay.
XTT溶液は、 フヱノールレツドを含まない場合又は平衡塩溶液に溶解させた 場合は黄色を示す。 この XTT溶液が生存細胞と接触すると、 生存細胞のミ トコ ンドリアの脱水素酵素が XTTのテトラゾリゥム環を切断し、 水溶液に可溶の橙 色のフオルマザン結晶が生成する。 なお、 実際は XTTの生物学的還元が不十分 であるため、 還元促進剤としてフエナジンメ トサルフェート (PMS)等の電子共役 物質が反応液に添加されることが多い。 そして、 細胞数の増減によって、 生成す るフオルマザン量が変化することを利用し、 得られた橙色の溶液を比色法により 測定することによって、 所望の物質の細胞毒性を測定することができる。 本発明 の抗腫瘍剤耐性克服剤の解析にあたっては、 本発明の組換えウィルスをインビト 口で培養中の種々の癌細胞に適当な濃度 (MOI: multiplicity of infection) で感 染させる。 上記細胞を適当な条件で培養後、 種々の濃度の抗腫瘍剤を上記ウィル ス感染細胞培養液に投与する。 ウィルス感染後、 萆当な期間培養した後に、 上記 XTTアツセィを行い、 抗腫瘍効果を解析することができる。 The XTT solution shows a yellow color when it does not contain phenol red or when dissolved in a balanced salt solution. When this XTT solution comes into contact with viable cells, the mitochondrial dehydrogenase of the viable cells cleaves the tetrazolium ring of XTT and becomes soluble in aqueous solution. Colored formazan crystals are produced. In fact, since the biological reduction of XTT is insufficient, an electron conjugate substance such as phenazine methosulfate (PMS) is often added to the reaction solution as a reduction accelerator. Then, the cytotoxicity of the desired substance can be measured by measuring the resulting orange solution by the colorimetric method by utilizing the change in the amount of formazan produced by increasing or decreasing the number of cells. In the analysis of the anti-tumor drug resistance overcomer of the present invention, the recombinant virus of the present invention is infected at an appropriate concentration (MOI: multiplicity of infection) to various cancer cells cultured in vitro. After culturing the cells under appropriate conditions, various concentrations of antitumor agents are administered to the virus-infected cell culture. After virus infection, after culturing for an appropriate period, the above XTT assembly can be performed to analyze the antitumor effect.
アデノウィルスはコクサツキ一ウィルス ·アデノウィルス受容体 (CAR)を介し て細胞に感染及び進入するが、 CAEが陰性である癌細胞ではウィルス感染効率 が低下している。 そこで、 癌細胞においても CARの発現が増強しているほど、 アデノ.ウィルスは癌細胞に進入しやすくなる。 腫瘍細胞中で CARが発現してい るか否かは、 各種腫瘍細胞を適当な条件で培養した後、 フローサイ トメ トリーを 用いて CAE発現を解析すればよい。 なお、 抗癌剤 FR901228 (入手先:藤沢薬品 工業 (現 ァステラス製薬) ) は、 癌細胞においても CARの発現を増強させる ことができるため、 FR901228と本発明の組換えアデノウィルスを併用して用い ると、 FR901228本 ¾の抗腫瘍作用に加え、 併用される組換えアデノウイルスの 腫瘍細胞への感染効率を向上させる作用をも有している点で好ましい。  Adenoviruses infect and enter cells via the Coxsackie virus adenovirus receptor (CAR), but the efficiency of virus infection is reduced in cancer cells that are negative for CAE. Thus, the more CAR expression in cancer cells, the easier adenovirus enters the cancer cells. Whether or not CAR is expressed in tumor cells may be determined by analyzing CAE expression using flow cytometry after culturing various tumor cells under appropriate conditions. The anticancer drug FR901228 (Fujisawa Pharmaceutical Co., Ltd. (currently Astellas Pharma Inc.)) can enhance the expression of CAR in cancer cells. Therefore, when FR901228 is used in combination with the recombinant adenovirus of the present invention, In addition to the anti-tumor action of FR901228, it is preferable in that it also has the action of improving the infection efficiency of the combined recombinant adenovirus in tumor cells.
フローサイ トメ トリーとは、 細胞浮遊液を高速で流動させて、 個々の粒子から 発する蛍光を測定することにより、 細胞集団中の個々の細胞の大きさ、 DNA含 量等を測定する方法をいう。 フローサイ トメ トリーは、 細胞 1個 1個の相対的大 きさや形状、 内部構造の違いを解析できるばかりではなく、 さらに蛍光標識を行 うことにより蛍光強度や蛍光の種類を測定し、 細胞の同定や細胞群を構成する種 々の細胞の存在比を短時間で解析することができる。  Flow cytometry is a method of measuring the size of individual cells, DNA content, etc. in a cell population by measuring the fluorescence emitted from individual particles by flowing a cell suspension at high speed. Flow cytometry not only analyzes the differences in the relative size, shape, and internal structure of each cell, but also measures fluorescence intensity and type of fluorescence by fluorescent labeling to identify cells. And the abundance ratio of various cells constituting the cell group can be analyzed in a short time.
細胞膜は、 細胞死により、 その状態を保てなくなるため、 後述する PI ( propidium iodide) 等で容易に核が染色される。 従って、 この PIによる核染色の 結果から、 DNA量と細胞周期を判定することができる。 本発明の抗腫瘍剤耐性克服剤における組換えウィルスが、 標的とする細胞周期 にどのような影響を及ばすのかについては、 上記したフローサイ トメ トリーを用 いて、 核を染色する PIにより細胞周期を解析することができる。 腫瘍細胞では、 細胞周期における S期及び G2/M期の割合が高いと悪性度が高いとされる。 従つ て、 G2/M期の割合が抑制されるような結果が得られれば、 抗腫瘍効果が認めら れるといえる。 Since the cell membrane cannot maintain its state due to cell death, the nucleus is easily stained with PI (propidium iodide) described later. Therefore, the amount of DNA and the cell cycle can be determined from the result of nuclear staining with PI. The effect of the recombinant virus in the anti-tumor drug resistance overcoming agent of the present invention on the target cell cycle is determined by PI using the flow cytometry described above to stain the nucleus. Can be analyzed. Tumor cells are considered to be highly malignant when the proportions of S phase and G2 / M phase in the cell cycle are high. Therefore, it can be said that an antitumor effect is observed if a result that suppresses the ratio of G2 / M phase is obtained.
本発明の抗腫瘍剤耐性克服剤における組換えウィルスの標的細胞内における增 殖は、 例えば、 定量リアルタイム PCRを用いて以下のように測定することがで きる。 すなわち、 抗腫瘍剤を併用して組換え'ウィルスを適当な期間培養した後、 ウィルス感染細胞を回収して DNAを抽出し、 本ウィルスが有する適当な遺伝子 を標的とするプライマーを用いてリアルタイム PCRを行うことで'、 本ウィルス が有する適当な遺伝子を定量的に解析することができる。 このとき、 例えば、 本 発明の組換えウィルスに蛍光物質をコードする遺伝子などを組み込んでおくと、 本ウィルスの増殖がみられる細胞は、 励起光をあてることにより所定の蛍光 (例 えば GFPの場合は緑色蛍光) を発するため、 細胞内におけるウィルス増殖を可 視化することができる。 例えば、 ウィルス感染細胞を蛍光顕微鏡下に観察すると、 細胞で GFP蛍光発現が見られる。 また、 CCDカメラを用いて、 経時的に GFP蛍 光発現を観察することで、 ウィルス感染細胞を経時的に観察することもでき、 そ のような組換えウィルスを生体内に投与すれば、 生体内において細胞をリアルタ ィムで標識および検出することもできる。 以下に、 本発明を実施例によりさらに具伴的に説明する。 但し、 本発明はこれ ら実施例に限定されるものではなレ、。  The proliferation of the recombinant virus in the target cell of the antitumor agent resistance overcomer of the present invention can be measured, for example, using quantitative real-time PCR as follows. In other words, after culturing the recombinant virus with an anti-tumor agent for an appropriate period, collect the virus-infected cells, extract the DNA, and use real-time PCR with primers that target the appropriate gene of the virus. By performing the above, it is possible to quantitatively analyze an appropriate gene possessed by the virus. At this time, for example, if a gene encoding a fluorescent substance is incorporated into the recombinant virus of the present invention, cells in which the virus has been propagated are irradiated with excitation light to give a predetermined fluorescence (for example, in the case of GFP). Emits green fluorescence), allowing virus growth in cells to be visualized. For example, when a virus-infected cell is observed under a fluorescence microscope, GFP fluorescence expression is seen in the cell. It is also possible to observe virus-infected cells over time by observing the expression of GFP fluorescence over time using a CCD camera. If such a recombinant virus is administered in vivo, Cells can also be labeled and detected in real time in the body. In the following, the present invention will be further described by way of examples. However, the present invention is not limited to these examples.
〔実施例 1〕  Example 1
く組換えアデノウイルス (テロメライシン) の作製〉  <Production of recombinant adenovirus (telomerisin)>
ヒ ト胎児腎臓細胞 293細胞から公知の手法を用いて抽出した RNAと、 以下の特 異的なプライマー (E1A-S、 El A- AS) を用いて以下の条件で RT-PCRを行い、 897 bpの E1A遺伝子を増幅した。 各プライマー配列: RT-PCR was performed under the following conditions using RNA extracted from human fetal kidney cells 293 cells using a known method and the following specific primers (E1A-S, El A-AS). The bp E1A gene was amplified. Each primer sequence:
E1A-S : 5'-aca ccg gga ctg aaa atg ag-3' (酉己歹 'J畨号 5 )  E1A-S: 5'-aca ccg gga ctg aaa atg ag-3 '
E l A- AS: 5'-cac agg ttt aca cct tat ggc-3' (配列番号 6 ) PCR液組成: lxPCR 'バッファー  E l A- AS: 5'-cac agg ttt aca cct tat ggc-3 '(SEQ ID NO: 6) PCR solution composition: lxPCR' buffer
各 dNTP毎 0.2mM  0.2 mM for each dNTP
5mM MgCl2 5 mM MgCl 2
2.5U AmpHTaq Gold  2.5U AmpHTaq Gold
各プライマ一毎 0.2 μ Μ 、 反応条件: 95°C 10分 ―  0.2 μΜ per primer, reaction condition: 95 ° C for 10 minutes ―
95°C 1分 → 56°C 1分→ 72°C 1.5分 (x32サイクル) 72°C 7分 .  95 ° C 1 minute → 56 ° C 1 minute → 72 ° C 1.5 minutes (x32 cycle) 72 ° C 7 minutes.
4°C 5分 ' 周様に、 293細胞から抽出した DNAより以下のプライマー (E 1B-S、 E 1B-AS ) を用いて DNA-PCRを行い、 l,822bpの E 1B遺伝子を増幅した。 PCR液組成、 反応条件 (サイクル、 温度) は E 1A遺伝子の場合と同様に行った。 各プライマー配列: '  DNA-PCR was performed from the DNA extracted from 293 cells using the following primers (E 1B-S, E 1B-AS) at 4 ° C for 5 min. To amplify the l, 822 bp E 1B gene . The PCR solution composition and reaction conditions (cycle, temperature) were the same as for the E1A gene. Each primer sequence: '
E1B -S: 5'-ctg acc tea tgg agg ctt gg-3' (配列番号 7 )  E1B-S: 5'-ctg acc tea tgg agg ctt gg-3 '(SEQ ID NO: 7)
E1B -AS: 5' gcc cac aca ttt cag tac ctc-3' (配列番号 8 ) それぞれの PCR産物の TA Cloning (TA Cloning Kit Dual Promoter;  E1B-AS: 5 'gcc cac aca ttt cag tac ctc-3' (SEQ ID NO: 8) TA Cloning of each PCR product (TA Cloning Kit Dual Promoter;
Invitrogen) を行い、 シークェンスを確認した後、 制限酵素 EcoRIにより、 各々 911bp(ElA)、 1836bp(E lB)の DNA断片を切り出した。 After confirming the sequence, DNA fragments of 911 bp (ElA) and 1836 bp (ElB) were cut out with the restriction enzyme EcoRI.
pIRESベクタ一 (CLONTECH) の Mul切断部位に E 1Aを、 Sail部位に E 1B をそれぞれ順方向に挿入した (E 1A-IRES-E 1B) 。 制限酵素 Mulおよび Bglllで切り出した 455bpの hTERTプロモーター配列を、 E 1A IRES-E 1Bの E 1 A上流にある Xhol部位に順方向に挿入した (phTERT-E 1A- IRES-E 1B) E1A was inserted into the Mul cleavage site of pIRES Vector I (CLONTECH), and E1B was inserted into the Sail site in the forward direction (E1A-IRES-E1B). A 455 bp hTERT promoter sequence excised with restriction enzymes Mul and Bglll was inserted into the Xhol site upstream of E 1A of E 1A IRES-E 1B in the forward direction (phTERT-E 1A- IRES-E 1B)
pShuttleベクタ一に含まれるサイ トメガロウィルス (CMV) プロモーターを 制限酵素 Mfelおよび Nhel処理により取り除き、 その部位に phTERT-ElA-IRES- E lBより制限酵素 Nhelおよび Notlで切り出した 3 828bpの配列を挿入した ( pSh- AIB)  The cytomegalovirus (CMV) promoter contained in the pShuttle vector was removed by treatment with restriction enzymes Mfel and Nhel, and a 3828 bp sequence excised from phTERT-ElA-IRES-ELB with restriction enzymes Nhel and Notl was inserted at that site. (PSh- AIB)
pSh-hAIBより制限酵素 I-Ceulおよび Pl-Scelにより 4,38 lbpの配列を切り出し、 Adeno-X Expression System (CLONTECH) の Adeno'X Viral DNAに揷入し † (AdenoX hAIB) AdenoX-hAIBを制限酵素 Pacl処理で線状化した後、 293 細胞にトランスフエクシヨンし、 感染性 ©ある組換えアデノウィルスを作製した (OBP-301;テロメライシン; Telomelysin) 。 テロメライシンに組み込まれた複 製カセッ トの模式図を図 l aに示す。  A 4,38 lbp sequence was excised from pSh-hAIB using restriction enzymes I-Ceul and Pl-Scel and inserted into Adeno'X Viral DNA of Adeno-X Expression System (CLONTECH) † (AdenoX hAIB) AdenoX-hAIB After linearization by treatment with the restriction enzyme Pacl, 293 cells were transfected to produce an infectious recombinant adenovirus (OBP-301; Telomelysin; Telomelysin). Figure la shows a schematic diagram of the duplicate cassette incorporated into telomerisin.
さらに、 pEGFP- l(CLONTECH)を Agel/Nhelで切断し、 タレノウ断片で平 滑化して、 セルフライゲーシヨンした (pEGFP-N2)  Furthermore, pEGFP-l (CLONTECH) was cleaved with Agel / Nhel, smoothed with a talenau fragment, and self-ligated (pEGFP-N2).
この pEGFP-N2を Nsil/Aflllで切断し、 T4 DNAポリメラーゼで平滑化し Bglll リンカ を使って、 Bglll 部位を作製した。 この Bglll断片を pHMl lの BamHI 部位に挿入した (pHMl l-EGFP-N2)  This pEGFP-N2 was cleaved with Nsil / Aflll, blunted with T4 DNA polymerase, and Bglll site was prepared using Bglll linker. This Bglll fragment was inserted into the BamHI site of pHMl l (pHMl l-EGFP-N2)
さらに、 pHMl l-EGFP-N2の Csp45I 断片を phTERT E1A—IRES— E1Bを 組み込んだ pShuttleベクター (pSh-hAIB) の Clal siteに挿入した。  Furthermore, the Csp45I fragment of pHMll-EGFP-N2 was inserted into the Clal site of the pShuttle vector (pSh-hAIB) incorporating phTERT E1A-IRES-E1B.
作製した組換え遺伝子を制限酵素 I-Ceulおよび PI-SceIにより 4381bpの配列を 切り出し、 Adeno— X Expression System (CLONTECH) の Adeno— X Viral DNAに挿入した (AdenoX— hAIB) AdenoX— hAIBを制限酵素 Pacl処理で線 状化した後、 293細胞にトランスフエクシヨンし、 感染性のある組換えアデノウ ィルスを作製した (以下、 「OBP-401」 という) (図 l b) 。 なお、 E3領域に CMVプロモーターにより発現する gft)遺伝子を挿入すると、 当該遺伝子産物の蛍 光発色により、 ウィルスの増殖とともに癌細胞を可視化することができる。  A 4381 bp sequence was excised from the prepared recombinant gene using restriction enzymes I-Ceul and PI-SceI and inserted into Adeno—X Viral DNA of Adeno—X Expression System (CLONTECH) (AdenoX—hAIB) AdenoX—hAIB After linearization by Pacl treatment, 293 cells were transfected to produce infectious recombinant adenovirus (hereinafter referred to as “OBP-401”) (Fig. Lb). When the gft) gene expressed by the CMV promoter is inserted into the E3 region, cancer cells can be visualized as the virus grows by fluorescent coloration of the gene product.
〔実施例 2〕 <CDDPおよびパクリタキセルに対する抗腫瘍耐性の確認 > Example 2 <Confirmation of anti-tumor resistance to CDDP and paclitaxel>
ヒ ト扁平上皮がん A431細胞及び耐性を獲得している A431/CDDP1、  Human squamous cell carcinoma A431 cells and A431 / CDDP1, which has acquired resistance
A431/CDDP2細胞に CDDP (シスプラチン)を投与し、 ヒ ト前立腺癌細胞 DU145細 胞及び耐性を獲得している clone2、 3、 4細胞にパクリタキセルを投与して各々 の細胞がどの程度の抗腫瘍耐性を獲得するかを確認した。 具体的には、 96ゥェ ルプレートに細胞を 1,000細胞/ゥヱルずつ播種し、 A431系及び DU145系細胞に CDDP 0、 0.1、 1、 3、 10く 30、 50、 ΙΟΟ μ Μあるいはパクリタキセル 0、 0.1、 1、 2、 5、 10、 50、 100 ηΜを加えた。 感染後 3日目にキット (ロシュ ·ダイァ グノスティックス社) を用いて ΧΤΤアツセィを行った。 具体的には、 ゥエルか ら培養液を除去し、 ΧΤΤ試薬を含む反応液を調整した後に添加培養する。.約 4時 間後にマイクロタイタープレート (ELISA)リーダ一で吸光度を測定し、 生細胞数 を算出、 抗腫瘍効果を確認した。 CD431 (cisplatin) is administered to A431 / CDDP2 cells, human prostate cancer cells DU145 cells, and clone 2, 3, and 4 cells that have acquired resistance are administered paclitaxel, and how much antitumor resistance each cell has Confirmed whether to win. Specifically, cells are seeded at a density of 1,000 cells / well in a 96-well plate, and CDDP 0, 0.1, 1, 3, 10, 30, 50, ΙΟΟμΜ or paclitaxel 0, 0.1, 1, 2, 5, 10, 50, 100 ηΜ was added. On the third day after infection, a kit (Roche Diagnostics) was used. Specifically, the culture solution is removed from the well, and the reaction solution containing the sputum reagent is prepared and added and cultured. About 4 hours later, the absorbance was measured with a microtiter plate (ELISA) reader, the number of viable cells was calculated, and the antitumor effect was confirmed.
その結果、 親株に対して、 A431系では約 3〜4倍の、 DU145系では約 6〜7倍の 相対耐性が認められた (図 2 ) 。  As a result, the relative resistance of the parent strain was about 3-4 times higher in the A431 system and about 6-7 times higher in the DU145 system (Fig. 2).
さらに、 A431と CDDP耐性 A431株、 DU145とパクリタキセル耐性 DU145株 に、 それぞれ CDDP 10 μ Μ、 パクリタキセル ΙΟηΜを感染させた。 感染後 3日目 に顕微鏡にて観察した。 その結果、 ともに親株においては著明な抗腫瘍効果が認 められたが、 耐性株においては耐性が確認された (図 3 ) 。 図 3 aにおいて、 A431/Pは親株、 A431/CDDP1及び A431/CDDP2は耐性株である、 図.3 bにおい て、 Dul45/Pは親株、 clone2〜4は耐性株である。 ' Moreover, A431 and CDDP resistance A431 strain, the DU145 and paclitaxel-resistant DU145 strain was CDDP 10 mu Micromax respectively, paclitaxel ΙΟηΜ infected. The specimen was observed with a microscope on the third day after infection. As a result, a marked antitumor effect was observed in both parental strains, but resistance was confirmed in resistant strains (Fig. 3). In Fig. 3a, A431 / P is the parent strain, A431 / CDDP1 and A431 / CDDP2 are resistant strains. In Fig. 3b, Dul45 / P is the parent strain and clones 2-4 are resistant strains. '
A431と CDDP耐性株、 DU145とパクリタキセル耐性株に、 それぞれ CDDP、 パクリタキセルを感染させ、 感染後 7日目に CBB染色を行った。 その結果、 とも に親株においては著明な抗腫瘍効果が認められたが、 耐性株においては高濃度の 抗癌剤に対しても耐性が認められた (図 4 ) 。  A431 and CDDP resistant strains, DU145 and paclitaxel resistant strains were infected with CDDP and paclitaxel, respectively, and CBB staining was performed 7 days after infection. As a result, both the parent strains showed a marked antitumor effect, but the resistant strains were also resistant to high concentrations of anticancer drugs (Fig. 4).
次に、 抗腫瘍耐性の分子機構を検討するために、 各耐性細胞における多剤耐性遺 伝子 (multidrug resistance gene: MDR1) の発現を解析した。 具体的には、 各 癌細胞からタンパク分画を抽出し、 ゲル内で電気泳動した後にタンパクを膜にト ランスファーする。 その膜を抗 MDR1抗体と反応させ、 抗体を発色させることで MDR1タンパクの発現を比較した。 その結果、 A431 系、 DU145系いずれの細 胞株においても MDR1の発現はほとんどみられず、 MDR1発現による耐性獲得で はないと考えられた (図 5 ) 。 Next, in order to investigate the molecular mechanism of anti-tumor resistance, the expression of multidrug resistance gene (MDR1) in each resistant cell was analyzed. Specifically, a protein fraction is extracted from each cancer cell, electrophoresed in a gel, and then transferred to a membrane. The membrane was reacted with an anti-MDR1 antibody, and the expression of the MDR1 protein was compared by coloring the antibody. As a result, both A431 and DU145 MDR1 expression was hardly observed in the cell lines, and it was considered that resistance was not acquired by MDR1 expression (Fig. 5).
アデノウィルスの細胞内侵入に必要なコクサツキ一ウィルス ·アデノウィルス 受容体 (CAR)の発現を、 フローサイ トメ トリーを用いて確認した。  The expression of the Coxsaki virus-adenovirus receptor (CAR) required for adenovirus entry into cells was confirmed using flow cytometry.
その結果、 実験に用いだ全ての細胞株において著明な CAR発現が認められた ( 図 6 ) 。 As a result, significant CAR expression was observed in all cell lines used in the experiment (Fig. 6).
〔実施例 3〕 Example 3
< OBP-301及び OBP-401に抗腫瘍剤耐性細胞に対する抗腫瘍効果の検討 >  <OBP-301 and OBP-401 anti-tumor effect on anti-tumor drug resistant cells>
96ゥヱルプレートに A431系及び DU145系細胞を 1,000細胞/ゥヱルずつ播種し、 OBP-301を mock、 0.01、 0.1、 1、 5、 10、 20 MOIで感染させた。 OBP-301感染 後 5日目に XTTアツセィを行った。 その結果、 A431/Pにおいて若干抵抗性が認め られたものの、 ほぼすベての細胞株において、 著明な殺細胞効果が認められた。 DU145では、 親株も耐性株も同様に OBP-301による著明な殺細胞効果が認めら れた (図 7、 表 1 ) 。  96-well plates were seeded with A431 and DU145 cells at 1,000 cells / tool, and OBP-301 was infected with mock, 0.01, 0.1, 1, 5, 10, 20 MOI. On the fifth day after infection with OBP-301, an XTT assay was performed. As a result, although a slight resistance was observed with A431 / P, a marked cell killing effect was observed in almost all cell lines. In DU145, both the parental strain and the resistant strain showed a marked cell killing effect by OBP-301 (Fig. 7, Table 1).
.さらに、 OBP-301感染後から 1、 2、 3、 5、 7日目に XTT アツセィを行った。 その結果、 A431/Pにおいて若干抵抗性が認められたものの、 すべての耐性細胞 株において、 1〜 3日目にかけて急速な殺細胞効果が認められた。 DU145では、 親株も耐性株も同榛に OBP-301による急速な殺細胞効果が認められた (図 8 ) 。 . その次に、 24ゥヱルプレートに細胞を 10,000細胞/ゥエルずつ播種し、 OBP- 301を mock、 0.01、 0.1、 1、 10および 50 MOIで感染させた。 感染後 7日目に Coomassie Brilliant Blue (CBB)染色を行レ、、 抗腫瘍効果を検討した。 その結果、 A431/Pにおいてはやや抵抗性があつたが、 耐性株においては著明な殺細胞効果 が認められた。 DU145では、 親株も耐性株も同様に OBP-301による著明な殺細 胞効果が認められた (図 9 ) 。 表 1 In addition, XTT assay was performed on days 1, 2, 3, 5, and 7 after OBP-301 infection. As a result, although a slight resistance was observed with A431 / P, rapid cell-killing effects were observed on days 1 to 3 in all resistant cell lines. In DU145, OBP-301 showed a rapid cell killing effect in both the parent and resistant strains (Fig. 8). Then, 24 cells were seeded at 10,000 cells / well and infected with OBP-301 at mock, 0.01, 0.1, 1, 10 and 50 MOI. Seven days after infection, Coomassie Brilliant Blue (CBB) staining was performed and the antitumor effect was examined. As a result, A431 / P was slightly resistant, but a resistant cell killing effect was observed in the resistant strain. In DU145, both the parent strain and the resistant strain showed a significant cell killing effect by OBP-301 (Fig. 9). table 1
薬剤耐性サブラインの特徴づけ Characterization of drug resistance sublines
IC50(MOI) OBP-301 IC50(MOI) OBP-301 IC50 (MOI) OBP-301 IC50 (MOI) OBP-301
A431/P 7.14 DU145/P 0.81 、 clone2 0.71A431 / P 7.14 DU145 / P 0.81, clone2 0.71
A431/CDDP1 6.57 A431 / CDDP1 6.57
clone3 0.67 clone3 0.67
A431/CDDP2 3.92 clone4 0.62 A431 / CDDP2 3.92 clone4 0.62
A431と CDDP耐性株について、 OBP-301、 OBP-401を 10MOIで 2時間感染さ せた。 感染後 5日目 fc蛍光倒立顕微鏡にて形態学的変化と蛍光発現を観察した。 その結果、 明視野では、 A431/Pに対してはやや抵抗性があつたが、 耐性株にお いては著明な殺細胞効果が認められた。 また、 OBP-401の蛍光を観察したとこ ろ、 いずれの細胞株においても強い蛍光を認められ、 細胞内増殖が十分であるこ とが示された (図 1 0 ) 。 ' A431 and CDDP resistant strains were infected with OBP-301 and OBP-401 at 10 MOI for 2 hours. 5 days after infection Morphological changes and fluorescence expression were observed with an fc fluorescence inverted microscope. As a result, in the bright field, although it was slightly resistant to A431 / P, a marked cell killing effect was observed in the resistant strain. In addition, when the fluorescence of OBP-401 was observed, strong fluorescence was observed in all cell lines, indicating that intracellular proliferation was sufficient (FIG. 10). '
DU145どパクリタキセル耐性株に OBP-301および OBP-401を 0.1MOIで 2時間 感染させ、 感染後 5日目に顕微鏡にて観察した。 その結果、 明 m野では、 親株、 耐性株すべてにおいて著明な殺細胞効果が認められた。 また、 蛍光では、 いずれ の細胞株においても強い蛍光が認められ、 細胞内増殖が十分であることが示され た (図 1 1 ) 。  DU145 and paclitaxel resistant strains were infected with OBP-301 and OBP-401 at 0.1 MOI for 2 hours, and observed with a microscope on the fifth day after infection. As a result, in the light field, a marked cell killing effect was observed in all parental and resistant strains. As for fluorescence, strong fluorescence was observed in all cell lines, indicating that intracellular proliferation was sufficient (Fig. 11).
定量的リアルタイム; PCRを用いて、 A431系及び DU145系に OBP-301を 0.1MOI又は 1MOIで 2時間感染させた。 感染後 2、 24、 48、 72時間後に細胞を回 収して、 DNAを抽出し、 リアルタイム PCRにてウィルス増殖を定量的に解析し た。  Quantitative real-time: ABP and 301 were infected with OBP-301 at 0.1 MOI or 1 MOI for 2 hours using PCR. Cells were collected at 2, 24, 48, and 72 hours after infection, DNA was extracted, and viral growth was quantitatively analyzed by real-time PCR.
El Aプライマー配列: Forward: 5' CCT GTG TCT AGA GAA TGC AA-3' (配列番号 9 ) Reverse: 5'-ACA GCT CAA GTC CAA AGG TT-3' (配列番号 1 0 ) El A primer sequence: Forward: 5 'CCT GTG TCT AGA GAA TGC AA-3' (SEQ ID NO: 9) Reverse: 5'-ACA GCT CAA GTC CAA AGG TT-3 '(SEQ ID NO: 10)
PCR液組成 lxLC FastStart DNA Master SYBR Green I PCR solution composition lxLC FastStart DNA Master SYBR Green I
3mM MgCl2 3 mM MgCl 2
各プライマー毎 0.5 /z M 反応条件 95°C 10分  For each primer 0.5 / z M Reaction condition 95 ° C 10 min
95°C 10秒 → 60°C 15秒 ' 72°C 8秒 (χ40サイクル) 95 ° C 10 seconds → 60 ° C 15 seconds' 72 ° C 8 seconds (χ40 cycle)
70°C 15秒 70 ° C 15 seconds
40°C 30秒 その結果、 感染後 24時間で急速に増殖し、 約 48時間でピーク値に達した。 ま た、 いずれの細胞株においても著明な増殖効率が示された (図 1 2 ) 。 産業上の利用可能性  As a result, it grew rapidly 24 hours after infection, and reached its peak value at about 48 hours. In addition, the proliferation efficiency was remarkable in all cell lines (Fig. 12). Industrial applicability
本発明により、 ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及 び E1B遺伝子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスを 含む、 抗腫瘍剤耐性克服剤が提供される。 本発明の抗腫瘍剤耐性克服剤は、 抗腫 瘍剤耐性腫瘍に対する新しい治療戦略としての応用できる点で有用である。 配列表フリーテキス ト  INDUSTRIAL APPLICABILITY According to the present invention, there is provided an antitumor agent resistance overcome agent comprising a recombinant virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence and an E1B gene in this order is incorporated. The anti-tumor drug resistance overcomer of the present invention is useful in that it can be applied as a new therapeutic strategy for anti-tumor drug resistant tumors. Sequence listing free text
配列番号 5 :プライマー  Sequence number 5: Primer
配列番号 6 :プライマー  Sequence number 6: Primer
配列番号 7 :プライマー  Sequence number 7: Primer
配列番号 8 :プライマー  Sequence number 8: Primer
配列番号 9 :プライマー  Sequence number 9: Primer
配列番号 1 0 :プライマー  Sequence number 10: Primer

Claims

請 求 の 範 囲 ヒ トテロメラ一ゼのプロモーター、 E1A遺伝子、 IRES配列及び E 1B遺伝子 をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスを含む、 抗 腫瘍剤耐性克服剤。 '  Scope of claim Antitumor drug resistance-resolving agent comprising a recombinant virus in which a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E1B gene in that order is incorporated. '
ヒ トテロメラーゼのプロモーターが hTERTである、 請求項 1記載の抗腫瘍 剤耐性克服剤。  The antitumor agent resistance overcomer according to claim 1, wherein the promoter of human telomerase is hTERT.
ウィルスがアデノウイルスである請求項 1又は 2記載の抗腫瘍剤耐性克服剤。 抗腫瘍剤が、 白金製剤、 微小管阻害活性剤、 アルキル化活性剤、 代謝拮抗活 性剤、 抗癌作用を有する抗生物質及びトポイソメラーゼ阻害活性剤並びにそ れらの薬理学的に許容し得る塩からなる群から選択される少なくとも 1つで ある、 請求項 1〜 3のいずれか 1項に記載の抗腫瘍剤耐性克服剤。  3. The antitumor agent resistance overcomer according to claim 1 or 2, wherein the virus is an adenovirus. Antitumor agents include platinum preparations, microtubule inhibitory activators, alkylating activators, antimetabolite activators, anticancer antibiotics and topoisomerase inhibitory activators and their pharmacologically acceptable salts. The antitumor agent resistance overcomer according to any one of claims 1 to 3, which is at least one selected from the group consisting of:
抗腫瘍剤が、 ドセタキセル、 パクリタキセル、 シスプラチン、 プスルファン、 メ ト トレキサ一'ト、 フルォロウラシル、 テガフール、 ブレオマイシン、 アド リアマイシン、 マイ トマイシン C、 ビノレルビン及びイ リノテカン並びにそ れらの薬理学的に許容し得る塩からなる群から選択される少なくとも 1つで ある、 請求項 1〜 3のいずれか 1項に記載の抗腫瘍剤耐性克服剤。  Antitumor agents are docetaxel, paclitaxel, cisplatin, psulfan, methotrexate, fluorouracil, tegafur, bleomycin, adriamycin, mitomycin C, vinorelbine and irinotecan and their pharmacologically acceptable The antitumor agent resistance overcomer according to any one of claims 1 to 3, which is at least one selected from the group consisting of salts.
腫瘍が、 肺癌、 大腸癌、 胃癌、 乳癌、 食道癌、 頭頸部癌、 肝臓癌、 陴臓癌、 胆嚢又は胆管癌: 前立腺癌、 膀胱癌、 子宮頸癌、 甲状腺癌、 卵巣癌、 白血病、 リンパ腫、 肉腫及び間葉系腫瘍からなる群から選択される'少なくとも 1つで ある、 請求項 1 ~ 5のいずれか 1項に記載の抗腫瘍剤耐性克服剤。  Tumor is lung cancer, colon cancer, stomach cancer, breast cancer, esophageal cancer, head and neck cancer, liver cancer, pancreas cancer, gallbladder or bile duct cancer: prostate cancer, bladder cancer, cervical cancer, thyroid cancer, ovarian cancer, leukemia, lymphoma 6. The antitumor agent resistance overcome agent according to any one of claims 1 to 5, which is at least one selected from the group consisting of sarcoma and mesenchymal tumor.
ヒ トテロメラーゼのプロモータ一、 E1A遺伝子、 IRES配列及び E1B遺伝子 をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスと、 抗腫瘍 作用を有する物質とを含む、 抗腫瘍剤耐性を獲得した腫瘍の併用療法のため の医薬組成物。  A combination of a recombinant virus incorporating a polynucleotide containing the human telomerase promoter, E1A gene, IRES sequence, and E1B gene in this order, and a tumor that has acquired antitumor drug resistance, including a substance having antitumor activity A pharmaceutical composition for therapy.
抗腫瘍作用を有する物質が、 ドセタキセル、 ビノレルビン、 イリノテカン及 びヒス トンデァセチラーゼ阻害活性阻害剤並びにそれらの薬理学的に許容し 得る塩からなる群から選択される少なくとも 1つである、 請求項 7項記載の 医薬組成物。 The substance having an antitumor activity is at least one selected from the group consisting of docetaxel, vinorelbine, irinotecan, and histone deacetylase inhibitory activity inhibitor and pharmacologically acceptable salts thereof. 8. A pharmaceutical composition according to item 7.
9 . ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及び E1B遺伝チ をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスを哺乳動物 に投与することを特徴とする、 抗腫瘍剤耐性を獲得した腫瘍細胞の増殖を抑 制する方法。 9. A tumor that has acquired anti-tumor drug resistance, characterized by administering to a mammal a recombinant virus incorporating a polynucleotide comprising a human telomerase promoter, an E1A gene, an IRES sequence, and an E1B genetic sequence in this order. A method of inhibiting cell growth.
1 0 . ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及び E1B遺伝 子をこの順に含むポリヌクレオチドが組み込まれた組換えウィルスと、 抗腫 瘍作用を有する物質又はそれらの薬理学的に許容し得る塩とを併用して哺乳 動物に投与することを特徴とする、 抗腫瘍剤耐性を獲得した腫瘍細胞の増殖 を抑制する方法。 、 10. Recombinant virus in which a polynucleotide comprising a human telomerase promoter, E1A gene, IRES sequence and E1B gene in this order is incorporated, and an antitumor substance or a pharmacologically acceptable product thereof A method for inhibiting the growth of tumor cells that have acquired antitumor drug resistance, comprising administering to a mammal in combination with a salt. ,
1 1 . ヒ トテロメラーゼのプロモーター、 E1A遺伝子、 IRES配列及ぴ E1B遺伝 子をこの順に含むポリヌクレオチドが _組み込まれた組換えウィルスを哺乳動 物に投与することを特徴とする、 抗腫瘍剤耐性を獲得した腫瘍の治療方法。 1 1. Anti-tumor drug resistance characterized by administering a recombinant virus containing a polynucleotide containing a human telomerase promoter, E1A gene, IRES sequence, and E1B gene in this order to a mammal. How to treat a tumor that has acquired.
1 2 . ヒ トテロメラーゼのプロモーターが hTERTである、 請求項 9〜 1 1のい ずれか 1項に記載の方法。 1 2. The method according to any one of claims 9 to 11, wherein the promoter of human telomerase is hTERT.
1 3 . ウィルスがアデノウイルスである、 請求項 9〜 1 2のいずれか 1項に記載 の方法。 13. The method according to any one of claims 9 to 12, wherein the virus is an adenovirus.
1 4 . 抗腫瘍剤が、 白金製剤、 微小管阻害活性剤、 アルキル化活性剤、 代謝拮抗 活性剤、 抗癌作用を有する抗生物質及びトポィソメラーゼ阻害活性剤並びに それらめ薬理学的に許容し得る塩からなる群から選択される少なくとも 1つ である、 請求項 9〜 1 3のいずれか 1項に記載の方法。  1 4. Antitumor agents are platinum preparations, microtubule inhibitory activators, alkylating activators, antimetabolite activators, anticancer antibiotics and toposomerase activators and their pharmacologically acceptable salts. The method according to any one of claims 9 to 13, wherein the method is at least one selected from the group consisting of:
1 5 . 抗腫瘍剤が、 ドセタキセル、 パクリタキセル、 シスプラチン、 プスルファ ン、 メ ト トレキサート、 フノレオロウラシ/レ、 テガフール、 ブレオマイシン、 アドリアマイシン、 マイ トマイシン C、 ビノレルビン及びイ リノテカン並び にそれらの薬理学的に許容し得る塩からなる群から選択される少なく とも 1 つである、 請求項 9〜 1 3のいずれか 1項に記載の方法。  1 5. Antitumor agents are docetaxel, paclitaxel, cisplatin, psulfan, methotrexate, funoleorula / les, tegafur, bleomycin, adriamycin, mitomycin C, vinorelbine and irinotecan and their pharmacologically acceptable The method according to any one of claims 9 to 13, wherein the method is at least one selected from the group consisting of salts.
1 6 . 腫瘍が、 肺癌、 大腸癌、 胃癌、 乳癌、 食道癌、 頭頸部癌、 肝臓癌、 睥臓癌、 胆嚢又は胆管癌、 前立腺癌、 膀胱癌、 子宮頸癌、 甲状腺癌、 卵巣癌、 白血病、 リンパ腫、 肉腫、 及び間葉系腫瘍からなる群から選択される少なくとも 1つ である、 請求項 9〜1 5のいずれか 1項に記載の方法。  1 6. The tumor is lung cancer, colon cancer, stomach cancer, breast cancer, esophageal cancer, head and neck cancer, liver cancer, pancreas cancer, gallbladder or bile duct cancer, prostate cancer, bladder cancer, cervical cancer, thyroid cancer, ovarian cancer, The method according to any one of claims 9 to 15, which is at least one selected from the group consisting of leukemia, lymphoma, sarcoma, and mesenchymal tumor.
PCT/JP2006/324316 2006-11-29 2006-11-29 Telomelysin-containing agent for breaking antitumor tolerance WO2008065726A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324316 WO2008065726A1 (en) 2006-11-29 2006-11-29 Telomelysin-containing agent for breaking antitumor tolerance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324316 WO2008065726A1 (en) 2006-11-29 2006-11-29 Telomelysin-containing agent for breaking antitumor tolerance

Publications (1)

Publication Number Publication Date
WO2008065726A1 true WO2008065726A1 (en) 2008-06-05

Family

ID=39467530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324316 WO2008065726A1 (en) 2006-11-29 2006-11-29 Telomelysin-containing agent for breaking antitumor tolerance

Country Status (1)

Country Link
WO (1) WO2008065726A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005511A1 (en) * 2002-07-08 2004-01-15 Kansai Technology Licensing Organization Co., Ltd. Tumor-lysing virus growing selectively in tumor cells
WO2006085689A1 (en) * 2005-02-10 2006-08-17 Oncolys Biopharma, Inc. Anticancer agent to be combined with telomelysin
JP2007015997A (en) * 2005-07-11 2007-01-25 Oncolys Biopharma Inc Telomelysin-containing agent overcoming antitumor agent resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005511A1 (en) * 2002-07-08 2004-01-15 Kansai Technology Licensing Organization Co., Ltd. Tumor-lysing virus growing selectively in tumor cells
WO2006085689A1 (en) * 2005-02-10 2006-08-17 Oncolys Biopharma, Inc. Anticancer agent to be combined with telomelysin
JP2007015997A (en) * 2005-07-11 2007-01-25 Oncolys Biopharma Inc Telomelysin-containing agent overcoming antitumor agent resistance

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ABEI M. ET AL.: "Shokakigan no Idenshi Kagaku Ryoho no Tenbo: Gan Sentakuteki Zoshokugata Adenovirus o Mochiita Idenshi Chiryo ni yoru Gan Saibo no Koganzai Taisei no Kokufuku", JAPANESE JOURNAL OF GASTROENTEROLOGY, vol. 102, 2005, pages A486 + ABSTR. NO. SHO PD5-11, XP003022673 *
FUJIWARA T. ET AL.: "Konganzai Taisei Saibo ni Okeru Telomerase Tokuiteki Seigen Zoshokugata Adenovirus Telomelysin (OBP-301) no Koshuyo Koka no Kento", DAI 64 KAI ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION KIJI, 2005, pages 434 + ABSTR. NO. W-674, XP003022672 *

Similar Documents

Publication Publication Date Title
CN107075515B (en) C/EBP alpha compositions and methods of use
US8916696B2 (en) Aptamer-mRNA conjugates for targeted protein or peptide expression and methods for their use
EP1795604B1 (en) Telomelysin-gfp gene-containing recombinant virus
CN108603196A (en) The elimination to mankind&#39;s JC virus and other polyomavirus of guide RNA
JP2013500339A (en) Adipose-derived stromal cells (ASC) as a delivery tool for treating cancer
US10786545B2 (en) Use of peptides that block metadherin-SND1 interaction as treatment for cancer
WO2014171526A1 (en) Gene-modified coxsackievirus
JP2019533697A (en) 5-Halouracil modified microRNA and its use in the treatment of cancer
EP1553178B1 (en) Oncolytic virus growing selectively in tumor cells
CA3236236A1 (en) Compositions and systems for rna-programmable cell editing and methods of making and using same
WO2016030501A1 (en) Synthetic alu-retrotransposon vectors for gene therapy
WO2013066485A2 (en) Compositions and methods for treatment of metastatic cancer
Alipour et al. DNAi-peptide nanohybrid smart particles target BCL-2 oncogene and induce apoptosis in breast cancer cells
KR101835759B1 (en) Method of providing information for cancer cell using PHF20
KR102132198B1 (en) CRISPR system specific for TERT promoter mutation and use thereof
JP2007015997A (en) Telomelysin-containing agent overcoming antitumor agent resistance
WO2008065726A1 (en) Telomelysin-containing agent for breaking antitumor tolerance
WO2006085689A1 (en) Anticancer agent to be combined with telomelysin
Qi et al. Twenty years of Gendicine® rAd-p53 cancer gene therapy: The first-in-class human cancer gene therapy in the era of personalized oncology
CN116670172A (en) Cancer-specific trans-splicing ribozymes expressing immune checkpoint inhibitors and uses thereof
Liu et al. The Effects of Silencing Human Telomerase Reverse Transcriptase Gene on Proliferation, Apoptosis and Related Genes in Colon Cancer LoVo Cells
KR102133205B1 (en) Pharmaceutical composition for preventing or treating cancer comprising PNA-pHLIP Conjugates
KR102471898B1 (en) Tumor-targeting trans-splicing ribozyme expressing immune checkpoint inhibitor and use thereof
WO2015020215A1 (en) Lentiviral vector thtd, aging agent, cancer inhibitor, and medicinal composition containing said thtd, protein packaged in viruslike hollow particle, and production method for viruslike hollow particle
US20230390320A1 (en) Cancer-specific trans-splicing ribozyme expressing immune checkpoint inhibitor, and use thereor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP